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1. Foreword

This course is divided into three parts. Its first part consists of a general discus-
sion of single charge phenomena from a particular viewpoint: how to use these
phenomena to transfer single charge quanta, i.e. electrons and Cooper pairs, one
by one. This was the original goal of the teams that started to investigate single
Cooper effects in the middle of the 80’s. In this first part of the course, we will
not use any mathematical formalism, but try to get the reader acquainted with the
basic concepts and the orders of magnitude. The second part of the course is an
introduction to the theory of non-superconducting mesoscopic tunnel junctions.
The aim of this part is to explain the effect of the coupling of the junction, which
can be thought of as a strong elastic electron scatterer, to its electromagnetic en-
vironment treated quantum mechanically. The quantum mechanical fluctuations
of the charge resulting from this coupling are a crucial ingredient in our under-
standing of the dynamics of tunnel junction circuits. The third part of the course
deals with superconducting circuits. One could naively think that single Cooper
pairs in superconducting circuits take the role of single electrons in normal cir-
cuits. This will be possible only if there are no remaining unpaired electrons in the
metallic electrodes of the circuit. We explain how the theory of superconductivity
can be applied to a mesoscopic electrode to predict the conditions under which
the transfer of a single Cooper pair is observable.

2. General overview of single charge phenomena
2.1. Introduction

One individual atom, a purely theoretical entity a hundred years ago, can now
be imaged and manipulated at the surface of bulk matter [1] or, free-standing, in
vacuum [2]. Is the electron, the simplest and most thoroughly studied particle,
amenable to such ultimate control? In vacuum, the detection of single electrons
is now routine. A spectacular example of the control of individual electrons trav-
elling in a vacuum chamber is the experiment in which Dehmelt et al. [3] were
able to probe during three months a single electron kept in an electromagnetic
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trap, thereby measuring to unprecedented accuracy the anomalous part of its mag-
netic moment. In matter, the manipulation of individual electrons is a very dif-
ferent game, because the separation between electrons is of the same order as
their quantum mechanical wavelength. Here we focus on the most basic type of
such manipulation. We explain how it is possible to take, at a precise instant, ex-
actly one electron from a first electrode and transfer it with certainty to a second
electrode. By making these electrodes part of an electrical circuit and by continu-
ously repeating this transfer process we can achieve a perfectly controlled current
source. In particular, for a sequence of single-electron transfers clocked by a ra-
diofrequency signal at frequency £, the current I will be given simply by I = ef
where e is the quantum of charge, a fundamental constant. We also qualitatively
explain how, when at least one of the electrodes is in the superconducting state,
electron pairing favors charge transfer by units of 2e.

2.2. Basic principles of single electron transfer

Although the charge of the electron was measured as early as 1911 [4], the granu-
larity of electricity does not usually show up in the macroscopic quantities such as
current and voltage, which describe the state of an electric circuit. This is not just
a matter of the number of electrons being very large in typical devices. Charge
flow in a metal or a semiconductor is a continuous process because conduction
electrons are not localized at specific positions. They form a quantum fluid which
can be shifted by an arbitrary small amount. The variations of the charge &) on
a capacitor C' and of the associated potential difference U = Q/C illustrate this
property. The charge @ can be any fraction ¢ of the charge quantum e: if p de-
notes the electron density in the metallic plates of the capacitor and S their surface
area, it is easy to see that a bodily displacement § = £/(pS) of the electronic fluid
with respect to the ionic background, in the direction perpendicular to the plates,
produces the charge () = ce.

There exists, however, a solid-state device in which electric charge flows in a
discrete manner. It consists of two metallic electrodes separated by an insulating
layer so thin that electrons can traverse it by quantum tunneling [5] (Fig. 1). Tun-
neling can be considered as an all-or-nothing process because electrons spend a
negligible amount of time under the potential barrier corresponding to the insulat-
ing layer [6,7]. If one applies a voltage V' to such a tunnel junction, electrons will
randomly tunnel across the insulator at an average rate given by V/e R;, where the
tunnel resistance Ry is a macroscopic parameter of the junction which depends
on the area and thickness of the insulating barrier. Apart from allowing the tun-
nel effect, the two facing electrodes behave as a capacitor whose capacitance C'
is the other macroscopic parameter of the junction. It is important to stress that
the transport of electrons in a tunnel junction and in a metallic resistor are fun-
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Fig. 1. a) A tunnel junction consists of two metallic electrodes separated by a thin insulating layer.
When a fixed voltage is imposed to the junction, it is traversed by a current consisting of uncorrelated
charge packets corresponding to individual electrons. Electrons tunnel through the thin layer of
insulator which acts as a potential barrier. The junction is represented in circuit schematics by a
double box symbol (b) and is characterized by the tunnel resistance R, and capacitance C. It is
worth noting that although R; is called a “resistance”, it characterizes a purely elastic process. At the
insulating barrier, the electron wavefunction is partially transmitted and reflected. Its energy does not
change. The tunnel resistance is inversely proportional to the barrier transmission coefficient which
decreases exponentially with the thickness of the insulating layer. In practice, measurable tunnel
resistances can be achieved only with insulating layers a few nanometres thick.

damentally different, even though the current-voltage characteristic is linear in
both cases. Charge flows continuously along the resistor whereas it flows across
the junction in packets of e. Obviously, a tunnel junction provides the means to
extract electrons one at a time from an electrode. With a single voltage-biased
tunnel junction, however, it is not possible to control the instants at which elec-
trons pass from the upstream electrode to the downstream electrode, because of
the stochastic nature of tunneling. A further ingredient is needed.

Suppose that instead of applying directly a voltage source to the junction one
biases it with a voltage source U in series with a capacitor C, (we reserve the
letter symbol V' for transport voltage sources that have to deliver a static current).
A metallic electrode entirely surrounded by insulating material is formed between
the junction and the capacitor (see Fig. 2a). We will call such an isolated elec-
trode, which electrons can enter and leave only by tunneling, an “island”. The
island is coupled electrostatically to the rest of the circuit by the capacitances C
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and C, whose charges are denoted by @ and Q, respectively. Although, as we
have seen, Q and @, are both continuous variables, their difference is the total
excess charge of the island. Because charge can enter the island only by tunneling
through an insulating barrier, this total charge is a multiple of the electron charge:
Q — Q. = ne. Suppose furthermore that the island dimensions are small enough
that the electrostatic energy Ec = €?/2Cs of one excess electron on the island
is much larger than the characteristic energy k7' of thermal fluctuations. Here,
Cs. = C+C,, kg and T denote the total capacitance of the island, the Boltzmann
constant and the temperature, respectively. This Coulomb energy E¢ is the other
ingredient of controlled electron transfer.

When U = 0, n will stay identically zero because the entrance or exit of an
electron would raise the electrostatic energy of the island to a level much higher
than permitted by thermal fluctuations. As U increases from zero, however, the
total energy difference between the n = 0 and n = 1 state of the whole circuit de-
creases, because when an electron tunnels to the island the potential drop C;U/C's
partly compensates the electrostatic energy of the island. In fact, a straightforward
calculation of the total energy of the circuit yields £ = Ec(n — C,U/e)*+ term
independent of n. Thus, when U = e/2C,, the n = 0 and n = 1 states will have
the same energy and an electron can tunnel in and out freely. As U is increased
further, the n = 1 state becomes the lowest energy state. The maximum stabil-
ity of the n = 1 state against fluctuations is reached at U = e/C,s where, as in
the case U = 0, and n = 0, the charge Q vanishes. It is now easy to see that
each time the voltage U is increased by e/Cs, the number n of excess electrons
of the island is increased by one. If one plots 71, the average of n, as a function
of U, one gets the staircase function shown on Fig. 2b. It is therefore possible
to control exactly the number of excess electrons of the island by adjusting the
voltage U.

As the temperature is increased, the staircase becomes rounded and for temper-
atures kgT > E¢ it approaches the straight dotted line of Fig. 2b. In practise,
one can reliably cool tunnel junctions down to 50 mK but not much below. To
satisfy E¢ > kgT, Cs must be of the order of or smaller than one femtofarad.
This requires the fabrication of junctions with typical areas of 50 nm X 50 nm
and hence the use of nanofabrication techniques. With such low values of ca-
pacitance, the typical voltage corresponding to the addition of an electron is of
the order of 100 uV — 1mV, a value which can be easily controlled electron-
ically. To summarize, tunneling breaks the continuity of the electron fluid into
charge packets corresponding to single electrons. The Coulomb energy of excess
charges on an island provides a feedback mechanism that regulates the number
of electrons tunneling in and out the island. At sufficiently low temperature, the
exact number of excess electrons on the island does not fluctuate and can be en-
tirely determined by an externally applied voltage. The quenching of the island
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Fig. 2. a) Junction biased by a voltage source U in series with a capacitance C,. The metal electrode
between the junction and the capacitance forms an isolated “island” (box in dashed line) which
contains n excess electrons. b) Variation of 7, the average of = as a function of U, when k pl < E,
(full line) and kgT > E. (dashed line).

charge fluctuations for the “single electron box” (the circuit of Fig. 2a), has been
demonstrated experimentally by Lafarge et al. [8].

We have considered so far only thermal fluctuations of the number n. This
variable is also subject to quantum fluctuations. In our analysis of the circuit of
Fig. 2a, we have neglected the kinetic energy associated with the electron motion
under the barrier while tunneling. This energy is very small compared with the
Coulomb energy. Perturbative calculations [9,10] show that the quantum fluctu-
ations of n become negligible in the limit R; > Ry = h/e?, where h is Planck’s
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constant. The constant Ry =~ 26k{} is the resistance quantum. In this course, we
will consider tunnel barriers sufficiently opaque that this latter condition is ful-
filled. The section on metrological applications (section 2.6) discusses the effect
of the quantum fluctuations associated with a finite R; /Ry ratio.

