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Quantum channels can describe all transformations allowed by quantum mechanics. We adapt two existing
works [S. Lloyd and L. Viola, Phys. Rev. A 65, 010101 (2001) and E. Andersson and D. K. L. Oi, ibid.
77, 052104 (2008)] to superconducting circuits, featuring a single qubit ancilla with quantum nondemolition
readout and adaptive control. This construction is efficient in both ancilla dimension and circuit depth. We point
out various applications of quantum channel construction, including system stabilization and quantum error
correction, Markovian and exotic channel simulation, implementation of generalized quantum measurements,
and more general quantum instruments. Efficient construction of arbitrary quantum channels opens up exciting
new possibilities for quantum control, quantum sensing, and information processing tasks.
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I. INTRODUCTION

Quantum channels or quantum operations, more formally
known as completely positive and trace preserving (CPTP)
maps between density operators [1–3], give the most general
description of quantum dynamics. For closed quantum sys-
tems, unitary evolution is sufficient to describe the dynamics.
For open quantum systems, however, the interaction between
the system and environment leads to nonunitary evolution of
the system (e.g., dissipation), which requires CPTP maps for
full characterization. Besides describing open system dynam-
ics, the system dissipation can further be engineered to protect
encoded quantum information from undesired decoherence
processes [4–9]. Hence, it is important to systematically extend
quantum control techniques from closed to open quantum
systems.

Theoretically, universal Lindbladian dynamics construc-
tions have been investigated [10–12], which can be used
for stabilization of target quantum states [4], protection of
information encoded in subspaces [13], or even quantum
information processing [14–16]. Experimentally, dissipative
quantum control has been demonstrated using various physical
platforms [6–8,17–20]. Besides Lindbladian dynamics, CPTP
maps also include exotic indivisible channels that cannot
be expressed as Lindbladian channels [21]. Hence, use of
Lindbladian dynamics is insufficient to construct all CPTP
maps, which require more general techniques.

The textbook approach to construct all CPTP maps for a
d-dimensional system (with d = 2m for a system consisting of
m qubits) requires a d2-dimensional ancilla and one round of
SU(d3) joint unitary operation (Stinespring dilation, see [1]).
One recent work suggests that using a d-dimensional ancilla
and a probabilistic SU(d2) joint unitary operation might
be sufficient for all CPTP maps, based on a mathematical
conjecture [22]. More interestingly, the ancilla dimension can
be dramatically reduced to 2 for arbitrary system dimension d

[23], if we introduce adaptive control [24] based on quantum
nondemolition (QND) readout of the ancilla which conditions
a sequence of SU(2d) unitary operations. Besides CPTP
maps, the adaptive approach can be used for generalized
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quantum measurement, called positive-operator valued
measure (POVM) [23]. As detailed in Ref. [25], an explicit
binary tree construction has been provided to implement any
given POVM.

In this paper we concretize the idea developed in [23,25]
and propose a superconducting circuit construction of arbitrary
CPTP maps, featuring minimal ancilla system—a single qubit
and low circuit depth (logarithmic with the system dimension).
We provide an explicit proposal to implement such a treelike
series using a minimal and currently feasible set of operations
from circuit quantum electrodynamics (cQED) [26–29], with
the setup shown in Fig. 1. Furthermore, using concrete
examples, we argue that the ability to efficiently construct
arbitrary CPTP maps can lead to exciting new possibilities
in the field of quantum control and quantum information
processing in general.

The goal of this investigation is to expand the quantum
control toolbox to efficiently implement all CPTP maps. In
contrast to investigations of analog/digital quantum simulators
of certain complex quantum dynamics [7,30–37], we focus on
the efficient implementation of CPTP maps for various quan-
tum control tasks, including state stabilization, information
processing, quantum error correction, etc.

This paper is organized as follows. First, we review the
basic notation of CPTP maps using the Kraus representation
in Sec. II. We then provide an explicit protocol that can imple-
ment arbitrary CPTP maps using an ancilla qubit with QND
readout and adaptive control, and describe its implementation
with cQED in Sec. III. In Sec. IV we illustrate potential
applications of such constructed CPTP maps. In Sec. V we
discuss further extensions and various imperfections. Finally,
we conclude the paper in Sec. VI.

II. KRAUS REPRESENTATION

Mathematically we use the Kraus representation for CPTP
maps,

T (ρ) =
N∑

i=1

KiρK
†
i , (1)

which are trace preserving as ensured by the condition [38]
N∑

i=1

K
†
i Ki = I. (2)
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FIG. 1. Schematic setup of a circuit QED system used for
constructing an arbitrary quantum channel.

The Kraus operators Ki do not have to be unitary or Hermitian.
They can even be nonsquare matrices, if the input and output
Hilbert spaces have different dimensions. By padding with
zeros, we can always make them square matrices that describe
a dimension-preserving channel for a system with dimension
d. The Kraus representation is not unique, because for any
N × N unitary matrix U , the set of new Kraus operators Fi =∑

j UijKj characterizes the same CPTP map [1].
To efficiently construct a CPTP map, it is convenient to

work with the Kraus representation with the minimum number
of Kraus operators, called the Kraus rank of the CPTP map.
Since there are at most d2 linearly independent operators for
a Hilbert space of dimension d, the Kraus rank is no larger
than d2 (for a rigorous treatment see [38]). There are efficient
procedures to convert different representations of a channel to
the minimal Kraus representation [2,3,38]. For example, we
may convert the Kraus representation into the Choi matrix (a
d2 × d2 Hermitian matrix) and from there obtain the minimal
Kraus representation [38]. The second approach is to calculate
the overlap matrix Cij = Tr(KiK

†
j ) and then diagonalize it,

C = V †DV [1]. The new Kraus operators K̃i = ∑
j VijKj

will be the most economic representation with some of them
being zero matrices if the original representation is redundant.
For cases with the CPTP map provided in other representations
(e.g., superoperator matrix representation, Jamiolkowski-Choi
matrix representation), we can also perform a well-defined
routine to bring them into the minimal Kraus representation
(as detailed in Appendix A).

III. UNIVERSAL CONSTRUCTION
OF QUANTUM CHANNELS

As pointed out by Lloyd and Viola [23], repeated ap-
plication of Kraus rank-2 channels in an adaptive fashion
is in principle sufficient to construct arbitrary open-system

dynamics. Using that construction, to implement a CPTP map
with Kraus rank N , we need a quantum circuit with L = N − 1
rounds of operations. Each round of operation consists of one
joint unitary of system and ancilla and one QND measurement
on the ancilla qubit. Andersson and Oi provided a scheme for
a binary-tree construction to explicitly implement an arbitrary
POVM with L = �log2 N�[25]. We extend the binary-tree
scheme to a more general protocol for arbitrary CPTP maps.
Later in Sec. IV E we will discuss the relations between CPTP
maps, POVMs, and quantum instruments. The procedure to
construct a CPTP map with Kraus rank N is associated with
a binary tree of depth L = �log2 N�, as shown in Fig. 2. With
a qubit ancilla, the circuit depth of �log2 N� is the lowest
possible. This is what we mean by “efficient”. In the following,
we first consider the simple case with L = 1, corresponding
to the CPTP maps with Kraus rank N � 2. Then we provide
an explicit construction for general CPTP maps. After that we
outline how to physically implement the circuits using cQED
as a promising physical platform.

