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Superconducting qubits and resonators with quality factors exceeding 107 are of

great interest for quantum information processing applications. The improvement of

present devices necessarily involves the consideration of participation ratios, which

budget the influence of each physical component in the total energy decay rate.

Experiments on compact resonators in which participation ratios were varied has

demonstrated the validity of this method, yielding a two-fold improvement in qual-

ity factor. Similar experiments on compact transmon qubit devices led to a three-fold

improvement over previous transmons, validating the method of participation ratios

for qubits as well. Through the use of a 3D cavity, a further minimization of the

participation of surface components combined with the removal of unnecessary com-

ponents, produced an additional ten-fold increase in coherence times. Finally, the

fluxonium qubit was redesigned in a similar minimalist environment with an im-

proved superinductance, thus combining the advantages of the 3D architecture with

the natural insensitivity to dissipation of the fluxonium, resulting in another ten-

fold increase in relaxation times. This large increase in relaxation and coherence

times enables experiments that were previously impossible, thus preparing the field

of quantum information to advance on other fronts.
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CHAPTER 1

Introduction

It is now possible to fully control individual systems whose degrees of freedom obey

the laws of quantum mechanics. Rydberg atoms [1, 2], ions held in traps [3], electron

spins in quantum dots [4], nitrogen vacancies in diamond [5], and superconducting

circuits [6, 7, 8, 9, 10, 11], are the main implementations. The creation and control

of these devices with the goal of practical quantum computation comprises the field

of “quantum engineering”. Perhaps the most fundamental and crucial requirement is

that these systems must be dissipationless. Many experiments outlining the progress

of the field are stimulated through the reduction of dissipation; thus the search for

remaining dissipation is at the heart of quantum engineering.

The requirements to do useful computations with these systems were laid out by

David DiVincenzo [12] in the year 2000, and the so-called DiVincenzo criteria are

in summary: (1) a scalable physical system with well-characterized qubits, (2) the

ability to initialize the qubits, (3) coherence times much longer than gate operation

times, (4) a universal set of gates, and (5) a qubit-specific measurement. Additional

requirements for quantum engineering systems like reproducible components, simple

fabrication, and cost of operation would also be welcomed, but are not fundamentally

necessary for basic physics experiments.
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The world of superconducting qubits has evolved since the 1980s to become a

major contender in the race to build a universal quantum computer. Superconduct-

ing qubits are simply electronic circuits made of mostly aluminum that express their

quantum nature when they are cooled to low temperatures, as described below. Since

these devices are created using common machine-shop equipment and wafer fabrica-

tion technologies, new designs with unique features can be quickly produced, while

a scalable architecture remains a possibility. The major downside when comparing

superconducting qubits to other systems has been concerning DiVincenzo criteria 3:

the limited coherence times.

This thesis explores how to improve coherence of superconducting qubits and

resonators for use in quantum information systems through the analysis technique

of participation ratios. The method of participation ratios describes how different

loss mechanisms participating in a resonant mode combine to yield an overall quality

factor. An experiment on adjusting the geometry of compact resonators and compact

transmons confirms the validity of the participation ratio argument through the

display of improved quality factors and relaxation times up to 13 µs. The idea

of participation ratios is then pushed to its limit in the 3D transmon, with the

drastically simplified mode structure and reduction of surface participation, resulting

in coherence times of over 100 µs. The notion of participation ratios is then extended

with the fluxonium, which borrows the simplified geometry of the 3D transmon

combined with a decreased sensitivity to dissipation, resulting in relaxation times of

over 1 ms. In conclusion, the vast improvements of superconducting qubit and cavity

coherence in the last five years enables experiments that were previously impossible,

including an experiment described in this thesis, of a qubit reset on a 3D transmon.

Thus the field of quantum information with superconducting qubits is now advancing

on other fronts, a reflection that practical quantum computation is one step closer
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to reality.

1.1 Quantum Computing

1.1.1 What is a Qubit?

All of the computing we do today with any type of modern-day computer is in

fact classical computing. This computation scheme relies on operations involving

bits, physical systems that can be in 2 states, labeled 0 and 1. In a computer, all

storage and calculations (ROM, RAM, CPU, GPU, etc...) use registers of bits as

the information medium. This computation scheme has limitations in how fast it

can solve certain problems. Many problems require either that the size of the data

to be processed or time needed to run the algorithm that scale exponentially. These

problems become intractable and practically impossible for large enough sizes or long

enough times.

In a quantum computer, the analog of the classical bit is called a “qubit”: defined

as a pair of levels of any quantum system, called the ground state (|g〉 or |0〉) and

the excited state (|e〉 or |1〉). Typically, the notations |g〉 and |e〉 are used to refer to

a specific qubit design, and |0〉 and |1〉 are used in the abstract quantum information

sense. These two levels may be two excited states of atoms, spin-up and spin-down

of nuclear or electronic spins, two positions of a crystalline defect, two states of a

quantum dot, or two energy levels of a superconducting circuit. Since the system

is of a quantum nature, any combination of the two states are allowed, expressed

as |Ψ〉 = α |g〉 + β |e〉. Thus two complex numbers αg and αe define the qubit

state, with normalization condition |αg|2 + |αe|2 = 1. This qubit state is commonly

visualized using the Bloch sphere, as shown in Fig. 1.1, where αg = cos (θB/2) and
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Figure 1.1: Any pure state can be represented as a point on the surface of the
Bloch sphere, with |g〉 and |e〉 as the poles. Mixed states, or states with incomplete
knowledge, are represented as points inside the sphere.

αe = eiφBsin (θB/2). This notation places |g〉 and |e〉 at the poles, while any other

pure state can be represented by a point on the surface of the sphere. In addition, any

point inside the sphere represents a mixed state, in which knowledge is incomplete,

with the completely unknown qubit state in the center.

1.1.2 Quantum Resources

Quantum computing is a new paradigm of information processing that exploits the

quantum nature of its components, namely the concepts of superposition and entan-

glement, to perform calculations. Quantum computation is thought to speed up the

calculation of some classically “hard” problems, for example: prime factorization

with Shor’s algorithm [13] and database searching with Grover’s algorithm [14, 15].

The effect of quantum speedup for Grover’s algorithm has been observed by Dewes
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et al. [16] in 2012.

Superposition allows a degree of freedom to be in multiple energy eigenstates at

the same time. For a qubit, this means that the qubit may be in both the ground

state and excited state at the same time, with a notation corresponding to a sum

(|0〉 + |1〉)/
√

2. Superposition may manifest itself in physical systems as an atom

being excited and not, the photon number of a resonator being zero and one, as the

charge of a piece of metal being both positive and negative, or as current in a ring

traveling both clockwise and counter-clockwise.

The other resource, entanglement, is also unlike anything in the classical realm.

Entanglement, in the language of qubits, means that one bit of information can

be shared by 2 or more different degrees of freedom, regardless of their physical

separation. For example, the two qubit state |00〉+ |11〉 is entangled, meaning that

information is not stored in either qubit, but in the non-local correlation between

the qubits. In this case, one non-local bit says that the qubits are in the same state

and another non-local bit gives the sign of the entanglement (in this case, a “+”).

A measurement on one qubit of result 0 instantly implies that the other qubit will

be found in state 0. The qubits, once entangled, if they are left undisturbed, can be

separated by any distance and their entanglement will remain. Entanglement allows

for operations on one qubit to affect all entangled qubits, and thus is a resource that

can be exploited.

Superposition and entanglement allow for systems to explore a wide configuration

space all at once, a property often called “quantum parallelism”. Thus, a single

operation on a system with n qubits is, in some sense, like doing operations on 2n

numbers in a classical computer; quantum parallelism is exponential in the number

of qubits.
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1.1.3 Qubit Coherence

While a qubit may start in a specific superposition of |g〉 and |e〉, it will not stay

there forever. In classical computing, we rely on bits keeping their information, i.e.

remaining in the state they have been set to, for long periods of time, for example

in hard-drives or CD-ROMs. Qubits are not yet so robust, and in fact “lose” their

state fairly quickly; the length of time the qubit retains its quantum information is

called the coherence time. Since one of DiVincenzo’s criteria [12] is that coherence

times must be much longer than gate operation times, it is important to understand

and to raise this time as much as possible.

While coherence is a broad term often meant to include several types of informa-

tion loss, the “coherence time” (denoted T2) is the length of time for which the qubit

maintains a given superposition of states. There are two processes that contribute to

decoherence: relaxation processes (T1) and dephasing processes (Tφ) [9, 11]. T1 and

Tφ combine to yield 1/T2 = 1/2T1 + 1/Tφ; if Tφ is made infinite, then T2 = 2T1. Re-

laxation processes prematurely bring the qubit from the excited state to the ground

state (at rate Γ↓). If the qubit is in contact with a bath at nonzero temperature,

there will also also be excitation processes Γ↑, leading to a combined T−1
1 = Γ↓+ Γ↑.

In contrast, dephasing processes result in a change in phase. In the Bloch sphere

notation, T1 processes represent the state moving in the direction of the poles (diffu-

sion along a meridian), and Tφ processes involve the state diffusing along a parallel

of the sphere. In any physical system, there are many channels that may contribute

each to T1 and Tφ; the purpose of this thesis is to identify and remove these channels

in superconducting resonators and qubits.

Since relaxation processes involve the qubit decaying to the ground state, this im-

plies a loss of energy. Thus, any microscopic or macroscopic effect that re-equilibrates
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energy from the qubit causes relaxation. Dephasing, on the other hand, involves the

qubit state diffusing along a parallel, thus not requiring a loss of energy. If the qubit

frequency drifts, then the qubit state will rotate around the axis between the ground

and excited state at the difference frequency. This rotation, when averaged over

many instances, leads to dephasing; thus any effect that causes the qubit frequency

to change over time is a source of dephasing.

While the coherence time is often loosely denoted as T2, there are two measure-

ment methods, borrowed from the field of Nuclear Magnetic Resonance (NMR) that

yield different results [17]. The first is the “Ramsey” time, TR2 , which is measured

by varying the time between two π/2 pulses. This measurement is sensitive to noise

of all frequencies and is the more stringent of the two. The second is the “Echo”

time, TE2 , which is measured in the same way except a π-pulse is inserted half-way

between the π/2 pulses. The π pulse reverses the direction of dephasing for the sec-

ond half of the waiting time, thus it “echoes” out slow drifts in the qubit frequency.

For this reason, the echo measurement is insensitive to low-frequency noise. Com-

parison between the two measurements in general gives some information about the

spectral density of the dephasing noise source; more refined pulse methods (CPMG)

can precisely access this spectral density [18, 19].

1.1.4 Qubit Initialization

Another one of DiVincenzo’s criteria is the ability to initialize qubits; another impor-

tant feature of qubits to discuss. Initializing a qubit, sometimes also called resetting

a qubit, means to put it into a known state regardless of its current state, with a fi-

delity defined by overlap between the created state and the desired state. In general,

this target state can be anything, but it is often the ground state. While relaxation

processes tend to prepare |g〉, there are also excitation processes that tend to pre-
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pare |e〉. These excitation processes may be due to either thermal excitations or some

other channel that gives energy to the qubit. In either case, these excitations, along

with the given relaxation rate, will yield a steady-state excited state population (Pe),

which can be expressed as an effective temperature.

This effective temperature T can be calculated using the Boltzmann factor,

Pe/(1−Pe) = exp(hfge/kBT ), where fge is the qubit frequency. For temperatures high

enough, not only the first excited state, but the second or third excited states may

have considerable steady state population. Then the temperature can be calculated

by fitting all of the level populations to that expected for a Boltzmann distribution.

Because of these possible excitations, it must be possible to reset the qubit to a

known state before a given algorithm may begin. Our method for qubit reset, called

DDROP is described theoretically in Appendix C and experimentally in Chapter 6.

1.1.5 Circuit QED

Nearly all current superconducting qubit systems utilize to some degree an analog

of a system that is used to study light-matter interactions, called cavity quantum

electrodynamics, or “cavity QED” [20, 21]. This experimental technique has been

developed as a means of increasing the coupling between photons and atoms. Cavity

QED involves passing atoms through a cavity between two mirrors, coupling the

atoms to the quantum-mechanical electric field of the cavity. Due to the coupling,

the atoms can get entangled with the photons in the cavity. Serge Haroche’s 2012

Nobel Prize in Physics was in part attributed for the development of Cavity QED

which allowed his team to manipulate single Rydberg atoms interacting with a su-

perconducting cavity. The Hamiltonian that describes the cavity QED system is the

Jaynes-Cummings Hamiltonian [22], which depicts the atom (qubit) as a spin and

the cavity as a quantum-mechanical electric field, as shown in Eq. 1.1.
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HJC = ~ωR
(
a†a+

1

2

)
+

~ωQ
2
σz + ~g

(
a†σ− + aσ+

)
(1.1)

Circuit QED [8, 23], a circuit analog to cavity QED, has become one of the most

common paradigms of superconducting qubit experiments. Circuit QED involves

coupling artificial atoms to superconducting cavities as opposed to real atoms in

cavity resonators, yet such systems can be analyzed and discussed in the same man-

ner, with all of the same equations and terminology of cavity QED. Coupling the

qubit only to a cavity and not directly to a microwave line protects the qubit from

noise outside the resonator bandwidth. While coupling qubits to cavities has been

done as early as the 1980s [24], utilizing photons in the cavity as a probe of the qubit

state was developed around 2005 at Yale. This latter development is what has be-

come known as circuit QED. Qubit readout is performed by passing photons through

the cavity, which inherit a different transmission amplitude or phase depending on

the qubit state. These artificial atoms have some advantages over natural atoms;

perhaps the most important advantage is that the parameters the atom can be en-

gineered by design. This flexibility is expressed in the variety of superconducting

qubits that have been tested, a few of which are discussed in the following section.

1.2 Superconducting Qubit Species

Superconducting circuits present controllable quantum degrees of freedom, and there-

fore lend themselves to the design of artificial atoms. Since it is possible to design

circuits that are described by a wide variety of Hamiltonians, superconducting cir-

cuits are very attractive as a quantum computing platform. The simplest circuit

consists of a superconducting inductance and capacitance. This so-called LC oscil-

lator is equivalent to a dissipationless spring-mass system, with the voltage on the
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capacitor (or current in the inductor) varying sinusoidally in time, and a parabolic

energy potential as a function of the flux through the inductor, φ = LI, the analog of

the “position” coordinate. In the spring-mass analogy, the mass is represented by the

capacitance and the spring constant by the inverse of the inductance. The Hamilto-

nian of this oscillator along with that of the spring-mass system is shown in Eq. 1.2,

showing that the canonically conjugate pair of flux (φ) and charge on the capacitor

(Q) are analogous to position and momentum, respectively. When this oscillator

is cooled to a temperature corresponding to an energy less than one photon at the

resonant frequency (T < ~ω0/kB, where ω0 = 1/
√
LC), it can express its quantum

nature. The harmonic oscillator has equally spaced energy levels En = ~ω0(n+1/2),

with minimum energy E0 = ~ω0/2 and spacing ~ω0. Going from one energy level

to the next corresponds to adding a quantum of energy in the oscillator. In these

microwave LC oscillators, these quanta are called (standing) “photons” since they

are quantized wavepackets of electromagnetic radiation even if they do not move

through space.

(LC oscillator) H (φ,Q) = Q2

2C
+ φ2

2L

(spring −mass) H (X,P ) = P 2

2M
+ kX2

2

(1.2)

The problem with using the first two levels of a harmonic oscillator as a qubit is

that the levels are not individually addressable. It is impossible to move population

between the two levels without also exciting many other levels, since they all share

the same transition frequency. One solution is to modify the potential so that the

energy levels are not equally spaced, and therefore any two levels may be addressed

individually. To make an anharmonic oscillator, either the linear inductance or lin-

ear capacitance must be replaced by a nonlinear element. The only nonlinear circuit

element without dissipation is the Josephson tunnel junction [25], a nonlinear induc-
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Figure 1.2: (a) Simplified geometric aspect of a Josephson tunnel junction with two
superconducting (S) electrodes separated by a thin insulator (I). (b) Circuit repre-
sentation of a Josephson tunnel junction, and (c) equivalent circuit representation,
consisting of a Josephson element and a capacitive element. The Josephson element
is responsible for the nonlinear inductance. Each of these schematics doubles as a
representation of the Cooper Pair Box qubit, which is composed of a superconducting
island separated from ground by only a Josephson tunnel junction.

tance. A Josephson tunnel junction consists of two superconductors separated by

a thin insulator as shown in Fig. 1.2; the most commonly used materials in super-

conducting qubits is Aluminum/Aluminum oxide/Aluminum. Since the Josephson

tunnel junction resembles a parallel plate capacitor, the junction must be thought of

as a Josephson element in parallel with a capacitor, in which the Josephson element

models the tunneling of Cooper pairs.

To explain the effect of a Josephson tunnel junction in terms of its inductance, one

must compare the constitutive equations relating the current through the inductor

to the branch flux, a generalization of the magnetic flux that applies to all circuit

elements. The branch flux of any given element is given by Φ(t) =
∫ t
−∞ V (t1)dt1,

where V (t) is the integral of the electric field along a current line inside the element.

In the limit of lumped elements, any current line yields the same voltage. For the

normal, linear inductor, the current and flux are linearly related:

I(t) =
1

L
Φ(t) (1.3)
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Figure 1.3: Constitutive relation (Eq. 1.4) plotted as current I as a function of
branch flux Φ. The dashed line is the expected relation for a linear inductor. Note
that the sinusoidal dependence approximates a linear dependence in the limit of low
Φ.

Vg 

Figure 1.4: Circuit schematic of the Cooper Pair Box qubit, consisting of an isolated
island electrode, highlighted in blue. The island is separated from the ground by
a capacitance and a Josephson tunnel junction. The applied voltage is to charge
bias the island as a means of suppressing the fluctuation of offset charges on the
superconducting island.

In contrast, the Josephson element has a sinusoidal constitutive relation. Note

that in the limit of low branch flux, the sinusoidal relationship approximates a linear

inductor (sin(x) ∼ x), as shown in Fig. 1.3.

I(t) = I0sin [2πΦ(t)/Φ0] (1.4)

Thus, a Josephson tunnel junction, being composed of a nonlinear inductor in

parallel with a capacitor, is an anharmonic oscillator just by itself. This type of qubit
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Fluxonium Transmon 

Figure 1.5: The fluxonium and transmon qubits are both “descendants” of the
Cooper Pair Box. They each solve the problem of offset charge noise by shunting the
Josephson junction by either an external capacitance or inductance.

is called the Cooper Pair Box (CPB) [6] when it is charge-biased. The capacitive

energy of the qubit is given by a term proportional to (n̂− ng)2, with n̂, the integer

number of charges on the superconducting island (highlighted by the box in Fig.

1.4) which determines the qubit state, and ng, the offset charge induced by the

voltage applied to the capacitance. One of the main limitations of this qubit was

that when the offfset charge drifts, the transition frequency changes significantly.

Thus, qubit coherence was limited by these fluctuations of charge. There are two

alternate qubit designs used in this thesis, based on the CPB, that were developed

to eliminate the influence of charge fluctuations: the transmon and the fluxonium.

Other superconducting qubit types include the Quantronium [26], the phase qubit

[7], and the flux qubit [27, 28]. At the time of writing, these qubit designs are less

popular and less coherent.

1.2.1 Transmon

The transmon is a superconducting qubit consisting of an anharmonic oscillator com-

posed of a Josephson tunnel junction in parallel with a large external capacitance,

as shown in Fig. 1.6. In order to distinguish the CPB and the transmon, it is im-
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Figure 1.6: Circuit schematic of a transmon qubit capacitively coupled to a linear
readout resonator. The only difference between the transmon and the CPB is the
size of the capacitive energy relative to the junction energy.

portant to consider the Josephson energy EJ and the charging energy EC . EJ is

a parameter characterizing the junction inductance, and is defined as EJ = φ0I0,

where φ0 = Φ0/2π = ~/2e and I0 is the critical current of the junction. EC is the

energy of the capacitance EC = e2/2CΣ, where CΣ is the sum of the junction capac-

itance CJ and the external capacitance Cext. This figure also highlights the optional

replacement of the Josephson tunnel junction with a SQUID loop consisting of two

junctions in parallel, enabling a tunable qubit frequency via an applied magnetic flux

Φext, through EJ(Φext) = EJcos(πΦext/Φ0). The transmon is distinguished from the

CPB by the size of the capacitance; the CPB’s capacitance comes solely from the

junction. The purpose of the larger capacitance is to protect the qubit from fluc-

tuations of offset charge of the superconducting island by flattening the transition

frequency dependence on offset charge [29, 30, 31]. The transmon is a good example

of how quantum circuit design can tailor a circuit to design a specific Hamiltonian

to boost qubit performance.

The larger capacitance largely influences two qubit parameters, the anharmonicity

and the charge dispersion. The anharmonicity is the difference in energy between
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successive excitations of the system, denoted as α = (Ef−Ee)−(Ee−Eg); a harmonic

oscillator has an anharmonicity of zero. While a large anharmonicity may not be fully

exploitable, a small anharmonicity requires long qubit pulses in order to selectively

excite only one pair of levels. Charge dispersion is the amount that the energy levels

are dependent on the offset charge (ng = CgVg/2e) on the island making up the

qubit. The CPB energy levels are so dependent on charge such that this charge must

be kept constant using a gate voltage. The remarkable advantage of the transmon

comes from the prediction that as the qubit parameter EJ/EC is increased, the charge

dispersion reduces exponentially and the anharmonicity decreases only with a power

law. Because of this, with practical parameters, the charge dispersion can be made

negligibly small while maintaining enough anharmonicity. The energy level of the

mth level [29] is shown in Eq. 1.5 where aν(ng) is Mathieu’s characteristic value and

k(m,ng) is a function to sort the eigenvalues. From these energies, the anharmonicity

and charge dispersion can be calculated. The charge dispersion is shown in Eq. 1.6,

and in the limit of large EJ/EC , α ∼ EC .

Em (ng) = ECa2[ng+k(m,ng)] (−EJ/2EC) (1.5)

εm ' (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2

+ 3
4

e−
√

8EJ/EC (1.6)

The charge dispersion can be best visualized by plotting the transmon energy

levels as a function of gate charge ng. Fig. 1.7 shows that the first few energy

levels of the CPB (EJ/EC ∼ 1) are highly dependent on charge. Transition energies

(or frequencies) are represented by the differences between successive energy levels.

Note that in this plot, the lowest CPB transition frequencies varies between roughly

3 and 10 GHz. There are sweet spots at values ng = 1/2 +n (where n is an integer),
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where the first order charge noise goes to zero (see Section 1.3.2). As EJ/EC is

increased (via increasing the capacitance in parallel, thus reducing EC), the energy

levels become flatter. In the transmon limit, with EJ/EC ≥ 50, the energy spectrum

of the first few energy levels are practically insensitive to charge. The remaining

charge dependence is so small that reasonable parameters predict dephasing times

due to charge noise on the order of seconds.

The transmon qubit was developed at Yale [29, 30, 31] between 2007 and 2009.

Since then, the transmon has been adopted by many research groups around the

world, and is, at the time of writing, the most commonly used species of supercon-

ducting qubit.

1.2.2 Fluxonium

The fluxonium qubit, on the other hand, solves the CPB’s problem of charge noise

sensitivity by shunting the Josephson tunnel junction by a large inductance, as shown

in Fig. 1.8. A shunting inductor connects the two ends of the Josephson tunnel

junction, thus connecting any previously isolated pieces of superconductor. The

addition of this inductor destroys the charge quantization condition enforced on a

superconducting island [32]. However, as this inductance approaches infinity, the

properties of the circuit should match that as the CPB (which is effectively shunted

by an infinite inductance). Thus, this so-called fluxonium qubit is like a CPB whose

low frequency charge fluctuations are suppressed by the added inductor.

A derivation of the fluxonium energy level spectrum is given in Section 2.2.2.

The fluxonium qubit was developed at Yale [33, 34, 32, 35] around the same time the

transmon was developed. The original fluxonium qubits were fabricated and tested

by Vladimir Manucharyan, with subsequent improvements made by Nicholas Masluk

and Archana Kamal [36].
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Figure 1.7: First few energy levels of qubit consisting of a Josephson tunnel junction
in parallel to a capacitance plotted as a function of gate charge ng. The dependence
on gate charge differs significantly as the ratio of Josephson energy to charging en-
ergy (EJ/EC) is tuned from the CPB regime (EJ/EC ∼ 1) to the transmon regime
(EJ/EC ≥ 50). While the CPB suffers greatly from charge noise as a result of the
large transition frequency dependence on charge, the transmon can be made arbi-
trarily insensitive to charge fluctuations.
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Figure 1.8: Circuit schematic of a fluxonium qubit capacitively coupled to a linear
readout resonator. Note the lack of isolated islands in the fluxonium structure.

1.3 Coherence Limitations

There are many channels through which a qubit may relax or dephase, ultimately

leading to decoherence. These channels each have varying strengths depending on

the qubit species, parameters, and experimental setup. The most common sources

of relaxation and dephasing for superconducting qubits will be introduced in the

following sections.

1.3.1 Relaxation Sources

Participation Ratios

There are many sources of relaxation in every qubit; some of which may be orders of

magnitude stronger than others. In general, any material through which an electric

field is set or a current flows as part of the qubit mode, contributes to the relaxation

rate of the qubit. The loss of each material is defined in terms of a “loss tangent”

(tanδ), or inversely as a quality factor Q. The loss tangent of a dielectric insulating

material with permittivity of ε = ε′ − jε′′ is defined as tanδ = ε′′/ε′. The quality

factor for a given resonance is defined as 2π times the ratio of energy stored to energy
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dissipated per cycle. While loss mechanisms act in parallel, these quality factors do

not add directly; they add to the relaxation rate proportionally to their contribution

in the qubit mode. This is better explained in terms of “participation ratios” [37].

The overall qubit mode has a quality factor Q1 = ωgeT1. This quality factor may

be thought of as having contributions from electric field (capacitive loss), current

(inductive loss), and radiative loss, which add to yield the overall Q1 as shown in Eq.

1.7. Each of these groups themselves is made up of contributions of each material in

that group. For example, capacitive loss is due to in part to each material in which

electric field energy resides. Also, inductive loss is due in part to each material

through which current travels. Since relaxation of the qubit implies energy loss,

the energy that “leaves” the qubit by radiation to the outside instead of through

dissipation of a material introduces a third term Qrad; in cases where the qubit is

coupled to a cavity, this term is often called Purcell relaxation.

1

ωgeT1

=
1

Q1

=
1

Qcap

+
1

Qind

+
1

Qrad

(1.7)

Capacitive and inductive losses may be broken down into their constituent com-

ponents via Eqs. 1.8. Here, the contribution from each material or component is

is weighted by the fraction of energy stored. This fraction of energy stored in each

component is called the participation ratio, under the constraint
∑
picap = 1 and∑

piind = 1 signifying that the energy of a given capacitance or inductance is stored

somewhere. While some qubit or resonator designs may allow the participation ratios

to be estimated from rough calculations, in practice full high frequency simulations

are necessary to properly estimate participation ratios.

1
Qcap

=
pacap
Qacap

+
pbcap
Qbcap

+ . . .+
pncap
Qncap

1
Qind

=
paind
Qaind

+
pbind
Qbind

+ . . .+
pnind
Qnind

(1.8)

19



envt. 

cap. 

junction 

cap. 

junction 

ind. 

envt. 

ind. 

JCEC JL ELcap

EG
radG

radiation 

(Purcell) 

ind

EGind

JGcap

JG

Figure 1.9: Circuit schematic for generic qubit, including junction capacitance (CJ),
environment capacitance (CE), junction inductance (LJ), environment inductance
(LE), and the Purcell effect. Each element comes with an attached conductance that
represents the loss associated with that component.

Another way to think about these various loss mechanisms is to consider a res-

onant circuit representation in which each element comes with a resistor in parallel

representing that component’s loss. The resistors in parallel add to yield the total

loss. The participation ratio, in this view, leads to different currents in different

components; if there is a component with no current, its resistance does not count

towards the total. Fig. 1.9 shows the circuit breakdown for a generic qubit, in-

cluding the junction inductance and capacitance, the environment capacitance and

inductance, and the Purcell effect. This circuit is used for the fluxonium qubit loss

considerations in Chapter 7.

There are thus two ways to raise the overall quality factor of a given system: (1)

raise the quality factor of the components (Qi
cap, Q

i
ind, etc...) by changing materials

or changing fabrication techniques or (2) reduce the participation ratios of the lowest

quality components by changing the qubit design. However, it is often difficult to

know which component or loss mechanism is limiting any qubit. Information from
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the frequency dependence of T1 or the measurements of several devices can be used

to make educated guesses, as is done in Chapter 4 and Chapter 7.

In general, this formalism enforces a few rules that are important to remember.

While it may be tempting to learn about loss by minimizing the participation of

suspected components, it is the more difficult route to explore. If the suspected

component were indeed limiting T1, then an increase in T1 will be observed, but only

until some other component is dominating. Since an observed increase may be small,

it will be difficult to claim an improvement. Alternatively, one may purposefully

increase the participation of each component in turn in order to accurately place

bounds on the quality of each component. A measured value of T1 implies that the

quality factor of each component Qx > pxQ1. For example, if the participation of

a component is known to be 10% and the measured Q1 = 10,000, that means that

no matter what other components add to the loss, the Q of that component is at

least 1,000, but possibly much higher. This means that if this component’s Q were

lower than 1,000, the measured Q1 would be lower, but if it were higher than 1,000,

the measured Q1 would either increase (if Q1 was limited by this component), or

stay largely unchanged (if Q1 was limited by some other component). In the limit

of increasingly low participation, the bound becomes irrelevant. In the case where

other losses are negligible, then the Q of that component is exactly 1,000. Thus,

the higher the participation of a given component, the more stringent (and relevant)

the bound will be; in the limit of 100% participation, the bound is more of a direct

measurement.

Purcell Effect

The Purcell effect [38] has been well documented as a contribution to qubit relaxation

[39, 40], and in the case of qubits coupled to resonators can be considered the main
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contribution to the term Qrad. This qubit relaxation mechanism arises when the

qubit is coupled to a cavity that is coupled to a microwave line for readout and drive

purposes. Since the qubit and cavity are coupled, with a given set of parameters,

the dressed “qubit” mode partially inherits the properties of the undressed cavity

mode, including its Q factor. In other words, since the cavity mode is coupled to

a microwave line for measurement and stimulation, this coupling is passed on to

the qubit. The strength of this coupling is controlled by the qubit-cavity coupling

strength, the qubit-cavity detuning, and the cavity coupling quality factor. Assuming

the qubit is only coupled to a single cavity mode, and assuming the dispersive regime

of circuit QED (see Section 2.2.1), the Purcell limit of T1 is calculated as T1 = ∆2/κg2

where ∆ is the detuning between bare cavity and qubit frequencies, and κ is the

linewidth of the cavity mode. However, this simplified expression was shown not

to be a good approximation [31], and influence from higher cavity modes cannot be

ignored. The full expression for transmon qubits is shown in Eq. 1.9, where CΣ is

the capacitance of the transmon and Y (ωge) is the admittance as seen by the qubit.

Full 3D microwave simulations are the best way to obtain this admittance.

T purcell1 =
CΣ

Re [Y (ωge)]
(1.9)

TLS Dissipation

An example of a capacitive material loss is dissipation to two level systems (TLS).

Dielectric materials are often thought to have various defects both in the bulk and

especially on their surface. Certain defects may have two states (thus, a TLS) with an

difference in energy close to the qubit excitation energy. In this case, the qubit may

relax while exciting a defect TLS. Eventually the TLS may dissipate the energy in the

form of phonons into the substrate, thus preparing the TLS to absorb more energy
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from the qubit. This loss mechanism and its smoking-gun features are discussed in

detail in Chapter 4.

1.3.2 Dephasing Sources

In a manner similar to relaxation, there are many possible sources of dephasing.

Dephasing from drifts in the qubit frequency over time result in the qubit state

diffusing around the Bloch sphere instead of remaining steady. Any microscopic or

macroscopic process causing the qubit frequency to drift or fluctuate is a source of

dephasing; a few of these sources are discussed below. Possible sources that are not

included here are dephasing due to quasiparticle tunneling [41] and dephasing due

to EC variations [29].

Photon Induced Dephasing

As derived in Section 2.2.1 and discussed in Section 3.2.1, coupling a qubit to a

cavity introduces a term that makes the qubit frequency depend on the number of

excitations in the cavity: ωQ → ωQ + χNC . Thus, it is clear that if the number of

photons in the cavity fluctuates, then so does the qubit frequency. In the limit of

χ larger than the width of the qubit peak itself and assuming an average number

of photons n̄ & 0, a change of one photon in the cavity with width κ completely

dephases the qubit, resulting in a calculated dephasing rate [42] of:

T2 = (n̄κ)−1 (1.10)

The full expression [43] for any χ and n̄ is shown below.

Γ =
κ

2
Re

√(1 +
2iχ

κ

)2

+

(
8iχnth
κ

)
− 1

 (1.11)
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Offset Charge Noise

Another contribution to dephasing comes from offset charge fluctuations. For ex-

ample, fluctuations of the offset charge on the island of the CPB induce frequency

fluctuations. The sensitivity of a given qubit design to charge noise is characterized

by the slope ∂Ege/∂ng where Ege = ωge/~ is the energy difference between the ground

and excited state, and ng is the “gate charge”, the background offset charge of a given

superconducting island. A sweet spot for charge noise occurs when this slope goes

to zero, meaning small charge fluctuations do not shift the qubit frequency to first

order, thus leaving only second order fluctuations: δω ∝ (∂2ωge/∂n
2
g)δn

2
g. Dephasing

times can be calculated in general for a given slope and for the specific case of a

transmon (EJ/EC � 1) as shown in Eq. 1.12 [29]. Here A is a term denoting the

amplitude of charge fluctuations, and may be of the order 10−3 or 10−4 e [44]. Section

1.2.1 discusses the difference in charge noise between the CPB and transmon, and is

useful for understanding charge noise in general.

