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Controlled release of multiphoton quantum states
from a microwave cavity memory
Wolfgang Pfa�1,2*, Christopher J. Axline1,2, Luke D. Burkhart1,2, Uri Vool1,2, Philip Reinhold1,2,
Luigi Frunzio1,2, Liang Jiang1,2, Michel H. Devoret1,2 and Robert J. Schoelkopf1,2

Signal transmission loss in a quantum network can be overcome by encoding quantum states in complex multiphoton fields.
But transmitting quantum information encoded in this way requires that locally stored states can be converted to propagating
fields. Here we experimentally show the controlled conversion of multiphoton quantum states, such as Schrödinger cat states,
from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a
single Josephson junction, we can release the cavity state in∼500ns, about three orders of magnitude faster than its intrinsic
lifetime. This mechanism—which we dub Schrödinger’s catapult—faithfully converts arbitrary cavity fields to travelling signals
with an estimated e�ciency of >90%, enabling the on-demand generation of complex itinerant quantum states. Importantly,
the release process can be precisely controlled on fast timescales, allowing us to generate entanglement between the cavity
and the travelling mode by partial conversion.

Apowerful way to tame complexity when scaling up a
quantum system is to construct it as a network. Breaking up
the whole into small, testable modules that are connected

through well-defined communication channels reduces undesired
crosstalk and minimizes the spreading of errors through the
system. Therefore, quantum networks have been proposed for
quantum information processing (QIP)1 and it has been shown
theoretically that there are favourable thresholds for quantum error
correction for suchmodular architectures, evenwith noisy quantum
communication channels2. Experiments withmultiple platforms are
underway at present to realize prototypes of quantum networks3–5.
The key requirement hereby is the ability to interface quantum states
stored and processed in network nodes with propagating states that
connect the nodes.

Quantum continuous variables (CV) allow versatile and robust
encoding of quantum information in higher-dimensional Hilbert
spaces. For instance, encoding quantum bits in CV systems
can provide the redundancy required to enable quantum error
correction6. Non-Gaussian CV states that could be used as QIP-
enabling resources have been created experimentally in the states of
ionmotion7 and atomic spins8,9, as well as optical10,11 andmicrowave
photons12–15. In particular, microwave cavities in superconducting
circuits have recently further enabled the storage16 and protection17

of quantum information encoded in non-Gaussian oscillator states.
Using these locally stored states as resources in an error-protected,
network-based QIP architecture hinges on the ability to interface
them with travelling signals (Fig. 1a). However, the controlled map-
ping of general multiphoton states between a CV quantummemory
and travelling signals has so far remained an outstanding challenge.

Here, we experimentally demonstrate the controlled conversion
of non-classical multiphoton states from a superconducting
microwave cavity to propagating states. Using radiofrequency-
controlled four-wave mixing in a single Josephson junction we are
able to evacuate the cavity about three orders of magnitude faster
than its natural lifetime. The field is coherently and efficiently

upconverted in frequency, and released into a transmission line.
This enables on-demand generation of travelling multiphoton
quantum states of high fidelity. The excellent temporal control over
the conversion process allows shaping of the emitted wave packet.
We use this capability to release only a part of the state stored in the
cavity; this partial conversion creates entanglement between the
stationary and travelling fields in multiple encodings, confirmed by
the observation of non-classical correlations.

Coupling stationary to propagating microwaves
To enable communication between network nodes with multi-
photon states, a coherent release must meet several important
criteria. First, in order to enable distribution of quantum
information with high fidelity we require a large ‘on/off ratio’. In the
‘off’-state the coherence of the memory must be preserved, whereas
the ‘on’-state allows fast, on-demand release. Further, successful
communication requires faithful state mapping, independent
of the number of photons. Thus, each photon in the memory
should be removed, described by the annihilation operator â, while
creating an outgoing photon, described by the creation operator
b̂†. This conversion interaction is effectively a ‘beam splitter’, with
Hamiltonian Hconv∝ âb̂†

+ h.c. Finally, shaping the wave packet is
required to enable capture by a receiving node18 and to generate en-
tanglement; we therefore demand precise temporal control over the
release process.

