JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT

Michel DEVORET, Applied Physics and Physics, Yale University

Sponsors:

Final version of this presentation available at http://qulab.eng.yale.edu/archives.htm

2009 APS March Meeting Pittsburgh, PA

QUANTUM INFORMATION PROCESSING

from A. O. Niskanen et al. Science 316, 723 (2007)

courtesy of J. Martinis, 2009

from Metcalfe et al., 2007

ELECTROMAGNETIC SPECTRUM

1 bit = RF signal with 0/1 photon?

10 GHz ~ 0.5K

HOW CAN A SUPERCONDUCTING CIRCUIT BEHAVE LIKE AN ATOM?

MICROFABRICATION \longrightarrow L ~ 3nH, C ~ 10pF, $\omega_r/2\pi$ ~ 2GHz

ELECTRONIC FLUID SLOSHES BACK AND FORTH FROM ONE PLATE TO THE OTHER, INTERNAL MODES FROZEN, BEHAVES AS A SINGLE CHARGE CARRIER

DEGREE OF FREEDOM IN ATOM vs CIRCUIT

Example of H atom with large principal quantum number

Superconducting LC oscillator

velocity of electron \rightarrow voltage across capacitor force on electron \rightarrow current through inductor

FLUX AND CHARGE DO NOT COMMUTE

$$\left[\hat{\phi},\hat{Q}
ight]=i\hbar$$

LC CIRCUIT AS QUANTUM HARMONIC OSCILLATOR

$$\hat{H} = \hbar \omega_r \left(\hat{a}^{\dagger} \hat{a} + \frac{1/2}{2} \right)$$
$$\hat{a} = \frac{\hat{\phi}}{\phi_r} + i \frac{\hat{Q}}{Q_r}; \quad \hat{a}^{\dagger} = \frac{\hat{\phi}}{\phi_r} - i \frac{\hat{Q}}{Q_r}$$
$$\phi_r = \sqrt{2\hbar \omega_r L}$$
$$Q_r = \sqrt{2\hbar \omega_r C}$$

 annihilation and creation operators for mesoscopic excitation of circuit

WAVEFUNCTIONS OF LC CIRCUIT

EFFECT OF DAMPING

important: as little dissipation as possible

dissipation broadens energy levels

$$E_n = \hbar \omega_r \left[n \left(1 + \frac{i}{2\mathcal{Q}} \right) + \frac{1}{2} \right]$$
$$\mathcal{Q} = RC \omega_r$$

CAN PLACE CIRCUIT IN ITS GROUND STATE

provides reset of circuit

PB: ALL TRANSITIONS ARE DEGENERATE!

CANNOT STEER THE SYSTEM TO AN ARBITRARY STATE IF PERFECTLY LINEAR

NEED NON-LINEARITY TO FULLY REVEAL QUANTUM MECHANICS

Potential energy

JOSEPHSON TUNNEL JUNCTION PROVIDES A NON-LINEAR INDUCTOR WITH NO DISSIPATION

JOSEPHSON TUNNEL JUNCTION PROVIDES A NON-LINEAR INDUCTOR WITH NO DISSIPATION

COUPLING PARAMETERS OF THE JOSEPHSON "ATOM"

Comparable with lowest order model for hydrogen atom

$$\widehat{H} = \frac{1}{2m_e} \left(\hat{p} - \frac{e\hat{A}}{\hbar} \right)^2 - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{\hat{r}}$$

TWO ENERGY SCALES

HARMONIC APPROXIMATION

$$\widehat{H}_{J} = 8E_{C} \frac{\left(\widehat{N} - N_{ext}\right)^{2}}{2} - E_{J} \cos \widehat{\varphi}$$

$$\widehat{\mu}_{J,h} = 8E_{C} \frac{\left(\widehat{N} - N_{ext}\right)^{2}}{2} + E_{J} \frac{\widehat{\varphi}^{2}}{2}$$
Josephson
"plasma" frequency:
$$\omega_{P} = \frac{\sqrt{8E_{C}E_{J}}}{\hbar} \qquad \text{RF impedance:} \qquad Z_{J} = \frac{\hbar}{(2e)^{2}} \sqrt{\frac{8E_{C}}{E_{J}}}$$

Spectrum independent of DC value of N_{ext}

SOME JOSEPHSON TUNNEL JUNCTIONS IN REAL LIFE

credit L. Frunzio and D. Schuster

 $E_J \sim 50 \mathrm{K}$

 $\omega_{p} \sim 30-40 \text{GHz}$

$$E_J \sim 0.5 \mathrm{K}$$

RF CONTROL & BIAS vs SENSITIVITY TO NOISE

Devoret and Martinis, Quant. Inf. Proc. 2004

see R. McDermot's tutorial

HOW DO WE FIND THE HAMILTONIAN OF AN ARBITRARY CIRCUIT?