(general) T2 ∼ ~
A

∣∣∣∂Ege∂ng

∣∣∣2
(transmon) T2 ∼ ~

Aπ

∣∣∣∣−EC29
√

2
π

(
EJ

2EC

) 5
4
e−
√

8EJ/EC

∣∣∣∣−1 (1.12)

Flux Noise

Flux noise is another possible dephasing source, and results from flux fluctuations

through a superconducting loop that influences the qubit frequency. The source of

these fluctuations may be either from microscopic spins on the device surface or

fluctuations of an externally applied field, for example. The sensitivity of a given

qubit design to flux noise is characterized by the slope ∂Ege/∂Φ where Φ is the flux

through the loop under consideration. A sweet spot for flux noise occurs when this
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slope goes to zero, meaning small flux fluctuations do not shift the qubit frequency

to first order, thus leaving only second-order fluctuations: δω ∼ 1
2
(∂2ωge/∂Φ2)δΦ2.

Dephasing times can be calculated in general for a given slope and for the specific case

of a transmon as shown in Eq. 1.13 [29]. Here A is a term denoting the amplitude

of flux fluctuations, and may be of the order of 10−5 or 10−6 Φ0 [45].

(general) T2 ∼ ~
A

∣∣∣∂Ege∂Φ

∣∣∣−1

(transmon) T2 ∼ ~
A

Φ0

π

(
2ECEJ

∣∣∣sinπΦ
Φ0

tanπΦ
Φ0

∣∣∣)−1/2 (1.13)

Critical Current Noise

Yet another possible source of dephasing is critical current noise. One of the primary

parameters of a superconducting qubit is the Josephson energy EJ . This term is cal-

culated using the critical current of the Josephson tunnel junction EJ = I0~/2e, and

is physically derived from the thickness and area of the insulating layer. Fluctuations

in I0 can be converted into fluctuations in EJ , which in turn can be converted to

fluctuations in qubit frequency, in the case of the transmon via ωge =
√

8EJEC . The

source of critical current noise in a Josephson tunnel junction is often attributed to

a fluctuation in the number of transmission channels, possibly via defects fluctuating

between two states. The sensitivity of a given qubit design to critical current noise is

characterized by the slope ∂Ege/∂I0, where I0 is the critical current of the junction

under consideration. Dephasing times can be calculated in general for a given slope

and for the specific case of a transmon as shown in Eq. 1.14 [29]. Here A is a term

denoting the amplitude of critical current fluctuations, and it may be of the order

10−6 or 10−7 I0 [46].
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(general) T2 ∼ ~
A

∣∣∣∂Ege∂I0

∣∣∣−1

(transmon) T2 ∼ 2~
ĀEge

(1.14)

1.4 Thesis Overview

This dissertation discusses how the coherence times of superconducting resonators

and qubits have been improved through the analysis technique of participation ratios.

For superconducting qubits, the coherence time requirement of DiVincenzo’s criteria

has been the main obstacle in the way of further experiments. The work described

in this thesis shows that this obstacle has largely been removed, enabling a vast

array of experiments that were impossible to attempt even a few years ago. All

work described in this thesis was done in the group of Michel Devoret with strong

additional influence from the groups of Rob Schoelkopf, Steve Girvin and Leonid

Glazman.

On top of the introductions made in Chapter 1, Chapter 2 expands on the main

theoretical concepts of the resonators and qubits involved in this work, including

an alternative derivation of the Hamiltonian of a transmon coupled to a cavity, and

the energy spectrum and loss calculations of the fluxonium qubit. Chapter 3 details

the experimental techniques used for this dissertation, including a description of the

sample fabrication, a discussion about sample boxes, how qubit readout is performed,

and how various components and filters are hand-made.

There are four main experiments contained in this dissertation that led to an im-

provement in coherence times of four devices: planar resonators (Chapter 4), planar

transmons (Chapter 5), 3D transmons (Chapter 6), fluxonium qubits (Chapter 7).

For clarity, the evolution of transmon qubits will be described as three generations,
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and can be identified by the type of resonator they are coupled to: coplanar waveg-

uide (CPW) resonators (1st generation), compact resonators (2nd generation), and

3D cavity resonators (3rd generation).

Chapter 4 details an experiment (published as Ref. [47]) that measures the quality

factor of compact resonators as a function of geometrical parameters. In the end,

quality factors were improved by roughly a factor of 2 by optimizing the geometry,

as a result of measuring quality factors as a function of each parameter individually.

Quality factors were improved from roughly 70,000 for previous CPW resonators to

a median of 160,000 for the initial compact resonators to a median of 380,000 for the

optimized compact resonators.

Chapter 5 details an experiment that improved the coherence time of transmon

qubits by implementing the same geometrical design improvements as compact res-

onators. Called compact transmons because they were coupled to compact res-

onators, T1 times were improved by a factor of 3 over previous qubits, from a maxi-

mum of 4 µs to 13 µs. Coherence times were largely unchanged with the change to

compact transmons, with a maximum TR2 of about 3 µs.

The improvement in compact resonators and compact transmon coherence is due

to the impact of geometrical parameters on participation ratios. While the materials

were unchanged, the impact of dissipitive components was reduced. These exper-

iments served as a confirmation of the validity of the participation ratios analysis

technique. The idea of participation ratios is then pushed to its limit in the 3D

transmon, describded in Chapter 6, with its drastically simplified mode structure

and further reduction of surface participation. This development originated at Yale

and has spread within a couple of years to most superconducting qubit groups, and

represented an immediate jump of a factor of 5 from the compact transmons and a

factor of 15 from CPW transmons. This chapter also mentions how coherence times
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were improved another factor of 2 from initial 3D transmons, leading in the end to

approximately 100 µs for both T1 and T2. This chapter also describes an experiment

(published as Ref. [48]) that tested a new scheme to initialize a qubit to the ground

state called the Double Driven Reset of Population (DDROP) method. This method

is quick to calibrate and use, and does not rely on feedback, high fidelity readout, or

precisely tuned pulses, making it easy to use and a big help towards achieving the

initialization requirement of DiVincenzo’s criteria.

The notion of participation ratios is then extended with the fluxonium, described

in Chapter 7, which borrows the simplified geometry of the 3D transmon combined

with a decreased sensitivity to dissipation. The decreased sensitivity to loss is due

to wavefunction symmetries and is calculated in Chapter 2. The improvements over

previous fluxonium implementations include a redesign of the superinductance junc-

tion fabrication and cavity format. Relaxation times were improved by over a factor

of 100, from of order 10 µs to over 1 ms, and coherence times were improved by a

factor of 3 from roughly 15 µs to roughly 50 µs. Relaxation times as a function of

frequency are fit to a predicted dependence including quasiparticle loss, dielectric

loss, and loss due to the Purcell effect. In addition, the measurement of a peak in

T1 times at the half-flux symmetry point represents a smoking-gun measurement of

coherent tunneling of quasiparticles across a Josephson tunnel junction.

In summary, the coherence times of each resonator and qubit type have been

improved significantly through the application of the participation ratio analysis,

indicating that coherence times are no longer the main limitation of superconducting

quantum information systems. The overall trend of the improvement of qubit and

cavity lifetimes since the first superconducting qubit experiments can be seen in the

summary plot below; the contributions of this thesis on the right side of the plot

are evident. A comparison between Moore’s law concerning the number and cost
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Figure 1.10: Qubit T1 and T2, along with cavity lifetimes, are plotted as a function
of year since the first superconducting qubit experiments. Typically, samples that
produced new record values at the time of measurement were included. The results
from compact resonators, 3D Transmon and fluxonium from this thesis are shown.

of transistors on integrated circuits can be made with superconducting qubits. As

shown in this plot, “Schoelkopf’s law” observes that individual qubit relaxation and

coherence times increase at a rate of approximately a factor of ten every three years.

Over the course of the next few years, the superconducting qubit community will

continue performing experiments on multiple qubit algorithms, QND measurements,

and error correction. If all goes well, qubit architectures will arise that support

logical qubits: manifestations of a larger system that act as single qubits that live

longer than any single physical qubit. From there, operations and algorithms on

logical qubits will hopefully follow, which at some point in the future may lead to

the holy grail of fault-tolerant quantum computation [49].
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CHAPTER 2

Resonator and Qubit Theory

2.1 Resonator Theory

2.1.1 2D Resonator Theory

An on-chip resonator is formed from thin-films deposited onto a substrate. The two

commonly used substrates for superconducting qubits are silicon and “sapphire”. It

should be noted that the sapphire substrate that we use is actually corundum, or

pure Al2O3, without the amount of impurities characterizing usual sapphire gems.

Both silicon and sapphire (corundum) substrates can be ordered commercially with

basically any specified thickness or diameters (up to 12”). The resonator structure is

defined from the patterning of a thin metallic film which is deposited on the surface

of the substrate. The metal can either be selectively deposited on the substrate, or

deposited everywhere and selectively removed via etching. Selectivity is provided by

a thin coating of a plastic material which is patterned by ultraviolet light or electron-

beam lithography. Deposition is performed by evaporating the metal from a crucible

onto the substrate; the thickness is determined from the rate of evaporation and the

time.
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In principle, any metal that can be evaporated can be used for a 2D resonator,

but in the search for high quality factors, only superconducting materials are used,

including: Al, Nb, TiN, NbTiN, and sometimes Re [50, 51, 52]. The thickness

of the thin-film can vary from a few nanometers to a few microns depending on the

application. The superconducting critical temperature (Tc) of each of these materials

is between 1 K and 10 K, although the observed Tc, even for a given material, can

vary depending on deposition parameters and film thickness. For experiments in this

thesis, substrates of between 100 µm to 500 µm and film thicknesses between 10 nm

and 200 nm were used.

There are several styles of planar resonators, each characterized by a unique elec-

tric and magnetic field pattern. One of the most commonly used on-chip resonator

styles is the “coplanar waveguide” (CPW) resonator. The CPW resonator is char-

acterized by two open strips cut into a metal plane, creating a central feedline and

a plane on either side. The electric field travels in the two slots, with the voltage

applied between the two ground planes and the central feedline. A CPW resonator is

formed by interrupting a CPW trace with two impedance discontinuities: each either

an inductance to ground or more commonly, a capacitor in the feedline. These inter-

ruptions cause the microwaves to reflect, defining resonant frequencies when standing

waves are produced in the space between the two interruptions, in a manner equiva-

lent to a Fabry-Perot cavity. The fundamental mode frequency (f0) is defined as the

frequency at which the length between the interruptions is exactly half of a wave-

length. There are additional, equally spaced, modes at Nf0 corresponding to a full

wavelength, 3/2 wavelengths, etc.

An alternative resonator design is the compact resonator, discussed at length

in Chapter 4. Compact resonators, while still physically consisting of a thin-film

deposited on a substrate, are distinct from CPW resonators because they consist of
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a largely inductive region in parallel to a largely capacitive region. The inductive

region is simply a thin length of wire, and the capacitor is two blocks of metal

separated by some distance. The “lumped” approximation yields a resonance in

which the voltage of the capacitor oscillates 90 degrees out of phase with the current

in the inductor. The name “compact” indicates that these resonators are much

smaller in size than CPW resonators while still not being fully lumped: the elements

are not much smaller than a quarter wavelength. Compact resonators do not have

equally spaced resonances; simulations predict a factor of 5 between the fundamental

resonance and the second resonance. Truly lumped resonators will display much

larger ratios.

2.1.2 3D Resonator Theory

While 2D resonators are quite flexible in design and small in size, they have some

major limitations. Since vacuum is always by far the lowest loss material, it does

not seem reasonable to concentrate the electromagnetic energy near the surface of

the chip. While the debate over the exact loss tangent of sapphire or silicon at low

power and low temperature is still going on, it is clear that a large participation of

vacuum is better.

In much the same way a CPW resonator was formed from terminating a specific

length of CPW transmission line, one can terminate a specific length of 3D rectan-

gular waveguide in order to make a 3D resonator. The termination on either end

of the resonator must be a short, otherwise the ends of the waveguide would radi-

ate. Thus this 3D waveguide resonator is simply composed of a “cavity”, a region of

vacuum bounded on all sides by metal. This simple geometry highlights the other

main advantage over planar resonators: there is no Printed Circuit Board (PCB),

wirebonds, or glue included in the resonating structure.
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To find the fundamental mode of a rectangular cavity with side lengths d > a > b

(shown in Fig. 2.1), one must match the boundary conditions imposed by the metal

surrounding the cavity. As with any rectangular waveguide, only TE and TM modes

are supported. Derived in many textbooks [53], the frequencies of the TEmnl and

TMmnl modes can be calculated via Eq. 2.1, with indices m, n, and l corresponding

to the number of half-wavelengths in each direction (a, b, and d, respectively) of the

cavity, and c the speed of light.

fmnl =
c

2π

√(mπ
a

)2

+
(nπ
b

)2

+

(
lπ

d

)2

(2.1)

The fundamental mode of this cavity is the TE101, where the length along the

waveguide propagation direction is half a wavelength, in much the same way of a

CPW resonator. Here, the shortest two sides form the cross-section of the waveguide

and the longest side is the direction of propagation. The electric field of this mode is

shown in Fig. 2.1. While the electric field everywhere in the cavity is pointing in the

y direction, the shape of the magnitude dependence determines the mode structure.

For the TE101 mode, as shown in the subsets of Fig. 2.1, the magnitude is constant

in the y-direction while half an oscillation is observed in both the x and z-directions,

hence the numbers 1-0-1.

The frequency of higher modes can be calculated from Eq. 2.1, and their electric

field structure can be drawn easily by forcing the right number of half wavelengths in

each direction. While there are some influences of the higher modes in calculations

such as the Purcell effect (see Section 1.3.1), for the experiments in this thesis, only

the TE101 mode is used intentionally.
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Figure 2.1: Rectangular cavity with side lengths d > a > b in the z, x, and y
directions, respectively. Details of the TE101 (fundamental) mode of the cavity are
shown. The electric field is entirely the y-direction and itsdependence of magnitude
along each axis is shown in the insets. For this mode, the field is constant in the
y-direction, while half an oscillation is observed in both the x and z-directions.

2.2 Superconducting Artificial Atom Theory

2.2.1 Transmon Theory

Since the transmon is so widely used, there are many useful sources for transmon

derivations and analyses [29, 23, 30, 31, 54, 55]. For this reason, a derivation of

the transmon parameters will not be repeated here: equations for the energies (1.5)

and charge dispersion (1.6) are given in Section 1.2.1. While the Jaynes-Cummings

Hamiltonian has often been used in the past, its assumption of infinite anharmonic-

ity is not well suited for the small anharmonicity of the transmon. A recent anal-

ysis by Nigg et al. [56] proposes a fully quantum, generalized multimode method

for determining the Hamiltonian of a weakly anharmonic system. A semi-classical

derivation of the Hamiltonian of a transmon coupled to a single resonator mode from

the impedance seen across the junction has been first achieved by Shyam Shankar
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and Michel Devoret.

Anharmonic Oscillator Derivation of transmon Equations

The Jaynes-Cummings Hamiltonian, shown in Eq. 2.2 is a general Hamiltonian

for describing a two-level system coupled to a harmonic oscillator, and has been

frequently used in many transmon studies [29]. Here ωR and ωQ are the resonator

and qubit resonant frequencies, respectively, a and a† are the cavity raising and

lowering operators, σ− and σ+ are the qubit raising and lowering operators, and g is

the qubit-cavity coupling strength.

HJC = ~ωR
(
a†a+

1

2

)
+

~ωQ
2
σz + ~g

(
a†σ− + aσ+

)
(2.2)

However, with its reduced anharmonicity in the high EJ/EC limit, a two-level

system is a poor approximation for a transmon. The transmon can be more accu-

rately represented as a slightly anharmonic resonator, treating the anharmonicity

as a perturbation. The theory of an anharmonic oscillator coupled to a harmonic

oscillator will now be derived as an alternative to the Jaynes-Cummings model.

Starting from the circuit model of a transmon coupled to a harmonic oscillator,

shown in Fig. 2.2, the Hamiltonian can be written by summing the energy of each

capacitor, inductor, and Josephson tunnel junction. The notation used here is such

that the capacitances are: CR, the resonator capacitance, CS, the direct shunting

capactiance of the transmon, and CC , the effective total capacitance between the

transmon and resonator. With details available in Chapter 2 of Ref. [57], the Hamil-

tonian of this circuit can be written as Eq. 2.3. Here, the terms in sequence are

from: the cavity (mode 1), the qubit (mode 2), and the coupling; also the Qi and φi

represent the charge and phase of the respective capacitors and inductors.
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Figure 2.2: Lumped element model of transmon qubit (dashed green box) coupled
to resonator (dashed blue box). Particular shunting capacitances CS and coupling
capacitances CC are needed in order to obtain a desired qubit frequency and coupling
strength.
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H =

(
Q2

1

2

1

CR + (CC ||CS)
+

φ2
1

2LR

)
+

(
Q2

2

2

1

CS + (CC ||CR)
− EJcos

(
φ2

φ0

))
+

Q1Q2
CC

CRCS + CSCC + CCCR
(2.3)

In order to approximate the qubit mode as a harmonic oscillator, one must expand

the cos
(
φ2

φ0

)
term in the limit of small φ2, as shown in Eq. 2.4. Rewriting the above

Hamiltonian and defining LJ = φ2
0/EJ , there are now two harmonic oscillator modes,

along with a separate anharmonicity term of the qubit mode, shown in Eq. 2.5.

cos

(
φ2

φ0

)
= 1− 1

2!

φ2
2

φ2
0

+
1

4!

φ4
2

φ4
0

+ . . . (2.4)

H =

(
Q2

1

2

1

CR + (CC ||CS)
+

φ2
1

2LR

)
+

(
Q2

2

2

1

CS + (CC ||CR)
+

φ2
2

2LJ

)
+Q1Q2

CC
CRCS + CSCC + CCCR

− 1

4!

φ4
2

LJφ2
0

(2.5)

Now, several substitutions are made to covert to convert these classical pa-

rameters into quantum operators. They introduce the resonant frequencies and

impedances (ωa, ωb, Za, Zb) and raising and lowering operators for each mode in

terms of φi and Qi: a and a† for the cavity, b and b† for the “harmonic” qubit mode.

Also introduced at this point is the coupling strength g and qubit coupling energy EC

both expressed in terms of capacitances. The resulting Hamiltonian can be split into

that of two coupled harmonic oscillators (H0) and the anharmonicity perturbation

(H1), shown in Eq. 2.7.
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φa = (a+ a†)
√

~Za
2

φb = (b+ b†)
√

~Zb
2

Qa = a−a†
i

√
~

2Za
Qb = b−b†

i

√
~

2Zb

Za =
√

LR
(CR+(CC ||CS))

Zb =
√

LJ
(CS+(CC ||CR)))

ωa = 1√
LR(CR+(CC ||CS))

ωb = 1√
LJ (CS+(CC ||CR))

g = 1
2

√
ωRωQ

CC√
(CR+CC)(CS+CC)

EC = e2

2(CS+(CC ||CR))

(2.6)

H0 = ~ωa
(
a†a+ 1

2

)
+ ~ωb

(
b†b+ 1

2

)
+ ~g

(
a†b+ ab†

)
+ ~g

(
ab+ a†b†

)
H1 = −EC

12

(
b† + b†

)4
(2.7)

In this simplified expression for H0, the term ~g
(
ab+ a†b†

)
can be ignored due

to the rotating wave approximation in the case where g � ωa, ωb. The two modes

at frequencies ωa and ωb are the bare modes, which are not eigenmodes of the cou-

pled system. The coupling introduces a dressing which redefines these two resonant

modes (this redefinition is also key to understanding the Purcell effect on relaxation,

see Section 1.3.1). Ignoring the anharmonic term for now, one can diagonalize the

Hamiltonian matrix. This yields two dressed modes, whose raising and lowering op-

erators are given by Eq. 2.8, and dressed frequencies which corresponds to a linear

combination of bare qubit and bare cavity frequencies. The dressed frequencies are

given in Eq. 2.9, where ∆ is the difference between the bare resonant frequencies

ωb−ωa. The Hamiltonian in terms of the new raising and lowering operators A, A†,

B, and B† is shown in Eq. 2.10.
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 a

b

 =

 λa µa

λb µb


 A

B


 λa µa

λb µb

 =

 −g
√

1+ 1
4g2

(
∆+
√

4g2+∆
)2

4g2+∆2 −∆−
√

4g2+∆2

2

√
1+ 1

4g2

(
∆+
√

4g2+∆2
)2

4g2+∆2

g

√
1+ 1

4g2

(
∆−
√

4g2+∆
)2

4g2+∆2

∆+
√

4g2+∆2

2

√
1+ 1

4g2

(
∆−
√

4g2+∆2
)2

4g2+∆2


(2.8)

ωA = 1
2

(
ωa + ωb −

√
4g2 + ∆2

)
ωB = 1

2

(
ωa + ωb +

√
4g2 + ∆2

) (2.9)

H0 = ~ωA
(
A†A+

1

2

)
+ ~ωB

(
B†B +

1

2

)
(2.10)

The energy levels of the dressed Hamiltonian can be calculated also using the

number operators NA and NB quantifying the number of excitations in each oscilla-

tor.

ENA,NB = ~ωA
(
NA +

1

2

)
+ ~ωB

(
NB +

1

2

)
(2.11)

Since ωA and ωB are the dressed frequencies, neither correspond directly to the

qubit or cavity mode. However, in the limit of small g/∆, the dressed frequencies

approach the bare frequencies, ωA → ωR and ωB → ωQ. The coupled resonant

frequencies are plotted versus ∆ in Fig. 2.3, showing that when ∆ = 0, the coupling

creates an avoided crossing of 2g. At this point, qubit and cavity are maximally

coupled and each mode is half-qubit, half-cavity.

Returning to the anharmonic term H1, b and b† must be replaced with the dressed

operators. The anharmonicity is characterized by the energy EC in Eq. 2.7, and rep-

resents the difference in energy between the first and second transitions in the qubit
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Figure 2.3: Dressed (red,blue) and bare (grey) frequencies as a function of detuning.
Avoided crossing of frequency 2g is observed when ∆ = 0. Far from avoided crossing,
qubit and cavity mode can be identified, but at the avoided crossing, each mode is
part qubit and cavity.

spectrum. Typical transmon parameters yield EC/h = 300 MHz; with ωA, ωB ' 5-

10 GHz, EC can be treated as a perturbation. Terms of order E2
C will thus be ignored.

Collecting only the diagonal terms of
(
b+ b†

)4
after the substitution of the dressed

operators yields Eq. 2.12 in terms of the parameters characterizing the dressed op-

erators in terms of the bare operators, λa, λb, µa, and µb. The resulting energy levels

of the complete Hamiltonian H = H0 +H1 are given in Eq. 2.13.

H1 ' −EC
(
λ2
bA
†A+ µbB

†B
)
− EC

2

(
λ4
bA
†2A2 + µ2

bB
†2B2 + 4λ2

bµ
2
bA
†AB†B

)
(2.12)

ENA,NB = ~ωANA + ~ωBNB − EC
(
λ2
bNA + µ2

bNB

)
− EC

2

(
λ4
b

(
N2
A −NA)

)
+ µ4

b

(
N2
B −NB

)
+ 4λ2

bµ
2
bNANB

)
(2.13)
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These energy levels can be expressed in a much more understandable manner by

making the following definitions. ω′A and ω′B are shifted resonant frequencies due to

the anharmonicity. χA and χB are self-Kerr terms, and represent a shift in resonant

frequency due to photons in the same mode. Non-zero self-Kerr means that each

mode is now anharmonic, with transition frequencies changing with each additional

photon. The redefinition of modes from a and b to A and B spread the anharmonicity

from the qubit mode to the cavity mode. The term χAB, called the cross-Kerr is

perhaps the most interesting, representing either a shift in ω′A due to excitations in

mode B or a shift in ω′B due to excitations in mode A. This term is the basis of all

qubit readout in circuit QED [23, 58] (see Section 3.2). The qubit-cavity Hamiltonian

with these substitutions is given in Eq. 2.15, with energy levels given in Eq. 2.16.

ω′A = ωA − ECλ2
b + EC

2
λ4
b

ω′B = ωB − ECµ2
b + EC

2
µ4
b

χA = −EC
2
λ4
b

χB = −EC
2
µ4
b

χAB = −EC
2

(4λ2
bµ

2
b)

(2.14)

H = ~ω′A
(
A†A+

1

2

)
+~ω′B

(
B†B +

1

2

)
+χA

(
A†A

)2
+χB

(
B†B

)2
+χAB

(
A†AB†B

)
(2.15)

ENA,NB
~

= ω′ANA + ω′BNB + χAN
2
A + χBN

2
B + χABNANB (2.16)

The full expressions for the self-Kerrs and the cross-Kerr in terms of g, EC and ∆

are, for reference, given in Eqs. 2.17. The often-quoted and highly useful results from

the Jaynes-Cummings model can be derived by simplifying these expressions in the
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limit where g/∆ is small. This limit corresponds to when the detuning between qubit

and cavity modes is large enough compared to the coupling strength, that the qubit

and cavity modes can almost be treated separately. The coupling can then be treated

to first order in g/∆. These simplified expressions are shown in Eqs. 2.18. Also in

this limit ω′A → ωA and ω′B → ωB−EC/2. From these expressions, one can calculate

the anharmonicities, showing that the cavity is now approximately harmonic, and

the qubit has anharmonicity −EC . In this dispersive limit, the Hamiltonian can be

simplified as shown in Eq. 2.19, including a simple renaming of modes A and B to

Q and C since the qubit and cavity are well-separated. To match common notation,

anharmonicity χB is replaced with α (≡ 2χ) and dispersive shift χAB is simplified to

χ.

χA = −EC g
4

2

(
1+ 1

4g2

(
∆−
√

4g2+∆2
)

4g2+∆2

)2

χB = −EC
(

∆+
√

4g2+∆2
)4

32

(
1+ 1

4g2

(
∆−
√

4g2+∆2
)

4g2+∆2

)2

χAB = −EC
g2
(

∆+
√

4g2+∆2
)2

2

(
1+ 1

4g2

(
∆−
√

4g2+∆2
)

4g2+∆2

)2

(2.17)

χA → 0

χB → −EC 1
2

χAB → −2EC
g2

∆2

(2.18)

H = ~ωC
(
A†A+

1

2

)
+ ~ωQ

(
B†B +

1

2

)
+ ~α

(
B†B

)2
+ ~χ

(
A†AB†B

)
(2.19)

In summary, this coupled harmonic oscillator approach to calculating the trans-

mon equations is a valid alternative to the Jaynes-Cummings model. This approach

treats the qubit anharmonicity as a small parameter, as opposed to treating the

42



qubit as a two-level system. While the two-level approximation works well for CPBs,

the anharmonicity for transmon qubits, by design, is quite low; thus this approach

is more natural in the case of the transmon. Reassuringly, the results are equivalent

when the dispersive limit is taken.

2.2.2 Fluxonium Theory

Superinductance

The fluxonium qubit, as introduced in Section 1.2.2, differs from the transmon in

that it is composed of a Josephson tunnel junction shunted by a large inductance

instead of a large capacitance. This inductance shunts charges across the junction

islands and protects the circuit from low-frequency charge fluctuations. To create

the energy spectrum of fluxonium, described below, this shunting inductance must

be very high; so high in fact that its impedance must be higher than the resistance

quantum. This regime is completely unreachable with geometric inductance due to

the presence of self-resonant frequencies (associated with the self-capacitance of any

geometric inductor). Utilizing Josephson tunnel junction kinetic inductance, an array

of Josephson tunnel junctions is a good approximation to a linear inductor in the

limit of low phase across each junction (sinϕ → ϕ). This inductance, able to reach

impedances much higher than the resistance quantum, is called a “superinductance”,

and alone is responsible for many interesting experiments [59, 36].

There are four design considerations and constraints that should not be ignored

when designing a superinductance for a fluxonium qubit [33]. The parameters of

concern are shown in Fig. 2.4: LJA, the inductance of a single array junction, CJA,

the capacitance of a single array junction, Cg, the capacitance of a junction island to

ground, ZJ =
√
LJ/CJ , the impedance of the qubit junction, ZJA =

√
LJA/CJA, the
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Figure 2.4: Circuit schematic of the fluxonium qubit highlighting the various param-
eters. The qubit junction is shown on top, shunted by a series of array junctions.
Each junction is composed of a capacitance and an inductance, CJ and LJ for the
qubit junction and CJA and LJA for array junctions. The parameter NA counts
the number of array junctions. The parasitic capacitance to ground is shown by
additional capacitances Cg from the islands between array junctions to the ground.
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impedance of a single array junction, NA, the number of junctions in the array, and

RQ = ~/(2e)2, the resistance quantum. The first constraint is that NALJA � LJ ,

where LJ is the inductance of the qubit junction; this allows the loop to support

large flux variations instead of large charge variations. The second constraint is that

in order to reduce the island offset charge, the size of the array junction must be

chosen such that e−8RQ/ZJA � 1. The lower this exponential, the lower the offset

charge. The third constraint, NAe
−8RQ/ZJA � e−8RQ/ZJ prevents the array from

being subject to phase slips. The last constraint limits the number of junctions in

the array to NA <
√
CJA/Cg as a means of ensuring self-resonant modes of the array

are at a high enough frequency.

Energy Levels

While a detailed derivation of the fluxonium energy spectrum is included in the

recent thesis of Nick Masluk [36], a summary will be provided here to facilitate basic

understanding of the method. The energy levels of the fluxonium artificial atom can

be calculated from the potential energy landscape as a function of the phase across

the junction by diagonalizing the Hamiltonian matrix in the harmonic oscillator

basis. The fluxonium Hamiltonian (without the cavity) in the phase basis is shown

in Eq. 2.20; the terms are the energies of the capacitor (EC), inductor (EL), and

junction (EJ), respectively. These energies are defined in Eqs. 2.21, where LJ is

the inductance of the qubit (or “phase-slip”) junction, LA is the shunting (junction

array) inductance, and CJ is the qubit junction capacitance.

H = −4EC
∂2

∂ϕ̂2
+
EL
2
ϕ̂2 + EJcos (ϕ̂) (2.20)

45



EJ = (Φ0/2π)2

LJ
EC = e2

2CJ
EL = (Φ0/2π)2

LA
(2.21)

The first two terms make up a harmonic LC oscillator whose wavefunctions (ψl)

are known to be Hermite polynomials [60] (Hl), where the quantum number l repre-

sents the excitation number and φ0 is the zero point motion.

ψl(ϕ) =
1√

2ll!
√
πφ0

e
− 1

2

(
ϕ
φ0

)2

Hl

(
ϕ

φ0

)
(2.22)

φ0 =

(
8EC
EL

)1/4

(2.23)

Due to the presence of the cosine term in the energy, these wavefunctions of the

harmonic oscillator are not eigenfunctions of the fluxonium. The Hamiltonian matrix

for the fluxonium can be completed by using the harmonic oscillator energies as

diagonal elements and adding the off-diagonal elements from the cosine term as shown

in Eq. 2.24, where the m, n are the matrix indices. The elements 〈ψm(ϕ)| sinϕ̂ |ψl(ϕ)〉

and 〈ψm(ϕ)| cosϕ̂ |ψl(ϕ)〉 evaluate to associated Laguerre polynomials.

〈ψm(ϕ)|EJcos
(
ϕ̂− 2πΦext

Φ0

)
|ψl(ϕ)〉

=


EJsin

(
2πΦext

Φ0

)
〈ψm(ϕ)| sinϕ̂ |ψl(ϕ)〉 , if l +m is odd

EJsin
(

2πΦext
Φ0

)
〈ψm(ϕ)| cosϕ̂ |ψl(ϕ)〉 , if l +m is even

(2.24)

To calculate the fluxonium wavefunctions and energies, the Hamiltonian matrix

is diagonalized, with the resulting eigenvectors representing the fluxonium eigen-

functions as linear superpositions of the harmonic oscillator wavefunctions, and the

eigenenergies the fluxonium energy levels. In general, fluxonium potential can be
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Figure 2.5: Wavefunctions and energy potential shown in the phase basis for first two
eigenstates of the fluxonium artificial atom, with EJ = 10.2 GHz, EC = 3.6 GHz, and
EL = 0.46 GHz. Ground (blue) and excited (red) wavefunctions change shape and
character considerably as the knob of external flux is varied from zero to half-flux.

thought of as a sine wave on top of a parabola, with the ratio EJ/EL controlling how

many local minima are found in the potential. The parameter regime of fluxonium

is when there are approximately 3 or 4 local minima, corresponding to EJ/EL ≈ 20.

For parameters EJ = 10.2 GHz, EC = 3.6 GHz, and EL = 0.46 GHz (the parameters

of one of the samples in chapter 7), the fluxonium wavefunctions in the phase basis

can be seen at various applied flux values in Fig. 2.5. At zero applied flux, the ground

state resides in the center well, and the excited state is anti-symmetrically split be-

tween the two side wells. At half flux, there are two equal center wells; the ground

and excited states are symmetric and antisymmetric combinations of these two wells.

This highly variable character is what makes the fluxonium a rich playground for in-

teresting physics, yielding effects such as the insensitivity to quasiparticle tunneling

at half-flux quantum, as shown in Section 7.5.

