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We have measured the plasma resonances of an array of Josephson junctions in the regime EJ � EC,

up to the ninth harmonic by incorporating it as part of a resonator capacitively coupled to a coplanar

waveguide. From the characteristics of the resonances, we infer the successful implementation of a

superinductance, an electrical element with a nondissipative impedance greater than the resistance

quantum [RQ ¼ h=ð2eÞ2 ’ 6:5 k�] at microwave frequencies. Such an element is crucial for preserving

the quantum coherence in circuits exploiting large fluctuations of the superconducting phase. Our results

show internal losses less than 20 ppm, self-resonant frequencies greater than 10 GHz, and phase-slip rates

less than 1 mHz, enabling direct application of such arrays for quantum information and metrology.

Arrays with a loop geometry also demonstrate a new manifestation of flux quantization in a dispersive

analog of the Little-Parks effect.
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The emerging field of quantum electronics exploiting
large fluctuations of the superconducting phase is chal-
lenged by the engineering of an electromagnetic environ-
ment which suppresses simultaneously the quantum
fluctuations of charge and the random low-frequency fluc-
tuations of offset charges. The small value of the fine
structure constant � ¼ 1=137 entails a fundamental asym-
metry between flux and charge quantum fluctuations,
strongly favoring the latter. To illustrate this, let us con-
sider the simplest case of a dissipationless LC oscillator,
where the charge Q on the capacitor plates and the gener-
alized flux � across the inductor are conjugate variables.
The ratio between quantum fluctuations of charge, �q ¼
�Q=ð2eÞ, and flux, �’ ¼ ��=�0, in the ground state of

the oscillator is given by �’=�q ¼ Z0=RQ. Here Z0 ¼ffiffiffiffiffiffiffiffiffiffi
L=C

p
is the characteristic impedance of the oscillator

and RQ ¼ h=ð2eÞ2 ¼ 6:5 k� is the superconducting re-

sistance quantum. Using only geometrical inductors and
capacitors, the characteristic impedance of the oscillator

Z0 cannot exceed the vacuum impedance Zvac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=�0

p
,

thus imposing quantum fluctuations of charge at least an
order of magnitude larger than flux fluctuations: �q=�’>

RQ=Zvac ¼ 1=ð8�Þ.
On-chip resistors and long chains of Josephson junctions

(JJs) in the dissipative regime have already been used to
provide high impedance environments for the phase across
a Josephson element [1–3]. However, these Ohmic compo-
nents cannot screen charge offsets efficiently and, being
dissipative, tend to destroy the quantum coherence of the
devices. We thus need a circuit element which possesses
three key attributes: high impedance at frequencies of
interest, perfect conduction at DC, and extremely low
dissipation. These attributes define the so-called ‘‘super-
inductance’’ [4,5].

There are currently two leading candidates for imple-
menting superinductances. The first is superconducting
nanowires [6,7]. Unfortunately, they appear to show sig-
nificant internal dissipation, which is not yet well under-
stood, and they are challenging to fabricate. The second
implementation exploits the large kinetic inductance of
arrays of JJs. Though amenable to design parameters,
arrays may also suffer from dissipation due to coupling
to internal degrees of freedom [8,9] or to coupling to a
dissipative external bath [10]. Indeed, transport measure-
ments on large arrays of JJs show the appearance of a
superconducting to insulating transition (SIT) with de-
creasing Josephson energy EJ [11–13]. Previous measure-
ments on resonators where the inductive energy is
dominated by JJ arrays have yielded internal quality factors
in the range of a few thousands [14,15]. The long lifetime
of the fluxonium qubit was the first indirect evidence of
a low-loss superinductance based on JJ arrays [5,16].
However, this realization suffered from coherent quantum
phase slips (CQPS) [17,18], which constitute additional
degrees of freedom, difficult to control experimentally.
In this Letter, we report microwave characterization of

