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Abstract
The ability to sense temperature is crucial for the survival of an organism. Temperature influences all biological operations, from
rates of metabolic reactions to protein folding, and broad behavioral functions, from feeding to breeding, and other seasonal
activities. The evolution of specialized thermosensory adaptations has enabled animals to inhabit extreme temperature niches and
to perform specific temperature-dependent behaviors. The function of sensory neurons depends on the participation of various
types of ion channels. Each of the channels involved in neuronal excitability, whether through the generation of receptor
potential, action potential, or the maintenance of the resting potential have temperature-dependent properties that can tune the
neuron’s response to temperature stimuli. Since the function of all proteins is affected by temperature, animals need adaptations
not only for detecting different temperatures, but also for maintaining sensory ability at different temperatures. A full under-
standing of the molecular mechanism of thermosensation requires an investigation of all channel types at each step of
thermosensory transduction. A fruitful avenue of investigation into how different molecules can contribute to the fine-tuning
of temperature sensitivity is to study the specialized adaptations of various species. Given the diversity of molecular participants
at each stage of sensory transduction, animals have a toolkit of channels at their disposal to adapt their thermosensitivity to their
particular habitats or behavioral circumstances.
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Introduction

Environmental information is detected by sensory primary
afferents that innervate the skin and is transmitted through
central projections to the spinal cord and the brain. The cell
bodies of the somatosensory neurons reside in the dorsal root

ganglia (DRG) that innervate the body and in trigeminal gan-
glia (TG) that innervate the face. Somatosensory neurons ex-
press a combination of multiple channel types that determine
their ability to detect and transmit specific sensory stimuli.
Primary sensors generate a graded depolarization in response
to a stimulus. The receptor potential activates an inward cur-
rent through voltage-dependent sodium channels to generate
the upstroke of an all-or-none action potential. Subsequently,
potassium channels conduct an outward current to create the
down-stroke and after-hyperpolarization of the action poten-
tial. Action potentials are only generated if the cellular depo-
larization reaches a certain threshold. The proximity of the
cell’s resting membrane potential to this threshold contributes
to how easily the cell can fire in response to stimuli. The
resting potential is determined by activities of several types
of ion channels and pumps (Fig. 1).

Much attention has been paid to temperature-sensitive recep-
tor channels, but there are a growing number of studies that
show that other types of channels play a critical role in the
detection and transmission of temperature information. A full
understanding of the molecular mechanisms of thermosensation
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requires an investigation of all channel types at each step of
thermosensory transduction. Comparative studies demonstrated
that molecular components of the thermosensory system can be
altered through evolution to confer temperature adaptions in
animals with different thermosensory needs. In this review, we
will discuss the involvement of primary temperature sensors,
channels that generate and propagate action potentials, and
channels that maintain the resting potential in regulation of tem-
perature sensitivity across different species.

Primary temperature sensors

A group of temperature-sensitive receptor channels that have
been studied extensively is the TRP (transient receptor poten-
tial) family [100]. TRPs are non-selective cation channels,
many of which are polymodal, meaning they generate tran-
sient depolarizing potentials in response to multiple types of
sensory stimuli. Thus, most of the thermosensitive TRP chan-
nels (thermo-TRPs) can be activated by changes in tempera-
ture and also by various chemicals, some of which evoke
similar temperature-like sensations [61]. The activity of the
known thermo-TRPs covers the whole range of physiological-
ly relevant temperatures, from painful heat, and intermediate
warmth, to cold. For some of the thermo-TRPs, their function
in vitro agrees well with their role in the detection of the
relevant temperature ranges in sensory neurons and in vivo,
while for most such a link has not been firmly established. In
addition to thermo-TRPs, a number of other channel types

have been shown to be gated by temperature and may play a
role in thermosensation.

The temperature-evoked currents of thermo-TRPs increase
in a steep but graded manner across their temperature activa-
tion range, as the channel open probability increases with
changes in temperature. Thermosensitivity is typically quan-
tified using two measures, Q10 and temperature threshold. Q10

refers to the relative change in current amplitude when the
temperature increases by 10 degrees. While all reaction rates
are dependent on temperature and all channels have a Q10,
thermosensors usually have a Q10 of > 5 (for heat sensors) or
< 0.2 (for cold sensors) [146]. By plotting the logarithm of the
current response versus the inverse of the temperature in
Kelvin (Arrhenius plot, Fig. 2), the Q10 can be calculated from
the slope of the resulting curve. The intersection of two lines
that lie tangent to each end of the Arrhenius plot points at the
apparent temperature activation threshold (Fig. 2). However,
the temperature threshold should not be misinterpreted as an
absolute threshold of channel activation, but rather as a marker
of the detectable temperature-sensitive range.

TRPM8

TRPM8 is the receptor for cold temperatures and chemicals
that elicit cooling sensation, such as menthol (found in mint
leaves) and the synthetic compound icilin [96, 115]. In cell
lines and neurons, mammalian TRPM8 exhibits gradual acti-
vation upon cooling below 30 °C. TRPM8 knockout mice

Fig. 1 Diagram of molecular participants in thermosensory excitability.
Multiple-channel types contribute to the function of thermosensory neu-
rons. Primary sensors of temperature are non-specific cation channels
(TRPM8, TRPA1, TRPV1, and other thermo-TRP’s). Action potentials
in thermosensitive neurons are mainly conducted by voltage-gated sodi-
um channels (Nav1.7 and Nav1.8) which promote excitability. Voltage-
gated potassium channels (Kv’s) provide a counteracting current that

limits excitability. Nav1.9 is a regulator of the resting potential and am-
plifier of subthreshold depolarization. The resting potential of
thermosensory neurons is also regulated by thermo-sensitive leak potas-
sium channels (TREK-1, TREK-2, and TRAAK) which counteract ex-
citability. Another contributor to the resting potential is the Na+/K+-
ATPase, which sets up the ionic gradients across the membrane
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show significant deficits in temperature preferences in the
cooling range (10–20 °C), but retain responses to painful cold
below 10 °C [17, 37]. Some reports, however, demonstrated
deficits in noxious cold sensing even at 5 °C [71]. Genetic or
pharmacological ablation of TRPM8-expressing cells, rather
than the TRPM8 gene alone, causes deficits in the whole
testable cold range [72, 119]. This indicates that there is an
additional TRPM8-independent mechanism for sensing tem-
peratures below 10 °C (Fig. 3).