This strong variation in wavefunctions versus flux produces a transition spectrum

whose lowest (|g〉 to |e〉) (qubit) transition varies over a wide range, typically from

around 500 MHz to around 8 GHz. The transition from |g〉 to |f〉, denoted as

frequency fgf , on the other hand, varies much less as the flux is varied. The readout
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strength can be thought of as derived from the difference in frequency from this

transition to the cavity frequency. While the fge transition can be detuned far from

the cavity, the coupling strength is maintained due to the proximity of the |g〉 to

|f〉 transition. Details of the calculation of qubit-cavity coupling strength for the

fluxonium can be found in Nick Masluk’s thesis [36]. Unlike the transmon, the

fluxonium-cavity system is well represented by the Jaynes-Cummings Hamiltonian

(see Section 2.2.1) since its anharmonicity is larger.

The three parameters EJ , EC and EL each control the transition spectrum in

their own way. The parameter EJ/EC determines the splittings between fge and fef

at zero flux and between 0 and fge at half flux by roughly determining the number

of excitations in each well of the sine wave potential. Low EJ/EC leads to large half-

flux frequencies. In the potential, EL describes the height of the parabola compared

to the sine wave period; large EL leads to a “tall” parabola with few oscillations,

while small EL leads to a low parabola such that the overall potential is simply a sine

wave. In the transition spectrum, EL controls the slope of the linear portion between

zero and half-flux. With the frequency at half-flux fixed, the slope is the dominant

factor in determining the frequency at zero flux. For the qubit to be considered

a fluxonium, the parameters must match approximately 2 < EJ/EC < 5 and

EL ∼ 0.5 GHz.

Loss Calculations

Since the fluxonium qubit is tunable over a wide range of frequencies, this can be

exploited as a means to learn about loss mechanisms. Each loss mechanism is pre-

dicted to have a unique dependence on frequency for the fluxonium; comparing the

expected dependencies with measured relaxation times can help elucidate which loss

mechanisms are dominating in any given qubit. Again, details are given in Nick
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Figure 2.6: Transition spectrum of fluxonium qubit with EJ = 10.2 GHz,
EC = 3.6 GHz, and EL = 0.46 GHz. Transitions shown are the first three tran-
sitions from the ground state, with frequencies denoted as fge, fgf , and fgh. The
lowest (qubit) transition varies from 8 GHz to 500 MHz.

49



Masluk’s thesis [36], with basics described here.

As mentioned in Section 1.3.1, each component of a circuit can contribute to qubit

relaxation with its own lossy component. These losses are combined in parallel, with

rates that simply add to yield a total effective relaxation rate. The loss mechanisms

considered for the fluxonium qubit are capacitive loss in both the qubit junction

capacitance and the environmental capacitance, inductive loss in the qubit junction

due to quasiparticles, inductive loss in the junction array, and loss due to the Purcell

effect, i.e. radiative losses. These losses are called “capacitive”, “quasiparticle”,

“inductive”, and “Purcell”, respectively.

Each loss mechanism is characterized by a coupling Hamiltonian, HC = ĈX̂,

where Ĉ is the operator that couples to the noise of X̂. Using Fermi’s golden rule,

the qubit relaxation (Γ↓C) and excitation (Γ↑C) rates can be calculated from Eqs.

2.25, the observed qubit relaxation time can then be calculated as 1/T1 = Γ↓C + Γ↑C .

The frequencies used are defined as ~ωge = Ee − Eg and ~ωeg = Eg − Ee. The

term SXX [ω] is the spectral density of fluctuations in X̂ given by Eq. 2.26, derived

from the quantum fluctuation dissipation theorem [61]. The part of the spectral

density that depends on the environment density of states is the real part of the

admittance of the element under consideration, Re [YC (ω)]. The matrix element of

the coupling operator and this admittance are different for each loss mechanism and

are responsible for the different frequency dependencies.

Γ↓C = 1
~2

∣∣∣〈e| Ĉ |g〉∣∣∣2 SXX (ωge)

Γ↑C = 1
~2

∣∣∣〈e| Ĉ |g〉∣∣∣2 SXX (ωeg)
(2.25)

SXX [ω] = ~ωRe [YC (ω)]

(
coth

(
~ω

2kBT

)
+ 1

)
(2.26)

For capacitive loss, here lumping both junction capacitance and environmental
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Figure 2.7: Plots showing (a) ϕ̂ matrix element and (b) ω2
ge, the factors largely

responsible for the frequency dependence of capacitive loss, here plotted as a function
of applied flux for a fluxonium qubit with the same parameters as Fig. 2.6. Plot (c)
combines these factors to show that predicted T1 depends only slightly on applied
flux; the overall magnitude of T1 is then controlled solely by the scale factor Qcap.

capacitance into one effective capacitance CΣ, although this capacitance is largely due

to the junction capacitance, the coupling Hamiltonian and admittance are given in

Eqs. 2.27, and the calculated relaxation rate is given in Eq. 2.28, where the amount

of loss is controlled by the quality factor Qcap. Fig. 2.7 shows the calculation of the

matrix element |〈e| ϕ̂ |g〉|2 and ω2
ge as a function of flux. According to Eq. 2.28, these

two factors are combined, along with basically a scaling factor, to give the relaxation

rate, also shown in Fig. 2.7 for Qcap = 1,000,000. Note that the matrix element

and frequency terms have nearly equal, but opposite dependencies. This leads to a

relaxation rate, and thus a T1, that is largely independent of frequency.

Hcap
C = −Φ̂Îcap = −φ0ϕ̂Îcap

Re [Ycap (ω)] = ωCΣ

Qcap

CΣ = e2

2EC

(2.27)

Γcap =
~

8ECQcap

(
coth

(
~ωge
2kBT

)
+ 1

)
ω2
ge |〈e| ϕ̂ |g〉|

2 (2.28)
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Figure 2.8: (a) Plot showing the ϕ̂ matrix element, the only major factor responsible
for the frequency dependence of inductive loss, here plotted as a function of applied
flux for a fluxonium qubit with the same parameters as previously. Plot (b) shows
that the predicted T1 has the same, but inverted dependence as a function of applied
flux; the overall magnitude of T1 is then controlled solely by the scale factor Qind.

For inductive loss, here considering the total inductance LΣ, which is almost

entirely due to the array inductance LA, the coupling Hamiltonian and admittance

are given in Eqs. 2.29, and the calculated relaxation rate is given in Eq. 2.30,

where the amount of loss is controlled by the quality factor Qind. Fig. 2.8 shows

the calculation of the matrix element |〈e| ϕ̂ |g〉|2, the same as with capacitive loss.

According to Eq. 2.30, this is the only factor with substantial frequency dependence,

and thus the plot of expected T1 for a constant Qind of 1,000,000, shown in Fig. 2.8

has the inverse dependence versus applied flux as the matrix element.

H ind
C = −Φ̂Îind = −φ0ϕ̂Îind

Re [Yind (ω)] = 1
ωLΣQind

LΣ =
φ2

0

2EL

(2.29)

Γind =
EL

~Qind

(
coth

(
~ωge
2kBT

)
+ 1

)
|〈e| ϕ̂ |g〉|2 (2.30)

For quasiparticle loss in the qubit junction (quasiparticle loss in the array would
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be considered inductive loss), the coupling Hamiltonian and admittance are given in

Eqs. 2.31 where Gt is the tunneling conductance of a given junction. The calculated

relaxation rate is give in Eq. 2.32, where the amount of loss is controlled by the

density of broken Cooper pairs xqp. Note that the coupling operator is now sin(ϕ̂/2)

as opposed to simply ϕ̂ for both capacitive and inductive losses. This change occurs

because of the particular way in which the tunneling amplitude of quasiparticles

depends on the phase across a junction [25, 62]. Fig. 2.9 shows the calculation of the

matrix element |〈e| sin(ϕ̂/2) |g〉|2 and
√

1/ωge as a function of applied flux. According

to Eq. 2.32, these two factors are combined, along with basically a scaling factor, to

give the relaxation rate, also shown in Fig. 2.9 for xqp = 5 x 10−6. Note that the

contribution from
√

1/ωge varies only by a factor of 3 and the matrix element is the

dominant contribution to the relaxation.

Hqp
C = −~

e
sin (ϕ̂/2)

Re [Yqp (ω)] = 1
2
xqpGt

(
2∆
~ωge

)2

Gt = 8EJe
2

~∆

(2.31)

Γqp =
16xqpEL

h

√
2∆

~

(
coth

(
~ωge
2kBT

)
+ 1

)√
1

ωge
|〈e| sin (ϕ̂/2) |g〉|2 (2.32)

The predicted peak in T1 for quasiparticle loss is particularly striking. A peak in

T1 means that the qubit becomes blind to the quasiparticle loss mechanism. Thus,

at half-flux, the qubit junction becomes completely insensitive to quasiparticle tun-

neling. While explained in detail by Catelani et al. [62], there are two ways to think

about this feature in T1. The first, highlighted in Fig. 2.10 and explained in further

detail by D.N. Langenberg [63], considers that a quasiparticle may absorb energy

from the qubit (and thus induce a relaxation process) and tunnel across a junction
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Figure 2.9: Plots showing (a) the sin(ϕ̂/2) matrix element and (b) the only major
factor responsible for the frequency dependence of inductive loss, here plotted as a
function of applied flux for a fluxonium qubit with the same parameters as previously.
Plot (c) combines these factors to show that the predicted T1 is largely independent
of flux except for a dramatic peak at an applied flux of a half flux quantum; the
overall magnitude is controlled solely by the scale factor xqp.

either as an electron or a hole. The probability amplitude of these processes are

e+iϕ/2 and e−iϕ/2, respectively. Since both are possible, the amplitudes are added to

give cos(ϕ/2), which at ϕ = π evaluates to zero. Thus the relaxation vanishes at

half-flux due to quasiparticle interference. However, this way of thinking is not quite

correct since ϕ has large quantum fluctuations.

The second way to think about the predicted peak in T1 is to inspect the ma-

trix element |〈e| sin(ϕ̂/2) |g〉| which contributes to the calculated dependence of Γqp.

The matrix element is calculated by integrating the product of the operator with

the ground and excited state wavefunctions over the entire range of ϕ. The vari-

ous components, along with the energy potential, are shown in Fig. 2.11 for three

different values of applied flux. The crucial feature is observed at half-flux where

the symmetry of the three components is even-even-odd, meaning that the product

is odd. Integrating an odd function yields identically zero; thus quasiparticle loss

disappears at half-flux due to a symmetry in the wavefunctions, agreeing with the

quantitative calculation of probability amplitudes above. This T1 feature, along with
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Figure 2.10: Quasiparticles contribute to qubit relaxation by absorbing energy from
the qubit while tunneling across the junction. This tunneling may occur as an
electron (with probability amplitude e+iϕ/2) or as a hole (with probability amplitude
e−iϕ/2). These probability amplitudes add to yield cos(ϕ/2) which vanishes at ϕ = π,
where ϕ = 2πΦext/Φ0.

relaxation measurements, is discussed further in Chapter 7.
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Figure 2.11: Components involved in calculation of quasiparticle matrix element
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flux. The matrix element is calculated by integrating over the product of the operator
with the ground and excited state wavefunctions. Symmetry at half-flux yields a
matrix element of zero, while evaluating to nonzero for every other flux.
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CHAPTER 3

Experimental Methods

3.1 Sample and Environment

3.1.1 Fabrication

Compact Resonators

The fabrication of compact resonators samples comprises of only one deposition step:

photolithographic patterning of a Niobium film on a wafer of c-plane sapphire. The

fabrication was done entirely at the wafer scale, utilizing 2 inch wafers throughout

the process in order to produce many samples simultaneously. The experimental

goal was to test the effect of different geometry, not different materials. Before metal

deposition, the sapphire surface was prepared by a 60 s ion-milling using a 3 cm

Kaufmann source that shoots 500 eV Argon ions at the wafer. The source operates

at a flow rate of 4.25 sccm and a pressure of about 10 µTorr, generating a current

density of 0.67 mA/cm2. A 200nm layer of Nb was then dc magnetron sputtered on

the wafer. Photolithography was performed by patterning directly onto S1808 resist

using a 365 nm laser. After development, the Nb was etched using a 1:2 mixture of

Ar:SF6 at 10 mTorr for 3 minutes. The wafer was then diced into individual chips
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for measurement. Each sample consisted of a 2 mm x 7 mm chip with a coplanar

waveguide (CPW) transmission line straight down the center with six resonators

spaced along the feedline; each wafer contained 84 samples.

Compact Transmon

Compact transmons require two fabrication steps, corresponding to the resonator

and qubit. The first step consists of photolithography to pattern Niobium on c-

plane sapphire as described in the previous section. The second step utilizes e-beam

lithography to produce the transmon capacitors and Al/AlOx/Al. The junctions

were fabricated using the Niemeyer-Dolan bridge technique [64, 65], which forms a

bridge of resist, and double-angle evaporation to create an overlap between two layers

of Aluminum, with an oxidation step between to create the junction. This technique

is standard and has been used and described many times before.

The process for transmon fabrication is as follows. The wafer is first cleaned

in NMP, acetone, and methanol, 3 minutes each in an ultrasonic bath. Microchem

EL-13 copolymer is spun onto the wafer at 5000 RPM for 90 s and baked at 175

◦C for 1 minute. The second resist layer, Microchem A-3 PMMA, is spun onto

the wafer at 4000 RPM for 90 s and baked at 175 ◦C for 30 minutes. To prevent

substrate charging during e-beam writing, a 13 nm Al discharge coating layer is

then deposited. Depending on the sample, the e-beam was either written on an

FEI XL40 SEM with a Nanometer Pattern Generation System (NPGS) add-on from

J.C. Nabity Lithography Systems using a 30 keV electron beam or a Vistec Electron

Beam Pattern Generator (EBPG 5000+) using a 100 keV electron beam. The Al

discharging layer is then stripped using MF312 for 90 s, and the resist is developed in

MIBK:IPA (1:3) for 50 s and rinsed in IPA for 10 s. It was found that the temperature

of the developer must be 25 ◦ C ± 1◦ C for reproducible results.
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Junction deposition, done with a Plassys MEB550s, includes first a critical ion-

beam cleaning step with an Anatech Argon ion gun operating at 250 V for 30 s.

Aluminum deposition is done at 10−8 Torr at a rate of 1 nm/s; the first layer 25 nm

at 0◦ followed by an oxidation at 15 Torr for 12 minutes. The second Aluminum

layer is deposited at the same rate, but at an angle of 35◦ and to a thickness of 60

nm. A last oxidation is performed at 3 Torr for 10 minutes in order to oxidize the

aluminum in a controlled environment as opposed to upon venting. The remaining

resist and excess Aluminum liftoff is performed by soaking the wafer in acetone at

70 ◦C for about an hour, making sure to place the wafer in a vertical orientation

to prevent re-adhesion. After a final rinsing with water, sonication in acetone and

rinsing with IPA, the wafer is diced into individual chips for measurement. As with

compact resonators, each sample consisted of a 2 mm x 7 mm chip with a CPW

feedline straight down the center, with six resonators spaced along the feedline. Each

compact transmon device included one transmon placed inside one of the compact

resonators. A total of 11 wafers were fabricated between the compact resonator and

compact transmon experiments, each containing 84 samples.

3D Transmon

The fabrication of 3D transmon is simpler because the cavity is machined out of a

block of copper or aluminum and is not lithographically defined. The fabrication of

the junction of a 3D transmon is a single step of double-angle evaporated aluminum,

with patterning defined by an electron-beam in much the same way as the compact

transmon. In the time between the development of the compact transmon and the

3D transmon, a new e-beam machine and a new evaporator were installed, and both

new machines are used for the 3D transmon.

The wafer used for the 3D transmon was 430 µm c-plane sapphire. First the
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substrate is cleaned via sonication in acetone for one minute and then 5 minutes in

an oxygen plasma at 300 mBar and a power of 300 W. The wafer is then soaked in

heated NMP at 90 ◦C for 10 minutes, sonicated in NMP and rinsed with acetone

and methanol. Microchem EL-13 copolymer is spun onto the wafer at 2000 RPM

for 100 s and baked at 200 ◦C for 5 minutes. The second resist layer, Microchem

A-4 PMMA, is spun onto the wafer at 2000 RPM for 100 s and baked at 200 ◦C for

5 minutes. A gold coating was then deposited on the surface of the resist to aid in

discharging of the substrate during e-beam writing (note that aluminum was used for

the compact transmon). This gold layer was deposited using the Cressington Sputter

Coater 108 for 45 seconds with Argon flow adjusted for 0.08 mBar and current at 30

mA, resulting in a 10 ± 1 nm gold layer.

The device is then written using the Vistec Electron Beam Pattern Generator

(EBPG 5000+) using a 100 keV electron beam. The development is started by

soaking in a potassium iodide/iodine solution for 10 seconds to remove the gold

discharge layer. After being rinsed in water, the resist is developed in a 1:3 IPA:water

mixture at 6 ◦C for 1 minute. Ultrasound is then turned on for 15 seconds, and the

wafer is left in the mixture for 15 seconds after that.

Metal deposition is then performed in the Plassys UMS300 UHV e-beam multi-

chamber e-beam evaporation system. First, the exposed surface is cleaned with an

oxygen/argon plasma for 30 s to prepare a good surface for metal deposition. A

titanium sweep is then performed to absorb all of the remaining oxygen, then the

first layer of 30 nm of aluminum is deposited onto the substrate. The first layer is

then oxidized with a 15% oxygen, 85% argon mixture for 10 minutes at 100 Torr.

After that, the second layer of 50 nm aluminum is deposited. A final oxidation is

then completed to ensure the aluminum does not oxidize upon removal from the

vacuum system, for 10 minutes at 15 Torr.
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Fluxonium

The materials and lithography of the fabrication recipe for the fluxonium artificial

atom are exactly the same as the 3D transmon. The differences are solely in the

design files for the e-beam patterning machine; in fact, the 3D transmon from Chapter

6 was made on the same wafer as preliminary fluxonium samples. The fabrication of

junctions utilizes a bridge-free lithography technique [66, 67] that enables junctions

to be of arbitrary size. This techniqe relies on a two-layer resist stack, with the top

layer defining the structure and the undercut of the bottom layer providing selective

removal of wires. By creating opposing undercuts on opposite sides of a junction,

wires can be attached to both the top and bottom junction layer.

3.1.2 Octobox Sample Holder

A sample holder will, ideally, rigidly hold the device under test, allow microwaves

to couple strongly to the device, shield the device from various types of radiation,

all while not influencing the performance of the device. This, in practice, is very

difficult and many sample holders are found to be flawed after many years of use.

Developed by the group of Rob Schoelkopf, the “octobox”, shown in Figures 3.1

and 3.2, was a popular sample holder, and it was used for all experiments involving

compact resonators and compact resonator transmons.

Performing measurements of on-chip devices requires methods to redirect mi-

crowave from coax lines to planar structures. The octobox uses coplanar waveguide

(CPW) geometries to guide the microwaves on the PCB and on-chip. Therefore, we

need a method for matching coax lines which are used at room temperature and in

the dilution refrigerator to the CPW strips on-chip. Making this transition well is

part of the challenge in designing a good sample holder. The octobox is built around
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Figure 3.1: Octobox sample holder pieces, open. From left to right, the objects are:
PCB with two devices mounted, base of octobox, shim of octobox, lid of octobox.

Figure 3.2: Octobox sample holder, closed. The eight holes of the top of the lid can
be seen. The connectors on the PCB can be seen in four of the holes. The other four
holes are plugged to prevent additional infrared radiation from reaching the sample.
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the Rosenberger coax SMP-to-microstrip launcher, part number 19S102-40ML5.

Another main concern for the performance of a sample box is the influence of

“box modes” on the device. Box modes are defined as extra, possibly unintended

electromagnetic modes of the sample box. These modes are typically “cavity” modes,

as explained in Section 2.1.2, modified by the presence of the PCB and sample chip.

These box modes typically have low quality factors due to the participation of lossy

materials and partially unsealed sample boxes. There are two methods to avoid

detrimental coupling either resonators or qubits to box modes: 1) push the box

modes to high frequencies, or 2) make the box modes higher quality. The latter is

the route taken by the 3D transmon; the box modes are intentionally designed to be

of higher quality and in fact are used for qubit readout. The former is the method

chosen by planar devices using the octobox. The octobox includes a “shim”, shown

in Fig. 3.1 that reduces the effective size of the box immediately around the chip

and thus raises the frequency of box modes well above device frequencies. In fact,

no box modes were observed below 12 GHz.

3.2 Qubit Readout

The efforts to improve relaxation and readout fidelity are often at odds. Relaxation is

often improved by increasing the isolation between the qubit and an offending noise

source, yet readout mechanisms consist of a strong coupling between the qubit mode

and a measurement load. In circuit QED [23, 58], this coupling is performed through

a cavity and readout is achieved by measuring cavity parameters that depend on the

qubit state.
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3.2.1 Dispersive Readout

Dispersive readout is the most common and original readout used for transmon and

fluxonium qubits. Derived initially along with circuit QED, dispersive readout relies

on a coupling that mixes the qubit and cavity states. The name dispersive is from

the “dispersive” coupling regime, where the coupling strength is small compared to

the frequency detuning is small, i.e. g/∆ � 1. In this regime, the dressed qubit

and cavity states are able to be separated into “mostly-qubit” and “mostly-cavity”,

whereas at larger g/∆ the difference is less clear. The Hamiltonian of the qubit-

cavity system in circuit QED, derived in Section 2.2.1 is shown in Eq. 3.1, with

energy levels in Eq. 3.2, where NC and NQ represent the number of excitations in

the cavity and qubit, respectively.

H = ~ωC
(
A†A+

1

2

)
+ ~ωQ

(
B†B +

1

2

)
+ ~α

(
B†B

)2
+ ~χ

(
A†AB†B

)
(3.1)

ENC ,NQ
~

= ωCNC + ωQNQ + αN2
Q + χNCNQ (3.2)

Here, the linear cavity is characterized by the number of excitations NC producing

an energy ~ωCNC , while the anharmonic qubit is represented by a number of excita-

tions NQ and an anharmonicity α. Without a coupling term, this Hamiltonian would

simply consist of two separate oscillators, of little research interest; however, the ad-

dition of the coupling term χNCNQ produces many interesting effects. The terms in

the energy spectrum can be re-arranged in two ways, shown in Eq. 3.4 and 3.3. The

first rearrangement shows that this coupling makes the qubit frequency dependent

on the number of excitations in the cavity: ωQ → ωQ + χNC . This phenomenon is
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called photon number splitting, and was studied in several papers [23, 68].

ENC ,NQ = ~ (ωC)NC + ~ (ωQ + αNQ + χNC)NQ (3.3)

ENC ,NQ = ~ (ωC + χNQ)NC + ~ (ωQ + αNQ)NQ (3.4)

The second re-arrangement highlights the use of the coupling as a readout since

the cavity frequency becomes dependent on the number of excitations in the qubit:

ωC → ωC + χNQ. Thus the cavity frequency when the qubit is in the ground state

ωC is different by from the cavity frequency when the qubit is in the excited state

ωC+χ, hence χ is typically called the “dispersive shift”. The shift is compounded for

each additional qubit excitation. This effect is the same as in the Jaynes-Cummings

Hamiltonian (see Section 2.2.1, with the added ability to access higher qubit states.

This frequency shift allows for qubit readout via measuring cavity parameters that

depend on this change. This cavity parameter is typically either microwave reflection

off S11 or transmission through S21 the cavity, depending on the type of cavity and

its coupling to the external microwave line. For the case of transmission through a

cavity, Fig. 3.3 highlights the effect of the dispersive shift on cavity transmission

parameters.

Qubit readout can be achieved at any frequency shown in this figure, but the

contrast and the signal-to-noise ratio (SNR) will vary widely. Readout at either

of the resonant frequencies, f gC = ωC/2π or f eC = (ωC − χ)/2π results in a large

amplitude difference and some phase difference. Maximum phase difference (with

exactly no amplitude difference) is observed between the two resonant frequencies.

While either amplitude or phase could strictly be used for qubit readout, one must

use both in the form of the signal quadratures I and Q in order to be quantitative.

65



Figure 3.3: Amplitude and phase of cavity transmission S21 when qubit is in ground
state (blue, f gC = ωC/2π) or excited state (red, f eC = (ωC − χ)/2π). Readout can
be performed at any frequency there is a difference of either transmitted amplitude
or phase between ground and excited qubit states. Parameters for the curves shown
are chosen to be typical: f gC = 8.02 GHz, f eC = 7.98 GHz, χ = 40 MHz, κ = 24 MHz.
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Figure 3.4: Expected readout signals plotted on the I-Q plane at three readout
frequencies as noted, for ground (blue) and excited (red) qubit states. Readout
parameters are the same as Fig. 3.3. Each circle represents a cloud of possible
measurements consisting of a Gaussian centered on the circle. More averaging or
lower noise temperatures decreases the width of these circles. Completely overlapping
circles indicate the qubit states are not distinguishable, while far separated circles
indicate high distinguishability.

Since the quadratures form an orthogonal basis and are linearly proportional to the

measured voltage (see Section 3.2.3, measurement noise is Gaussian in the signal

quadratures; noise is not treated properly in amplitude or phase. Qubit readout

is easier to visualize when plotted as a cloud of measurements in the I-Q plane.

Shown in Fig. 3.4 are readout signals for each of the three readout frequencies

highlighted in Fig. 3.3: f eC , (f eC +f gC)/2, and f gC . Here, each circle represents a cloud

of possible measurements consisting of a Gaussian centered on the circle. For these

parameters, the readout SNR is higher the frequencies corresponding to the high

amplitude peaks. While the phase difference is maximum for the case (f eC + f gC)/2,

the lower amplitude reduces fidelity. However, in the case χ = κ, the maximum

readout fidelity is obtained at this middle frequency [69].

With optimized qubit-cavity systems and readout chains utilizing parametric

amplifiers, high fidelity single-shot dispersive readout measurements have been per-

formed by several groups [70, 71, 72, 69]. Even though the qubit state after a readout

is different than the qubit state before readout, i.e. there exists a back-action, the
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effect is calculable if the readout is of high enough fidelity [69], and thus dispersive

readout is said to be QND.

3.2.2 High Power Readout

In addition to the well-defined and understood dispersive readout, the so-called “High

Power Readout” [73] (occasionally called the “REED-out” in homage to the dis-

coverer Matt Reed), allows a much higher readout fidelity at the expense of qubit

demolition and time. Looking at the plot of cavity spectroscopy versus power, one

sees that the cavity resonant frequency peak moves from 9.071 GHz at < -20 dBm

to 9.055 GHz at > 5 dBm. At high powers, the cavity is observed at a frequency

corresponding to the “bare” cavity frequency, i.e. the frequency not affected by the

dressing of the qubit. Circuit QED theory predicts a small self-Kerr for the cavity,

and thus a linear dependence of frequency on applied photon number (see Section

2.2.1). However, more detailed models show a diminishing cavity anharmonicity at

high powers, and thus and the frequency is stable above a critical power, match-

ing qualitatively with what is observed [74]. The observed transmission amplitude

of this “high-power” peak is much higher than that of the “low-power” peak and

thus the cavity is said to be in the “bright state”. This readout works by mapping

the qubit state onto easily-distinguishable classical states of the qubit-cavity system.

All measurements shown in this Section are on the 3D transmon qubit discussed in

Section 6.1.4.

The readout mechanism is derived from the observation that the critical power to

reach the bright state depends on the initial qubit state; this effect is highlighted in

Fig. 3.6. This figure shows how the transmission amplitude jumps from a low level

(off-resonant) to a high level (on resonant, bright state) at a different power for the

prepared ground and excited qubit states. Thus, any power in the region between
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Figure 3.5: CW cavity spectroscopy versus drive power. At low powers, cavity
response is a Lorentzian peak centered at 9.071 GHz, the dressed cavity frequency.
At high power, this peak shifts to 9.055 GHz, corresponding to the bare cavity
frequency.

the rises, where there is a large difference between ground and excited transmission

amplitudes, is a possible choice of readout power. The readout procedure is thus the

same as with dispersive readout, simply with a different frequency and power; no

additional drives, tuning, or equipment of any kind is necessary.

Histograms of single-shot measurements, i.e. amplitudes from a single non-

averaged measurement of the transmission amplitude, are shown in Fig. 3.7 at a

power between the two critical powers for high power readout. This includes 25,000

alternating measurements of the qubit in the ground state and after a π-pulse. The

main shape of each curve is composed of two Gaussians. In each case, one of the

Gaussians is dominant, and the other is due to either poor state preparation due to

high qubit temperatures (see Section 6.1.4) or decay during the measurement [75].

The two dominant Gaussians are separated by more than their width, indicating

that the qubit state may be discriminated well from one measurement. Single-shot
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Figure 3.6: Normalized readout voltage as a function of drive power for prepared
ground and excited states. The response switches to the “bright state”, i.e. higher
voltage state, at a critical power that depends on qubit state. High power readouts
can be performed at any power with a difference between ground and excited state
transmission amplitude.

measurements of this qubit using the dispersive readout would yield Gaussians di-

rectly on top of each other, states could be distinguished only after many averages.

Neither the readout chain nor qubit were optimized for readout, and much higher

fidelities are possible.

High power readout is non-QND, meaning that the qubit state before readout is

different from the qubit state after readout in a manner that erases information. In

fact, the effect of high power readout is more complicated than simply projecting

the qubit to the ground or excited state. Attempting to apply qubit rotation pulses

shortly after high-power readout shows that after an excited state measurement

(bright state), the qubit is unresponsive to rotation pulses. After a ground state

readout, no such effect is observed. Thus, when the cavity enters the bright state,

the qubit must leave the computational basis, only to return after the cavity decays

from the bright state. Fig. 3.8 shows that after a measurement of the excited state, a

following measurement at varying times shows that the qubit returns to the ground

state with a time constant, in this case, of 100 µs. Since T1 for this qubit was
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Figure 3.7: Histograms of single-shot measurements of thermal state and inverted
state. Each plot is fit to two Gaussians, one centered on the voltage corresponding
to the ground state, and one corresponding to the excited state. The two main peaks
are separated by more than their widths.

40 µs, this shows that the effect of high power readout is long-lasting and must be

considered when figuring an experimental repeat rate.

When comparing these two readout methods, there are situations when one is

preferred over the other, although high single-shot fidelities are possible with both

high power readout [73] and low power dispersive readout [69]. In the case where

feedback is performed, it is preferable to use dispersive readout with its minimal

(and possibly predictable) disruption of the qubit state. Alternatively, in the case

where either a fast measurement is preferable or dispersive readout produces only

low fidelity, the higher power readout may be desired.

3.2.3 Heterodyne Measurement

Both dispersive readout and high power readout rely on the same experimental setup.

Each measurement relies on measuring the microwave transmission (or reflection)

properties of a given system. Generating microwave pulses is easy via the use of

commercial microwave generators, but accurately detecting a microwave signal’s am-
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Figure 3.8: Measurement of a high power readout following a high power readout of
the excited state (higher voltage). The qubit state decays back to the ground state
with a time constant of 100 µs, longer than the T1 of 40 µs.

plitude and phase is more difficult. While a vector network analyzer performs this

duty in CW mode, and works great for resonator measurements, qubit measurements

require certain pulse sequences that a network analyzer is unable to accomplish. For

qubit measurements performed in this thesis, heterodyne measurements were used as

a means of converting the signal into something that could be digitized with existing

commercial digitizers.

The schematic of a heterodyne interferometric experiment is shown in Fig. 3.9.

Three microwave waveform generators are shown, the qubit (ωQ), cavity (ωC), and

LO (ωLO = ωC + ωIF ) generators. The qubit generator produces microwaves at the

qubit frequency, mixed with pulse envelopes from an arbitrary waveform generator

(AWG) to create pulses to perform qubit rotations. The cavity and LO generator

are used for the readout, with the cavity generator set to the interrogation frequency

and the LO generator shifted by the IF frequency, ωIF = 20 MHz. The cavity signal

(either CW or pulsed) is split into two paths making the interferometer, one that

goes through the device, and the other does not; each path ends in the RF input

of a microwave mixer. The LO generator is split to feed the LO signal of both RF
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Figure 3.9: Cartoon schematic of experimental setup to perform heterodyne mea-
surement, involving an interferometric measurement, which compares a microwave
signal going through the device under test with a signal bypassing the device. Two
microwave generators (cavity and LO) are mixed together after the two paths in
order to produce a lower frequency tone at the difference frequency ωIF that can be
digitized in the computer. The additional (qubit) microwave generator can be used
to stimulate the device and the effect on the cavity transmission can be measured.

mixers. This mixing operation produces signals at the sum and difference frequencies,

ωC + ωLO and ωC − ωLO. Additional filters remove the high-frequency component,

and the ωIF component is sent to a digitizer. The digitizer operates at 1 GS/s, and

can effectively measure amplitude and phase of a signal at 20 MHz.

3.3 Equipment

3.3.1 Dilution Refrigerators

At room temperature, our resonators and qubits reduce to simple classical electrical

circuits that can be decomposed into capacitances, inductances, and (unintention-

ally) resistances. In order to thermally prepare their quantum ground state, the

devices must be cooled such that the thermal energy is below that of the transition
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energies (ω0) we wish to probe. For the case of superconducting qubits and res-

onators, this frequency is on the order of several GHz. In order for there to be an

appreciable difference in ground state and excited state population, the system must

be cooled to a temperature T such that the inequality kBT ≤ ~ω0 is well satisfied.