2.3. Single electron effects: a brief history

The combination of the localization of electrons by the tunneling barrier and the
Coulomb charging energy give rise to a large class of phenomena which have been
called “single electron effects”. Decades ago, it was proposed that the variation of
the island potential due to the presence of only one excess electron could be large
enough to react back on the probability of subsequent tunneling events [11-15].
At that time, the effect could only be observed in granular metallic materials. It
was realized that the hopping of electrons from grain to grain could be inhibited
at small voltages if the electrostatic energy of a single electron on a grain was
much larger than the energy of thermal fluctuations. The interpretation of these
pionneering experiments, in which there is an interplay between single-electron
effects and random media properties, was complicated by the limited control over
the structure of the sample. With modern nanofabrication techniques, it is pos-
sible to design metallic islands of known geometry separated by well-controlled
tunnel barriers [16]. This led Fulton and Dolan to perform the first unambigu-
ous demonstration of single-electron effects in an island formed by two junctions
[17]. Meanwhile, Likharev and coworkers [18,19] had produced detailed predic-
tions of single electron effects in a nanoscale current-biased single junction (this
system was also considered in refs. [20] and [21], but only for junctions in the
superconducting state) and proposed various applications of the new effects. This
current-biased scheme is analogous in some ways to the circuit of Fig. 2a, but
with the capacitance replaced by a large resistance. In that case there is no island
enforcing charge quantization, because an arbitrarily small amount of charge can
flow through the resistance. Only the charge on the junction capacitance would
provide the feedback of Coulomb energy on tunneling.

It was later understood that, in general, the quantum electromagnetic fluctu-
ations due to the finite value of the resistance wash out single electron effects in
this single-junction no-island system. Only if the value of the resistance is made
much larger than the resistance quantum R up to frequencies of the order of
¢%/(hC) [22-24] can tunneling be Coulomb blocked in the current biased junc-
tion system. This effect is the main result of the theory presented in the second
part of this course. In spite of the experimental difficulties involved in fabricating
the resistance with adequate characteristics, the competition between single elec-
tron effects and quantum electromagnetic fluctuations has been observed [25,26].
The single-junction no-island system is certainly of interest as an illustration of
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the foundations of the field, but it is not suited for practical applications because
getting rid of quantum electromagnetic fluctuations is so difficult experimentally.
In what follows, we will resume the discussion of systems that contain at least one
island and are thus immune to quantum electromagnetic fluctuations. For general
introductions to single-electron effects in normal and superconducting junction
systems, see refs. [27-30]. For recent snapshots of the state of current research,
see refs. [31,32].

2.4. The single electron transistor

The one-junction one-island circuit of Fig. 2a is the simplest in which single-
electron transfer can occur. On the other hand, it cannot produce an externally
measurable static current, as the island is a cul-de-sac for electrons. Let us con-
sider the next order of complexity, the two-junction one-island circuit of Fig. 3a
[17]. The state of the circuit is now characterized by the two numbers N and
N’ of electrons having passed through the two junctions. (The increments of N
and N' are by convention positive if during tunneling the electron flows in the
direction of increasing voltage, and negative otherwise).

It is convenient to introduce the number n = N — N’ of excess electrons on
the island and the charge flow index p = (N + N')/2. The state (n,p + 1) only
differs from the state (n,p) in that one electron has been transferred from one
terminal of the transport voltage source V to the other. The electrostatic energies
of the various capacitances of the circuit are the same. As the precise value of p
does not matter here, we will condense the notations (n,p) and (n,p + 1) into
(n) and (n)*.

With regard to the total energy of the circuit, which includes the work of the
transport voltage, state (n)* is lower by eV than state (n) and, hence, the circuit
has no absolutely stable states. In principle, a steady current I could flow around
the loop formed by the two junctions and the transport voltage V. To go from
state (n) to state (n)*, however, the circuit must go through state (n + 1) or state
(n — 1), because tunnel events occur one at a time. States (n + 1) and (n — 1)
differ from state (n) by an electron having tunnelled through the first and second
junction, respectively. This is where the single-electron Coulomb energy E¢ =
e? /2Cy, comes into play (Ck is, as before, the island total capacitance given now
by Cy = C' + C' + C,, where C and C' are the two junction capacitances). To
simplify the discussion, suppose that eV < E¢.

When the control "gate” voltage is set at U = 0, the energy of states (—1) and
(1) will be E¢ — eV/2 =~ E¢ above the energy of state (0) (see Fig. 3c). At
low temperature, this will provide a Coulomb barrier for the transport of electrons
around the circuit. In this case the current I should be strictly zero. This situation
is called the Coulomb blockade. On the other hand, when the control voltage is
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Fig. 3. a) Schematic of single-electron transistor (SET). Energy of the states of the circuit when b)
U = 0andc) U = e/2C,. The numbers in parenthesis are the values of the number n of excess
electrons on the SET island. The charge flow index is half the sum of the numbers N and N’ of
electrons that have traversed the junctions. In b) no current can flow through the device: this is the
Coulomb blockade.

such that C,U = e/2, states (0) and (1) have nearly the same energy (Fig. 3c).
As soon as the energy of the (1) state is lowered below that of the (0) state, the
(0) — (1) transition becomes possible and an electron enters the island through
the first junction. If U is such that the energy of the (1) state, although below that
of the (0) state, is still above the energy of the (0)* state, the transition (1) — (0)*
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takes place and the electron leaves the island through the second junction. Apart
from an electron having gone through the device, one is now back to the initial
electrostatic state and the cycle can start over again. This cascade of transitions
produces a current of order V/(R; + R}) through the device (R, and R} are the
tunnel resistances of the two junctions). When U is increased further, the energy
of the (1) state goes below the energy of the (0)* state and one enters a new
Coulomb blocked state with one excess electron on the island. The domains that
Coulomb blocked states occupy on the U axis when V' ~ 0 are in a one-to-one
correspondance with the flat portions of the staircase of the electron box (Fig. 2b)
and its is easy to show that, at voltages low compared with the Coulomb voltage
E¢ /e, the current [ is maximum when C,U = (n + 1)e.

In practise, a current of the order of 10° electrons per second can be switched
on and off by the presence or absence of half the electron charge on the gate ca-
pacitor, hence the name single electron transistor” (SET) given to this device.
The remarkable charge sensitivity of the SET is unrivalled by other devices: it is
six orders of magnitude better than conventional FET electrometers [28]. A pos-
sible application is the detection of individual photoinduced electron—hole pairs
in semiconductors [33]. But the input capacitance of the SET is, by construction,
so tiny that its voltage sensitivity is not high. In this respect, it does not com-
pare favourably with the field effect transistor (FET), the semiconductor device
on which most of today’s applications of solid-state electronics are based. Fur-
thermore, in the SET the modulation of electron flow by the gate ceases as soon
as the bias voltage becomes of the order of the Coulomb gap voltage E¢ /e,
whereas in the FETs used in digital circuits the modulation of the source-drain
current by the gate only saturates at large bias voltages [34]. It is this latter
feature which ensures enough voltage gain to compensate for the dispersion in
device parameters and which make robust integrated digital circuit design possible
with FETs.

An analogy [28] can be drawn between the SET and the dc SQUID with an input
coil [35] (see Fig. 4). The d.c. SQUID (superconducting quantum interference
device) consists of two Josephson junctions in parallel biased by a static current.
In the d.c. SQUID, the output voltage is a periodic function of the current in the
input coil, whereas in the SET, the output current is a periodic function of the
voltage on the input capacitor. For the d.c. SQUID the period is set by the flux
quantum £ /2e whereas for the SET the period is set by the charge quantum e. The
quantization of flux in the superconducting ring of the SQUID is analogous to the
quantization of charge in the island of the SET. It is tempting to speculate that the
SET will play the same role for ultra-sensitive electrometry that the d.c. SQUID
plays for ultra-sensitive magnetometry. However, the fundamental impossibility
of building the charge analogue of the superconducting flux transformer which is
so crucial to the use of d.c. SQUIDs may severely limit the use of SETs.
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Fig. 4. Comparison between the d.c. SQUID (left) and the SET electrometer (right).

The junctions that have been described so far consist in practise of two over-
lapping metallic films. It is also possible, instead of the three-dimensional gases
that conduction electrons form in a metal, to use two-dimensional electron gases
which are found in semiconductor heterostructures such as GaAs/GaAlAs. The
detailed manifestations of Coulomb blockade have been thoroughly studied in
these systems where single-electron effects may coexist with the quantum Hall
effect [36].

Finally, Coulomb blockade has been observed with a scanning tunneling mi-
croscope (STM) placed over a tiny metallic droplet [37]. The role of the island
is played by the droplet. Unfortunately, it has so far been impossible to modulate
the gate voltage independently in the droplet-STM systems. On the other hand,
very small island dimensions (a few nanometer) can be achieved in this manner,
and Coulomb blockade at room temperature has been reported [38]. In principle
the island could even be reduced to a single molecule [39].

It is important to note at this point that we describe the state of a circuit such
as the SET by discrete variables like n and p, and not by continuous variables
like currents and voltages as in classical electronics. What makes nanojunction
circuits of fundamental interest is that we must treat them as single, atom-like,
quantum systems. Even though we use macrocopic concepts like capacitance,
we analyze charge flow in terms of quantum transitions between discrete energy
levels of the whole circuit.
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2.5. Controlled transfer of charge flowing in an external circuit

Although the principle of the SET involves the electrostatic energy of a single
electron on the SET island, the charge flow through this device is not controlled
at the single-electron level. The voltage U controls only the average value of the
current. The instants at which electrons pass through the device are random, as in
a single junction. A control of the charge flow electron by electron would mean
that, using the control voltage U, one would make a single electron enter the island
from the left junction, hold it in the island for an arbitrary time and finally make it
leave the island through the right junction. One could then go continuously from
a Coulomb-blocked state with n = 0 to a Coulomb-blocked state with n = 1.
This is not possible with only one island. When the energy of the (1) state dips
below the energy of the (0) state, it is necessarily above the energy of the (0)*
state to which it can decay (see Fig. 3c). An electron cannot be made to enter the
island through one junction without setting the electrostatic energies so that it is
energetically favourable for another electron to leave the island through the other
junction.

The control of charge flow at the single-electron level requires at least three
junctions [40]. Let us consider the three-junction two-island circuit of Fig. Sa.
As in the case of the SET, the state of the circuit can be described using the
numbers n; and ng of excess electrons on each island and the charge flow index
given by the third of the algebraic sum of the number of electrons having tunnelled
through each junction. Using the condensed notation defined above, (nq,n2) and
(n1,n2)* denote two states whose charge flow index differ by one, that is, states
differing by an electron which has lost energy eV by passing through the entire
device.

