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[1] We provide a quantitative explanation of the patterns commonly observed during the
collision of two floating ice sheets (ice floes): simple rafting, finger rafting, or the
formation of a pressure ridge. In particular, we analyze the equilibrium configurations of
the ice in each of the two types of rafting and show that these are only possible if the ice
thickness is below a threshold value that we determine in terms of the strength and elastic
modulus of the ice. We construct a regime diagram to characterize the regions of
thickness-strength parameter space for which each type of deformation can occur. Using
typical values for the strength of sea ice, we find that finger rafting can only occur in ice
with thickness ]8 cm, and simple rafting can typically only occur in ice with thickness
]21 cm. These estimates are quantitatively consistent with most field observations
reported in the literature. Finally, by quantifying two common complications that occur in
reality, we are also able to account for some of the discrepancies between theory and
observation that remain. We show that the presence of rubble may allow ice with a
thickness of up to 1 m to perform simple rafting, but multiple rafting of thin sheets does
not increase the maximum rafting thickness.
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1. Introduction

[2] Floating ice in polar seas and northern lakes is
perpetually subject to wind and water stresses that drive
their deformation. These forces, and their mediation by the
ice itself, are responsible for creating the mosaic of indi-
vidual ice sheets, or ‘‘floes’’ that characterize sea ice as it
evolves dynamically and thermodynamically. On the large
scale these deformation processes, and the redistribution of
ice thickness as it deforms, create the observed ice thickness
distribution, which is described by an evolution equation
that has been with us for more than 30 years [Thorndike et
al., 1975; Wensnahan et al., 2007]. On the floe scale, the
mechanical processes that underlie the transformation of ice
from one thickness to that of another are described by three
basic patterns of rafting and ridging. In this article, we study
the conditions under which these different patterns occur.
[3] Ridging and rafting play a controlling role in the

mechanical redistribution of sea ice thickness [Thorndike et
al., 1975; Babko et al., 2002], and for thin ice they (along
with other processes) alter the albedo of the ice cover
significantly. For example, in rafting the ice doubles in
thickness and so appears much whiter than surrounding ice.
The floe-scale processes responsible for these patterns can
therefore be viewed as the foundation for the constitutive
behavior of the geophysical mosaic and have motivated a

long-term effort to marry the scales of relevance. Rothrock
[1975, p. 325] provided a succinct description of the matter:
[4] ‘‘If we knew what the constitutive equation for pack

ice should be, we would not need to pay attention to the
mechanisms of floe interaction. But the simple fact is that
we are not at all sure about the constitutive equation. . . we
have turned to the study of these mechanisms —rafting,
ridging, shearing, and opening— to deduce what we can
about the large-scale mechanical behavior of pack ice.’’
[5] Because the floe-scale regimes of deformation pat-

terns are intrinsically interesting, and involve phenomena
that extend to systems across a wide range of natural and
technological systems, the potential implications of our
simple theoretical treatment of colliding ice sheets extend
beyond sea ice geophysics. While in this field we are
motivated to help establish the foundations of the large-
scale behavior of pack ice, it is hoped that the edifice is of
some use in other fields.
[6] During simple rafting, one ice floe rides over the

adjoining floe without the creation of a large amount of
rubble. In finger rafting, rather than one floe riding over
another, the two floes alternately ride over and under one
another forming a series of interlocking fingers. Generically,
these fingers have very sharp linear features that are
particularly striking, as is the well-defined spacing of the
fingers. Simple rafting and finger rafting are illustrated in
Figures 1 and 2. Finally, the most destructive of the three
families of patterns is the pressure ridge wherein the two ice
floes break up as they collide thereby forming a ‘‘sail’’ and a
‘‘keel’’ of highly fractured ice blocks.
[7] In this article, we characterize quantitatively the

conditions under which each of the three deformation
patterns is observed. First, we discuss the transition between
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simple rafting and pressure ridging, which was studied by
Matsuoka [1972] and Parmerter [1975]. We present a
simplified version of their model, which produces a very
similar result. This simplified approach allows us to then
consider more complicated situations, such as the effect of
rubble covering the floe. Including the effect of this pre-
loading at least partially explains the discrepancy reported
between Matsuoka’s [1972] result and field observations
[Babko et al., 2002]. We also consider multiple rafting
events and show that, surprisingly, these do not quantita-
tively alter the transition between rafting and ridging.
Finally, we consider a very simplified model of finger
rafting, which explains why this formation is only observed
in very thin ice.