Within its role as a cold sensor, there is a diversity of
TRPM8 sensitivities among different animal species. When

heterologously expressed in oocytes, rat TRPM8 has a half-
maximal activation of 24 °C, a few degrees below the rat’s
preferred ambient temperature of 28 °C [80]. On the other
hand, frogs (Xenopus laevis and Xenopus tropicalis) have a
notably shifted TRPM8 half-maximal activation to 13.9 °C,
which would allow these species to detect cold below their
tolerable temperature range of 14–32 °C [21]. The half-
maximal activation of chicken (Gallus gallus domesticus)
TRPM8 is 29.4 °C [105]. For effective cold sensation, it
seems that TRPM8 activity is tuned to the relative body tem-
perature of the species. In animals with lower or more variable
body temperatures, such as ectothermic animals, whose core
body temperature adjusts to ambient levels, it would be detri-
mental to activate the cold receptor at cool ranges that are
frequently experienced (Fig. 4a).

An extreme example of changing body temperature occurs
in hibernating animals. Mammals that hibernate exhibit a mix-
ture of endothermic and ectothermic phenotypes, actively
maintaining a stable body temperature during the active state,
and adjusting body temperature to ambient levels during the
torpid state [49]. For example, the core body temperature of a
13-lined ground squirrel (Ictidomys tridecemlineatus) can
drop to 2–4 °C [98], and that of an arctic ground squirrel
(Spermophilus undulatus) can drop as low as − 2.9 °C during
hibernation [15]. In order to tolerate extended periods of time
at such temperatures, these animals must be able to modify
their sensation of noxious cold, a sensory mechanism that is
not yet fully understood. Furthermore, while transitioning be-
tween the active and torpid states, they experience severe hy-
pothermia that would be intolerable to other endothermic an-
imals. The results of a recent study support the possibility that
modifications of TRPM8 contribute to cold tolerance in hiber-
nators. The TRPM8 orthologs of two hibernating species, the
13-l ined ground squirrel and the Syrian hamster
(Mesocricetus auratus), respond weakly to cold, especially
in the range of 10–20 °C, while retaining chemical sensitivity
to icilin and menthol. Six amino acids distributed across the
transmembrane core of the channel were found to be impor-
tant for this modality-specific modification, and replacing
these amino acids with the corresponding residues from the
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Fig. 2 Arrhenius plot of a hypothetical temperature-sensitive channel.
The Arrhenius plot depicts the current amplitude evoked by changes in
temperature on a log scale on the y-axis, versus the inverse of temperature
in degrees Kelvin on the x-axis. The slope of the resulting curve reports
the Q10 of the channel at different temperatures. While all proteins have
some dependence on temperature, thermosensitive channels usually have
a Q10 > 5. A typical method of quantifying the temperature threshold is to
find the intersection point of two lines that lie tangent to the beginning
and end of the curve (red lines). This apparent activation threshold marks
the start of a detectable increase in channel activity in heterologous and
native systems, which increases at a steep rate over the channel’s activa-
tion range

Fig. 3 Temperature range of mammalian thermo-TRPs. Depicts the
temperature-sensitive range of each thermo-TRP. TRPA1 (< 17 °C),
TRPM8 (10–26 °C), TRPM2 (23–28 °C), TRPC5 (26–38 °C), TRPV4
(27–34 °C), TRPV3 (33–40 °C), TRPM3 (> 40 °C), TRPV1 (> 42 °C),

TRPV2 (> 52 °C). These overlap with psychophysical temperature ranges
of noxious cold (< 15 °C), innocuous cold (10–25 °C), innocuouswarmth
(25–42 °C), noxious heat (42–52 °C), and extreme noxious heat (> 52 °C)
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cold-sensitive rat channel is sufficient to restore cold sensitiv-
ity in squirrel TRPM8 [95].

TRPA1

TRPA1 is a polymodal channel that responds to a variety of
stimuli in different species [78]. A commonly used chemical
agonist of TRPA1 is allyl isothiocyanate (AITC), the pungent
compound in mustard, radish, horseradish, and wasabi [13,
16, 26, 59]. TRPA1 can be activated by numerous other nox-
ious chemicals, including naturally derived compounds from
cinnamon, garlic, oregano, and olive oil, irritants in smoke and
tear gas, and endogenous inflammatory factors. TRPA1
orthologs of different species have a diversity of functions,
which show the evolutionary flexibility of this molecule [78].

