LIST OF PUBLICATIONS

Priyamvada Natarajan

Citation Statistics from NASA ADS: Total number of citations - 20,109
Number of papers: 218 (as of March 12, 2024)
h-index: 82; i-10 index: 172

1. Natarajan, Priyamvada et al., 2024.
 Strong Lensing By Galaxy Clusters
 Space Science Reviews, 220, 19, arXiv2403.06245.

2. Tokayer, Yarone; Dutra, Isaque; Natarajan, Priyamvada; Mahler, Guillaume; Jauzac, Mathilde; Meneghetti, Massimo.
 The Galaxy-Galaxy Strong Lensing cross section and the internal distribution of matter in LCDM substructure

3. Fu Shenming; et al., 2024.
 LoVoCCS – II. Weak Lensing Mass Distributions, Red-Sequence Galaxy Distributions, and Their Alignment with the Brightest Cluster Galaxy in 58 Nearby X-ray-Luminous Galaxy Clusters

4. Burke, Colin; Liu, Yichen; Ward, Charlotte; Natarajan, Priyamvada; Greene, Jenny; 2024.
 Dwarf AGNs from Variability for the Origins of Seeds (DAVOS): Properties of Variability-Selected AGNs in the COSMOS Field and Expectations for Rubin Observatory

5. Chowdary, Rudrani Kar; Chang, Janet; Dai, Lixin & Natarajan, Priyamvada, 2024.
 Detecting Population III Stars through Tidal Disruption Events in the Era of JWST and Roman

6. Natarajan, Priyamvada; Pacucci, Fabio; Ricarte, Angelo; et al., 2024.
 First Detection of an Over-Massive Black Hole Galaxy: UHZ1 – Evidence for Heavy Black Hole Seeds From Direct Collapse?

 Introducing QUOTAS as a new research platform for the data-driven discovery of supermassive black holes *Nature Astronomy*, 7, 879

 Bridging Scales in Black Hole Accretion and Feedback: Magnetized Bondi Accretion in 3D GRMHD
The Next Generation Deep Extragalactic Exploratory Public Near-Infrared Slit-less Survey Epoch 1 (NGDEEP-NISS1): Extra-Galactic Star-formation and Active Galactic Nuclei at 0.5 ≤ z ≤ 3.6

NGDEEP Epoch 1: The Faint End of the Luminosity Function at z 9-12 from Ultradeep JWST Imaging

11. Bodgan, Akos; Goulding, Andy; Natarajan, Priyamvada; et al., 2024.
Evidence for heavy seed origin of early supermassive black holes from a z 10 X-ray quasar Nature Astronomy, 8, 126.

The Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey

The Next Generation Event Horizon Telescope Collaboration: History, Philosophy, and Culture
Galaxies, 11, 32.

A new step forward in realistic cluster lens mass modelling: Analysis of Hubble Frontier Field
Cluster Abell S1063 from joint lensing, X-ray and galaxy kinematics data

15. Meneghetti, Massimo et al., 2023.
A persistent excess of galaxy-galaxy strong lensing observed in galaxy clusters
A&A Letters, 678, 2.

The International Pulsar Timing Array checklist for the detection of nanohertz gravitational waves

Comparing recent PTA results on the nanohertz stochastic gravitational wave background

Flyby Galaxy Encounters with Multiple Black Holes Produce Star-forming Linear Features

UNCOVER: The growth of the first massive black holes from JWST/NIRSpec – spectroscopic redshift confirmation of an X-ray luminous AGN at z=10.1

20. Tremmel, Michael; Ricarte, Angelo; Natarajan, Priyanvada., et al. 2023 .
An Enhanced Massive Black Hole Occupation Fraction Predicted in Cluster Dwarf Galaxies
The NANOGrav 15-year data set: Search for Transverse Polarization Modes in the Gravitational-Wave Background

The NANOGrav 15-year Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

The NANOGrav 15 yr Data Set: Search for Signals from New Physics

The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background

Detecting Low-Mass Perturbers in Cluster Lenses using Curved Arc Bases

Beyond the ultradeep frontier fields and legacy observations (BUFFALO): a high-resolution strong+weak-lensing view of Abell 370
 MNRAS, 524, 2883.