Several approaches have been used to map stationary onto
travelling states in superconducting quantum circuits. Tuning the
coupling between a superconducting artificial atom and an output
mode allows the generation and shaping of single photons19–22.
However, no interface between locally stored and travelling arbitrary
CV quantum states has been demonstrated so far. Quasi-classical
oscillator states have been successfully mapped using dedicated
coupling elements such as flux-tunable couplers23,24 or parametric
converters25, which require tuning by external magnetic flux. To
date, integration of flux-tuning methods with the kind of high-Q
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Figure 1 | Nodes in a quantum network using high-Q cavities as memories.
a, We envisage an architecture in which each node consists of a high-Q
storage mode (described by â), an output mode (b̂) coupled to a
transmission channel (b̂out) with a rate κout, and a nonlinear system—such
as an atom (green)—that allows for a tunable coupling g(t) between a and
b. This coupling allows transfer between a and bout, and thus transfer of
states between nodes. b, Three-dimensional circuit QED implementation of
a single node (schematic top view). The storage mode is the fundamental
mode of a coaxial cavity (here, ωa/2π=4.1 GHz). The output resonator is a
λ/2 stripline resonator (here, ωb/2π= 10.0 GHz), fabricated on the same
chip as a single-junction transmon (green) that couples capacitively to both
modes. The chip is inserted through a waveguide tunnel. Strongly
undercoupled input pins (left and middle) allow application of
radiofrequency tones (envelopes shown schematically), and signals leave b
to a transmission line through an output coupler pin (here,
κout/2π=640 kHz). Qubit control and measurement tones are applied
through the input port of the output resonator (Supplementary
Information). c, Coupling between the resonator modes is realized by
tunable pump tones ξ1,2(t) that enable four-wave mixing through the
transmon junction. Annihilation and creation of pump photons with
frequencies ω1,2 result in upconversion from a to b if |ω1−ω2|=|ωa−ωb|.

storage cavities we intend to use for synthesizing, storing, and
protecting complex quantum states remains an open challenge.

Our strategy for realizing an interface between arbitrary
stationary and travelling multiphoton quantum states is sketched in
Fig. 1a. We aim to couple a storage cavity mode, a, and an output
mode, b, by a nonlinear element that enables photon conversion
between them. Instead of using a dedicated flux-tunable converter
element, we choose to couple the modes using only a fixed-
frequency transmon artificial atom in the strongly dispersive regime
of cavity quantum electrodynamics (QED)26. The single Josephson
junction of the transmon provides the required nonlinearity, while
preserving cavity coherence on the order of milliseconds16. Our
experimental scheme is shown in Fig. 1b. A high-Q superconducting

cavity and a low-Q output resonator that are strongly detuned
(|ωa − ωb|/2π≈ 6 GHz) are both coupled to the transmon. The
output mode is further coupled with rate κout = 1/250 ns to a
transmission linemode, bout, where the emitted signals are amplified
and recorded (Supplementary Information). This configuration
enables a long memory life time, κ0=1/450µs, while still allowing
for fast readout and control of arbitrary quantum states27.

