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The ability to sense heat is crucial for survival. Increased heat
tolerance may prove beneficial by conferring the ability to inhabit
otherwise prohibitive ecological niches. This phenomenon is wide-
spread and is found in both large and small animals. For example,
ground squirrels and camels can tolerate temperatures more than
40 °C better than many other mammalian species, yet a molecular
mechanism subserving this ability is unclear. Transient receptor
potential vanilloid 1 (TRPV1) is a polymodal ion channel involved
in the detection of noxious thermal and chemical stimuli by pri-
mary afferents of the somatosensory system. Here, we show that
thirteen-lined ground squirrels (Ictidomys tridecemlineatus) and
Bactrian camels (Camelus ferus) express TRPV1 orthologs with dra-
matically reduced temperature sensitivity. The loss of sensitivity is
restricted to temperature and does not affect capsaicin or acid
responses, thereby maintaining a role for TRPV1 as a detector of
noxious chemical cues. We show that heat sensitivity can be reen-
gineered in both TRPV1 orthologs by a single amino acid substitu-
tion in the N-terminal ankyrin-repeat domain. Conversely, reciprocal
mutations suppress heat sensitivity of rat TRPV1, supporting func-
tional conservation of the residues. Our studies suggest that squir-
rels and camels co-opt a common molecular strategy to adapt to hot
environments by suppressing the efficiency of TRPV1-mediated heat
detection at the level of somatosensory neurons. Such adaptation is
possible because of the remarkable functional flexibility of the
TRPV1 molecule, which can undergo profound tuning at the minimal
cost of a single amino acid change.
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he somatosensory system allows animals to distinguish be-

tween innocuous and noxious temperatures, guiding them to
environments most amenable for life and reproduction. In gen-
eral, mammals avoid contacting surfaces heated more than
40 °C, which helps stave off the danger of tissue damage, but
at the same time limits inhabitable areas. Mammalian extrem-
ophiles such as camels and diurnal rodents, including ground
squirrels and chipmunks (Fig. 14), thrive under thermal condi-
tions that are harmful or even fatal to other animals. The
mechanism(s) that allows such species to cope with high tem-
peratures are complex and involve various organs and tissues,
including thermoregulatory and somatosensory systems (1-5),
but the exact molecular adaptations remain enigmatic.

In rodents, noxious stimuli, including temperature, are detected
in the skin by the terminal endings of C-type nociceptors from
dorsal root or trigeminal ganglia marked by the expression of the
heat-activated ion channel transient receptor potential vanilloid
1 (TRPV1) (6-9). Deletion of Trpvl in mice does not abolish pain
sensitivity in general (10) but diminishes sensitivity to noxious
temperatures more than 50 °C (7, 8). Whereas the general path-
ways of heat sensitivity in standard laboratory rodents has been
worked out in some detail, little is known about molecular adap-
tations in other animals, especially in the mammalian heat extrem-
ophiles. Indeed, it remains unclear whether the TRPV1-centered
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molecular mechanism of heat sensitivity in mice and rats repre-
sents a conserved evolutionary strategy adopted by many species
(11, 12). Such questions are best elucidated by using animals that
took heat sensitivity to the extreme. Here, we explored the mo-
lecular basis of heat tolerance at the level of somatosensory system
by using two evolutionarily distant species of extremophiles:
thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and
wild Bactrian camel (Camelus ferus).

Results

TRPV1* Nociceptors from Ground Squirrels Are Poorly Sensitive to
Temperature. We compared temperature preference in mice
and squirrels by using the standard two-plate temperature pref-
erence test, whereby an animal is given a choice to stay on a
reference plate set to 25 °C or move to a test plate with variable
temperature. Consistent with earlier data (13), mice preferred
the 25 °C plate when the test plate was set to 45 °C or above. In
contrast, squirrels began to show preference for the reference
plate only when the temperature of the test plate reached 55 °C
(Fig. 1B). The difference in behavior between mice and squirrels
is striking and cannot be explained simply by the animals’ size,
because earlier studies showed that rats, which are bigger than
squirrels, avoid heat similar to mice in the same experimental
conditions (14). The apparent heat tolerance observed in squir-
rels could be explained by a number of scenarios, including a
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diminished ability to detect high temperature at the level of
peripheral afferents.

