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We have measured at low temperature the current through a submicrometer superconducting island connected to two
normal metal leads by ultra-small tunnel junctions. As the bias voltage is lowered below the superconducting gap of this
Coulomb blockade electrometer, the current changes from being e-periodic with gate charge to 2e-periodic. We interpret
the 2e-periodic current at low voltages as a manifestation of a sequence of Andreev reflections which shuttles two electrons
at a time through the island. This process can only exist if the island favors a state with a definite parity of the number of

conduction electrons.

1. Introduction

It is well known that systems with a small
number of particles, like atomic nuclei, behave
in a very different way if the number of particles
is even or odd [1]. Nevertheless, one is inclined
to believe that the macroscopic properties of a
large isolated metallic electrode or ‘‘island”
should not depend on the even or odd character
of the number of its conduction electrons. There
is one case, however, where the oddness or
evenness of electron number would in principle
show up at the macroscopic level. According to
the BCS theory, electrons in a superconductor
tend to form Cooper pairs. But an isolated
superconductor with an odd number of electrons
cannot have all its electrons paired. In the
ground state, one electron would remain as a
quasi-particle excitation, which has an energy
corresponding to the superconducting energy
gap. On the contrary, if the number of electrons
were even, the ground state would be free of
such excitation. This simple picture may not be
applicable to a real superconducting electrode:
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the presence of only one quasiparticle state
located within kz7 of the Fermi level would
restore the even—odd symmetry at an arbitrary
low temperature 7. A very small but finite
density of states below the superconducting gap
would be undetectable in usual tunneling experi-
ments. In this paper, we report novel experimen-
tal results supporting the simple picture of even—
odd symmetry breaking in an isolated supercon-
ductor, at least when time scales of the order of
an hour are considered.

2. The NSN Coulomb blockade electrometer

Our experiment uses the property, well estab-
lished experimentally [2] and theoretically [3],
that a tunneling current passing through an
island in the Coulomb blockade regime (i.e.
kyT <E,=e’/2Cs, Cs being the total island
capacitance) depends on the total energy differ-
ence between the ground states of the island
differing by one charge carrier. We connect the
island to two normal metal leads via tunnel
junctions (insets of fig. 1). A voltage difference
V is applied to the leads. The potential of the
island and hence, its number of electrons, can be
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Fig. 1. Current through NSN Coulomb blockade electrome-
ter as a function of bias voltage for two values of the gate
voltage giving a minimum and a maximum gap for positive
voltage. Arrow indicates the value of 24/e =470 uV. Lower
inset shows electrical schematic for the electrometer, where
the boxed symbols represent ultrasmall tunnel junctions.
Upper inset depicts device layout. Normal and superconduct-
ing metallic regions are indicated by N and S respectively.
The shaded regions indicated metal used for the NSN
electrometer. The white regions are extraneous copies inher-
ent to the double-angle shadow mask evaporation technique.
Their sole effect is to contribute to the capacitances between
the active shaded regions. The gate is actually 3 pm away
from the island.

varied independently of the potential of the leads
by applying a “gate” voltage V, to a metallic
finger capacitively coupled to the island.

If the island were in the normal state, it would
have an equilibrium energy at V=0 given by
E =E.(n— Cng/e)2 where C, is the gate capaci-
tance between finger and island (see fig. 2(a)).
Normally at temperature T such that kT <E_,
there is no conduction at vanishingly small volt-
ages V, but for gate voltages satisfying C,V, =
(n+1/2)e, one has E, = E, ., and conduction is
restored (fig. 2(b)): an electron can enter the
central electrode through the left junction and
leave through the right junction without chang-
ing the energy of the system. Because of this
gate-voltage-controlled conduction, we can refer
to the normal two-junction device as the NNN
Coulomb blockade electrometer.

When the island is in the superconducting
state (NSN Coulomb blockade electrometer), we
expect the energy of the island to be given by
E =E(n— Cng/e)2 + Ap, where A is the super-
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Fig. 2. Island total energy as a function of gate voltage V, for
several values of the number n of excess electrons on the
island, in the normal (a) and superconducting (c) states. In an
ideal superconductor with gap A the minimum energy for odd
n is A above the minimum energy for n. Black dots in (a)
mark lowest energy level crossings where the transfer of an
electron into and out from the island is energetically possible.
The lowest energy level crossings in (c) are marked by a
white dot to indicate that the simultaneous transfer of two
electrons into and out from the island is energetically
possible. Conductance in the vicinity of zero bias voltage as a
function of gate voltage is shown in the normal (b) and
superconducting state (d).