Crucially, the nonlinearity induced by the transmon allows
conversion of multiphoton states between the memory and output
with a large on/off ratio. The Hamiltonian describing the coupling
between the modes is given by (see ref. 28)

H/~=−EJ cos(φa(â+ â†
)+φb(b̂+ b̂†

)+φc(ĉ+ ĉ†
)) (1)

where ĉ is the annihilation operator for the transmon mode, EJ is
the Josephson energy, and φi is the zero-point fluctuation of flux
associated with the respective mode. Because the cosine-coupling
enables all four-wave mixing processes that conserve energy, we
can create interactions between the strongly detuned resonator
modes by applying pump tones. In particular, two pumps with a
frequency differencematching the detuning of the resonators enable
the conversion Hamiltonian

Hconv/~=g (t)âb̂†
+g ∗(t)â†b̂ (2)

where the coupling g (t)= EJφ
2
aφ

2
bξ
∗

1 (t)ξ2(t) can be controlled by
the pump strengths ξ1,2(t) (Fig. 1c). Note that the dressed transmon
mode c does not directly participate in this conversion. From
the output mode, photons converted from a to b leak into the
transmission line. For g�κout, this results in an effective damping
of a with rate κ= 4g 2/κout; the fastest achievable damping is given
by the bandwidth of the output mode, κout, corresponding to a
maximumon/off ratio of the decay that exceeds 103 (Supplementary
Information).

Cavity evacuation
We first explore the maximum damping rate we can induce with
pump tones of varying strength (Fig. 2a). We prepare the Fock state
|1〉 in the cavity, and then monitor the cavity population over time
while applying the pumps with frequencies ω1 and ω2. The pump
frequencies are tuned on resonance with the conversion process
of equation (2) using ωa − ω1 = ωb − ω2 = 2π× (30–50)MHz.
Increasing the pump strength allows us to tune the cavity energy
decay rate from its intrinsic value of κ0=1/0.45ms to κ≈1/0.5µs
for g/2π=207kHz, the maximum conversion rate achievable with
the available pump power (Fig. 2b). At this point, g≈0.3×κout, and
the decay becomes limited by the bandwidth of the output mode.
We can thus use this ‘Q-switch’ to evacuate the storage mode with
an on/off ratio approaching 103.

This Q-switch is very close to an ideal damping of the memory.
It cools the cavity close to the vacuum, with a residual population
of n̄. 0.01, the noise floor of our measurement. We can therefore
use the conversion as a fast reset, which is a useful tool for
experiments with long-lived quantum memories27,29. Further, the
measured decay of the cavity population is in excellent agreement
with predictions based on theory and independent calibrations of
the pump strengths. This agreement, together with the absence
of any significant heating in the system, suggests a very high
conversion efficiency from the storage to the output mode. We
estimate that the loss rate into undesired channels, κloss, is about
0.01κ , corresponding to an expected inefficiency of the conversion
of 1−ηconv≈0.01 (Supplementary Information).

We verify that the cavity evacuation is independent of the input
state. We prepare larger Fock states and monitor the population of
the input Fock state, P(n) (Fig. 2c). For state-independent damping
of a harmonic oscillator, with only a single-photon decay operator
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Figure 2 | Cavity damping by mode-conversion. a, Measurement scheme.
After preparing the cavity in a Fock state, we monitor the population as a
function of time for di�erent pump strengths. The pump tones have
constant amplitude in time, up to a smooth ring-up and ring-down. b,
Decay of the single-photon state |1〉. g/2π=0 (circles), 25 kHz (squares),
54 kHz (diamonds), and 207 kHz (triangles). Solid lines: for g=0,
exponential fit, yielding the natural decay time; for g>0, theoretical
prediction based on independently calibrated pump parameters. For large g
the decay is not simply described by a single exponential (Supplementary
Information). The last datapoint for the fastest decay shows the average
and standard deviation for the residual cavity population, consistent with
the vacuum state (P(1)=0.01±0.01). For small or vanishing g (.30 kHz),
the equilibrium state of the cavity is a small thermal state (Supplementary
Information). c, Decay of number states |n〉, with n ranging from 1 to 5;
g/2π=54 kHz. Solid lines are single-exponential fits P(n)∝exp (−κnt).
d, Extracted decay rates κn. Solid line is a linear fit to κloss+nκ , where κloss
is the independently measured loss rate (Supplementary Information).