arrays of large JJs [see Fig. 1(a)] with Josephson energy
EJ ’180EC, where EC ¼ e2=ð2CJÞ is the charging energy
of one junction. The parasitic capacitance of the array to
ground is such that the CQPS rate is exponentially sup-
pressed with EJ=EC [19].
Our arrays consist of closely spaced Josephson junctions

on a C-plane sapphire substrate, as shown in Fig. 1. We
fabricated the junctions by e-beam lithography and double
angle evaporation of aluminum using the bridge-free tech-
nique of [20,21]. Prior to aluminum deposition, the sub-
strate is cleaned of resist residues using an oxygen plasma
[22]. We minimize the width of the connecting wires
between junctions in order to reduce parasitic capacitances
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to ground, which ultimately lower the self-resonant fre-
quency of the superinductance [23].

We characterize our superinductances at low tempera-
tures and microwave frequencies by incorporating them in
lumped-element LC resonators capacitively coupled to a
coplanar waveguide in the hanger geometry. The resonator
response is measured in transmission. An optical image of
a typical device and its low-frequency circuit model are
shown in Figs. 1(c) and 1(d).

The samples were mounted on the mixing chamber stage
(15 mK) of a dilution refrigerator inside a copper box,
enclosed in an aluminum-Cryoperm-aluminum shield with
a Cryoperm cap. We used two 4–12 GHz Pamtech isolators
and a 12 GHz K&L multisection low-pass filter before the
HEMTamplifier, and installed copper powder filters on the
input and output lines.

The internal quality factor of a resonator is extracted by
fitting the transmission data about the resonance with the
response function [24]

S21ðfÞ ¼ 1� Q�1
ext � 2i �ffR

Q�1
tot þ 2i f�fR

fR

; (1)

where Qtot and Qext are the total and external quality
factors, fR is the resonant frequency, and �f characte-
rizes asymmetry in the transmission response profile. The

internal quality factor is given byQint ¼ QextQtot

Qext�Qtot
. We show

a typical measured response for a resonator with an
80-junction superinductance in Fig. 2(a). This yields an
internal quality factor of 37 000 for the resonator at 15 mK
(stage temperature), corresponding to a loss in the super-
inductance of better than 27 ppm.We note that an unknown
portion of the internal loss comes from the capacitors. The
inset of Fig. 2(a) shows the dependence of the internal
quality factor on the stage temperature. The quality factor
appears to saturate at low temperatures; this can either
indicate the presence of nonequilibrium quasiparticles, or
more likely the approach of the noise floor of our mea-
surement setup, limiting the resolvable values for the Q.
A similar resonator with two 80-junction arrays in parallel
was measured to have a quality factor of 56 000 [Fig. 2(b)],
corresponding to a superinductance loss of smaller than
18 ppm, an order of magnitude below the previously
reported values [14]. The external quality factors, Qext, of
both resonators were 5000.

FIG. 2 (color online). (a) Typical microwave transmission data
for an 80-junction resonator measured with order one photon
circulating power; the solid line is the theoretical prediction
corresponding to Qint > 37 000. Inset: Temperature dependence
of the internal quality factor of the resonator. The dashed line is a
guide for the eye. (b) Same measurement as in (a) for a 160-
junction array loop; the solid line corresponds to Qint > 56 000.
Parameters for the low-frequency model in Fig. 1(d) are Cc ¼
1:6 fF, CR ¼ 7:2 fF, and LR ¼ 150 nH for (a) and Cc ¼ 1:8 fF,
CR ¼ 11 fF, and LR ¼ 76 nH for (b).