2. Simple Rafting Versus Pressure Ridging

[8] The photograph in Figure 1 suggests that simple
rafting and pressure ridging are very closely related. Indeed,
Weeks and Kovacs [1970] reported, on the basis of their
field observations, that there appears to be a transition
between simple rafting and ridging at a critical ice thick-
ness. Matsuoka [1972] presented a model of simple rafting,
which was developed further in the numerical study of
Parmerter [1975]. These studies showed that there is a
maximum ice thickness, hc, above which ice cannot raft and
must instead form a pressure ridge. Furthermore, they
showed how hc depends on the material properties of ice
(specifically the Poisson ratio v, Young’s modulus E, and
tensile strength, sm), the density of the underlying water, rl,
and the gravitational acceleration, g. In particular, they
found that

hc � 14:2
1� n2

rlg
s2
m

E
: ð1Þ

[9] In this section we present a simpler, analytic model of
simple rafting to highlight the important physical principles
that determine when simple rafting can occur. We note that
the energetics and evolution of ridging have been studied by
Parmerter and Coon [1972], Rothrock [1975], and Hopkins

[1998]. Our work abuts theirs by providing conditions
delineating between rafting and ridging.

2.1. An Analytical Model

[10] Consider two ice floes (with identical, constant
thickness, h) in the configuration shown schematically in
Figure 3: the two floes are on the brink of rafting. In this
situation, a small portion of the lower floe may be sub-
merged, as modeled by Matsuoka [1972], but here we shall
neglect this possibility for simplicity. We also neglect any
tension within the floes because, in equilibrium, this tension
must be balanced by friction between the floes in the very
small overlapping region, and hence must be small.
[11] With these simplifying assumptions, the height, w(x),

of the centerline of each floe above the water surface with
respect to the horizontal coordinate x, is governed by the
plate equation [Mansfield, 1989]

B
d4w

dx4
¼ �rsghþ rlg

h

2
� w

� �
ð2Þ

Figure 1. Photograph showing, left-hand side, an end-on view of simple rafting. The overriding floe has
failed in places, suggesting a close link between simple rafting and pressure ridging. On the right-hand
side we see a similar process from a different perspective (photograph courtesy of W. F. Weeks, On Sea
Ice, submitted to University of Alaska Fairbanks Press, 2008).

Figure 2. Finger rafting in the Amundsen Sea. Photograph
courtesy of Weeks (submitted manuscript, 2008).
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where

B � Eh3

12 1� n2ð Þ ð3Þ

is the bending stiffness of the floe and rs is the density of
the solid (in this case ice). The first term on the right-hand
side of equation (2) represents the weight per unit area of
the ice floe, while the second term represents the upthrust
due to the hydrostatic pressure in the liquid.
[12] In the following it will be convenient to work in

nondimensional terms and so we nondimensionalize lengths
using

‘ � B=rlgð Þ1=4; ð4Þ

which is the length scale over which the deflection of the
floe decays.
[13] With no forces other than gravity acting, the sheet

will remain flat and float with w = w1 � h(1/2-rs/rl). For
simplicity, therefore, we shall measure all vertical displace-
ments relative to this equilibrium level and introduce the
dimensionless variables

W � w� w1ð Þ=‘; X � x=‘; and H � h=‘: ð5Þ

The shape of each floe is then governed by

d4W

dX 4
þW ¼ 0: ð6Þ

Solving equation (6) subject to the jump in plate height at
X = 0:

W 0�ð Þ �W 0þð Þ ¼ H ; ð7Þ

and the continuity of the first three derivatives ofW at X = 0,
we find that

W Xð Þ ¼
H
2
eX=

ffiffi
2

p
cos X=

ffiffiffi
2

p� �
; X < 0

� H
2
e�X=

ffiffi
2

p
cos X=

ffiffiffi
2

p� �
; X > 0:

8<
: ð8Þ

[14] Since we are interested in when simple rafting fails,
it is natural to examine the stress within the floe. From the

theory of elasticity, the tensile stress within the floe is a
function of the height z above the centerline. In dimensional
terms, we have [Mansfield, 1989]

s ¼ � Ez

1� n2
d2w

dx2
; ð9Þ

so that, for a given x, the maximum stress is at the surface of
the ice, z = ±h/2. From equation (8), it is a simple matter to
show that the maximum stress in the two floes occurs at X =
±p/2

ffiffiffi
2

p
and that this stress has magnitude

jsmaxj ¼
E

2 1� n2ð Þ
h2

‘2
e�p=4

2
ffiffiffi
2

p : ð10Þ

[15] For rafting to be possible we require that this stress
be less than the maximum stress that can be supported by
the material, or the tensile strength, sm. In order to insure
that this condition is satisfied the nondimensional thickness
must obey

H < Hc � 25=4ep=8 1� n2
	 
1=2 sm

E

� �1=2
: ð11Þ

We note that dimensional analysis leads us to expect that
Hc = f(sm/E,v). However, the functional form of f cannot be
determined without this detailed calculation.
[16] In dimensional terms, equation (11) reads

h < hc ¼
8

3
ep=2

1� n2

rlg
s2
m

E
; ð12Þ

which has the same dependence on material properties as
the result given by Parmerter [1975] and reproduced in
equation (1). However, the prefactor in equation (12) is
approximately 12.8 rather than the 14.2 reported by
Parmerter [1975]. This is because Parmerter’s calculation
allowed the overridden ice to be partially submerged. The
additional weight of the water on the submerged ice causes
a reduced curvature when the floes are on the brink of
rafting thereby allowing thicker ice to raft. The small
discrepancy between the prefactors produced with these two
models shows that our neglect of the partial submergence of
one of the floes does not significantly affect the predicted
critical thickness at which simple rafting ceases. We shall
therefore continue to neglect this partial submergence in the
other calculations presented here.

Figure 3. Schematic of two ice floes on the brink of rafting.
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2.2. Comparison to Field Observations

[17] We can use the typical values given in Table 1 for the
material properties of ice to give an estimate for hc. Because
these properties are sensitive functions of temperature and
salinity, we take care to use estimates of sm and E observed
in the same sample: mixing values from a weak sample
(small sm) with those of a stiff sample (large E) can
obfuscate the interpretation. We find that for sea ice 12 cm�
hc � 21 cm, bracketing the transition thickness of 15 cm on
the basis of field observations [Weeks and Kovacs, 1970].
[18] Above the critical thickness given by equation (12) we

expect that the ice floes will break before rafting can occur
and a pressure ridge will be formed from the blocks of ice that
result. In particular, the maximum bending moment occurs a
dimensional distance p‘/2

ffiffiffi
2

p
away from the contact region

and so we expect that a crack will form here and will be
parallel to the edge of the floe. Moreover, we expect also that
the blocks within the resulting pressure ridge should have this
typical size. Because of the obvious difficulty of measuring
the dimensions of ice blocks in a pressure ridge, there is little
field data against which to confront this theoretical predic-
tion. However, Weeks and Kovacs [1970] report that in one
particular pressure ridge they found ice of thickness 30 cm
and thickness/length ratio in the range 0.1–0.2. This com-
pares well with the calculated ratio, based on the typical
material properties of ice, which should lie in the range
0.07–0.13.
[19] On occasion, ice has been reported to raft even

though it was well above the critical thickness given in
equation (12); rafting was reported in ice up to 2 m thick by

Weeks and Kovacs [1970] while Melling et al. [1993]
inferred from their field survey the multiple rafting of four
thin ice sheets accumulating a composite sheet approxi-
mately 6 m thick. Babko et al. [2002] suggested that this
rafting in anomalously thick ice can be explained by two
common complications: the presence of rubble on the ice
helping to lift the floes over one another and/or multiple
rafting events leading to thick ice made up of several thinner
layers. Here we consider how these two possibilities modify
the critical ice thickness for rafting given in equation (12).