28. Khusid, Nicole; Mingarelli, Chiara; Natarajan, Priyamvada, et. al., 2023.
Strongly Lensed Supermassive Black Hole Binaries as Nanohertz Gravitational-wave Sources

29. Weller, Emma Jane; Pacucci, Fabio; Natarajan, Priyamvada; Di Matteo, Tiziana., 2023.
Overmassive central black holes in the cosmological simulations ASTRID and Illustris TNG50

Key Science Goals for the Next-Generation Event Horizon Telescope
A Candidate Runaway Supermassive Black Hole Identified by Shocks and Star Formation in its Wake
ApJ Letters, 946, L50

The ngEHT’s Role in Measuring Supermassive Black Hole Spins,
Galaxies, vol. 11, issue 1, p. 6.

Expectations for Horizon-Scale Supermassive Black Hole Population Studies with the ngEHT,
Galaxies, vol. 11, issue 1, p. 109.

The Next Generation Event Horizon Telescope Collaboration: History, Philosophy, and Culture,
Galaxies, vol. 11, issue 1, p. 32.

Probing plasma composition with the next generation Event Horizon Telescope (ngEHT),
Galaxies, 11, 11.

Tracing the hot spot motion using the next generation Event Horizon Telescope (ngEHT),
Galaxies, 11, 23.

Event Horizon and Environs (ETHER): A Curated Database for EHT and ngEHT Targets and Science
Galaxies, 11, 15.

Morphological Parameters and Associated Uncertainties for 8 Million Galaxies in the Hyper Suprime-Cam Wide Survey

Constraints from dwarf galaxies on black hole seeding and growth models with current and future surveys

The Two $z \sim 13$ Galaxy Candidates HD1 and HD2 Are Likely Not Lensed
MNRAS, 519, 585L.

Dwarf AGNs from Variability for the Origins of Seeds (DAVOS): Intermediate-mass black hole demographics from optical synoptic surveys
MNRAS, 518, 1880.
Precision modeling of JWST’s first cluster lens SMACSJ0723.3-7327

44. Cerini, Giulia; Cappelluti, Nico & Natarajan, Priyamvada. 2023.
New metrics to probe the dynamical state of galaxy clusters

45. Natarajan, Priyamvada; Kwok, Sun-Tang; Khochar, Sadegh; McGibbon, Robert; Nord, Brian; Sigurdsson, Steinn; Tricot, Joe; George, Daniel & Hidary, Jack. 2021.
QUOTAS: A new research platform for the study of supermassive black hole populations, their hosts galaxies and parent dark matter halos,

47. Tonima Tasmin, Ananna., et al. 2022.
Probing the Structure and Evolution of BASS Active Galactic Nuclei through Eddington Ratios

The probability of galaxy-galaxy strong lensing events in hydrodynamical simulations of galaxy clusters
A&A, 668, 188.

Galaxies in the central regions of simulated galaxy clusters
A&A, 665, 16.

50. Shenning, Fu., et al. 2022.
LoVoCCS. I. Survey Introduction, Data Processing Pipeline, and Early Science Results
ApJ, 933, 84.

Gravitational lensing effects of supermassive black holes in cluster environments,
MNRAS, 518, 54.

52. Cappelluti, Nico; Hasinger, Guenther; Natarajan, Priyamvada. 2022.
Exploring the high-redshift PBH-LCDM Universe: early black hole seeding, the first stars and cosmic radiation backgrounds,
Further support for a trio of mass-to-light deviations in Abell 370: free-form Grale lens inversion using BUFFALO strong lensing data,
MNRAS, 506, 6144.

Towards determining the number of observable supermassive black hole shadows,

55. Stopyra, Stephen; Peiris, Hiriya; Pontzen, Andrew; Jasche, Jens & Natarajan, Priyamvada. 2021.
Quantifying the Rarity of the Local Super-Volume,

56. Natarajan, Priyamvada; Kwok, Sun-Tang; Khochfar, Sadegh; Nord, Brian; Sigurdsson, Steinn; Tricot, Joe; George, Daniel & Hidary, Jack. 2021.

57. Ricarte, Angelo; Tremmel, Michael; Natarajan, Priyamvada & Quinn, Tom. 2021.
Unveiling the Population of Wandering Black Holes via Electromagnetic Signatures,

The Origin and Demographics of Wandering Black Holes,
MNRAS, 503, 6098.