conducting energy gap and where p, takes, in the
ideal case, the values 1 or 0 if » is odd or even,
respectively (see fig. 2(c)). We now suppose that
Cs, while small enough to make the Coulomb
energy E_ much greater than the thermal fluctua-
tion kg7, is sufficiently large to make the
Coulomb energy less than the superconducting
gap: A>E_. Consequently, as V, is increased,
the equality E,, ., = E,,, which takes place at
C,V,=(2k + 1)e, occurs before the equality
E,..,=E,, . In the superconducting state one
thus expects the conduction at vanishing voltage
to be restored when C,V, = (2k + 1)e (fig. 2(d)).
This conduction would be provided by a se-
quence of two two-electron tunneling processes
and should be 2e-periodic in gate charge Q =
C.V.. In the first process two normal electrons
from the low voltage lead simultaneously tunnel
into the island and form a Cooper pair. In the
second process, which is the reverse of the first,
a Cooper pair tunnels out of the island and form
two electrons in the high voltage lead. This
sequential 2e-transfer process is identical to the
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Andreev reflection [4] of an electron in the first
normal lead followed by the Andreev reflection
of a hole in the second normal lead.

A 2e-periodicity of the sub-gap current as a
function of gate charge has been found in the
experiments of Geerligs et al. [5], Tuominen et
al. [6] and Haviland et al. [7] on the SSS
Coulomb blockade electrode in which all elec-
trodes are superconducting. However, in these
experiments, the current as a function of gate
voltage shows a lot of structure which is not
completely understood. The fact that both the
island and leads are superconducting complicates
the interpretation of the results: both quasipar-
ticle and Josephson tunneling have to be taken
into account. In these experiments the 2e-period-
icity cannot be unambiguously assigned to the
properties of the superconducting island by it-
self. This is why we have chosen to investigate a
Coulomb blockade electrometer in which the
island only is superconducting. This case has
been considered theoretically by Averin and
Nazarov [8] but with emphasis on co-tunneling
processes of single electrons rather than on two-
electron processes.

3. Sample

The sample was made using the now standard
shadow-mask e-beam lithography technique [9].
During the first evaporation we depositec a
350 A layer of aluminum to form a 0.23 wm X
0.86 pm superconducting electrode (see fig. 1).
This layer was oxidized in 0.1 Torr O, during
Smin. The second evaporation consisted of a
50 A thick buffer layer of aluminum followed
immediately by a 550 A thick layer of gold. The

buffer layer was found useful for the adhesion of

the gold layer. Due to the close contact to the
gold layer, the aluminum buffer layer should stay
normal by the proximity effect [10]. The sample
was mounted in a shielded copper box thermally
anchored to a dilution refrigerator. Measure-
ments of the current / as a function of the bias
voltage V and the gate voltage V, were made
through carefully filtered coaxial leads [11].

4. Results

We first performed large scale measurements
of I versus V for different gate voltages in order
to characterize the electrometer and to verify
that the proximity effect was indeed taking place
in the aluminium buffer layer. In fig. 1 we show
the I(V) characteristics for gate charges Q =
C,V, giving a minimum and a maximum gap for
positive bias voltage. A sharp current rise is seen
at 24 in the minimum gap curve, and not at 44
like in the fully superconducting Coulomb block-
ade transistor [12]. This result is well explained
by the theory of the NNN Coulomb blockade
transistor [3], suitably modified to take into
account the density of states of the supercon-
ducting island. For example this modified theory
predicts that a tunnel event on the left junction
changing n =0 into n =1 will occur for

G, +C,
<—)V— Ale>(e/2— CV,)/2Cs
CZ

g g/

while a tunnel event on the right junction chang-
ing n =1 into n =0 will occur tor

Cl) (Y o T
(a/ V—A4Ale>(CV,—el2)/2C;
hence the minimum gap for eV =24. Here C,
and C, denote the capacitance of the left and
right junctions, respectively. The data of fig. 1
therefore confirms the destruction of the super-
conducting state of the buffer aluminum layer
due to the gold layer. The NSN Coulomb block-
ade transistor theory also explains the modula-
tion of the current rise with gate voltage as
displayed by a measurement of V versus V, taken
at constant / (data not shown). From the fit of
the data we obtain the tunnel resistances R, =
R,=65kQ, E le=127TwV, C, =0.351F, C,=
0.281F, C,=7.2 aF and Ale =235 V. The value
of C, is consistent with our previous resuits on
NNN electrometers.

