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Abstract
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Chad Tyler Rigetti

2009

Josephson junction-based devices o¤er the potential to process information with the

electromagnetic modes of an engineered quantum circuit. Doing so requires the subtle

application of control signals to induce arbitrary transformations of the associated

Hilbert space �or quantum gates �without causing the system to decohere. But

there are strict constraints on the dynamical control we can exert over the circuit

Hamiltonian, and given a practical set of controls, it is in general di¢ cult to extract a

particular desired transformation. Of the possible strategies to address this quantum

gate problem, those requiring the fewest control parameters, the least relative control

bandwidth, and the minimal number of non-linear circuit elements are particularly

interesting, as they would reduce experimental complexity and minimize unwanted

interactions with degrees of freedom in the environment.

We show how microwave signals and �xed weak linear coupling elements can be

used to e¤ectively switch on and o¤an interaction and tune its strength and direction

in the on state, and we derive speci�c irradiation protocols that use these interactions

to implement universal two-qubit gates.

These results emerge from Fourier analysis of the circuit Hamiltonian in a partic-

ular multiply-rotating reference frame. We develop and formalize this approach, then

apply it to two- and three-qubit systems. In the two-qubit case, the theory succinctly

reproduces many earlier results, and reveals new methods of entangling pairs of su-

perconducting quantum bits. For example, a static weak linear coupling reactance

can give rise to an e¤ective interaction that turns on linearly with the drive ampli-



tude when one qubit is simply irradiated at the transition frequency of the other. In

the three-qubit case, it describes how a very weak o¤-diagonal three-body coupling

Hamiltonian can be exploited to controllably and directly produce pure tripartite

entanglement, even when the qubits are far detuned from one another.

We describe e¤orts to experimentally observe some of these e¤ects in two-qubit

systems. The results provide preliminary evidence for the microwave-tuned interac-

tion of qubits with �xed linear couplings.
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Notation

We make extensive use of the Pauli spin 1/2 operators, and through the di¤erent

sections we use the following naming conventions,

�w = W =

264 1 0

0 1

375 ; �x = X =

264 0 1

1 0

375
�y = Y =

264 0 �i

i 0

375 ; �z = Z =

264 1 0

0 �1

375 :
Multi-qubit operators are written with an implied tensor product, i.e. �a 
 �b =

�a�b = AB. For clarity and bookkeeping, we on occasion append a numerical sub-

script to disambiguate the system on which the particular operator acts, and in this

case the alphabetical tag will appear instead as a superscript. In a three-qubit sys-

tem, for example, two-body coupling terms can include all pairs, so we will write e.g.

�x1�
x
2 as distinct from �x2�

x
3 .

It is helpful to identify each Pauli operator acting on a particular Hilbert space

with a unique tag, and in that case we will on occasion opt for the following alterna-

tive to the obvious but verbose string �a�b � � � �k = AB � � �K. We assign the Pauli

matrices a number according to

�w = �0; �z = �1; �x = �2; �y = �3;

ii



then concatenate the numerical strings in base two and reading o¤ the result in

base ten. e.g. �y�z=�3�1=�11�01=�
(2)
1101=�

(2)
13 . This makes it easier to carry out

calculations involving the many Pauli operators in large systems. We will make

extensive use of it in Chapter Two and Chapter Four but otherwise stick to the

lower case ��s.

We de�ne the charging energy EC and the dimensionless charge Ng in units of

2e, i.e. EC =
(2e)2

2C�
and Ng =

CgVg
2e
:
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Chapter 1

Introduction

1.1 Overview

The discovery of quantum algorithms capable of solving certain problems exponen-

tially faster than their classical counterparts� and of methods to inoculate quantum

systems against noise and decoherence� has engendered a broad e¤ort to build a

useful quantum computer[1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]. Though such a device is

likely yet a generation away, small prototype systems of a handful of quantum bits

o¤er the potential for pioneering studies of strange phenomena such as parallelism

and entanglement that emerge from quantum theory. These fragile e¤ects, destroyed

by interaction with the classical macroscopic world, would form the green heart of a

functional quantum computer, yet little is known about them in systems with more

than a few degrees of freedom.