â, we expect the state |n〉 to decay with a rate κn = nκ . From
exponential fits to the decay of P(n) we find very good agreement
with this linear behaviour (Fig. 2d). For larger n we expect that κn
will gradually decrease due to the Kerr effect14. For n≤5 we find a
deviation of κn from nκ1 of≤6%, and therefore state independence
is a good approximation (Supplementary Information). This can
be improved further by reducing the magnitude of the Kerr effect
through adjustment of sample parameters.

Travelling multiphoton quantum states
To determine whether cavity states are mapped faithfully onto
travelling signals we characterize the field emitted during
conversion. We prepare a cavity state and record the field using
heterodyne detection with a quantum-limited amplifier30 (Fig. 3a).
The averaged in-phase signal, 〈I(t)〉, from releasing a coherent state
with average photon number n̄=1 is shown in Fig. 3b. Because the
output mode has a finite bandwidth, we observe an exponential rise
of the signal at rate κout, followed by an exponential decay with the
induced decay rate κ . The emitted signal clearly retains coherence
with the cavity state, made visible as an oscillation by demodulating
with a small detuning from the output frequency. Importantly, the
amplitude of the oscillations is consistent with a high conversion
efficiency from the cavity to the output mode. By calibrating the
signal amplitude in terms of the number of photons emitted by the

output resonator, we estimate that the propagating field contains
1± 0.15 photons; this is in agreement with our expectation of a
small inefficiency in the conversion (Supplementary Information).

A crucial requirement for our interface is that non-classical
states are preserved faithfully in the conversion process. Because
the averaged signal vanishes for most states of interest, we compute
a probability distribution in phase space. By integrating each
measurement record I(t)+ iQ(t) in time and histogramming the
results, we directly obtain the Husimi Q-function20,31. Themeasured
Q-functions for the vacuum and a coherent state with n̄ = 1
are shown in Fig. 3c. Finite loss in our detection circuitry leads
to a smoothing and shrinking of the distribution, the extent of
which is determined by the detection efficiency ηdet (ref. 31). The
coherent state is thus not centred at |α= 1|, but is moved closer
to the origin. Having established a conversion efficiency of close
to unity, the position of the coherent-state population in the Q-
function is a direct measure of our detection efficiency; assuming
no loss in the conversion we obtain ηdet= 0.43± 0.04, consistent
with the expected performance of our amplifier (Supplementary
Information). Although non-classical features are thus blurred by
the detector, state-essential signatures are preserved in the raw data;
knowledge of the detection efficiency allows us to quantitatively
confirm the faithful release of quantum states. We illustrate this
using two classes of non-Gaussian oscillator states.

The first class are Fock state superpositions of the form
(|0〉 + |n〉)/

√
2, which display an n-fold symmetry in their

quasiprobability distributions. For a set of such states we show
the Wigner function of the cavity state, measured directly after
preparation32, and the Q-function of the released field (Fig. 3d);
from comparison it is clear that the two distributions share the
same symmetry. For additional clarity, we integrate the Q-function
radially to obtain a probability distribution as a function of angle,
Pr(φ). In this representation it can be seen that the symmetry is fully
preserved; the contrast is as expected, given our detection efficiency.

A second class of states of particular interest for CV quantum
information processing are ‘Schrödinger cat’ states of the form
|C±

α
〉=N (|α〉± |−α〉), which are eigenstates of photon number

parity. We create and release the even (+) and odd (−) parity
coherent-state superpositions |C±√2〉 with average photon number
|α|2 = n̄ = 2 (Fig. 3e). Because in heterodyne detection only
the Q-function is directly accessible, the characteristic coherence
fringes are strongly suppressed in the travelling field data; as a result,
the distributions appear fairly similar. However, subtracting the
marginals—obtained by integrating theQ-function along one axis—
clearly reveals a difference, with a magnitude that is consistent with
our detection efficiency and a high degree of state preservation. The
heterodyne detection used in this experiment limits the number of
photons accessible to about five; we estimate that in this regime the
fidelities with the ideal states exceed 90% (SupplementaryMethods).