This means that T must be less than roughly 500 mK for ω0 = 10 GHz, and 50 mK

for ω0/2π = 1 GHz.

There are simple techniques for reaching temperatures of approximately 1.2 K:

liquid Helium has a boiling temperature of 4.2 K, and thus can be used to cool

equipment and samples down to this temperature. By pumping on a vessel of liquid

Helium, one can reduce this temperature slightly to roughly 1.2 K by reducing the

vapor pressure and forcing the liquid to boil. To reach temperatures below 1.2 K,

more sophisticated equipment, a dilution refrigerator, is required.

Fig. 3.10 shows a generic schematic of a typical “wet” dilution refrigerator. This

type of fridge is called “wet” because the dilution insert sits in a bath of liquid He-

lium as a means to cool the entire apparatus to 4.2 K. As this Helium evaporates,

it must be re-filled, constituting the largest recurring cost of operating a dilution

refrigerator. “Dry” dilution refrigerators use a closed circuit pulsed-tube that con-

tinually compresses and expands a fixed amount of Helium gas, thus cooling the

screens around the dilution unit without the need for a liquid Helium bath. The

experiments described in this thesis were performed in two “wet” refrigerators.

The cooling mechanism of the dilution refrigerator consists of a continually cir-

culating circuit of 3He and a stationary bath of 4He. The ultimate cooling of the

refrigerator is performed by the dilution of 3He into 4He in the so-called mixing cham-

ber [76]. The rest of the circulation process is solely meant to facilitate this mixing.

3He is removed from the mixing chamber by way of the still. The still is maintained

at approximately 700 mK by balancing the heat loads on the various components.
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Figure 3.10: Cartoon of the dilution unit of a dilution refrigerator showing the major
components, from the Oxford Instruments Kelvinox operating instructions manual.
3He is circulated through a closed loop to achieve cooling by continuously diluting
into 4He in the mixing chamber. A “wet” dilution refrigerator cools the dilution unit
by immersion in a liquid Helium bath, and a “dry” dilution refrigerator cools the
screens around the dilution unit with a pulse tube.
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The vapor pressure of 3He is much higher than 4He at this pressure, so pumping on

the still removes nearly pure 3He. This 3He is then re-liquified upon contact of an

auxiliary refrigerator. This may be either a “1K pot” or a Joule-Thompson stage:

a 1K pot is a small vessel of liquid Helium maintained at approximately 1.5 K by

constant pumping. The 3He continues to cool from contact in various efficient heat

exchangers with helium from the opposite side of the cycle. The 3He eventually

reaches the mixing chamber and contributes again to the overall cooling by diluting

from a nearly pure 3He phase into the 4He that filling the mixing chamber. Heat is

needed for this dilution to occur, so forcing this process requires heat to be extracted

from the environment, thus cooling whatever is in contact with the mixing chamber.

The 3He then gets removed from the still and begins the cycle again.

Commercial dilution refrigerators typically come with extra space below the mix-

ing chamber on which we can mount our devices to measure. This space can vary

from a few cubic inches to a few cubic feet. Two refrigerators were used in the

experiments outlined in this thesis, both of the Kelvinox brand by Oxford. One is

a Kelvinox25 with a nominal cooling power of 20 µW at 100 mK, the other is a

Kelvinox400 with a cooling power of approximately 400 µW at 100 mK. The base

temperatures according to the installed mixing chamber temperature sensors are

75 mK for the Kelvinox25 and 15 mK for the Kelvinox400. The dilution units of

these two refrigerators are shown in Fig. 3.11.

3.3.2 Microwave Switches

The introduction of microwave switches was a helpful innovation that allows many

samples to be measured in the same refrigerator at the same time. Without the use

of a switch, each sample required its own input and output microwave lines, along

with a complete set of filters, circulators, and amplifiers. This requires a lot of space
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Figure 3.11: Images of dilution units of Kelvinox25 and Kelvinox400 dilution refriger-
ators. The Kelvinox25 refrigerator has a nominal cooling power of 20 µW at 100 mK
and an operating base temperature of approximately 75 mK, while the Kelvinox400
refrigerator has a cooling power of approximately 400 µW at 100 mK and an op-
erating base temperature of approximately 15 mK. The experimental space on the
Kelvinox400 is much larger than the Kelvinox25.
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inside the experimental area of the dilution refrigerator and prohibits the mounting

and measurement of more than a couple of samples during a single cooldown. Since

experiments may require the measurement of dozens of devices, this either requires

many cooldowns to measure each sample, or a prohibitively expensive (and creatively

packed) set of microwave lines to measure multiple devices. An alternative is to

install a microwave switch that will allow the user to use the same input and output

microwave lines to measure multiple devices. While the switch may only select one

sample at a time, it can be used to switch between samples without warming up the

refrigerator, and thus saves a lot of time.

The switch used is a SP6T electromechanical switch from Radiall, serial number

R573423600, shown in Fig. 3.12. SP6T means that there is one input line that can

be routed into any of the six outputs. To operate the switch, one sends a short

current pulse, of order 200 mA to one of the six coils. This current pulse induces

a magnetic field on one of the actuators, which either makes or breaks a microwave

connection inside the switch. This mechanism allows more than one output to be

selected simultaneously, however there will then be mismatches in impedance and

severe reflections will be induced, thus only one output should be enabled at any

given time. Since each coil and actuator is independent, the user is required to

switch “off” outputs that are not intended to be used.

These switches are made by Radiall to work near room temperature and do not

nominally work at low temperatures. We make a few minor modifications to the

switch for low temperature usage. First, we remove the blue aluminum shield, as

shown in Fig. 3.12. Then we remove the PCB which sits on top of the exposed con-

nectors. Then we reinforce the exposed connectors with Stycast R©(a type of expoxy

glue) because they are very fragile. The coils in the switch to create the magnetic field

are made from copper, which is resistive, and thus the switch dissipates heat when
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Figure 3.12: Radiall SP6T switch, modified to work at low temperatures inside of a
dilution refrigerator. On the left is the switch, with PCB removed and connectors
glued in place. On the right is the body of the switch, removed to show the details
inside.
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switched. Since the resistance of copper drops significantly at low temperatures, this

amount of heat is compatible with and does not disrupt the dilution refrigerator

significantly. Depending on the efficiency of the thermal connection to the mixing

chamber, the mixing chamber temperature may rise from 15 mK to 30 mK, requir-

ing about 20 minutes to re-cool. This minor inconvenience is greatly preferred over

having to warm up the entire fridge to switch samples.

3.3.3 Shields

During the time of this thesis, details in experimental setups have been blamed

for limiting relaxation and coherence [77, 43]. Details about specific results and

measurements are given in later chapters. Each time, adding some type of “shield”

improved coherence times. Here, the term “shield” is used broadly, and serves to

include both shields absorbing radiation from outside the microwave lines, and those

absorbing radiation from inside the microwave lines. The latter are often called

filters, as they absorb certain frequencies while allowing signal frequencies to pass

through. Each type of shield used in this thesis will now be detailed.

Circulators

A circulator is a 3-port device that uses Faraday rotation and interference to create

a non-reciprocal transmission matrix. Waves launched into ports 1, 2 or 3 will come

out of ports 2, 3, or 1, respectively. Therefore, circulators can separate input waves

from output waves and function as “diodes”. In this thesis, they are used solely

with a 50 Ω termination on one port, turning the circulator into an isolator which

allows microwaves only from port 1 to 2, while absorbing waves that enter port 2.

Alternatively, isolators can be purchased directly, but modifying circulators in this

way produces a well-thermalized load.
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Figure 3.13: Quinstar 8-12 GHz cryogenic circulator. In band, this device routes
input microwaves to the next port in a clockwise fashion (1→ 2→ 3). This circulator
can be turned into an isolator by placing a 50 Ω termination on one port, then
allowing microwaves to travel in one direction.

Isolators were used in every experiment in this thesis in order to impose a well-

thermalized input state on the next element in the chain and to block noise from the

HEMT amplifier from reaching the sample, backwards down the readout microwave

line. This noise coming out the input of the HEMT is unknown, not specified by the

producer, and likely varies from amplifier to amplifier. Since the device is active and

it is known to dissipate energy, it is safest to prepare for the worst since devices can

be heated or driven by noise at their resonant devices. Isolators are used to allow the

signal to pass through the device to the HEMT, but to attenuate the noise coming

back down from the HEMT. A typical cryogenic circulator from Quinstar (previously

Pamtech) is shown in Fig. 3.13.

Quinstar circulators come with several possible bandwidths, Fig. 3.13 shows a

8-12 GHz circulator. The lower frequency circulators will be considerably larger, as

the dimensions scale directly with the wavelength. Quinstar sells wider bandwidth

isolators, but the dimensions is also considerably larger and limited by the lowest

frequency in the band. While the circulator frequency is chosen to surround the

main device frequencies, the performance out of band is not guaranteed and in fact

attenuation in the reverse direction is observed to decrease to only a few dB at
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Figure 3.14: K&L low-pass microwave reflection filters. They pass microwaves below
a cutoff frequency (the filter shown here is 12 GHz) and are specified to reflect all
other incoming frequencies up to 26 GHz.

frequencies in the 20 GHz range. Without equipment to measure far above these

frequencies, it is really unknown what transmission is achieved, but it is not likely

to be attenuated significantly. The noise out of band is unable to directly excite

transitions in the circulator band, but can still interfere in the operation of qubit

devices. The addition of K&L filters and Eccosorb filters is meant to help reduce the

higher frequency noise.

K&L Low-pass filters

The purpose of K&L filters is to filter out unwanted microwave noise from outside

the band of the circulators. The cutoff frequency of these low-pass reflective filters

is chosen to coincide with the highest frequency of the chosen circulator. For 8-

12 GHz circulators, a 12 GHz K&L filter is matched. Thus, above 12 GHz, where

the circulator begins passing noise in the reverse direction, the low-pass filter will

reject these frequencies. These devices are specified to have very low insertion loss

(< 1 dB in band) as to not reduce the signal amplitude, yet guarantee rejection of

at least 50 dB from 16 GHz to 26 GHz. At higher frequencies, their properties are

not guaranteed, and this rejection must break down at some frequency. To help at

even higher frequencies, Eccosorb filters are added.
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Eccosorb Filters

Eccosorb filters are placed in a microwave line in order to prevent high frequency

radiation from reaching the sample, in a manner similar to filters of Santavicca et al.

[78]. The source of this radiation may be higher temperature components or HEMT

amplifiers. In addition, radiation may enter the microwave line through loose or

improperly soldered connectors. Eccosorb filters achieve a balance between passing

signal frequencies and attenuating high frequencies by producing an attenuation that

depends linearly with frequency. Eccosorb is optically opaque, so this attenuation

continues at least to optical frequencies. The operating principle of this type of

filter is to force the radiation to travel through a lossy material in a small section

of the transmission line. Eccosorb is a proprietary material produced by Emerson &

Cuming for the purpose of absorbing microwaves. Eccosorb CR-110 was chosen for

this filter because it has the least attenuation below 18 GHz. This material has a

roughly linear attenuation versus frequency curve; higher frequencies are attenuated

more than lower frequencies.

The box-type Eccosorb filter consists of a short section of microstrip, in which

the box serves as the ground plane and a thin metallic strip is used for the microstrip

trace. Two SMA connectors are placed in the two opposing holes of the box, then a

metallic strip is cut to the size corresponding to that of a 50 Ω microstrip trace. For

the box size used here, the microstrip trace is cut out of 0.01” thick copper, aiming

for a width of 0.090”. The microstrip is then soldered in place onto the centerpins of

the two SMA connectors. The Eccosorb CR-110 is then mixed (100 parts X with 12

parts Y by weight) and poured into the box. The lid is then secured and the whole

filter is cured at an elevated temperature (70-90 ◦C depending on cure time); the

filter is complete when curing is finished.
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Figure 3.15: Different types of Eccosorb filters. (a) Box filter and (b) drawing of
cross-section of box filter. The box filter is a short section of microstrip in which
the dielectric is the absorbing material Eccosorb. (c) pipe filter and (d) drawing and
cross-section of pipe filter. The pipe filter is a short section of coax in which the
dielectric is Eccosorb.

The pipe-type Eccosorb filter consists of a short section of coax made out of a

pipe and wire. Two SMA connectors are placed on opposite sides of a hollow pipe

and a wire is soldered from centerpin to centerpin using conveniently drilled holes in

the pipe. The pipe and wire diameter are chosen to match the 50 Ω characteristic

impedance of the rest of the microwave line. The pipe is then filled with Eccosorb

and cured in the same way as the box filter. Both the box and pipe filter, along with

cross-section drawings are shown in Fig. 3.15

While both filters work and have been used in various experiments, the pipe fil-

ter has a few advantages. First, the most important advantage is that it generally

achieves lower reflections because it does not rely on changing from coax to mi-

crostrip. Second, subjectively, it is easier to make; it does not rely on any part being

machined, one simply has to have the right pipe and wire diameter. Another advan-

tage is that it is tunable. The attenuation can be varied by adjusting the length of

the pipe. Lastly, it is much more compact in size and can fit in places where a box

filter cannot.

Characterization data for two box filters and two pipe filters are shown in Fig.

3.16. The two box filters are nominally identical, while one pipe filter is significantly
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Figure 3.16: Measured S21 and S11 of four Eccosorb filters: 2 box filters and 2 pipe
filters. Each filter has an overall downward trend in transmission (S21) as frequency
increases. With the exception of the short pipe, this trend is approximately linear.
The matching (S11) shows how close the filter is to the desired 50 Ω impedance.
The frequency of relevance is the signal frequency of the qubit or cavity, so typically
between 5 and 10 GHz.

longer than the other. The differences between the two box filter responses highlight

the irreproducibility inherent in this design. Both the transmission and matching

have a wide scatter when making many filters. The attenuation differences are likely

due to differences in curing or mixing parameters, while the matching is due to slight

differences in centerpin construction. The matching for the box filter can be very

poor around 10 GHz as shown by ‘Box 1’, while the pipe filters more consistently

have matching around -20 dBm at 10 GHz.

While minimizing reflections (low S11) is always important for a filter, the trans-

mission (S21) at signal frequencies is more critical when used between the sample

and the output amplifier. When the filter is placed on the input line, which usually

contains 60 dB of intentional attenuation, a few dB more attenuation due to an Ec-

cosorb filter is unimportant. However, when the filter is placed on the output of the

device, any attenuation at the signal frequency degrades the measurement quality,

so it is important to minimize the attenuation at the signal frequency.
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Copper Powder Filters

Copper powder filters are an alternative to the Eccosorb filters, and also aim to

attenuate high frequency noise from reaching the device. Copper powder filters have

been made, in a style similar to the Eccosorb pipe filters. With further details in the

thesis of Nick Masluk [36], these copper powder filters consist of a short section of

coax transmission line where the dielectric is replaced by copper powder mixed with

epoxy. This copper powder passes low frequencies well, but provides attenuation

at frequencies well above the frequency range of interest. An example of a copper

powder filters is provided in Fig. 3.17: a semi-rigid cable is stripped of its outer

conductor, and the wider pipe is soldered on. The volume of the pipe is then filled

with copper powder; the width of the pipe is chosen to maintain 50 Ω impedance to

minimize reflections.

Copper powder filters have some advantages and disadvantages. Similar to the

Eccosorb pipe filters, the attenuation is adjustable by tuning the length of the copper

powder section. The high frequency performance and matching is equally as easy as

the Eccosorb pipe filters, due to the construction methods. A disadvantage is that

due to the use of a single coax, the length of a copper powder filter is much longer

than the attenuating length. Also, the attenuation for a given length is less than

that of an Eccosorb filter, so longer lengths are typically needed. However, this can

be an advantage if really small attenuations are desired.

Infrared Shield

In addition to filtering the noise inside the microwave lines, it is important to filter

out infrared photons from external sources. These sources are likely hot components

at other stages of the dilution refrigerator, or 300 K photons directly from room
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Figure 3.17: Picture of copper powder filter showing typical length for a filter with
2 dB loss at 10 GHz.

temperature components. Studied extensively by Barends et al. [77], this stray

infrared light can be avoided by building a sufficiently “light-tight” shield around

the sample box area. The infrared shield detailed here was based loosely upon this

work. Additional work at IBM [79] showed that this infrared light can significantly

affect qubit performance and is thus critical, especially for qubit experiments.

The infrared shield is an additional copper box surrounding the experimental

area. The infrared shield is composed of two pieces, a plate and a can. The plate

is mounted rigidly onto the mixing chamber and holds connectors through which all

input and output microwave signals will travel. There are 8 connectors in this infrared

shield, thus allowing for up to four samples. The connectors used to penetrate this

plate were hermetic room temperature SMA flange connectors. Being designed for

room temperature, the connectors use a rubber O-ring for sealing; this was replaced

with a bead of indium, which is commonly used for hermetic seals at cryogenic

temperatures. The can is a cylinder with a flange that mates on one end to the

plate. An indium seal is used between the plate and the can, and the can is screwed

shut rigidly to achieve a hermetic seal. The entire structure, closed and open, can

be observed in Fig. 3.18.

In addition to preventing infrared from reaching the sample box, this structure

serves another purpose. A sheet of absorbing material is placed inside the copper can
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Figure 3.18: (a) Picture showing bottom of infrared shield plate and attached sam-
ples. Four 3D cavities are shown here. The eight SMA connectors can clearly be
seen, the hermetic seal is on the top side of the plate. (b) Picture showing closed
infrared shield, completely enclosing the experimental area. In both images, the top
half of the cryoperm shield is visible.
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Figure 3.19: Image showing inside of infrared shield can. An infrared absorbent
coating was applied to a thin copper sheet and placed on the walls and bottom of
the can. The remaining indium seal between the can and the plate of the infrared
shield can also be seen here.

in an effort to further reduce infrared radiation from reaching the sample box. Even

if infrared photons reach inside the can, they will quickly be absorbed on the walls,

rather than reflecting many times. Fig. 3.19 shows that this absorbent coating is

applied to a thin copper sheet which is then placed along the walls and bottom of the

can. Applying this coating in this way allows different coatings to be easily tested.

For the experiments in this thesis, the coating used was a lab recipe of a mixture of

Stycast 2850 and carbon powder, containing 7% carbon powder by weight. Before

curing, this compound can be spread onto a surface easily; after curing it is very

hard, but brittle.
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CHAPTER 4

Compact Resonators

This chapter describes an experiment aimed at improving the quality factor of on-chip

lithographic resonators. The idea behind this experiment was to vary the resonator

geometry so as to minimize the participation of elements that were suspected to

contribute to losses. Low-loss on-chip resonators are important for several reasons:

a) they can be used directly in quantum information experiments, b) they can be

used as a proxy to study loss in on-chip qubits (see Chapter 5), and c) on-chip

resonators offer some avenues for the scalability of quantum information. This work

was performed in both dilution refrigerators described in Section 3.3.1, but mainly

the Kelvinox25, and includes data from 24 experimental runs and measurements

of over 150 resonators. In summary, our results indicated that surface loss is a

dominant factor, and by tweaking the resonator’s geometrical design parameters,

the maximum quality factor at an approximate temperature of 200 mK, increased

from from 210,000 to 500,000. The median quality factor increased similar 160,000

to 380,000.
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Figure 4.1: The model of a generic two level system in an amorphous solid. The sys-
tem has two states, each corresponding to one of the two wells, with level asymmetry
∆TLS and tunneling rate G.

4.1 Introduction

4.1.1 TLS Dissipation

Previous measurements have concluded that on-chip resonators are, in the low-power

and low-temperature limit, frequently limited by a distribution of two-level systems

(TLS)[80, 81, 51, 82]. These TLS have been theorized to originate from many sources,

but in summary are attributed to some type of positional defect in amorphous ma-

terials [83, 84, 85]. A generic schematic of a TLS is given in Fig. 4.1, where a

potential landscape has two separate wells, representing two states [86]. With an

level asymmetry of ∆TLS and a tunneling rate of G, the TLS energy is given by√
∆2
TLS +G2.

TLS loss is phenomenologically characterized by a few specific features. First, the

dependence of the superconducting resonator frequency versus temperature deviates

at low temperature [80, 81] from that expected from the dependence of the kinetic

inductance on temperature, Mattis-Bardeen theory[87].
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Mattis-Bardeen theory predicts a resonant frequency that asymptotically ap-

proaches a constant value at low temperature as the kinetic inductance (Lk) sta-

bilizes far below Tc. The complex conductivity of a superconductor σ = σ1 − iσ2,

where σ1 characterizes the conductivity due to quasiparticles and σ2 comes from

the inertial response of the Cooper pair condensate, leading to a kinetic inductance

Lk ∝ 1/d2πfσ2, where d is the film thickness [88]. The high frequency dependence

of σ2 leads to an increase in Lk as temperature rises, thus inducing a frequency re-

duction. The full form of the frequency dependence of σ1 and σ2 is given in Eqs. 4.1,

where σN is the normal state conductivity [89].

σ1(ω,T )
σN

= 4∆
~ω e

−∆/kBT sinh
(

~ω
2kBT

)
K0

(
~ω

2kBT

)
σ2(ω,T )
σN

= π∆
~ω

[
1− 2e−∆/kBT

]
e−~ω/2kBT I0

(
~ω

2kBT

) (4.1)

However, the observed data follows the frequency and temperature dependence

given by Eq. 4.2, which contains both the effects of Mattis-Bardeen and TLSs.

Empirically, the effect of TLSs is described through a dependence on the effective

dielectric constant of participating materials due to a non-saturation of TLS energy

levels only at the lowest temperatures, as shown in Eq. 4.3 [90]. In these two

equations, ω0 is the resonant frequency of the resonator, FTLS is a fraction of electric

field energy stored in TLS host material, ε is the effective dielectric constant, ∆ε

is the change in effective dielectric constant as a function of frequency ω, α is the

kinetic inductance fraction, σ is the imaginary part of the conductivity, and ∆σ (T )

its change with temperature, Ψ is the complex digamma function, and δ characterizes

the TLS loss tangent.

∆ω0 (ω0, T )

ω0

=
α

2

∆σ (T )

σ
− F

2

∆ε (ω0, T )

ε
(4.2)
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∆ε (ω, T )

ε
= −2δ

π

[
ReΨ

(
1

2
+

1

2πi

~ω
kBT

)
− log

~ω
kBT

]
(4.3)

Another hallmark of TLS dissipation is shown in the dependence of Qi on the

circulating power in the resonator. Since Qi is defined as the rate at which energy

dissipates compared to the energy stored in the resonator, as more power is put

into the resonator more power is dissipated. Since a TLS, by definition, has two

energy levels, one with a finite lifetime, the relaxation rate of the TLS presents a

maximum rate at which energy can leak from the resonator to an external bath

through the TLS. The distribution of TLS is a bottleneck that becomes saturated at

high resonator circulating powers. This bottleneck leads to an increase in Qi at high

circulating power since no more power can be dissipated through the TLSs. This

effect is characterized by a dependence of Qi on resonator electric field as shown

in Eq. 4.4, where E is the RMS electric field value in the resonator, and Es is

the saturation electric field [51, 82], calculated from solving the Bloch equations for

the TLS density matrix [86]. The tanh
(

hf
kBT

)
term accounts for partial saturation

of TLS states due to temperature. For the purpose of this study, Qi is measured

at circulating powers corresponding to a single microwave photon, which is below

the power at which Qi begins rising noticeably. This is a typical power used for

quantum information processes and thus it is important to characterize resonators

at this power.

1

Qi

∝
tanh

(
hf
kBT

)
√

1 + E2

E2
s

(4.4)

Measurements have revealed nonzero TLS filling factor FTLS for CPW resonators,

showing that they are coupled to some distribution of TLS. In addition, an experi-

ment by Gao et al. [80] measured the variation of FTLS with different CPW width
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and gap parameters, thus helping to elucidate where the TLSs might be. One should

note, however, that only the product of FTLS and δ is found from a fit; changes in

FTLS are inferred by assuming a constant δ. As argued by Gao, if the TLSs are in

the bulk dielectric, then FTLS should be independent of width and gap, while if the

TLSs were merely on the surface of the dielectric, then FTLS should decrease with

increasing width and gap. The latter was observed, leading to the conclusion that

TLSs were primarily a surface distribution. The reason the FTLS decreases as width

and gap increases is that less energy is stored within the narrow surface layer; the

electric field lines are spread out further into the vacuum and into the substrate, as

shown in Fig. 4.2. Improving the quality factor of CPW resonators does not leave

much flexibility beyond changing the width and gap parameters. The experiment

described below is an extension of this study with compact resonators due to their

highly flexible nature; descriptions of both CPW and compact resonators are given

in Section 2.1.1.

4.1.2 Simulation

The idea behind compact resonators is to build a resonator from two connected

subresonators, one with low impedance playing the role of a capacitance, and one

with high impedance playing the role of an inductance [91, 92, 82], see Fig. 4.7.

Because their size is smaller than the wavelength at the resonant frequency, these

are often called lumped-element resonators. Alternatively, the compact resonator

nomenclature does not presume that the attempted “lumped” nature is actually

achieved, and simply names them from the fact that they are generally smaller than

the more common CPW resonators. With thin-film lithography, a good way to make

approximately lumped resonator elements is to use meanders for inductance and

interdigitated fingers for capacitance.
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(a) 

(b) 

Figure 4.2: Cartoon drawing of a cross-section of a CPW transmission line, high-
lighting different participation of surface (shown in red) with varying CPW gap. The
gap is the distance between the centerpin and the ground planes of the CPW mode.
In (a), the gap is small, and thus many electric fields pass through the surfaces, while
in (b) the gap is large, and a smaller percentage of electric fields pass through the
surface. One may note that in (b), the mode is less localized, and thus more likely
to couple to other modes in the sample holder.

The inductor, composed of a thin meandering trace, has an inductance that scales

with the length of the trace, without the gain in inductance from the coiling of a

solenoid. The meander inductor is characterized by the parameters: lL, the total

length, gL, the gap between adjacent meanders, and wL, the width of the trace. To

approximate the object as a lumped inductor, simulations performed in the 2.5D

microwave simulation software package Sonnet were compared to that expected for

a simple inductor. A 50 Ω port was placed at each end of the inductor and the

transmission was simulated.

Simulation results of inductance values of meander inductors inferred from the

model shown in Fig. 4.3 are shown in Fig. 4.4. The addition of parasitic capacitances

to ground is needed to properly infer an inductance from simulated transmission

results. The parasitic capacitance is not surprising considering the geometry and

the closeness of the conducting ground plane below the inductor. The simulations
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L1 

C2/2 C2/2 

Figure 4.3: Model for the extraction of “lumped” element inductor values from a
meander inductor simulation. The parasitic capacitances to ground are needed in
order to fit the simulation response, and their value shows the limit of the “lumped”
element approximation.
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Figure 4.4: Simulation results from Sonnet simulation software showing inferred
lumped element inductance of meander inductors using the model of Fig. 4.3. (a)
Inductance increases linearly with total meander length; different trace widths (wL)
produce different slopes. (b) Comparison of inductance per length as a function of
wl, showing that narrower traces have higher inductance, as expected.

show that inductance is indeed linear with total meander length. This confirms the

idea that the inductance basically comes from the long length of the wire. Secondly,

simulations show that the inductance of a given trace length varies inversely with

the width of the trace.

Interdigitated capacitors are, so far, the best way to make high quality factor

on-chip capacitors out of thin films. Alternatively, one may use overlap “parallel

plate” capacitors, however these materials were at the time lower quality factor [93]

and are just now yielding comparable quality factor [94]. While there are analytical
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C1 
L2 L2 

Figure 4.5: Model for the extraction of “lumped” element capacitor values from an
interdigitated capacitor simulation. The parasitic inductances on each side of the
capacitor are needed in order to fit the simulation response, and their value shows
the limit of the “lumped” element approximation.

calculations of the capacitance of interdigitated capacitors [95], these formulas are

generally only accurate in certain parameter regimes and may not take into account

the effect of the distributed inductance that determines self-resonance frequencies.

An interdigitated capacitor is defined by the parameters: lC , the total length of

adjacent fingers, gC , the gap between adjacent fingers, and wC , the width of the

traces. To approximate the actual structure as a lumped capacitor, simulations are

performed in Sonnet in the same manner as the inductor, with attaching 50 Ω ports

directly to either side of just the interdigitated capacitor.

Simulation results of capacitance values of meander inductors inferred from the

model shown in Fig. 4.5 are shown in Fig. 4.6. The addition of the parasitic induc-

tances on each arm of the capacitor is needed to infer a capacitance from simulated

transmission response. The parasitic inductance is not surprising considering the po-

tentially long length of the capacitor fingers. The simulations show that capacitance

is indeed linear with total adjacent finger length, as expected. Next, simulations

show that the capacitance for a given finger length varies logarithmically with the

width of the trace, meaning that wider traces lead to higher capacitances. Also,

capacitance is found to vary inversely with the gap between two capacitor fingers.

None of these dependencies are surprising, but these simulations allow for the design

of capacitors of a given capacitance with any desired parameters.

To make a compact resonator, one chooses the desired inductor and capacitor
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Figure 4.6: Simulation results from Sonnet showing inferred lumped element capac-
itance of interdigitated capacitors using the model of Fig. 4.5. (a) Capacitance in-
creases linearly with total adjacent finger length; different gaps (gC) produce different
slopes. (b) Comparison of capacitance per length as a function of wC , showing that
wider traces have higher capacitance, as expected. (c) Comparison of capacitance
per length as a function of gC , showing that smaller gaps lead to higher capacitance,
as expected.
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from the frequency (ω0) and impedance (Z0) via C = 1
ω0Z0

and L = Z0

ω0
. The frequency

predicted from the ideal individual capacitance and inductance values is typically

30% higher than actual measured resonators. This difference is due to the parasitic

capacitances and inductances shown in Figures 4.3 and 4.5, along with the additional

capacitance from the ground plane, which was not included in the inductor and

capacitor simulations. Simulations of full resonator structures are more accurate,

with a typical 4% difference from measured values. For the purpose of measuring

resonator quality factors, obtaining the exact frequency is not critical, so this amount

of precision is adequate.

4.1.3 Design

Combining the meander inductor and interdigitated capacitor produces a resonator

as shown in Fig. 4.7. These resonators were designed be to measured in the hanger-

coupled scheme. For an in-depth analysis of this method of coupling, which allows

for the extraction of both Qc and Qi, see Appendix A. The resonator is placed in a

hole in the groundplane of the CPW feedline. The coupling between the resonator

and the CPW feedline is achieved by placing a portion of the resonator inductance

parallel to the feedline. The parameters that control the coupling strength are the

width of the ground plane remaining between the resonator and the CPW centerpin

(the shield width), and the length of the resonator inductor that is participating in

the coupling. Narrower shields and longer coupling inductor lengths will produce

stronger coupling, and therefore lower values of Qc.

Three progressive resonator designs are used extensively in this study, called

Designs A, B and C. Each of these designs is shown in Fig. 4.8. The different

parameters and quality factors of these designs is discussed in Section 4.3.
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Figure 4.7: Schematic showing design of “Design A” compact resonator and its
coupling to the CPW feedline. The inset shows the design parameters gL, the gap
between meander inductors, gC the gap between adjacent capacitor fingers, gR the
gap between the resonator and the ground plane, and w the width of both inductor
and capacitor traces.

A (c) 

5
0

0
 μ

m
 

(b) (a) 

Figure 4.8: Schematic showing three resonator designs, without the CPW feedline.
Resonator design is referred to as (a) Design A, (b) Design B, and (c) Design C.
In this schematic, black represents metallic areas and white where the substrate is
visible.
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4.2 Experimental Apparatus

The measurements described in the next section were completed in both the Kelvi-

nox25 and the Kelvinox400 dilution refrigerators, shown in Fig. 3.11. The Kelvi-

nox25 refrigerator has an operational base temperature of about 80 mK with a cooling

power of nominally 20 µW at 100 mK. A schematic of the microwave setup inside

the dilution refrigerator is shown in Fig. 4.9.

In this measurement setup, 4 chips were cooled at once, with each chip containing

one feedline coupled to 6 independent resonators at frequencies between 5 and 8 GHz.

Thus 24 resonators were tested in each cycle of the fridge. The chips were wire-

bonded to a printed circuit board with Arlon dielectric and placed inside the octobox

sample box (see Section 3.1.2). The octobox was mounted inside a magnetic shield

(Amuneal A4K) and attenuators were installed totaling 50 dB on the input microwave

line. All 4 chips were excited simultaneously using a passive 4-way microwave splitter.

The output line consisted of two Pamtech 4-8 GHz isolators on the mixing chamber,

a 12 GHz low-pass filter on the 700 mK stage, and a Caltech HEMT amplifier at

the 4 K stage. The measurement line was switched between the 4 chips using a

microwave switch (Radiall R573423600, see Section 3.3.2) mounted on the mixing

chamber.

The Kelvinox400 refrigerator has an operational base temperature of about 15 mK

with cooling power of approximately 400 µW at 100 mK. A schematic of the mi-

crowave setup inside the dilution refrigerator is shown in Fig. 4.10. The only inten-

tional change between the setups is the exchange of a 4-way splitter with a second

switch.
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Figure 4.9: Schematic of microwave lines in Kelvinox25 for compact resonator mea-
surements and a picture of actual setup. The components on the schematic are
labeled, not every component is visible in the included picture. Blue outlines indi-
cate cryoperm shields.
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Figure 4.10: Schematic of microwave lines in Kelvinox400 for compact resonator
measurements and a picture of actual setup. The components on the schematic are
labeled, not every component is visible in the included picture. Blue outlines indicate
cryoperm shields.
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Figure 4.11: Two extreme examples of resonator response curves fit with Eq. 4.5.
Responses typically fall between (a) symmetric and (b) strongly asymmetric about
the resonant frequency.