2.3. Role of Rubble

[20] Consider two floes on the brink of rafting. If these
floes are too thick to raft in the configuration shown in
Figure 3, pieces will break off of them. The rubble created
by this failed rafting will then lie on top of the subducting
floe, weighing it down, and will also lie beneath the
overriding floe, lifting it up, as shown schematically in
Figure 4. Both Hopkins et al. [1999] and Babko et al. [2002]
have suggested that this preloading will allow the rafting of
thicker floes than might otherwise be possible. Here we
quantify this suggestion to determine whether preloading
can significantly alter the critical thickness at which rafting
occurs.
[21] We imagine that the region �L < X < L is covered in

rubble of thickness aH. (In general, it is observed that ice
floes are thinner near the edge at which rafting occurs, and
hence we shall allow a � 1 as a simple model of the
nonuniformity in ice thickness.) The preloading of the ice
due to the presence of rubble is accounted for by an
additional force term in equation (2), corresponding to the
buoyancy of the submerged rubble for �L < X < 0 or the
weight of the overlying rubble for 0 < X < L. Nondimen-
sionalizing as before, the beam equation (6) now reads

d4W

dX 4
þW ¼

0 jX j > L

1� rð ÞaH ; �L < X < 0

�raH ; 0 < X < L;

8<
: ð13Þ

and is to be solved with the jump condition, equation (7)
and the continuity of the first three derivatives ofW at X = 0,
± L. We find that the floe displacement is given by

W Xð Þ ¼ H

2
�

1� að Þez cos z þ areh cos hþ 1� rð Þaex cos x; X < �L

2 1� rð Þaþ 1� að Þez cos z þ areh cos h� 1� rð Þae�x cos x; �L < X < 0

�2ra� 1� að Þe�z cos z þ areh cos h� 1� rð Þae�x cos x; 0 < X < L

� 1� að Þe�z cos z � rae�h cos h� 1� rð Þae�x cos x; X > L;

8>>>>>>>><
>>>>>>>>:

ð14Þ

Table 1. Typical Values From the Literature for the Mechanical

Properties of Icea

Ice
Type

Material Properties

ReferenceE (GPa) v sm (MPa)

Fresh 0.3–12 0.33 1–3 Hobbs [1974] and Schulson [1999]
Sea 0.1–0.9 — 0.1–0.4 Weeks and Anderson [1958]
Sea 1 0.29 0.4 Evans and Untersteiner [1971]

aHere, E is the Young’s modulus, v the Poisson ratio, and sm the yield
strength of the ice.

Figure 4. Schematic of two ice floes preloaded by rubble formed during failed rafting.
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where r � rs/rl is the nondimensional density of the ice and

x � X þ Lffiffiffi
2

p ; h � X � Lffiffiffi
2

p ; z � Xffiffiffi
2

p : ð15Þ

[22] Just as for rafting without rubble, the maximum
stress in the floes is related to the maximum curvature in
the floe via equation (9). This maximum curvature may be
determined numerically using the solution in equation (14)
for given values of r and L. The results in Figure 5, for r =
0.9 and two different values of the rubble thickness ratio a,
show the maximum curvature as a function of the extent of
rubble L. These curves demonstrate that as L ! 1 the
maximum curvature tends to a constant value. Considering
the asymptotic limit L� 1, we find that the maximum value
of the curvature, d2W/dX2, occurs at either X � L–p/23/2

(when 1–a < ra) or X � p/23/2 (when 1–a > ra).
Therefore, the maximum curvature throughout the system
for large L is

max
X

d2W

dX 2

� �
� Hf r;að Þ

2
ffiffiffi
2

p e�p=4; ð16Þ

where

f r;að Þ � 1� a; a < 1þ rð Þ�1

ra; a > 1þ rð Þ�1;

�
ð17Þ

and

max
x

g xð Þ½ �

denotes the maximum absolute value of the function g(x)
over all values of the variable x (which is also commonly
denoted by jjg(x)jj1).
[23] Following the same procedure that led to equation