A new channel to form Intermediate Mass Black Holes throughout cosmic time,

60. Meneghetti, M; Davoli, G; Bergamini, P; Rosati, P; Natarajan, P. et al. 2020.
An excess of small-scale gravitational lenses observed in galaxy clusters, *Science, Vol. 369, Issue 6509, 1347-1353*.

Getting Ready for LISA: The Data, Support and Preparation Needed to Maximize US Participation in Space-Based Gravitational Wave Science,

The distribution of dark matter and gas spanning 6 Mpc around post-merger galaxy cluster MS-0451-03,
MNRAS, 496, 4032.

63. Ricarte, Angelo; Tremmel, Michael; Natarajan, Priyamvada & Quinn, Thomas. 2020.
A Link between Ram Pressure Stripping and Active Galactic Nuclei,

64. Niemeic, Anna., et al. 2020.
hybrid-LENSTOOL: a self-consistent algorithm to model galaxy clusters with strong- and weak-lensing simultaneously,
MNRAS, 493, 3331.

Disentangling nature from nurture: tracing the origin of seed black holes,
White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 73.
The Discovery Potential of Space-Based Gravitational Wave Astronomy,
White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 76.

68. Pacucci, Fabio., et al. 2019.
Detecting the Birth of Supermassive Black Holes Formed from Heavy Seeds,

Multi-messenger science opportunities with mHz gravitational waves, *White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 123.*

70. Colpi, Monica., et al. 2019.
The Gravitational View of Massive Black Hole Mergers,

Illuminating the dark universe with a very high density galaxy redshift survey over a wide area,
White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 508.

The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky,
White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 77.

Building a Field: The Future of Astronomy with Gravitational Waves,
White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 228.

Space based gravitational wave astronomy beyond LISA,

Populations behind the source-subtracted cosmic infrared background anisotropies, White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository,
BAAS, 51, 7, 37.

Gravitational wave probes of dark matter: challenges and opportunities,

Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes,
PASA, 26, 37.

VizieR Online Data Catalog: Stripe 82X survey multiwavelength catalog,
2019yCat, 18500066A.
79. Ricarte, Angelo; Pacucci, Fabio; Cappelluti, Nico; Natarajan, Priyamvada & Quinn, Tom, 2019.
The clustering of undetected high-redshift black holes and their signatures in cosmic backgrounds,
MNRAS, 489, 1006.

80. Ricarte, Angelo; Tremmel, Michael; Natarajan, Priyamvada & Quinn, Tom, 2019.
Tracing Black Hole and Galaxy Co-evolution in the Romulus Simulations,
MNRAS, 489, 802.

Disentangling nature from nurture: tracing the origin of seed black holes, *White paper submitted to the
2020 Decadal Survey
submitted to NAS White Paper Repository, 2019arXiv190409326N*

82. Tremmel, Michael et al., 2019.
Introducing RomulusC: A Cosmological Simulation of a Galaxy Cluster with Unprecedented Resolution,
MNRAS, 483, 3336.

The Observational Signatures of Supermassive Black Hole Seeds,
MNRAS, 481, 3278.

Exploring SMBH Assembly with Semi-analytic Modelling,

85. Cappelluti, Nico et al., 2018.
Searching for the 3.5 keV Line in the Deep Fields with Chandra: The 10 Ms Observations,

86. Jauzac, Mathilde et al., 2018.
Growing a Cosmic Beast: observations and simulations of MACSJ0717.5+3745,
MNRAS, 481, 2901.

87. Pacucci, Fabio; Natarajan, Priyamvada; et al., 2017.
Conditions for Optimal Growth of Black Hole Seeds,

88. Ananna, Tonima Tasnim; et al., 2017.
AGN Populations in Large Volume X-ray Surveys: Photometric Redshifts and Population Types
found in the Stripe 82X Survey,

89. Cappelluti, Nico et al., 2017.
Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds,
90. Lotz, Jennifer; et al. 2017.
The Frontier Fields: Survey Design and Initial Results,

91. Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada, 2017.
On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars,

Feedback Limits to Maximum Seed Masses of Black Holes,

93. Natarajan, Priyamvada; Pacucci, Fabio; Ferrara, Andrea; Agarwal, Bhaskar; Ricarte, Angelo; Zackerisson, Eric & Cappelluti, Nico, 2017.
Unveiling the first black holes with JWST: multi-wavelength spectral predictions,

94. Cappelluti, Nico; et al., 2017.
The Chandra COSMOS Legacy Survey: Energy Spectrum of the Cosmic X-Ray Background and Constraints on Undetected Populations,

95. Natarajan, Priyamvada; Chadayammuri, Urmila; Jauzac, Mathilde et al., 2017.
Mapping substructure in the HST Frontier Fields cluster lenses and in cosmological simulations,

96. Rexroth, Markus; Natarajan, Priyamvada; Kneib, Jean-Paul., 2016.
A new method to break the mass-sheet degeneracy using aperture moments,
MNRAS, 460, 2505.