4.3 Results

The results for this experiment are given in Ref. [47], and will be repeated here.

While each individual resonator yields different results, there are certain traits which

are common among them. Each measurement of resonant frequency and quality

factor is extracted, as explained in Appendix A, from a transmission measurement

through the feedline to which the resonator is coupled. The transmission yields

information about the Qc, Qi and f0 from a single measurement trace. Two example

measurements are shown in Fig. 4.11, one of which is nearly symmetric, and the

other quite asymmetric, illustrating the need to use the fully asymmetric fitting

function derived in Appendix A, and shown in Eq. 4.5, where δω is a parameter

characterizing the extent of the asymmetry and x = ω−ω0

ω0
.
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Figure 4.12: Qi dependence on n̄, the applied power expressed in terms of an average
number of circulating photons in the resonator. The rise in Qi is due to the saturation
effect of TLS dissipation, explained in Eq. 4.4. Each color is a different resonator,
all on the same chip and measured sequentially.

S21 = 1−
Q0

Qc
− iQ0

2δω
ω0

1 + 2iQ0x
(4.5)

A typical measurement of Qi versus power is shown in Fig. 4.12, with power

expressed in terms of an average number of circulating photons on the resonator,

n̄. The quality factor increases from a constant value at powers of order n̄ = 1 due

to contributions from TLS dissipation in accordance with Eq. 4.4. Each color is a

different resonator from the same chip, and measured sequentially during the same

refrigerator cooldown. The maximum quality factor of approximately 1 x 106 at

around 108 photons is typical; the maximum value of this peak was observed to be

approximately 5 x 106. The decrease in quality factor at highest powers is likely due

to the finite critical currents and the breaking of Cooper pairs.

Measurements of the resonant frequency as a function of temperature also contain

information about the contribution of TLS dissipation to resonator loss. An example

measurement is shown in Fig. 4.13. The fit, using Eqs. 4.2 and 4.3 and the Mattis-

Bardeen theory of kinetic inductance [87], is to the data for the 6.6 GHz resonator

and yields values of α = 0.259 and FTLS = 0.037, where α is the kinetic inductance
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Figure 4.13: Resonator resonant frequency dependence on temperature. This depen-
dence is highlighted by Eq. 4.2, with two contributions; a decrease at low temper-
atures due to TLS dissipation and a decrease at high temperatures due to kinetic
inductance. Each color is a different resonator on the same chip.

fraction and FTLS is the TLS filling factor. This measurement confirms, along with

the measurement of Qi versus power, that TLS dissipation is contributing to the Qi

of these resonators. Note that the temperature used on the x-axis here is the mixing

chamber temperature, which is known (see Fig. 4.17 and preceding discussion) to

deviate from sample temperature in the low-temperature limit.

Measuring the resonant frequency dependence on temperature as a function of the

parameter gC , the gap between adjacent capacitor fingers, yields an interesting result.

Fig. 4.14 shows the low-temperature portion of this dependence. In this range,

the kinetic inductance contribution can be neglected and any remaining change in

frequency is presumably due to TLS dissipation. Note that resonators with smaller

gC have a large positive slope while those with larger gC have a negative slope. Slope

changes monotonically between the smallest and highest value of gC . Since positive

slopes can be attributed to TLS dissipation, it is clear that as gC is increased, the

TLS filling factor is reduced and the effect of TLS dissipation on resonant frequency

is dampened. The large negative slope at these temperatures cannot be explained

by Mattis-Bardeen theory, but may be due to the fact that the x-axis is the mixing
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chamber temperature and not sample temperature.

With the goal of optimizing the design of compact resonators in mind, the method

chosen was to vary independently each of the main parameters thought to control

TLS loss. These parameters are: the gap gC between two adjacent capacitor fingers,

the distance gL between two adjacent inductor meanders, the distance gR between

the resonator and the surrounding ground plane, and the width w of the resonator

traces. The width of the inductor and capacitor traces are swept together and not

varied independently in this study. In addition, the characteristic impedance Z0 of

the resonator was also varied.

As a means of reference, a benchmark set of resonators were measured, with

parameters: gC = 10 µm, gL = 20 µm, gR = 10 µm, w = 5 µm and Z0 = 100 Ω.

Resonators with this set of parameters are called “design A” resonators. A total

of 25 design A resonators were measured with an average Qi of 160,000 (±20,000)

and a maximum of 210,000 at single-photon power. Additionally, one chip with 6

resonators inexplicably had quality factors ranging from 40,000 to 70,000, much lower

than the rest; this chip was not included in the benchmark.

107



Figure 4.15: Dependence of Qi on parameter values. The changes in Qi for a given
mutant value are reported in reference to the average Qi (160,000) of design A, with
positive values representing improvements. The shaded column indicates the design
A value of that parameter; ∆Qi in this column is zero by definition. The square in
each row with a bold border shows the value chosen for design B. Parameters for
design C cannot easily be shown on this figure as explained in the main text.

To measure the effect of each parameter on the value ofQi, 24 geometrical variants

of design A were measured, with each “mutant” resonator having only one parameter

value that is changed. For example, the mutant values of gC were: 3, 5, 20, 30, and

40 µm. The results of the mutant resonators are shown in Fig. 4.15; percent changes

in Qi are given with respect to the design A resonator benchmark.

For gC , small values lead to lower Qi, and larger values lead to higher Qi. The

effect of changing gL on Qi is at least a factor of three smaller than for gC . Thus, the

gaps where electric fields are present (the capacitor and not the inductor), partially

control Qi, consistent with a surface loss mechanism coupled to the electric field.

Similarly, Qi increases for larger w, again consistent with surface loss, since wider

traces lead to decreasing electric field strength at surfaces. Next, it is found that Qi

drops by roughly 25 % if gR ≥ 50 µm, suggesting that the ground plane prevents

electric fields from reaching lossy materials such as the copper box or printed circuit
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board (PCB) dielectric. Lastly, the trend indicating that larger values of Z0 are ben-

eficial to Qi appears to contradict the usual hypothesis that dissipative mechanisms

have a constant tanδ. The results for gC , gL, and w are all consistent with a loss

dominated by surface electric field participation.

To combine the effect of each improved parameter, two new sets of parameter

values were chosen using these results. Resonators with these parameters are called

designs B and C resonators. Design B values were chosen to be relatively modest

changes from design A while design C values were chosen to maximize Qi. Design B

chosen values were: gC = 20 µm, gL = 5 µm, gR = 10 µm, w = 10 µm, Z0 = 200 Ω.

Resonator size increases rapidly with gL since the larger Z0 requires twice the induc-

tance. Therefore, to limit the overall size to roughly 700 µm x 500 µm, we reduced

gL to 5 µm, despite the fact that this may lower Qi by 10%. Design C chosen val-

ues were: gC = 80 µm, gL = 10 µm, gR = 10 µm, wL = 10 µm, wC = 40 µm,

Z0 = 300 Ω. Note that gC was chosen beyond the range of tested mutant design A

resonators. Also in design C, the trace width w was different for the capacitor (wC)

and inductor (wL) halves in order to benefit from the larger capacitor width while

keeping the resonator from being larger than 1000 µm x 1000 µm.

The results of all 49 design A, 73 design B, and 28 design C resonators are shown

in Fig. 4.16. Designs B and C each show significantly higher Qi than design A,

with design C better on average than design B. While there exists a spread in Qi

for each design, we observed an overall increase in the range of measured Qi. The

maximum/median Qi rose from 210,000/160,000 for design A to 370,000/280,000 for

design B, and 500,000/380,000 for design C.

Resonators of type design A and B were also measured without the standard

ion-milling cleaning step during fabrication. Ion-milling is meant to clean the bare

sapphire surface after lithography but before deposition to make a clean substrate-
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Figure 4.16: Histograms of single-photon internal quality factors for designs A, B,
and C resonators with ion-milling and designs A and B without ion-milling. Qi

improves steadily from design A to B to C. For both designs A and B resonators,
when ion-milling is not performed, Qi is roughly a factor of 4 lower, maintaining the
improvement between designs A and B.
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metal interface. When ion-milling was not performed, the maximum/median Qi was

reduced to 50,000/30,000 for design A and 190,000/80,000 for design B. Design C

was not measured without ion-milling. For both designs A and B, the median quality

factor was reduced by roughly a factor of four when ion-milling was skipped.

4.4 Analysis

Repeat measurements were done in the Kelvinox400 dilution refrigerator, which

showed lower quality factors than in the Kelvinox25, by roughly a factor of 2. Measur-

ing the quality factor at different temperatures showed that the measurements agreed

when the Kelvinox400 fridge was heated to approximately 200 mK, as shown in Fig.

4.17. This shows that while the temperature of the mixing chamber thermometer in

the Kelvinox25 fridge said 80 mK, the actual temperature of the resonator sample

was closer to 200 mK. TLS loss decreases at higher temperatures due to saturation

in the same manner that higher power saturates TLS, so a higher fridge temperature

leads to a higher resonator quality factor.

The strong effect of ion-milling of the sapphire surface (before metal deposition)

on the observed values of Qi help tell where losses are coming from. Since the ion-

milling affects only the substrate-air interface and substrate-metal interface, we infer

that these two surfaces participate strongly. The dominating participation of these

surfaces has also been predicted by simulation [96]. This Qi dependence on ion-

milling also suggests that while the geometry controls the resonator sensitivity to

the surface loss mechanism, the surface preparation determines the strength of the

loss.

In summary, these results show that the Qi of compact resonators depends

strongly on geometrical factors controlling where electric fields are stored. This
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Figure 4.17: Resonator quality factor measurements of a single resonator measured
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surface loss mechanism is consistent with a distribution of TLS as shown by the de-

pendence of Qi on power, temperature, and by the resonant frequency dependence on

temperature. In addition, substrate surface preparation prior to metal deposition is

crucial for obtaining high quality surfaces. Using these results indicating that surface

loss is dominant, quality factors have been increased, at an approximate temperature

of 200 mK, from 210,000 to 500,000 by simply tweaking the resonator’s geometrical

design parameters.

4.5 Discussion

These results showed that for a given set of materials and processing steps, the qual-

ity factor could be improved significantly simply by design improvements. Any set

of materials and processes that are still limited by surface losses should benefit from

the same design improvements. This could be extended until the materials and pro-
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cessing improve to such a level as to not be limited by surface losses. More recent

results have achieved low-temperature (probably below 200 mK) single-photon qual-

ity factors of over 1 x 106 with aluminum on sapphire CPW resonators [97]. The

improvements described were attributed to better fabrication, with best results uti-

lizing MBE-grown aluminum heated to 850 ◦C in the presence of activated oxygen.

These results still show an increase in quality factor with increased power, indicat-

ing that TLS dissipation still contributes to resonator loss. Thus, combining this

improved fabrication recipe with improved compact resonator designs could yield

quality factors of a few million and would be an interesting experiment to complete.

In hindsight, it is clear that the parameter gR should have earned more attention.

One of the reasons for the discrepancy between the measured frequency predicted by

the individual inductor and capacitor values is that the presence of the ground plane

adds a large amount of capacitance to the resonant mode. This capacitance lowers

the resonant frequency, and thus participates significantly in the mode. Especially

in design C resonators, where gC = 80 µm, and gR = 10 µm, the influence of gR on

both the frequency and the loss was likely dominant. In further studies, it would be

prudent to treat gR and gC on an equal basis.

Another important point not to forget is the sample temperature. The sample

temperature is often not equal to the mixing chamber temperature since there may

not be enough thermal conductance between the sample and the mixing chamber.

There may be a weak point at the substrate to sample-box connection, or possibly

between the sample box and the mixing chamber, especially if there is cryoperm

between the two. Every thermal link has to be strong in order to produce a low

sample temperature. Even with good thermal conductivity, the microwave lines

must also be properly filtered in order to prevent heating from thermal noise (see

Section 3.3.3).
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Concerning the possibility of a raised sample temperature, it is possible to mea-

sure the effective temperature of a qubit (see Appendix B), but it is very difficult

to objectively measure the temperature of a harmonic resonator. One must always

be cautious of “low-temperature” results for resonator quality factors, because an

imperfect setup may produce higher quality factors.

In conclusion, measuring the quality factors of over 100 resonators of many differ-

ent geometrical design variations has shown that participation ratios form the basis

for the analysis of factors limiting relaxation. Geometrical adjustments decreased the

participation ratio of surface loss (likely a TLS distribution), without changing the

material components or processing techniques, resulting in an increase in resonator

coherence. Quality factors have been increased, at an approximate temperature of

200 mK, from 210,000 to 500,000 through an increase in gaps and widths of the

interdigitated capacitor, directly constituting a step towards the goal of significantly

improving superconducting qubit and resonator coherence. In the next chapter, these

improvements are applied to the transmon qubit.
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CHAPTER 5

Compact Transmon

5.1 Sample Design

The main motivation for improving the quality of compact resonators was that they

constituted a proxy for superconducting qubits, the main enabler of quantum infor-

mation experiments. Qubits with T1 and T2 on the order of milliseconds, without

sacrificing readout fidelity or gate time, enable practical quantum computation. At

the time of the start of this experiment, one of the most reproducible qubits with

relatively long lifetimes was the transmon coupled to a CPW resonator. This 1st

generation transmon qubit implementation will be called the “CPW transmon”, and

can be seen in Fig. 5.1. The transmon is composed of the SQUID loop within

the blue square and the effective capacitance in parallel, largely coming from the

interdigitated capacitor, see Section 2.2.1 for an in-depth description of transmon

theory.

Comparing the interdigitated capacitor of the CPW transmon with the interdigi-

tated capacitor for compact resonators in Chapter 4, it is clear that the gap between

adjacent capacitor fingers is much smaller. The gap between adjacent capacitor fin-

gers in the capacitance directly across the junction (looks like “moose antlers”) is
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Figure 5.1: SEM image of a CPW transmon device. Light colors are aluminum and
the darker is the silicon substrate. The horizontal line in the middle is the centerpin
of the CPW resonator, the transmon is placed in the gap between the centerpin and
the ground plane. The large interdigitated capacitor of the transmon is visible, while
the SQUID loop is within the blue square.

usually 3 µm, while the gap between the CPW centerpin and one side of the qubit

capacitor can be as small as 1 µm depending on alignment. Both of these capacitors

contribute to CΣ and therefore participate strongly in the qubit mode. Results from

compact resonators have shown that while increasing gC to 20 µm or further, quality

factors are still determined by this gap. Gaps on the order of 1-3 µm should therefore

be significantly worse, and are a likely culprit for limiting coherence times of CPW

transmons.

The experiment described in this chapter entails designing and measuring a new

implementation of the transmon qubit based around the results from the compact

resonator study. The new implementation, called the “compact transmon”, or “2nd

generation” transmon, will include an interdigitated capacitor with large gC and

w in order to minimize coupling to surface loss. The compact transmon will be

coupled to a compact resonator to benefit from the higher quality factor resonator

as well. Results for typical CPW transmons are shown in Fig. 5.2 [39]. While this

figure is directly from an experiment on the Purcell effect, it shows that when not
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Figure 5.2: T1 times for several CPW transmon devices, reprinted from Houck et
al., 2008 [39]. For details on the solid lines and differences between qubits, see the
reference. The nearly horizontal dashed line near the top of the graph corresponds
to the lifetime predicted for a constant quality factor of 70,000. Note that the qubit
lifetimes from several qubits seem to be bounded by this line.

Purcell limited, lifetime are limited by a quality factor about 70,000. At the lowest

frequencies of 3 GHz, this corresponds to a lifetime of almost 4 µs. Is this limited by

the dielectric loss (TLS on surfaces) of the capacitor, and can compact transmons

improve this lifetime?

5.1.1 Simulation

As described in Section 1.2.1 and 2.2.1 and shown in Fig. 1.6, the transmon qubit

is composed of a Josephson tunnel junction (or SQUID for tunability) and a capac-

itance in parallel. In contrast to the CPB, the transmon’s capacitance CΣ largely

comes from a capacitance separate from the junction. In both CPW and compact

transmons, this capacitance is from an interdigitated capacitor patterned lithograph-

ically from the same material during the same fabrication step as junction fabrication

(see Section 3.1.1 for fabrication details).
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Figure 5.3: Lumped element model of transmon qubit (dashed green box) coupled
to resonator (dashed blue box). Particular shunting capacitances CS and coupling
capacitances CC are needed in order to obtain a desired qubit frequency and coupling
strength.

When designing the compact transmon, the lumped element model in Fig. 5.3 is

useful; it symmetrizes the coupling capacitor CC in a way that more closely mimics

the actual device. Simulations are used to predict values of CS and CC in order to

obtain the desired transmon frequency and transmon-qubit coupling strength.

The software used was the fully 3D electromagnetic finite-element solver: Maxwell,

from the company Ansoft. Maxwell is the DC brother of the high-frequency program

HFSS, used for other simulations in this thesis (for example, of the Purcell effect in

Section 7.4). The thin-film metals were simulated as perfect conducting infinitely

thin conductors as an approximation since their thickness (200 nm) is much less than

the closest distance between conductors (10 µm). Since Maxwell is a DC simulator,

the resonator inductor was removed to prevent it from shorting the resonator. It is
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Figure 5.4: Screen shot from Maxwell simulation software to simulate capacitances
in compact transmon mode. All colored shapes are metal, with (a) and (d) the
two halves of the resonator capacitance, (b) and (c) the two halves of the transmon
capacitance, and (e) the ground plane. The inductor of the capacitor is removed (not
shown). The transmon junction is placed between parts (b) and (c) at the point of
nearest approach at the bottom.

important that the ground planes below the chip and on the chip are included in the

simulation, as they participate in the capacitance of the resonator and transmon.

An example of a design simulation in Maxwell is shown in Fig. 5.4.

Maxwell produces a capacitance matrix, with each element given by Cij = ∂Qi
∂Vj

,

from the selected conductors, in this case 5 metals comprising the two halves of the

resonator capacitance, the two halves of the transmon capacitance, and the ground

plane. The ground plane “belongs” to the CPW feedline to which the resonator is

coupled, and in simulation is shorted to the ground plane of the sample box below the

chip. In the capacitance matrix, Maxwell always includes another, artificial, ground

at the outside of the simulation region. In order not to be influenced by this ground,

one must make this ground far enough away that it can be approximated as infinity.

The capacitances in the model of Fig. 5.3 are merely proxies for the charging

energy EC and qubit-cavity coupling strength g. Actually, one obtains the total

effective qubit (CQ) and resonator (CR) capacitances from Eqs. 5.1. In these equa-
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tions, each component Xij = 1
C−1
ij

is the (i, j)th element of the inverse of the inverse

capacitance matrix, with the indices named to match Fig. 5.4. Then calculate the

frequency directly from Eqs. 5.2. Equations 5.2 then shows how to calculate EC

from CQ, then to calculate ωQ from EC and EJ , then how to calculate the coupling

strength g from these parameters. Therefore, all of the relevant qubit and resonator

parameters are known, since EJ , ωR and κ are found using other means.

Cq = (Xbb +Xcc − 2Xbc)
−1

Cr = (Xaa +Xdd − 2Xad)
−1

Cx = (Xba +Xcd −Xbd −Xac)
−1

Cc =
CQCR
CX

(5.1)

EC
h

= e2

2CQ

ωQ =
√

8EJEC

g
2π

= 1
2

√
ωQωRCQCR

CX

(5.2)

An actual device whose results are shown in the next section can be seen in Fig.

5.5.

5.2 Experimental Apparatus

The measurement setup is largely identical to that for the compact resonators in

Section 4.2. The first few compact transmons were measured in the Kelvinox25

dilution refrigerator, the rest were measured in the Kelvinox400. The experimental

setup for the Kelvinox25 refrigerator is identical to that shown in Fig. 4.9, while the

slightly modified setup in the Kelvinox400 refrigerator is shown in Fig. 4.10. Changes

in this setup included the addition of a copper powder filter for infrared absorption

on both the input and output microwave lines for some of the measurements, see
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Figure 5.5: Optical image of compact transmon device. The compact resonator’s in-
ductance and capacitance are similar to those of compact resonators without qubits.
Additional capacitor fingers were added to enable coupling to the qubit. At the
bottom-center of this image, the interdigitated capacitor of lighter color is the shunt-
ing capacitance of the transmon, with small fingers coupling to the resonator. The
junction can be seen between the shunting capacitance.
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Figure 5.6: Schematic of microwave lines in Kelvinox400 for compact resonator mea-
surements and a picture of the actual setup. The components on the schematic are
labeled, but not every component is visible in the included picture. Blue outlines
indicate cryoperm shields.

Section 3.3.3 for details on the filter.

Throughout the course of the measurements described in this experiment, it was

discovered that many small modifications, together, reduce the effective temperature

of the qubit sample. In general, poor thermalization combined with any heat sources

can raise the “equilibrium” temperature of the qubit far above that of the mixing

chamber. Fig. 5.13 shows T1 before and after a list of modifications that will be

described here. First, the connector for the magnetic field coil was discovered to

have a few mΩ of resistance. This connector was first reduced in resistance, and

then eliminated entirely, resulting in much less active heating. Second, the entire
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Figure 5.7: Qubit temperature (measured with RPM) as a function of magnetic field
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applied current, 6 mΩ represents two connectors, 3 mΩ represents one connector, and
0 mΩ represents a direct connection with superconducting wire. A measurement with
silver-backing and 3 mΩ resistance shows that silver-backing reduces the temperature
for a given amount of heating. Note that when heating once heating is removed, qubit
temperature roughly matches sample box temperature.

backplane of the sapphire chip containing the device was coated in silver and was

mounted to the octobox using silver paste instead of GE varnish, in order to obtain

better thermal contact with the octobox metal. Measurements showing the heating

effect of the magnetic field coil connector and the effect of silver-backing are shown

in Fig. 5.7. In addition, thermal anchoring braids were added between the octobox

and the cold finger of the mixing chamber, copper powder filters (3.3.3) were added

on the input and output microwave lines and hand-formable braided cables were

removed in favor of semi-rigid cables. These modifications were taken a step further

by Barends et al. [77] and in this thesis work in Chapters 6 and 7.
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Figure 5.8: (a) Cavity transmission amplitude as a function of frequency, showing
how the cavity shifts due to qubit excitation. (b) Measurement of cavity transmission
amplitude while sweeping additional qubit tone. Cavity transmission amplitude rises
when qubit is excited, the two peaks shown are due to the fge and fef transitions. (c)
Measurement of qubit frequencies as a function of applied flux, showing tunability
of qubit frequencies.

5.3 Results

In the process of this experiment, 11 working compact transmons were measured.

Each qubit had slightly different frequencies and coupling strengths, along with some

important experimental setup changes along the way. While each transmon had its

own coherence times, there are many similarities among the measurements.

First of all, each transmon spectroscopy looks quite similar. The spectroscopy

is defined as the response of the cavity due to a frequency sweep of a probe (spec-

troscopic) tone. When this probe tone excites the qubit, the cavity shifts and the

measured transmission on resonance is changed. For a more detailed description of

dispersive readout, see Section 3.2.1. The basic points of spectroscopy can be seen

in Fig. 5.8.

The first image shows a single trace of spectroscopy. The two peaks are the

first two transition frequencies of the transmon, fge and fef . The difference between

these two frequencies is a measure of qubit anharmonicity, which is often equal to

EC . For a sufficiently anharmonic qubit, EC is kept around 300 MHz, and here it

matched simulations well. Note that since there is a response at the fef with a single
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spectroscopy tone proves that there is some |e〉 population to begin with. Since this

is unexpected if the qubit were thermalized to the mixing chamber temperature, this

effect is commonly called a “hot” qubit. While a temperature could be inferred from

the height of these two peaks, this method is highly inaccurate; a better method to

measure qubit temperature is described in Appendix B.

The second image is an array plot containing many slices of spectroscopy versus

applied flux. Each of the 11 tested qubits had an inductive element made from a

SQUID. This allows for tuning of the qubit transition frequency by applying a flux

through this loop to influence the effective inductance. Applying flux through the

loop increases the inductance and thus lowers the qubit frequency; the maximum

frequency is at zero flux which may not correspond to zero applied flux. Both the

fge and fef transition peaks can be seen to tune in this image.

The third image shows how the dispersive readout works. The trace is a measure-

ment of the cavity transmission amplitude with and without a spectroscopic tone at

the qubit frequency. The cavity shifts in frequency and allows for the two states to be

distinguished by a change in transmission amplitude. The transmission shape is an

inverted Lorentzian as expected for a resonator that is hanger-coupled to a feedline.

Note that since this measurement uses qubit saturation instead of preparing the |e〉

state with a π-pulse, the average measured frequency difference is only half of the

dispersive shift χ.

Besides these basic spectroscopy measurements, there are a few other measure-

ments that are commonly done in order to characterize a transmon qubit. These

include: cavity transmission as a function of power to find a good readout power,

an AC stark shift measurement to calibrate the cavity photon number, and Rabi

oscillations to calibrate π-pulses.

Once the qubit frequency is well localized and the π-pulse is well-tuned, one can
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Figure 5.9: Measurement of T1, TR2 , and TE2 . Each fit is to an exponential decay,
with TR2 being measured on resonance. Each of these measurements was selected as
the best non-outlier measurement of each coherence time. They are not from the
same qubit or same experimental run.

measure the coherence times T1, TR2 , and TE2 . Fig. 5.9 shows the measurement

traces of the highest coherence times for compact transmons. Note that the T1 is

considerably longer than the longest CPW transmon.

Fig. 5.10 shows the statistics and repeatability of compact transmons by includ-

ing the maximum of each T1, TR2 , and TE2 for each of the 11 measured compact

transmon devices plotted versus qubit transition frequency. Note that each qubit is

tunable, and only the maximum value of each coherence time is quoted; the value for

each coherence time is likely from a different qubit frequency. The dependence of co-

herence on qubit frequency is discussed next. While the maximum T1 is 13 µs, there

were four devices measured at or above 8 µs, showing some amount of repeatability.

Each of the compact transmons measured were better than the best CPW transmon,

with the minimum compact transmon being around 4 µs. The T1 tends to increase

at lower frequencies in a manner faster than a constant Q would predict. The two

dashed lines show the T1 expected for two values of Q, calculated from Q = ω0T1.

The values of TR2 and TE2 shown in Fig. 5.9 were chosen at the maximum qubit

frequency, or “sweet-spot”. At this point, corresponding to zero flux through the

transmon SQUID loop, the qubit frequency is first-order insensitive to flux noise. In

the case of these qubits, this often leads to a maximum in TR2 . As the qubit is tuned
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down the slope, the sensitivity to flux noise increases and TR2 decreases. TE2 usually

follows this trend, although if the flux noise is from low-frequencies, then the echo

sequence diminishes this effect.

The dependence of each of the three coherence times on qubit frequency is an

interesting method for learning what decoherence or dissipation methods are domi-

nant. Different mechanisms of decoherence produce distinguishable dependences of

T1, TR2 , and TE2 versus qubit frequency. While each qubit had its own peculiarities,

many of them share common features. For example, Fig. 5.11 shows a typical coher-

ence versus qubit frequency plot. The maximum qubit frequency for this qubit was

4.93 GHz with the ability to tune down to 3.22 GHz. While the qubit is expected

to be tunable to a much lower frequency, measurements are often limited by either

diminishing readout contrast or quickly increasing charge dispersion.

T1 in this graph can be seen to increase significantly over the swept frequency

range, rising as high as almost 8 µs at 3.22 GHz and dropping as low as almost 1 µs

at 4.93 GHz. The solid red line shows the predicted Purcell limit, and shows the

limit of T1 due to the coupling to the cavity. To measure the effect of other loss

mechanisms, it is best to increase the Purcell limit much higher than observed T1,

whereas here it cannot be neglected. Here, the T1 matches well to Purcell plus a

constant Q between 120,000 and 200,000, as shown by the dashed lines.

T2 as shown in this figure, appears to be limited by both low-frequency and high-

frequency noise. The fact that TE2 is everywhere larger than or equal to TR2 shows that

the qubit is subject to some low-frequency noise that the echo successfully cancels

out. However, since TE2 is only, in the best cases, equal to T1, shows that there is also

some decoherence due to high-frequency noise, that the echo cannot remove. This is

a common trait among the compact transmons; most devices show T1 ≥ TE2 ≥ TR2 .

In no device at any frequency was TE2 above T1. Another observation from this graph
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is that TR2 drops away from the flux sweet-spot maximum of just over 1 µs. While

the highest TR2 observed at the sweet spot was 3.0 µs, most devices were closer to

1 µs.

Another interesting measurement is a method to indirectly measure the Purcell

limit, not requiring any transmon theory. The Purcell limit attempts to calculate

the coupling strength between the qubit and the dissipation of the cavity. If the

cavity is under-coupled, this is represented by the various loss mechanisms of the

cavity; however, if the cavity is over-coupled, this represents mainly the coupling of

the cavity to the microwave line impedance. Therefore, in the case of an over-coupled

cavity, the Purcell limit is determined by the coupling strength between the qubit

and the microwave lines. Another way to directly measure this coupling strength is

to measure the power required to complete a π-pulse given a fixed pulse shape and

width. This measurement, in comparison to the Purcell limit is shown in Fig. 5.12.

The Purcell limit is shown in log-scale because the π-pulse power is represented in

dBm. Note that the π-pulse power changes by almost 10 dBm, corresponding to a

factor of 10 change in power, and that the Purcell limit T1 also changes by a factor of

10. While the overall shape is the same, the π-pulse measurement takes into account

the actual impedances, resulting in the typical oscillations of slightly mismatched

microwave lines. The qubit for which this was measured was not sufficiently Purcell

limited in order to observe these oscillations in the qubit T1 measurements.

A discussion in Chapter 4 highlighted results showing that the quality factor

of compact resonators depended strongly on the sample temperature due to the

dominance of TLS dissipation. The sample temperature was shown, in the case

of the Kelvinox25 refrigerator to be considerably higher (200 mK) than the mixing

chamber temperature (80 mK). This effect is also very important for qubit coherence

times. Luckily, for the case of qubits, it is possible to directly measure the temperature
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Figure 5.13: T1 for a compact transmon device measured versus temperature. The
red points in both graphs show T1 plotted against the mixing chamber temperature,
while the green points are plotted against the qubit temperature measured from
RPM. Measurements are done (a) before modifications and (b) after modifications
intended to produce lower qubit temperature.

by accurately quantifying the equilibrium amount of excited state population. Qubit

temperature and methods to measure it are described in Appendix B. Using the Rabi

Population Measurement, or RPM, method to measure qubit population, Fig. 5.13

shows how it is possible to be misled by certain measurements.

This graph shows how T1 depends on temperature for a compact transmon, both

before and after modifications intended to lower the qubit temperature. In the first

graph, it looks like T1 reaches a maximum at low temperatures when plotted against

the mixing chamber temperature. However, when plotted against qubit temperature,
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it is completely unclear whether the maximum is yet reached. In the second graph,

the qubit temperature reaches lower values and confirms that the qubit has indeed

reached a plateau in T1. While the second graph did not disprove the false conclusion

from the first graph, it highlights the danger in assuming any sample temperature

is equal to the mixing chamber. The modifications to the experimental setup are

described in the previous section (Section 5.2).

5.4 Analysis

Comparing CPW and compact transmons, it is clear that compact transmons have

significantly higher coherence times. Fig. 5.2 shows that relaxation times of CPW

transmons seemed to be bounded by a quality factor of about 70,000, achieving

almost 4 µs at around 3 GHz. It should be noted that this was in fact that longest

lifetime of any CPW transmon; a typical lifetime was around 1 µs due to optimization

for other parameters. Fig. 5.10 shows the summary of relaxation and coherence times

for the 11 compact transmon devices; each of them individually shows a quality factor

above 70,000. Most devices are between a quality factor of 120,000 and 200,000, while

the highest quality factor is 250,000, with a lifetime of 13 µs at around 3 GHz. Thus,

compact transmons typically achieved an improvement of about a factor of 3 (or

200% increase) in qubit lifetime.

While an small improvement was achieved, there were many specific improve-

ments that could be responsible. The focus of this experiment was on the increased

value of the width and gap of the transmon capacitance, other changes may have

contributed to the increase in relaxation time. Other changes include: switching

from silicon to sapphire substrates, switching from CPW to compact resonator as

cavity, and many modifications to the experimental setup to improve shielding over-
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all. While it has not been proven, sapphire has often been suggested to have lower

loss than silicon, so this change may be responsible for some of the improvement.

Experiments by Corcoles et al. [79] for qubits and Barends et al. [77] for resonators

have shown that preventing stray infrared radiation from reaching the qubit or res-

onator results in drastic improvement to lifetimes. It has not been ruled out that

experimental setup improvements are responsible for the relaxation time increase.

While the change from CPW to compact resonator has resulted in using a higher

cavity Qi, the cavities are, in these experiments, always over-coupled. Therefore,

this is unlikely to influence the qubit lifetime.

Although the improvement of relaxation time was the focus of this experiment,

increases in coherence time are a long term necessity for quantum computation.

CPW transmons typically had TR2 and TE2 values of around 1 µs, showing that often,

neither TR2 nor TE2 were limited by T1 processes. Improving the relaxation time allows

for higher coherence times, and in general the compact resonator coherence times

were longer. As shown in Figures 5.10 and 5.11, TE2 is almost always considerably

longer than TR2 , which is often limited at 1-2 µs at the flux sweet spot. This shows

that low-frequency noise plays a role, and the fact that TR2 decreases quickly away

from the sweet spot shows that this is likely flux noise. Flux noise can either come

from external noise, for example from the magnetic field coil current fluctuations,

or from local noise, such as microscopic fluctuators on the surface of the SQUID

loop. Experiments explicitly for the purpose of increasing the dephasing times, or to

deduce their source, were not completed.