Yurke B. and Denker J.S., Phys. Rev. A 29, 1419 (1984)

Devoret M. H. in "Quantum Fluctuations", S. Reynaud, E. Giacobino, J. Zinn-Justin, Eds. (Elsevier, Amsterdam, 1997) p. 351-385G. Burkard, R. H. Koch, and D. P. DiVincenzo, Phys. Rev. B 69, 064503 (2004)

Example: 2 Josephson junctions capacitively coupled to 1 resonator mode

COOPER PAIR "BOX"

qbit space = Hilbert space of 0 or 1 quanta in this non-linear oscillator

Bouchiat PhD Thesis 97, et al. Physica Scripta '98 Nakamura, Pashkin & Tsai, Nature '99

SCHEMATIC OF COOPER PAIR BOXES IN A MICROWAVE CAVITY

Review by Blais et al., Phys. Rev. A 75, 032329 (2007)

TWO-QUBIT QUANTUM PROCESSOR

V17.6 Thu. March 19

slide courtesy of L. DiCarlo & Rob Schoelkopf

see also 1 qubit and 2 cavities: B. Johnson et al. V17.4

"FLUXONIUM QUBIT"

V. Manucharyan et al. **<u>Q17.5</u> Wednesday**

A FEW USEFUL IDEAS FOR CIRCUIT HAMILTONIANS.....

BRANCH VARIABLES

Introduce branch flux and charge

 $\phi_{\beta}(t) = \int_{-\infty}^{t} V_{\beta}(t') dt'$ $Q_{\beta}(t) = \int_{-\infty}^{t} I_{\beta}(t') dt'$

position variable:
momentum variable:
gener^{alized} force :
gener^{alized} velocity:

 $\begin{array}{cccc}
\phi & \leftrightarrow & X \\
Q & \leftarrow & P \\
I & \leftarrow & f \\
V & \leftarrow & V
\end{array}$

BRANCH VARIABLES

Introduce branch flux and charge

$$\phi_{\beta}(t) = \int_{-\infty}^{t} V_{\beta}(t') dt'$$
$$Q_{\beta}(t) = \int_{-\infty}^{t} I_{\beta}(t') dt'$$

For every branch β in the circuit:

$$\left[\hat{\phi}_{\beta},\hat{Q}_{\beta}\right]=i\hbar$$

PROBLEM: NOT ALL BRANCH VARIABLES ARE INDEPENDENT

IMPOSE CONSTRAINTS ON BRANCH VARIABLES

TWO METHODS FOR DEFINING A COMPLETE SET OF INDEPENDENT VARIABLES

Method of loops

Defines loop charges

EXAMPLE OF A COMPLETE SET OF INDEPENDENT VARIABLES

INDUCTIVE vs CAPACITIVE ELEMENTS

Inductance : current *I* function only of flux ϕ

$$E = \int_{-\infty}^{t} I \cdot V dt' = \int_{0}^{\phi} I(\phi') d\phi'$$

Electrical equivalent of spring: $\phi \leftrightarrow X$; $I \leftrightarrow f$

Capacitance : voltage V function only of charge Q

$$E = \int_{-\infty}^{t} V \cdot I dt' = \int_{0}^{Q} V(Q') dQ'$$

Electrical equivalent of mass: $Q \leftrightarrow P$; $V \leftrightarrow V$

NODE CHARGES

The conjugate coordinates of node fluxes are node charges: they are the sum of all the charges going into capacitances linked to this node.

HAMILTONIAN OF TWO CAPACITIVELY COUPLED RESONATOR MODES

ANHARMONICITY vs CHARGE SENSITIVITY

Cooper pair box levels are "exactly soluble" (A. Cottet, PhD thesis, Orsay, 2002)

ANHARMONICITY vs CHARGE SENSITIVITY IN THE LIMIT $E_J/E_c >> 1$

anharmonicity:

 $\frac{\omega_{12} - \omega_{01}}{\left(\omega_{12} + \omega_{01}\right)/2} \rightarrow \sqrt{\frac{E_C}{8E_J}}$

J. Koch et al. Phys. Rev. A '07

peak-to-peak charge modulation amplitude of level m:

$$\epsilon_m \to (-1)^m E_C \frac{2^{4m+5}}{m!} \sqrt{\frac{2}{\pi}} \left(\frac{E_J}{2E_C}\right)^{\frac{m}{2} + \frac{3}{4}} e^{-\sqrt{8E_J/E_C}}$$

