Metastable states in an RF driven Josephson oscillator

R. VIJAYARAGHAVAN

Department of Applied Physics Yale University

Daniel Prober Robert Schoelkopf Steve Girvin

3-16-2006

APS March Meeting

I. Siddiqi M. Metcalfe E. Boaknin V. Manucharyan P. Hyafil C. Rigetti L. Frunzio M.H. Devoret

Acknowledgements: M. Dykman

W. M. KECK FOUNDATION

INTRODUCTION

INTRODUCTION

ELECTRICAL OSCILLATOR

RESONANT FREQUENCY ~ 1.5 GHz

QUALITY FACTOR ~ 20

FAST DYNAMICS ~ nanoseconds

THERMALLY INDUCED TRANSITIONS

TEMPERATURE: 10 - 200 mK

CLASSICAL TO QUANTUM DYNAMICS

OUTLINE

Josephson Junction

- Non-dissipative , non-linear circuit element

RF biased Josephson Junction

- Driven, non-linear oscillator
- Metastable states; transitions
- Quantum regime

Applications

JOSEPHSON TUNNEL JUNCTION

Superconducting phase

Josephson relations

- $I = I_0 \sin(\delta)$
- I_0 critical current

$$V = \frac{\hbar}{2e} \frac{d\delta}{dt} = \varphi_0 \frac{d\delta}{dt}$$

DC CURRENT BIAS

RF DRIVEN NON-LINEAR OSCILLATOR

$$I_{0} = C_{J} = C_{I} = P = O = I(t)$$

$$\frac{\varphi_{0}^{2}C_{J}}{mass} = \frac{\varphi_{0}^{2}}{dt^{2}} + \frac{\varphi_{0}^{2}}{R} = \frac{\varphi_{0}I_{RF}}{dt} = \frac{\varphi_{0}I_{RF}}{dt} = \frac{\varphi_{0}I_{RF}}{dt}$$

DRIVEN STATES IN THE SAME WELL

NO TRANSITIONS OUT OF THE WELL

TWO DYNAMICAL STATES

If
$$\omega_p - \omega > \frac{\omega_p}{Q} \frac{\sqrt{3}}{2} \rightarrow \text{bistability}$$

Dynamical states differ in oscillation amplitude & phase

THE REFLECTION EXPERIMENT

50 OHM CHARACTERISTIC IMPEDANCE

MINIMIZING NOISE

USE CIRCULATOR TO PROTECT SAMPLE FROM IN-BAND NOISE

MINIMIZING NOISE

USE FILTERS TO PROTECT SAMPLE FROM OUT OF BAND NOISE

JUNCTION + MICROWAVE CAPACITOR

NON-LINEAR RESONANCE

Siddiqi. *et al*, PRL. 94, 027005 (2005)

HYSTERESIS AND BISTABILITY

EXPLOIT HYSTERESIS TO IMPROVE SIGNAL TO NOISE RATIO

Siddiqi. et al, PRL 93, 207002 (2004).

TRANSITION RATES

MEASURING ESCAPE TEMPERATURE

$$\beta^{2/3} = \left[\frac{U_0}{k_B T_{esc}}\right]^{2/3} \left(1 - \frac{I_{RF}^2}{I_B^2}\right)$$

Exponential decay of population

Escape rate vs drive amplitude

MEASURING ESCAPE TEMPERATURE

QUANTUM REGIME

Good agreement with quantum activation theory

Need higher oscillator frequencies

Marthaler et. al. arXiv:cond-mat/0602288

JOSEPHSON BIFURCATION AMPLIFIER

QUBIT READOUT

NON-LINEAR CAVITY RESONATORS

Superconducting Nb 1D cavity (1-10GHz) AI-AIO-AI junction ($I_0 \sim 0.5-5 \mu A$)

See the following talks later today for more details:

W39.0002 (Vladimir Manucharyan , 2.42 pm , Room 342) W39.0003 (Etienne Boaknin, 2.54 pm , Room 342) W39.0004 (Michael Metcalfe, 5.06 pm , Room 342)

CONCLUSIONS

SLIDES AFTER THIS ARE ADDITIONAL

DC CURRENT BIAS II: Metastability & Switching

$$\Gamma_{0\to 1}(I_0, I_{DC}, T) = \frac{\omega_p}{2\pi} \exp\left(-\frac{\Delta U}{kT}\right)$$

$$\Delta U(I_0, I_{DC}) = \left[\frac{2\sqrt{2}}{3}\frac{\hbar}{e}I_0\right] \cdot \left(1 - \frac{I_{DC}}{I_0}\right)^{3/2}$$

 $\delta/2\pi$

$$\left[\ln\left(\frac{\omega_p}{2\pi\,\Gamma(I_{DC})}\right)\right]^{2/3} = \left[\frac{2\sqrt{2}}{3}\frac{\hbar}{e}\frac{I_0}{k_BT}\right]^{2/3}\left(1-\frac{I_{DC}}{I_0}\right)$$

Extract I_0 and escape temperature T_{esc}

DC CURRENT BIAS III: Macroscopic Quantum Tunneling (MQT)

"SOFTENING" POTENTIAL

- Frequency decreases with drive amplitude
- For $\omega < \omega_p$, weak drive \rightarrow off resonance strong drive \rightarrow on resonance

ATTRACTORS

 $\delta(t) = \delta_{\Box} \sin(\omega t) + \delta_{\bot} \cos(\omega t)$

PHASE DIAGRAM: EXP & THY IN GOOD AGREEMENT

All parameters in prediction measured experimentally!

Siddiqi. et al, PRL. 94, 027005 (2005)

QUBIT + JBA CHIP

WRITE PORT