A further check on the NSN behavior of the
sample was obtained by a detailed measurement
of the smooth rise of I versus V for maximum
gap (see fig. 3). We attribute this rounding of the
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Fig. 3. Fine scale current—voltage characteristic in the vicini-
ty of the voltage threshold for maximum gap. Solid line is the
result of the calculation of the co-tunneling rate, including
both (V —24)> and (V—24)’ terms. Dashed line shows the
contribution of the leading (V — 24)* term alone.

Coulomb blockade to inelastic co-tunneling
events [13] in which one electron, while passing
from one normal lead to the other, creates two
quasiparticles in the island. This process can only
occur for V >2A. We calculate at maximum gap
and T=0 a co-tunneling current I, = (Ry/
7R, R,)(Cs/e)*(3V>Ale + 28V /3m), where 8V =
V—2A/e and Ry = h/e*. The leading 3V° depen-
dence is characteristic of a process involving the
simultaneous transfer of an electron between two
normal reservoirs and the breaking of a Cooper
pair in an intermediate island. Our data points
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Fig. 4. Current through NSN transistor as a function of gate
voltage for two values of bias voltage (a) eV =24 (b) eV=A4/4.

In (a) double arrow marked ‘“e” indicates gate voltage
increment necessary to place one extra electron on the island.

presented in fig. 3 agree well with the theoretical
curve (full line) in which all parameters were
taken from previous measurements.

In addition to the e-periodic features observed
at voltages of the order of or above 24, we
observed a 2e-periodic current for subgap bias
voltages. We display this 2e-periodicity in fig. 4
where we show the current / as a function of gate
voltage V, for V=478 uV (eV= 2e/A) and V=
63wV (eV=A/4) and at 35 mK. Note that the
2e-periodic peaks are positioned half-way be-
tween two adjacent e-periodic peaks, as the
theory presented graphically on fig. 2 predicts.

5. Coulomb blockade of Andreev reflection

Fig. 5 examines another aspect of the 2e-
periodic feature by showing the current—voltage
characteristics at gate charges 0, e and 1.06e. A
linear I(V) around V=0 for Q =e is in agree-
ment with our discussion of fig. 2(d). The data at
Q =1.06e show that a small gap opens up near
V=0 when Q departs from e. This gap can be
interpreted as evidence for the Coulomb block-
ade of Andreev reflection. This blockade occurs
when it is energetically unfavorable for the
superconducting island to accept a pair of elec-
trons. The opening of this gap is a behavior
which is quite different from what is observed in
SSS electrometers [5-7]. It does not point to a

vV [uv]

Fig. 5. Fine scale current-voltage characteristics near zero
bias voltage for Q =C,V, mod2e=0, e and 1.06e. The
Q = 1.06e data display a small Coulomb gap.
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coherent transport of electrons through the is-
land but to an incoherent process where a
voltage threshold for each of the two junctions
must be exceeded for sequential tunneling to
occur. The sequence of two Andreev reflections
which we believe is responsible for the zero-
voltage conductance does not require voltages
greater than A since no quasiparticles are ex-
cited. Its rate is 2e-periodic in Q because the
intermediate state involves a charging of the
island with 2e and its rate is proportional to the
applied voltage. We have calculated (see Ap-
pendix) the zero-bias conductance at Q =e to
be fX(EJA)R/8M, (R} +R3) where f(x)=
(2/m)cos”'(—x)(1=x°)""? and M, is the
number of effective conduction channels through
the junction. Our observed conductance of
(100 MQ) ™" corresponds to M, =100, which we
think is a reasonable order of magnitude consid-
ering the granularity of the electrode films [14].
The 2e-shuttling at Q =e through the island
should be suppressed at bias voltages approach-
ing 2(A—E_)/e because single electrons can
enter the island. This explains why the 2e-period-
ic current as a function of V forms a peak.

As we increased the temperature, the zero-
bias conductance associated with the peak for
Q =e in fig. 5 remained approximately constant.
However, the height of the peak decreased
linearly with temperature and disappeared com-
pletely at T,, = 130 mK. This temperature depen-
dence can be understood by replacing in the
calculation of the population of the odd state the
even-odd energy difference A by the even-odd
free energy difference F(T)=A— kT In N,
where N_; is the effective number of quasi-
particle states [6]. At zero bias voltage and Q =
e, the odd state becomes significantly populated
when F(T)=FE, and we thus predict T,=
140 mK, in good agreement with our data. Our
results differ from those of Tuominen et al. [6]
who observed the vanishing of their 2e-periodic
component at T, =300 mK, which they interpret
as the solution of F(T') = 0. There is probably no
contradiction: our 2e-periodic tunneling mecha-
nism can operate only if the island is in an even
state whereas their unknown mechanism can
perhaps operate whatever the parity of the island

electron number, the two parities corresponding
to two 2e-periodic I(V,) curves dephased by e.