We suppose V' < min(e/Cy1,e/Csy) where Cs; and Cyo denote the total
capacitances of the two islands. The two control voltages U; and Us, applied to
the two gate capacitances C and Cy, allow us to change the relative energy of the
various states of this circuit. If we set U; and U, to /2C} and e/2C) respectively,
the energies of states (0,0), (1,0), (0,1) and (0,0)* form a cascade (Fig. 5b).
We are in a situation equivalent to the suppression of Coulomb blockade depicted
in Fig. 3c, and a stochastic current flows through the device. Because there are
three junctions instead of two, there are now two intermediate states (0, 1) and
(1,0) in the cascade. Each one of these states is coupled to (0, 0) or to (0, 0)* but
not to both. The lowering of either (0,1) or (1,0) below (0, 0) and (0,0)* stops
the stochastic current and puts the circuit in a blocked state.

By modulating U; and U, with dephased periodic signals, the energy of these
intermediate states can be cyclically lowered below that of the (0, 0) and (0, 0)*
states while avoiding the cascade configuration of Fig. 5b (Fig. S5c—). One starts
from the situation where both (1,0) and (0, 1) are above (0, 0) and (0,0)*. The
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circuit is in a blocked state with no excess electrons on the islands. At first, an
increase of Uy lowers (1,0) below (0,0) and (0,1). An electron goes through
the left-most junction and the circuit adopts a new blocked state with an extra
electron on the first island (Fig. 5¢). Then U, increases while U; decreases: this
lowers (0, 1) below (1,0) and (0,0)*. A tunnel event consequently takes place
through the middle junction and the circuit now adopts a blocked state with an
extra electron on the second island (Fig. 5d). Finally U, is decreased to its initial
value, making (0, 1) pass above (0,0)*. An electron goes through the right-most
junction and, apart for a charge e having crossed the entire device, the circuit
returns to its initial blocked state (Fig. Se). If the transport voltage V is re-
versed, the same modulation cycle will continue to carry electrons from left to
right, provided the energy difference eV between (0,0) and (0,0)* stays small
compared with the energy excursions of (0, 1) and (1, 0). The charge now flows
in a direction opposite to that imposed by V. Energy conservation is of course
not violated. The work done to “charge” the transport voltage source is provided
by the control voltage sources. We have therefore nicknamed this three-junction
device the single-electron “pump”. The pump is reversible: a time-reversed mod-
ulation cycle — obtained by reversing the sign of the phaseshift — will transfer
electrons from right to left.

The actual operation of a physical device is shown in Fig. 6. We first set
Uy and Us to the static values U = ¢/Cy and U$¢ = e/Cy corresponding
to a maximum zero-voltage conductance (center curve marked “no r.f.’). Two
periodic signals with the same frequency f but dephased by ® ~ #/2 are then
superimposed on the static components UZ¢ and Ug¢. This implements the cycle
shown in Fig. Sc—e and a current plateau is observed (see Fig. 6a). One can easily
reverse the cycle, leaving all other conditions the same, by changing ® to ®+r.
A current plateau 1s again observed, with the same absolute value at V' = 0 but
with opposite sign. The height of the plateau is plotted against frequency on Fig.
6b. The relation I = ef is well verified, providing further confirmation that our
device does indeed implement the pump principle.

We have seen how two control voltages can transfer electrons one by one in
a three-junction device. The transfer of single electron using only one control
voltage is possible, but needs at least four junctions. In Fig. 7a we show the
schematics of a four-junction three-island circuit which we have nicknamed the
“turnstile” [41]. A gate capacitance, with roughly half the value of the capacitance
of the junctions, connects the central island to an external control voltage U.
Because the gate voltages of the side islands have only to be set to a constant value
of zero (in practice, the external gate voltage must be adjusted to compensate for
random offset charges [28]), no gate lines have been represented in the figure.
The turnstile can be described as a SET with two junctions in the entrance and
exit channels. The intermediate islands create energy barriers whose effect is to
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Fig. 6. a) Current—voltage characteristic of the pump with and without a f = 4 MHz control voltage
modulation. The two modulation signals were phase-shifted by ® ~ +x /2. Dashed lines indicate
I = tef. Full lines are the result of numerical simulations taking into account quantum fluctuations
of the island electron number. b) Current measured at the inflexion point of the current plateau as a
function of the frequency f. Fulllineis I = ef.

suppress the stochastic conduction that takes place in the SET for small V, and
for U such that C,U = e/2 (see Fig. 7b—d). For these conditions, the circuit can
exist in two states characterized by the presence or absence of an extra electron
on the central island. Suppose one starts with no electron in the central island. As
U is increased, all the energies of the intermediate states decrease, although the
state with an electron on the central island remains the lowest of the intermediate
states (see Fig. 7b). Consequently, one electron enters the central island. If now
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Fig. 7. a) Schematics of single-electron turnstile. b—d) Turnstile cycle which is obtained by modulat-
ing the control voltage U and which transfers one electron around the circuit of a).

one decreases U, all the energies of the intermediate states increase and at one
point the state with an extra electron on the central island is no longer the lowest
of the intermediate states. An electron then leaves the central island (Fig. 7d). It
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is easy to see that after one cycle of modulation of U, a charge of one electron has
passed through the whole device. Like the pump, the turnstile produces a current
I = ef, where f is the modulation frequency. Unlike the pump, however, the
turnstile is an irreversible device, the sign of the current being imposed by the
sign of the bias voltage V.

2.6. Metrological applications

We have seen that the pump and the turnstile can produce a current determined
only by the frequency f and the quantum of charge e. Because frequencies can
be accurately determined, these devices would provide in principle a standard of
current. The standard is obtained at present by the combination of the Josephson
effect [35], which relates a frequency to a voltage through the flux quantum &, =
h/2e, and the quantum Hall effect discovered by von Klitzing [42], which relates
current to voltage through the resistance quantum Ry = h/e?. It is important for
metrologists to check if a direct definition of the ampere using the charge quantum
e provided by single electron devices is compatible with the “Josephson/Klitzing”
definition which combines ®; and Ry . The value of the fine-structure constant
a = e?/(2hegc), where ¢ and €y denote the speed of light and the electrical
permittivity in vacuum, is another important metrological issue that would benefit
from the new access to the charge quantum provided by single-electron devices
[43]. This latter application would not necessitate to measure directly the very low
current produced by single-electron devices; one would simply charge a calibrated
capacitor with a known number of electrons, and compare its voltage with the
Josephson volt.

The first experiments carried out to test the precision of the pump and the turn-
stile were chiefly limited by the precision of current measurements, and it is im-
portant to investigate the intrinsic limitations of the devices. One problem is to
ensure that the devices are sufficiently cold while passing current. In that re-
spect the pump principle is better than the turnstile, as the pump is reversible and
can operate at zero bias voltage. Theoretical analyses show that the fundamental
limitation on the accuracy of the devices is due to co-tunneling events [44] dur-
ing which several tunnel events take place simultaneously on different junctions.
These higher-order processes are a manifestation of the quantum fluctuations of is-
land electron number discussed in section 2.2. Fortunately, it can be demonstrated
that the rate of co-tunneling events decreases exponentially with the number of
junctions in a device. Detailed calculations have shown that an accuracy better
than 102 in the number of transferred electrons is achievable with a pump with
five junctions operating at temperatures of 100 mK or less [45,46]. An important
step towards the practical realization of high-accuracy transfer devices is to show
experimentally that the number of electrons on an island is well determined when
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Fig. 8. Time variations of the current through a SET electrometer measuring the charge on an island
linked to a charge reservoir through a series of four tunnel junctions. Each jump corresponds to an
electron tunneling into or out of the island.

this island is linked to a charge reservoir through four junctions that block the
quantum fluctuations of electron number. We have made a direct measurement of
the charge of such an island by using a SET electrometer [47]. In Fig. 8 we show
single tunneling events in and out the island occurring on a time scale of a tenth
of a second. Although this time scale is still shorter than expected theoretically,
we believe that if more and smaller junctions were used, the spontaneous tunnel
rate could be lowered by two orders of magnitude and thus permit metrological
experiments. A breakthrough has recently been made by Martinis et al. who have
operated a five-junction pump with a 10~% accuracy [48].

2.7. Single Cooper pair transfer

Up to now we have considered metallic nanojunction circuits in the normal state.
For circuits in the superconducting state, one could naively expect that single elec-
tron transfer can be transposed into single Cooper pair transfer, e being simply
replaced by 2e. Several features of the superconducting state complicate this dir-
ect transposition and early experiments on Cooper pair transfer in superconduct-
ing nanojunction circuits showed unexpected results [49-51,8] which we begin
to understand in detail only now. Let us go back to our basic circuit, the elec-
tron box of section 2.2, and examine the simplest case where only the island is in
the superconducting state. The energy of the circuit as a function of the number
n of electrons in the island is now & = Ec(n — C,U/e)? + (n mod 2)D +
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terms independent of n. The first term is the same electrostatic energy as in
the normal state, i.e. the electrostatic energy of C and C; and the work of the
voltage source U. The superconducting nature of the island manifests itself in the
second term which is the internal energy of the island which we suppose for the
moment at 7' = 0. This internal energy depends on n only through its parity, the
parameter D denoting the minimum energy of a quasiparticle excitation. Such an
odd-even difference is expected for a superconductor, since for an odd number
of electrons, one of them cannot be paired and must remain as a quasiparticle
excitation [52]. We will discuss this point in more detail in the third part of this
course. It is crucial to realize that the energy cost of this remaining quasiparticle
excitation coincides with the superconducting energy gap parameter A only for
an ideal BCS superconductor in zero magnetic field. From the above expression
of the circuit energy we can predict the ensemble average (n) which we suppose
equal to the temporal average 7. measured in the experiment.

In Fig. 9a we show as a function of C,U the energy of the different n states,
for the non-superconducting case D = 0. As we have shown in section 2, nn will
adopt the value of the integer closest to C;U/e, which corresponds to the lowest
energy state. We thus get the staircase pattern of Fig. 9b which is identical to the
full line curve of Fig. 2b. In Fig. 9c we show the case of a superconducting island
such that D < E. The effect of the odd-even difference is simply to reduce the
span of U over which the system will adopt an odd n ground state and, conversely
to increase the span of U where an even n state will be favored. We thus get an
asymmetric staircase which again has e-steps but which is 2e-periodic (see Fig.
9d). Finally, in Fig. 9e we show the case of a superconducting island such that
D > E¢. In that case, for every value of U, the ground state of the circuit always
corresponds to an even n, which explains the doubling in Fig. 9f of the height
and length of the steps with respect to Fig. 9b.