In mammals, noxious heat is detected by somatosensory neu-
rons expressing TRPV1, a polymodal ion channel activated by
hot temperatures, acidic pH, and capsaicin, the pungent agent
from spicy peppers (6-8, 13, 15-18). TRPV1 is a marker of
nociceptors and thermoreceptors and is expressed in 40-60% of
mouse neurons from trigeminal or dorsal root ganglia (DRG)
(19-21). Using RNA in situ hybridization, we estimated that
56.3 + 1.2% of squirrel DRG neurons express TRPV1 (Fig. S1),
indicating their apparent heat tolerance cannot be explained by a
paucity of TRPV1-expressing neurons. To assess the functional
properties of primary afferents, we analyzed the heat and cap-
saicin sensitivity of dissociated mouse and squirrel DRG neurons
by live-cell ratiometric calcium imaging (Fig. 1C and Fig. S2). As
expected, mouse neurons sensitive to 1 uM capsaicin were also
activated at 40 °C. In contrast, although 57.2 + 4.6% of squirrel
neurons responded to 1 pM capsaicin, they failed to respond to
a temperature ramp from 22 °C to 45 °C. The temperature-
activation profiles of squirrel capsaicin-sensitive and capsaicin-
insensitive neurons were indistinguishable from each other and
from mouse TrpvI™" cells (Fig. 1 C and D and Fig. S2), sug-
gesting that squirrel neurons express TRPV1 with normal cap-
saicin- but ablated temperature-sensing properties. In agreement
with the neuronal sensitivity to capsaicin, squirrels exhibited a
significantly suppressed consumption rate of sunflower seeds
infused with either habanero pepper extract or 1 mM capsaicin
(Fig. 1E), demonstrating that the TRPV1 nociceptive pathway is
intact. Together, our results support the notion that the apparent
temperature-resistant phenotype of the squirrels could be sub-
served, at least in part, by the diminished temperature sensitivity
of TRPV1-expressing neuronal thermoreceptors.

SqTRPV1 and CaTRPV1 Are lon Channels with Diminished Heat
Sensitivity. To test whether TRPV1 directly contributes to the
neuronal phenotype, we cloned the channel from squirrel DRG
and analyzed its biophysical properties by two-electrode voltage
clamp in Xenopus oocytes. SQTRPV1 is 90% identical to the rat
ortholog at the amino acid level (Fig. S3). We found that,
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although sqTRPV1, mTRPV1, and rTRPV1 have similar sensi-
tivities to capsaicin (ECsp, mean + SEM: 528.5 + 32 nM, 775.6 +
52 nM, and 527.1 = 53 nM for sqTRPV1, mTRPV1, and
rTRPV1, respectively, n > 10), sqTRPV1 failed to activate in
response to a 22-46 °C temperature ramp, whereas mTRPV1
and rTRPV1 produced robust current with an apparent activa-
tion threshold at approximately 40 °C (Fig. 2 A-C, E, and F and
Fig. S4). The heat-activated two-pore potassium channel TREK1
(K2p2.1) is expressed in TRPV1 neurons, where it was proposed
to function as a negative regulator of the heat-evoked excitability
triggered by TRPV1 through a concurrent efflux of potassium
(22, 23). We found that mouse and squirrel TREK1 channels
have indistinguishable heat-activation properties in oocytes,
suggesting that decreased temperature sensitivity is not a gen-
eralizable feature of the heat-activated ion channels found in the
squirrel somatosensory system (Fig. 2 G-I). We further tested
heat sensitivity of sgTRPV1 and rTRPV1 in human embryonic
kidney 293T (HEK293T) cells. Similar to oocytes, both channels
produced robust activity in response to 1 pM capsaicin, although
the current appears to be less rectifying. In addition, rTRPV1
was activated by heat, whereas sqTRPV1 exhibited activity similar
to control cells (Fig. 3). These results demonstrate that the
suppressed heat sensitivity of sgTRPV1 does not depend on
the cellular context. Given the correlation between heat re-
sponses of DRG neurons and TRPV1, we examined properties of
sqTRPV1 further.

In the rat channel, heat sensitivity is known to be potentiated
by protons: rTRPV1 exhibits similar basal activity at pH 7.4 and
pH 6.3 at room temperature, but the acidic pH potentiates the
channel’s heat responses, leading to a leftward shift in the ap-
parent temperature threshold by 3.6 °C (T, mean + SEM:
40.1 + 1.1 °C at pH 7.4; 36.5 + 1.6 °C at pH 6.3, n > 6; Fig. 4 4
and B and Fig. S5) (15). We found that sqTRPV1 has a slightly
rightward shifted pH sensitivity (pH;,, mean + SEM: 5.13 + 0.02
and 5.49 + 0.01 for rTRPV1 and sqTRPV1, respectively, n > 10),
but similar to rTRPV1, remains inactive at pH 6.3. Despite the
slightly higher overall sensitivity to protons of sqTRPV1, pH 6.3
failed to significantly potentiate heat responses of the channel
(Fig. 4B and Fig. S5), suggesting that sqTRPV1 is insensitive to
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Fig. 2. SqTRPV1 and caTRPV1 are resistant to heat activation. Exemplar current—
voltage plots of responses to capsaicin or temperature (46 °C) obtained by two-
electrode voltage clamp in Xenopus oocytes expressing rTRPV1 (A), mTRPV1 (B),
sqTRPV1 (C) and caTRPV1 (D). Currents were elicited by a voltage ramp from a
holding potential of —80 mV. (E) Capsaicin dose—response curves for the indicated
TRPV1 orthologs (n > 10). (F) Heat-response profiles for TRPV1 orthologs nor-
malized to the maximum response of each oocyte to 5 pM capsaicin (n > 18).
Exemplar current-voltage plot (G), heat response profile (H), and quantification of
T12 and slope for mouse and squirrel orthologs of TREK1 (Kp2.1) (/), expressed in
Xenopus oocytes. Data shown as mean + SEM, n > 11. n.s,, not significant, t test.