6. Time scale of even—odd symmetry breaking

In fig. 6 we show a succession of / —V, curves
taken similarly to that of fig. 4(b). Each trace
took 200 s, and successive traces were displaced
downward slightly. Apart from a slow drift which
we can attribute to the relaxation of the back-
ground charge [3], we have observed abrupt
e-shifts of the curves which occurred intermit-
tently on a time scale of several hours. A
possible model to explain this data involves the
infrequent tunneling of conduction electrons
from the bulk of the island to localized states
within the insulator at the surface of the island.
The empty conduction state left by this event is
immediately filled by an electron tunneling
through one of the junctions. The filled localized
state polarizes the island with charge e, thus
giving an apparent shift of e in Q. This process
can conceal the even—odd symmetry breaking if
the data are accumulated on time scales much
longer than the typical time of tunneling into the
localized state. This time scale could be sensi-

I [10pA]
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Fig. 6. Time evolution of I-V, characteristic. Repeated
traces are shifted downward with time. Arrows indicate the
position of e-shifts.
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tively dependent on the material properties of
the superconducting island.

7. Conclusion

We have presented the first experimental data
on an NSN electrometer. At low bias voltage,
this system has one dominant conduction mecha-
nism, a sequence of two Andreev reflections.
This 2e-electron tunneling mechanism reveals the
even—odd symmetry breaking of the supercon-
ducting island by the 2e-periodicity of the current
versus gate charge. The dependence of the data
both with bias voltage and temperature agree
quantitatively with the predictions based on this
mechanism. Furthermore, our observation of
random e-shifts in the gate charge demonstrates
that even—odd symmetry breaking in a supercon-
ducting island is a concept which depends on the
time scale of the observation. Finally, this ex-
periment shows that Coulomb blockade may be
used in disordered mesoscopic SN systems [15]
to discriminate Andreev reflection on a back-
ground of single electron tunneling since at Q =e
only 2-electron conduction processes are al-
lowed.
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Appendix

We calculate the current associated with the
process depicted in fig. 7, in which two electrons
from the left side of the NS junction combine to

N S

evir ei'_“w*} ) A
A

o,
)

Fig. 7. Two-electron tunneling process involving a normal
metal (N) and a superconductor (S) separated by a tunnel
barrier. Two electrons on the N side tunnel coherently to
form a Cooper pair on the S side. This process is equivalent
to the Andreev reflection on the tunnel barrier of an electron
in the N side into a hole.

form a Cooper pair on the right side. We start
from the tunnel Hamiltonian

H=H+H", (A1)

where H can be expressed in terms of electron
operators ¢ and c¢':

H= E tmkpcjnpo'cmka' . (Az)

mpko

In the sum, m denotes the transverse (i.e.
parallel to the barrier) mode index, p the longi-
tudinal (i.e. perpendicular to the barrier)
momentum on the right side, & the longitudinal
momentum on the left side and o the spin index.
We assume that the tunnel matrix element ¢,,,, is
independent of spin and that its modulus is
independent of longitudinal momenta: |z, |=
t2.. It is well known that in the case where both
sides are normal, this hamiltonian treated as a
perturbation leads to a voltage independent one-
electron tunneling conductance

L 20w
G?JII::RTI:Tgym’ (A3)
where
gm = 4Tr2plmprm[r2n ’ (A4)
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where p, ,, denotes the longitudinal density of
state on the left (respectively right) side of the
barrier. A Landauer approach to the tunneling
conductance leads directly to eq. (A3) and
identifies J,, as the transmission coefficient of
the barrier for longitudinal mode m.