As we will show in the last part of this course, these theoretical predictions
can be extended at temperatures 7" such that kg1 < E¢, provided one replaces
the zero-temperature odd-even energy difference D by the odd-even free energy
difference D(T) = D — kgTInP + O(T?) [53,54], where P ~ 104, the total
number of electron states in the island participating in the superconductivity, is
a measure of the degeneracy of the odd ground state with one unpaired electron.
In Fig. 10 we show our experimental results for a superconducting aluminium
island at 7" = 28 mK. In this experiment we vary D by means of a magnetic
field applied to the sample. The evolution of the staircase as the field is varied
provides a complete confirmation of the predictions of Fig. 9.

A remarkable point which is not completely understood is why the odd-even
symmetry breaking which manifests itself in traces b) and c) of Fig. 10 is de-
scribed so-well by D(T' — 0) ~ Apgcs. The superconducting islands are far
from ideal: they contain many defects like impurities, grain boundaries and sur-
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Fig. 8. Total energy of the electron box (Fig. 2a) as a function of the polarization C;U /e, for several
values of the excess number n of electrons in the island, in the non-superconducting state (a) and
superconducting state (c, e). F. is the electrostatic energy of one excess electron on the island for
U = 0. The minimum energy for odd n is D) above the minimum energy for even n. Panels ¢
and e differ by the relative magnitude of D and E.. The black dots correspond to level crossings
where a single electron tunnels into and out of the island. The hollow circles correspond to level
crossings where the only allowed process is the simultaneous tunnelling of two electrons into the
island to form a pair (Andreev process). The equilibrium value (n) versus C,U/e is shown in the
non-superconducting (b) and superconducting (d, f) states, at T = 0. The Andreev process is shown
in f) by a vertical dashed line to distinguish it from the single electron tunneling process shown in b)
and d) by a vertical continuous line.
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Fig. 10. Variations of the average charge of the island, in units of e, with the polarization C;Ul/e,
at T = 28 mK, for 3 values of the magnetic field H applied to the sample. For the top trace
(H = 0.2 T) the island is non-superconducting. For the middle (H = 0.05 T) and bottom (H = 0)
traces the island is superconducting. For clarity, the middle and bottom traces have been offset
vertically by 2 and 4 units, respectively. The symbol Qg refers to the offset charge on the island, an
uncontrolled parameter which can be taken as a constant during the duration of measurement, even if
it is found to be drifting on the time scale of a few hours.

face states. Apparently, none of these defects provides available states near the
Fermi energy for an unpaired electron, which could ruin ideal BCS behavior.
However, at the time of this writing, the samples in superconducting box experi-
ments are often found to be described by D < A gc s when both sides of the junc-
tion are superconducting. A possible explanation is that in the expression for the
odd-even free energy difference D(T), the temperature that enters is the temper-
ature of the quasiparticles, not the phonon temperature. In an all-superconducting
circuit at low temperature, quasiparticles can have a very long lifetime and thus, it
is possible that the remaining out-of-equilibrium quasiparticles suppress partly the
odd-even asymmetry. Having normal metal on one side of the junction provides
an efficient way of relaxing out-of-equilibrium quasiparticles, since they can dif-
fuse into the normal metal but not out.

It is also important to note that when both sides of the junction are supercon-
ducting, the Andreev process of Fig. 9e, by which two electrons from the nor-
mal side tunnel coherently to form a pair in the island, is replaced by Josephson
tunneling. In contrast with single electron tunneling or Andreev two-electron
tunneling which are irreversible processes characterized by a rate, J osephson tun-
neling is a reversible process characterized by a macroscopic coupling energy
E; ~ A(Rg/R:). When kT <« Ej, the superconducting electron box polar-
ized at C;U /e = 1 should be in the macroscopic coherent superposition of charge
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states (| n =0 > + | n = 2 >)/+/2 [55]. This has been indirectly observed in
recent experiments in which the critical current of the superconducting SET has
been measured as a function of gate voltage [56,57]. In particular, the experiment
of Joyez et al. [57] demonstrates that the naive picture of single Cooper pair trans-
fer in nanojunction circuits can hold only if the characteristic energies of the super-
conductors are set properly, i.e. D(T — 0) ~ Ages(T) > E, > E; > kpT.

2.8. Future prospects

It has been suggested [27,28] that single-electron devices might find applications
in digital electronics. A single electron would code for one bit, obviously the most
economical way to store information. In fact, the electron pump is already very
similar to the shift registers found in computers. The SET would be the build-
ing block of this *“single electronics™. A problem, however, is that metailic SETs
made using today’s technology have no “engineer gain”: one transistor can barely
feed one other transistor in the chain of signal processing, once the dispersions on
parameters are accounted for. And no one understands how to get rid of random
offset charges [28] which at present ruin any attempt to have more than a few
transistors on one chip. In semiconductor devices, single-electron effects may
even appear to be a nuisance because they imply that the electrons go through
the dots or channels one at a time, slowing down the conventional FET opera-
tion. The main benefit of understanding single-electron effects in semiconductor
nanotechnology may be just to provide the knowledge to fight them efficiently.
The real virtue of single-electron devices, as far as industrial applications are
concerned, is that they teach us how to produce digital functions using only tun-
neling and the Coulomb interaction, basic ingredients that are available down to
the molecular level. In the to be developed “molecular electronics” technology
[58], basic time constants are very short, there is no dispersion in the parameters
of individual components and there are few electrons to work with anyway. There,
the principles underlying the devices that have been discussed in this article may
be fruitfully implemented. The ultimate computer imagined by Feynman [59],
in which elementary information is carried by a single electron on a single atom,
would then cease to be a mere theoretical construction and become a reality.

3. Quantum dynamics of tunnel junction circuits

3.1. Introduction

We have mentioned in the first part of this course that electron transfer in ul-
trasmall tunnel junction circuits is governed by the total energy of the whole cir-
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cuit including the work of voltage sources. Indeed, these circuits have been treated
in the preceding chapter as if they were large molecules, an electron transfer cor-
responding to a transition between two many-body energy levels of the molecule.
This approach differs radically from classical circuit theory, in which the time
evolution of a circuit is governed by a set of “local” equations: the current in a
given branch of the circuit depends only on the generalized flux associated with
this branch — which is defined as the time integral of the voltage across the branch
— and its time derivatives. The aim of this chapter is to present the full quantum
theory of tunnel junction circuits, in which the global and the local treatments
correspond to two particular approximations, valid in two opposite limits.

3.2. Conduction in tunnel junction circuits

A tunnel junction circuit, such as the circuits of Figs. 3a, 5a and 7a, can be de-
scribed formally as a network of tunnel junctions, pure capacitors and voltage
sources with internal impedance. Each junction j is characterized by a tunnel
resistance R;; and capacitance C;, while each pure capacitor ¢ is characterized
only by a capacitance C;. A tunnel junction must be thus thought as being com-
posed of two irreducible elements in parallel: a tunnel element and a capacitance
(see Fig. 11a).

The dynamical state of the circuit is described a priori by two sets of degrees
of freedom: the integers N; describing how many electrons went through each
junction j prior to a particular instant of time and the continuous electrical vari-
ables which are the charges ); and @); stored on capacitances C;; and C; and the
degrees of freedom of the internal impedances of the sources. The set of num-
bers { Ny, Na,...Nj,...} is called the configuration of the circuit and plays a
particular role. For practical circuits, the average rate of charge transfer through
the tunnel barriers is much slower than the rate at which the continuous charge
redistributes itself on the various capacitances of the circuit. In other words, the
time scale of variations of the Q’s is much shorter than the time scale of vari-
ations of the N’’s. The dynamics of tunnel junction circuits on the long time scale
can therefore be thought of as a sequence of transitions { Ny, No,... Nj, .. 3 -
{N{, Ni, ... N]’-, .. } in configuration space, the @’s and the degrees of free-
dom of the sources evolving rapidly to their electrostatic equilibrium values
between two transitions. This relaxation is due to the internal impedances of the
sources, which have non-zero real parts and provide dissipation. The relative
opaqueness of the tunnel barriers to charge transfer (R; > h /€2) further simpli-
fies the analysis of electron conduction processes. To first order, we need only
to consider processes in which only one of the N’s vary, i.e. processes such
as {Ny,Na,...Nj,...} = {Ni,Nz,...N; 1,...}. We call these processes
single tunneling events. Multiple tunneling events — also called co-tunneling
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Fig. 11. a) A tunnel junction can be decomposed into two irreducible elements: a capacitance C and
a tunnel resistance R;. b) A junction imbedded in an arbitrary circuit sees a dipole element which can
be modelled as a voltage source in series with a frequency dependent impedance. It is convenient to
introduce the dipole element seen by the tunnel element itself. This dipole includes the capacitance
of the junction.

events — are processes in which several N’s vary simultaneously. As mentioned
in section 2.6, they occur much less frequently than single tunneling events (when
the latter are allowed, of course) and can be neglected in a first approximation. The
single electron tunnel process { N1, Na,... Nj,...} = {N,N,,...N; £1,...}
occurs at random in a Poissonian fashion and is characterized by a rate I‘;—L
which depends on the initial configuration {N7, Na,...Nj,...} and on the
values of the voltage sources. Electron conduction in a tunnel junction cir-
cuit is thus essentially a random sequence of single tunneling events which
forms a Markov process between nearest neighbours in configuration space.



632 M. Devoret, D. Esteve and C. Urbina

—] ———— e

Co ¢, Cm

Fig. 12. A general impedance Z{w) can be represented by an infinite series of LC oscillators. The
series capacitance Cy is infinite if wZ(w) — 0 when w — 0.

The calculation of the statistical average of the current through the various
branches of the circuit — which correspond to the classical notion of the in-
stantaneous current through a branch — reduces to the calculation of the tunnel
rates I’f

3.3. Description of the electromagnetic environment

Since we only deal with one tunnel event at a time, only the non-linear beha-
vior of the junction on which the single tunneling event takes place needs to be
considered.