A. Quantum channels with Kraus rank 2

Given a single use of the ancilla qubit, we can construct any
rank-2 CPTP map, characterized by Kraus operators {K0,K1}.
The procedure consists of the following: (1) initialize the
ancilla qubit in |0〉, (2) perform a joint unitary operation
U ∈ SU(2d), and (3) discard (“trace over”) the ancilla qubit.
Since this procedure has only one round of operation, there is
no need for adaptive control and thus we can simply discard
the ancilla without any measurement.

The 2d × 2d matrix of unitary operation has the following
block matrix form [39]:

U =
(〈0|U |0〉 ∗

〈1|U |0〉 ∗
)

, (3)

where the d × d submatrices are 〈0|U |0〉 = K0, 〈1|U |0〉 =
K1, and “*” denotes irrelevant submatrices (as long as U is
unitary). The 2d × d submatrix formed by 〈0|U |0〉
and 〈1|U |0〉 is an isometry, i.e., any matrix V that
satisfies V †V = I. The trace preserving requirement
K

†
0K0 + K

†
1K1 = I ensures that the isometry condition∑

b=0,1 (〈b|U |0〉)†〈b|U |0〉 = Id×d is fulfilled. After discarding
the ancilla qubit, the procedure achieves the CPTP map,

TU (ρ) = K0ρK
†
0 + K1ρK

†
1 .

FIG. 2. (a) Quantum circuit for arbitrary channel construction. The dimension of the system d can be arbitrary and the circuit depth depends
only on the Kraus rank of the target channel. (b) Binary tree representation with depth L = 3. The Kraus operators Kb(L) are associated with the
leaves of the binary tree, b(L) ∈ {0,1}L. The system-ancilla joint unitary to apply in lth round Ub(l) depends on the previous ancilla readout record
b(l) = (b1b2 · · · bl) ∈ {0,1}l associated with a node of the binary tree. For any given channel, all these unitaries can be explicitly constructed
and efficiently implemented.
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Therefore, any channel with Kraus rank 2 can be simulated
with a single use of the ancilla qubit [40].

If we measure the ancilla qubit instead of discard-
ing it, we can in principle obtain the “which trajectory”
information. More specifically, the system state becomes
(〈0|U |0〉)ρ(〈0|U †|0〉) (unnormalized) if we find the ancilla in
|0〉, and it becomes (〈1|U |0〉)ρ(〈0|U †|1〉) if we find the ancilla
in |1〉. We may use the “which trajectory” information to de-
termine later operations, and thus construct more complicated
CPTP maps with higher Kraus rank.

B. Quantum channels with higher Kraus rank

To implement a CPTP map with Kraus rank N , we need
a quantum circuit with L = �log2 N� rounds of operations.
Each round consists of (1) initialization of the ancilla qubit,
(2) joint unitary gate over the system and ancilla (conditional
on the measurement outcomes from previous rounds), (3)
QND readout of the ancilla, and (4) storage of the classical
measurement outcome for later use. For a quantum circuit
consisting of L rounds of operations with adaptive control
(based on binary outcomes), there are 2L − 1 possible interme-
diate unitary gates (associated with 2L − 1 nodes of a depth-L
binary tree) and 2L possible trajectories (associated with the
2L leaves of the binary tree).

As illustrated in Fig. 2, we denote the lth round unitary
gate as Ub(l) , associated with the node of the binary tree b(l) =
(b1b2 · · · bl) ∈ {0,1}l with l = 0, . . . ,L − 1. [For L = 1 there
is only one unitary gate for b(0) = ∅, which is Ub(0)=∅ as given
in Eq. (3).] Generally, the unitary gate Ub(l) has the following
block matrix form:

Ub(l) =
(〈0|Ub(l) |0〉 ∗

〈1|Ub(l) |0〉 ∗
)

, (4)

where “*” again denote irrelevant submatrices (as long as Ub(l)

is unitary). Since the ancilla always starts in |0〉, it is sufficient
to specify the d × d submatrices 〈bl+1|Ub(l) |0〉 acting on the
system, with the projectively measured ancilla state |bl+1〉 for
bl+1 = 0,1. Associated with the leaves of the binary tree, b(L) ∈
{0,1}L are Kraus operators labeled in binary notation,

Kb(L) = Ki, (5)

with i = (b1b2 · · · bL)2 + 1 and Ki>N = 0. The singular
value decomposition of each Kraus operator is Kb(L) =
Wb(L)Db(L)V

†
b(L) .

We now provide an explicit construction for 〈bl+1|Ub(l) |0〉.
First, for each node b(l) with l = 1, . . . ,L − 1, we may diago-
nalize the nonnegative Hermitian matrix (which is associated
with the summation over all the leaves in the branch starting
from b(l))

∑
bl+1,...,bL

K
†
b(L)Kb(L) = Vb(l)D2

b(l)V
†
b(l) ≡ M2

b(l) , (6)

with unitary matrix Vb(l) , diagonal matrix Db(l) consisting of
nonnegative diagonal elements, and Hermitian matrix Mb(l) =
Vb(l)Db(l)V

†
b(l) . For notational convenience, we introduce Pb(l) as

the support projection matrix of Db(l) , with elements

(Pb(l) )j,k = sgn[(Db(l) )j,k], (7)

where sgn(0) ≡ 0, so that P 2
b(l) = Pb(l) and Pb(l)Db(l) =

Db(l)Pb(l) = Db(l) . The orthogonal projection is P ⊥
b(l) = I − Pb(l)

and we also define the related projection Qb(l) ≡ Vb(l)P ⊥
b(l)V

†
b(l) .