Some, but not all mammalian orthologs of TRPA1 are cold-
sensitive (Fig. 3) [28, 75, 97, 101, 102, 138]. Human TRPA1
is activated by cold in a lipid bilayer, suggesting that cold
sensitivity is intrinsic to the channel [102]. In mice, TRPA1
also mediates physiological sensitivity to cold after injury and
in pathological conditions [36, 77]. In C. elegans, TRPA1 is a
cold sensor and is required for avoidance of acute cold shock
at 15 °C [27]. Moreover, TRPA1 has been implicated in the
process of cold-induced longevity in worms [154].
Interestingly, deficits in the cold avoidance in TRPA1
knock-out worms could be partially rescued by the mouse
ortholog [27]. On the other hand, in birds, reptiles, amphib-
ians, and insects, TRPA1 is activated by heat (Fig. 4b) [51, 66,
73, 123–125, 149].

The remarkable flexibility of TRPA1 temperature re-
sponses might be explained from a thermodynamic

a

b

c

Fig. 4 Species-specific temperature ranges of TRPM8, TRPA1, and
TRPV1. a Half-maximal activation temperatures of TRPM8 from chick-
en (29.4 °C), rat (24 °C), and frogs (13.9) correlate with the body tem-
perature of chicken (41–42 °C) and rat (~ 37 °C), and the tolerable tem-
perature of frogs (14–32 °C). The body temperature of hibernating 13-
lined ground squirrels and Syrian hamsters drops as low as 2–4 °C, which
these animals may be able to tolerate due to reduced TRPM8 sensitivity in
the range of 20–10 °C (denoted by dotted line). b TRPA1 apparent acti-
vation threshold of mouse (< 17 °C), worm (< 17 °C), mosquito TRPA1-
B (24.8 °C), fruit fly TRPA1-B (27.8 °C), rattlesnake (32.7 °C), green
anole (33.9 °C), rat snake (37 °C), chicken (39.4 °C), and frog (39.7 °C).

Red arrow denotes specialized use of TRPA1 in snake pit organs as a
radiant heat sensor. c TRPV1 apparent activation threshold of frog
Xenopus laevis (36 °C), frog Xenopus tropicalis (38 °C), mouse (>
42 °C), and chicken (> 45 °C), which correlate with the preferred temper-
ature of Xenopus laevis (16–22 °C) and Xenopus tropicalis (22–28 °C),
and the body temperature of mouse (~ 37 °C) and chicken (41–42 °C).
Extremophiles 13-lined ground squirrel and wild Bactrian camel tolerate
a greater variation of body temperatures, and their TRPV1 homologs are
not sensitive to heat. Red arrow denotes specialized use of TRPV1-S
isoform as a heat sensor in pit organs of vampire bats (30 °C)
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standpoint. Thermodynamic considerations dictate that a
channel with a sufficiently large change in molar heat capacity
between open and closed states will exhibit a steep tempera-
ture dependence of its equilibrium constant of opening [31].
Furthermore, the equilibrium constant will have a non-linear
U-shaped dependence on temperature. It would follow from
this that all thermo-TRP’s are actually both heat and cold
sensors, but only reveal one Barm^ of the activation curve in
the physiologically testable range. A change in the molecular
interactions within the protein could produce a shift in the
activation curve along the temperature axis, placing the other
arm of the activation curve into the physiological Bwindow.^
This will effectively switch a channel’s temperature sensitivity
from heat to cold and vice versa, without requiring changes to
the temperature sensing elements of the channel [31]. Indeed,
a U-shaped temperature dependence was shown for human
TRPA1; while in mouse TRPA1, the intrinsic directionality
of temperature responses can be reversed by a single point
mutation [58].

The versatility of TRPA1 makes it a good target for the
evolution of specialized functions. Snakes have adapted
TRPA1 to detect the heat emission of warm-blooded prey.
Three groups of snakes (pit-vipers, boas, and pythons) have
specialized structures on their faces—pit organs—that are
enriched with TRPA1-expressing trigeminal sensory fibers.
The rattlesnake (Crotalus atrox) has the highest sensitivity to
infrared radiation. In addition to having a 400-fold higher
expression of TRPA1 in TG than in DRG neurons, rattlesnake
TRPA1 has a lower apparent heat activation threshold near
28 °C. By comparison, other pit-bearing snakes, python
(Python regius) and boa (Corallus hortulanus), have thresh-
olds of 32.7 and 29.6 °C, respectively; whereas a non-pit
snake, Texas rat snake (Elaphe obsoleta lindheimeri), has a
threshold near 37 °C. The increased thermosensitivity of
snake TRPA1 channels may come at the expense of chemical
sensitivity. Compared to the heat-insensitive rat TRPA1
whose half-maximal effective concentration (EC50) for
AITC is 11 μM, the EC50 of rattlesnake and rat snake is ≥
500 μM (Fig. 4b) [51].

Fruit flies (Drosophila melanogaster) have multiple
TRPA1 isoforms, effectively expanding the repertoire of
TRPA1 functions. Drosophila TRPA1 (dTRPA1) has been
shown to have at least four distinct splice isoforms expressed
in different sensory organs in order to distinguish between
innocuous heat, noxious heat, and noxious chemical stimuli.
The dTRPA1-A isoform is activated by the chemical agonist
AITC, but shows a very muted temperature response above a
threshold of 29.7 °C. dTRPA1-A is expressed in the
chemosensors of the proboscis, where it triggers regurgitation
upon ingestion of noxious chemicals. Its reduced
thermosensitivity avoids regurgitation in response to innocu-
ous heat [65]. Another isoform, dTRPA1-B, is activated by
temperature with an apparent threshold of 27.8 °C and various

chemical agonists, including AITC. dTRPA1-B has a much
steeper response to temperature, with a Q10 of ~ 116, compared
to dTRPA1-A’s Q10 of ~ 9. This isoform is expressed only in
thermosensors of the fruit fly head where it is secluded from
external chemicals. Therefore, dTRPA1-Bmainly senses internal
and external temperature and is likely responsible for thermal
preferences in the innocuous range of 18–32 °C [65]. Two addi-
tional isoforms, dTRPA1-C and dTRPA1-D, have been shown to
contribute to noxious heat sensation. Unlike the dTRPA1-A and
B isoforms, dTRPA1-C and D are expressed in neurons that
detect painful stimuli that mediate the fly’s response to noxious
temperatures. However, the apparent properties of these isoforms
do not fully explain the fly’s noxious heat threshold of 39 °C.
dTRPA1-D has a relatively high thermal threshold of 35 °C.
dTRPA1-C did not have a detectable thermal response within
the testable range up to 42 °C, but is nevertheless required for
the typical behavioral response to noxious heat [158].