Consequently, from the point of view of this junction, we can treat the rest of
the circuit as a linear circuit. We know from circuit theory (Thévenin’s theorem)
that a general linear circuit viewed from a dipole element such as a junction can be
modelled as a series combination of an effective voltage source V. and an effective
frequency-dependent impedance Z.(w) (see Fig. 11b), although the computation
of V, and Z.(w), which depend in general on all the elements of the circuit, can
be tedious. In the literature, the V, and Z.(w) combination is often referred to as
the electromagnetic environment of the junction. As we will see in the quantum
calculation of the tunnel rate F;J-‘, it is preferable to lump into V, and Z.(w) the
junction capacitance C;. This defines a Vg and Zg(w) environment in parallel
with the tunnel element (see Fig. 11b), such that Zg ' (w) = Z;} (w) + iCjw and

1

Vg = [C./ (C. + C;)] Ve, where C, = [limo [z‘wze(w)]]“

Although the dissipation described by Re [Zg(w)] can be non-electromagnetic
in origin, being due for example to electron—phonon collisions, the linearity of the
circuit warrants that, as far as its influence on the junction is concerned, Zg(w)

can be represented as an infinite series of LC circuits [60] (see Fig. 12).
Mathematically, this corresponds to defining a series of capacitances C,,, (m €



Single Electron Phenomena In Metallic Nanostructures 633

{0,1,2,...}) and inductances L,, (m € {1,2,...}) from the relations:

-1 oo _1_0_1 lc—l
Zg(w) = lim lim CL+ Z ——2 + ]
n—0+ €—0 w = tw—wn)+n  (w+wm)+7]

[ 1
Wm = ME = I.C. 3.2)

In this representation, the real part of the impedance corresponds to the spectral
density of an infinite set of LC resonant modes:

T e
Re[Zg(w > 0)] = B el% E_l Zonwin 6 (W — W) (3.3)
where the mode impedance Z,, is given by
L
T = | = 3.4
. (3.4)

Note that the pole at w = 0 which is excluded from expression (3.3) is present
only if there is at least one junction or a pure capacitor in series with the junction
in the original circuit. If, on the other hand, there is a conducting path around
the circuit through which the charge accumulated on the junction capacitance can
relax to zero, then Cy ' = 0.

As we will see in the following, it is important to distinguish the d.c. parameters
of the environment, Vg and C; !, from the a.c. ones described by the set C,,
and L,, (m =1,2,...00) , or equivalently, by the function Z,(w) = Zg(w) —
Cy ! /iw. Suppose we start at t = 0 with an initial equilibrium situation in which
there is a charge @)y on the capacitance Cy, resulting from the previous electron
transfers. There will be an initial voltage v(t = 0) = Vi + C;'Qq across the
environment viewed from the tunnel element. If we replace the tunnel element by
a current source injecting in the environment a current pulse —e6(t), the resulting
voltage v(t > 0) across the environment will be given by v(t > 0) = Vg +
Cy'(Qo — e) — eR(t) where R(t) is the charge relaxation function

R(t) = 1 /+w dw exp(iwt)Re [Zg(w)] (3.5)

The charge relaxation function R(¢) is such that R(t — 0%) = C}° ¢yl In
practise Re [Zg(w)] is a continuous function and has the property R(t — oo) = 0.
Thus v(t — 00) = Ve + C5 1 (Qo —e).

One may wonder why the junction environment is not treated by the full Max-
well’s equations involving three-dimensional field quantities. The answer is that
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it is sufficient to deal only with lumped element quantities like voltages, currents
and impedances because the dimensions of the tunnel junctions we consider are
always much smaller than the wavelength of electromagnetic radiation at the rel-
evant energy scales.

3.4. The total electrostatic energy £

As we will see in the following, an important quantity which enters in the dynam-
ics of tunneling is A&, the difference in the total electrostatic energy of the circuit,
including the work done by the voltage sources, before and after tunneling, when
the charge relaxation function has decayed to zero.

This energy difference can be computed from the effective circuit viewed from
the junction. We have

Agz(Qo—e)z_e _Q_g__er-’rCoVE—e/Q

2C, E7%¢C, ~ Cy 36

Note that Oy depends on previous tunnel events and has to be computed, like
Cy and Vg, from the elements of the whole circuit. It is often easier to obtain A&
from the expression of £. This latter quantity can be directly computed from the
set {n1,na,...Ng, ...} describing the number of excess electrons on the islands
and from the set {py,ps,...p;,...+ describing the number of electrons having
passed through the voltage sources V; directly connected between a junction and
ground. These sets of numbers can themselves be easily deduced from the junc-
tion electron configuration { Ny, N3,... Nj,.. .}

£= % S, (—-nae + QC,) (~nﬁe + @g) - ZpieVi + &

a,

3.7

In this last expression, C~! is the inverse of the matrix whose off-diagonal
elements are the opposite —C),, of the island-island capacitances and whose di-
agonal elements are the total self-capacitances C'g of the islands. The charge of
the electron is by definition —e. The quantity Q, = > C,,U; is the bias charge
of island o which depends on the voltage sources U, connected between island
and ground through the island-source capacitances C,,. Finally & is the initial
charging energy of the circuit whose terms are independent of the n’s and the p’s.
Expression (3.7) generalizes to an arbitrary circuit the expression of the energy
of the single electron box given in section 2.2.
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3.5. Quantum mechanical treatment of the junction coupled to its electromagnetic
environment

The microscopic degrees of freedom of the junction itself can be described with
the annihilation operators a;, and b,., for the Fermi-liquid quasiparticle levels on
the left and right side of the junction respectively. The symbols [ and r denote
the energy level index and o € {1, |}. These quasiparticle levels can be defined
only if their energies lie in the neighbourhood of the Fermi energy Er and the
description in terms of single particle operators is valid only for temperatures 7' <
Er/kp. These operators obey the standard fermion operators anticommutation
relations:

{aka» azlal} = Orir b0 3.8)
{ako,arior } =0 (3.9)
{ala’aila/} =0 (3.10)

We can define the number of quasiparticles on the left and right side of the
junction from

N=>" d,a, (3.11)
loel

N.= Y bl b, (3.12)
roc€R

Here £ and R refer to sets of quasiparticles levels lying near the Fermi level.
The difference between the number of quasiparticles on the left and right side of
the junction is related to the number of electrons that went through the junction
by

N:%(NT—NI)‘i‘Mef (3.13)

where N, is a constant depending only on the definition of the sets £ and R.
The variable N is the macroscopic degree of freedom of the tunnel element.

As far as the environment described by Vg and Zg(w) is concerned, we need
only to take into account its macroscopic degrees of freedom. They are the de-
grees of freedom of the LC modes corresponding to the poles of Zg(w) given in
expression (3.1). The most convenient representation here is to take as degrees
of freedom the fluxes ¢,, in the inductances L,, and the conjugated charges ¢,
The variables ¢,, and ¢,, are defined in terms of the voltage vﬁl(t) across L.,
and the current iZ (¢) through L,, by
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Table 1

Comparison between electrical and mechanical oscillator

Electrical L.C oscillator Mechanical spring-mass oscillator
Flux ¢ Coordinate x
Charge ¢q Momentum p
Capacitance C Mass m
Voltage ¢/C Velocity p/m
Inductance L Inverse spring constant k~1
Current ¢/ L Force kz
Frequency w = 27 (LC’)_I/2 Frequency w = 2m+/k/m
[¢,q) =ik [z,p] =1k
t
L
Pm(t) = / v, (T)dT (3.14)
—o0

-

2
Y
\]

t
gm(t) = / 1 (3.15)
— o0

It can be shown that, in a general circuit consisting of inductances and capacit-
ances, the equations of evolution correspond to Hamilton equations in which the
@’s are position coordinates and the ¢’s are momentum coordinates (see Table 1
above).

The corresponding quantum-mechanical operators obey therefore the commut-
ation relations

[fzin, q%] — BB (3.16)
[$m, ¢7m/] =0 (3.17)
(Gm> Gm] =0 (3.18)

In the following , we will drop the hat on the operators since using the same
symbol for the classical and quantum variable will not lead to any confusion.
We can also introduce the electrical variables of the capacitors C,,, where m €

1,2,...}.

t
P, (1) :/ oS (1)dT (3.19)
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i
Qu(t) = / i8 (r)dr (3.20)

From Kirchhoff’s laws applied to the circuit of Fig.12 we see that the ®’s and
Q’s are related to the ¢’s and ¢’s by

B (t) = dm(t) (3.21)
Qm(t) = Qo — gm(t) (3.22)

where the parameter (Jy denotes the constant charge on the capacitor Cy.

We assume from now on that the macroscopic degrees of freedom ¢’s and the
¢’s commute with the microscopic degrees of freedom a;, and b,,. This hypo-
thesis is justified in a system with a large number of electrons since the contribu-
tion of a single electron state to an operator describing the collective motion of
all the electrons is negligible.

If the tunnel element was absent, the dynamics of the environment would be
described by the hamiltonian

= [ (gm - Q1) Q2
Hg = nz::l . + T + 2Cs + Qo Ve (3.23)

The term ¢2, /2L, describes the magnetic energy stored in the inductor L.
The term (gy, — Q0)2 /2C, describes the electrostatic energy stored in the capa-
citor C,,, expressed in terms of the variaole conjugate to ¢,,,. The last two terms
of Hg have been included only to account for the constant energy due to the off-
set charge )y on the capacitance Cy. They play no role in the dynamics of the
system.

The dynamics of the coupled junction + environment system can be obtained
from the following hamiltonian

H = Hop + Hy + Hig (3.24)

where H,;, is the hamiltonian describing the Fermi-liquid quasiparticle excitations
of the left and right electrode of the junction and H; the tunnel hamiltonian which
couples the quasiparticle excitations of the left and right electrodes. The part H},
denotes the modified hamiltonian of the electromagnetic environment. It takes
into account the coupling between the quasiparticle and electromagnetic degrees
of freedom by the replacement Q9 — Qo — Ne (we count N as increasing when
a tunnel event decreases the capacitor charge).
These three pieces H,,, H; and Hy, are given by

Hop =D €0, a1 + Y € bl br (3.25)

lo
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He= trobl, a, +hoc. (3.26)

rlo

, x| 2 (am— Qo+ Ne)®| | (Qo — Ne)?
HE_:L; T 2o + 5 +(Qo — Ne)Vg

(3.27)

The form of H[, shows that the effect of the tunnel hamiltonian is to shift by e
the charge on each environmental LC oscillator.
It is useful to make a change of representation

H=U"MU (3.28)

with the unitary operator
e

U = exp [—1?_L¢>N] (3.29)
where

$=3 bm (3.30)

m=1
Using the algebraic relations
€ €
exp (5 ¢m) Qm exp (~izém) = Qm — o (3.31)
exp (-{—iAaTa) aexp (—iAaTa) = aexp (—iA) (3.32)

and the relations (3.21) and (3.22), we find that the new hamiltonian H= 7'~lq,, +
H, + H'g is given by

Hop = €10l a1 + 9 & bl bro (3.33)
lo ro

~ ; e

H; = zl: trio bl, Gis €XP (zhtb) + h.c. (3.34)

— %% Q%] (Qo— Ne)
'E = T = - Ne)W 3.35
H'e mZ: [sz+2Cm}+ 5Co +(Qo e)Ve (3.35)
__The hamiltonian H operates inside a Hilbert space in which, in absence of
H:, the quasiparticles are only coupled to the d.c. potential Vg and the offset
charge Q. The phase factor in the tunnel hamiltonian ; ensures that each time
an electron goes through the junction and creates a quasielectron—quasihole pair
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across the junction, the charge @,,, of every oscillator capacitor in the environment
is shifted by e. This phase factor is absent in standard tunneling rate theories
which consider that the environment can be treated as an ideal voltage bias.