In addition, we define

(
D−1

b(l)

)
j,k

=
{

1/(Db(l) )j,k if (Db(l) ) 
= 0,

0 otherwise. (8)

and denote the Moore-Penrose pseudoinverse of Mb(l) as
M+

b(l) = Vb(l)D−1
b(l) V

†
b(l) . For l = 0 we fix Vb(0) = Db(0) = D−1

b(0) =
Pb(0) = I and P ⊥

b(0) = 0.
Finally, we have the explicit expression for the relevant

submatrices of the unitary matrix

〈bl+1|Ub(l) |0〉 = Mb(l+1)M+
b(l) + 1√

2
Qb(l) , (9)

with b(l+1) = (b(l),bl+1) for l = 0, . . . ,L − 2, and

〈bl+1|Ub(l) |0〉 = Kb(l+1)M+
b(l) + 1√

2
Wb(l+1)V

†
b(l+1)Qb(l) (10)

for l = L − 1. Since the isometric condition∑
bl+1=0,1 (〈bl+1|Ub(l) |0〉)†〈bl+1|Ub(l) |0〉 = Id×d is fulfilled

(as proven in Appendix B), we can complete the unitary
matrix Ub(l) with appropriate submatrices 〈bl+1|Ub(l) |1〉.

For L = 1 we use Eq. (10) for l = 0 and obtain

〈b1|Ub(0) |0〉 = Kb(1) =
{
K1 for b1 = 0,

K2 for b1 = 1,

which is consistent with the earlier construction for Kraus
rank-2 channels.

With the above explicit construction of arbitrary CPTP
maps, we will investigate the physical implementation with
cQED.

C. Physical implementation with cQED

The above channel construction scheme relies on three key
components: (1) ability to apply a certain class of unitary gates
(recall that we engineer only the left half of the unitary) on
the system and ancilla combined system; (2) QND readout
of the ancilla qubit; and (3) adaptive control of all unitary
gates based on earlier rounds of QND measurement outcomes.
Although there are a total of (2n − 1) unitaries potentially to
be applied, they can all be precalculated and one only needs
to decide which one to perform in real time based on the
measurement record. In principle any quantum system that
meets these three requirements can be used to implement our
scheme. In the following, we focus on a circuit QED system
with a transmon qubit dispersively coupled to a microwave
cavity with Hamiltonian [41]

Ĥ0 = ωcâ
†â + ωq |e〉〈e| − χa†a|e〉〈e|,

where ωc and ωq are the cavity and qubit transition frequency,
respectively, â is the the annihilation operator of a cavity
excitation, χ is the dispersive shift parameter, and |e〉〈e| is
the qubit excited state projection. This is a promising platform
to implement the channel construction scheme because the
dispersive shift χ can be three orders of magnitude larger than
the dissipation of the qubit and the cavity, allowing universal
unitary control of the system [42,43].
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FIG. 3. Level diagram for the dispersively coupled qubit-cavity
system. It is straightforward to implement Uent for such a system by
driving two level transitions that are spectrally separated. Here g/e

denote the ancilla qubit states (0/1 logical states) and n denotes the
photon number state.

The Fock states of a cavity mode can be used to encode
a d-dimensional system and the qubit can be used as the
ancilla. Universal unitary control on the d-level system has
been proposed in Ref. [43] and demonstrated experimentally
in Refs. [29,42]. The strong dispersive coupling of the cavity
and qubit enables selective driving of transitions between
|g, n〉 and |e, n〉 for different excitation numbers n, which
can implement the following entangling unitary gate:

Uent(θi)

=
(

S0 −S1

S1 S0

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ1
2 − sin θ1

2
. . .

. . .
cos θd

2 − sin θd

2

sin θ1
2 cos θ1

2
. . .

. . .
sin θd

2 cos θd

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
d−1∏
n=0

exp(−iYnθn/2), (11)

where Yn ≡ −i|g, n〉〈e, n| + H.c. is the Pauli-Y operator for
the two-dimensional subspace associated with n excitations
(see Fig. 3). This entangling gate gives a channel described by
Kraus operators {S0, S1}. If we precede Uent with a unitary V †

acting on the system alone and perform an adaptive unitary on
the system after Uent depending on the ancilla measurement
W0 or W1, we end up with the unitary

U ′
ent =

(
W0 0
0 W1

)(
S0 −S1

S1 S0

)(
V † 0
0 V †

)

=
(

W0S0V
† ∗

W1S1V
† ∗

)
.

This above decomposition is known as the “cosine-sine decom-
position” [44,45] and plays an important role in decomposing
an arbitrary unitary/isometry into controlled-not gates and
single qubit gates. This construction is sufficient to perfectly
match the relevant two submatrices of the desired unitary

U =
(〈0|U |0〉 ∗

〈1|U |0〉 ∗
)

,

with 〈0|U |0〉 = W0S0V
† and 〈1|U |0〉 = W1S1V

†. To imple-
ment the quantum circuit in Fig. 2(a), we may explicitly
identify the W0/1, S0/1, and V matrices for unitary operations
at different rounds U = Ub(l) .

To justify the above claim, we provide an explicit design
of U ′

ent to perfectly match the left two submatrices of Ub(l) in
three steps. (1) We start with singular value decompositions
(SVD) 〈0|U |0〉 = W0S0V

†
0 and 〈1|U |0〉 = W1S1V

†
1 , where we

have already set the W ’s and S’s to their desired values.
Now all that is left to do is to make sure that V0 = V1 = V .
To uniquely determine the decomposition, we require that
the singular values in S0 are arranged in descending order
(S0)j,j � (S0)j+1,j+1, while the singular values in S1 are
arranged in ascending order (S1)j,j � (S1)j+1,j+1. (2) The
isometric condition

∑
b=0,1 (〈b|U |0〉)†〈b|U |0〉 = Id×d re-

quires that V
†

0 V1S
2
1V

†
1 V0 = Id×d − S2

0 . Since both S2
1 and

Id×d − S2
0 are diagonal with elements in ascending order, V †

1 V0

must be the identity, that is, V0 = V1 = V . Therefore, we have
obtained all the components of U ′

ent, which fulfills 〈0|U |0〉 =
W0S0V

† and 〈1|U |0〉 = W1S1V
†. A similar property was

used in [46] to simplify the construction of generalized
measurements of a qubit. In terms of circuits, we decomposed
the 2d-dimensional unitaries in Fig. 2 into a series of simpler
operations, as shown in Fig. 4.

IV. APPLICATION EXAMPLES

The concept of CPTP maps encompasses all physical
operations ranging from cooling, quantum gates, measure-
ments, to dissipative dynamics. The ability to construct an
arbitrary CPTP map offers a unified approach to all aspects
of quantum technology. To illustrate the wide range of impact
of quantum channel construction, we now investigate some
interesting applications, including quantum system initial-
ization/stabilization, quantum error correction, Lindbladian
quantum dynamics, exotic quantum channels, and quantum
instruments.