97. Meneghetti, Massimo; Natarajan, Priyamvada; et al., 2017.
The Frontier Fields Lens Modeling Comparison Project,
MNRAS, 472, 3177.

98. Schwinn, Johannes; Jauzac, Mathilde; et al., 2016.
Abell 2744: Too much substructure for Lambda CDM?
MNRAS, 463, 3876.

Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs,
MNRAS, 457, 2029.

100. Agarwal, Bhaskar; Johnson, Jarrett L.; Zackrisson, Erik; Labbe, Ivo; van den Bosch, Frank C.; Natarajan, Priyamvada; Khochfar, Sadegh, 2016.
Detecting direct collapse black holes: making the case for CR7,
MNRAS, 460, 4003
101. Jauzac, Mathilde; et al., 2016.
The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744,
MNRAS, 463, 3876.

102. LaMassa, Stephanie, et al. 2016.
On R-W1 as a diagnostic to discover obscured active galactic nuclei in wide area X-ray surveys,

103. Park, Kwang-Ho; Ricotti, Massimo; Natarajan, Priyamvada; Wise, John; Bogdanovic, Tamara.,
2016.
Bulge-driven fueling of seed black holes,

Strong-Lensing Analysis of MACS,J0717.5+3745 from Hubble Frontier Fields observations: How
well can the mass distribution be constrained?

105. Ricarte, Angelo; Natarajan, Priyamvada; Dai, Lixin; Coppi, Paolo, 2016.
Tidal Disruption Events by a Massive Black Hole Binary,
MNRAS, 458, 1712.

106. Agarwal, Bhaskar; Smith, Britton; Glover, Simon; Natarajan, Priyamvada; Khochfar, Sadegh, 2016.
New constraints on direct collapse black hole formation in the early Universe,
MNRAS, 459, 4209.

Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using 180 multiple images,
MNRAS, 452, 1437.

108. Jauzac, Mathilde; et al., 2015.
Hubble Frontier Fields: Predictions for the Return of SN Refsdal with the MUSE and GMOS Spectrographs,
MNRAS, 452, 1437.

109. Atek, Hakim; Richard, Johan; Jauzac, Mathilde; Kneib, Jean-Paul; et al., 2015.
Are Ultra-faint Galaxies at $z=6-8$ Responsible for Cosmic Reionization ? Combined Constraints from the Hubble Frontier Fields Clusters and Parallels,

110. Jauzac, Mathilde et al., 2015.
Hubble Frontier Fields : A High-Precision Strong-Lensing Mass Model of the Massive Galaxy Cluster Abell 2744 using 150 Multiple Images,
MNRAS, 446, 4182.

111. Kulier, Andrea; Ostriker, Jeremiah P.; Natarajan, Priyamvada; Lackner, Claire N.; Cen, Renyue, 2015.
Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations,

112. Atek, Hakim et al., 2015.
New Constraints on the Faint-end of the UV Luminosity Function at $z \sim 7 – 8$ using the Gravitational Lensing of the Hubble Frontier Fields Cluster A2744,

Seeds to monsters: tracing the growth of black holes in the universe,
Gravitation and Cosmology, 46, 1702.

Rapid growth of seed black holes in the early universe by supra-exponential accretion,
Science, 345, 1330.

The effect of large-scale structure on the magnification of high-redshift sources by cluster lenses,

Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies,
MNRAS, 444, 268.

117. Atek, Hakim et al., 2014.
Probing the $z > 6$ Universe with the First Hubble Frontier Fields Cluster A2744,

118. Jauzac, Mathilde et al., 2014.
Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using ~200 multiple images,
MNRAS, 443, 1549.