We now take into account that fact that the
right side is superconducting with a gap A and
compute the rate I' of two-electron tunneling
following the method of Schrieffer and Wilkins
[16]. We start with Fermi’s Golden Rule:

2 [(FIH D *8(Er — Ey). (AS)

The final state |F) differs from the initial state
|I) by the emptying of two electron states on the
left side with opposite spins, same mode index
and with longitudinal momenta k' and k" such
that |k’| >|k"|. Since we take for the right side a
BCS ground state with constant chemical poten-
tial, the extra Cooper pair which is formed as a
result of two-electron tunneling does not lead to
a change of state:

IF> = ka"vUka'UlI> . (A())
The effective matrix element for two-electron
tunneling is given by
<FIH(2)II> = ‘/%mk”k'o'

<F|H|M><MIH|I>
=2 E,— E;,

(A7)

There are two types of intermediate states |M)
depending on whether electron k' or electron k"
tunnels first:

|M> = erlpacmk’o|1> (A8)

IM) =¥ oConie—o|D) (A8)
The operator y;p” affects the right side by
destroying a pair (mpo, m —p — o) and creating
a quasiparticle in mode m with longitudinal
momentum p and spin o. We now proceed by
expressing H in terms of y’s and y "’s. We use the
Bogoliubov transformation [17]

L
Cp(r - upaYpU

vp(r‘)/—pfrf ’ (A9)
where the u’s and the v’s verify the symmetry
relations u,, =u_,, =U, , =U_,_, and Vpo =
V_,, ="V, ,="U_, ,. Using these relations

and the commutation properties of the ¢’s, we
find

mkk(r z mpk m pk"” mpa'vmplr

p
,,—eV>’

where E,, and ¢, denote quasiparticle and
electron energies on the right and left side,
respectively. We can now replace the sum over
momenta p in eq. (A10) by an integral over the
energy { of the one-particle states partlupatmg
in the BCS ground state: Emp =A* +§

also make use of the relation 2u, v mpo A/
E, . Finally, in view of the delta function in eq.
(A5) we are only interested in .., such that
€, T €, —2eV =0 and it is useful to introduce

the variable € =¢,,. — eV (see fig. 7). We get

1 1
<Emp T ey —eV  E, te, (A10)

+ o

Adg 2
it ([ 28
M | = Pl J Ab+gz_6_’

The sum over F in eq. (AS) can now be replaced
by an integral over the energy e in the interval
[0,eV]. Since we are only interested in the zero
voltage conductance we can drop the €’ term in
eq. (A11) and we get w for the integral. Taking
into account the two possibilities for o, we finally
obtain the expression for the two-electron tun-
neling conductance Gl =lim, 2V

(A1)

2 2

2 e 5
GA=16m" =3 plpl e =5 2 T2 (AL2)
Our perturbative result is identical, in the small
7, limit, with the more general result by
Beenakker for Andreev reflection in NS systems
with arbitrary transmission on the N side [18]

a2

4e? g
(2) _ _ __~—m
Gns = ; 2-9,)"

m

(A13)
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If we assume that there are M., modes that
contribute to the sum in eq. (Al2) with equal
transmission coefficient J, we get a relation
between the two-electron tunnel conductance
and the normal electron tunnel resistance:

o hlée
Gl=——. (A14)
4MeffR'Lr

We can now generalize eq. (Al14) to the case of
the NSN Coulomb blockade electrometer with
gate voltage V,=e/C,. By analogy with the
NNN Coulomb blockade electrometer with gate
voltage V,=e/2C, for which Gly=(Ry +
RT2)71/2, we are tempted to write G oy = (h/
Sez)M;f}(RixﬂLRiz)*l, where the G’s refer to
the zero-voltage conductances of the electrome-
ter and the R’s to the tunnel resistances the
junctions (we assume that the capacitances of the
two junctions are equal). However, we must
take into account the fact that the island is not at
constant potential during each of the two-elec-
tron tunneling processes. The E, , term in the
energy denominators of eq. (Al0) must be
replaced by E, , — E. since the quasiparticle in
the virtual intermediate state lowers the electro-
static energy of the island by the Coulomb
energy E. (see fig. 2(c)). In eq. (All) the
integral becomes in the limit of small €

T Ad¢
o VA (VA - E)
B 2cos”(—E,/A)

V1 (E./1A)?

The final expression for the zero-voltage con-
ductance of the electrometer at V, = e/C, is thus

= wf(E,/A)

(A15)

2
T (A16)
e” 8(R7 +R1))
This expression diverges when E_ tends towards
A. This, however, is an artefact of the perturba-
tion theory which is also found in the theory of
co-tunneling [13]. At E .= A, the two-electron
tunneling process continuously merges into a

one-electron tunneling process and the conduct-

ance stays finite. In our experiment E_/A=0.54
and the value of the f* factor is only 2.59.

Note added in proof

A recent theoretical work by F.W.J. Hekking,
L.I. Glazman, K.A. Matveev and R.I. Shekhter
(preprint) extends our expression (A16) to non-
zero temperature and bias voltage and finds good
agreement with our experimental results.
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