A. Initialization/stabilization

Almost all quantum information processing tasks require
working with a well-defined (often pure) initial state. One
common approach is to sympathetically cool the system to the

FIG. 4. For cQED systems, the 2d-dimensional unitary used to generate an arbitrary Kraus rank-2 channel can be eventually simplified to
unitaries acting on the system alone and an entangling operation Uent [Eq. (11)], which is a series of independent two-level transitions between
|g, n〉 and |e, n〉, where g/e denote the ancilla qubit states (0/1 logical states) and n denotes the photon number state.
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ground state by coupling to a cold bath, or optically pumping
to a specific dark state, and then performing unitary operations
to bring the system to a desired initial state. This can be slow if
the system has a large relaxation time scale. Another approach
is to actively cool the system by measurement and adaptive
control. Along the line of the second approach, the channel
construction technique can be applied to discretely pump the
system from an arbitrary state into the target state σ , which can
be pure or mixed. The pumping time depends on the quantum
gate and measurement speed, instead of the natural relaxation
rate.

It is well known that the CPTP map

ρ → EInit(ρ) = Tr(ρ)σ

stabilizes an arbitrary state σ [2,3]. If the target state has
diagonal representation σ = ∑

μ λμ|ψμ〉〈ψμ|, where λμ � 0
and

∑
μ λμ = 1, one explicit form of Kraus operators is

{Kμ

i = √
λμ|ψμ〉〈i|}, where |i〉 are a basis of the system

Hilbert space [47]. Contrary to the conventional approaches
discussed in the previous paragraph, this dissipative map
bundles the cooling and state preparation steps and pumps
an arbitrary state into state σ . In the case where σ is pure,
this channel reduces to the “measure and rotate” procedure.
Depending on the purity of σ , entropy can be extracted from
or injected into the system by the ancilla qubit. If we run the
channel construction circuit repeatedly, state stabilization can
be achieved. This allows one to keep alive some nonclassical
resource state in a noisy quantum memory.

Besides pure state initialization for quantum information
processing, preparation of carefully designed mixed states may
find application in the study of foundational issues of quantum
mechanics such as quantum discord, quantum contextuality,
and quantum thermodynamics [48–53].

B. Quantum error correction

Besides unique steady states, there are CPTP maps that
can stabilize multiple steady states or even a subspace of
steady states, which may be used to encode useful classical or
quantum information. A practically useful application of such
CPTP maps with subspaces of steady states is quantum error
correction (QEC). Typical QEC schemes encode quantum
information in some carefully chosen logical subspaces [1,54]
(or subsystems [55]), and use syndrome measurement and
conditional recovery operations to actively decouple the
system from the environment. Despite the variety of QEC
codes and recovery schemes, the operation of any QEC
recovery can always be identified as a quantum channel.

For qubit-based stabilizer codes with Ns stabilizer gen-
erators, the recovery is a CPTP map with Kraus rank 2Ns

[1]. We may first use the ancilla to sequentially measure
all Ns stabilizer generators to extract the syndrome, and
finally perform a correction unitary operation conditioned
on the syndrome pattern. Since the stabilizer generators
commute with each other, their ordering does not change
the syndrome. Moreover, the stabilizer measurement does
not require conditioning on previous measurement outcomes,
because the unitary operation at the lth round is simply
Ub(l) = Ul = P+ ⊗ Ŝl + P− ⊗ I with Ŝl for the lth stabilizer
and P± = 1

2 (|g〉 ± |e〉)(〈g| + 〈e|), which is independent of the

previous measurement outcomes b(l−1). Finally, we perform
the correction unitary operation Ub(Ns ) conditioned on the
syndrome b(Ns ).

Generally we may consider all QEC codes that fulfill
the quantum error-correction conditions associated with a
set of error operations [1,56]. For these QEC codes we can
explicitly obtain the Kraus representation of the QEC recovery
map [1,56], which can be efficiently implemented with our
construction of quantum channels. For example, let us consider
the binomial code [57], which uses the larger Hilbert space of
higher excitations to correct excitation loss errors in bosonic
systems. In order to correct up to two excitation losses, the
binomial code encodes the two logical basis states as

|W↑〉 ≡ |0〉 + √
3|6〉

2
,

|W↓〉 ≡
√

3|3〉 + |9〉
2

.

For small loss probability γ for each excitation, this encoding
scheme can correct errors up to O(γ 2), which includes the
following four relevant processes: identity evolution (Î ), losing
one excitation (â), losing two excitations (â2), and back-action
induced dephasing (n̂) [57]. Based on the Kraus representation
of the QEC recovery (with Kraus rank 4), we can obtain the
following set of unitary operations Ub(l) for the construction of
the QEC recovery channel with an adaptive quantum circuit:

Ũ∅ =
(

P̂3

Î − P̂3

)
,

Ũ0 =
(

P̂W

Î − P̂W

)
, Ũ1 =

(
P̂1

Î − P̂1

)
,

Ũ00 =
(

Î

0̂

)
, Ũ01 =

(
Un̂

0̂

)
,

Ũ10 =
(

Uâ

0̂

)
, Ũ11 =

(
Uâ2

0̂

)
,

where the projections are defined as P̂i ≡ ∑
k |3k + i〉〈3k + i|

and P̂W ≡ |W↑〉〈W↑| + |W↓〉〈W↓|, and the unitary operators
UÔ (Ô = â, â2, n̂) transform the error states Ô|Wσ 〉 back to
|Wσ 〉 for σ = ↑, ↓. Explicitly,

UÔ =
∑

σ

|Wσ 〉 〈Wσ |Ô†√
〈Wσ |Ô†Ô|Wσ 〉

+ U⊥,

where U⊥ is any isometry that takes the complement of
the syndrome subspace to the complement of the logical
subspace. In the first two rounds, we perform the projective
measurements to extract the error syndrome. In the last round,
we apply a correction unitary operation to restore the logical
states. Specifically, if the measurement outcome b(2) = (0,0),
there is no error and identify operation Î is sufficient. If
b(2) = (0,1), there is back-action induced dephasing error,
which changes the coefficients of Fock states so we need
to correct for that with Un̂. If b(2) = (1,1), there is a single
excitation loss, which can be fully corrected with Uâ . If
b(2) = (1,0), there are two excitation losses, which can be fully
corrected with Uâ2 . Repetitive application of the above QEC
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recovery channel can stabilize the system in the code space
spanned by |W↑〉 and |W↓〉.

More interestingly, beyond exact QEC codes there are
approximate QEC codes [58–61], which can also efficiently
correct errors but only approximately fulfill the QEC criterion.
For approximate QEC codes, it is very challenging to ana-
lytically obtain the optimal QEC recovery map, but one can
use semidefinite programming to numerically optimize the
entanglement fidelity and obtain the optimal QEC recovery
map [62–65]. Alternatively one can use the transpose chan-
nel [59] or quadratic recovery channels [60,66,67] which are
known to be near optimal. All these recovery channels can
be efficiently implemented with our general construction of
CPTP maps.