But even small scale quantum information processors push the limits of present

technologies. They require a delicate quantum island in a tide of noise and macro-

scopic control signals. Countless designs, originating from nearly every �eld of lab-

based experimental physics, have been put forth. Indeed, most any quantummechan-

1



ical system has the basic attributes. The challenge comes primarily in coupling to

them the external signals used for state manipulation and readout without degrading

too much the valued quantum behavior.

Most of the proposed technologies, such as those based on nuclear or electron

spins [14, 15, 16, 17], trapped ions [18, 19], and neutral atoms [20] among many

others, are based on microscopic and a priori quantum mechanical systems. There,

the information-storing physical degrees of freedom have tiny electromagnetic cross-

sections that allow them to remain isolated them from the environment. Though it

makes them hard to manipulate, this has the bene�t of only modestly endangering

their quantum behavior. Implementations of this style are usually characterized by

long coherence times but also long gate times, and the highly specialized equipment

and techniques needed to interface with them make scaling a major challenge.

The contrasting approach is to represent quantum information with physical de-

grees of freedom which are typically classical, but may be coaxed into quantum

behavior under suitable conditions. These modes are neither macroscopic and clas-

sical, nor microscopic and quantum mechanical. They are somewhere in between, in

the realm of mesoscopic physics, where a system�s behavior cannot a priori be sepa-

rated from the characteristics of or couplings to the environment [21]. As a quantum

computing technology, mesoscopic systems present a di¤erent bargain. They tend to

be well coupled to their electromagnetic environment, making them easy to access

with control signals. But their quantum behavior tends to be all the more delicate

and �eeting.

The most advanced mesoscopic quantum computing technology is that based

on superconducting integrated electrical circuits [24, 25, 26, 27, 28, 30]. Like all

mesoscopic systems, these are man-made devices, and this again presents a bar-

gain. Whereas intrinsically microscopic objects such as electrons, nuclei, atoms and

2



molecules have fundamental properties which are determined once and for all by

nature, the mesoscopic system may be designed to have certain desirable properties.

Most important, the energy landscape� the surfaces of allowed energy states and

their derivatives with respect to any number of control parameters� may be engi-

neered through design and fabrication. This capability o¤ers a distinct advantage

that has been exploited to wonderful ends in the superconducting qubit community

[26, 22, 32].

Like the classical electrical circuits of present day information processing technolo-

gies, superconducting integrated electrical circuits represent information in the col-

lective modes of a lithographically de�ned electrical circuit. In the classical systems,

these modes are necessarily dissipative. Switching the state of a transistor-based

logic circuit requires driving current through a resistive path. In classical comput-

ing, dissipation is both a blessing and a curse. It provides robustness by making the

information-storing modes immune to noise and environmental �uctuations. But it

also places rigorous demands on the thermal engineering of the chip itself, as the

heat must be shuttled away through available phonon modes to maintain acceptable

operating temperatures.

To quantum computing systems, dissipation is a robe of the reaper, as information-

storing quantum states meet a classical end when they share energy with the environ-

ment. Superconducting circuits are advantageous in this regard, as the collectivity

of their modes derives from underlying quantum mechanical e¤ects, not from lossy

elements in the system. They thus o¤er a great compromise: addressable with simple

currents and voltages, not plagued by intrinsic dissipation.

When this quality is taken together with the capability for Hamiltonian engi-

neering [32], the excitement over superconducting systems for quantum computation

becomes clear. In essence, they can be designer atoms with large electromagnetic
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cross-sections, capable of being wired directly to control-signal-carrying transmis-

sion lines, and with the promise of being mass fabricated with advanced lithography

techniques borrowed from the silicon-based integrated circuit industry.