The importance of sample temperature cannot be overstated. Techniques such

as RPM (see Appendix B) accurately measure the effective qubit temperature. This

temperature is often drastically different from the mixing chamber temperature, de-

pending on many details of the experimental setup. If this temperature is high
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enough, it has been shown in some cases to be severely limiting qubit lifetime [79].

In the experiments here, qubit lifetime did not improve upon lowering qubit tem-

perature, however it seems the temperature was just low enough, as shown in Fig.

5.13.

In the broad sense, it is not always true that the lowest temperature produces

the best quality factors. If the temperature is high enough to increase the loss due to

quasiparticles [62], then lower temperature will improve relaxation times. However, if

the relaxation time at an elevated temperature is limited by TLS dielectric loss, then

higher temperatures produce higher relaxation times. This was observed directly

in Chapter 4, where measurements at 200 mK produced resonator quality factors

roughly twice as high as measurements done at roughly 50 mK. Since the goal of this

experiment was to apply lessons learned from compact resonators to transmons, the

temperature is extremely important.

5.5 Discussion

The compact transmon design optimized for this experiment was used by other

groups because of its good performance. In fact, the Berkeley group let by Irfan

Siddiqi, openly borrowed an almost exact design of the compact transmon for their

paper showing quantum jumps [98]. Similarly, flux qubits were also coupled to com-

pact resonators for additional experiments [72].

While an increase in relaxation times was observed, possibly due to the increased

width and gap of transmon capacitance, a thorough study of this effect was not

completed. It would be interesting to measure the lifetimes of various qubits with

different widths and gaps, much in the same way a variety of resonators were mea-

sured in Chapter 4. This study would require a lot of simulation, because one would
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have to match capacitances with a wide variety of structures. Results from this ex-

periment would shed light on whether the improvements observed were due to the

increased width and gap or something else entirely.

Results from two recent experiments have done exactly as described, both by

UCSB and IBM. These transmons have been tested with varying widths and gaps,

in much the same way as the compact transmon described here. The UCSB group

shows consistent lifetimes of 10-30 µs, with some measurements as high as 44 µs

using their “Xmon” design, which includes larger width and gap parameters [99].

The Xmon is a transmon that uses a distributed capacitance to ground instead of an

interdigitated capacitance. This capacitance has four legs, allowing for the coupling

to four different components (resonators, feedlines, etc...) at once, thus the shape

resembles an “X”, hence the name. IBM shows lifetimes of up to 60 µs by making

the qubit capacitor out of TiN along with similar geometrical design changes [52].

The improvement observed in both of these groups is not surprising and is a natural

extension to the work presented in this thesis.

In conclusion, the coherence improvements observed through the measurement of

11 compact transmon devices validate the analysis technique of participation ratios

to superconducting qubits. Adjustments of capacitor width and gap that resulted

in a decrease in surface participation, without changing the material components or

processing techniques, led to an increase in coherence of both resonators and qubits.

Compact transmons exhibit relaxation times as high as 13 µs, when compared to

the maximum of 4 µs of CPW transmons. This increase in coherence represents an

immediate advance towards the goal of improving superconducting qubit coherence.

In the next chapter, now that the participation ratio method has been validated for

small changes, the reduction in surface participation is taken to the extreme.
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CHAPTER 6

3D Transmon

6.1 Introduction

6.1.1 Origin of 3D Transmon

Chapters 4 and 5 describe experiments in which the geometry of resonators and qubits

were slightly modified as a means of reducing the participation of lossy surfaces.

The reduction in participation of surfaces resulted in an increase in relaxation times,

validating the analysis method of participation ratios. With newfound confidence

in the participation ratio method, the transmon was fully redesigned in order to

force the participation of lossy materials to be much lower. To have quality factors

of higher than 1,000,000, any material that has a 1% participation must have a Q

of greater than 10,000, and a material with 0.1% participation must have a Q of

greater than 1,000. In a system with lossy materials such as a PCB, GE varnish,

and wirebonds, it is difficult to simulate properly and ensure that the participation

to these offending materials is low enough. To guarantee that the transmon qubit is

not limited by these lossy materials, they must simply be removed from the system.

In addition to removing dissipitive materials, radiative loss must also be mini-
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mized. The presence of a sample box is necessary to remove radiative losses to zeroth

order and also to shield the chip from infrared radiation, yet the addition of a box

usually adds spurious “box modes” which also contribute to dissipation. The octo-

box (see Section 3.1.2), used for experiments on CPW and compact transmons has

box modes with very low quality factors due to the lack of attention to important

details like how the box was closed and the wire-bonds and PCB inside the box.

Realizing that the coupling to these modes cannot be reduced indefinitely, one must

design a better sample box.

Thus, in order to remove dissipitive materials and reduce loss through box modes,

the transmon must be completely redesigned. The beauty of the “3rd generation”

transmon is that both of these changes are implemented through the same change:

the substitution of a 3D cavity resonator in place of the 2D compact resonator; the

simple 3D cavity geometry, with no extra dissipitive materials, provides both the

readout resonator and a shield for infrared radiation. The radiation to box modes is

removed, not by reducing the coupling between the transmon and box modes, but

by making the box modes higher quality; in fact, one sample box mode doubles as

the readout mode for the 3D transmon. The structure of the 3D cavity, as explained

in Section 2.1.2, is composed of a machined chamber inside a solid block of metal.

The 3D transmon is placed on a chip and mounted in the center of the cavity, held

in place by friction between the two halves. This simple structure removes all lossy

materials and is fully simulatable and possibly even calculable analytically.

The participation ratio benefit of the 3D transmon becomes clear when estimat-

ing the participation of surface layers. While a proper surface participation ratio can

be calculated from simulation results, a simple estimation is enough to illustrate the

difference between 3D and compact geometries. As shown in Fig. 6.1, a simple esti-

mate compares the fraction of the volume filled by the surface: psurf = tsurf/tmode,
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(a) (b) 

5 nm 
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5 μm 

Figure 6.1: Rough estimate of surface participation in (a) 3D resonator or 3D trans-
mon versus (b) compact resonator or compact transmon. This estimate calculates
the fraction of mode volume filled with the offending surface. Assuming a surface
thickness of approximately 5 nm, the surface participation of compact geometry is
approximately 10−3 versus 10−6 in the 3D geometry.

where psurf is the surface participation ratio, tsurf is the thickness of the surface layer

in question, and tmode is the distance between the two conductors in the mode. In

the case of compact resonators or compact transmons, tmode is equivalent to gC , and

supposing tsurf = 5 nm, a rough estimate of the surface participation is 5 nm/5 um

∼ 10−3. In a 3D cavity and a 3D transmon, the mode volume was increased signif-

icantly, thus increasing tmode as well. A rough estimate of the surface participation

in the 3D geometry is 5 nm/5 mm ∼ 10−6. Therefore, by rough estimates, if a 3D

cavity and compact resonator would both be limited by dissipation in a small surface

layer (whatever that dissipation may be), the 3D cavity would have roughly a factor

of 1,000 longer relaxation time. Since a 3D transmon necessarily (so far) includes

the addition of planar structures inside the 3D cavity, they may not realize the full

improvement as seen by 3D cavities.

6.1.2 Existing Implementations

The 3D transmon was first conceived and implemented at Yale University around

2010. After several different cavity types were tested, the cavity/sample box that

was chosen for the first 3D transmon was a simple rectangular cavity. The modes
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Figure 6.2: Picture of two halves of copper rectangular cavity. The cavity is simply
milled out of a block of copper; the two halves combine to form one cavity. There
is a ledge on the half on the right that allows one to place chips. Coupling to the
cavity from microwave lines is achieved through one hole on either half of the cavity.
Coupling strength is adjusted by changing the length of the pin sticking into the
cavity from this hole.

of a rectangular cavity can be calculated analytically using formulas found in many

books [53], and discussed in Section 2.1.2.

The most commonly used rectangular cavity used for the experiments at Yale is

shown in Fig. 6.2. The cavity in this image is made out of copper, which limits the

quality factor of all resonant modes to approximately 10,000 since copper remains

a normal metal even at dilution refrigerator temperatures. Aluminum cavities of

the same variety produce quality factors ranging from 1 to 50 million depending on

various cleaning, machining and material properties. The discussion of 3D resonator

quality factors is out of the scope of this thesis, but is detailed in a study by Reagor

et al. [100].

Coupling qubits to 3D cavities is done in much the same way as a 2D cavity; the

coupling is by capacitance between the two halves of the Josephson tunnel junction

and the two voltage anti-nodes of the cavity. This is achieved in the 3D architecture

by adding two large “pads” to the Josephson tunnel junction, one on either side, as
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Figure 6.3: Picture of first 3D Transmon device from H. Paik et al. [101]. On the
left, one half of the 3D cavity is shown. The design is similar to the updated cavity of
Fig. 6.2, but this version is made of aluminum. On the right, a close up image of the
two antenna pads is shown. The junction is too small to be seen, but it connects the
two pads in the center. The exact antenna pad geometry varies significantly among
the 3D transmon devices made for different experiments.

shown in Fig. 6.3. The exact capacitor design varies from experiment to experiment,

but is typically rectangular on the order of 100 x 100 µm. The total capacitance CΣ

of the transmon is highly affected by the cavity walls and therefore the cavity walls

participate strongly in the qubit mode.

Coherence results of 3D transmons are extremely promising, with T1, TR2 and TE2

times each measured over 100 µs. The original paper and results by Paik et al. [101]

detailed T1 values of between 20 µs and 60 µs, with TR2 typically in the range of

15-20 µs. Echo typically increased coherence times by less than 20%. These results

are approximately 4 times higher, both in T1 and TR2 than the compact transmons

and 16 times higher than the best CPW transmon.

In the time since the original 3D transmon measurements, drastic improvements

in coherence have been achieved. Work both at Yale and IBM [42, 43] showed that

TR2 was often limited by photon induced dephasing, described in Section 1.3.2. The
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Kerr between the qubit and various cavity modes, combined with non-zero cavity

populations, was found to be limiting TR2 in the first 3D transmon experiments. A

change of one photon in a cavity mode whose dispersive shift with the qubit is larger

than the qubit linewidth completely dephases the qubit. The statistics of how often

these photon jumps occurs, i.e. photon shot noise, determines the dephasing time of

the qubit. For modes this strongly coupled, an TR2 can be calculated from the steady

state population n̄ and the cavity linewidth κ, via 1/TR2 = n̄κ.

From these experiments on photon induced dephasing, it is clear that cavity pop-

ulations must decrease in order to improve TR2 . Decoupling the cavity from the

environment and implementing better filtering have shown that the intrinsic dephas-

ing times are at least several hundred microseconds [43, 42], resulting in coherence

times of over 100 µs. A side effect of improved filtering and thermalization is that 3D

transmon relaxation times have also increased to over 100 µs, indicating that either

quasiparticles or infrared photons were previously limiting transmon relaxation.

These results spurred a revolution in the superconducting community, with many

groups around the world quickly adopting 3D transmons. The fact that many groups

duplicated the coherence results showed that the participation ratio idea underlying

the 3D transmon is a very robust way to improve coherence, and does not rely on

special fabrication methods. Their enhanced coherence times and simple fabrication

allow for many experiments that may not previously have been possible. These

experiments include initialization by measurement [70], initialization to an arbitrary

point on the Bloch sphere by cavity-assisted bath engineering [102], stabilizing Rabi

oscillations with feedback [103], measuring back-action of weak measurements [69],

stabilizing a qubit trajectory [104], and measuring charge-parity fluctuation statistics

[105].

141



6.1.3 3D Transmon as “Calibration”

As a means of confirming the experimental setup and as a comparison, under nearly

identical conditions, to the fluxonium qubit results presented in Chapter 7, a 3D

transmon was fabricated and measured for this thesis. Since it has been shown that

the experimental environment is critical to maximizing the performance of transmon

qubits, it is important to qualify any new experimental setup with existing designs

before exploring new territory; this was a primary motivation for the measurement

of this 3D transmon.

The measurements in this chapter were performed in a standard circuit QED

setup on an aluminum transmon qubit, fabricated using a bridgeless double-angle

evaporation technique [66, 67]. This fabrication technique is different from the Dolan

bridge technique used for the original 3D transmon results. The bridge-free technique

was chosen here because it was planned to be used for the fluxonium fabrication; its

use in the 3D transmon measurements improves the future comparison.

To make further use of this experiment, this transmon was fabricated using a

SQUID and measured inside a copper 3D cavity to allow an external coil to apply

flux and control the qubit frequency (in the same manner as the compact transmons

in Chapter 5).

6.1.4 Reset Experiment

With its extended coherence time, the 3D transmon qubit permits many experiments

that were previously out of reach or impractical. One such experiment that takes

advantage of the 3D transmon capabilities is a measurement of a new qubit reset

mechanism. Qubit reset is an integral part of any quantum algorithm and is required

at the beginning of and during algorithms as a means of initializing the qubit in a
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known state. Any reset will be characterized on its speed and fidelity, with speed

representing the time to initialize the state from any existing state and fidelity being

the overlap with the expected initialization state. This reset mechanism works via

redirecting energy of the qubit into the dissipation mechanism of the cavity. Named

DDROP, for Double Drive Reset Of Population, this protocol is described in detail

in Appendix C.

The existence of a proper qubit initialization mechanism is of great importance,

not only for the eventual quantum algorithm, but also for the characterization of

other quantum elements. For instance, a measurement of the fidelity of any gate will

be limited by the fidelity of the initial state. Thus, to measure a 99.9% fidelity gate,

one must start with a minimum ground state preparation fidelity of 99.9%. This

means that a poor qubit initialization mechanism will limit every other aspect the

quantum algorithm, and is thus one of the most important elements of a quantum

system.

Qubit reset, in the case of a qubit with high equilibrium excited state population,

also acts as a cooling mechanism. Initializing the qubit to the ground state requires

(on average) removal of energy, thus the reset acts as a type of cooling. High tem-

perature qubits are common [79], and can limit coherence, as discussed in Chapter

5. If qubit coherence times are limited by coupling to an environment at an elevated

temperature, it is possible that one may cool this environment by continuously re-

moving energy from the qubit. Results from this experiment will show whether this

was achieved.
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6.2 Experimental Apparatus

The experiment in this chapter was performed in the Kelvinox400 dilution refrig-

erator. The transmon sample was mounted inside a 3D copper cavity, which was

thermally anchored to the mixing chamber of a dilution refrigerator with a base

temperature of about 15 mK. The cavity was mounted inside a copper shield coated

with infrared absorbing material on the inside. A high-frequency Eccosorb “box”

filter, and a microwave 12 GHz low-pass filter were placed on each input and output

microwave line. Two 8-12 GHz circulators were installed between the cavity and the

HEMT amplifier. The microwave filters and infrared shield are described in more

detail in Section 3.3.3.

6.3 Results

6.3.1 Coherence Results

The 3D transmon measurement protocol is exactly identical to that of the compact

transmon, the differences in implementation may change parameters, but not the

basic idea. Therefore, the basic results such as spectroscopy are very similar to that

of the compact transmon. The qubit frequency still has a maximum frequency that

doubles as a sweet spot for flux noise, while the Purcell effect still reduces the T1

when the qubit frequency is close to the cavity frequency.

Measurements of the various coherence times as a function of flux are shown

in Fig. 6.5. The maximum qubit frequency for this 3D transmon was 5.0 GHz;

magnetic flux tuned the qubit frequency down to 4.4 GHz before the readout became

too weak. Although it could be overlooked in the log-scale plot, T1 increased as the
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Figure 6.4: Schematic of microwave lines in Kelvinox400 for 3D transmon measure-
ments and a picture of actual setup. The components on the schematic are labeled,
not every component is visible in the included picture. The blue outline indicates
the cryoperm shield and the red outline indicates the infrared shield. The bottom
“can” of the infrared shield and cryoperm are not shown.
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Figure 6.5: Measurements of T1 and TE2 versus qubit frequency for a tunable 3D
transmon in a copper cavity. These measurements show a significant increase in T1

as the frequency is reduced along with a drastic drop in TE2 away from the maxi-
mum frequency sweet spot. TR2 measurements are not included since the automated
procedure failed to produce good results for this frequency sweep.

frequency was decreased from approximately 45 µs to approximately 65 µs. Repeat

measurements at the lowest frequency place this number at 70 µs. This is a large

increase in T1 over a relatively short frequency span.

The Purcell effect calculation for 3D transmons is currently being investigated,

but it is clear from this sample alone that the approximation in the single-mode

strong-dispersive regime (described in Section 1.3.1) is insufficient. For the parame-

ters at the maximum qubit frequency (f gc = 9.1 GHz, f 0
g = 5.0 GHz, κ/2π = 3 MHz,

χ/2π = 7 MHz, T1 = 37 µs), the estimated Purcell limit using this approximation

yields 13 µs. The observed value at this frequency is a factor of 3-4 higher than this

estimate, highlighting the need for a more complete Purcell theory. At 4.3 GHz, this

Purcell estimate rises to 21 µs, still far from the measured T1. Note that the increase

in T1 from 5.0 to 4.3 GHz is faster than one would expect in the case of a constant

Q; 70 µs at 4.3 GHz corresponds to a Q of 1.9 x 106 while a T1 of 40 µs at 5.0 GHz

corresponds to a Q of 1.3 x 106.

While the T1 can be considered on par with typical (not the best) 3D transmon

results, the TE2 results are significantly lower away from the flux sweet spot. At the
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Figure 6.6: Individual measurements of T1, TR2 , and TE2 at the maximum qubit
frequency of 5.02 GHz. This frequency is first order insensitive to flux noise due to
the zero derivative of frequency with applied flux. This results in the highest values
of TR2 and TE2 for this qubit.

flux sweet spot, TE2 ≈ T1, so the dephasing time Tφ ≈ T1. This is likely due to

flux noise as the TE2 is observed to decrease very rapidly away from the sweet spot.

Individual measurements of each T1, TR2 , and TE2 are shown for qubit frequency

5.0 GHz in Fig. 6.6 and for 4.3 GHz in Fig. 6.7. Since TR2 is considerably lower than

TE2 in both cases, it is clear that there is some high frequency noise, likely flux noise,

influencing the qubit coherence. The fact that the echo procedure does not raise TE2

as high as 2 T1 means that there is also some low-frequency noise. The value of TR2

reduces drastically away from the sweet spot, dropping a factor of 40 from 20 µs to

0.5 µs while the TE2 drops only a factor of 4 from 39 µs to 11 µs.

On the scale of several hours, the relaxation time at either of these fluxes was

noticed to fluctuate by almost a factor of 2. While not observed on every qubit

device, this is a common occurrence and has been observed in compact transmons,

this 3D transmon, and the fluxonium. These fluctuations may be due to subtle drifts

in the amount of quasiparticles or accessible TLSs. An example measurement on the

3D transmon of T1 variations over 14 hours is shown in Fig. 6.8.
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Figure 6.7: Individual measurements of T1, TR2 , and TE2 at the qubit frequency of
4.3 GHz. This qubit at this frequency is much more sensitive to flux noise due to
the non-zero derivative of frequency with applied flux. This results in much lower
values of TR2 and TE2 . T1 is higher at this frequency either due to the Purcell limit
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Figure 6.8: Measurement of relaxation time T1 over the course of 14 hours for 3D
transmon qubit. Each measurement here consisted of approximately 8 minutes of
averaging. The fluctuation is nearly a factor of 2 from minimum to maximum, and
there appears to be some structure in the fluctuations.
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6.3.2 Qubit Reset

The DDROP reset mechanism, tested on this 3D transmon utilizes many of the

3D transmon advantages over previous transmon designs. Qubit and cavity pa-

rameters at the flux used for this experiment were measured to be f gc = 9.1 GHz,

f 0
g = 5.0 GHz, κ/2π = 3 MHz, χ/2π = 7 MHz, T1 = 37 µs, TR2 = 20 µs, TE2 = 40 µs,

steady state Pe = 9%, Γ↑/2π ≈ 400 Hz.

As explained in Appendix C, for the DDROP protocol to improve the initializa-

tion of the ground state, there are two requirements: χ/κ >2 and κ/Γ↑� 1. For the

parameters listed above, these requirements are met, with χ/κ = 2.3 and κ/Γ↑ '

8,000, indicating that DDROP should prepare ground state better than the steady

state 91%.

The effect of the DDROP protocol on this qubit is shown in Fig. 6.9, where the

y-axis is the measured excited state population and the x-axis is the duration of the

reset pulses (or delay time in the case without DDROP). Each data point is taken

after waiting 1 µs (20 κ−1) after the end of the DDROP pulse to allow the system

adequate time to decay from |g, α〉 to |g, 0〉. The two solid, nearly horizontal curves

are the pre-reset ground and excited qubit states without DDROP pulse. The pre-

reset is itself a 5 µs DDROP sequence done before all other pulses in order to suppress

the initial excited state population. The slight downward trend in the excited state

curve, due to the finite value of T1, is barely noticeable on this scale. The other two

solid curves correspond to the same preparation, but show the effect of a DDROP

pulse whose duration is varied across the x-axis. At short pulse duration, both initial

populations tend towards 50% excitation, due to the Rabi drive. As the duration is

increased, the population tends quickly towards the pre-reset ground state.

The four dashed curves represent an identical set of data taken without the pre-
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Figure 6.9: Measured excited state population after reset pulse of varying duration,
for four different initial preparations, measured after intervals of 40 ns. The solid
lines include a pre-reset while the dashed lines begin with the steady state 9% excited
population. The ‘w/pi pulse’ curve shows a slight downward trend due to the finite
T1. The curves with DDROP show that, regardless of initial state, the qubit is
driven to the ground state for pulse durations less than 2 µs. For this measurement,
ΩR ≈ 0.8 κ and n̄ = 8.

reset, thus showing the effect of initial equilibrium population. Note that regardless

of the initial state, DDROP forces the population to the ground state in less than

3 µs (including the 1 µs decay from |g, α〉 to |g, 0〉). This is a factor 60 improvement

over the standard protocol of waiting 5 T1, which would give a comparable reduction

of excited state population in a cold qubit environment. With a significant initial

excited state population, DDROP is not only faster, but better than simply waiting.

In order to determine the fidelity of the ground state preparation, it is important

to characterize the resulting excited state population accurately. The measurement

scheme presented in Appendix B allows for just that. Called the RPM (Rabi Popu-

lation Method) for measuring temperature, this procedure accurately measures the

excited state population.

To optimize this ground state initialization fidelity of DDROP, numerical simu-

lations were performed of the expected fidelity F versus qubit drive amplitude and

average cavity excitation, ΩR and n̄, respectively. The simulations were of the Lind-
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Figure 6.10: (a) Contours of 90, 95 and 99% perdicted ground state preparation
fidelity from numerical simulations versus two Rabi drive amplitudes expressed as
ΩR/κ and n̄. For fidelities greater than 99%, color of shaded area indicates reset
time. (b) Measured excited state population from RPM method (crosses with error
bars) compared to numerical simulation (solid line) versus n̄ for ΩR/κ = 0.8. This
population decreases monotonically with n̄

blad master equation obeyed by the qubit-cavity density operator, including the two

drives and decoherence for both the qubit and the cavity. The initial state was chosen

to be the cavity in vacuum and an equilibrium state for the qubit. The dependence

of F on ΩR for fixed n̄ was found to be weak and fidelities above 99% were found for

ΩR/κ >0.3. The numerical simulations show that F increases monotonically with

n̄ for a fixed ΩR and that with a higher ΩR, higher n̄ is required to reach the same

fidelity, as shown by the contours of constant fidelity in Fig. 6.10(a). The simulations

did not account for self-Kerr effects that will reduce the fidelity at photon numbers

much higher than the range shown.

With the guidance provided by these simulations and using RPM to experimen-

tally quantify the fidelity, DDROP has been studied for a wide range of ΩR and

n̄. The pulse duration was kept fixed at the value 5 µs, chosen from simulation,

to ensure DDROP has reached equilibrium in all conditions. Fidelities greater than

99% were achieved for ΩR as low as 0.3 κ and as high as 1.0 κ, for 8 ≤ n̄ ≤ 50.
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Figure 6.11: Measurements and simulation of driven steady state qubit temperature
(an alternate representation of Pe) versus ΩR at fixed n̄. Simulations with n̄ = 4
matches measurements well. Note that the dependence of temperature on ΩR is
weak, with only a 100% increase in qubit temperature (a much smaller increase in
Pe) while increasing ΩR/κ from 0.2 to 1.4.

For fixed ΩR = 0.8 κ, Fig. 6.10(b) shows measurement (markers) versus simula-

tion (line) of remaining excited state population versus n̄. Excited state population

drops monotonically with n̄, in good agreement with numerical simulation. On the

other hand, above approximately n̄ = 50, the reset excited state population increased

significantly. This is understood to be due to the breakdown of the dispersive ap-

proximation.

Measurements taken at fixed n̄ versus ΩR also show decent agreement with theory,

although the dependence is very weak. Fig. 6.11 shows measured qubit temperature

versus ΩR along with two predictions from simulation at n̄ = 4 and n̄ = 8. The

measured data matches closely with the n̄ = 4 simulation, and the resultant qubit

temperature changes very little with a wide change in ΩR. The simulation with

higher photon number predicts lower qubit temperature, as is shown in detail in Fig.

6.10(b). Overall, both drive amplitude parameters ΩR and n̄ have a wide range for

which DDROP works well, making it a reliable and stable protocol.

Note that the excited state population data in Fig. 6.11 is represented as a

effective qubit temperature instead of an excited state percentage (Pe). These two
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representations are equivalent, and conversions between the two can be made by

interpreting Pe in terms of a Boltzmann distribution as shown in Eq. 6.1. It is

natural to compare the effective qubit temperature representation with the mixing

chamber temperature to see if an additional heating source is suspected. While the

qubit temperature assumes a Boltzmann distribution and may not be the result

of contact with a thermal bath, the effective temperature can give a more intuitive

picture of the severity of the excited state population. In cases where the distribution

is proven not to be thermal, the percentage excitation should be used.

Pe
1− Pe

= exp

(
−
hf 0

ge

kBT

)
(6.1)

While 99% fidelity is reached with a wide range of parameters, reset time is

optimized when ΩR ' κ, yielding reset times comparable with those of two-qubit

gates in the circuit QED architecture [106]. The reset time for the ground state

population to reach 99% is shown by the colored pixes of Fig. 6.10(a).

As mentioned before, all of the DDROP characterization measurements included

a 1 µs (20 κ−1) wait between drive pulses and the RPM measurement, to allow

the cavity photons to decay. Therefore, the qubit excited state population begins

returning to its equilibrium value as soon as the reset drives are turned off. This

re-equilibration should occur on a timescale given by the mixing time T1, and this is

what is found experimentally and shown in Fig. 6.12.

6.4 Analysis

A discussion of the nuance between cooling and reset is now in order. Qubit re-

set is ground state preparation, aiming for the highest fidelity in the shorted pos-

sible time, whereas qubit cooling reduces the excited state population below that
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Figure 6.12: RPM excited state population measurements at various times after a
DDROP pulse. At the shortest time of 1 µs after DDROP, Pe is indistinguishable
from 0 and Pe rises quickly until it saturates at the steady state valu eof 9%. The
curve is the simulation (not a fit) given the parameters of the DDROP pulse and
steady state Pe, indicating great agreement between theory and experiment.

produced by contact with the external bath (steady state). As shown by these ex-

periments, DDROP satisfies both definitions, yet it differs significantly from other

dynamical cooling procedures. These methods, inherited from their counterpart in

atomic physics [107], have been recently demonstrated in both nanomechanical sys-

tems [108, 109, 110] and superconducting qubits [111, 112, 36, 102].

It is important to note that although DDROP can be said to cool the qubit, it

has been observed to have no effect of the qubit T1. While qubit T1 certainly depends

on qubit temperature, this type of cooling (state preparation) does not reduce the

relaxation effects due to higher temperature (quasiparticles, for example). In fact, as

shown in Fig. 6.12, it is clear that since the population re-equilibrates with a time

constant equal to T1, it is clear that T1 was unaffected by this cooling. It is possible

that applying DDROP for a long time could physically cool the qubit environment;

there was no evidence of this in these measurements.

The DDROP protocol for qubit reset has been experimentally demonstrated on

a transmon in a 3D cavity to produce a fast, high-fidelity ground state preparation.

This process satisfies the demand for qubit reset as part of an algorithm, and can be
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used to improve the speed and fidelity of ground state preparation over that given by

a return to equilibrium. The performance of the DDROP protocol has been evaluated

by using the RPM method for quantifying the excited to ground state population

ratio. The use of DDROP allowed experiments on this qubit to repeat at a rate 60

times faster than waiting 5 T1. Regardless of initial state, a ground state preparation

fidelity of 99.5% was achieved in less than 3 µs.

6.5 Discussion

As described earlier in this chapter, qubit reset is an integral and necessary element of

any quantum algorithm. In addition, reset as a means of cooling may produce lower

bath temperatures, although this has not yet been observed. Also, poor initialization

fidelity limits the characterization of all other quantum gates, and thus initialization

fidelity must be better than all other gate fidelities. DDROP performs all of these

duties and the requirements and constraints of DDROP are fewer than other forms

of reset; feedback, high fidelity readout and qubit tunability are each not necessary

(this is discussed more in Appendix C). Therefore, DDROP is readily applicable and

practically useful for most circuit QED systems.

The results and simulations from this experiment highlight an important next

step in characterizing qubit reset. Simulations predict higher fidelities are possible;

for example, simply reducing Pe from 9% to 1% and using n̄ = 25, simulations

predict a fidelity of 99.99%. This parameter improvement has been achieved with

other qubits, so in principle this experiment is can be completed relatively quickly.

In conclusion, the 3D transmon has proven itself as a robust qubit design with

replicable fabrication, and as a result of pushing participation ratios to their limits,

continued the trend of improved relaxation and coherence times of superconducting
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qubits. The best compact transmons improved relaxation times by a factor of 3-4

over the CPW transmon and the best 3D transmon improved relaxation times even

further by another factor of 10! Coherence times have also improved by a factor of 30

over compact transmons, yielding both relaxation and coherence times over 100 µs.

Coupling these minimized surface participation ratios with fluxonium’s insensitivity

to dissipation yield even further increases in relaxation times, as discussed in the

next chapter.
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CHAPTER 7

Fluxonium

The fluxonium artificial atom, counterpart to the transmon, presents two advantages:

possibility of probing different relaxation mechanisms over a wide frequency range

and a natural insensitivity to dielectric dissipation. With typical parameters, the

qubit transition of the fluxonium is tunable between 8 GHz and 500 MHz by applying

an external magnetic field. This tuning, however, does more than change frequency.

The energy potential landscape, a sine wave superimposed on a parabola, produces

wildly different ground and excited state wavefunctions as the flux is varied. At some

flux values, the ground state and excited state wavefunctions are non-overlapping in

the ϕ representation, thus protecting the qubit from transitions induced by a varying

electric field across the junction. For this reason, the fluxonium is expected to exhibit

both shorter and longer relaxation times than the transmon depending on the loss

mechanism and applied flux. This makes the fluxonium artificial atom a candidate

of choice for exploring loss mechanisms and for maximizing relaxation time.
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7.1 Design

7.1.1 Superinductance

The experiment described in this chapter is the measurement of a radical re-design

of the fluxonium qubit to introduce both a new array design and a new sample

holder. The junction array design for the superinductance was born out of the need

to minimize capacitance to ground (see Section 2.2.2). This is important to eliminate

any possible influence from self-resonant array modes. More precisely, the influence of

the ground capacitance Cg limits the number of allowed junctions to NA <
√
CJA/Cg

[33], where CJA is the junction capacitance of each array junction. The ground

capacitance was found through simulations to be lowest for long skinny junctions

with minimal metal between junctions. Fig. 7.1 shows the differences between the

previous array design and the new array design. The new array design, utilizing

the bridge-free fabrication technique [66, 67], has longer, narrower junctions and

drastically less metal between junctions, with only a 100 nm wire between junctions.

Lowering the ground capacitance as a means of increasing the number of junctions

has the added benefit of allowing larger EJ/EC ratio for array junctions while still

maintaining a large total inductance. This reduction in array junction inductance

prevents phase slips, which can limit coherence times [35].

The new superinductance design has been studied independently to verify its

parameters. Compact resonators were made using superinductances and capacitors

[113], coupled to a CPW feedline in the same way as other compact resonators. In-

ternal quality factors were measured to be at least as high as 105, comparable to

non-superinductance compact resonators. The self-resonant modes were also mea-

sured using two-tone spectroscopy; the lowest observed mode was above 12 GHz,
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5 μm (b) (a) 

2 μm 

Figure 7.1: Comparison between (a) first generation and (b) second generation junc-
tion array design, shown on the same length scale. The updated array design has
longer, narrower junctions with lower ground capacitance. The previous array design
was fabricated with the Dolan bridge technique, whereas the second generation de-
sign uses the bridge-free technique. Red rectangles highlight the size of the junction
overlap.

sufficiently high not to interfere with the fluxonium qubit. Also with these superin-

ductance resonators, phase slip rates were directly observed to be less than 1 mHz,

with phase slips occurring on the scale of hours. Previous fluxonium qubit coherence

was found to be limited by phase slip rates of 100 kHz [35], eight orders of magnitude

more often.