(11), we find that the maximum nondimensional thickness,
Hc
*, for which rafting can occur is

H�
c ¼ 25=4ep=8 1� n2ð Þ1=2

f r;að Þ1=2
sm

E

� �1=2
; ð18Þ

which is precisely the same result as presented in equation
(11) modified by a factor f(r, a)�1/2, i.e., Hc

* = f(r,a)�1/2Hc.
We note also that in the absence of rubble a = 0 and f(r,0) =
1 so that equation (18) reduces to equation (11) as expected.
In dimensional terms we have

h�c ¼ f r;að Þ�2
hc; ð19Þ

where hc is as in equation (12). For a � 1 and r < 1, f(r, a)
< 1 so that hc

* > hc: the presence of rubble does indeed
increase the maximum thickness for which ice floes can raft.
[24] For ice, r � 0.9 and rubble with the same thickness

as the ice itself (a = 1) will lead to an increase of about 25%
in the maximum thickness for which rafting can occur (hc

* �
1.23hc). By varying a, however, we can obtain a signifi-
cantly larger hc: for a given value of r the minimum value of
f is r(1 + r)�1 and is attained with a = (1 + r)�1. For ice this
minimum value is f(0.9,0.526) � 0.474 so that hc

* � 4.46hc
and hence we might expect to see rafting in ice of thickness
up to h � 95 cm.

2.4. Multiple Rafting Events

[25] Melling et al. [1993] and Babko et al. [2002]
suggested that apparent rafting in thick ice may, in fact,
be the result of multiple rafting events. We expect that two
sandwich ice floes formed by the rafting of several thinner
floes may themselves raft when their total thickness is
greater than the critical thickness given in equation (12)
because such sandwiches are more flexible than a single
floe with the same thickness. In this section we quantify this
expectation using scaling arguments.
[26] A sandwich consisting of n floes (each of thickness

h/n) has an effective bending stiffness

B0 ¼ n
E h=nð Þ3

12 1� n2ð Þ ¼ n�2B; ð20Þ

under the assumption that its constituent floes are free to
slip past one another. (We note that this estimate is a lower
bound for the effective bending stiffness of a composite
sheet. We use this lower bound because the hypothesis is
that the increased flexibility increases the critical thickness
hc.) The effective natural length scale for deformations of
such a composite floe is then

‘0 ¼ B0=rlgð Þ1=4¼ n�1=2‘: ð21Þ

[27] For two of these sandwiches to ride over one another
requires a displacement of each floe ofw� h (where�means
‘‘scales as’’) so that the curvature of each floe�h/‘02 = nh/‘2.
However, because the floes may slip past one another, the
stress profile of equation (9) only holds over the thickness
of the individual floes, h/n, and the maximum stress within
each becomes

s � Eh=n� nh=‘2 ¼ Eh2=‘2; ð22Þ

independent of n. Rafting requires that s < sm and so (on
accounting for the various constants) we recover equation

Figure 5. The maximum dimensionless curvature in ice
floes loaded/supported with rubble of thickness aH over a
horizontal extent of L. Here r = rs/rl = 0.9, as is typical of
ice, and the values of a are indicated. The dashed lines
show the asymptotic result, equation (16), which is valid
for L �1.
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(12): contrary to expectation there is no dependence of the
maximum rafting thickness on n. This surprising result is
due to the fortuitous cancellation of n in equation (22).
[28] Combining this result with equation (19) from

section 2.3 we conclude that rafting in ice thicker than around
1 m cannot be explained solely by the presence of rubble on
the ice or multiple rafting events and must, at least in part, be
attributed to variations in the mechanical properties of sea
ice, and its complex rheology and geometry [Rothrock and
Thorndike, 1984]. This seems plausible given that

hc � �2m=E

so that small variations in sm in particular may be amplified.
In this regard, we note that the data presented by Weeks and
Anderson [1958] shows that sm is a very sensitive function
of salinity while E is more sensitive to temperature. It
therefore seems possible that sm and E may vary in a
manner that leads to values of hc that are considerably larger
than reported here.