The release of the cavity states shown can enable error-cor-
rectable transmission of quantum information. Because we have
temporal control over the pump tones, we can shape the wave
packet, which enables capture of emitted fields by a receiving
module18 (Supplementary Information). An inherent challenge for
this direct quantum state transmission is that inevitable photon
loss in the transmission channel will corrupt the received state.
However, by choosing an appropriate encoding, the receiver will
be able to detect and correct this error. For example, the states |2〉
and (|0〉+|4〉)/

√
2 are codewords of a binomial code33 that can

readily be sent by our system. Single-photon loss in the transmission
channel will result in a change of parity, which can be detected and
corrected by a receiver.

Entanglement between stationary and travelling fields
We next show that temporal control over the pumps allows us
to generate entanglement between cavity and travelling modes by
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Figure 3 | Travelling multiphoton quantum states. a, After preparing a cavity state, we monitor the output field in heterodyne detection while applying the
pump tones. b, Averaged in-phase signal for two coherent states with n̄= 1 and opposite phases. g/2π= 125 kHz for this data. Solid lines: fit to a sum of
two exponentials with sinusoidal oscillation, 〈I(t)〉∝ ( exp (−κt)−exp (−κoutt))×cos (2πft+φ±). f is the finite di�erence between the signal and
demodulation frequencies, and φ± are the phases of the resulting signals, corresponding to prepared states |±α〉; here, φ−=π−φ+. c, Q-functions for
vacuum and a coherent state obtained by integrating quadrature data in time and computing normalized histograms. d, Fock state superpositions
(|0〉+|n〉)/

√
2. Top panel: Measured Wigner function of the prepared cavity state (not corrected for imperfect readout). Middle: Q-function of the

travelling signal, not corrected for detection loss. Bottom: radially integrated Q-function, Pr(φ)=
∫

rQ(r,φ)dr. Solid line: expected contrast for the ideal
state, taking into account the detection e�ciency. e, Even and odd cat states, |C±√

2
〉. Lower left: marginals Pr(Q), obtained by integrating over I (arrows

indicate direction of integration). Lower right: Di�erence between the marginals (odd subtracted from even). Solid lines: expected signals for the ideal
states, taking into account the detection e�ciency. All Q-function data have been taken with g/2π=164 kHz. Fock state superposition Q-functions were
taken with 107 samples; cat state Q-functions with 106 samples.

partial conversion. We use the large on/off ratio over the release
process to convert only a part of the energy stored in the cavity;
this is the analogue of a partially reflective beam splitter, and can
thus generate entanglement between the reflected (remaining in
the cavity) and transmitted field (in the transmission line). We
prepare an input state in the cavity and then release half of its energy
while recording the output field. This ‘half-release’ corresponds to
a 50:50 beam splitter, for which we expect maximally entangled
states. After switching off the conversion process, we immediately
perform a single-shot, high-fidelity (&0.95) measurement on the
cavity. The non-classical correlations between recorded field and
cavity outcomes measured in different bases are indicative of the
generation of entanglement (Fig. 4a).We demonstrate this using two
different state encodings, single photons and cat states.

Half-releasing the Fock state |1〉 results in the Bell-state
(|1〉|0〉+|0〉|1〉)/

√
2, where the first ket is the state inside the

cavity, and the second the travelling state. When we measure the
cavity in the number basis and find it to be in the state |0〉 (|1〉),
we expect to find the travelling state in |1〉 (|0〉). This is revealed
with near-ideal contrast in the Q-functions from the travelling field,
conditioned on cavity outcomes (Fig. 4b, left column). To show
non-classicality in the correlations, we measure the cavity also in
a rotated basis to probe the states (|0〉±|1〉)/

√
2. Conditioning on

the outcomes, we find that the Q-functions closely resemble those
of (|0〉± |1〉)/

√
2, consistent with a high-fidelity entangled state.