C. Markovian channels

Recently there has been growing interest in designing and
engineering open system dynamics for quantum information
processing [5,10,11,14,68], which uses Markovian channels

ρ → EMC,t (ρ) = T[e
∫ τ

0 Lt dt ]ρ,

whereT stands for time ordering, andLt is the time-dependent
Lindbladian operator that has general form

Lt (ρ) = − i

h̄
[H, ρ]

+
∑
n,m

hn,m

[
LnρL†

m − 1

2
(ρL†

mLn + L†
mLnρ)

]
,

where Ln are jump operators. Markovian channels are a special
class of CPTP maps [21]. In contrast to the continuous time
evolution approach [10–12], we construct EMC,t = T [e

∫ τ

0 Lt dt ]
directly, which is advantageous in that it does not take more
time to see results for larger τ because no Trotterization or
stroboscopic control is required. We consider the following
cat-pumping example to manifest these points.

Using a specifically engineered dissipation for a cavity
mode, one can stabilize a two-dimensional steady-state sub-
space spanned by the so called cat code [13,20]. The required
dissipation can be described by the following time-independent
Lindbladian:

L(ρ) = JρJ † − 1
2 (J †Jρ + ρJ †J ),

where the jump operator J is

J = √
κ

n∏
i

(a − αi).

The complex variables αi determine the coherent state compo-
nents |αi〉 that span the steady-state subspace. As proposed
in [13] and demonstrated in [20], the dissipation can be
engineered by coupling the system mode and another lossy
mode with Hamiltonian H = J †b + H.c., where b is the
annihilation operator for the lossy mode. Practically, it is
challenging to generate desired engineered dissipation that is
much stronger than the undesired dissipations (e.g., dephasing,
Kerr effect, etc). In addition, it is difficult to extract the
Hamiltonian H associated with higher-order nonlinearity, in
order to have a higher-dimensional steady state subspace
with more coherent components. With our approach, however,
the effective rate κ can be large and determined by the
time scale to implement the circuits, which is limited by
the duration of gates and measurements, and the delay of
adaptive control. Moreover, the construction can easily extend
to the case that simultaneously stabilizes many coherent
components.

With the channel construction presented here, we can now
obtain Lindbladian dynamics EMC,t = exp(L t) for any given
t . Sometimes we are interested in the channel for t → ∞
(or equivalently the strong pumping limit κ → ∞), EMC,∞,
and it was recently shown that any more general (i.e., non-
Markovian) channel can be embedded in EMC,∞ [16]. For our
approach, sending t to ∞ does not cost us an infinite amount
of time, since the number of cycles in our construction circuit
only scales logarithmically with the Kraus rank of EMC,∞.
In numerical calculations, the Kraus rank is not a clear-cut
quantity even when we have obtained the most economic Kraus
representation. So we define and examine the “magnitudes” of
the Kraus operators λi ≡ Tr(K†

i Ki) and remove Ki from the
description of the channel if λi < 10−10. Note that λi/d is
the probability for Ki to act on the system when the input
state is the maximally mixed state ρ = I/d. The λi also turn
out to be the eigenvalues of the Choi matrix, see Appendix A
for details. Numerically we found that E∞ has lower Kraus
rank than EMC,t with finite t , see Fig. 5 for two examples. In
the infinite time limit, the Kraus rank scales linearly with the
dimension of the truncated Hilbert space d = nc + 1 (where

FIG. 5. The magnitudes of the Kraus operators λi ≡ Tr(K†
i Ki), corresponding to Et = exp(L t) for (a) two-legged cat pumping and

(b) four-legged cat pumping. Here we set κ = 1. In the long time limit, both channels have Kraus rank approximately equal to the size of the
truncated Hilbert space d = nc + 1, where nc is the maximal photon number. We treat all λi smaller than 10−10 as 0. The figures show results
with nc = 38 but we verified that our observation remains valid for any sufficiently large nc.
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FIG. 6. All possible trajectories for pumping a vacuum state |0〉 to the subspace spanned by |±α〉 with α = 1.1. Depending on the
probabilistic ancilla readout, the system evolves along different trajectories in each run of the circuit. However, since the steady state of the
system is a pure state |ψf〉 = (|α〉 + |−α〉)/√2, which cannot be decomposed as a probabilistic mixture of different states, the final state for
each trajectory is always the same pure state |ψf〉. The two outcomes of the first round are only slightly different. Two of the four outcomes of
the second round are also very similar to the others.

nc is the photon number truncation), much smaller than the
largest possible value d2.

Figures 6 and 7 (corresponding to n = 2 and n = 4 coherent
components) show trajectories [69] of the system evolution
under our constructed channel for a large t ∼ 103/κ . In each
run of the simulation, the ancilla measurement results that
correspond to different trajectories are probabilistic. If the
system starts in |0〉, |1〉, or |2〉, the correct steady state is
pure. So whichever trajectory the system follows, it ends up
in the same pure state. If the system starts in a state like
(|0〉 + |2〉)/√2, the steady state is a mixed state, in which
case different trajectories lead to different final states. But
the probabilistic mixture of all these final states make up the
expected steady state density matrix ρf = Et (ρinit).

Our approach of constructing CPTP maps thus provides
another promising pathway to efficiently pump the cavity
mode into the cat-code subspace using approximately log2(d)
rounds of operations, each of which consists of adaptive
SU(2d) unitary gates, qubit QND measurement, and storing
the measurement outcome. In the exact same fashion, we can
construct CPTP maps that manipulate the logical states living
in the code subspace, which can, e.g., implement a digital
version of holonomic gates [15].

D. Exotic channels

Besides Markovian channels, there are also exotic CPTP
maps that cannot be obtained from time-dependent Lind-
bladian master equations. Hence, these channels are not
accessible in previous proposals of open system evolution
under Lindbladian master equations [10–12]. For example,
we can define the following CPTP map (called the “partial

corner transpose” channel) for d-dimensional systems [21]

T (ρ) = ρTc + ITr(ρ)

1 + d
,

where ρTc is the “corner transposed” density matrix (i.e.,
exchanging the matrix elements ρ1,d and ρd,1 while keeping
all other elements unchanged). Following Ref. [21], the
partial corner transpose channel has diagonal representation
in the generalized Gell-Mann basis, with identical eigenvalues
1/(d + 1), except for two basis elements—the eigenvalue is 1
for basis element Id×d/

√
d, and the eigenvalue is −1/(d + 1)

for basis element (|d〉〈1| + |1〉〈d|)/√2. Hence, the deter-
minant detT = −(d + 1)1−d2

is negative. In contrast, the
determinant for Markovian channels are always nonnegative.
Therefore, the partial corner transpose cannot be obtained from
Markovian channels [70].

We have obtained an explicit construction of {Ub(l)} for the
partial corner transpose channel with d = 3, as detailed in
Appendix C.