7.1.2 3D Cavity

Besides the improvements in superinductance design, the other major improvement

is the adoption of the 3D cavity (from the 3D transmon experiments, Chapter 6) as

a contact-less sample holder. All previous fluxonium qubits were coupled to on-chip

stripline resonators, thus necessitating the need for GE varnish, wire-bonds, and

generally ignoring the environment of the sample holder, the same as with CPW and

compact transmons as well. The fluxonium qubit is placed inside the 3D cavity, cou-
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pling with antennae in the same way as the 3D transmon. Thus no glue, wire-bonds

or other lossy materials are necessary. Without knowing exactly which component

of 2D cavities and sample boxes are the problem, the use of 3D cavities eliminates

many of them and has been shown to lead to higher relaxation and coherence times

in 3D transmons.

However, the advantages of the 3D cavity are less clear for a fluxonium qubit

than a transmon. While a quantitative analysis depends on qubit parameters, a large

fraction of the capacitance of a transmon qubit comes from the self-capacitance of

the antenna pads and the capacitance between the pads and the walls of the cavity.

This means that a non-negligible amount of electric field energy is stored in the bulk

dielectric and vacuum of the 3D cavity. For the fluxonium qubit, nearly 100% of

the capacitance (that going into EC) comes from the qubit junction capacitance.

The small remaining amount comes from the small section of wire between the qubit

junction and the first array junctions on either side, but with the coupling method

described next, the antennae participate negligibly in the qubit mode. For this

reason, the 3D cavity can be thought of as simply a contact-less sample holder for a

2D fluxonium qubit chip inside, whereas the transmon qubit itself is more “3D”.

7.1.3 Coupling

Coupling to the fluxonium with a 2D stripline resonator was achieved both capac-

itively with interdigitated capacitors to a voltage anti-node of the resonator and

inductively with shared inductance at a current anti-node of the resonator [36]. For

the 3D cavity, coupling capacitively while preventing EC from decreasing out of the

fluxonium range is difficult. For this reason, the coupling was chosen to be induc-

tively via shared junctions in the superinductance. Antennae, attached across a few

superinductance junctions couples the electric field inside the cavity to a current in
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Figure 7.2: Approximate circuit diagram for fluxonium coupled inductively to 3D
cavity. The fluxonium shares part of its superinductance with the antenna mode,
which is capacitively coupled to the 3D cavity mode. The 3D cavity mode is itself
capacitively coupled to the input and output 50 Ω coax microwave lines. Qubit
signals from the outside must pass through the 3D cavity and antenna mode “filters”
to excite the qubit.

the superinductance, i.e. the fluxonium qubit mode. This type of coupling, drawn

schematically in Fig. 7.2 introduces a new resonator mode: the antenna mode.

This mode, composed of the shared portion of the superinductance along with

the capacitance from the antenna, is a separate mode from the fundamental mode

of the 3D cavity. While the modes are coupled, excitations at the 3D cavity mode

frequency will excite the antenna mode only weakly, and vice versa. Hence, to obtain

strong coupling between the microwave line and the qubit mode (to allow for short

qubit pulses), these two resonator modes must be relatively close in frequency. To

make this aligning easier, the shared coupling junctions were replaced with coupling

SQUIDs, thus allowing their inductance to be tuned with an external magnetic field.

Since the fluxonium qubit is already tuned with a magnetic field, the SQUID loop

area was made approximately 80 times smaller, allowing for full fluxonium tuning
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Figure 7.3: Spectroscopy of 3D cavity mode as magnetic field is tuned. At low fields
(low current), the antenna mode is at a higher frequency. At around 58 mA, the
antenna mode passes through the cavity, and their avoided crossing is visible.

while making only small changes to the antenna mode frequency. This antenna mode

tuning worked as planned and can be observed in Fig. 7.3.

An image showing the design of the fluxonium qubit coupling and superinduc-

tance is shown in Fig. 7.4. This image shows how the superinductance shunts the

phase-slip junction, how the coupling SQUID junctions couple the antenna to the

fluxonium, and how the antenna couples to the 3D cavity.

7.2 Experimental Apparatus

The experimental setup for the measurement of fluxonium qubits was equivalent to

the setup for 3D transmons described in Section 6.2 and Fig. 6.4. All of the filters

and infrared shielding was maintained between the two experiments. Since these

changes were observed to have an effect on transmon coherence times, it is possible
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Figure 7.4: Images showing the fluxonium qubit and its coupling to the antenna and
3D cavity modes. The top picture in an SEM image of the junction array shunting the
phase slip junction. The coupling SQUID junctions join the antenna mode resonator
with the fluxonium qubit loop. The antenna pads couple the antenna mode and
fluxonium to the 3D cavity resonator, as shown in the bottom two images.
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that the fluxonium may also be affected by these changes.

Due to the strong filtering of the 3D cavity mode at low frequencies, an additional

room temperature amplifier is necessary to drive the fluxonium qubit at its lowest

frequencies. For this purpose, the Mini-Circuits ZHL-20W-13+ amplifier, with a

maximum output power of +43 dBm, was installed on the input line outside of the

dilution refrigerator.

7.3 Results

The relaxation and coherence properties of two fluxonium qubits were measured. The

qubits are nearly identical, with the only difference being in the coupling antennas.

Fluxonium A had 3 coupling SQUIDs and a total antenna length of 1 mm, while

fluxonium B had 4 coupling SQUIDs and a total antenna length of 2 mm. Most mea-

surements described below come from fluxonium A, which was measured extensively

and exhaustively. Fluxonium B was used to check the coherence repeatability, but

was not measured in such detail.

Both qubits had visible spectroscopy peaks over the entire range of applied flux.

This was an improvement over a few test samples with different antenna designs such

that the qubit was only readable over a short range of frequencies. The improved

coupler, described in the previous Section, while far from ideal, allows qubit readout

over the entire range of frequencies. Qubit frequency is plotted as a function of

applied flux in Fig. 7.5 for both fluxonium A and B. This frequency dependence is fit

to that predicted from theory (Section 2.2.2) and shows good agreement. Fluxonium

A shows some deviation from the fit, which so far cannot be explained. It has never

been seen on any previous fluxonium samples, and is not repeated in fluxonium B,

which shows better agreement. The fit parameters are the three energies that entirely
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Figure 7.5: Measured qubit frequency as a function of applied flux over the entire
tunable range. Fits of expected frequency dependence from theory match well with
measured data and yield parameters as listed for each fluxonium sample.

characterize a fluxonium: EJ , the Josephson energy, EC , the capacitive energy, and

EL, the inductive energy. From design and room temperature measurements, the

parameters were expected to be roughly: EJ = 12 GHz, EC = 2.6 GHz, and EL

= 0.5 GHz. Overall, the parameters are very close between fluxonium A and B,

with only slight discrepancies between expected and fit parameters. The largest

discrepancy is for EC , which comes almost entirely from the junction capacitance.

Here the estimate comes from the area of the junction and the commonly quoted

50 fF/µm2, which is known to be an imprecise estimation method.

Fig. 7.6 shows spectroscopy traces for fluxonium A to highlight its features.

Image (a) shows a plethora of spectroscopic lines that may make the fluxonium

qubit look intimidating at first. While the qubit can be read out with either the

3D cavity mode or the antenna mode, here the 3D cavity mode is used; the two

horizontal “blind spots” are the frequencies corresponding to these two modes. At
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half-flux, there are many modes which enter this frequency range, and may be due

to phonon modes of the array and/or multiple photon transitions of the fluxonium

qubit. Regardless, the spectrum at zero flux is cleaner, as shown in Image (b). In

previous fluxonium samples, these lines were each predicted and matched closely with

theory [36]. Image (c) shows a close-up of the avoided crossing between fge and fef at

zero flux. Notice that this frequency is a flux sweet spot, with frequency reaching a

maximum, and thus first order insensitive to fluctuations in flux. The fef transition

becomes invisible at exactly zero flux due to a symmetry in the Hamiltonian; this was

also predicted and discussed with previous samples [36]. The last image, (d), shows

the spectroscopy peak of fge at half flux, where the frequency reaches a minimum,

another flux sweet spot. The spectroscopic line is visible over nearly the entire range,

although χ does change signs a few times, leading to a few frequencies where χ = 0.

A measurement of the dispersive shift χ (see Section 2.2.1) at an applied flux

of Φext/Φ0 = 0.03, corresponding to fge = 7.8 GHz highlights one of the main

limitations of this coupling design. While the qubit transition is coupled everywhere

to the cavity, this coupling is small. At this frequency, Fig. 7.7 shows that the

dispersive shift χ, the difference in cavity frequency when the qubit is in the excited

state versus the ground state, is only 0.3 MHz. For the cavity linewidth of κ = 5 MHz,

this means χ < κ. The practical result of this small dispersive shift is that, especially

without a parametric amplifier, many averages are needed to distinguish between the

ground and excited states. This means that each measurement takes much longer

than if this dispersive shift were higher. Although the detuning can be varied over a

range of almost 8 GHz, the readout contrast (from χ/κ) is measured to range from 0

to 10 degrees, with the majority of measurements yielding close to 10 degrees. This

highlights the fact that the coupling strength between the fluxonium and the cavity

is related to the distance between the cavity and the fgf transition, not only the fge
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Figure 7.6: Spectroscopy shown over different regions of applied flux and frequency:
(a) entire half-flux range, around cavity frequency, (b) closeup of qubit transitions
near zero-flux, (c) further closeup showing avoided crossing of fge and fef at zero
flux, and (d) fge around half-flux. Highlighted box in (a) shows region of (b) and
highlightex box in (b) shows region in (c). In (a) and (b), the section around the
cavity frequency is cut out to avoid confusion. In (a), many transitions at half-flux
crowd the 10 GHz region.
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Figure 7.7: Cavity transmission measurement as a function of frequency for prepared
ground and excited qubit states, for fge = 7.86 GHz. The cavity frequency shifts
depending on the qubit state by χ = 0.3 MHz, a small fraction of the cavity linewidth
κ = 5 MHz.

transition.

Coherence measurements at the maximum frequency of 8.20 GHz are shown in

Fig. 7.8. Since the qubit frequency has a maximum at zero flux and the cavity

frequency (8.95 GHz) does not depend on flux, this is also the point of smallest

detuning between the fge transition and the cavity; here ∆ = 750 MHz. The T1 is

measured to be a respectable 43 µs, longer than any previous fluxonium qubit, but

lower than a typical 3D transmon. TR2 is measured to be 15 µs, definitely not limited

by T1, indicating that there is some additional source of dephasing. Echo sequences

are able to increase this dephasing time to 53 µs. Since TE2 > TR2 but still TE2 < 2T1,

it is clear that while low frequencies dominate dephasing, there is also some high

frequency noise inducing qubit dephasing.

Detuning away from the flux sweet spot at zero flux, but only to Φext/Φ0 = 0.03,

fge decreases to 7.85 GHz, thus increasing the detuning to 1.1 GHz. For this small

change in qubit transition frequency, there is a drastic change in relaxation and

coherence parameters. Shown in Fig. 7.9, it is clear that the relaxation time has

doubled to T1 = 95 µs. This time is now comparable to the best 3D transmons at
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Figure 7.8: Measured relaxation and coherence times at Φext/Φ0 = 0.00. (a) T1 is
measured by a decay from the excited state, yielding T1 = 43 µs. (b) TR2 is less than
T1, while (c) TE2 improves this time considerably.

this frequency [42]. This drastic change in relaxation time with such a small change

in frequency is discussed in the next section. In stark contrast to the improvement

in relaxation, the coherence time has plummeted. Without the protection of the flux

sweet spot, TR2 has decreased to 260 ns. At this flux, the qubit frequency depends

strongly on the applied flux, with a slope of nearly 16 GHz/Φ0. The measurement

of TE2 yields a Gaussian shape instead of an exponential, but with a much longer

time than TR2 . All of these measurements say that the qubit coherence is limited

by flux noise, either via microscopic local fluctuators or via noise on the external

biasing coil. The Gaussian shape is a trademark of 1/f noise, which is the likely

frequency dependence of flux noise. The exact coherence measurement values at this

flux should not be considered too strongly. The pulses used in these sequences were

each 160 ns long, a considerable fraction of TR2 ; because of this, the echo sequence

especially cannot be considered to be a true echo measurement since the echo cannot

be approximated at “instantaneous”.

As the qubit is tuned towards lower frequencies, the relaxation time continues

to increase. This trend continues until half flux, or Φext/Φ0 = 0.50, corresponding
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Figure 7.9: Measured relaxation and coherence times at Φext/Φ0 = 0.03. (a) T1

is measured by a decay from the excited state, yielding T1 = 95 µs. (b) TR2 is
much less than T1, indicating a significant dephasing source, (c) while TE2 is a large
improvement, it is still only about 4% of T1.

to the lowest qubit frequency. Around this flux, as shown in Fig. 7.10, T1 of both

fluxonium A and B is observed to be roughly 1 ms. The minimum frequencies for

fluxonium A and B are 640 MHz and 480 MHz, respectively. At a frequency of

500 MHz, the mixing chamber temperature of 15 mK is comparable to the tem-

perature T = ~ωge/kB = 23 mK. This means that the qubit is nearly saturated in

thermal equilibrium. Further, as seen by previous measurements (see Chapter 6),

the qubit temperature can be significantly higher than this. Therefore, regardless of

the exact qubit temperature, the effect of a π-pulse at this low frequency is to invert

the population from being slightly more in the ground to being slightly more in the

excited state. Interestingly, this still leads to a readout contrast of approximately

10 degrees, indicating that the dispersive shift may actually be much higher at this

flux.

Repeating these relaxation measurements around half flux yields some interesting

phenomena. While sometimes a single exponential decay is observed, as shown in

Fig. 7.11, relaxation measurements sometimes exhibit a double exponential behavior.
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Figure 7.10: Measured relaxation times near Φext/Φ0 = 0.50. Data is fit to a single
exponential and reveals that for (a) fluxonium A at fge = 640 MHz and (b) fluxonium
B at fge = 750 MHz, lifetimes are approximately 1 ms. The presence of single
exponentials as shown here fluctuates in time, as shown by measurements at nearly
the same flux shown in Fig. 7.11.

The two exponential times are very different, with one typically a factor of at least

10 greater than the other. While the fluxonium B measurement in this Fig. is at a

slightly different qubit frequency as the single exponential measurement above, the

fluxonium A measurement is at the exact same frequency as the above example. This

shows that the presence of double exponentials varies both in flux and time.

These relaxation experiments measure qubit excitation following a π-pulse, and

were measured simultaneously with Rabi oscillation measurements. The purpose of

these Rabi oscillations is to calibrate the amplitude and offset of the exponential

decays, which are then fixed parameters in the fits shown above. The single expo-

nential measurements have only one free fitting parameter (T1), while the double

exponential measurements have three (T a1 , T b1 , and the amplitude fraction). This

form of calibration is necessary to be sure the single exponential behavior is real, as

it is easy to fit data with a slight double exponential to a single exponential if the

amplitude and offset are allowed to vary. Also, when the short exponential is short

enough, it is only represented as a point or two with the chosen linear spacing of
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Figure 7.11: Measured relaxation times near Φext/Φ0 = 0.50 exhibiting double ex-
ponential behavior. Data is fit to a double exponential for (a) fluxonium A at fge
= 640 MHz and (b) fluxonium B at fge = 480 MHz. The presence of double expo-
nentials as shown here fluctuates in time, as shown by measurements at nearly the
same flux shown in Fig. 7.10.

measurements points. Thus, without the calibration, these points could be mistaken

for outliers and they would be neglected in the fit.

Since this measurement procedure requires a properly tuned π-pulse, combined

with the long lifetimes, these measurements take a long time to tune and measure.

With a repeat rate of 10 ms, averaging 2,000 times requires over 30 minutes. Many

averages are required due to the small readout fidelity and lack of a parametric

amplifier. Dispersive readout using approximately 1 photon and an averaging time

of 30 µs (longer than some relaxation times!) was used here; the viability of the

high-power readout has yet to be explored for the fluxonium qubit. Including the

calibration of the π-pulse, a measurement at a single flux requires well over an hour.

An alternate relaxation measurement experiment, necessitated by these long

times, is used to characterize the flux dependence of the relaxation time at low

frequencies. First of all, switching from a π-pulse to a saturation pulse comes at

a cost of half the readout amplitude, but yields many improvements. A saturation

pulse is a moderate strength pulse of a length longer than T2 that places the qubit
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in an equal mixture of ground and excited state. Decay is measured from this state

back to the thermal state, hence the readout contrast is decreased by half. Due to

the simplicity of this pulse, no tuning or precise calibration is required, which cuts

down on preparation time. Another improvement is that there is no need to wait for

the qubit to decay fully to the ground state before repeating the experiment, as is

necessary when π-pulses are used. A saturation pulse prepares the equal mixture re-

gardless of initial state; this allows the experiment to proceed much faster, especially

for the patterns with short wait times. Additionally, since an experiment with linear

spacing of wait times (as shown above) requires pre-existing knowledge of the lifetime

in order to choose the wait times, it is not possible to easily measure highly variable

lifetimes with a single pulse sequence. A log-scale spacing of wait points, with many

points at short wait times, and fewer points at longer wait times allows equally for

any lifetime over a wide range to be measured without switching pulse sequences.

Combined with the faster repeat time for short wait times, and the sparsely spaced

points at longer wait times, this experiment runs at a speed around 5 times faster

than the previous experiment. Taking into account the lack of pre-calibration, the

ratio is far greater.

An example of this saturation log-scale relaxation measurement is shown in Fig.

7.12. In this Figure, the same data is displayed twice, once in the index basis, and

the other in the time basis. A fit to this data assuming a single exponential yields a

lifetime of 6.4 ms. A double exponential would look like a double step feature in the

index-basis representation. The only observed anomaly for this type of measurement

is the first point or two often seem to be outliers towards the ground state. The

times corresponding to these points are too short to be the same short exponential

from the double exponential (of order 100 µs), and regardless they are outliers in

the wrong direction for that to be the case. A hypothesis for these outliers is that
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Figure 7.12: Measured relaxation time of fluxonium A at Φext/Φ0 = 0.50, corre-
sponding to a qubit frequency of 640 MHz. The same data is expressed as a function
of (a) time in log-scale (b) time in linear scale. Note that the measured points are
equally spaced in (a).

the very fast repeat times used for these shortest wait times is interfering with the

saturation pulse or readout pulse. This can be explored with further measurements.

Ignoring these couple of points, the data fits well to a single exponential; a third

representation (not shown here) shows that the data lies on a line in a log-log scale,

further indicating that a single exponential is a good approximation. Interestingly,

double exponentials were never observed with this type of measurement. Therefore,

whatever causes the double exponential must be changed by the use of the saturation

pulse or the faster readout times; this effect is not understood at this time.

While this result (6.4 ms) may seem much longer than the 2.3 ms from the long

portion of the double exponential from Fig. 7.11(a), there are several reasons why

this comparison is unwarranted. The first is that the 2.3 ms comes from a fit with a

maximum measured wait time of 4 ms. This is not long enough to accurately measure

such a long decay time; a factor of 3 between T1 and longest measured wait time is a

good minimum from experience. The double exponential plots shown have enforced

limitations in an effort to show both exponentials, and do not accurately measure

either the short or long lifetimes. Also, these measurements were not taken at the
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same time, and lifetimes have been observed to fluctuate significantly over time.

Third, sequential measurements were completed using both methods and found that

the lifetimes always matched within 10%.

Nevertheless, the ease of these experiments allow them to be studied as a function

of flux, and thus to complete the measured T1 dependence for the region where T1

becomes much longer than a few hundred microseconds. Many sweeps of T1 versus

flux were completed over the course of a month or so, all of them are included in

Fig. 7.13. Data above roughly Φext/Φ0 = 0.40 is from the saturation/log method,

whereas data at lower fluxes are from the traditional π-pulse/linear method. First, it

is important to note that there is a large scatter at each flux value, with T1 varying by

almost a factor of 10 at each flux. The measurements were taken over the course of a

month, but the scatter is evident even on the time scale of a few hours. Measuring T1

over a small range usually reveals many suspected features, however these features

are not reproducible. Plotting all measurements together blurs these features into an

overall scatter; nevertheless there are some distinct features that stand out. There is a

noticeable minimum in T1 at the highest frequencies, with a drop from around 200 µs

to well below 100 µs. There is also a very steady rising trend that is almost linear

as a function of applied flux, over almost the entire range. Lastly, and perhaps most

importantly, there is a noticeable peak in T1 centered on Φext/Φ0 = 0.50. Although

the scatter is evident, this peak is clearly defined and represents an increase in T1

by almost an order of magnitude over a change in flux from applied flux from 0.47

to 0.50 Φ0. Relaxation around this peak was measured many times over the course

of a month, which highlights its stability and repeatability.

Since T1 has a maximum at half flux, it is important to see how this affects the

coherence time. Shown in Fig. 7.14 are coherence measurements for fluxonium B at

half flux. Results from fluxonium A are nearly identical. The minimum frequency
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Figure 7.13: Measured T1 as a function of applied flux for fluxonium A, which tunes
the qubit frequency roughly from 8.2 GHz at 0.0 Φ0 to 640 MHz at 0.5 Φ0. T1 has a
minimum below 100 µs at the maximum frequency and a maximum of nearly 10 ms
at the lowest frequency.

is a flux sweet spot in the same manner as the maximum frequency. Therefore, it is

not surprising that the coherence time is longer than anywhere at Φext/Φ0 = 0.03.

The coherence times, in fact, are very similar to those at zero flux.

7.4 Analysis

From the frequency dependence of T1, it is possible to deduce which of several loss

mechanisms is dominating since each loss mechanism has a different frequency de-

pendence. The method for calculating the expected relaxation rate for a given loss

mechanism is described in Section 2.2.2. The loss mechanisms considered here are

capacitive loss (both junction and environmental capacitance lumped together), in-

ductive loss (loss in the superinductance), quasiparticle loss (in the qubit junction),

and Purcell (loss due to coupling with the cavity). It is important to note that in-

ductive loss may also be determined by quasiparticles in the inductor array, but here

the term “quasiparticle loss” will mean loss due to quasiparticles tunneling across
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a significant dephasing source, (c) TE2 is a small improvement, indicating a high
frequency noise source.

the qubit junction. Each of these loss mechanisms predicts a unique dependence on

frequency.

Capacitive loss, characterized by a constant quality factor Qcap, predicts only

a small frequency dependence. As shown in Fig. 7.15, this flat dependence does

not well match the data. For a given curve, any measured data above the curve is

inconsistent, and thus that curve is invalid. This is because additional sources of

loss can only reduce T1 since the losses add like resistors in parallel. For example,

the curve corresponding to Qcap = 1 M matches most of the data quite well, except

around half flux where the T1 increases far above the curve. This means that Qcap

is greater than 1 M. From the Figure, to be consistent with the data, a lower bound

of a constant Qcap is 15,000,000.

In an effort to better model the loss observed by the fluxonium, Fig. 7.16 uses

a Qcap that depends on frequency as (fx/fge)
0.7. This dependence was measured at

low temperature for the sapphire dielectric loss tangent [114]. This was chosen since

both junction and environmental capacitance use aluminum oxide as dielectric. The

Qcap values given in the Fig. are for the frequency fx = 5 GHz. These curves capture
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Figure 7.15: Measured T1 data superimposed upon predicted relaxation times for
capacitive loss, assuming a constant Qcap.

the overall trend of increasing T1 at lower frequencies very well. The slope of the

curves matches the slope of the data. To remain consistent with the data, Qcap at

5 GHz must be at least 3,000,000.

In contrast to the capacitive loss, inductive loss characterized by a constant Qind

exhibits the opposite dependence on frequency. As shown in Fig. 7.17, the curves

have a minimum at half flux, where the frequency is lowest. The only curve that

is consistent with the data is that of Qind = 500,000,000. This curve shows that if

inductive loss dominates the dissipation at half flux, it is basically irrelevant every-

where else.

A calculation of the Purcell effect is basically the same as any other loss mecha-

nism, as detailed in Section 2.2.2, except that the term Re [Ypurcell] is simulated using

HFSS. This simulation results in the estimate of Purcell contribution to T1 as shown

in Fig. 7.18. From the limited portion of the data that is close to this Purcell limit, it

is not possible to confirm whether this is an accurate estimate or not. Regardless, if

accurate, then Purcell only dominates relaxation over a narrow range of applied flux,
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Figure 7.16: Measured T1 data superimposed upon predicted relaxation times for
capacitive loss, assuming a Qcap ∝ (fx/fge)

0.7.

10
1

10
2

10
3

10
4

10
5

T
1 

(µ
s)

0.50.40.30.20.10.0

Applied Flux (Φext/Φ0)

Qind  10 M
 0.1 M  100 M
 1 M  500 M
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Figure 7.18: Measured T1 data superimposed upon predicted relaxation times loss
due to the Purcell effect. The Purcell effect is due to coupling with the 3D cavity
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where the qubit frequency is less than 1 GHz detuned from the cavity. The Purcell

effect may be responsible for the doubling in T1 observed between Φext/Φ0 = 0.00

and Φext/Φ0 = 0.03.

Lastly quasiparticle loss has a dramatically different predicted T1 as a function

of applied flux. Fig. 7.19 highlights its uniqueness well by showing the strong peak

observed at half flux. Note that in addition to T1 from quasiparticle loss, a constant

loss (equivalent to a T1 of 8 ms) was added to represent a limitation from some other

loss mechanism. In truth, the quasiparticle contribution to T1 goes to infinity as the

dissipation is reduced to zero because of symmetry. This mechanism is explained in

Section 2.2.2.

A close-up around half-flux of the predicted T1 from quasiparticle loss, charac-

terized by curves of constant broken Cooper pair fractions, xqp, is shown in Fig.

7.20. The parameter xqp is defined as the ratio of quasiparticles to Cooper pairs,

assuming a constant density. This figure shows that these curves really capture the
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Figure 7.19: Measured T1 data superimposed upon predicted relaxation times for
quasiparticle loss, assuming a constant fraction of broken Cooper pairs, xqp.

trend measured by the data. Neither capacitive, inductive, or Purcell predicted any

feature similar to this peak, yet quasiparticle loss matches very well. Although there

is a large scatter in the data, this is also captured well by the curves. If the value

of xqp varies between 1 x 10−7 and 2.5 x 10−6, the reduction in scatter at half flux

predicted by the most extreme curves is well matched to the range of scatter in the

data. Note that scatter reduces as the flux is tuned exactly at 0.5 Φ0 as other loss

mechanisms become important.

In order to have a possible explanation for loss everywhere, Fig. 7.21 shows

one scenario that combines quasiparticle loss, capacitive loss, and loss due to the

Purcell effect to match roughly with the upper bound of the scatter on the data.

The black line in this Fig. matches the dip at zero flux, the peak at half flux, and

the slow upward trend between. The capacitive loss contributes both to the overall

upward trend at low frequencies, and as the limiting factor at exactly half flux, where

quasiparticle loss disappears.

The exact participation ratios of the junction capacitance and capacitance from
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Figure 7.21: Measured T1 data superimposed upon predicted relaxation times for
capacitive loss for Qcap ∝ (f0/fge)

0.7, with a value of 3,000,000 at fx = 5 GHz, the
loss due to the Purcell effect, and the loss due to quasiparticles with constant xqp
= 2 x 10−7. These contributions are added to yield the effective relaxation time,
which matches roughly with the upper end of the data scatter for the entire range
of applied flux.
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the leads is unknown, simulations show that that for the chosen configuration of

junctions and wires, the wires should add less than 1% to the capacitance. Therefore

a value of Qcap ≥ 3, 000, 000 may say that either the junction dielectric has Q ≥

3, 000, 000 or that the bulk sapphire dielectric has Q ≥ 30, 000. Further experiments

would be necessary to distinguish the two capacitances.

Since relaxation rates from different mechanisms add, it is easy to achieve a

dip in T1 by having one contribution dominate, a peak in T1 requires contributions

from all other mechanisms to be considerably lower than, in this case, quasiparticle

loss. Thus, near half flux, quasiparticle loss must dominate the loss, with all other

contributions being small. Then, approaching half flux, the quasiparticle loss relax-

ation rate decreases and the T1 rises. Then at exactly half flux, quasiparticle loss is

eliminated, and the second strongest contribution now limits relaxation.

The observation of this peak in T1 at half flux is evidence for the observation of

coherent quasiparticle interference. This effect, described in more detail in Section

2.2.2 was predicted as the fourth Josephson term in Josephson’s original paper [25]

and described more recently in this context by G. Catelani et al. [62]. While many

experiments have attempted to measure this term [115, 116, 117, 118, 119, 120],

the available measurements do not agree and are not conclusive [121]; the present

experiment represents a verification of a long-standing prediction, 50 years after its

description.

The presence of double exponentials may also be due to quasiparticles. Since the

measurement of relaxation time takes many averages and many minutes to acquire

these averages, it is possible that the number of quasiparticles changes significantly,

perhaps many times. If some measurements are during a particular quasiparticle

distribution and other measurements during a different quasiparticle distribution,

then one would expect a double exponential since the results are simply averaged
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together. This hypothesis is that the qubit is like “Dr. Jekyll and Mr. Hyde”, where

the same qubit is sometimes bad (low T1) and sometimes good (high T1). A possible

scenario is that during the high T1 (Dr. Jekyll) times, the qubit is limited by a

quasiparticle density of roughly 2 x 10−7, with quasiparticles in the array being low

enough such that Qind > 500, 000, 000 and the low T1 (Mr. Hyde) times correspond-

ing to a sudden influx of quasiparticles in the array leading to Qind ∼ 10, 000, 000.

In this latter case, the loss of the array would then dominate the loss, and the T1

would be drastically lower. The quasiparticle density to explain this increased loss

is roughly one quasiparticle per array junction into the array, perhaps generated via

bombardment from a radiative decay, a cosmic ray, or any other high energy particle.

In contrast, the actual number of quasiparticles in the high T1 case, for xqp ∼ 10−7

is of order one, which may explain the large scatter observed as the fluctuations are

of the same order.

On another note, from decoherence measurements, it is clear from the lower T2

on the slope of the spectrum as opposed to at the sweet spots, that flux noise is the

limiting factor in dephasing along the slope. At the maximum frequency, photon

induced dephasing is a real possibility. At zero flux, with a cavity linewidth κ =

5 MHz, and a measured dispersive shift χ = 0.3 MHz (measured slightly away from

zero flux, so this is an approximation), the photon induced dephasing rate can be

calculated via Eq. 1.11 [43, 42]. The dephasing expected for a thermal average

number photons nth = 0.5 in the cavity is 20 µs, in the range of what is observed.

For even a slightly higher χ of 0.4 MHz, this drops to 12 µs. While 0.5 photons

seems to be high for a copper cavity, it is not impossible. While the cavity photon

population was not measured directly (in fact it is very difficult to measure when

χ < κ), this effect could be tested by either reducing the coupling, decreasing κ or

improving shielding.
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7.5 Discussion

Relaxation times from saturation measurements of longer than 1 ms make the flux-

onium the longest lived superconducting qubit to our knowledge at the time of this

writing. The previous record was held by a Cooper pair box from the group at the

Laboratory for Physical Sciences (LPS) [122] with a relaxation time of approximately

200 µs. The longest transmon relaxation and coherence times are between 100 µs

and 200 µs, with similar results from Yale and IBM. The improvements of fluxonium

come from the combination of the reduced surface participation and the expected in-

sensitivity to loss sources. Further experiments to improve our understanding of the

fluxonium qubit that may lead to improved relaxation and coherence times, includ-

ing: waveguide coupling, reducing flux noise, reducing possible cavity occupation,

and investigating quasiparticle dynamics.

The influence of flux noise on fluxonium coherence can be examined further by

measuring a redesigned fluxonium qubit that is engineered to be insensitive to flux

noise: the gradiometric fluxonium. This design, built from two superconducting

loops instead of one, would allow for the fluxonium qubit to be locked to either the

maximum or minimum frequency, flattening the frequency dependence on applied

flux to remove that source of dephasing. In addition, it is possible to add a su-

perconducting shield to improve the magnetic field shielding. This experiment will

reveal whether the fluxonium was limited by flux noise and whether that flux noise

is environmental or microscopic on the surface of the sample.

A further experiment to check the validity of the quasiparticle dynamics theory

(Dr. Jekyll and Mr. Hyde) for the double exponential is to measure the two ex-

ponential times as a function of flux. A possible flux dependence is shown in Fig.

7.22, where the flux dependence of the Dr. Jekyll and Mr. Hyde cases are shown.

185



10
2

2

4

6
810

3

2

4

6
810

4

T
1 

(µ
s)

0.520.500.480.460.440.420.40

Applied Flux (Φext/Φ0)

 xqp = 2 x 10
-7

 Qind = 10 M

Figure 7.22: Predicted flux dependence of T1 for quasiparticle loss with density xqp
= 2 x 10−7 (Dr. Jekyll) and for inductive loss with Qind = 10 M (Mr. Hyde). These
two cases may represent the dominating factors in the observed double exponentials.
The arrow highlights that at a given flux, quasiparticle dynamics may cause the
relaxation time to jump between the two curves, leading to a short and long T1 with
approximately the values observed.

Measuring this dependence will confirm or deny this hypothesis. One way to mea-

sure this is to use a parametric amplifier to enable higher fidelity readout, and thus

measurements will require fewer averages. Then, the calibration and measurement

of double exponentials as a function of flux is no longer impractical. In addition,

if the switching time between the two cases is longer than a few seconds, perhaps

T1 can be measured in a time where no switches occur, thus leaving either simply a

short or long T1. Another method is to use the same parametric amplifier to observe

quantum jumps and infer T1 from the jump statistics. One should observe periods of

fast jumps and periods of slow jumps corresponding to the two different relaxation

rates.