New Observational Constraints on the Growth of the First Supermassive Black Holes,

120. Atek, Hakim et al., 2013.
Probing the $z_{\text{-cluster}} = 6$ Universe with the first Hubble Frontier Fields cluster Abell 2744,

121. Treu, T. et al., 2013.
Dark energy with gravitational lens time delays,
122. Agarwal, Bhaskar; Davis, Andrew; Khochfar, Sadegh; Natarajan, Priyamvada & Dunlop, James, 2013.
Unravelling obese black holes in the first galaxies,
MNRAS, 432, 3438.

The mass function of black holes $1 < z < 4.5$ comparison of models with observations,
MNRAS, 422, 2051.

The polytropic approximation and X-ray scaling relations: constraints on gas and dark matter profiles for galaxy groups and clusters,

125. Oguri, Masamune, et. al., 2012.
Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey,
MNRAS, 420, 3213.

The Effects of Primordial Non-Gaussianity on Giant-Arc Statistics: A Scale Dependent Example,
published in proceedings of the 2011 Frank N. Bash New Horizons in Astronomy Symposium,
arXiv:1202.0553.

The formation of the first black holes in the Universe,
white paper, circulated.

The crisis in fueling the brightest quasars at all epochs,
white paper, circulated.

The mass function of black holes $1 < z < 4.5$: comparison of models with observations,
MNRAS, 422, 2051.

The polytropic approximation and X-ray scaling relations: constraints on gas and dark matter profiles for galaxy groups and clusters,

131. Oguri, Masamune, et. al., 2012.
Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey,
MNRAS, 420, 3213.

132. Tanvir, Nial et al., 2012.
Star formation in the early universe: beyond the tip of the iceberg,
133. Kneib, Jean-Paul & Natarajan, Priyamvada, 2011.
Cluster-lenses,
A&ARe, 19, 47.

134. Schawinski, Kevin et al., 2011.
Evidence for three accreting black holes in a galaxy at $z \sim 1.35$: A Snapshot of recently formed black hole seeds?,

The mass assembly history of black holes in the Universe,

136. Treister, Ezequiel; Schawinski, Kevin; Volonteri, Marta; Natarajan, Priyamvada & Gawiser, Eric., 2011.
Black hole growth in the early Universe is self-regulated and largely hidden from view,

The effects of primordial non-Gaussianity on giant-arc statistics,

The formation and evolution of massive black hole seeds in the Universe,
BASI, 39, 145.

139. Volonteri, Marta; Natarajan, Priyamvada & Gultekin, Kayhan, 2011.
How important is the dark matter halo for black hole growth?

Cosmography with cluster strong lenses: the influence of substructure and line-of-sight halos,

141. Schawinski, Kevin; et al., 2010.
The Sudden Death Of The Nearest Quasar,

142. Davis, Andrew; D’Aloisio, Anson & Natarajan, Priyamvada, 2011.
Virialization of high redshift dark matter haloes,

143. Natarajan, Priyamvada, 2010
Weak lensing constraints on dark matter haloes of early-type galaxies,
HiA, 15, 71.
144. Julio, Eric; Natarajan, Priyamvada; et al., 2010.
Cosmological Constraints from Strong Gravitational Lensing in Clusters of Galaxies,
Science, 329, 924.

145. Treister, Ezequiel; Natarajan, Priyamvada et al., 2010.
Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars,
Science, 328, 600.

Spin and structural halo properties at high redshift in a Λ cold dark matter Universe,
MNRAS, 407, 691.

Observed Scaling Relations for Strong Lensing Clusters: Consequences for Cosmology and Cluster Assembly,

Hydrostatic equilibrium profiles for gas in elliptical galaxies,

Journey to the BH − σ relation: the fate of low-mass black holes,

Cosmography with cluster strong lensing,
MNRAS, 396, 354.

Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?,

Angular momentum and clustering properties of early dark matter halos,
MNRAS, 393, 1498.

The abundance of lensing protoclusters,
MNRAS, 394, 1469.