The H representation is well suited for problems in which one needs to treat
the tunnel hamiltonian to high orders, but is satNisﬁed with the environment treated
in a perturbative way. On the other hand, the H representation is better suited for
problems in which the tunnel hamiltonian needs only to be treated to the lowest
significant order, but in which the environment needs to be treated to all orders.
Since in this chapter we are mostly interested in the influence of a general envir-
onment on the tunneling process through an opaque junction, we have to use the
‘H representation, as we will show now.

The parameter that specifies how strongly an environmental mode m is coupled
to the quasiparticles can be obtained by expressing ®,, and (), in terms of the
“photon” operators c,,, and cf,, such that [c,,,cl,] = 1.

3, = ,/FLZT’“ (cl, + cm) (3.36)

h
Qm =1 7 (cl, —cm) (3.37)

With these photon operators expressions (3.34) and (3.35) become

Y 1 . > T t
H, = ga: trio ), Q15 €XD [zmzzzl h/e? (cm + cm) +h.c. (3.38)
— e _N 2

2Cy

m=1

We see that the coupling of a mode to the tunneling electrons involves the ratio
n of the mode impedance Z,, to the impedance quantum Ry = h/e?. Now, in
the case where the environment behaves at low frequencies like a resistor R, a
quite generic situation if there is no capacitor or other junction in series with the
junction we consider, expression (3.3) shows that the ratio n is proportional to
mLeR/ Ry and thus diverges as € — 0. A non-perturbative quantum-mechanical
treatment of the low frequency environment oscillators is clearly needed in this
case, which is of particular relevance to experiments in which one measures the
current-voltage relationship of a single tunnel junction.
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3.6. Calculation of tunnel rates

The tunnel rate 1"]-+ can be expressed as a function of A€ and Re[Z(w)]. We start
by using Fermi’s Golden Rule:

Ty = plir (3.40)
1.F
where
2m ~ 2
Prp = [(F| | D 8B - Ep) (341

In these expressions, | I) and | F') denote initial and final states of the junction
+ environment system before and after tunneling, E; and Er the corresponding
energies and p;y the probability of finding the system in state | I'). The states | I)
and | F') can be expressed as products of quasiparticle states and environmental
photon states:

Iy =] TP | TR (3.42)

|F) =| OF) | OF) (3.43)

| PP) = al’flaL ...alTI ...a;bellbI2 bl | vact?) (3.44)

| OF) = alaj,---af bl,b], b - -bL, | vact?) (3.45)

| \Il’;h) = c:fmc:fm ---cl,” | vacPh) (3.46)

| \If’}h) = cln,l cin,z .- -cin, | vacPh) (3.47)
F

where | vac?®) | (resp. | vacP™) ) denotes the quasiparticle (resp. photon) vacuum
state with no particles. We have dropped the spin indices for simplicity.

Note that states | ¥%”) and | $%) differ only by the occupancy of the two
quasiparticle states indexed by [; and rp whereas | \P’;h) and | \If’}h> differ a
priori by the occupancy of an arbitrary number of photon states, given the form
of the exponential factor in H;. The energy difference £; — Er is the sum of
three terms

E; — Er = AE + AE + AEP? (3.48)
where

AE™ = ¢, — ¢, (3.49)
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AEPM = EPh — EPR = Z Ay, — Z Fto (3.50)

In the standard tunneling rate calculations, the photon degrees of freedom are
absent and one finds

2m
Iior= T |t11TF‘2 S(AE + €, —€rp) (3.5

One then replaces |t;,-,|° by the average |t.,|* and one gets the ideal voltage
bias result

It {Re [Z(w) = 0]} = 62—1& /dEdE'f(E) [L— f(E))6(AE + E — E)
(3.52)

where f is the Fermi function and R, the tunnel resistance of the junction given
by

Ry = an? R |taol’ 01 (EF) pr (EF) (3.53)

where p; (EF) (resp. p» (Er)) is the density of states at the Fermi level in the left
(resp. right) electrode (note that, for clarity, we have dropped the junction index
J in the matrix elements and in the tunnel resistance). Using the mathematical
properties of the Fermi function and A < E, the last result can be further
simplified and one finally finds the well known tunnel junction formula

1 AE
w) =0} = e?R; 1 — exp (— B4, AE)

It {ReZ( (3.54)
where 34, = kT, is the inverse electronic temperature of the junction. By sum-
ming the forward and backward tunnel rates I‘;L and I';” one finds that the current
I through a junction directly biased by a voltage source V' is given, whatever
the value of 3,p, by I = V/Rq, hence the name “tunnel resistance”. The inde-
pendence of R, with respect to the voltage comes from the assumption of energy
independent tunnel matrix elements. More generally, one can introduce the trans-
parency of the tunnel barrier as a function of energy:

T(E) =472 |t 6 (e, — E) 6 (e, — E) (3.55)

lLr

which is defined in such a way that R, = Ry [7(Er)]”" and from which one
can define the barrier traversal time [6]

_ ,dInT(B)

3B (3.56)

Ttr
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For typical junctions 7;, ~ 10~!%s which is much shorter than any other rel-
evant time scale in the circuit, in particular the time scales involved in the charge
relaxation function R(t). This is why tunneling can be considered to be instant-
aneous in the present theory.

The inclusion of the photon degrees of freedom is a relatively straightforward
extension of the calculation leading to Eq. (3.54). In addition to quasiparticle
states, the sum over all initial and final states must now include the photon states.
One finds

+o0
rt = L / EdE P(AE - E) (3.57)

J R J_oo 1 —exp(—04pE)

where P(E)dE is the probability of an inelastic tunnel event in which the en-
vironment modes absorb a set of photons representing a total excitation energy
comprised between E and E + dE (more precisely, £ > 0 corresponds to photon
absorption by the environment whereas £ < 0 corresponds to emission). The
function P(FE) is given by

P(E) =Y »}"

IF

2
(TR | exp (ip) | ‘I”I’h>‘ § (Ei’h By E) (3.58)

where ¢ = e®/k and where
exp (—ﬁﬁﬁ)
tr [exp (—ﬁﬁb)}

We have introduced in the last equation the inverse temperature 3 of the envir-
onment which is not necessarily equal to the junction electron inverse temperature
B4p- Using the Fourier transform of the é function and noting (- - -)g an environ-
ment average involving 8 we obtain

Py = (TR | | 2" (3.59)

1 [t

P(E) = 5— - dtet Bt (eie(emie(0)y (3.60)
By definition ¢(t) = eiﬁlEiape_iﬁ'Et and thus [¢(t),¢(0)] # 0. However,
since ¢ is a linear combination of creation and anihilation operators for harmonic

oscillator modes, we have

(ei¢(De=1(0)yp = o= {[e()=(0)]e(0))p (3.61)

The flux—flux correlation function can be expressed in terms of Re [Zg (w)] by
the quantum fluctuation—dissipation theorem [61]:
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k2 +oo ]
Sow) =5 [ die " (p(0p(0)e (.62
1 2hw

In the classical limit 8w — 0, one recovers the usual fluctuation—dissipation
theorem: the voltage-voltage correlation function of the environment, which is
the second derivative of (®(t)®(0))y, is given by the product kgT'R(t) of the
environment temperature and the charge relaxation function.

Using the identity 2 (1 — e_m“")_1 = 1+ coth (4 Bhw) and the symmetry of
Re [Zg(w)] we arrive finally at

1 [t i
with
+ oo
J(t) = 2/0 djw%};(w)] {coth <%ﬁﬁw> [cos (wt) — 1] — isin (wt;}
(3.65)

Expressions (3.57), (3.64) and (3.65) display the precise mathematical relation-
ship between the tunneling rate in presence of an arbitrary environment and the
impedance of that environment, as well as the role of the energy difference A&.

3.7. Properties of P(E)

From Eqs. (3.64) and (3.65) we can establish the general properties of the prob-
ability function P(E):

+oo
/ P(E)E =1 (3.66)
+oo e? e2 _1 .
/ P(E)EdE = —2—R(t =0)= ) (C;t=-Cyh) (3.67)
P(—E)=exp(—BE) P(E) (3.68)

It is possible to show quite generally from the form of J(¢) that, in the low im-
pedance environment limit defined by 7 0+°° R(t)dt — 0, the function P(E)

. . N +oc
tends towards 6( F). In the high impedance limit defined by ﬁ o R(t)dt —
00, the function P(E) tends towards 6 [E — %R(t = 0)] , provided that kpT" <
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%R(t = 0). These limits correspond to the application range of the so-called
“global rules” and “local rules” [62]. According to these rules, the tunneling rate
involves only the change in either the global energy of the whole circuit (the en-
ergy we have labeled &) or the local electrostatic energy of the sole junction.

In practise, there is a considerable bias in favor of the global rules: without any
particular engineering effort the charge relaxation integral f0+°O R(t)dt tends to
be of the order of the impedance of the vacuum Z,,. ~ 3770Q. It is worth noting
that there is a fundamental relation between the impedance of the vacuum and the
resistance quantum: Z,. = 2aRg where o = 1/137.0... is the fine structure
constant. We thus live in a world where it is difficult to escape from the global
rules!

We will now consider three useful examples of the environment impedance
Ze(w).

3.8. Application of the theory to particular cases of junction environments

3.8.1. Ohmic case

This case corresponds to a junction in series with a frequency independent res-
istance Z.(w) = R and a voltage source V. We have C;' = 0 and the energy
difference A€ is given simply by AE = eV. At T = 0 we find that the function
P(E) is non analytic at £ = 0 and that there is a divergence given by

or E 1/g
T+ o(EY) (3.69)

P(E) = exp(=7v/g9) 1 s

I'(g) E

where « is the Euler constant, I'(z) the gamma function, E, = e*/2C; and g the
dimensionless conductance g = %RK /R. Note that when g >> 1 (low impedance
limit) the form of P(E) tends towards that of a § function.