FIG. 1 (color online). (a) Schematic representation of an array
of Josephson junctions. Capacitances of islands to ground and
across tunnel junctions are denoted with C0 and CJ, respectively.
The junction inductance is given by LJ. (b) SEM image of the
Josephson junction array fabricated using the bridge-free tech-
nique [20,21]. (c) Optical image of an LC resonator. The large
pads implement the resonator capacitance as well as coupling
capacitances to the coplanar waveguide feedline. An array of
Josephson junctions between the pads implements the super-
inductance. The ground plane is patterned with flux-trapping
holes. (d) Low-frequency model for the device shown in (c). The
phase-slip element (split diamond) in series with the superin-
ductance represents the collective contribution of phase slips
through all junctions in the array. The characteristic energy of
the phase-slip element is denoted by ES.
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We next evaluate the self-resonant modes of an
N-junction array. The Lagrangian of the array is

L ¼ XN
n¼1

1

2
C0

_�2
n þ 1

2
CJð _�n � _�nþ1Þ2

� 1

2

ð�n ��nþ1Þ2
LJ0

; (2)

where �n are the node fluxes associated with each super-
conducting island. We express each node flux as a super-
position of discrete Fourier mode amplitudes,

�n ¼ 1ffiffiffiffi
N

p XN
k¼1

eið�k=NÞn�k; (3)

which leads to a diagonal Hamiltonian of the following
form:

H ¼ XN=2

k¼�N=2

C�1
kk0QkQ�k0 þ L�1

kk0�k��k0 : (4)

Here Qk are the canonical conjugate ‘‘charge’’ variables
to the fluxes �k, and

Ckk0 ¼ �kk0

�
C0

2
þ CJ

�
1� cos

�k

N

��
; k 2

�
�N

2
;
N

2

�

(5)

Lkk0 ¼ �kk0
LJ0

ð1� cos�kN Þ
; (6)

are respective capacitance and inductance matrices in the
Fourier basis. This immediately leads to a dispersion rela-
tion of the form

!k ¼ ðLkkCkkÞ�1=2 ¼!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�kN

C0

2CJ
þð1� cos�kN Þ

vuut ; (7)

where !0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
LJCJ

p
is the plasma frequency of a single

junction. The coupling capacitance pads at each end of the
array [see Fig. 1(c)] load down the eigenfrequencies (see
Supplemental Material [25] for calculation details).

The data presented in Fig. 2 correspond to measure-
ments of the k ¼ 1 mode. The frequencies of higher
modes, k � 2, of the array lie outside the band of our
measurement setup. In order to observe these modes we
exploit their cross-Kerr interaction, which is induced by
the junction nonlinearity. This interaction leads to a fre-
quency shift of the lowest mode (k ¼ 1) when higher
modes are excited. In Fig. 3(a) we show the results of a
two-tone measurement of an 80-junction resonator [same
device as presented in Fig. 2(a)], where we continuously
monitor the k ¼ 1mode while sweeping the frequency of a
probe tone. When the probe tone is resonant with a higher
mode of the array, we observe a drop in the k ¼ 1
frequency.

Figure 3(b) shows the comparison between the mea-
sured frequencies of the array modes and the theoreti-
cally predicted values. The black crosses show the
renormalized mode frequencies calculated after incorpo-
ration of the corrections due to coupling capacitance
pads (see Supplemental Material [25]), which are in
good agreement with the measured frequencies repre-
sented by colored markers. The parameters extracted
from the fit were C0 ¼ 0:04 fF, CJ ¼ 40 fF, and LJ ¼
1:9 nH, with a confidence range of 20%. The simulated
value of the capacitance to ground C0 ¼ 0:09 fF agrees
within a factor of 2 with the inferred value from the fit.
Room temperature resistance measurements of the junc-
tion arrays yield a value of LJ ¼ 2:1 nH, which agrees
with the fit within 10%. Using the fit parameters we
calculate the dispersion relation for the bare superinduc-
tance, shown as a gray curve in Fig. 3(b). We note that
the lowest resonant frequency of the bare superinduc-
tance is 14.2 GHz, which meets the design criterion of
having self-resonances well above the frequency range of
interest (1–10 GHz).
In order to characterize the phase-slip rate of the super-

inductances, we monitor the frequency of the k ¼ 1 mode
of a resonator formed by two superinductances in parallel,
while sweeping an external magnetic field. As flux bias is
increased, the persistent current induced in the loop in-
creases, and results in a drop in frequency of the mode