heat within the experimentally testable temperature range, and
that the poor temperature sensitivity of sgTRPV1 does not result
from altered pH sensitivity. Temperature sensitivity of the re-
lated TRPV2 channel has been shown to be use-dependent such
that repetitive application of heat leads to significantly increased
activity (24). However, consecutive heat ramps only minimally
potentiated responses in rTRPV1 (1.7 + 0.1 fold at +80 mV) and
had no effect on sqTRPV1 (Fig. 4 C and E). However, the ap-
plication of heat in the presence of a subthreshold concentration
of capsaicin (100 nM) potentiated heat response from rTRPV1
(34 + 04 and 5.8 + 1.2 fold at +80 mV and —80 mV, re-
spectively) and sqTRPV1 (2.7 + 0.2 and 2.7 + 0.5 fold at +80 mV
and —80 mV, Fig. 4 D and E). These data suggest that sgTRPV1
is, in principle, sensitive to heat, but its apparent temperature
activation threshold is shifted beyond testable or physiologically
relevant range, unless the channel is sensitized with chemical
agonist. Together, these data demonstrate that sgTRPV1 proper-
ties explain the temperature and capsaicin sensitivity of somato-
sensory neurons and provide a molecular basis for the apparent
heat resistance in the behavioral test.

We next sought to examine functional properties of TRPV1
from a phylogenetically distant temperature extremophile, the
wild Bactrian camel (Camelus ferus). The predicted camel TRPV1
is 85% and 89% identical to the rat and squirrel orthologs, re-
spectively (Fig. S3). We found that, similar to the squirrel channel,
camel TRPV1 fails to respond to a 22-46 °C temperature ramp,
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although it retains normal capsaicin responses (ECsp, mean +
SEM: 609.6 + 36 nM, n = 10) (Fig. 2 D-F). Our data reveal a
remarkable correlation between the ability of squirrels and camels
to cope with high environmental temperatures and diminished
heat sensitivity of the TRPV1 channel.

A Single Conserved Amino Acid Substitution Restores Heat Sensitivity
in SqTRPV1 and CaTRPV1. Because, to our knowledge, all other
tested vertebrate TRPV1 orthologs exhibit robust heat activation
in the 28-46 °C range (11, 12, 25), we attempted to reverse-en-
gineer heat sensitivity in the squirrel and camel channels. The
substitution of the whole cytosolic N terminus of sqTRPV1
(amino acids 1-430) with the same region from rTRPV1 (amino
acids 1-428) resulted in heat-activated chimeras indistinguish-
able from the rat channel (Fig. S6). By systematically replacing
N-terminal regions in squirrel and camel TRPV1, we narrowed
the area of interest to a single pair of amino acids: Asn126/
Glul90 and Asn124/Glul88, in squirrel and camel channels,
respectively (Fig. 5 4 and B). Single or double substitutions of
these amino acids with the homologous residues from rTRPV1
(Ser124/GInl188, respectively) resulted in heat-activated sqTRPV1
mutants (Fig. 5 C and D and Fig. S6 E-G) without altering cap-
saicin sensitivity (Fig. S7 and Table S1). A similar gain of heat
sensitivity was achieved in camel TRPV1 mutants (Fig. 5E and F
and Fig. S6 J-L). Of the six tested single and double mutants,
sqTRPV1E1%? showed only a mild heat response, whereas the rest
were either indistinguishable from rTRPV1 (sqTRPV1N!26S/E190Q)
sqTRPVIN'2%5 | caTRPVIN'##SEISQ) o exhibited even more ro-
bust heat activation (caTRPVIN'?S, caTRPV1F'%89), as judged by
the normalized current amplitude at 44 °C (Fig. 5 C-F and Fig. S6
E-G and J-L). Thus, sqTRPV1 and caTRPV1 can acquire heat
sensitivity comparable to that of the rat channel via a single conserved
amino acid substitution. Conversely, reciprocal point mutations in
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Fig. 3. Temperature responses of rTRPV1 and sqTRPV1 in HEK293T cells.
Exemplar traces (A) and current-voltage plots (B) from whole-cell voltage-
clamp recordings of HEK293T cells transiently transfected with eGFP (con-
trol), rTRPV1, and sqTRPV1). (C) Quantification of TRPV1 activity at 44 °C
normalized to maximal activity evoked by 1 pM capsaicin (n > 9). Data shown
as mean + SEM, P < 0.0001, unpaired t test.
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rat TRPV1 (frTRPVIS*N TRPVIQHSE (TRpV5!124NQISSE)
substantially reduced heat responses of the channel, suggesting
functional conservation of the amino acids among the TRPV1
orthologs (Fig. 5 G and H).

Discussion

Our data show that two phylogenetically distant species of
animals—ground squirrels and camels—known for their ability
to withstand high environmental temperatures, possess TRPV1
orthologs with poor heat-activating properties. In heterologous
systems, sqTRPV1 and caTRPV1 fail to exhibit significant
temperature activation in the experimentally testable range of
up to 46 °C. Temperatures above this limit evoke robust back-
ground current in naive Xenopus oocytes and HEK293T cells,
preventing us from accurately assessing channel properties at
higher temperatures. Therefore, although we do not rule out the
possibility that sgTRPV1 and caTRPV1 may exhibit activation at
temperatures higher than 46 °C, they are the poorest heat sensors
of all known vertebrate TRPV1 orthologs in the experimentally
testable range (11, 12, 25).

