MEASURING QUANTRONIUM QUBIT WITH CAVITY BIFURCATION AMPLIFIER

Michael Metcalfe

E. Boaknin, V. Manucharyan, R. Vijay, C. Rigetti, I. Siddiqi, L. Frunzio and M. H. Devoret (*Qlab, Department of Applied Physics, Yale University*)

Acknowledgements: D. Prober, R.J. Schoelkopf, S. Girvin

W. M. KECK FOUNDATION

Monday evening seminar September 11th 2006

CONTENTS

- 1. Introduction: Quantum computing
 - Implementations
 - Quantum circuits
 - Quantronium

2. Cavity bifurcation amplifier (CBA) :

- Non-linear readout
- Implementations
- Bistability
- 3. Quantronium with CBA:
 - Spectroscopy/Gate modulations
 - Rabi/Ramsey oscillations
- 4. **Outlook:** Coupled qubits (See Chad's talk)
 - Multiplexed C.B.A's

QUANTUM COMPUTATION

Quantum computation:

Unitary evolution of initially prepared n-qubit state and its subsequent measurement

Qubit:

Just a 2-state system (effective spin $-\frac{1}{2}$)

QUANTUM PARALLELISM

 $|k\rangle$

N-qubit state:

$$\left|\psi\right\rangle = \sum_{k=0}^{2^{N}-1} C_{k}\left|k\right\rangle$$

Unitary operation,U:

$$U\left|\psi\right\rangle = \sum_{k=0}^{2^{N}-1} C_{k} U\left|k\right\rangle$$

2^N operations in parallel!!

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	1	0
	•			•			•			•	
	•			•			•			•	
1	1	1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1	1	1

QUBIT REALIZATIONS

Trapped ions

Low environmental coupling Scalability difficult

 $|0\rangle |0\rangle$

NMR

chloroform molecule

semicond^{uctor} dots supercond^{ucting} circuits

Shorter qubit coherence Large environmental coupling Scalability easier Electrical access

QUANTUM CIRCUITS

Equal level spacing

Need non-linear element

NON-LINEAR ELEMENT: JOSEPHSON JUNCTION

Josephson current:

$$i(t) = -I_0 \sin\left[\frac{2e}{\hbar} \Phi_J(t)\right]$$

Inductance:

$$L = \frac{1}{\frac{\partial i}{\partial \Phi}} = \frac{\hbar}{2eI_0 \cos\left(\Delta\varphi\right)}$$

Non-Linear Inductor!

Circuit symbol:

SEM:

3.5µm

COOPER PAIR BOX

SPLIT COOPER PAIR BOX

$$\widehat{H}(N_g) = E_{CP}\left(\frac{1}{i}\frac{\partial}{\partial\theta} - N_g\right)^2 - E_J(\delta)\cos\left[\widehat{\theta}(\delta)\right]$$

$$E_{J} \ll E_{CP} \implies H_{CPB} = h_{z} \left(\delta \right) \sigma_{z} + h_{x} \left(N_{g} \right) \sigma_{x}$$

$$\square$$
Artificial 2-level atom

SEM image of Quantronium

ENERGY LEVELS

Eigenstates, E_k: Mathieu Functions

Sweet spot:

$$\frac{\partial E_k}{\partial \delta} = \frac{\partial E_k}{\partial N_g} = 0$$

Average loop current:

$$\mathbf{i}_{k}(N_{g}, \delta) = \frac{1}{\varphi_{0}} \frac{\partial E_{k}(N_{g}, \delta)}{\partial \delta}$$

With inductance:

$$L(N_g, \delta) = \left[\frac{1}{\varphi_0}\left(\frac{\partial I}{\partial \delta}\right)\right]^{-1} = \left[\frac{1}{\varphi_0^2}\left(\frac{\partial^2 E_k(N_g, \delta)}{\partial \delta^2}\right)\right]^{-1}$$

NON-LINEAR READOUT

NON-LINEAR READOUT

IMPLEMENTATIONS

Quantronium qubit with Josephson bifurcation amplifier (JBA)

Quantronium qubit with cavity bifurcation amplifier (CBA)

SAMPLE

Precisely control non-linearity
 Engineer freq, Q
 No dissipation on-chip

MICROWAVE RESPONSE

Bistable states

OBSERVATION OF BISTABILITY

WHY: MULTIPLEXED QUBITS

C.B.A. WITH QUANTRONIUM

SEM image of Quantronium in CBA

GATE MODULATIONS

Fit is with E_{cp} = 17.0GHz and E_{J0} = 15.1GHz

SPECTROSCOPY

RABI OSCILLATIONS

Time (µs)

RELAXATION TIME, T₁

RAMSEY FRINGES

MEASURED CONTRAST

Readout relaxation

Reduced contrast

NOW: SLOTLINE NON-LINEAR RESONATOR

Optical image of device

Advantages: 1. Completely fabricated using e-beam lithography
2. Gate and readout lines separated
3. Excite ± mode in slotline for readout

NEAR FUTURE: COUPLED QUBITS

See Chad's MES upcoming.....

Optical image of coupled qubit with slotline readout

LONGER TERM: MANY COUPLED MULTIPLEXED QUIBTS

CONCLUSION

- Developed fast, non-dissipative RF readout
- Single shot qubit readout feasible
- Scalable architecture
- Coupled qubit experiments in progress...