A possible mechanism for indirect sensation of noxious
temperature was recently suggested in a study of planarian
flatworms (Schmidtea mediterranea). Planarian TRPA1 is
similar to the Drosophila ortholog dTRPA1-C in that it is
necessary for avoidance of noxious heat > 30 °C, but it is
not directly activated by temperature when expressed heterol-
ogously. Instead, it was suggested that planarian heat-
insensitive TRPA1 activates in response to early indicators
of tissue damage from heating, such as H2O2, a known
TRPA1 agonist [9].

Drosophila has additional TRPA homologs, Painless and
Pyrexia, which are more closely related to basal TRPA’s than
to the TRPA1 clade [66]. By the same phylogenetic analysis,
C. elegans TRPA1 is also more closely related to basal
TRPA’s [66]. Painless and Pyrexia are activated by noxious
heat [57, 81, 136, 144]. Additionally, Painless responds to
AITC and similar chemicals and noxious mechanical stimula-
tion [5, 57, 144]. The thermosensory system of flies alone
demonstrates several evolutionary mechanisms to create a va-
riety of functional temperature sensors, through gene duplica-
tion and through alternative splicing.

Mosquitos (Anopheles gambiae) also use TRPA1 in a cru-
cial thermotaxis behavior. To seek hosts for a blood meal, mos-
quito females use a variety of cues, including temperature.
Their host-seeking thermotaxis involves attraction to warm
stimuli, but avoidance of heat that exceeds the typical temper-
ature of a host. The avoidance of heat above 50 °C requires
TRPA1 [32]. Similar to the fruit fly, mosquitos produce iso-
forms TRPA1-A and B, with similar chemosensitivity, but
much higher thermosensitivity in TRPA1-B [65]. These iso-
forms are conserved in other mosquito species (Aedes aegypti
and Culex quinquefasciatus) and lice (Pediculus humanus
corporis) [65], demonstrating the evolutionary conservation
of this function. Across vertebrates and invertebrates, TRPA1
has a wide range of temperature sensitivities, displaying its
evolutionary versatility as a polymodal molecular sensor.
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TRPV1

TRPV1 is a receptor for noxious heat in mammals (> 42 °C),
as well as for the spicy compound capsaicin (found in hot chili
peppers), low pH, and multiple inflammatory mediators [24,
35, 61, 143]. TRPV1 knockout mice show significant behav-
ioral deficits in temperature discrimination above 50 °C [22].
However, deletion of TRPV1-positive cells abolishes temper-
ature sensitivity at all testable temperatures above 37 °C [99,
119]. This suggests the existence of additional heat sensors in
TRPV1-containing neurons (Fig. 3).

The activation of heat sensitive ion channels also appears to
correlate with the relative body temperature of different spe-
cies. In mice and rats, TRPV1 activation occurs several de-
grees above their core body temperature near 37 °C. Along
with birds’ higher core body temperature of 41–42 °C, chick-
en TRPV1 has an activation threshold of > 45 °C [60]. In
frogs, which are ectothermic and have a much lower preferred
temperature range, TRPV1 activation is tuned according to the
frog’s preferred environment. X. tropicalis, which has an op-
timal temperature range of 22–28 °C, has a TRPV1 heat
threshold of 38 °C. X. laevis, which has a slightly lower opti-
mal temperature range of 16–22 °C, has a TRPV1 heat thresh-
old of 36 °C [110]. Zebrafish (Danio rerio), with a tolerable
temperature range of 14–33 °C, has an even lower TRPV1
threshold of 32.9 °C [50]. This ortholog is essential for heat
avoidance behavior in zebrafish (Fig. 4c) [48].

Animals that live in extremely hot environments also require
modifications of TRPV1. Small diurnal rodents, such as
ground squirrels and chipmunks, that occupy a wide geograph-
ical range from California deserts to Minnesota, can tolerate
prolonged heat exposure [56]. Consistent with this, ground
squirrels do not avoid noxious temperatures up to 55 °C in a
temperature preference test, but they do show nocifensive re-
sponses to capsaicin or chili oil. Electrophysiological studies
also show that squirrel TRPV1 is sensitive to capsaicin, and
pH, but not heat within the testable range up to 48 °C [79].
Another temperature extremophile, the wild Bactrian camel
(Camelus ferus), that occupies the Gobi Desert, is faced with
a similar problem of surviving high-environmental temperature
and has evolved a similar adaptation in TRPV1 to help tolerate
these conditions by their somatosensory system (Fig. 4c).
Remarkably, TRPV1 sensitivity can be modulated by a single
amino acid substitution in both species [79].