E. Quantum instrument and POVM

The construction of CPTP maps can be further extended if
the intermediate measurement outcomes are part of the output
together with the state of the quantum system, which leads
to an interesting class of quantum channel called a quantum
instrument (QI) [2,3,28]. QIs enable us to track both the
classical measurement outcome and the post-measurement
state of the quantum system. Mathematically, the quantum
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FIG. 7. Example trajectories for four-component cat pumping starting with four different initial states |0〉, |2〉, (|0〉 + |2〉)/√2, and coherent
state |α̃ = 2.3〉. Here the steady coherent components are |α〉, |iα〉, | −α〉, and |− iα〉 with α = 2.5. The binary number on the arrow indicates
the ancilla measurement outcome. For the first two cases, since the steady state is a pure state which cannot be decomposed as a probabilistic
mixture of different states, the final state for each trajectory is always the same pure state |ψf〉. For the third case, the steady state is a mixed
state ρf , so different trajectories give different pure states. Since the ancilla measurement results are discarded, the output state for the system
is an ensemble of the different final states, which coincides with ρf . The fourth case starts near the steady state subspace and is slowly
pulled into it. The trajectory shown is the dominant one which is taken with probability higher than 0.96. Dashed circles show the position
of |α = 2.5〉.
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instrument has the following CPTP map:

ρ → EQI(ρ) =
M∑

μ=1

Eμ(ρ) ⊗ |μ〉〈μ|, (12)

where |μ〉〈μ| are orthogonal projections of the measurement
device with M classical outcomes, and Eμ are completely pos-
itive trace nonincreasing maps, while

∑M
μ=1 Eμ(ρ) preserves

the trace. Note that Eμ(ρ) gives the post-measurement state
associated with outcome μ.

As illustrated in Fig. 8, our channel construction can
implement the QI as follows. (1) Find the minimum Kraus
representation for Eμ (each with rank Jμ) with Kraus operators
Kμ,j for j = 1, 2, . . . , Jμ. (2) Introduce binary labeling of
these Kraus operators K�b(L) , where the binary label has length
L = L1 + L2 with the first L1 = �log2 M� bits b(L1) to encode
μ and the remaining L2 = �log2 maxμ(Jμ)� bits to encode j

(padding with zero operators to make a total of 2L Kraus
operators). (3) Use the quantum circuit with L rounds of
adaptive evolution and ancilla measurement. (4) Output the
final state of the quantum system as well as b(L1) that encodes
μ associated with the M possible classical outcomes. This
enables us to construct the arbitrary QI described in Eq. (12).
The QI is a very useful tool for implementation of complicated
conditional evolution of the system. It can be used for quantum
information processing tasks that require measurement and
adaptive control.

If we remove the quantum system from the QI output,
we effectively implement a positive operator valued measure
(POVM), which is also referred to as a generalized quantum
measurement. A POVM is a CPTP map from the quantum
state of the system to the classical state of the measurement

FIG. 8. Three different types of CPTP maps. (a) To implement a
standard CPTP on the system qudit, all ancilla measurement records
should be thrown away. (b) A generalized measurement does not
concern the system state after measurement, so only the ancilla
measurement record is kept. (c) A quantum instrument keeps the both
the post-measurement state of the system and outcome μ, encoded
by the first L1 bits of the ancilla measurement record. The remaining
L2 bits of the measurement record are thrown away. In the figure,
L1 = 2 and L2 = 1.

device

ρ → EPOVM(ρ) =
M∑

μ=1

Tr[μρ]|μ〉〈μ|,

which is characterized by a set of Hermitian positive semidef-
inite operators {μ}Mμ=1 that sum to the identify operator∑

μ μ = I. For positive semidefinite μ, we can decompose

it as μ = ∑
j K

†
μ,jKμ,j with a set of Kraus operators

{Kμ,j }j=1,...,Jμ
. Therefore, the circuit for the quantum instru-

ment also implements the POVM if we remove the quantum
system from the QI output, EPOVM(ρ) = Trsys[EQI(ρ)], which
reduces to the binary tree construction scheme of a POVM as
proposed by Andersson and Oi [25]. A POVM can be useful for
quantum state discrimination. It is known to be impossible for
any detector to perfectly discriminate a set of nonorthogonal
quantum states. An optimal detector can achieve the so-called
Helstrom bound [71], by properly designing a POVM (in this
case a PVM—projection valued measure). For example, in
optical communication, quadrature phase shift keying uses
four coherent states with different phases |α〉, |iα〉, |−α〉,
and |−iα〉 to send two classical bits of information. With our
scheme it is straightforward to implement the optimal POVM
given in Ref. [72], which is a rank-4 POVM.

As summarized in Fig. 8, we may classify three different
situations for CPTP maps based on the output: (a) standard
quantum channel with the quantum system as the output, (b)
POVM with the classical measurement outcomes as the output,
and (c) QI with both the quantum system and the classical
measurement outcomes for the output. In principle, all three
situations can be reduced to the standard quantum channel
with an expanded quantum system that includes an additional
measurement device to keep track of the classical measurement
outcomes. In practice, however, it is much more resource
efficient to use a classical memory for classical measurement
outcomes, so that we can avoid working with the expanded
quantum system.

V. DISCUSSION

So far we have assumed a two-level ancilla for our channel
construction, which can be generalized to an ancilla with
higher dimensions. If we use an s-dimensional ancilla, we
can use an s-ary tree construction of the quantum channel
with Kraus rank N , consisting of �logs N� rounds of adaptive
evolution and ancilla measurement.

We emphasize that the adaptive control is essential for
arbitrary channel construction with a small (low-dimensional)
ancilla. Without adaptive control, the constructed channel
is a product of channels T = · · · T3T2T1, and it excludes
indivisible channels which cannot be constructed with a single
round of operation or decomposed into a product of nonuni-
tary channels [21]. Although the approach of Trotterization
and stroboscopic control can construct Markovian channels
without adaptive control, that approach has an overhead that
increases with the duration of the Markovian evolution [12],
while our construction has a bounded overhead that scales
logarithmically with the relevant dimensions of the quantum
system.
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Besides developing a control toolbox for quantum informa-
tion processing, our channel construction protocol may also
be useful for investigating open quantum systems, with the
potential advantages of reduced overhead in channel construc-
tion and the new ingredient of indivisible channels, which
are not accessible with conventional reservoir engineering of
Markovian channels [4,9,34,73,74].

In experimental realizations, there will be imperfections in
the unitary gates Ub(l) and ancilla measurements. Fortunately,
the quantum circuit for channel construction only has n =
�log2 N� � �2 log2 d� rounds of gate and measurement. If the
error per round is ε, then the overall error rate of the channel
construction is only nε ∼ ε log2 d. More rigorously, we may
use the diamond norm distance ε� to upper bound the error
associated with each round of operation [3], and nε� rigorously
bounds the diamond norm distance of the constructed quantum
channel.