The 3D cavity resonator may be replaced with a section of waveguide in order

to side-step the problem of the different cavity and antenna mode frequencies and
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may improve qubit-cavity coupling. The weak coupling in the current design was

a limitation for both the readout and the practicality of short pulses. The filtering

aspect of the 3D cavity may intentionally be minimized by engineering a very wide

bandwidth. A “cavity” with the widest bandwidth possible is that whose disconti-

nuities are replaced with matched connections, thus reducing the cavity to a section

of waveguide. Since only one mode is required for qubit readout, the antenna mode

remains sufficient for that purpose. This waveguide coupling method is similar to

the “hanger” coupling method of compact resonators to a CPW feedline, and may

produce more strongly coupled fluxonium qubits.

Ground state preparation is another procedure that will help increase the readout

contrast and will allow for faster repeat times, which are now necessary in light of

the increased relaxation times. Sideband cooling as a means of preparing the ground

state has been achieved with previous fluxonium qubits, and there is no reason it

would not be possible in the new fluxonium design [36]. As an alternative, the

DDROP sequence (See Chapter 6 and Section 6.1.4) may be implemented for the

fluxonium and used as a form of reset.

The possible effect of cavity population on fluxonium dephasing times may be

studied by adjusting the experimental apparatus to produce lower cavity populations.

The cavity population is impossible to measure with existing coupling strengths, yet

it can be measured through the use of stronger coupled fluxonium samples. With or

without measuring the cavity population, improved filtering or infrared shielding may

reduce the cavity population, and any change in dephasing rates can be measured.

Another way to explore the impact of quasiparticle loss on fluxonium relaxation

and decoherence is to attempt to remove quasiparticles from the system. This could

possibly be achieved through the addition of normal metal quasiparticle traps. De-

pending on where these traps are placed, they may be used to remove quasiparticles
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from the superconducting islands of the qubit and prevent them from causing dissi-

pation.

In conclusion, the fluxonium qubit has shown remarkable improvements in relax-

ation time over even the 3D transmon. These improvements are due to matching the

minimized surface participation ratios of the 3D transmon with the insensitivity to

dissipation of the fluxonium. While these initial fluxonium relaxation measurements

of longer than 1 ms represent a drastic improvment in superconducting qubit coher-

ence, the above experiments detail a path for further investigation into the limits of

the fluxonium qubit.
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CHAPTER 8

Conclusions and Perspectives

In conclusion, it is clear that the coherence of superconducting qubits have improved

drastically over the last five years through the application of the participation ra-

tio analysis technique. With validation provided by observed improvements in the

quality factor of compact resonators from 160,00 to 380,000 and improvements in

2D transmon relaxation times from a maximum of 4 µs to a maximum of 13 µs,

the idea of participation ratios was taken to the extreme with a 3D architecture.

The introduction of a 3D cavity for transmon qubits improved coherence times to

around 100 µs. Finally, the simple 3D cavity design was combined with the insensi-

tivity to dissipation of the fluxonium qubit to produce remarkable relaxation times

of longer than 1 ms. Altogether, these improvements have helped to remove the

label of “limiting factor” from superconducting qubit coherence. From here, there

are many experiments that can be done that may help continue these trends.

The next step for compact resonators has already been taken, in the combination

of geometrical improvements and better materials. Results from UCSB have achieved

quality factors of over 1 x 106 with aluminum on sapphire CPW resonators [97].

While these are not compact resonators, they were designed with wide centerpins

and wide gaps. Since there is still an observed increase of quality factor at high

189



power, it is likely that the quality factor is still controlled in part by TLS. Thus,

further improvements from geometry should be possible.

The compact transmon measurements in this paper have already inspired others

to go a step farther. Both UCSB and IBM have since measured transmon qubits

with wide gap and width features combined with more optimized materials for low

loss. These experiments have resulted in transmons with typical T1 of up to 30 µs

(with some measurements up to 44 µs) from UCSB and up to 60 µs from IBM, both

of which attribute geometrical improvements as a key to the higher relaxation times.

3D transmon coherence is currently being heavily explored by several groups

including Yale and IBM. These experiments are focusing on new materials and fabri-

cation techniques. The reset experiment detailed in this thesis can be extended quite

easily in a proposed experiment. The 3D transmon used for the reset experiment

had moderate parameters, with T1 = 40 µs and a Pe of 9%. Using transmons that

exist now, the DDROP ground state preparation fidelity is expected to increase from

the current 99.5% to 99.99% simply by reducing Pe to 1% and increasing n̄ to 25

photons. Any increase in T1 will improve fidelity further. Since these parameters

have been achieved in existing qubits, this experiment could be completed relatively

quickly.

The fluxonium results shown here barely scratch the surface of what is possible

with this artificial atom. Keep in mind that the measurements in this thesis are sim-

ply from the first two redesigned fluxonium samples, while surely over 100 transmon

samples have been measured in total from all research groups. Our understanding of

various loss mechanisms including quasiparticle tunneling can be extended by mea-

suring more qubits, and specifically conducting several experiments. First, with the

existing samples, the double exponential effect can be explored in detail with the

addition of a low noise amplifier that allows measurement of quantum jumps. The
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exact statistics of the quantum jumps should give as much information as possible

concerning this effect. In addition, the amplifier can be used to prepare the ground

state better than thermal equilibrium at half-flux, thus allowing experiments to take

advantage of the full signal contrast. Also, the effect of quasiparticles on relaxation

time can be measured by injecting quasiparticles into the system with high power

microwave pulses.

Further experiments include the measurement of a more strongly coupled fluxo-

nium, possibly inside a waveguide section to avoid the problem of two non-aligned

filters. Also, simply measuring more fluxonium samples will reveal more statistics

about the variation in loss mechanisms. The influence of flux noise on fluxonium

coherence can be examined by measuring a redesigned gradiometric fluxonium qubit

that is engineered to be insensitive to flux noise, thus revealing more information

about the flux noise dephasing limitation.
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APPENDIX A

Resonator “Hanger” Equation

A common goal of resonator research is to measure the internal quality factor (Qi)

as a means of quantifying certain loss mechanisms. Coupling to the resonator always

introduces another quality factor, the coupling quality factor Qc. Thus measuring

the total quality factor Q0 (defined by 1/Q0 = 1/Qi + 1/Qc) only yields information

about Qi in the limit that Qc � Qi. Depending on the coupling mechanism, relying

on being in this limit usually forces weak measurement and low SNR.

Another way to measure the Qi directly is to use the “hanger” coupling method,

which is accomplished by coupling the resonator between an unbroken microwave

transmission line (feedline) and ground. This type of coupling enables one to actually

measure both Qc and Qi from a single measurement. While the width of the observed

Lorentzian lineshape from a transmission resonator measurement reveals Q0, the

reduction from full transmission on resonance is required to extract Qi, so one must

separately calibrate the full transmission amplitude. For hanger measurements, the

Lorentzian is inverted, and thus the deviation from zero transmission is required

to extract Qi. Clearly there is no calibration required for zero transmission, and

therein lies the beauty of the hanger measurement scheme. Additionally, in the

hanger measurement scheme, the full transmission amplitude is also obtained for
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Figure A.1: Expected amplitude lineshape of resonance measured in transmission
(red) or as a hanger (blue). In either case, the lineshape is a Lorentzian, with the
hanger measurement showing the inverse of the transmission measurement. Trans-
mission measurements require calibration to full amplitude, while hanger-coupling
gives this information from the amplitude off-resonance.

free, by measuring the transmission away from resonance. Plots of an ideal (infinite

Qi) resonance measured in transmission and in the hanger-coupled scheme is shown

in Fig. A.1.

A.1 Derivation

A derivation of the expected resonator lineshape is now in order. This derivation

will make only minimal assumptions. The first assumption is that measurement is

of transmission through a microwave feedline to which the resonator is somehow

coupled. This implies that we are considering a 2-port device. The most generic

2-port device is shown in Fig. A.2, or alternatively as a lumped element circuit

model in Fig. A.3. For now, the three impedances can be anything. The resonator

is considered to be lossless at first.

The second assumption is that there is only one resonator, implying that at

most, each of the impedances in Fig. A.2 can have one pole. Thus the form of the

impedances can be written as shown in Eq. A.1. In these equations, each coefficient
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Figure A.2: Schematic of the most generic 2-port device. Each impedance Z1, Z2,
and Z3 can have any value and any frequency dependence.

Figure A.3: Circuit model for derivation of “hanger” resonator response calculation,
where the transmission lines of characteristic impedance Z0 are replaced by resistors
of the same impedance.

(ai, bi, ...) can be any complex number. This yields a total of 24 real variables.

zi =
ai + biiω

ci + diiω
(A.1)

Since measurements typically involve measuring the scattering matrix (S-matrix)

and not the impedances directly, it is convenient to calculate the S-matrix from this

impedance structure. First calculating the transmission (ABCD) matrix and then

the S-matrix yields Eqs. A.2 and A.3, where Z0 is the characteristic impedance of

the feedline (see chapter 4 of Ref. [53]).
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A = 1 + z1
z2

B = z1 + z3 + z1z3
z2

C = 1
z2

D = 1 + z3
z2

(A.2)

S11 =
A+ B

Z0
−CZ0−D

A+ B
Z0

+CZ0+D

S12 = 2
A+ B

Z0
+CZ0+D

S21 = 2
A+ B

Z0
+CZ0+D

S22 =
−A+ B

Z0
−CZ0+D

A+ B
Z0

+CZ0+D

(A.3)

The current assumptions allow for elimination of some variables. Adhering to the

restriction that there is only one pole in frequency, that S12 = S21, and noticing that

the denominators of each S-matrix element are the same, one can simplify Eqs. A.3

to form Eqs. A.4, where each of the coefficients here (a, b, ... ) are free to be any

complex number.

S11 = a+biω
c+diω

S12 = g+hiω
c+diω

S21 = g+hiω
c+diω

S22 = e+fiω
c+diω

(A.4)

The only measurement needed to characterize the resonator is S21, on which we

can apply one more assumption. The third assumption is that when the resonator

is lossless, there is zero transmission on resonance. Transmission is exactly zero

for hanger-coupled resonators that have no internal loss (infinite Qi, the current

assumption), since all power from the feedline is shunted into the resonator. Defining

the resonant frequency to be ω0, this forces S21 into the form shown in Eq. A.5. This
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expression highlights the fact that through the above assumptions, S21 has only one

pole and one zero.

S21 =
hi(ω − ω0)

c+ diω
(A.5)

As an aside, an alternate derivation, which calculates the transmission directly

using the circuit model of Fig. A.3, via S21 = 2Vout/Vin, results in an equivalent

expression. Ohm’s law and the equations for current division can be used to express

Vout in terms of Vin, with the result shown in Eq. A.6, where z̃1 = z1 + Z0 and

z̃3 = z3 + Z0.

S21 = 2
z2

Z0

z̃1+z̃3

z2 + z̃1z̃3
z̃1+z̃3

(A.6)

Continuing the derivation, additional simplification of Eq. A.5 is achieved by

declaring that the overall magnitude and phase of S21 is unimportant. Outside mea-

surement lines will always add attenuation and change the length unless a thorough

calibration is performed. In this case, the overall magnitude and phase are com-

pletely irrelevant, so no calibration is necessary. This is accomplished by dividing

both the numerator and denominator by h, thus eliminating d
h

by choice. This leaves

Eq. A.7. Note that k = c
h
.

S21 =
i(ω − ω0)

k + iω
(A.7)

Replacing k with κ = k + iω0 is useful for a reason that will become clear later,

thus yielding Eq. A.8. A simple rearrangement yields Eq. A.9. Note that the second

term here is a Lorentzian and the overall form is already reminiscent of Fig. A.4,

the inverted Lorentzian.

196



S21 =
i(ω − ω0)

κ+ i(ω − ω0)
(A.8)

S21 = 1− κ

κ+ i(ω − ω0)
(A.9)

The familiar Lorentzian form exposes these placeholder variables as familiar pa-

rameters of a resonance. Splitting the complex κ into its real and imaginary com-

ponents, κR and κI aides this process. Before proceeding, dissipation can also be

introduced into the resonator; this dissipation parameter will evolve into Qi. Intro-

ducing dissipation will add an imaginary component to the resonance frequency, thus

ω0 → ω0 + iε. These substitutions result in Eq. A.12.

κ

κ+ i (ω − ω0)
=

κR + iκI
κR + iκI + i (ω − ω0)

(A.10)

=
κR + iκI

κR + iκI + i (ω − (ω0 + iε))
(A.11)

=
κR + iκI

(κR + ε) + i (ω − (ω0 − κI))
(A.12)

A Lorentzian is commonly expressed in the form of Eq. A.13, where x0 is the

resonance location and γ is the full-width at half maximum, or FWHM. From the

definition of total quality factor, it is clear that Q0 = x0

γ
. By looking at Equation

A.12, one can identify the resonant frequency as ω̃0 = ω0−κI , thus observing that κI

is effectively a frequency shift of the resonance. Replacing κI by δω using κI = −δω,

thus defining ω̃0 = ω0 + δω, simplifies the Lorentzian to Equation A.14.
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1
1
2
γ + i (x− x0)

(A.13)

=
κR − iδω

(κR + ε) + i (ω − ω̃0)
(A.14)

The real part of the denominator can be replaced by introducing the total quality

factorQ0. Matching for the forms of Equations A.13 and A.14 shows that κR+ε = 1
2
γ,

and by definition Q0 = ω̃0

2(κR+ε)
. Remember that Q0 can be decomposed into two

components, an internal quality factor Qi and a coupling (external) quality factor

Qc, and note that the system is assumed to be dissipation-less except for the loss

added explicity by ε. Thus it must be that 2ε
ω̃0

= 1
Qi

and 2κR
ω̃0

= 1
Qc

. Rewriting

Equation A.14 in terms of Qi and Qc, yields Equation A.16.

1

Q0

=
2κR
ω̃0

+
2ε

ω̃0

(A.15)

ω̃0

2Qc
− iδω(

ω̃0

2Qc
+ ω̃0

2Qi

)
+ i (ω − ω̃0)

(A.16)

Taking all of these replacements and writing the full expression for S21 yields

Eq. A.17. Two simplified equations are also shown, with x = ω−ω̃0

ω̃0
. Note that this

derived equation is equivalent to another derivation that assumes a lumped element

circuit model [123]. The fact that this simple derivation with minimal assumptions

derives the full expression from much more complicated models is quite beautiful and

highlights the simplistic and fundamental nature of the hanger-coupled resonator.

S21 = 1−
ω̃0

2Qc
− iδω(

ω̃0

2Qc
+ ω̃0

2Qi

)
+ i (ω − ω̃0)

(A.17)
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S21 = 1−
Q0

Qc
− iQ0

2δω
ω0

1 + 2iQ0x
=
Qc + iQcQi

(
2x+ 2δω

ω0

)
(Qi +Qc) + 2iQcQix

(A.18)

For comparison, the resonant response with δω = 0, the so-called “symmetric”

response, derived in the thesis of J. Gao [124] and used in many earlier papers [91, 82],

is shown in Eq. A.19. The “asymmetric” equation can be written in a form that

matches the symmetric equation, except with a complex coupling quality factor, Q̃c

(which also makes a complex total quality factor Q̃0); this form is shown in Eq. A.20.

The conversion between Q̃c and the usual Qc and δω are shown in Eqs. A.21 and

A.22.

S21 = 1−
Q0

Qc

1 + 2iQ0x
=

Qc + 2iQcQix

(Qi +Qc) + 2iQcQix
(A.19)

S21 = 1−
Q̃0

Q̃c

1 + 2iQ̃0x
=

Q̃c + 2iQ̃cQix(
Qi + Q̃c

)
+ 2iQ̃cQix

(A.20)

1

Qc

= Re

{
1

Q̃c

}
=

∣∣∣Q̃c

∣∣∣2
Re[Q̃c]

(A.21)

δω ∼ Im

{
1

Q̃c

}
(A.22)

A.2 Asymmetry Discussion

While actual measurements do not always exhibit a large asymmetry, it is important

to use the asymmetric fitting function. Forcing the data to fit a symmetric response

results in exaggerated values of Qi that get more incorrect as the asymmetry param-

eter δω increases. A study by Khalil et al. showed that as the asymmetry increases,
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one may overestimate Qi by over an order of magnitude by fitting with the symmet-

ric equation [123]. Therefore, failure to take the asymmetry into account may lead

to drastically incorrect results.

In order to better understand the response equation and fitting procedure, one

should look at the possible theoretical response curves shown in Fig. A.4. The

only difference in the three panels of this figure is the asymmetry parameter δω;

the quality factors and resonant frequency are held constant. In the symmetric

case, one can gain an intuition for fitting parameters. For the magnitude case, the

width determines Q0, while the depth determines ratio between Qi and Qc. In the

Smith-chart representation, essentially a polar plot of the complex S21, the response

is a circle whose diameter determines the ratio between Qi and Qc and the closest

approach to origin determines Qi. Khalil et al. [123] detail how, in the asymmetric

case, these perspectives are skewed by the parameter δω.

Even with agreement on the asymmetric model in the superconducting resonator

field, there are debates about how the fitting should be done. In this thesis, all fitting

was done in magnitude only, and no noticeable difference was observed when fitting

the full Smith chart. Khalil et al. advocate the fitting of the full Smith chart [123],

while Megrant et al. argue that one should use fit the data in the form of S−1
21 [97];

also represented by a circle. The argument for the inverse transmission plot is that

the fit parameters are expressed in a more direct way. Regardless of fitting methods,

it is clear that the asymmetric model is necessary to accurately obtain quality factor

information from hanger-coupled resonators.

The source of the asymmetry in the observed lineshape is often attributed to

reflections in the feedline to which the resonator is coupled [123, 97]. A complete

derivation of the transmission equation of a hanger-coupled resonator with a generic

4-port coupler yields the symmetric solution, therefore the coupling itself cannot be
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Figure A.4: Theoretical hanger response curves for resonator with Qi = 10,000,
Qc = 1,000, f0 = 10 GHz, and variable δω (or δf). The parameter δf = δω/2π is
shown for three values, (a) 0 Hz (b) 1 MHz and (c) 10 MHz. For the chosen quality
factors, these δf values correspond to no asymmetry, slight asymmetry, and extreme
asymmetry. In each case, the full response Smith-chart is plotted, along with the
magnitude versus frequency. The markers are simulated noise, while the black are
equations drawn with correct parameters.
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responsible for the asymmetry. However, taking the symmetric equations and adding

reflections yields exactly the asymmetric equation.

A better understanding can be found by relating the impedances directly to the

asymmetry. While this can be done using the previous derivation, such a calculation

yields a large and unhelpful expression. A derivation made with further, simplifying

assumptions allows for a much more useful relation to be found. Below, the derivation

of S21 is branched from Eq. A.6. Before applying the assumptions, terms in Eq. A.6

can be rearranged to yield Eq. A.23 and a further rearrangement yields Eq. A.24,

where for simplicity 1/z̃ = (z̃1 + z̃3) /z̃1z̃3.

S21 = 2
z2Z0

z̃1z̃3

z2
z̃1+z̃3
z̃1z̃3

+ 1
(A.23)

S21 =
2Z0

z̃1 + z̃3

(
1− 1

z2/z̃ + 1

)
(A.24)

Eq. A.24 begins to resemble the equation for a circle in the complex plane. The

initial scale factor can be ignored to yield a scaled transmission S̃21 as a means of

studing the asymmetry.

Until now, this derivation is equivalent and parallel to the previous derivation.

Now, some simplifying assumptions will be made, starting with the assertion that

z2 has a resonance at a frequency ω0, leading to an impedance of the form z2 ∼

x2

(
ω−ω0

ω0

)
, where x2 is purely imaginary and much greater than Z0. Also, since there

is only one resonant structure under consideration, both z1 and z3 are nonresonant

around ω0. Since it must be possible to measure transmission through this device,

both z1 and z3 must not be too large compared to the characteristic impedance

Z0. For simplicity, only the case of infinite internal Q is considered since it is not

necessary include loss to understand the asymmetry.
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These assumptions allow the re-parameterization shown in Eq. A.25, where r is

a real number, thus yielding the simplified Eq. A.26. It is important to note that

this is an equivalent re-parameterization of Eq. A.20.

z2

z̃
≡ reiθ

(
ω − ω0

ω0

)
(A.25)

S̃21 = 1− 1

reiθ
(
ω−ω0

ω0

)
+ 1

(A.26)

This is the equation for a circle in the complex plane, whose value far from ω0 is

equal to Re[S21] = 1. The parameter r controls the quality factor of the resonance,

which in terms of the circle describes how quickly the lineshape returns to Re[S21] = 1

away from resonance. The parameter θ (a re-parameterization of δω) characterizes

the asymmetry by the amount of deviation of θ from π/2 (δω ∝ θ − π/2), with a

value of exactly π/2 corresponding to no asymmetry. The angle θ is the angle of the

line tangent to the circle at the resonant frequency, and is thus vertical for θ = π/2,

leading to a resonance at the origin and a symmetric lineshape. Views of this circle

for various θ can be seen below in Fig. A.4, in which the asymmetric shape is shown

both as a rotation around the point Re[S21] = 1 and as a scaling of the diameter as

explained above.
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APPENDIX B

Temperature Measurement Protocol

Concerning the case of a qubit coupled to a resonator, there are fundamentally

two ways to measure the temperature of the cavity, and two ways to measure the

temperature of a qubit (see Section 1.1.4 for a qubit temperature definition); these

are shown in Fig. B.1. It is very difficult to measure the temperature of a harmonic

oscillation from its level population, since it is not possible to address individual

levels. However, a cavity coupled to a qubit will inherit some anharmonicity from

the qubit, and therefore temperature measurements may be possible. Depending on

the qubit and cavity parameters for a particular device, some of these schemes may

be impossible; however they are each possible in the limit of vanishing κ and γ.

While method (b) in Fig. B.1 to measure cavity population has already been

explored[68], the method described below is a variant of method (c) to measure qubit

population. The commonly used method for evaluating Pe in the past compares the

heights of the two spectroscopic peaks corresponding to the |g〉 to |e〉 (f 0
ge) and |e〉

to |f〉 (f 0
ef ) qubit transitions. By measuring the heights of these two peaks, one

measures the ratio of population between |g〉 and |e〉. While this is generally true,

this method does not take into account the readout efficiency variation with qubit

state, and is therefore not quantitative without further corrections or calibrations.
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Figure B.1: Four fundamental ways to measure temperature: two for a qubit, and
two for cavity, each from various spectroscopic peak heights. One can infer cavity
temperature by measuring (a) first two cavity transitions, or (b) multiple qubit lines
associated with individual photon numbers. One can infer qubit temperature by
measuring (c) first two qubit transitions, or (c) multiple cavity transitions associated
with individual qubit states. Note that anharmonicities (αR and αQ) in (a) and (c)
are typically very different, but the dispersive shift χ is equal in (b) and (d).

This method should be kept for quick checks of whether the qubit is “hot” or not,

but should never be used to quote a quantitative Pe or temperature.

While for egregiously “hot” qubits, this qualitative assessment is sufficient, in

cases where it is important to quantitatively measure the qubit temperature, it is

important to accurately measure the steady-state |e〉 population, Pe. An improved

method for this purpose was developed at Yale, and first written about in Ref. [48], is

an adapted version of a measurement of cavity population[72]. This method is called

the “Rabi Population Measurement”, or RPM for short. The basic idea of RPM is to

measure two Rabi oscillations whose amplitude ratio corresponds directly to the ratio

of initial excited state (Pe) to ground state population (Pg). This method is similar

to, but different from, techniques previously used in phase qubits [125, 126]. Note

that, as mentioned, for the low-temperature limit, it is assumed that Pg + Pe = 1.
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Figure B.2: Upper panel: pulse sequences used to perform RPM qubit population
measurement, each producing an oscillation whose amplitude is proportional to initial
(a) excited and (b) ground state population. Circle radii indicate population in each
state, vertical bars separate the two extrema in Rabi oscillations. Lower panel (c):
example normalized data for measurement of 7% excited state population.

The RPM is performed by applying two sequences of qubit pulses as shown in

Fig. B.2. The first sequence consists of a pulse performing a rotation around X on

the |e〉 to |f〉 transition with varying angle θ ∈ [0, 2π], followed by a π-pulse on

the |g〉 to |e〉 transition. Measuring the population of the |g〉 state results in a Rabi

oscillation Aecos (θ) with an amplitude Ae proportional to Pe. The second sequence

differs only by the insertion of a π-pulse to first invert the population of the |g〉 and

|e〉 states, yielding a Rabi oscillation Agcos (θ) with an amplitude Ag proportional

to Pg. The proportionality constants between the Rabi oscillation amplitudes and

the corresponding populations are equal since the same transition is used in both

sequences, thus avoiding problems from differing readout efficiencies.

From the two oscillation amplitudes, an estimate of the population and its asso-
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ciated standard deviation can be calculated from Pe = Ae/ (Ae + Ag). The RPM

protocol is self-calibrating and accesses smaller amplitudes than crude population

measurements since it relies on the amplitude of an oscillation in a lock-in fashion,

instead of just one value. The minimum measurable value of Pe is limited by the SNR

of the qubit readout, corresponding to the smallest measurable oscillation amplitude.

In the reset experiment described in Chapter 6, the minimum distinguishable value

was Pe, limited for technical reasons by the characteristics of the readout amplifier

chain.

There are a few variants of RPM, each of which use the same principle. Each

variant requires two choices: one must choose a pair of levels for the Rabi oscillations,

and a readout frequency with optimum readout efficiency. The choice of levels for the

Rabi oscillation affects the frequency of the Rabi pulses and the optional π-pulse to

move the population to the correct state beforehand. The choice of readout frequency,

between f g01, f e01, or f f01 determines whether or not a π-pulse is needed after the Rabi

pulse. For the variant described above, Rabi oscillations are performed between |e〉

and |f〉, and readout is performed at f g01.

One major limitation of the RPM scheme is that it only works in the low-

temperature limit where population of the |f〉 state or higher is negligible. This

limit can be illustrated by deriving the amplitude of the Rabi oscillations. This is

done by following the population as done in Fig. B.2, parts (a) and (b), while in-

cluding an initial |f〉 state population as well. Calling the initial state populations

Pg, Pe, and Pf and readout amplitudes (at a single readout frequency) of Rg, Re,

and Rf , the extrema of the the Fig. B.2(a) Rabi oscillation are shown in Eqs B.1.

PfRg + PgRe + PeRf = RA
e

PeRg + PgRe + PfRf = RB
e

(B.1)
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The difference of these two extrema values yields the Rabi amplitude, as shown

in Eq. B.2. The Rabi oscillation amplitude is proportional to Pe − Pf , with readout

sensitivity (scale factor) Rg − Rf . Thus in the limit of low temperatures, with Pf

negligible, this Rabi oscillation amplitude is proportional to Pe as described above.

However, when there is a significant |f〉 state population, the Rabi oscillation am-

plitude is affected and RPM no longer effectively estimates the temperature.

Ae = RB
e −RA

e = (Rg −Rf ) (Pe − Pf ) (B.2)

The Rabi oscillation from Fig. B.2(b) is similarly considered below, with extrema

in Eqs B.3 and Rabi amplitude in Eq. B.4. This Rabi oscillation is proportional to

Pg−Pf , with the same readout sensitivity. The fact that the readout sensitivity (scale

factor) is the same between the two Rabi oscillations is the reason RPM works in

the first place, as described earlier. When there is a significant |f〉 state population,

this Rabi oscillation amplitude is also affected, although likely to a lesser degree.

PfRg + PeRe + PgRf = RA
g

PgRg + PgRe + PfRf = RB
g

(B.3)

Ag = RB
g −RA

g = (Rg −Rf ) (Pg − Pf ) (B.4)

Therefore, at higher temperatures, the ratio of the two oscillation amplitudes

yields the fairly meaningless (and possibly misleading) (Pg − Pf )/(Pe − Pf ). In the

low-temperature limit, this ratio simplifies to Pg/Pe, a useful metric for measuring

qubit temperature.
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APPENDIX C

Qubit Reset Theory

A method for qubit initialization is one of the fundamental requirements of quantum

information processing laid out by DiVincenzo [12]. Due to recent advancements in

extending superconducting qubit relaxation times to the 100 µs range [101], active

ground state preparation (qubit reset), other than by passively waiting for equilibra-

tion with a cold bath, is becoming a necessity. The main use for a fast, high-fidelity

reset is to place the qubit into a known pure state either before or during an al-

gorithm. Active reset is preferred over passive reset when a) the qubit thermal

environment is hot on the scale of the transition frequency, and b) rapid evacuation

of entropy from the system is necessary, as in implementations of quantum error

correction [127, 128].

The ancestor of active qubit reset is dynamical cooling of nuclear spins using

paramagnetic impurities [129]. Superconducting qubits are analogous to single spins

in a controlled environment, and it is therefore possible to design similar dynamical

cooling methods to achieve reset times much faster than the relaxation times T1.

While several methods [111, 112, 40, 130, 71, 72, 70, 104] for reset and dynamical

cooling have been demonstrated in superconducting qubits, they each require either

qubit tunability or some form of feedback and high-fidelity readout. Described here
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is a practical dynamical cooling protocol without these requirements. This protocol

is related to dissipation engineering [131], as it uses the dissipation through the

cavity to stabilize the qubit ground state. Nicknamed DDROP (Double Drive Rest

of Population), this protocol is tested on a transmon qubit in a 3D cavity, but can

be applied to any circuit QED system.

DDROP consists of a pulse sequence that manipulates the transition landscape

of the qubit-cavity system in order to quickly drive the qubit to the ground state,

i.e. removing the entropy from the qubit through the decay of the cavity. The

protocol relies on the number splitting property of the strong dispersive regime [23]

of circuit QED, where the dispersive shift χ of the cavity due to a qubit excitation is

larger than twice the cavity linewidth κ and qubit linewidth 1/T2. Thus the cavity

frequency depends on the state of excitation of the qubit, and the qubit frequency

depends on the number of excitations in the cavity. Another requirement is needed:

κ must be much larger than Γ↑ = Pe/T1, where Pe is the equilibrium excited state

population. This condition is easy to satisfy with the recent advances in extending

T1. Apart from special cases where it is desirable to have small κ, most transmons

and other qubits read by a superconducting cavity are candidates for this type of

reset.

In the DDROP protocol, shown graphically in Fig. C.1, two microwave drives

are applied simultaneously for a duration of order 10 κ−1 in order to reach a steady

state. The first drive frequency, f 0
ge, is chosen in order to Rabi drive the qubit if

the cavity has zero photons. The amplitude of this drive is quantified by ΩR, the

Rabi frequency. The second frequency, f gc , is chosen as to populate the cavity with

photons if and only if the qubit is in the ground state. The role of the cavity drive

is to lift the population of |g, 0〉 to the coherent state |g, α〉, where |α|2 = n̄, the

steady state average photon number in the cavity. Due to number splitting, the
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Figure C.1: Level structure of the transmon qubit coupled dispersively to a single
resonator mode. The qubit excitations are spanned vertically while the resonator
photon numbers are spanned horizontally. The arrows show the transitions involved
in the DDROP procedure along with their rates, with Γ↑ � κ ≈ ΩR < χ/2. The
double arrows are driven transitions, while single arrows are spontaneous. Qubit
transitions are represented by straight lines while cavity transitions are wavy lines.
The steady-state equilibrium qubit/cavity state is the coherent state |g, α〉. For
visualization, the state |g,m〉 is highlighted, where m is the closest integer to the
steady-state average number of photons in the cavity.

qubit transition frequencies when the cavity is in state |α〉 differ sufficiently from f 0
ge

that the Rabi drive does not excite |g, α〉. The only way for the system to leave |g, α〉

is through a spontaneous excitation happening at a rate Γ↑, which is slow compared

to all other rates in the system. Once in |e, α〉, the system rapidly falls back to |e, 0〉

in a time of order κ−1. The role of the Rabi drive, with Rabi frequency of order

κ, is to speed up the transition between |e, 0〉 and |g, 0〉, thus allowing for a fast

return to |g, α〉. With both drives on, the system will be driven to |g, α〉 at a rate

of order κ regardless of initial state, while the rate Γ↑ away from this state is slow.

Eventually, to prepare |g, 0〉 instead of |g, α〉, one must turn off the drives and wait

for the photons to decay in a time of several κ−1. Since the cavity is in a coherent

state, this waiting time could be avoided by using a displacement pulse, which is

easier to calibrate for cavities with higher quality factor. The ratio κ/Γ↑ determines

the fidelity of the ground state preparation, and must therefore be much greater than
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1.

Results showing measurements of the DDROP protocol performed on a 3D trans-

mon qubit are shown in Section 6.3.2. Regardless of initial state, a ground state

preparation fidelity of 99.5% was achieved in less than 3 µs. Simulation predicts

higher fidelities are possible; for reasons discussed in Chapter 6.

DDROP is not the first demonstrated qubit reset mechanism to work on super-

conducting qubits; several distinct methods have been shown previously, including:

sideband cooling through higher energy levels [111], sweeping the qubit frequency

into resonance with a low-Q cavity [40, 130], a feedback loop with conditional coher-

ent driving [71], and strong projective measurements [72, 70, 104]. However, DDROP

has many advantages when compared to each of these processes. First, there is no

need to tune in real time the qubit frequency, which means DDROP will still work

with fixed-frequency qubits. There is no need for fast external feedback of any kind,

thus simplifying the required setup. There is also no need for high-fidelity, single-

shot readouts or in fact a low-noise amplifier at all. Finally, the decisive qualitative

advantage is that sensitivity to drive amplitudes is low, and that there is no need

for accurate pulse timing or shapes; DDROP can be quickly tuned to near optimum

parameters.
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