Bats have an adaptation to the opposite extreme that makes
them especially sensitive to heat. Vampire bats (Desmodus
rotundus) feed on the blood of mammals and identify target
blood vessels by detecting radiating heat with specialized pit
organs, localized on their face [74]. The specialized function
of their pit organs comes from a differentially expressed splice
isoform of TRPV1. The truncated (TRPV1-S) isoform is ac-
tivated at 30 °C and is expressed exclusively in trigeminal
fibers innervating the pit organ, while the full length

(TRPV1-L) is activated at 40 °C and is expressed in the rest
of the body. To prevent the constant activation of the TRPV1-
S by its own body heat, the pit organs are insulated by a thick
layer of tissue [50]. The shifting of TRPV1 activation thresh-
olds across species demonstrates the importance of precise
heat sensation, and the ability to adapt to species’ specific
circumstances (Fig. 4c).

Other thermo-TRPs

Several other members of the TRP family are considered to be
involved in temperature sensitivity. TRPV3 [52, 103, 134,
155], TRPV4 [53, 151], and TRPM2 [141] were implicated
in sensing intermediate innocuous warmth (25–42 °C),
TRPM3 [147]—noxious heat (> 42 °C), TRPV2 [3, 23,
85]—extreme noxious heat (> 52 °C), and TRPC5 [160]—
innocuous cold (25–15 °C). In addition, TRPM5, which is
involved in taste perception, is also gated by temperatures
spanning the innocuous cool and innocuous warm ranges
[140]. The temperature sensitivity of some of these channels
has been confirmed by knockout studies, such as TRPM3
which caused deficits in noxious heat sensing [139, 147],
and TRPM2 which altered temperature preference in the in-
nocuous range of 23–38 °C [141]. Some thermo-TRPs are
interesting candidates for temperature-specific adaptations.
For example, TRPV4 mRNAwas found to be downregulated
in the Japanese grass lizard (Takydromus tachydromoides) in
the hibernation state [106]. Whether TRPV4 acts as a warm
sensor in reptiles is unknown, but the changes of TRPV4
expression may be representative of a general reduction of
the thermosensitive components during hibernation.

Other channels

TRPs are a well-established group of thermosensors; however,
there are several other temperature sensitive channels that may
act as primary sensors or modulators of thermosensitivity. The
calcium-activated chloride channel anoctamin (ANO1) depo-
larizes sensory neurons at temperatures > 44 °C, and deletion
of this channel reduces responses to noxious heat [29]. Cold
temperature activates epithelial sodium channels (ENaC) and
potentiates the activity of other members of the DEG/ENaC
family [10].

Rhodopsins (Rh), whose canonical function is
photodetection, play a role in temperature sensation. In fruit
flies, TRPA1 was shown to function downstream of a G-
protein-coupled signaling cascade [76]. Similar to
phototransduction in the fruit fly eye, this cascade is initiated
by rhodopsins. In mid-third-instar larvae, thermal preference
within the tolerable range of 18–24 °C requires Rh1 [131],
while the switch to a strong preference for 18 °C in late-third-
instar larvae requires Rh5 and Rh6 in TRPA1-expressing neu-
rons [135]. Rhodopsin-mediated thermotaxis was
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independent of light; however, it is not yet clear if rhodopsins
are intrinsically temperature sensitive.

Recent studies of Drosophila temperature sensitivity also
revealed channel paralogs of taste receptors that are involved
in thermosensation. The gustatory receptor paralog
GR28B(D) is activated by heat and is required for rapid neg-
ative thermotaxis, away from high temperatures toward innoc-
uous warmth [107]. Interestingly, this channel is expressed in
a separate set of neurons from dTRPA1-B and controls a dis-
tinct behavior. Several ionotropic receptors (IR), a group that
has been well studied in relation to chemosensation, were
found to mediate cool sensation and avoidance of cool tem-
peratures. Usually, a modality-specific IR acts in combination
with a more widely expressed co-receptor [1, 122]. IR21a in
combination with IR25a and IR93a is responsible for activa-
tion of the fruit fly’s dorsal organ cold cells [108]. However,
IR25a and IR93a mediate humidity sensation when expressed
in combination with different IR channels [69, 70].

C. elegans also illuminates many molecular components of
thermosensation, including non-channel proteins involved in
processes such as cGMP signaling and neuron morphology.
While TRP channels are involved in the sensation of noxious
temperatures in the hot and cold range [27, 86], thermotaxis in
the innocuous range is mostly mediated by CNG and cGMP
channels [8].

This is not an exhaustive list of receptor channels with
temperature sensitivity. Other suggested members are the
ATP receptor P2X3 [67, 132, 137], and the calcium channel
modulator STIM1 [153], and the list will surely grow to in-
clude many more channels in the future. As the multitude of
receptor channel types and species-specific adaptations dem-
onstrates, primary temperature sensors are one of the tools
available for fine-tuning thermosensitivity.

Action potential

Action potential firing depends on two principal types of op-
posing ion currents. Inward sodium currents rapidly depolar-
ize the cell and generate the upstroke of the action potential.
Counteracting the inward currents are outward potassium cur-
rents that drive the falling phase of the action potential and
repolarize the cell (Fig. 5) [63]. Temperature can alter channel
properties in multiple ways, such as changing the kinetics of
opening and closing, shifting the voltage-dependence of acti-
vation and inactivation, which can change the resting poten-
tial, input resistance, and electrogenic properties of the cell.
Even in neurons that do not express known thermosensitive
receptor channels, the transmission of sensory information is
affected by temperature. Depending on the ion channel sub-
types expressed, and the differential effect of temperature on
these channels, various populations of sensory neurons have
different responses to changes in temperature [97, 129, 145].