The divergence at £ = 0 implies that the differential conductance dI/dV
should go to zero at small voltages V <« e/C} and low temperatures kg7, kpTy, <
E,:

dIjdv ~ [v|'/? (3.70)

T—0

A convincing observation of this zero-bias anomaly has been performed by
Cleland et al. [25] who have placed thin film resistors close to the junction.

3.8.2. Case of an electron box with a non ideal voltage bias

In this case the junction is in series with a capacitor Cs, a resistor X and a
voltage source /. The environment impedances are Z.{w) = R + i/Cw
and Zr = (1+iRCsw) / (iCsw — RC;Csw?) where Cy = C; + C,. The
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series capacitance Cp is equal to the total capacitance Cy of the island and
AE = e[CU — (n+1/2)e] /Cx. One finds the same divergence at 7' = 0
for P(E) when £ — 0 as in Eq. (3.69), but now the exponent g is given by
g = 1Rk /Re[Zg(0)] = 1Cx Rk / (RC;) [62]. Since in the electron box exper-
iments R ~ 0.01Rg and C; ~ 0.05Cs this analysis shows that the global rule
P(E) = 6(E) is an excellent approximation in this case. We can also apply the
same analysis to junction array circuits like the SET transistor or the pump for
which one must take C; ~ C's; /N where N is the number of junctions in the array.
Again we find that the global rules are very good for usual voltage sources and
become exact in the limit N — oo.

3.8.3. Single mode case

In this case the junction is in series with a pure inductor (Z,(w) = 1Lw) and a
voltage souce V. The a.c. environment of the tunnel element thus consists of a
single mode whose frequency is given w; = (LCj)_1/2. We find that J(¢) is an
oscillatory function and this in turn implies that the function P(E) reduces to a
series of § functions

N
PE) =Y % exp (=) 8 (E + Nhw; — eV) 3.71)
NI

where the parameter 7 measures the ratio between the Coulomb energy ¢?/2C;
and the energy level separation of the oscillator.
(:’2 /20] L/C]

= = 3.72
r " s R ( )

The differential conductance dI /dV displays steps at V = N %wl. These steps
have been observed by Holst et al. [63] in an experiment where the junction was
coupled to a voltage source via a transmission line resonator which played the
role of an inductor.

We clearly see in this single mode case the effect of the quantization of the
environment modes. In the extreme quantum limit 7 < 1, corresponding to an
oscillator with an impedance small compared with the resistance quantum, the
function P(FE) essentially consists of an elastic peak at £ = 0. On the other
hand, in the classical limit > 1, the enveloppe of the peaks takes the shape of
a gaussian function centered at E = €2 /2C}.

Let us consider the tunnel process associated with the N = 0 elastic channel.
The rate of this process is finite since the excitation energy of the oscillator is
quantized. This process is the only one allowed when eV < hw;. In this case the
voltage generates directly an electron—hole pair in the junction without exciting
the oscillator, which in classical term would mean without charging the capacitor.
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Table 2

Correspondence between elastic tunneling and the Méssbauer effect.

Junction v-Ray emitter

Capacitance C Mass of atom

Inductance L Effective spring constant
Voltage V v-Ray energy in atom frame
2nd derivative of (V') curve ~-Ray spectrum in lab frame
Tunneling without charging Emission without recoil

Charge comes directly from source  Crystal takes all recoil momentum

This may seem paradoxical since the source is usually much farther than the junc-
tion “electromagnetic horizon” c7;, where c is the speed of light. The resolution
of this paradox lies in the non-local character of quantum mechanics. The junc-
tion and the source are in a coherent quantum state. When this state changes, both
the source and junction are affected at the same time. Instantaneous transmission
of information is impossible, though: in the conditions under which tunneling
without charging occurs, the charge fluctuations on the junction capacitance are
much larger than e. The source is therefore not able to “notice” the occurence of
a tunnel event.

Fully elastic tunneling or equivalently, tunneling without charging, is analogous
to y-ray emission without recoil in the Mossbauer effect. A y-ray emitter such as
a %9Co nucleus in a cristal of 5°Co can be thought of as being elastically bound to
the rest of the crystal. The equivalence between the y-ray emitter and the junction
is given in Table 2.

4. Single Cooper pairs

As we have seen in the first part of this course, the theory developed for normal
metal tunnel junction circuits can be extended to superconducting ones. Super-
conductivity introduces new energy scales: the superconducting gap energy A,
the even-odd free energy D(T") and the Josephson energy F;. In this last part of
the course, we will concentrate on the theory of the even-odd free energy E(T)
which is a unique feature of mesoscopic superconducting systems revealed by
charging effects. Before examining how Coulomb charging effects can interplay
with superconductivity and lead to the observation of single Cooper pair trans-
fer, we will review first the theory of superconductivity by Bardeen, Cooper and
Schrieffer (BCS) [64], which up to now has proven entirely satisfactory in the
field of single charge phenomena.
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4.1. Basic elements of the BCS theory

The BCS theory starts by assuming that the metal which undergoes a super-
conducting transition can be treated in the normal state by Fermi-liquid theory,
namely that its excitations not far above the Fermi ground state are described by
fermionic quasiparticles. It is convenient to introduce the set of eigenfunctions
U, (x,0) of the quasiparticle kinetic energy operator. Here x and o denote the
position and spin of the quasiparticle, respectively. In the case of perfect trans-
lational symmetry, the ¥’s are plane waves and the index x corresponds to the
wavenumber. The theory can also handle the case of a “dirty” metal, i.e. arealistic
metal with impurities and walls, for which the U’s are unknown functions whose
main statistical properties are known nevertheless. In this latter case the index
k 1s a label with no special meaning. In presence of time-reversal symmetry, to
each state | k) which we define as corresponding to the wavefunction ¥ (x, 1),
we can associate a time-reversed mate state | k) corresponding to the wavefunc-
tion ¥%(x, |) and having the same energy. The couples K = {| k), | k)} are the
basic objects of BCS theory.

The next step in BCS theory is to assume that the metal is described by the
many-body hamiltonian

H= 2 (ex — Er) (alak + a%a;) + Z VKLaLa%aTal 4.1
Kec K,LEC

where the a’s are the quasiparticle annihilation operators corresponding to the ¥’s,
the €’s the kinetic energies of the quasiparticles and the V’s the matrix elements of
the quasiparticle—quasiparticle interaction. The symbol Er denotes the energy of
the Fermi level while the sums > ;- and 3 - | - extend in a neighbourhood C
of the Fermi level where quasiparticle levels are well defined. The neighbourhood
C is such that its width in energy is small compared with the Fermi energy while
being sufficiently large to encompass the Debye energy which fixes the range of
the interaction.

One then introduces the pairing amplitude Ax = (azax) and the pair potential
Ag = — 3 VkrAr. Next, a crucial step is taken by assuming that one can
neglect the fluctuations azar — Ax (mean field approximation). With this hy-
pothesis, the diagonalization of the hamiltonian (4.1) becomes equivalent to the
diagonalization of the self-consistent mean field hamiltonian

Ha = Z [(GK — Er) (aLak + a%a;) — AKa};a% - Akarag + A A
Kec
(4.2)

Obviously, an eigenfunction of H s is of the form HK Xk | vac) where x g is
a second quantization operator in the manifold K and | vac) the quasiparticle
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/ a,Uvac)

(uK + vKa}:a;%)| vac)

a;H vac)

Fig. 13. Graphical representation of the Bogoliubov—Valatin transformation in the manifold K =
{kF}
vacuum state. In order for the product [], xk to have a value independent of
the order of the operators (apart from an overall phase factor), the only allowed
possibilities for the operator x i are either a,t, a% or the linear combination ux +
v Kaza% where uy and vy are two arbitrary complex numbers such that {ux |2 +
lug |> = 1. Note that /\Ka;fc—kuKa%, for example, does not qualify as a meaningful
XK-

The transformation which transforms | vac) into (u K+ vKaLa%) | vac) in

state vector space induces the transformation of aL and a% into

’y;g = uKa}LC — Ukag “4.3)
'y_;i.:uKa%—F VK Qg (44)
as shown graphically on Fig. 13.

A transformation specified by expressions (4.3) and (4.4) is called a Bogoliubov-
Valatin transformation.
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The Fermi-liquid many-body ground state, i.e. the ground state of

Hrp = Z (6[{ — EF) (a,tak + a%a;) s 4.5)
Kec
is | GPermi) = [lxec (u};{ +vf<a,ia%) | vac) with uf, = O(ex — Er) and

vl = O(Er — ek ), O(z) being the Heaviside function.
The ground state of the hamiltonian (4.2), the so-called BCS ground state, is
also of the form

| Gees) = H (uK + vKaL(%) | vac) (4.6)
Kec
but with
Ay

UKV =
2\/|AK|2 + (ex — Ep)’

A7

This last equation determines ux and vy (apart from an overall phase factor
which is irrelevant) since A g is determined by the condition for self-consistency
1 A
Ak =3 - L Vi (4.8)
L \/|AK| + (ex — Er)

Note that uf,, v is a trivial solution of (4.7) and (4.8) with A = 0. However,
when Vi < 0, Eq. 4.8 admits a non-trivial solution such that Ax = 0 and
whose energy is lower than for ul,, v%.. In the model of BCS where

_ -V if |€K“EF| _<_fuuc and |6L—EF|§th
Ve = { 0 otherwise (4.9)
one finds
[ A for |ex — Er| < hw,
Ak = { 0 for |€K - EF| > hw, (4.10)

where V' is a positive constant and w, a cut-off frequency set by the Debye energy.
In this model the energy-independent parameter A is given by

hw, _

where pr is the density of states at the Fermi level and exp (i8) an arbitrary phase
factor. The values of ux and vk are then determined easily:
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ug =sin [% arctan <—$>} 4.12)

EK—EF

vk =4/1 — u% exp (i6) (4.13)

With the preceding expressions one can calculate the condensation energy

68U = (Gees | Ha | Gees) — (GFermi | Hayr | Grermi) (4.14)
and find
1, 1

The quantity P is often called the number of Cooper pairs in the system: it is
the number of manifolds K such that the product |ugvi| is of order unity, i.e.
manifolds for which the state occupancy differs notably from the corresponding
occupancy in | Gpermi)- In the weak coupling limit prV < 1 which describes
the case of aluminium — the superconductor on which our experiments are based
— we have P <« N, where N denotes the total number of electrons.

