
 

Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

S. Touzard,1,* A. Grimm,1 Z. Leghtas,1 S. O. Mundhada,1 P. Reinhold,1 C. Axline,1 M. Reagor,1 K. Chou,1

J. Blumoff,1 K. M. Sliwa,1 S. Shankar,1 L. Frunzio,1 R. J. Schoelkopf,1 M. Mirrahimi,2 and M. H. Devoret1
1Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA

2Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
and QUANTIC team, INRIA de Paris, 2 Rue Simone Iff, 75012 Paris, France

(Received 15 November 2017; revised manuscript received 19 January 2018; published 4 April 2018)

Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to
decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum informa-
tion within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of
independent errors. The remaining errors do not affect the quantum computation and are correctable after
the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger
cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states
analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with
quantum error correction and hence are crucial for fault-tolerant logical qubits.
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The quantum Zeno effect (QZE) is the apparent freezing
of a quantum system in one state under the influence of a
continuous observation. This continuous observation can
be performed by a dissipative environment [1–3]. It can be
further generalized to the stabilization of a manifold
spanned by multiple quantum states, an operation which
requires a dissipation that is blind to the manifold observ-
ables [4]. Harnessing this effect is crucial for the design of
quantum computation schemes, since autonomous stabili-
zation is a form of the feedback needed for quantum error
correction. When employing manifold QZE for correcting
errors, motion inside the manifold can still subsist and can
be driven by the combination of the dissipative stabilization
and an external force [5–10]. Therefore, manifold QZE
offers a pathway towards the realization of logical gates
compatible with quantum error correction. An example of
such a system is provided by a superconducting microwave
cavity, in which a dissipative process that annihilates
photons in pairs at rate κ2, acting together with a two-
photon drive of strength ϵ2, projects the system onto the
manifold spanned by Schrödinger cat states jC�α∞i ¼
N ðjα∞i � j−α∞iÞ, where jα∞i is a coherent state of
amplitude α∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2ϵ2/κ2
p

and N is a normalization factor
[11–13]. Each one of these states has a well-defined photon
number parity, which is conserved by the engineered

dissipation. In this Schrödinger cat state manifold, the
displacement operator DðαÞ ¼ expðαa† − α�aÞ (where a is
the annihilation operator acting on the harmonic oscillator)
has two effects: it changes the photon number parity and it
changes the amplitude of its component coherent states.
The engineered dissipation leaves the change in parity
invariant and cancels the change in amplitude [Fig. 1(a)].
The net result of this quantum Zeno dynamics is to
continuously vary the parity of Schrödinger cat states.
These parity oscillations constitute the basis of an X gate

on a qubit encoded in the protected manifold j0/1iP ¼
N ðjα∞i � j−α∞iÞ. Encoding quantum information in
superpositions of Schrödinger cat states is compatible with
quantum error correction realized with quantum nondemo-
lition parity measurements [14–16]. Our gate is fundamen-
tally different than previous manipulations of Schrödinger
cat states [17] as it operates while the manifold is stabilized.
Thus, the quantum information is protected from out-of-
manifold gate errors. Moreover, the operation of the gate is
not affected by the dominant source of errors: bit flips. In
fact, as the operation commutes with them, it is compatible
with a fault-tolerant scheme that would correct them after
the operation.
While related driven manifold dynamics have been

proposed and observed [18–22], the nonlinear dissipation
specific to our experiment adds a crucial element: any drift
out of the cat state manifold is projected back into it.
In our experiment, schematically shown in Fig. 1, the

drive dissipation is implemented using two-photon tran-
sitions between two electromagnetic modes. The first one
has a high quality factor and stores the Schrödinger cat
states. We refer to it as the storage (subscript S). The second
one is used as an engineered cold bath that rapidly removes
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the entropy from the storage. We refer to it as the reservoir
(subscript R). We employ the four-wave mixing capability
of a Josephson junction, together with two microwave
pumps, to stimulate those transitions. In order to make
resonant the conversion from one reservoir photon into two
storage photons and vice versa, the first pump is set at
frequency 2fS − fR. The second pump, set at frequency fR,
combines with the first one to create pairs of photons in the

storage. When the dynamics of the reservoir mode is
eliminated, the density matrix of the storage mode ρ is
given by the Lindblad equation,

dρ
dt

¼ −
i
ℏ
½HS; ρ� þ

κ2
2
D½a2S − α∞

2�ρ;