Observations of excitability in mouse and rat somatosen-
sory neurons at different temperatures demonstrate a diversity
of cellular responses to temperature changes. In response to
cooling, although most cells were not activated directly by
cold, about half of the cells increased their excitability by
increasing the number of action potentials fired and/or lower-
ing the rheobase (current threshold) in response to stepwise
current injections. Other cells were minimally affected or de-
creased their excitability at cold temperatures by decreasing
the number of spikes and/or increasing the rheobase [62, 128].
It is noteworthy that the cells sampled in these studies were
mostly small diameter neurons, likely neurons that transmit
noxious information, not just of the temperature variety. Cold
temperature can indeed change the perception of pain, in some
cases numbing, in other cases exacerbating it, especially after
injury conditions.

Nav1.8

Nav1.8 is one of several voltage-gated sodium channel (Nav)
homologs expressed in dorsal root ganglion neurons. Nav1.8
is resistant to tetrodotoxin (TTX-R) and is a major component
of the action potential upstroke in sensory neurons and is
required for robust and sustained action potential firing [4,
152]. The critical role of Nav1.8 in pain sensation
(nociception) is demonstrated by numerous single point mu-
tations in human Nav1.8. Gain-of-function mutations lead to
severe pain hypersensitivity disorders [19, 44].

Fig. 5 Main molecular components of the action potential. Shown is the
typical shape of an action potential in a mouse DRG neuron at room
temperature (black trace) along with major electrical conduits. Colored
regions denote the areas of contribution of the indicated channels’ activity
to the different phases of the action potential. Nav1.7 contributes to the
early depolarization and upstroke (light green). Nav1.8 contributes to the
rapid upstroke (dark green). Kv’s repolarize the cell in the falling phase
(blue). K2P’s, Nav1.9, and Na+/K+-ATPase regulate the resting potential
of the cell, and HCN channels drive the return of the resting potential
from the after-hyperpolarization (orange). At cold temperature, the action
potential becomes much slower and broader due to temperature depen-
dent changes of the underlying channel activity (dashed gray trace)
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Studies of sodium currents in sensory neurons at various
temperatures have shown that all sodium currents are some-
what reduced and slowed down by cooling [62, 128, 159].
However, compared to the TTX-sensitive Nav1.7 (see below),
Nav1.8 is relatively resistant to the effect of cold, with a re-
duction in current density of only ~ 50%, with a minimal
effect on the voltage-dependence of fast and slow inactivation
at 10 °C compared to 30 °C [159]. This has led to the inter-
pretation that Nav1.8 is required for sending cold temperature
information, as the main carrier of the action potential.
Consistent with this hypothesis, neurons from Nav1.8 knock-
out mice did not fire action potentials in response to current
injections at 10 °C and knockout mice did not show
nocifensive responses to a 0 °C cold plate (159). Recently, a
gain-of-function mutation of Nav1.8, called BPossum,^ was
identified in mice. These animals have severe neurological
abnormalities and exhibit significant hypersensitivity to cold
when compared to wild-type mice [20].

Nav1.8 is an important evolutionary target for altering the
sensitivity of nociceptors. Although an adaptation to tempera-
ture specifically has not yet been demonstrated, the case of the
grasshopper mouse (Onychomys torridus) shows how alter-
ations in Nav1.8 properties can turn off a pain modality. The
grasshopper mouse feeds on the bark scorpion (Centruroides
sculpturatus) which can deliver a debilitating painful sting. The
toxin in the bark scorpion venom targets a different sodium
channel, Nav1.7, to induce pain [91]. However, the grasshop-
per mouse has amino acid variants in Nav1.8 that bind to the
bark scorpion toxin and inhibit Nav1.8 activation, thereby stop-
ping the transmission of the pain signal [121].

Other animals might use a similar strategy to alter sensitiv-
ity to temperature as well. As noted earlier, hibernators endure
extremely cold external and internal temperatures for extend-
ed periods of time [15, 98]. Modifications of Nav1.8 that
reduce its activity at cold temperatures could be one mecha-
nism to confer cold tolerance in these animals. For example, in
a hibernating snail (Helix pomatia), Nav1.8-like channel ex-
pression is downregulated in the central nervous system dur-
ing the hibernation state. In this mollusk, Nav1.8-like currents
are also significantly reduced during hibernation [68]. As a
major contributor to the robust firing of sensory neurons,
Nav1.8 is poised to be an evolutionary target to alter sensitiv-
ity at the transmission step of thermal signaling.

Nav1.7

Nav1.7 is sensitive to inhibition by TTX (TTX-S) and is also a
major component of the action potential upstroke. Nav1.7 is
frequently co-expressed with Nav1.8 in small diameter DRG
neurons [41, 127, 142]. Nav1.7 is activated at more
hyperpolarized voltages than Nav1.8, thus Nav1.7 initiates
the rapid inward current of an action potential, whereas
Nav1.8 is needed to propagate robust, repetitive firing (Fig.

5) [30]. Nav1.7 is also critical for nociception, and single point
mutations in human Nav1.7 are linked to severe pain hypersen-
sitivity or complete pain insensitivity disorders [33, 34, 45, 54].
Several other sodium channels, Nav1.1, Nav1.2, and Nav1.6,
are also expressed in some sensory neurons and can contribute
to the TTX-S current in DRGs [25]. These Nav subtypes may
also contribute to nociception, as has been shown for Nav1.1
which has a modality-specific role in mechanical pain but not
in thermal pain [111]. Total TTX-S current and heterologously
expressed Nav1.7 current amplitudes are strongly reduced by
cold, by ~ 90% at 10 °C compared to 30 °C [159]. Nav1.7 has a
large hyperpolarizing shift in slow inactivation, which could
explain the strongly reduced current density in cold tempera-
ture at a normal neuronal resting potential near − 80 mV [159].
In rat TG andDRG, cells with only TTX-S current usually have
a reduced firing rate at cold temperature, firing only a single
action potential or several aborted action potentials, which
shows that the small amount of remaining TTX-S current can-
not support sustained firing [62, 128].