Is there an upper limit to black hole masses?
MNRAS, 393, 838.
Survival of dark matter halos in the cluster Cl0024+16,

156. Limousin, M; Sommer-Larsen, Jesper; Natarajan, Priyamvada & Milvang-Jensen, Bo, 2009
Probing the truncation of galaxy dark matter halos in high density environments from hydro-
dynamical N-body simulations,

Consequences of dark matter self-annihilation for galaxy formation,

158. Natarajan, Priyamvada & HongSheng Zhao, 2008.
MOND plus neutrinos not enough for cluster lensing,

159. Wilson, G; et al., 2008.
An ultra-bright, dust-obscured, millimeter galaxy beyond the Bullet Cluster,

WMAP5 and the Cluster Mass Function,

Where is the matter in the merging cluster Abell 2218?,

162. Hennawi, Joseph; Gladders, Micheal; Oguri, Masamune; Dalal, Neal; Koester, Benjamin; Natara-
ajan, Priyamvada et al., 2008.
A New Survey for Giant Arcs,
AJ, 135, 664.

163. Volonteri, Marta; Lodato, Guiseppe & Natarajan, Priyamvada, 2008.
The evolution of massive black hole seeds,

How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?
NJPh, 9, 445.

The mass function of high redshift seed black holes,
MNRAS, 377, 64.

170. Limousin, Marceau; Kneib, Jean-Paul; Bardeau, Stephane; Natarajan, Priamvada; Czoske, Oliver; Smail, Ian; Ebeling, Harald & Smith, Graham, 2007. Truncation of Galaxy Dark Matter Halos in high density environments, *A&A, 461, 881.*

171. Limousin, M; Richard, J; Jullo, E; Kneib, J-P; Fort, B; Soucail, G; Eliaasdottir, A; Natarajan, P; Ellis, R. S; Smail, I; et al., 2007. Combining Strong and Weak gravitational lensing in Abell 1689, *ApJ, 668, 643.*

177. Jakobsson, Pal et al., 2006. GRB 050814 at $z = 5.3$ and the Redshift Distribution of Swift GRBs,
178. Treister, Ezequiel et al., 2006.
 Spitzer Number Counts of Active Galactic Nuclei in the GOODS Fields,

 A mean redshift of 2.8 for Swift Gamma-Ray Bursts,

 The Redshift distribution of Gamma-Ray Bursts revisited,

 Eccentricity of Supermassive Black Hole Binaries coalescing from gas rich mergers,

182. Limousin, Marceau; Kneib, Jean-Paul & Natarajan, Priyamvada, 2005.
 Constraining the Mass Distribution of Galaxies using Galaxy-Galaxy Lensing in Clusters and in the Field,

 Abundance of Substructure in Clusters of Galaxies,

 SCUBA Observations of the Host Galaxies of Gamma-ray Bursts,
 AIPC, 727, 508.

185. Tanvir, Nial et al., 2004.

 Lensing effects of misaligned disks in Dark Matter Halos,

 An HST study of three very faint GRB Host Galaxies,

188. Kneib, Jean-Paul et al., 2003.
 HST Study of Cl0024+16: II. Measuring the Cluster Mass Distribution,
189. Treu, Tommaso et al., 2003.
A Wide-Field Space Telescope Study of the Cluster CL0024+16 at $z = 0.4$: I. Morphological distributions to 5 Mpc radius,

SCUBA observations of the Host Galaxies of four dark Gamma-ray Bursts,

191. Natarajan, Priyamvada; Kneib, Jean-Paul & Smail, Ian, 2002.
Evidence for Tidal Stripping of Dark Matter Halos in Massive Cluster Lenses,

192. Natarajan, Priyamvada; Loeb, Abraham; Kneib, Jean-Paul & Smail, Ian, 2002.
Constraints on the Collisional Nature of the Dark Matter from Gravitational Lensing in the Cluster A2218,

193. Hjorth, Jens et al., 2002.
The Afterglow and Complex Environment of the Optically Dim Burst GRB 980613,

194. Moller, Ole; Natarajan, Priyamvada; Kneib, Jean-Paul & Blain, Andrew, 2002.
Probing the Mass Distribution in Groups of Galaxies using Gravitational Lensing,

195. Schneider, Raffaella; Ferrara, Andrea; Natarajan, Priyamvada & Omukai, Kazuyuki, 2002.
First Stars, Very Massive Black Holes, and Metals,

Accretion during the Merger of Supermassive Black Holes,

The Galaxy Octopole Moment as a Probe of Weak-Lensing Shear Fields,

198. Crittenden, Robert; Natarajan, Priyamvada; Pen, Ue-Li & Theuns, Tom, 2002.
Detecting Intrinsic alignments from non-zero curl modes in the distortion field,

The host galaxy and optical light curve of the gamma-ray burst GRB 980703,
A&A, *371*, 52.
Spin induced Galaxy alignments and their Implications for Weak Lensing measurements,

201. Natarajan, Priyamvada; Crittenden, Robert; Pen, Ue-Li & Theuns, Tom, 2001.
Do Angular Momentum Induced Ellipticity Correlations Contaminate Weak Lensing Measurements?
PASP, 18, 198.