3. Finger Rafting

[29] It is observed that in addition to simple rafting, there
is another form of rafting in which ice floes alternately ride
over and under one another forming a series of interlocking
fingers. Hence, this form of rafting is known as finger
rafting [e.g., Green, 1970]. An example of finger rafted ice
is shown in Figure 2.
[30] Just as there was a critical thickness above which

simple rafting is not possible, we expect that there might
also be a critical ice thickness above which simple rafting,
rather than finger rafting, will take place. On the basis of
intuition gleaned from many field observations, Weeks and
Kovacs [1970] suggest that for ice thicker than around
10 cm, finger rafting becomes rare, presumably resulting
instead in simple rafting. Here, we are concerned with
explaining this behavior rather than the mechanism for
finger rafting itself, which is discussed elsewhere [Vella
and Wettlaufer, 2007].
[31] As we found with the rafting/ridging transition dis-

cussed earlier, we expect that the equilibrium configuration
of the ice required for finger rafting to occur may cause the
stresses within the ice to exceed the maximum value that it
can support, sm. The stresses within the ice are given by the
two-dimensional versions of equation (9) [Mansfield, 1989],
which may be written as

sX ¼ � Ez

1� n2
@2w

@x2
þ n

@2w

@y2

� �
:

[32] The expressions for these stresses are related to the
expressions for the (dimensional) bending moments in the X

and Y directions at a point (X, Y), which are given by
[Mansfield, 1989]

mXX X ; Yð Þ ¼ �B

‘

@2W

@X 2
þ n

@2W

@Y 2

� �

mYY X ;Yð Þ ¼ �B

‘
n
@2W

@X 2
þ @2W

@Y 2

� �
:

ð23Þ

[33] (The subscripts here denote the directions of the
bending moment.) The maximum stress through the ice
thickness may then be written

jsmaxj ¼
6

h2
max mXX ;mYYð Þ: ð24Þ

Searching for maximal stresses therefore corresponds to
searching for maximal bending moments.
[34] The advantage of this approach is that explicit

formulae for the moments generated by a point force acting
on a semi-infinite plate on an elastic foundation (equivalent
to a floating plate) are given by Kerr and Kwak [1993].
(Their expression for the displacement W(X, Y; X0, Y0) at (X,
Y) caused by a point force acting at (X0, Y0) is given in
Appendix A. The corresponding formulae for the moments
are more convoluted and are therefore omitted here.)
[35] For simplicity, we will consider the moments gener-

ated in a floating plate when a rectangular finger of width 2a
and length 2b from another floe sits on top of it. Thus, as
depicted in Figure 6, the finger is imagined to occupy the
region 0 � X � 2b, jYj � a. Each infinitesimal element of
the protruding finger contributes to the bending moment of
the overridden floe. Since the equation governing the
displacement of the ice is linear, we can sum these moments
to give the moment due to the presence of the finger. An
element of width dX0 and length dY0 contributes a force f =
�rsgh‘

2dX0dY0. Integrating over the rectangle 0 � X0 � 2b,
jY0j � a gives us the total bending moments experienced by
the overridden floe, which we may write as

mXX X ;Yð Þ � rs
rl

Bh

‘2
mx a; b;X ;Yð Þ

mYY X ; Yð Þ � rs
rl

Bh

‘2
my a; b;X ; Yð Þ:

[36] The functions mx and my represent the dimensionless
bending moments in the overridden floe caused by the
protruding finger. These functions may be evaluated by
numerical quadrature. Our numerical results are in perfect
agreement with those tabulated by Nevel [1965], over his
limited range of values of a and b. We find numerically that

Figure 6. Schematic illustration of a 2a � 2b rectangular finger overlying a floe.