The striking correlation between the behavior of the animals
and properties of the channel support the idea that TRPV1 is a
key somatosensory receptor of noxious heat. Our temperature
preference test revealed that squirrels spend much more time on
a hot plate compared with mice. Although this result could be
interpreted as if squirrels are more attracted to hot temperatures
than mice, the fact that some of the test plates are noxiously hot
(more than 40 °C) strongly argues against such explanation.
Furthermore, it appears unlikely that the difference is due to the
size of the animals, because rats, which are bigger than ground
squirrels, exhibit the same temperature preference as mice (14).
In our opinion, a more feasible explanation is that squirrels
are more tolerant to hot temperatures than mice. This tolerance
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****p < 0.0001, unpaired t test.

could be due to diminished sensitivity at the level of the so-
matosensory neurons, or due to the suppression of temperature
avoidance responses at the level of the central nervous system.
Although both scenarios are simultaneously possible, a somato-
sensory deficit alone would be sufficient to at least partially
diminish temperature sensitivity. Indeed, mice with pharmaco-
logically ablated TRPV1-expressing peripheral nociceptors are
unable to discriminate between the wide range of temperatures
from 25 to 50 °C (13, 26). In the case of squirrels, DRG neurons
failed to respond to heating from 22 to 46 °C, but responded to
capsaicin, demonstrating that TRPV1 is expressed and functional
in these cells. Squirrels avoided eating capsaicin-infused seeds,
suggesting that the function of TRPV1 neurons as nociceptors is
preserved. Overall, our results strongly suggest that heat toler-
ance exhibited by the squirrels in the behavioral test is explained,
at least partially, by the deficits in heat sensitivity of TRPV1-
expressing somatosensory neurons. The neuronal phenotype, in
turn, correlates well with the biophysical properties of TRPV1 in
two types of heterologous systems, providing a molecular mech-
anism for heat tolerance in squirrels. We note that the genetic
deletion of Trpv! in mice leads to the diminution of temperature
sensitivity in the highly noxious (more than 50 °C) range (7, 8),
suggesting that TRPV1 alone may be insufficient to explain the
squirrel temperature phenotype in its entirety.

Decreased thermosensitivity in sqTRPV1 and caTRPV1 did
not affect capsaicin and pH sensitivity, demonstrating a modality-
specific suppression of TRPV1. We speculate that this decreased
thermosensitivity is an evolutionary adaptation targeting a
focused aspect of TRPV1 function in the detection of noxious
heat through the skin, sparing its role in nonthermal aspects
of nociception, inflammation, and thermoregulation (27-31).
Arguably, the suppression of heat sensitivity entails the danger of
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Fig. 5. Single amino acid change modulates TRPV1 heat sensitivity. Amino
acid alignment (A) and topology diagram (B) of TRPV1 channels depicting
the locations of the amino acids key to heat sensitivity of rTRPV1, sqTRPV1,
and caTRPV1 (yellow and red stars). ARD, ankyrin repeat domain (numbered
ovals). (C-G) Temperature response profiles and quantification of TRPV1
activity at 44 °C for sqTRPV1 (C and D), caTRPV1 (E and F), and rTRPV1 (G and H)
mutants obtained by voltage clamp in Xenopus oocytes. Currents were
recorded in response to voltage ramp from a holding potential of —80 mV.
Data are normalized to maximal activity evoked by 5 uM capsaicin. Data
shown as mean + SEM (n > 8). *P < 0.05, **P < 0.01, ****P < 0.0001, n.s., not
significant, one-way ANOVA with Dunnett post hoc test.

accidental burns. However, it may also facilitate the ability of a
species to inhabit ecological niches that others find inhospitable.

Although sqTRPV1 and caTRPV1 are poorly heat sensitive,
the molecular basis for it is unclear. Our attempts to back-
engineer heat sensitivity led to the identification of a pair of amino
acids (Asn126/Glu190 and Asn124/Glul88 in squirrel and camel,
respectively), which, when mutated to Ser and Gln, respectively,
are sufficient to restore temperature gating of the channels to
the level of the rat ortholog. Sequence analysis of TRPV1
channels from different species shows that the Asn—Ser and
Glu—GlIn mutations did not restore a prerequisite heat-sensing
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sequence of TRPV1, because the Asn/Glu pair is also present in
a number of TRPV1 orthologs (cow, vampire bat, coastal mole,
chicken, zebrafish), which display robust heat sensitivity in the
2846 °C range (Table S2) (32, 33). In the crystal structure of the
rTRPV1 N-terminal domain, Ser124 is located in the C-terminal
part of the inner helix of ankyrin repeat 1, whereas GIn188 is
part of the a-helix between the repeats 2 and 3 (Fig. 54 and B
and Fig. S8) (34). The amino acids are largely solvent exposed
and not involved in binding to ATP or other residues. The
Asn—Ser and Glu—GIln mutations could, in principle, confer
heat sensitivity de novo if they brought a large 2-5 kcal/mol-K
change in the molar heat capacity (35, 36). However, even in the
case of a double Asn—Ser and Glu—Gln substitution, such change
is expected to be too small, on the order of 0.01 kcal/mol-K (37),
suggesting a different mechanism.