To be used as a quantum bit, we must operate such an arti�cial atom as a vir-

tual two-level system1. The two lowest-lying energy states under particular circuit

bias conditions are retained from the full Hilbert space. These two states, taken to

represent logical 0 and 1, form a non-restrictive computational subspace. We must

initialize the system by reliably preparing some �ducial state within the computa-

tional subspace. In mesoscopic circuits, whose quantum coherences are typically

short-lived, this is trivial, as we may simply let the system relax to its ground state.

We must deploy electromagnetic signals to exact subtle but precise control of the

circuit Hamiltonian, giving rise to unitary transformations of the quantum state.

These quantum gates� rotations of the state vector in Hilbert space implemented

by real-world control �elds� are the mathematical elements from which a quantum

algortihm is constructed. Last, we must be able to measure the logical quantum

state of the system by coupling to the input of an ampli�cation chain some circuit

variable which depends upon it.

In order to implement a system of two or more qubits �a quantum register �

each individual qubit must meet these requirements. The initialization and readout

strategies may be, for the most part, directly extended and applied to each qubit in

turn. The quantum gates, though, become notably more complex. One-qubit gates

are local operations. Acting on one qubit at a time, they transfer quantum informa-

tion from one local observable to another, but they always leave the information in

that qubit�s local subspace where it is accessible through one-qubit measurements.

1Higher level systems can be used, either explicitly �leading to a larger computational space �
or to assist with transformations or measurements in the traditional 2n-dimensional computational
subspace.
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But full control of a multiqubit state requires couplings between the individual qubits

so we can realize conditional quantum state evolution. These two-qubit gates are

also rotations of the state vector in Hilbert space, but here, they transfer information

from local observables to non-local ones via the inter-qubit couplings.

In fact, it is through two-qubit gates that the strange e¤ect of quantum entangle-

ment �rst emerges. In this synthetic light, quantum entanglement may be viewed as

the distribution of information, which would classically be localized, across multiple

quantum systems. Once distributed, the information may only be retrieved through

simultaneous measurements of multiple qubits. This special quantum capability im-

plies a collection of behaviors and attributes that are outside the classical realm, and

it imbues two-qubit rotations with special importance: they allow us to generate and

study e¤ects that are impossible not only in the classical world, but in single qubit

systems as well.

Furthermore, unitary transformations of any number of quantum bits may be

constructed by concatenating one- and two-qubit gates and applying them to the

di¤erent qubits in the register. Two-qubit gates are thus universal for quantum

computation [7, 12]: once we learn to control each qubit individually and to do pair-

wise two-qubit gates, we may implement any quantum algorithm on any number of

quantum bits. For these reasons, moving from one- to two-qubit systems is a hurdle

of special signi�cance. Furthermore, we in principle need only learn how to perform a

single two-qubit gate corresponding to a �=2 rotation, as it may then be transformed

into any other two-qubit gate by dressing it with arbitrary individual qubit rotations,

which are generally much simpler.

Even so, there is no established recipe for developing such a two-qubit gate pro-

tocol. Mathematically, the question is posed only in sketch, so we may not seek a

solution by straightforward derivation. The unconstrained parameter space is typi-
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cally too large and the dynamics too complex for automated search [23]. But more

important, each technology �trapped ions, quantum electronic circuits, NMR, etc.

�presents the experimentalist with a unique constellation of lab-level knobs with

which to guide the system�s dynamics. So though the question is of general interest,

solutions to the quantum gate problem are typically speci�c to narrow classes of

qubit implementations, and each strategy presents a unique bargain.