TRANSMON: SHUNT CPB JUNCTION WITH CAPACITANCE

Courtesy of J. Schreier and R. Schoelkopf

SPECTROSCOPY OF A JOSEPHSON ATOM

J. Schreier et al., Phys. Rev. B '08

Anharmonicity:

$$\omega_{01} - \omega_{12} = 455 \text{MHz} \simeq E_C$$

Sufficient to control the artificial atom as a two level system: Qubit

Slide courtesy of J. Schreier and R. Schoelkopf

THE MEMORY READOUT PROBLEM

WANT: 1) SWITCH WITH ON/OFF RATIO AS LARGE AS POSSIBLE
2) READOUT WITH F AS CLOSE TO 1 AS POSSIBLE

STATE DECAY STRATEGY

Martinis, Devoret and Clarke, PRL **55** (1985) Martinis, Nam, Aumentado and Urbina, PRL **89** (2002)

DISPERSIVE READOUT STRATEGY

Blais et al. PRA 2004, Walraff et al., Nature 2004

A) FILTER OUT EVERYTHING ELSE THAN READOUT RF
B) REPEAT WITH ENOUGH PHOTONS TO BEAT
NOISE : USE THE BEST AMPLIFIER AS POSSIBLE

(see whole sessions J3 & L17 + Q17.6& Y34.4)

SUPERCONDUCTING MICROWAVE RESONATOR: ANALOG OF FABRY-PEROT CAVITY FILTER

length ~ 1cm, but photon decay length ~ 10km!

VERY SMALL MODE VOLUME

^{1/2} photon: ~1nA ~100nV

SUPERCONDUCTING CAVITY = FABRY-PEROT

qubit goes here (see slide 2, lower right, in this talk)

EXAMPLE OF QUANTRONIUM IN MICROWAVE CAVITY

OFF-RESONANT NMR-TYPE PULSE SEQUENCE FOR QUBIT MANIPULATION

QUANTRONIUM IN MICROWAVE CAVITY

QUANTRONIUM IN MICROWAVE CAVITY

Metcalfe et al. Phys. Rev. B6 174516 (2007)

latching effect due to bifurcation of cavity mode

IN-LINE TRANSMON WITH BIFURCATING MICROWAVE CAVITY READOUT

See <u>V17.6</u> M. Brink et al. Thursday morning, and also recent Saclay group results (in preparation)

Circuit Quantum Electrodynamics Groups Depts. Applied Physics and Physics, Yale

P.I.'s	M. D.	R. SCHOELKOPF	S. GIRVIN
	R. VIJAY (UCB)	J. CHOW	T. YU
Grads	C. RIGETTI	B. TUREK (MIT)	L. BISHOP
	M. METCALFE (NIST)	J. SCHREIER	
	V. MANUCHARIAN	B. JOHNSON	
	F. SCHAKERT	A. SEARS	
	N. MASLUK	M. READ	J. KOCH
	A. KAMAL	A. WALRAFF (ETH)	J. GAMBETTA
Post-Docs	I. SIDDIQI (UCB)	H. MAJER (Vienna)	(U. Waterloo)
	C. WILSON (Chalmers)	A. HOUCK (Princeton)	E. GINOSSAR
	E. BOAKNIN (McK)	D. SCHUSTER	A. NUNNENKAMP
	N. BERGEAL (ESPCI)	L. DICARLO	
Res. Sc.	M. BRINK	L. FRUNZIO	F. MARQUARDT
Undrgrds	A. MARBLESTONE	J. SCHWEDE	(Munich)
	D. ESTEVE et coll.	P. ZOLLER	A. BLAIS
Collab.	(Saclay)	(Innsbruck)	(Sherbrooke)
	B. HUARD (LPA/ENS)	. ,	À. CLERK (McGill)

W.M. KECK

Acknowledgements:

Circuit Quantum Electrodynamics Groups Depts. Applied Physics and Physics, Yale

P.I.'s	M. D.	R. SCHOELKOPF	S. GIRVIN
	R. VIJAY (UCB)	(Keithley Award, T3)	T. YU
Grads	C. RIGETTI	J. CHOW	L. BISHOP
	M. METCALFE (NIST)	B. TUREK (MIT)	
	V. MANUCHARIAN	J. SCHREIER	
	F. SCHAKERT	B. JOHNSON	
	N. MASLUK	A. SEARS	J. KOCH
	A. KAMAL	M. READ	J. GAMBETTA
Post-Docs	I. SIDDIQI (UCB)	A. WALRAFF (ETH)	(U. Waterloo)
	C. WILSON (Chalmers)	H. MAJER (Vienna)	E. GINOSSAR
	E. BOAKNIN (McK)	A. HOUCK (Princeton)	A. NUNNENKAMP
	N. BERGEAL (ESPCI)	D. SCHUSTER	
Res. Sc.	M. BRINK	L. DICARLO	F. MARQUARDT
Undrgrds	A. MARBLESTONE	L. FRUNZIO	(Munich)
	D. ESTEVE et coll.	J. SCHWEDE	A. BLAIS
Collab.	(Saclay)	P. ZOLLER	(Sherbrooke)
	B. HUARD (LPA/ENS)	(Innsbruck)	A. CLERK (McGill)

W.M. KECK