Our results are in line with the observations that a point
mutation in the ankyrin repeat domain can shift temperature
responses in TRPV1 of different Xenopus species (38) and
confer thermal activation to mouse transient receptor potential
channel Al (TRPAL) (39), suggesting a common mechanism of
activation. We hypothesize that the mutations affect coupling
between the gate and a heat-sensing module(s) located else-
where in the molecule. The facilitation of heat responses in the
presence of capsaicin in sqTRPV1 (Fig. 4 D and E) suggests that
such module could remain functional in the seemingly heat-in-
sensitive channel, whereas the heat-activation curve is shifted
beyond the physiologically relevant or experimentally testable
temperature due to defects in coupling. Our observations that
heat responses in two channels from distantly related species
were restored by the same point mutations, and that reciprocal
mutations suppress heat sensitivity in rTRPV1 (Fig. 5 C-H),
agree with this hypothesis.

Despite intense research, a heat-sensing module has not been
localized for a TRP channel. Studies in TRPV1 showed that
heat sensitivity can be altered by mutations in virtually any
channel domain (33, 40-46), supporting the idea that molecular
determinants of the hypothetical heat-sensing module are not
localized in a single topologically defined channel element, but
are instead distributed throughout the molecule (35). Although
a full-length structure of TRPV1 is currently unavailable, the
recent cryo-EM structure of TRPAL1 revealed tight interations
between the N- and C-termini (47), suggesting that topologically
distant domains could be functionally coupled, in which case
mutations that affect heat sensing or coupling mechanisms
could be functionally indistinguishable. A discrete temperature-
sensing module exists in a bacterial voltage-gated sodium
channel, where temperature-dependent unfolding of a portion
of the C-terminal domain drives channel opening (48). A similar
mechanism is conceivable with regard to TRPVI1, whereby
structural changes in a localized domain lead to channel open-
ing directly or via displacing an inhibitory cofactor. In accor-
dance with a model based on the cryo-EM structure of TRPV1,
temperature could act similar to a vanilloid agonist, which opens
the channel by displacing phosphatidyinositide from its binding
pocket (17). The model unifies agonist and temperature gating
of TRPV1 and agrees with our observation that heat sensitivity
of sqTRPV1 can be revealed in the presence of capsaicin (Fig.
4 D and E).

Earlier studies suggested that heat-sensing properties of
TRPV1 can be fine-tuned to adapt to physiological needs of
warm-blooded species. For example, chicken TRPV1 has a rel-
atively high (46 °C) apparent temperature activation threshold,
which can be viewed as an adaptation of the somatosensory
system to the high core body temperature of birds (32). In con-
trast, a TRPV1 isoform from the trigeminal ganglion of vampire
bats (apparent activation threshold 30 °C) was suggested to serve
as a low radiant heat sensor driving the detection of superficial
blood vessels in the bat’s warm-blooded prey (33). In both cases,
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the scope of the molecular changes that affected heat-sensitive
properties of the channel was not clear. Our findings demon-
strate that the changes can be minimal, because heat sensitivity
of sqTRPV1, caTRPV1, or rTRPV1 can be reversed by as little
as a mutation of a single amino acid. Such a low-cost functional
plasticity of TRPV1 lends itself as a powerful vehicle to drive
evolutionary adaptation, and is apparently exploited by various
mammals, including the two species in focus. Indeed, the eco-
logical advantages that squirrels and camels gained owing to
their unusual heat resistance could have been achieved through
the inexpensive solution of tweaking TRPV1 heat sensitivity via a
process of convergent evolution.

Materials and Methods

Animal procedures were performed in compliance with the Institutional Animal
Care and Use Committee of Yale University. For the two-plate temperature
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preference/aversion assay, animals were given a free choice to move on a
control (25 °C) or test (25-60 °C) plate, and the time spent on each plate was
quantified over 5 min. In the capsaicin ingestion assay, we quantified the
number of seeds (infused or not with 1 mM capsaicin) eaten by preconditioned
squirrels over 10 min. Cloning, in situ hybridization, ratiometric calcium im-
aging, and electrophysiology were performed by using standard approaches.
See S/ Materials and Methods for a detailed description.
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S| Materials and Methods

Animals. Animals were housed in a pathogen-free facility at Yale
University. All animal procedures were performed in compliance
with the Institutional Animal Care and Use Committee of Yale
University. Thirteen-lined ground squirrels were maintained on a
diet of dog food (Iams) supplemented with sunflower seeds,
superworms, and fresh vegetables. Trpvl ™~ mice were a gift from
Sven-Eric Jordt (Duke University, Durham, NC). Mice and
squirrels were housed on a 12-h light/dark cycle under standard
laboratory conditions with ad libitum access to food and water.