where HS is a Hamiltonian acting on the storage and
D½L�ρ ¼ 2LρL† −L†Lρ − ρL†L is the Lindblad super-
operator. As the Lindblad superoperator is engineered to be
the dominant term in the dynamics, the dynamical steady
states of the system are given by the coherent states
j�α∞i. The microwave pumps set the phase and amplitude
of the complex amplitude α∞. The Hamiltonian part of
the equation contains the self-Kerr effect of the storage
mode induced by the Josephson junction and the linear
drive that induces the coherent oscillations: HS/ℏ ¼
−χSS/2ða†2S a2SÞ þ ðϵa†S þ H:c:Þ. The frequency of the coher-
ent oscillations is maximum when the phase of the linear
drive ϵ is perpendicular to the phase of the stabilized
Schrödinger cat states. Thus, this linear drive displaces the
Schrödinger cat state perpendicularly to the stabilization
axis while the dissipation continuously projects the system
back to the stabilized manifold. If the drive respects the
adiabaticity condition jϵj ≪ jα∞j2κ2. then the net effect of
the linear drive is to induce parity oscillations within the
stabilized manifold, at frequency Ω ¼ 2ϵjα∞j [12].
The adiabaticity condition [6–10] sets an upper bound on

the frequency of these oscillations, fixed by the maximum
κ2 that we can engineer. In order to observe this dynamics,
we also need the coherence time of the storage mode to be
larger than the period of the oscillations. The architecture
we designed was key to engineer both a highly coherent
storage mode and a large coupling to the environment. We
implement the storage mode into a long-lived post cavity
made of aluminium [23] [Fig. 1(b)]. Its finite lifetime
induces two types of errors on a protected qubit encoded in
the stabilized manifold. First, in the absence of stabiliza-
tion, the amplitude of the Schrödinger cat states decays
until eventually the two coherent states are no longer
distinguishable. This error happens at rate κ−11 ¼ 92 μs.
Second, when the environment is observed to have
absorbed a photon, the projected density matrix of the
storage mode suffers a parity jump, which corresponds to a
bit-flip error in our encoded qubit. For a stabilized cat state
containing n̄ ¼ jα∞j2 photons on average, they happen at a
rate n̄κ1 [24]. Additionally, the abovementioned Kerr effect
would distort the coherent states at rate χSS/2π ∼ 3 kHz in
the absence of stabilization. In order to achieve a fast
nonlinear dissipation, the storage cavity is coupled to a
transmon embedded into a coaxial tunnel [25], whose
lifetime is engineered to be much less than that of the
storage (317 ns), and we use it as the entropy reservoir to
induce the QZE. While the reservoir is efficient to dispose
of the entropy of the storage mode, its low lifetime has two
impacts on the coherence of the storage. First, we associate

(a)

(b)

FIG. 1. Quantum Zeno dynamics and its implementation.
(a) Conceptual representation of the experiment. The quantum
state of a harmonic oscillator is represented here by a point in a
2D plane (not to be confused with phase space). The dark blue
circle represents a cross section of the Bloch sphere of a two-state
manifold in the larger Hilbert space of the oscillator. The quantum
Zeno effect observed in our experiment corresponds to motion
along the circle. A weak excitation drive is applied to the
oscillator and the resulting trajectory has a component both
along the circle and out of it. The nonlinear dissipation and drive
(orange) cancels the movement outside the circle while being
blind to the position of the quantum state on the circle.
(b) Schematics of the experimental device. The quantum mani-
fold is stabilized within the Hilbert space of the fundamental
mode of an aluminium post cavity (cyan, storage in the text). This
resonator is coupled to two Josephson junctions on sapphire
(yellow for the reservoir and crimson for the Wigner transmon,
see text), which are read out by stripline resonators (gray). Three
couplers (brown) bring microwave drives into the system and
carry signals out of it.
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the lifetime of our storage cavity to the Purcell effect
(usually κ−11 is of order 1 ms [23]). Second, the finite
temperature of the reservoir causes additional dephasing of
the storage mode (see Supplemental Material [26]).
However, the direct coupling between the storage and
the reservoir modes leads to a nonlinear dissipation rate of
κ−12 ¼ 900 ns. The 2 orders of magnitude separating κ1 and
κ2 are enough to observe the parity oscillations while
respecting the adiabaticity condition. The storage cavity is
also coupled to a very coherent transmon whose coherence
times (T1 ¼ 70 μs, T�

2 ¼ 30 μs) are large compared to the
time it takes to perform a parity measurement of the storage

cavity using the dispersive coupling (218 ns). We use this
transmon to measure the Wigner function of the storage
mode and therefore we refer to it as the Wigner transmon.
Our experimental protocol follows a fixed sequence of