Nav1.7 is also an important evolutionary target for the mod-
ulation of nociception [157]. Although not specifically related
to temperature sensation, the African naked mole-rat
(Heterocephalus glaber) is an example of a species that uses
alterations in Nav1.7 to block a pain modality. Among many
interesting features, these animals are resistant to hypoxia,
which allows them to live in densely populated underground
burrows under high CO2 conditions [112]. In many other ani-
mals, hypoxia is life threatening and perceived as painful due to
the sensation of internal acidification. Instead of changing the
function of acid sensors (ASIC’s and TRPV1), the naked mole-
rat has altered Nav’s that are more strongly inhibited by pro-
tons. Naked mole-rat sodium currents were decreased by 63%,
compared to mouse sodium currents which were decreased by
42%, at pH 6.0. Although the naked mole-rat’s primary acid
sensors can depolarize the neuron, signal transduction is
blocked at the level of sodium channels and action potential
initiation and propagation. This study found that the culprit of
this phenomenon is Nav1.7, which has amino acid variants that
render this channel more sensitive to block by protons [133].

Similar variants of Nav1.7 were found among other groups of
animals that live in high CO2 conditions, including several fam-
ilies of hibernators, which experience internal acidification and
high CO2 during torpor due to reduced respiration. However, this
was not the case for all hibernators examined [87]. For example,
the 13-lined ground squirrel amino acid residues are more similar
tomouse than to nakedmole rat. A similarmechanism could also
be responsible for noxious cold tolerance in hibernators, in which
increased block of Nav1.7 by cold prevents the propagation of
signals in cold-sensitive neurons. Furthermore, action potential
block by a pervasive signal such as internal acidification can lead
to a more generalized analgesia. In the naked mole-rat, low pH
also blocked other pain modalities, such as mechanically and
electrically evoked firing of nociceptors [133].
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Voltage-gated potassium channels

Several low threshold voltage-gated potassium channels con-
tribute to the falling phase of action potentials. In nociceptors,
they are mainly Kv1.4, Kv4.1, Kv4.3 (A-type K+ currents),
and KCNQ2/3 (M-type K+ currents) [18, 113, 117, 120, 148,
150]. These channels are involved in modulating the shape of
the action potential, membrane repolarization, action potential
threshold, and repetitive firing. Since outward potassium cur-
rents act in opposition to the inward sodium currents of the
rising phase of the action potential, larger potassium currents
are thought to restrict neuronal excitability. Both the A- and the
M-type currents are reduced, and the kinetics are slowed at cold
temperature [62, 128]. The interaction between these currents
and different types of sodium channels helps to explain the
differential effect of cold on different populations of sensory
neurons. In small-diameter somatosensory nociceptors that
contain TTX-R sodium currents, which are relatively resistant
to cold, the cold-induced reduction of potassium current has the
expected result of lifting a brake and increasing the firing rate of
these cells. In cells with only TTX-S sodium current, however,
the cold-induced slowing of potassium current kinetics has the
effect of impairing membrane repolarization which prevents
the full recovery from inactivation of the sodium channels,
leading to only single firing or aborted action potentials [128].

Cold-induced slowing of potassium channel kinetics that
leads to suppression of repetitive firing presents a challenge
for species that live in extremely cold habitats. Polar octopi
were found to have a very interesting mechanism for altering
potassium channel function. Instead of adapting through mu-
tations in the genetic code, the octopi changed the sequence of
a Kv1 homolog through RNA editing. Amino acid residues in
the pore region were highly edited in an Antarctic octopus
(Pareledone sp.), but were mostly unedited in a tropical octo-
pus (Octopus vulgaris). The RNA-edited amino acid changes
accelerated the deactivation of the channel, thus shortening
the refractory period and increasing repetitive firing. Among
eight different species of octopi, the proportion of edited chan-
nels correlated remarkably with the temperature of the spe-
cies’ habitats, pointing to the possibility that this RNA-
editing mechanism is temperature dependent [47]. The
temperature-dependence of the molecular drivers of action
potentials can have large effects on an animal’s temperature
sensitivity, because the blocking of firing can override the
activity of temperature sensitive receptor channels. For widely
expressed channels that participate in the firing of many dif-
ferent cell types, it is important to maintain functionality at
temperatures appropriate to the species’ habitat.

Resting potential

Another determinant of neuronal excitability is the resting
membrane potential. The resting potential is the set-point from

which the neuron has to reach the voltage threshold for action
potential firing (Fig. 5). A depolarized potential sets the cell
closer to the firing threshold; however, more depolarized po-
tentials also inactivate more voltage-gated channels, which de-
crease the cell’s ability to fire action potentials. The excitability
of a neuron depends on a combination of the expression and
availability of different types of channels, the restingmembrane
potential, the action potential threshold, and other electrogenic
properties, such as the input resistance, which represents how
easily the membrane potential can be changed. It is also crucial
to be able to return the cell to the correct membrane potential
from the hyperpolarization after an action potential to ensure
the continuation of robust firing. Observations in mouse and rat
somatosensory neurons showed that the resting potential be-
comes more depolarized at colder temperatures and that the
input resistance increases [62, 128].

The resting potential is determined by the relative concen-
tration of charged particles on each side of the membrane.
Several ion channels and pumps that contribute to the distri-
bution of ions across the membrane have been shown to have
temperature-dependent activity. These include background so-
dium channels and potassium channels that allow the passive
flow of ions along their concentration gradient, and active
sodium-potassium pumps that use ATP or sodium gradients
to transport the ions against their concentration gradient [43,
46, 118]. Temperature influences the function of these pro-
teins, which can alter the excitability of sensory neurons by
changing the set-point at rest or changing the speed of recov-
ery from the after-hyperpolarization.