Temperature Preference and Capsaicin Ingestion Assays. Behavioral
experiments on mice and active squirrels were performed in May—
July. For the two-plate temperature preference/aversion assay,
animals were placed into a chamber containing one floor plate
set to a control temperature of 25 °C and the other set to a test
temperature between 25 and 60 °C (T2CT). Animals were re-
corded as they freely explored both sides of the chamber for a
total of 5 min. There was a minimum of 1 d between test days.
Plate order was reversed between groups and test days.

The capsaicin ingestion assay consisted of two experimental days.
Initially, animals were randomly presented with either 10 vehicle-
treated sunflower seeds or seeds treated with either the oil from
habanero peppers or a solution of 1 mM capsaicin. The number of
seeds eaten in a 10-min time interval was quantified. After 48 h,
animals were presented with 10 sunflower seeds of the other
treatment group (vehicle or pepper). Behavioral responses were
monitored by video recording. With the exception of the additional
seeds presented during testing, animals were maintained on their
standard diet throughout the course of the experiment.

Calcium Imaging. Animals were euthanized via CO, inhalation
followed by decapitation. Dorsal root ganglia were dissected into
ice-cold PBS then briefly treated with collagenase P (1 mg/mL in
HBSS, 15 min, 37 °C) followed by 0.25% trypsin (10 min, 37 °C).
Finally, tissue was suspended in DMEM Complete media sup-
plemented with 10% (vol/vol) FBS and penicillin/streptomycin
and mechanically dissociated by using a plastic-tipped pipette
before being plated on BD Matrigel-coated coverslips and in-
cubated at 37 °C. After neurons were adherent (~2 h), coverslips
were loaded with 10 pM Fura 2-AM (Invitrogen) and 0.02%
Pluronic F-127 for 1 h at room temperature. Images were ob-
tained by using Axio-Observer.Z1 inverted microscope (Zeiss)
equipped with an Orca-Flash4.0 camera (Hamamatsu) using the
MetaFluor software (Molecular Devices). For loading and imag-
ing, cells were maintained in physiological Ringer’s solution (pH
7.4) containing (in mM): 140 NaCl, 5 KCl, 10 Hepes, 2 CaCl,,
2 MgCl,, and 10 p-glucose. Capsaicin (Sigma-Aldrich) was freshly
diluted from 100 mM stock dissolved in DMSO. Heat ramps were
applied by using the SC-20 in-line heater-cooler and CL-200A
Bipolar Temperature controller (Warner), with bath temperature
monitored via a thermistor situated in the imaging chamber. At
the end of imaging, neurons were identified based on their re-
sponses to high K* Ringer’s solution containing (in mM): 10
NadCl, 135 KCl], 10 Hepes, 2 CaCl,, 2 MgCl,, and 10 p-glucose.

Cloning, Gene Synthesis, Mutagenesis, and Plasmids. Rat 77pv] in
pMO vector was generously provided by David Julius (University
of California, San Francisco). Mouse Kcnk2 (TREK1/K;p2.1,
NP_034737.2) cloned into pPGEMHE was described (49). Squirrel
Trpvl (KU877439) was cloned from cDNA from dorsal root
ganglia by using the following primers: forward 5'-ATGAAG-
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AAGTGGGCTAACTTAGAC-3'; reverse 5'-GGTCACACTG-
CTGACAGG-3'. Squirrel Kenk2 (TREK1/K,p2.1, protein sequence
identical to XP_005335026.1) was cloned by using forward
5’-ATGCTTCCCAGCGCCTCG-3’; reverse 5'- CTATTTAAT-
GTTCTCAATAACAGCAATCTCTTCA-3’ primers. Mouse
Trpvl (NP_001001445) was cloned from cDNA from dorsal root
ganglia by using the following primers: forward 5-GCAAA-
TTGGGCCACAGAAGATC-3'; reverse 5-GCAGAGTACAGC-
CAGCCAAC -3'. Camel Tipvl was synthesized by Genewiz based
on the predicted sequence from the wild Bactrian camel (Camelus
ferus) genome (XM_006172536.1). The camel Trpvl sequence is
obtained by automated computational analysis of the full C. ferus
genome (NW_006210217.1). Annotation was done by using the
gene prediction method Gnomon and supported by mRNA evi-
dence including transcriptomes assembled from RNA extracted
from 10 tissue types from Bactrian and dromedary camels (Camelus
bactrianus and Camelus dromedarius). Squirrel, mouse and camel
Trpvl orthologs were subcloned into the pMO vector. Point mu-
tations and chimeras were generated by using the QuikChange
Site-Directed mutagenesis kit (Agilent) and overlapping PCR. All
constructs were verified by full-length sequencing.

RNA in Situ Hybridization. Dorsal root ganglia were dissected and
fixed overnight in 4% (vol/vol) paraformaldehyde in PBS. RNA in
situ hybridization was performed on cryostat sections (12 pm) by
using digoxigenin-labeled cRNA probes generated by T7/T3
in vitro transcription reaction using a full-length TrpvI cDNA.
Signal was developed with alkaline phosphatase-conjugated anti-
digoxigenin Fab fragments according to the manufacturer’s in-
structions (Roche).