pulses which contains three parts [Fig. 2(a)]. The first step
is the initialization of the system in the encoding manifold,
which is done with pulses generated by an optimal control
algorithm referred as optimal control pulse (OCP) [17]. As
it involves transient states that are not Schrödinger cat states
and that are entangled to the Wigner transmon, this method
induces errors on the protected encoding that are not
corrected by the stabilization. However, it is currently
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FIG. 2. Experimental protocol and Wigner tomography result. (a) Sequence of different drives outlined in Fig. 1. The storage is
initialized either in a cat stateN ðjα∞i � j−α∞iÞwith optimal control pulses or in a coherent state j�α∞iwith a displacement Dð�α∞Þ.
The drives stabilizing the manifold are turned on in 24 ns (purple and yellow). They are on for a duration Δt during which the storage
drive (cyan) can be turned on to induce the parity oscillations. The drives are left on for another 500 ns and then turned off in 24 ns, after
which the Wigner function is measured. (b) In the left-hand column is the Wigner functions of the storage cavity after initialization in an
even or odd cat state ðjα∞j2 ¼ 3Þ. The right-hand column shows the corresponding Wigner functions after a quarter of an oscillation.
The color maps are averaged raw data of the Wigner function measurement (see text) and the orange circles are cuts along ReðαÞ ¼ 0.
The gray solid lines are theoretical curves corresponding to even or odd cats (left-hand column, lines 1 and 2, respectively) and parityless
cats (right-hand column, lines 1 and 2). The only fit parameter in the theory is the renormalization of the amplitude by a factor 0.87 on
the left, and 0.65 on the right. These factors account for the fidelity of the parity measurement and the decay of the fringes of the cat
states during the stabilization.
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the fastest method available. The second part is the
stabilization of the manifold, which is done with or without
the rotation drive. Finally, in the third part, the Wigner
function of the storage cavity at a given point in phase
space is measured [14,27].
We characterize the initialization and the quality of the

measurement by taking a full Wigner tomography of
the storage cavity initialized in j0iP and j1iP [Fig. 2(b)].
The raw data consist of single-shot parity measurements
realized with a parametric amplifier and averaged without
any further normalization. The phase locking of the different
drives ensured that the stabilization axis of the Schrödinger
cat states was aligned with the Wigner representation axis,
and that the rotation drive was perpendicular to the
stabilization axis [26]. The right-hand column illustrates
our ability to go from an even or odd parity Schrödinger cat
state to a “Yurke-Stoler” cat state [28]. The zero value of the
Wigner function at the center of phase space shows that
these states had no parity. They were generated by a rotation
of π/2 in the encoding manifold. It is important to note that

the cat is not displaced sideways. The fringes are moving,
but the “blobs” remain in place [Fig. 2(b)].
In order to investigate the parity oscillations more

closely, we restrict the measurement of the Wigner function
to the center of phase space (photon number parity
measurement). In Fig. 3(a), we present the time evolution
of cat states, initially in the even state. We measured their
parity over 50 μs while they were stabilized [Fig. 3(a)]. For
n̄ ¼ 2, 3, and 5, we observed decay time constants of,
respectively, 22, 14, and 8 μs. This behavior arises from the
natural single-photon jumps of the cavity. They correspond
to bit flips within the encoding manifold which eventually
destroy the coherence of the encoded qubit. The coherence
of the encoded qubit is lost at a rate 2n̄κ1 [24]. This is close
to what was found in the experiment and thus shows that
the decoherence is mainly due to bit flips happening during
the stabilization. With the rotation drive turned on, the
oscillations of the parity over time are similar to Rabi
oscillations for a two-level system. For a drive with strength
ϵ, the equivalent Rabi frequency [12] is given by

(a) (b)

FIG. 3. Characterization of the oscillations. (a) Evolution of the measured parity as a function of time. The initial cat states are even,
with n̄ ¼ jα∞j2 ¼ 2, 3, 5 (circles, squares, diamonds). The storage drive is either off (black markers) or on (colored markers) with
various strengths given in units of a chosen base strength ϵ0. Simulations are shown as solid lines. The minimum of each experimental
curve is emphasized for each drive strength (full marker with black contour). (b) A fit of the data gives the frequency Ω and the time
constant τ of the decaying oscillations. The former is plotted as a function of the relative drive strength ϵ/ϵ0 (top panel). The case n̄ ¼ 2 is
fitted with a linear function (dashed line). Based on this, we make predictions for n̄ ¼ 3, 5 (solid lines). The bottom panel shows the
characteristic decay time of the oscillations τ, normalized by the decay time of the nondriven case τ0.
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Ω ¼ 2ϵjα∞j. We chose a first drive strength ϵ0 that gave a
single oscillation in parity within the decay time of a
Schrödinger cat state with amplitude n̄ ¼ 2. We then
repeated the experiment for drive strengths that were
multiples of ϵ0 and for different amplitudes of the initial
cat states. On each panel the frequency of the oscillations
increases with the drive strength. By looking at curves that
correspond to the same drive strength over different panels
(same color), we see that the frequency of oscillation also
increases with the amplitude of the initial state. We obtain
theory predictions by numerically integrating the evolution
of the density matrix and superimposing them on the data.
The parameters of the theory were all provided by the
results of independent experiments [26].
We also present in Fig. 3(b) the frequency of the