Stellar contributors to the hard X-ray Background,

Hubble Space Telescope Space Telescope Imaging Spectrograph Imaging of the Host Galaxy of GRB 980425/SN 1998BW,

Two-dimensional Galaxy-Galaxy Lensing: a direct measure of the flattening and alignment of light and mass in galaxies,

Gamma-ray Bursts and the history of Star Formation,
MNRAS, 312, L35.

Warped discs and the directional stability of jets in Active Galactic Nuclei,

Lense-Thirring precession of accretion disks of Accretion Disks around Compact Objects,

Consequences of feedback from early supernovae for disk assembly,

The alignment of disk and black hole spins in active galactic nuclei,

High-redshift galaxies, their active nuclei and central black holes,
Sunyaev-Zeldovich decrements with no clusters?

213. Natarajan, Priyamvada; Kneib, Jean-Paul; Smail, Ian & Ellis, Richard, 1998.
The Mass-to-Light Ratio of early-type Galaxies: Constraints from Gravitational Lensing in the
Rich Cluster AC114,

Quasar outflows and the formation of dwarf galaxies,

Gamma-ray bursts from stellar remnants: probing the Universe at high redshift,

Estimating the mass density in neutral gas at z < 1,

The Host to Gamma-Ray Burst 970508: a Distant Dwarf Galaxy?
NEW ASTRONOMY, 2, 471.

Lensing by galaxy halos in clusters of galaxies,

Distribution Functions for Clusters of Galaxies from N-body Simulations,

220. Natarajan, Priyamvada & Lynden-Bell, Donald, 1996.
An analytic approximation to the Isothermal Sphere,

221. Natarajan, Priyamvada & Kneib, Jean-Paul, 1996.
Probing the dynamics of Cluster-lenses,

INVITED REVIEWS

Early Black Holes (2024), in preparation for Physics Reports.

The First Black Holes (2017), appeared as cover article for Scientific American in February 2018.

The formation of the first black holes in the Universe (2013)
GR20/Amaldi 10 proceedings, published in Gravitation and Cosmology.

The formation and evolution of black hole seeds in the early Universe (2011)

Cluster lenses (2011)

The mass assembly history of black holes in the Universe (2011)
American Institute of Physics, Proceedings of the Congress of Philosophy and Foundations of Science XV - International Program ‘Frontier Areas of Research Excellence’

Modeling the accretion history of supermassive black holes (2004)

BOOKS

Natarajan, Priyamvada (2024)
Manuscript in Progress, Penguin Random House, to be published in 2026.

Natarajan, Priyamvada (2016)
Mapping the Heavens: radical ideas that reveal the cosmos Yale University Press, published Summer 2016.

Natarajan, Priyamvada (2002)

RECENT OTHER PUBLICATIONS

Invited pieces for Nautilus Magazine & Discover Magazine.

Invited Book Essays in the New York Review of Books titled What Scientists Really Do; Revelation from Outer Space; Einstein at 100; Calculating Women and Exploration of Near & Far Worlds.

Invited submission to journal India in Transition on Transforming India into a knowledge power.

Five Opinion Editorial pieces in the Hindustan Times published in New Delhi (newspaper with the largest circulation in India), three pieces published in Huffington Post, one in the Washington Post weekend Outlook section and one in CNN. All pieces are themed on science and math education and research.

Monthly column on astronomy at the popular level in the newspaper ‘Asian Age’ (2005 - 2008).

The Dark Universe - a commissioned popular article for DISCOVER magazine (December 2003 issue).

Natarajan, Priyamvada (1998)
The Universe through Gravity’s Lens - a popular level review article on Gravitational Lensing in The Icon Critical Dictionary of the New Cosmology, ed. Peter Coles, Icon Books Ltd., U.K.

Natarajan, Priyamvada & Lahav, Ofer (1996)

Creative writing - poetry and fiction - first collection of poems titled ‘784 Main Street Collection’ published by WishWomen (Vol. 1, Issue 6) a women’s poetry review magazine in August 1996.