Oocyte Electrophysiology. Oocytes were surgically extracted from
Xenopus laevis in accordance with procedures approved by the
Institutional Animal Care and Use Committee of Yale University.
Oocytes were cultured at 18 °C in ND96 media containing (mM):
2 K(l, 96 NaCl, 2.0 MgCl,, 1.8 CaCl,, 5 Hepes/NaOH pH 7.4 and
supplemented with penicillin/streptomycin. cRNA was synthesized
by in vitro transcription from linearized plasmids using the
mMessage mMachine kit (Ambion), and 10-20 ng of RNA was
injected per oocyte. Electrophysiological recording were per-
formed by two-electrode voltage clamp 1-6 d after injection using
the OC-725 amplifier. Whole-cell currents were elicited by 2-s
voltage ramp from —150 to +90 mV from a holding potential of
—80 mV in ND96 pH 7.4 (NaOH), filtered at 1 kHz, sampled at
5 kHz using the Digidata 1440 digitizer and recorded in pCLAMP
10.3 software (Molecular Devices). Oocytes that displayed cur-
rents in excess of 20 pA at 80 mV were discarded from analysis.
Heat ramps were applied by using the SC-20 in-line heater/cooler
and CL-100 Temperature controller (Warner), with bath tem-
perature monitored via a thermistor situated adjacent to the oo-
cyte. The peak-to-peak time interval between first and second heat
applications (with or without 100 nM capsaicin) was 4 min, and
the interval between second heat application and final 5 pM
capsaicin application was 4.5 min. For TRPV1 pH activation ex-
periments, ND96 without Ca** supplemented with 0.1 mM BaCl,
was used. Solutions were buffered to pH 7.4 and 6.8 with 5 mM
Hepes, to pH 6.3, 6.0, and 5.5 with 10 mM Mes, to pH 5.0, 4.5,
and 3.5 with 10 mM citric acid; pH was adjusted with NaOH. To
obtain dose-response curves for capsaicin and protons, whole-cell
currents were measured at +80 mV were fitted to a modified Hill
equation: I = I'nin + (Imax — Imin)/(1 + ([Cl,2/[C])™), where Ipin
and I,,,,x are the minimal and maximal current values, respectively,
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[C]y2 is the half-maximal effective concentration of capsaicin or
protons, and H is the Hill coefficient. To obtain temperature—
response curves for TREKI, whole-cell currents measured at
+40 mV were fitted to a modified Boltzmann equation: I = I, +
Imax — Imin)/(1 + exp™="D5) where T),, is the half-maximal
effective temperature, and S is the slope.

HEK293 Electrophysiology. Electrophysiological recordings in
HEK?293 cells transfected with rTRPV1 and sqTRPV1 were made
by using an Axon 200B amplifier, digitized using a Digidata 1440
and recorded in pCLAMP 10.3 software (Molecular Devices).
Currents were evoked in the whole-cell configuration by a 1-s
voltage ramp from —100 to +60 mV, from a —60 mV holding

Squirrel DRG
Antisense

TRPV1

potential, filtered at 2 kHz and sampled at 5 kHz. Recording
solutions (Bath, in mM: 140 NCI, 5 KCl, 2 MgCl,, 2 CaCl,, 10
D-glucose, 10 Hepes/NaOH pH 7.4. Pipette, in mM: 150 KCl,
3 MgCl,, 5 EDTA, 10 Hepes/KOH pH 7.2). Heat ramps were
applied by heating the perfusing solution using the SC-20 in-line
heater-cooler and CL-200A Bipolar Temperature controller
(Warner). Bath temperature was measured by a thermistor situ-
ated in the recording chamber.

Statistical Analysis. Data were obtained from at least two in-
dependent experiments and analyzed with GraphPad Prism 6.0
(GraphPad Software) and probed for significance by using the
statistical test described in the figure legends.

Sense

Fig. S1. TrpvT is expressed in squirrel dorsal root ganglia. Exemplar RNA in situ hybridization images of squirrel dorsal root ganglia show Trpv1 expression in

somatosensory neurons.
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Fig. 2. Temperature sensitivity of dissociated neurons from dorsal root ganglia. Shown are baseline-normalized changes in intracellular Ca%* recorded from

the neurons in the zoomed insets of Fig. 1C by ratiometric calcium imaging at different temperatures. Neurons were stimulated by heat ramp as shown on Top,
followed by application of 1 puM capsaicin and 135 mM KCl solution as indicated by horizontal bars.
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Fig. $3. Alignment of amino acid sequences of rTRPV1 and sqTRPV1. Amino acid alignment of rTRPV1 (NP_114188), sqTRPV1 (KU877439), and caTRPV1
(XP_006172598) orthologs. SQTRPV1 and caTRPV1 are 89% identical to each other, and 90% and 85% identical to rTRPV1, respectively. The locations of ankyrin

repeats (red boxes) and transmembrane domains (black bars) are
temperature sensitivity (yellow boxes).
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Fig. S4. Voltage-clamp recordings of temperature and chemical responses of TRPV1 orthologs. Exemplar traces showing temperature- and capsaicin-evoked
activity from control (uninjected) or TRPV1-expressing Xenopus oocytes measured at +80 mV and —80 mV by two-electrode voltage clamp. Oocytes were
stimulated by a heat ramp followed by 5 pM capsaicin as indicated in Top.