C11011 VELLA AND WETTLAUFER: PATTERNS IN ICE FLOE INTERACTIONS

6 of 10

C11011



the largest moments generated are in my(a, b, 0, 0). From
this result, we expect that the failure of the ice floe should
be manifested in a crack perpendicular to the floe edge. This
is contrary to the failure of simple rafting in which a crack
formed parallel to the free edge of the ice floe.
[37] To find a critical thickness above which finger rafting

can no longer occur, we seek m1; the maximum value of
my(a, b, 0, 0). Vella and Wettlaufer [2007] argued that the
wavelength, l, of the fingering pattern is linearly propor-
tional to the characteristic length ‘ and found that

l � 6:64‘: ð25Þ

(A brief justification of this result is given in Appendix A.)
Since we expect individual fingers to have a dimensional
width of l/2 we choose a = l/4‘ � 1.66 and calculate my(a,
b, 0, 0) as the finger length, 2b‘, varies.
[38] Figure 7 shows the numerically computed values of

my(1.66, b, 0, 0) thereby demonstrating that there is indeed a
maximum value, m1 � 0.29 for v = 0.33. Given this
maximum moment we require that

sm >
6

h2
rs
rl

Bh

‘2
m1; ð26Þ

for the finger to be able to grow indefinitely without the ice
beneath it breaking. This condition is satisfied provided that

H <
rl
rs

2 1� n2ð Þ
m1

� �1=2 sm

E

� �1=2
� 2:6

sm

E

� �1=2
: ð27Þ

[39] The critical thickness at which finger rafting
becomes impossible scales with sm/E in precisely the same
way as the critical thickness at which simple rafting gives
way to ridging. However, the prefactor is different (and
smaller!) suggesting that for a given value of sm/E we may
be able to transition between finger rafting, simple rafting
and ridging simply by varying the ice thickness. The
condition in equation (27) may be recast in dimensional
terms as

h <
rl
rs

1� n2

3rsgm2
1

s2
m

E
: ð28Þ

Taking typical values for the material properties of sea ice,
we find that this transition thickness lies in the interval

4 cm � hc � 8 cm: ð29Þ

[40] Given the spatiotemporal evolution of the structure
of thin ice [Wettlaufer et al. 1997], this estimate is in very
good agreement with the observation of W. F. Weeks (On
Sea Ice, submitted to University of Alaska Fairbanks Press,
2008) that finger rafting becomes rare for ice thicknesses
above 10 cm. Our theoretical prediction is also consistent
with most of the field observations collated by Vella and
Wettlaufer [2007], for which finger rafting is observed in ice
of thickness up to around 6 cm. This also provides some
quantitative support for the statement of Weeks and Kovacs
[1970, p. 22] that ‘‘Although less striking when observed
from the air, simple rafting of thin ice. . . is actually more
common than finger rafting.’’
[41] We are aware of only one reported instance when

finger rafting was inferred to be responsible for features in
much thicker ice than our theory predicts is possible using
physical parameters typical for sea ice: the summertime
observations of Mahoney et al. [2004]. We believe that such
a discrepancy may be accounted for by similar arguments to
those given in our earlier discussion of simple rafting.
[42] Because the maximum bending moment in the floe is

my(a, b, 0, 0), we expect that a crack will form in the
overridden ice perpendicular to its edge. Once the overrid-
den ice is broken, our model no longer applies: what
happens next to the overlying finger is therefore beyond
the scope of this work. However, since finger rafting can no
longer occur, the system must find another way to accom-
modate deformation. Perhaps the presence of a crack means
that the finger breaks through the floe and is subducted
beneath along with the remainder of the floe in simple
rafting? We expect that above the critical thickness a finger
might start to grow but will fall through the underlying ice
once it has reached a length of at most 4‘, which is on the
same order as the finger width. We are unaware of obser-
vations wherein finger rafting metamorphoses into simple
rafting against which to check this picture.

4. Conclusions

[43] In this paper we have studied the collisions of ice
floes from the context of thin plate theory. We focused on
the three main types of deformation that result from the
collision of two floes. By considering the forces induced by
these different deformations we provided quantitative
bounds on the different ice thicknesses for which each of
these deformation patterns is observed. In particular, by
plotting the dimensionless conditions in equations (11) and
(27) on the same graph, we obtain a regime diagram
showing the values of sm/E and H for which finger rafting,
simple rafting and pressure ridging should be observed.
Such a regime diagram is shown in Figure 8.
[44] We end by noting that although finger rafting

has been observed in floating sheets of wax [Vella and
Wettlaufer, 2007] we do not expect this regime diagram to
necessarily be quantitatively accurate for all other materials.