VI. CONCLUSION

We have provided an explicit cQED proposal to construct
arbitrary CPTP maps, assisted by an ancilla qubit with QND
readout and adaptive control. Our construction has vari-
ous applications, including system initialization/stabilization,
quantum error correction, Markovian and exotic channel
simulation, and generalized quantum measurement/quantum
instruments construction. Such a construction can also be
implemented with other physical platforms such as cavity QED
and motional modes of trapped ions.

Note added. While finalizing the manuscript, the authors
became aware of a related work on quantum channels [75],
which studies a different way to construct a channel. In contrast
to that work focusing on minimizing the number of C-NOT
gates, here we consider adaptation to physical platforms, and
discuss various applications.
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APPENDIX A: REPRESENTATIONS
OF QUANTUM CHANNELS

In this Appendix we review some basics on alternative
ways a CPTP map can be represented and how to convert
back and forth between different representations. Since our
scheme favors the Kraus representation as our “canonical
representation”, it is important to understand how to convert a
target channel in other representations to the Kraus form.

1. Superoperator matrix representation

Since CPTP maps are linear in the density matrix ρ, we
can treat ρ as a vector and write down the matrix form of the

superoperator T , such that

ρ̃ij =
∑
m,n

Tij,mnρmn

or

�̃ρ = T · �ρ,

where ρ̃ = T (ρ). This matrix form is particularly useful
when one considers the concatenation of channels. Applying
channel T1 first and then T2 results in the overall channel
represented by the matrix T = T2 · T1, where “·” indicates
matrix multiplication. The matrix form also allows one
to characterize channels with the determinant det(T ). One
interesting property is that for Markovian channels or Kraus
rank-2 channels, the determinant is always positive [21]. The
downside of this representation is that it is not obvious whether
a given T qualifies as a CPTP map. We will need to convert
it to the Jamiolkowski-Choi matrix representation or Kraus
representation to verify that. Conversely, given a channel
in Kraus form, the superoperator matrix can be obtained
straightforwardly,

T =
N∑
i

Ki ⊗ K∗
i .

2. Jamiolkowski-Choi matrix representation

From the well known channel-state duality (Jamiolkowski-
Choi isomorphism) [38,76] we know that each channel T for
a system with d-dimensional Hilbert space H corresponds
(one-to-one) to a state (a density matrix) on H ⊗ H,

τ = (T ⊗ I)(|�〉〈�|),
where |�〉 = 1√

d

∑
i |i〉 ⊗ |i〉 is the maximally entangled state

of the two subsystems. A closely related matrix is the Choi
matrix which is only a constant multiple of the Jamiolkowski
matrix M = d τ , where d is the dimension of the Hilbert space.
A convenient fact to note is that M and the superoperator
matrix T are related in a simple way,

Tij,mn = Mim,jn.

Being a density matrix, τ is Hermitian. Moreover, τ is
semipositive definite if and only if T is completely positive; τ

is normalized if T is trace preserving.
It is straightforward to convert the Choi matrix M to the

Kraus representation. If M is diagonalized,

M =
∑

i

λiviv
†
i ,

where vi are d2 dimensional eigenvectors of τ , the Kraus
operators are obtained by rearranging

√
λivi as d × d matrices.

Clearly the number of nonzero eigenvalues λi is the Kraus
rank of the corresponding channel. Later we will often check
the eigenvalue spectrum of the Choi matrix of a channel to
determine its Kraus rank. For numerical calculation we usually
make a truncation of the eigenvalues. For example, we may
set all eigenvalues smaller than 10−10 to 0.
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APPENDIX B: PROOF OF QUANTUM
CHANNEL CONSTRUCTION

We now prove that our channel construction correctly
implements the target CPTP map. To justify the channel
construction, we need to show that (a) the submatrices
〈bl+1|Ub(l) |0〉 fulfill the isometry condition

∑
bl+1=0,1

(〈bl+1|Ub(l) |0〉)†〈bl+1|Ub(l) |0〉 = Id×d (B1)

for all b(l) and l = 1,2, . . . ,L − 1, and (b) the accumulated
evolution along the binary tree indeed implements the corre-
sponding Kraus operator

(〈bL|Ub(L−1) |0〉) · · · (〈bl+1|Ub(l) |0〉) · · · (〈b1|Ub(0) |0〉) = Kb(L) .

(B2)

First, we show that

Vb(l)D2
b(l)V

†
b(l) =

∑
bl+1,...,bL

K
†
b(L)Kb(L)=

∑
bl+1

⎛
⎝ ∑

bl+2,··· ,bL

K
†
b(L)Kb(L)

⎞
⎠

=
∑

bl+1=0,1

Vb(l+1)D2
b(l+1)V

†
b(l+1) . (B3)

Since the right-hand side is a sum of two nonnegative matrices,
we also have the inequality

Vb(l)D2
b(l)V

†
b(l) � Vb(l+1)D2

b(l+1)V
†
b(l+1) ,

which implies the same inequality for their support projections

Vb(l)Pb(l)V
†
b(l) � Vb(l+1)Pb(l+1)V

†
b(l+1) .

Moreover, since Vb(l)V
†
b(l) = I = Vb(l+1)V

†
b(l+1) and P ⊥

b(l) =
I− Pb(l) , we have

Vb(l)P ⊥
b(l)V

†
b(l) � Vb(l+1)P ⊥

b(l+1)V
†
b(l+1) , (B4)

which demonstrates that the orthogonal support projection
grows with l. Using the fact that if projectors P1 � P2 then
P1 = P1P2P1, we have

Vb(l)P ⊥
b(l)V

†
b(l) = Vb(l)P ⊥

b(l)V
†
b(l)Vb(l+1)P ⊥

b(l+1)V
†
b(l+1)Vb(l)P ⊥

b(l)V
†
b(l) ,

which is equivalent to

P ⊥
b(l) = P ⊥

b(l)V
†
b(l)Vb(l+1)P ⊥

b(l+1)V
†
b(l+1)Vb(l)P ⊥

b(l) . (B5)

Before we prove Eqs. (B1) and (B2), we first note that

〈bl+1|Ub(l) |0〉 = Mb(l+1)M+
b(l) + 1√

2
Qb(l)

= Vb(l+1)Db(l+1)V
†
b(l+1)Vb(l)D−1

b(l) V
†
b(l)

+ 1√
2
Vb(l)P ⊥

b(l)V
†
b(l)

= Vb(l+1)Db(l+1)V
†
b(l+1)Vb(l)D−1

b(l) V
†
b(l)