oscillations as a function of the normalized drive strength
[Fig. 3(b)]. According to theory, the oscillation frequency
should depend linearly on the drive strength. The linear
fit for n̄ ¼ 2 gives ϵ0/2π ¼ 7 kHz. This value, when
compared to n̄κ2, means that we respect the adiabaticity
condition for this drive strength. However, when the drive
strength increases, this condition is no longer fulfilled.
Subsequently, we predict the oscillation frequencies for
n̄ ¼ 3 and 5 with good agreement. The difference between
the prediction and the data indicates that the stabilized cat
state might have had a larger amplitude than the one
measured. This is corroborated by the fact that the
decoherence time scales for n̄ ¼ 3 and 5 were lower than
predicted.
The second panel of Fig. 3(b) shows the evolution of the

normalized decay time constant for different cat state
amplitudes as a function of the drive strength. If the gate
was infinitely slow, the decay constant would be the same
as in the nondriven case. However, when ϵ/ϵ0 increases, the
oscillations decay faster. This is explained by the fact that
the gate does not perfectly respect the adiabaticity con-
dition jϵj ≪ jα∞j2κ2. Nevertheless, when the number of
photons in the initial state is larger, the decay constant of
the oscillations gets closer to the ideal limit: the adiabaticity
condition is easier to fulfill for higher number of photons.
Although encoding with a Schrödinger cat state of larger
amplitude increases the bit-flip rate, given by 2n̄κ1, it
increases the quality of our manipulation.
Finally, we measured the effect of this protected Rabi

rotation on an arbitrary state of the encoding manifold. We
represent a state of the protected qubit by a vector in the
Bloch sphere. Its coordinates were found by measuring the
equivalent Pauli operators for this encoding [29]. The effect
of the gate is accurately described by its effect on the 6
cardinal points of an octahedron within the Bloch sphere.
We present the results for a manifold encoding using
jα∞j2 ¼ 3 (Fig. 4). The octahedron on the left shows the
initial state. To illustrate the effect of the gate, we chose a
specific rotation of π/2 using a drive strength ϵ ¼ 6ϵ0. This
corresponds to a gate time of 1.8 μs. We compared the

results with those obtained by waiting for the same amount
of time without applying a drive, which corresponded to
applying the identity. Using the Pauli transfer matrix [30] to
represent an operation, we analyze these three processes.
We find the fidelities to the respective ideal processes to be
F ¼ 0.87 for the encoding, 0.81 for the identity, and 0.80
for the π/2 rotation [26]. Within these fidelities, we isolate
the part that is due to the fidelity of the operation from the
part that is due to the quality of the measurement. For this,
we normalize the measurement by the contrast of the
Wigner function (0.841 for jα∞j2 ¼ 3). We get normalized
fidelities of F ¼ 0.98 (encoding), 0.90 (identity), and
0.89 (π/2 rotation). The encoding fidelity is slightly smaller
than what has been measured in similar implementations
[17], likely due to the finite temperature of the reservoir [26].
We see that the fidelities of the rotation and of the identity
are similar. This indicates that they are limited by the
decoherence of the storage mode. The remaining discrep-
ancy between the rotation and the identity is due to the fact
that the gate is not infinitely slow compared to the stabiliza-
tion, as illustrated in the lower panel of Fig. 3(b).
The next step after manipulating an encoded and

protected qubit contained in the stabilized manifold of
cat states is to address the fault tolerance of logical
operations. A future version of our experiment, which

FIG. 4. Gate on cardinal points of the Bloch sphere
of the protected manifold. An arbitrary cat state
N ½cosðθ/2ÞjCþα∞i þ sinðθ/2ÞeiϕjC−α∞i� is represented by a point
on a sphere. Six initial states are chosen, corresponding to the
cardinal points ðθ;ϕÞ ¼ ð0; 0Þ, ðπ; 0Þ, ð�π/2; 0Þ, ðπ/2;�π/2Þ, with
jα∞j2 ¼ 3, and their equivalent Pauli operators are measured. The
markers corresponding toeach initial state are, respectively, redand
blue circles, gray up or down triangles, and black up or down
triangles. The initial octahedron formed by those points (left) is
either transformed under the action of the identity (upper right) or a
rotation of π/2 around the X axis (lower right).
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should be accessible with current techniques, will increase
κ2 above any coupling to other modes and thus achieve two
goals. First, it will improve the gate quality to make it better
than a gate on a physical qubit. Second, it will suppress the
dephasing due to finite temperature in other modes and thus
suppress one remaining decoherence channel. All possible
remaining errors would then be equivalent to bit-flip errors,
which can be corrected by fault-tolerant joint parity
measurements [31,32] on several cavities.
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