Nav1.9

Nav1.9 conducts a persistent inward sodium current at
hyperpolarized voltages and is considered to contribute to set-
ting the resting potential of the cell. Nav1.9 is resistant to TTX
and is frequently co-expressed with Nav1.8 in small-diameter
DRG neurons [7, 38, 40]. Like Nav1.7 and Nav1.8, Nav1.9 is
considered to be crucial for pain sensation [54]. There are sev-
eral single point mutations in human Nav1.9 that are linked to
pain disorders, including an interesting gain-of-function muta-
tion that unexpectedly leads to pain insensitivity [39]. The mu-
tant channel is hyperactive at the resting potential, causing
sustained depolarization that progressively inactivates other
Nav’s, thus leading to impaired generation of action potentials
and aberrant synaptic transmission in nociceptors [83].

As a modulator of neuronal excitability, Nav1.9 was found to
be required for sensing noxious cold [82, 90]. Although Nav1.9
seems not to be a major component in the generation of action
potentials, it may act as a subthreshold amplifier of sensory
information. Nav1.9 knockout mice have impaired sensation
of noxious cold stimuli, without altering temperature responses
in the warm range [90]. As a modulator of cold sensation,
Nav1.9 is another possible evolutionary target for species with
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noxious cold tolerance. Though an ortholog of this channel was
not downregulated in the hibernating snail [68], the functional
properties of this ortholog remain to be investigated, and a po-
tential role in hibernating mammals remains to be determined.

K2P

Two-pore potassium channels (K2P) provide a voltage-
independent potassium leak that is essential for setting the rest-
ing membrane potential [42]. A greater potassium efflux
through these channels hyperpolarizes the membrane and thus
suppresses excitability [2]. Several members of the K2P family
have been shown to be gated by temperature [130]. K2P’s are
also gated by mechanical stimuli and play a role in various
sensory processes [11, 12, 14, 55, 84, 88, 89, 92, 94, 114, 126].

The main thermosensitive K2P’s that have been studied are
TREK-1, TREK-2, and TRAAK. These channels are silent at
14 °C and dramatically increase their activity to a maximum at
> 40 °C [6, 64, 93, 109, 116]. TREK-1 and TRAAK are often
expressed in TRPV1-positive neurons [156] and act in oppo-
sition to the heat-activated TRP channel via elevated potassi-
um leak. In contrast, decreased potassium leak causes neurons
to depolarize and is expected to increase excitability.
Consistently, TREK-1−/−, TRAAK−/−, or double knockout
mice show increased firing of nociceptive fibers, and hyper-
sensitivity to noxious heat [6, 109].

Interestingly, deletion of TRAAK alone did not change
cold sensitivity, but TREK-1−/− or TREK-1/TRAAK double
knockout mice were also hypersensitive to cold [109]. This is
consistent with the observation that TREK-1, TREK-2, and
TRAAK are co-expressed with TRPM8 [156]. However, a
different K2P, TASK-3, is especially enriched in a population
of TRPM8-positive neurons. The deletion of TASK-3 led to
increased thresholds and cold hypersensitivity in mice [104].
Although TASK-3 had been shown to be only weakly
thermosensitive [12, 64], it acts as a break on the excitability
of cold-sensitive neurons. The ability of channels that regulate
the neuronal resting potential to influence the response of
temperature sensitive neurons makes them evolutionary tar-
gets for thermosensory modifications. Though TREK-1 from
13-lined ground squirrels retains temperature sensitivity sim-
ilar to the mouse ortholog [79], species-specific temperature-
dependence of K2P’s has not been systematically explored,
but they may play an important role in the diversification of
thermosensory function.

Conclusion

The coordinated activity of multiple channel types is required
for the transduction and transmission of thermal information.
The high number of molecular participants provides a toolkit
of adaptable channels for species with different thermosensory

needs. The diversity of functions illustrates how each channel
can contribute to the tuning of temperature sensitivity relative
to optimal temperatures, as seen for TRPM8 and TRPV1
orthologs from mammals, birds, amphibians, and fish. In ad-
dition to sensing internal and environmental conditions, TRPs
can be adapted for very specialized behavioral functions, such
as acute heat sensitivity for hunting in snakes and bats.
Sensory modalities can also be tuned independently, as seen
in the differences in temperature and chemical sensitivity of
TRPA1 between different species, and between splice iso-
forms of TRPA1 in fruit flies and mosquitos. Aside from the
primary temperature sensors, the channels that participate in
firing action potentials and setting the neuronal excitability
play crucial roles in determining temperature sensitivity.
Temperature-dependent changes in the function of voltage-
gated sodium, voltage-gated potassium, and potassium leak
channels can determine whether or not temperature informa-
tion is relayed to the central nervous system. Evolutionary
examples of Nav adaptations that block pain sensation, as in
grasshopper mice and naked-mole rats, may also apply to
tolerance of noxious temperatures in certain species.
Furthermore, temperature-dependent adaptations may be
needed in animals that live in extreme temperature habitats
not only for the sensation of temperature, but also for the
maintenance of neuronal function, as was illustrated by potas-
sium channels in the polar octopi. A restricted study of only a
small number of model species would miss many of the nu-
anced aspects of channel function and adaptability that is re-
vealed by investigatingmultiple evolutionarily distant species.
We expect that future studies will bring to light many more
players in the complex molecular machinery of temperature
sensation.
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