+ 1√
2
Vb(l+1)P ⊥

b(l+1)V
†
b(l+1)Vb(l)P ⊥

b(l)V
†
b(l)

= Vb(l+1)

[
Db(l+1)V

†
b(l+1)Vb(l)D−1

b(l)

+ 1√
2
P ⊥

b(l+1)V
†
b(l+1)Vb(l)P ⊥

b(l)

]
V

†
b(l) ,

where the third equality uses Eq. (B4). Similarly,

〈bl+1|Ub(l) |0〉 = Kb(l+1)M+
b(l) + 1√

2
Wb(l+1)V

†
b(l+1)Qb(l) = Kb(l+1)Vb(l)D−1

b(l) Pb(l) + 1√
2
Wb(l+1)V

†
b(l+1)Vb(l)P ⊥

b(l)V
†
b(l)

= Kb(l+1)Vb(l)D−1
b(l) Pb(l) + 1√

2
Wb(l+1)V

†
b(l+1)Vb(l+1)P ⊥

b(l+1)V
†
b(l+1)Vb(l)P ⊥

b(l)V
†
b(l)

=
(

Kb(l+1)Vb(l)D−1
b(l) Pb(l) + 1√

2
Wb(l+1)P ⊥

b(l+1)V
†
b(l+1)Vb(l)P ⊥

b(l)

)
V

†
b(l) .

To prove Eq. (B1) for l = 0,1, . . . ,L − 2, we use

∑
bl+1=0,1

(〈bl+1|Ub(l) |0〉)†〈bl+1|Ub(l) |0〉

= Vb(l)

⎡
⎣ ∑

bl+1=0,1

(
Db(l+1)V

†
b(l+1)Vb(l)D−1

b(l) Pb(l)

)†
Db(l+1)V

†
b(l+1)Vb(l)D−1

b(l) Pb(l)+1

2

∑
bl+1=0,1

(P ⊥
b(l+1)V

†
b(l+1)Vb(l)P ⊥

b(l) )†P ⊥
b(l+1)V

†
b(l+1)Vb(l)P ⊥

b(l)

⎤
⎦V

†
b(l)

= Vb(l)

⎡
⎣Pb(l)D−1

b(l) V
†
b(l)

⎛
⎝ ∑

bl+1=0,1

Vb(l+1)D2
b(l+1)V

†
b(l+1)

⎞
⎠Vb(l)D−1

b(l) Pb(l) + 1

2

∑
bl+1=0,1

P ⊥
b(l)V

†
b(l)Vb(l+1)P ⊥

b(l+1)V
†
b(l+1)Vb(l)P ⊥

b(l)

⎤
⎦V

†
b(l)

= Vb(l) [Pb(l) + P ⊥
b(l) ]V

†
b(l) = Vb(l)IV

†
b(l) = I,

where the first equality uses the orthogonality property Pb(l)P ⊥
b(l) = 0, the third equality uses Eqs. (B3) and (B5). Similarly, we

can prove Eq. (B1) for l = L − 1.
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To prove Eq. (B2) we have

〈bL|Ub(L−1) |0〉 · · · 〈b2|Ub(1) |0〉〈b1|Ub(0) |0〉
= (Kb(L)Vb(L−1)D−1

b(L−1)Pb(L−1)V
†
b(L−1) ) · · · (Vb(l+1)Db(l+1)V

†
b(l+1)Vb(l)D−1

b(l) Pb(l)V
†
b(l) ) · · · (Vb(2)Db(1)V

†
b(1) )

= Kb(L) (Vb(L−1)Pb(L−1)V
†
b(L−1) ) · · · (Vb(l)Pb(l)V

†
b(l) ) · · · (Vb(1)Db(1)V

†
b(1) )

= Kb(L) (Vb(L−1)Pb(L−1)V
†
b(L−1) )

= (Wb(L)Db(L)V
†
b(L) )(Vb(L−1)Pb(L−1)V

†
b(L−1) )

= (Wb(L)Db(L)Pb(L)V
†
b(L) )(Vb(L−1)Pb(L−1)V

†
b(L−1) )

= (Wb(L)Db(L)V
†
b(L)Vb(L)Pb(L)V

†
b(L) )(Vb(L−1)Pb(L−1)V

†
b(L−1) )

= Wb(L)Db(L)V
†
b(L)Vb(L)Pb(L)V

†
b(L)

= Wb(L)Db(L)Pb(L)V
†
b(L)

= Kb(L) ,

where the first equality only has one nonzero product, because all other terms vanish due to the orthogonality property Pb(l)P ⊥
b(l) = 0

and P ⊥
b(0) = 0, the second equality exploits V

†
b(l)Vb(l) = I , D−1

b(l) Pb(l)Db(l) = Pb(l) , and Vb(0) = Db(0) = Pb(0) = I, and the third and the

last but two equalities require the projection relation (Vb(l)Pb(l)V
†
b(l) )(Vb(l−1)Pb(l−1)V

†
b(l−1) ) = (Vb(l)Pb(l)V

†
b(l) ).

Therefore, we have proven both Eqs. (B1) and (B2), which fully justify our explicit construction of the CPTP map.

APPENDIX C: EXPLICIT CIRCUITS FOR AN EXAMPLE EXOTIC CHANNEL

We show an explicit construction of the isometries needed for the construction of the exotic channel

T (ρ) = ρTc + ITr(ρ)

1 + d

for the case of d = 3,

(〈0|Ub(0) |0〉
〈1|Ub(0) |0〉

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
10+√

2
4 √

2+ 1√
2

2 √
10+√

2
4√

6−√
2

4 √
2− 1√

2

2 √
6−√

2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(〈0|Ub(1)=0|0〉
〈1|Ub(1)=0|0〉

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
29+2

√
2

7 √
(3 + √

2)/7 √
29+2

√
2

7
2√

10+√
2

1√
2+ 1√

2
2√

10+√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(〈0|Ub(1)=1|0〉
〈1|Ub(1)=1|0〉

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2(6 + √

2)/17
0 √

2(6 + √
2)/17√

(5 − 2
√

2)/17
1 √

(5 − 2
√

2)/17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(〈0|Ub(2)=00|0〉
〈1|Ub(2)=00|0〉

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(5 + 2

√
2)/17

1 √
(5 + 2

√
2)/17

− 2√
6+√

2
0

2√
6+√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(〈0|Ub(2)=01|0〉
〈1|Ub(2)=01|0〉

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 1
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎠

,
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(〈0|Ub(2)=10|0〉
〈1|Ub(2)=10|0〉

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
0 0 0
0 0 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

(〈0|Ub(2)=11|0〉
〈1|Ub(2)=11|0〉

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
√

(4 + √
2)/7 0

0 0 0
0 0 0
1

−
√

(3 − √
2)/7

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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