FIG. 3 (color online). (a) Shift of the lowest frequency mode of
the 80-junction resonator upon application of a probe tone.
Because of the weak nonlinearity of the array (theory predicts
of order 10 MHz=photon [33]), shifts occur when the probe tone
matches a plasmonic resonance of the array (marked with
red arrows). (b) Measured plasma mode frequencies of the
80-junction array: The blue square represents the fundamental
resonant frequency of the resonator (4.355 GHz), and red circles
indicate the plasma modes pointed out by red arrows in (a). The
black crosses denote the calculated plasma frequencies. The gray
curve represents the dispersion relation without including cor-
rections due to the coupling capacitors (open boundary condi-
tions), and markers show corresponding plasma frequencies. The
inset in (b) shows the voltage profile along the array for the first
three plasma modes.
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[Fig. 4(a)]. This behavior can be described to lowest order
in junction nonlinearity by the quasiclassical expression

fð�extÞ ¼ fRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2

�
2�
N ð�ext

�0
�mÞ

�
2

s ; (8)

where �ext is the applied flux bias, and m is the integer
number of flux quanta inside the loop. A phase-slip event is
associated with an integer change in m, which we observe
as a jump in resonator frequency. As we increase the flux
bias, the phase-slip rate is enhanced and frequency jumps
become more probable [19]. We swept the flux bias applied
to the loop over several flux quanta before a phase-slip
event occurred. The typical duration between phase slips
recorded in this experiment was over an hour, Fig. 4(a).
This is a remarkably low phase-slip rate of well under
1 mHz for a loop of 160 junctions, significantly lower
than previously reported values on shorter arrays [17,26].

Because of the extremely low phase-slip rate, in order to
measure the resonator in the lowest flux state, we employ
an active resetting scheme. We apply a high power pulse at
one of the k � 2 modes before measuring the location of
the lowest resonant frequency. This high power pulse
activates phase slips, relaxing the loop to the lowest flux
state. Remarkably this allows a change in persistent current
at constant flux bias. Using this protocol, we tracked the
resonant frequency in the lowest flux state, as shown in
Fig. 4(b), and observed discrete inverted parabolas. This
periodic modulation of the resonator frequency with flux is
akin to the Little-Parks effect [27] measured dispersively in
a nondissipative regime. We exploit this effect to unam-
biguously calibrate the number of flux quanta in the loop.
The fitted value for the total number of junctions differs by
6% from the actual number, which can be explained by the
classical nature of the theory which does not take quantum
fluctuations into account.

In conclusion, microwave measurements of supercon-
ducting Josephson junction arrays demonstrate that super-
inductances in the range of 100–300 nH, with self-resonant
frequencies above 10 GHz, internal losses less than
20 ppm, and phase-slip rates below 1 mHz can be success-
fully implemented. With parameters such as measured in
our experiment, Josephson junction array superinductances
significantly enrich the quantum electronics toolbox.
Applications would include further suppression of offset
charges in superconducting qubits [16], highQ and tunable
lumped-element resonators, on-chip bias tees, and kinetic
inductance particle detectors [28]. In addition, these arrays
exhibit rich dynamics owing to many internal degrees of
freedom, thus making them perfect candidates for the study
of quantum many-body phenomena such as quantum im-
purity models [29,30], microwave photonics [31], and
measurements of Bloch oscillations [32].
We would like to acknowledge fruitful discussions with

Luigi Frunzio, Kurtis Geerlings, Leonid Glazman, Wiebke
Guichard, Zaki Leghtas, Mazyar Mirrahimi, Michael
Rooks, and Rob Schoelkopf. Facilities use was supported
by YINQE and NSFMRSECDMR 1119826. This research
was supported by IARPA under Grant No. W911NF-09-1-
0369, ARO under Grant No. W911NF-09-1-0514, and
NSF under Grant No. Grants No. DMR-1006060 and
DMR-0653377. As this manuscript was completed, we
learned of a similar implementation of a superinductance
using a different array topology [34].