Figure 7. Plot of my(1.66, b, 0, 0) as a function of the
finger semilength b. Here, v = 0.33.

C11011 VELLA AND WETTLAUFER: PATTERNS IN ICE FLOE INTERACTIONS

7 of 10

C11011



Ice is unusual because it typically has sm/E < 10�3: the
transitions between different regimes therefore occur with
H � 1, and thus thin plate theory is valid. To the extent that
this is the case for other materials our analysis will have
predictive relevance for them as well. It is hoped that the
swath of other geophysical and engineering settings in
which this framework is valid will be fruitfully explored
using the ideas underlying these basic patterns of deforma-
tion and failure.

Appendix A: Floe Displacement Due to a Point
Force

[45] Here we give the Green’s function for the displace-
ment of a semi-infinite plate on an elastic foundation or,
equivalently, for the displacement of a semi-infinite floe.
This result was derived by Kerr and Kwak [1993]. The
displacement, W(X, Y; X0, Y0), due to the application of a
nondimensional point force F � f/rl g‘

3 at the point (X0,Y0)
satisfies

p
F
W X ;Y ;X0; Y0ð Þ

¼ � 1

2
Kei R�

0

� �
þ Kei Rþ

0

� �	 

þ
Z 1

0

A X0;að Þe�kþX

� cos k�X �
kþ 2k2� þ 1� nð Þa2

	 

k� 2k2þ � 1� nð Þa2½ �

sin k�X

� �

� cosa Y � Y0ð Þda ðA1Þ

[46] Here Kei(x) is the Kelvin function of zeroth order
[Abramowitz and Stegun, 1964, p. 379], R0

± is given by

R�
0 ¼ X � X0ð Þ2þ Y � Y0ð Þ2

h i1=2
; ðA2Þ

k± is given by

k� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 1

p
� a2

h i� �1=2

; ðA3Þ

and

A X0;að Þ ¼ e�kþX0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 1

p 2k2þ � 1� nð Þa2

4k2þ k2� þ 1� nð Þa2
	 


� 1� nð Þ2a4

� k� k2� þ k2þ þ na2
� �

cos k�X0 � kþ k2� þ k2þ � na2
� �

sin k�X0

	 

:

ðA4Þ

(We note that there is a typographical error in the expression
for k± given by Vella and Wettlaufer [2007]. The correct
expression appears above.) This expression for W can be
differentiated to give the bending moment within the floe
from equation (23).
[47] Here we also briefly discuss the prediction for the

wavelength of finger rafting given by equation (25). Vella
and Wettlaufer [2007] argued that finger rafting occurs
when a small portion of one floe protrudes on top of the
other. This then causes a point loading of both floes: one
is lifted up and the other pushed down. The amplitude of
the disturbance will depend on the force applied (and
hence the size of the overlying portion) making it
difficult to compare this displacement to, say, the floe
thickness. However, we can plot the normalized vertical
displacement of the floes, as shown in Figure A1. This
shows that the vertical deflection of each floe decays and
also oscillates away from the origin. Furthermore, because
the two floes are subject to forces of opposite signs, these
oscillations are exactly out of phase. Upon further com-
pression, therefore, we may expect that the two floes tear
one another leaving a finger width that is determined by

Figure 8. Regime diagram showing the values of sm/E and H for which we expect to observe each of
the deformation types observed. Photographs courtesy of Weeks (submitted manuscript, 2008).
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the distance between the first two roots of W(0, Y; 0, 0) =
0, as illustrated in Figure A1. Doubling this finger width
gives the finger rafting wavelength provided by equation
(25). Vella and Wettlaufer [2007] also suggest that though
the displacement between these two zeros is small, it is
enough to ‘‘prime’’ the two floes to run over and under
one another at these points, thus allowing the finger
rafting to the propagate as a ‘‘zipper’’ along the entire
edge of the floes.
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