Laursen et al. www.pnas.org/cgi/content/short/1604269113

50f9


www.pnas.org/cgi/content/short/1604269113

A

L T

uninjected ratTRPV1 sqTRPV1
101 104 104
= pH7.420°C < = pH 7.420°C < = pH7.420°C <
== pH 5.0 20°C - == pH 5.0 20°C - = pH 5.0 20°C -
54 54 54
-'
FW—4I r T T - 1 r p——
-150 -100 50 100 -150™= 50 100 -150 -100 50 100
E ,mV , mV E ,mV
m m m
D uninjected E ratTRPV1 F sqTRPV1
201 201 201
=— pH7.420°C < =— pH7.420°C =— pH7.420°C <
== pH6.320°C - == pH6.320°C == pH6.320°C -
- = pH6.346°C 101 == pH6.346°C 101 == pH6.346°C 101
= pH 7.4 46°C == pH 7.4 46°C = pH 7.4 46°C J
*,
—“."—-4‘ p— — ———-!-—41
-150° -100 50 100 -1w// -150 -100 50 100
-104 Em,mV -104 m,mV -104 Em,mV
-
!
ratTRPV1 pH 7.4 ratTRPV1 pH 6.3
14 14
’S ] ’>‘ ]
€ €
o o
x x
o Q
S 0.3 S 0.1 N
< ] Z ]
(o] (o]
0.01 H3C 1 0.01 —372 G 1
3.1 32 33 34 3.1 3.2 33 3.4
1000 / T(K) 1000 / T(K)

Fig. S5. Sensitivity of TRPV1 to acidic pH. (A-C) Exemplar current-voltage plots of responses to low pH (pH 5.0) obtained by two-electrode voltage clamp in
uninjected Xenopus oocytes (A) and those expressing rTRPV1 (B) or sqTRPV1 (C). (D-F) Exemplar current-voltage plots of responses to pH 6.3 at both room
temperature and 46 °C in uninjected Xenopus oocytes (D) and those expressing rTRPV1 (E) or sqTRPV1 (F). (G and H) Arrhenius plots show difference in thermal
threshold for rTRPV1 heated in pH 7.4 (G) compared with pH 6.3 (H). Currents were recorded during voltage ramp from a holding potential of -80 mV and
normalized to maximum response to 5 pM capsaicin (n > 6).
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Fig. S6. Temperature sensitivity of chimeric TRPV1 channels. (A-L) Shown are topology diagrams (Top), exemplar current-voltage plots (Middle), and
quantification of temperature responses (Bottom) of TRPV1 chimeras recorded by two-electrode voltage clamp in Xenopus oocytes. Currents were elicited by
a voltage ramp from a holding potential of —80 mV. Data shown as mean + SEM from 8 to 31 oocytes.
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Fig. S8. Structure of the ankyrin repeat domain of TRPV1. The crystal structure of the ankyrin repeat domain of rat TRPV1 (PDB ID code: 2PNN) is shown along
with the locations of the specific amino acids relevant to this study.

Table S1. Capsaicin sensitivity of TRPV1 orthologs and
mutants expressed in Xenopus oocytes

Channel ECso mean + SEM, nM n
rTRPV1 527.1 + 53 21
sqTRPV1 528.5 + 32 10
caTRPV1 609.6 + 36 10
mTRPV1 775.6 + 52 12
rTRPV15124N 785.0 + 67 14
rTRPV1Q188E 506.8 + 31 1
rTRPV15124N/Q188E 679.1 + 68 1"
sqTRPV1N1265 772.5 + 38 8
sqTRPV1E190Q 766.7 + 32 9
sqTRPV/1N1265/E190Q 643.9 + 28 9
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Table S2. Conservation of the rat Ser124 and GIn188 sites among heat-activated and heat-resistant TRPV1 orthologs

Apparent T, threshold

Site 1 Site 2 in heterologous Overall identity with
TRPV1 (GenBank accession no.) (rat Ser124) (rat GIn188) cells, °C rat TRPV1, % Source
Rat (NM_031982) Ser124 GIn188 42 — 6, 15
Rattus norvegicus
Squirrel (KU877439) Asn126 Glu190 No activation up to 46 85 This study
Ictidomys tridecemlineatus
Camel (XM_006172536) Asn124 Glu188 No activation up to 46 85 This study
Camelus ferus
Camel (XM_010950234) Asn124 Glu188 N/A 84 —
Camelus bactrianus
Camel (XM_010987938) Asn124 Glu188 N/A 85 —
Camelus dromedarius
Cow (DAA18892) Asn123 Glu187 40.5 85 33
Bos taurus
Vampire Bat (JN0O06855, JN006856) Asn125 Glu189 31, 40 85 33
Desmondus rotundus
Coastal Mole (JN006861, JN0O06862) Asn126 Glu190 31, 38 86 33
Scapanus orarius
Chicken (NM_204572) Gly131 Glu195 46 66 32
Gallus gallus
Zebrafish (XP_005165384) Gly92 Asn154 33 44 33
Danio rerio
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