*nicholas.masluk@yale.edu
[1] L. S. Kuzmin and D. B. Haviland, Phys. Rev. Lett. 67,

2890 (1991).
[2] S. V. Lotkhov, S. A. Bogoslovsky, A. B. Zorin, and

J. Niemeyer, Phys. Rev. Lett. 91, 197002 (2003).
[3] S. Corlevi, W. Guichard, F.W. J. Hekking, and D. B.

Haviland, Phys. Rev. Lett. 97, 096802 (2006).
[4] Term introduced by A. Kitaev (unpublished).
[5] V. E. Manucharyan, Ph.D. thesis, Yale University, New

Haven, Connecticut, 2011.
[6] A. Bezryadin, C. N. Lau, and M. Tinkham, Nature

(London) 404, 971 (2000).
[7] J. E. Mooij and Y.V. Nazarov, Nature Phys. 2, 169

(2006).
[8] R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001).
[9] G. Rastelli, I.M. Pop, W. Guichard, and F.W. J. Hekking,

arXiv:1201.0539.
[10] A.M. Lobos and T. Giamarchi, Phys. Rev. B 84, 024523

(2011).
[11] E. Chow, P. Delsing, and D. B. Haviland, Phys. Rev. Lett.

81, 204 (1998).
[12] W. Kuo and C.D. Chen, Phys. Rev. Lett. 87, 186804

(2001).
[13] Y. Takahide, H. Miyazaki, and Y. Ootuka, Phys. Rev. B 73,

224503 (2006).
[14] M.A. Castellanos-Beltran and K.W. Lehnert, Appl. Phys.

Lett. 91, 083509 (2007).

FIG. 4 (color online). (a) Lowest mode frequency versus ap-
plied flux bias for resonator with 160-junction array loop. Flux
bias is swept up and down over the course of several hours. Gray
curves represent quasiclassical predictions for resonator frequen-
cies at different integer values of flux quanta in the array loop.
The only adjustable parameter is the number of junctions, found
to be 150� 10. (b) Same measurement as in (a) over a smaller
flux range, but before each measurement a high power pulse at
one of the plasma modes is applied in order to reset the resonator
to the lowest flux state.

PRL 109, 137002 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

28 SEPTEMBER 2012

137002-4

http://dx.doi.org/10.1103/PhysRevLett.67.2890
http://dx.doi.org/10.1103/PhysRevLett.67.2890
http://dx.doi.org/10.1103/PhysRevLett.91.197002
http://dx.doi.org/10.1103/PhysRevLett.97.096802
http://dx.doi.org/10.1038/35010060
http://dx.doi.org/10.1038/35010060
http://dx.doi.org/10.1038/nphys234
http://dx.doi.org/10.1038/nphys234
http://dx.doi.org/10.1016/S0370-1573(01)00022-9
http://arXiv.org/abs/1201.0539
http://dx.doi.org/10.1103/PhysRevB.84.024523
http://dx.doi.org/10.1103/PhysRevB.84.024523
http://dx.doi.org/10.1103/PhysRevLett.81.204
http://dx.doi.org/10.1103/PhysRevLett.81.204
http://dx.doi.org/10.1103/PhysRevLett.87.186804
http://dx.doi.org/10.1103/PhysRevLett.87.186804
http://dx.doi.org/10.1103/PhysRevB.73.224503
http://dx.doi.org/10.1103/PhysRevB.73.224503
http://dx.doi.org/10.1063/1.2773988
http://dx.doi.org/10.1063/1.2773988


[15] A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion,
and D. Esteve, J. Low Temp. Phys. 151, 1034 (2008).

[16] V. E. Manucharyan, J. Koch, L. I. Glazman, and M.H.
Devoret, Science 326, 113 (2009).

[17] V. E. Manucharyan, N.A. Masluk, A. Kamal, J. Koch, L. I.
Glazman, and M.H. Devoret, Phys. Rev. B 85, 024521
(2012).
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