PREDICTED CONTRAST

Single shot possible

RAMSEY TOMOGRAPHY

Map of state during Ramsey experiment (c.f. Martinis, PRL)

Slides after this are additional

RANDOM EQUATIONS

Josephson Junction:

Charge tunneling through JJ : Q = 2eNFlux associated with SC phase diff across JJ : $\Phi = \varphi_0 \theta$ $[\theta, N] = i$ Hamilton of JJ : $H = E_{CJ} \left(N - \frac{Q_r}{2e} \right)^2 - E_J \cos \theta$ where

$$E_{CJ} = \frac{(2e)^2}{2C_J}$$

Cooper Pair box:

$$\widehat{H}(N_g) = E_c \left(\frac{1}{i} \frac{\partial}{\partial \theta} - N_g\right)^2 - E_J \cos(\widehat{\theta})$$

$$N = \frac{1}{i} \frac{\partial}{\partial \theta}$$

$$E_J << E_{CP}$$

$$H_{CPB} = -E_z (\sigma_z + X_{cont} \sigma_x)$$
where
$$E_z = E_J / 2$$

$$X_{cont} = 2E_{CP} / E_J (\frac{1}{2} - N_g)$$

$$E_J \leftrightarrow \text{Zeeman field}$$

$$E_{CP} \leftrightarrow \text{transverse field}$$

$$X_{cont} = 0 \Rightarrow \text{Sweet spot}$$

Loop current/Inductances:

$$\widehat{I}(Ng,\delta) = -2e\frac{d\widehat{K}}{dt}$$

where number of cooper pairs tunnelling onto island

$$\hat{\vec{K}} = \frac{\left(\hat{\vec{N}}_{1} + \hat{N}_{2}\right)}{2}$$
$$\hat{I}(Ng, \delta) = -\frac{1}{i\varphi_{0}}\left[\hat{K}, \hat{H}\right] = \frac{1}{\varphi_{0}}\frac{\partial\hat{H}}{\partial\delta}$$

Hence the average loop current is :

$$\mathbf{i}_{k}(N_{g}, \delta) = \frac{1}{\varphi_{0}} \frac{\partial E_{k}(Ng, \delta)}{\partial \delta}$$

with inductance :

$$L(Ng, \delta) = \left[\frac{1}{\varphi_0} \left(\frac{\partial I}{\partial \delta}\right)\right]^{-1} = \left[\frac{1}{\varphi_0^2} \left(\frac{\partial^2 E_k(N_g, \delta)}{\partial \delta^2}\right)\right]^{-1}$$

Non-Linear resonance

Readout scheme

Previous work

Quantronium qubit with JBA

I. Siddiqi et. al, PRB 2006

CQED

A. Wallraff et. al, Nature 2004

Flux qubit with linear resonator and JBA

Experimental observation of two oscillator states

Microwave response

Bistability

Readout scheme

JBA

- Complicated fabrication
- Same physics

TIME RESOLVED MEASURMENT

For:
$$\omega_a \Box \Gamma$$

Thermally activated escape:

$$\gamma = \frac{\omega_a}{2\pi} \exp\left(-\frac{\Delta U}{k_B T_{esc}}\right)$$

Where:

$$\omega_a = \frac{2}{3\sqrt{3}} \Gamma \Omega^2 \left| 1 - \beta / \beta_b \right|^{1/2} \qquad \Delta U = \frac{64}{9\sqrt{3}} E_J \left(\frac{L_t}{L_J} \right)^2 \frac{\Omega}{Q} \left| 1 - \beta / \beta_b \right|^{3/2}$$

Plot:
$$\left(\ln(\omega_a / 2\pi\gamma)\right)^{2/3} vs\beta/\beta_b \longrightarrow T_{esc}$$

ESCAPE RATES

Useful tool

2D-HISTOGRAMS

CAVITY BIFURCATION AMPLIFIER

THE JOSEPHSON TUNNEL JUNCTION: AN ATOM-LIKE CIRCUIT ELEMENT TO WHICH YOU CAN ATTACH WIRES ...

NON-LINEAR INDUCTOR

JOSEPHSON JUNCTION

 $\Delta \varphi = \frac{\Phi_J(t)}{\Phi_0}$

Zero voltage supercurrent:

 $I_{s} = I_{c} \sin(\Delta \varphi_{i})$ $\Phi_{J} = \int_{-\infty}^{\infty} v(t') dt'$

Model:

Applied voltage:

$$\frac{d(\Delta\varphi)}{dt} = \frac{2eV}{\hbar}$$

 $\Phi_0 = \frac{\hbar}{2e}$

 \rightarrow alternating current

R

Free energy stored in junction:

$$W = \int I_s V dt$$

 $F = -E_J \cos(\Delta \varphi) + const$ $L_J = \frac{\hbar}{2eI_0}$

Non-Linear Inductor!

$$E_J = \frac{\hbar I_C}{2e}$$

ENERGY LEVELS OF AN ISOLATED JUNCTION

SHADOW-MASK EVAPORATION

SEM IMAGE OF AL/AL₂O₃/AL JUNCTION Alevappetion 2000 C)

Non-Linear resonance