Note that the average condensation energy per electron is 2PA/N ~ A?/Ep
where A/Er ~ 107%. Adding two electrons to the system increases therefore
the condensation energy by a negligible amount compared with A. As we are
now going to see, adding one electron is a totally different matter.

Due to the particular properties of the x x operator space, the coefficients u g
and v corresponding to the ground state [Eq. (4.6)] are precisely those corres-
ponding to the Bogoliubov—Valatin transformation which diagonalizes the mean-
field hamiltonian (4.2) (In general, the components of the ground state vector in
a Hilbert space do not suffice to determine the transformation which makes the
hamiltonian a diagonal operator). The mean-field hamiltonian thus takes the form

Hay = Z Ey (’yl’yk +’)’£’YE) +oU (4.16)
Kel
where
Eyx = \/|AKl2+(€K—EF)2 4.17)

determines the excitation spectrum. In the model given by (4.9) this spectrum has
a gap given by A, hence the name often given to this quantity.
It is interesting to note that while the ground state obeys

Y | GBes) =75 | Gees) =0 (4.18)
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an excited state with a single excitation is such that

’y,l ) GBCS> = al H (uL +vLalTali) 1 V&C) 4.19)
LeC
LEK

or

| Gaos) = ab [T (ws +viafal) | vac) (4.20)
Lec
L#K

Thus, a single particle excitation of the superconductor has just the same wave-

function as an ordinary excitation of the normal state. We need the operator 'y,i

to produce it from | Gggg) — and not aL — since the latter does not produce

a state othogonal to | Gggs). Adding one electron to a superconductor with all
electrons paired must therefore decrease by A the magnitude of the condensation
energy. In order for this change to be observable, the superconductor has to be
isolated from a particle reservoir.

4.2. Extension of the BCS theory to an isolated superconductor

We have now to face the problem that while the BCS hamiltonian (4.1) conserves
the total number of particles, the mean-field hamiltonian (4.2) does not. This is
why the BCS wavefunction (4.6) turns out to be a linear superposition of states
with different number of particles. This symmetry breaking in Fock space is
completely unphysical if the superconductor is isolated from a particle reservoir.
A remedy found by Anderson [65] is first to note that there is not one BCS ground
state but many since all the states

(Ghes) = [T (luxl + luxl exp (i6) afal) | vac) 4.21)
KeC

correspond to different linear combinations of states with a well-defined particle
number, even if they have the same energy according to (4.2). We can then form

1 [ .
|GR) =5~ i df exp (=iP9) | Ghcs) (4.22)

This linear superposition of BCS ground states projects out of |G%?JOS> the part
that has P pairs of particles occupying the levels of C. Numerical studies [66]
have shown that the state given by Eq. (4.22) is very close energetically to the
true non-degenerate ground state of the full BCS hamiltonian (4.1) for an isolated
system with an even number N = 2P of particles, as soon as N gets large.
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What about the ground state of an isolated system with an odd number N =
2P + 1 of particles? One state of a manifold K has then to be occupied with
certainty by an unpaired electron. Using the method of Eq. (4.22) we can fulfill
this condition with the two following states

|GAtE) =41 | GE) (4.23)

where k£ = kp or kr. The expression of the odd ground state given by (4.23) is

27
LahH :/ dgexp (~iP6)al, T] (luel+lolexp i8) afal) | vac)
0 LEK
7 (4.24)

The numerical studies cited above have confirmed that this type of linear com-
bination also describes the degenerate ground states of the odd-V isolated system
quite well.

4.3. Partition function of the superconducting electron box

We now consider a box in which only the island is superconducting. The electron
reservoir to which the island is connected by a tunnel junction remains in the
normal state. We assume that the internal energy of the island of the electron box
is well described by the hamiltonian of Eq. (4.1). Now Ef refers to the energy of
the Fermi level when the island is neutral (for an island reduced to a molecule, Ep
would be the average between the HOMO and LUMO energy). In order to form
the hamiltonian of the box, we now need to express the electrostatic energy in
terms of the quasiparticle degrees of freedom. Although we do not know exactly
the total number A of electrons in the island when it is neutral nor the number
No = 3 kec O(EF — €x) of quasiparticles in the domain C lying below Ef in
the ground state, the operator associated with the number of excess electrons is
well-defined:

n=N-Ng= Z (aLak + a%az) - Ny (4.25)
KeC

The previous relation is a consequence of the fundamental property of Fermi-
liquid theory that there is precisely one quasiparticle which is created for every
bare electron which is added to the system [67].

If one introduces the charge imbalance operator [68]

Q=" (luxl = 1ol (vlme + i) (426)

KeC
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the constraint expressed in Eq. (4.25) becomes equivalent to:
<n,k1,k2,...kM|an,kl,kg,...kM):() (427)

where | n, k1, k2, ... ka) is a state of the island analogous to (4.24) but with n
excess electrons and quasiparticle excitations in levels kq, ka,. .. kas (this state is
a function of the numbers vy).

If we assume that mean field theory applies to the island, the hamiltonian of
the electron box can therefore be written

H= Z Eyx (’Y};’Yk + ")%’YE) + E¢ (TL - nx)z + Hr (4.28)
KeC

Here Hp is the tunnel hamiltonian describing the exchange of electrons
between the island and the reservoir and n, = C;U/e the externally varied off-
set charge. The island is sufficiently large that Ef is given by Eq. (4.17) with
a n-independent Er. We have not included in the right-hand side of Eq. (4.28)
n-independent terms or terms only weakly dependent on n such as 6U.

Let us now introduce the number of quasiparticle excitations

Ny = 3= (2w +d) (4.29)

KeC

The operators Ny, and n are not independent. For island states which have a
well defined number of electrons such as | n, k1, ko, ... kpr), one can show that
the parity of N,, must be equal to the parity of the total number of electrons.
Thus

[(Ngp) — No]mod 2 = (n) mod 2 (4.30)

It is important to realize that this new constraint is totally independent from
the constraint expressed by Eq. (4.27): for example quasiparticle levels lying
above and below the Fermi level contribute identically to Eq. (4.30) whereas
they contribute with opposite signs to Eq. (4.27).

We now compute Z = trexp (—3H) where 3 = (kgT)~" and where the trace
is taken over all states with a given number of excess electrons.

z=3 zexp [—,@Ec (n — nz)2] 4.31)

In this expression we have neglected the effect of the tunneling hamiltonian
which is treated as a weak perturbation. If we did not have the constraints Eq.
(4.27) and Eq. (4.30) Z3? would be given by

z{" = [ 1 + exp(-8Ek))* (4.32)
KeC
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the usual partition function for free fermions in a system with time-reversal sym-
metry. It can be shown that taking into account the constraint Eq. (4.27), which
is difficult analytically, will only produce small corrections which can be ignored
in the large A limit. As shown by Jankd et al. {69], the n-dependence of the
condensation energy and of the quasiparticle—quasiparticle interaction will also
produce small corrections. The constraint Eq. (4.30) remains crucial even in the
large AV limit but can be taken into account analytically by the following elegant
method [53]. Let us introduce

7% = [ [t —exp (-8B (4.33)
KeC
It 1s easy to show that the expression for Z2” which takes into account the con-
straint (4.30) is
1
Zir =3 [Z9P — (-1)" Z77] (4.34)

This trick ensures that if n is even (resp. odd) only the even (resp. odd) n terms
are kept in Z”.
If we now define the odd-even free energy difference D(() by

2 _ oy - 2]

exp (wﬂﬁ) = 75 = {77 7] (4.35)
we finally arrive at
zZ =2z Zexp {—ﬁ {Ec (n— ngv)2 +pn5]} (4.36)

where p, = £ [1 — (-1)"].

This expression shows that in the graphical determination of the average num-
ber (n) of electrons in the superconducting box (see Fig. 9) we must indeed shift
the odd-n parabolas with respect to the even-n parabolas by an amount D.

We can express the odd-even free energy difference in terms of the density of
states p(g) for the superconducting island. Transforming J] ... into an integral,
we get

+ oo
Zy =exp [/ dep(e)In (1 + e_ﬂe)] (4.37)
0

from which it is easy to obtain

D(B,p) = —% In (tanh {/0+00 %p(s) In [coth (ﬂe/Z)]}) (4.38)
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For a superconductor described by the BCS model [Eqs. (4.12) and (4.13)] the
density of states is given by

p(e) = 2paN4Re [ﬁ] (4.39)

where p,4 is the density of states per atom and A4 the number of atoms in the
island. For temperatures e"%2 < 1, one finds

+oo d
tanh {/ gp(s) In [coth (65/2)]} ~ N,js(B)e ?8 (4.40)
0
with
o \ 12 1\32
N, = — — 441
o =7(3%) +o|(35) @an)
where P = paNaA.
At temperatures such that N fe_ﬁ A %1, we get
D(T)~A—kgTlnP (4.42)

More generally, if there are inside the gap discrete quasiparticle states with
energies ¢€; and degeneracies G; they will strongly reduce D(T") which will be
given in the low temperature limit by

D(T) ~ ¢ — kgT'In Gy (4.43)

where the index ¢ = 0 refers to the lowest discrete state. Experimentally it seems
possible to exclude the presence of such states in certain samples, as shown by
the results presented in the first part of the course.

In the presence of a magnetic field H, the density of states given by (4.39) is no
longer valid. For our “small” mesoscopic islands we can nevertheless compute
the density of states within the mean field approximation, provided that the elastic
mean free path is small compared to the dimension of the samples [70], which is
the case in our experiments. Here “small” means that the dimensions normal to the
applied magnetic field are sufficiently smaller than the London penetration length
and that screening currents can be neglected. The experimental results found for
D(T, H) are in excellent agreement with the theoretical predictions [71].

Note added in proof

We would like to emphasize that this course is not an exhaustive account of single
electron phenomena, nor is the list of references by any means complete and up-
to-date. Among important developments which have taken place since this course
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was given is the observation of single energy levels in a nanometer-size metallic
particle by Ralph et al. (Phys. Rev. Lett. 74 (1995) 3241). We hope nevertheless
that we have listed enough references to enable interested readers to find their
way in the literature.
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