The task may be understood as follows. Appearing in the Hamiltonian of a

quantum register are terms describing the interaction of the quantum systems with

externally controlled �elds, and a set of parameters � =f�1(t); �2(t):::�k(t)g over

which we can exert dynamic control. The �k�s, through a generally non-linear func-

tional dependence, imbue some terms in the Hamiltonian with time dependence. We

wish to implement over the interval (to; t) a transformation U of the n-qubit Hilbert

space. . We must, in essence, invert the time-dependent Schrödinger equation to

�nd a solution to the equation2,

U(t� to)=e
iH(�1(t�to);�2(t�to):::�k(t�to))=~; (1.1)

in terms of the control vector trajectory �(t�to), subject to the practical constraints

on the system. This task is in general very di¢ cult, and no closed form solution is

expected in all but the most trivial cases. Ideally, the Hamiltonian�s functional

dependence on � would allow various terms to be directly switched on and o¤. It

is never this simple. The parameters most often allow an existing term to only be

enhanced or weakened, relative to the others, or to be made oscillating rather than

static.
2It is important to note that the oppposite problem� to calculate the unitary transformation

U(t� to) engendered by a speci�ed trajectory � = f�1(t� to); �2(t� to):::�k(t� to))g is straightfor-
ward. A solution may be obtained through standard numerical integration if it is not analytically
tractable.
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Furthermore, practical quantum computing systems are yet far from ideal. Noise,

energy relaxation, dephasing, signal cross coupling, and imperfect control pulses

conspire to make the problem more challenging yet.

This thesis describes our e¤orts to advance the state of the art in solving the

quantum gate problem for Josephson junction-based quantum circuits. We develop

a framework to approach the problem for a broad class of systems, and present novel

methods of entangling two- and three-qubit systems. We describe the design and

fabrication of the circuits, and experiments to test the schemes, with the aim of

controllably generating quantum entanglement in superconducting qubits. Though

I have made my best e¤ort at each of these, I suspect the reader will agree that the

most interesting and useful results center around the theoretical work.

We now turn to a brief introduction to the concepts that come together in this

thesis �quantum information and computation, and superconducting quantum cir-

cuits.

1.2 Quantum computation

Quantum states live in a continuous complex vector space [33]. A single two-level

quantum system, or quantum bit by analogy with the classical bit, is described by a

unit vector j i that may take on an arbitrary complex superposition,

j i = �j0i+ �j1i; (1.2)

of the classically allowed states j0i and j1i; and where � and � obey the constraint

�2 + �2 = 1
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that allows j i to be interpreted as a probability density.

If a quantum system is built up of multiple sub-systems with independent lo-

cal observables, its dimensionality is the product of the dimensionality of the sub-

systems. The state of n quantum bits, or qubits, is described by a 2n-component

complex superposition of the classically allowed states. An n classical bit system,

by contrast, is an n-dimensional vector over Z2. The exponential scaling of the di-

mensionality of composite quantum systems relative to classical ones is the reason

classical computers have a hard time simulating even fairly small quantum systems.

This idea led Feynman to suggest that a computer using quantum mechanical

degrees of freedom could e¢ ciently simulate other quantum systems, and might gen-

erally be more powerful than a classical one [1]. The most dramatic known example

of this is Shor�s algorithm for factoring large numbers on a quantum computer in

polynomial time in the number of digits [3]. Another example is Grover�s search

algorithm, which identi�es an item from an unsorted n-item list in O(
p
n) steps.

Some of the most subtle properties of quantum mechanics center on the distinc-

tion between states of composite systems that can be factored into products of states

of the individual subsystems, and those that cannot. For a composite system of two

quantum bits in the state

j 21i =
1p
2
(j00i+ j11i); (1.3)

there exists no valid factorizing states j 1i and j 2i such that,

j 21i = j 2i 
 j 1i:

This amazing property amounts to the entire information content of the composite

quantum system j 21i residing in correlations between the individual observable
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properties of the constituent systems. And yet, any and all of those individual

observables contain precisely zero information when examined independently. Such

a state is said to be entangled. The properties and their implications were �rst

pointed out by Einstein, Podolsky and Rosen [34], and the state 1.3 is consequently

known as an EPR pair.