This data allows us to further confirm the presence of entanglement
through a simple witness. We estimate a lower bound on fidelity
compared with the ideal Bell-state of 0.91 ± 0.02; this clearly
exceeds the classical bound of 0.5 and confirms that the half-release
generates entanglement (Supplementary Information).

Although entanglementwith single travelling photons can also be
observedwith two-level systems20, the conversionmethod presented
here can generate entanglement between non-classical multiphoton
states. In particular, half-release of a cat state |C+√2α〉 generates the
entangled state |α〉|α〉 + |−α〉|−α〉 = |C+

α
〉|C+

α
〉 + |C−

α
〉|C−

α
〉,

where we have omitted normalization factors. Although such
two-mode entangled cat states have been created previously in
locally coupled oscillators29 and with itinerant optical photons34,
our scheme realizes an interface between stationary and flying cats.
We demonstrate this ‘Schrödinger catapult’ by half-releasing the
cat state |C+√2〉. To show non-classical correlations we measure the
cavity in the coherent-state basis, finding it in either |±α〉, or in the
parity basis, thus finding it in either the even or odd cat state |C±1 〉.
The conditioned Q-functions of the flying field are shown in Fig. 4c.
Again, the correlations are consistent with a high-fidelity entangled
state. A slight reduction of contrast in the coherent-state basis results
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from state evolution due to the Kerr effect, which reduces the fidelity
of the cavity measurement (Supplementary Information).

This entanglement between stationary and travelling cats will
enable error-correctable distribution of entanglement. Capture of
the wave packet emitted by half-release enables the creation of
remote entanglement between stationary parties. For the cat states
used in this work, any photon loss in the transmission channel will
corrupt the state because it results in change of parity. However,
photon loss becomes detectable when we half-release a cat state
of the form |α〉+ |iα〉+ |−α〉+ |−iα〉 (ref. 35). Such states are
eigenstates of ‘superparity’ with modulo 4 photons, and even/odd
(modulo 2) parity measurements can be used to detect and correct
single-photon loss17. Thus, measuring and comparing the parity
between the remote parties will allow for detection and correction
of single-photon loss in the transmission line during remote
entanglement generation.

Summary and outlook
We have shown the coherent release of quantum states from a
microwave cavity memory. This release is enabled by parametric
upconversion utilizing the nonlinearity of a single Josephson
junction. This conversion scheme fulfils our requirements for an
interface between stationary and travelling oscillator states in a
microwave quantum network: we can dynamically control the
conversion rate, releasing cavity states almost 1,000 times faster than
the intrinsic lifetime. This conversion rate is state-independent for
states containing up to a few photons, extendable to up to tens
by simple hardware adjustments (Supplementary Information). The
release process is equivalent to a beam splitter interaction, and cavity
states are mapped faithfully onto travelling states. This interaction
can be controlled precisely and rapidly, enabling the generation of
entanglement between cavity and travelling modes.

Our interface can serve as the backbone in amicrowave quantum
network in which quantum information is stored in cavities. Since
the conversion process is controllable in amplitude and phase, it

will allow quantum state transfer and entanglement between remote
cavities18 (Supplementary Information). The scheme presented
supports multidimensional Hilbert spaces, thus providing a route
towards error-correctable distribution of quantum information and
entanglement. The on-demand generation of arbitrary, travelling
multiphoton quantum states shown provides further exciting new
opportunities for hybrid quantum systems. For instance, the
efficient capture of travelling microwave fields by mechanical
oscillators has been demonstrated experimentally36. Our ‘catapult’
can therefore be used to create highly non-classical mechanical
states. Mechanical systems can act as transducers with radically
different degrees of freedom, such as light in the optical domain37,38.
The combination of our system with such a transducer will thus
enable the distribution of exotic continuous variable quantum states
in heterogeneous networks.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon reasonable request.
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