Quantum computation aims to exploit the properties of quantum mechanics that

give rise to these strange properties in order to more e¢ ciently process information.

This calls for seemingly paradoxical requirements. One must exert subtle control

over the system to carry out transformations according to the famous Schrödinger

equation,

Hj i = i~
@

@t
j i;

where H is the Hamiltonian operator governing the system dynamics, all the while

ensuring that the quantum e¤ects are not destroyed through interactions with un-

controlled degrees of freedom in the environment. Provided no information is lost

from the quantum system over the interval, the evolution between two times t and

t0 of the full 2n-dimensional space is,

j (t0)i = exp[
�i
~
H(t0 � t)j (t)i

= U(t; t0)j (t)i:

In the standard language of quantum computing, the transformation U(t; t0) is

decomposed into a concatenated string of quantum gates, chosen from some universal

set [12], that address the subsystems individually or pair-wise, as only one- and two-

qubit gates are needed to build up an arbitrary unitary transformation of the full

computational space. Universal sets can be stated as a �nite number of quantum

logical transformations, with the insinuation that they can be applied to any subspace
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Figure 1.1: A quantum logic circuit to produce a �ve-qubit EPR type state. Indi-
vidual qubits are represented as horizontal lines, quantum gates acting on the qubits
are represented as boxes on or vertical connections between qubit lines.

of the full Hilbert space of the quantum register; or as a class of rotations over

a continuous range of angles. Practically, the two-qubit rotations are much more

challenging than the local ones, so it can be helpful to view the universal set as

comprising a single, discrete two-qubit unitary and the set of continuous one-qubit

transformations. Then, the requirement on the two-qubit gate in order that the set

be universal is that it be a generator of the Cli¤ord group, the largest discrete group

of transformations of the n-qubit Hilbert space [13, 96]. (As a sort of shorthand, any

two-qubit Cli¤ord generator is itself termed universal, with the required one-qubit

continuous control left implicit.)

Quantum gates are given a pictorial representation, allowing a computation to

be represented as a quantum logic circuit, again by analogy with classical Boolean

circuits, in a manner reminiscent of a musical score [7]. For example, a circuit to

produce the generalization of an EPR pair to �ve qubits is shown in 1.1. The gates

act in a de�ned way on arbitrary input states, allowing them to be faithfully deployed

as building blocks of large scale computations.
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One challenge facing the �eld lies in the identi�cation of useful new algorithms

and computational tasks that can be constructed from these blocks� a problem which

naturally abstracts both the quantum logic states and their transformations. In this

thesis we focus on the complementary problem of learning how to implement the

gates themselves subject to practical experimental constraints. In other words, we

aim to build the building blocks of a superconducting quantum computer.

Progress towards a quantum computer has come in waves. A great deal of ex-

citement came early on, not long after Shor discovered his factoring algorithm, from

results in liquid state NMR [16]. A seven-qubit quantum computer was used to

factor �15�using Shor�s algorithm in 2001 [35]. Progress with liquid NMR slowed,

mostly due to problems scaling to larger molecules, and trapped ions [38] emerged as

a serious competitor [39]. The third wave has emerged over the past few years using

Josephson junction-based quantum circuits [30, 73, 26, 36, 46, 79, 97, 113, 141, 25, 31],

to which we now turn.

1.3 Superconducting quantum circuits

1.3.1 The Josephson junction

In addition to being dissipationless, superconducting circuits can also be made non-

linear by embedding in them Josephson junctions� thin insulating oxide barriers

sandwiched by two superconducting electrodes. The Josephson junction may be

modelled as a non-linear current-dependent inductance LJ (I) (a pure Josephson

element) in parallel with a capacitance CJ . The capacitance is geometric; it depends

on the ratio of the junction area to the oxide thickness. The inductance LJ is more

subtle, as it arises from the coherent tunneling of Cooper pairs across the oxide
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barrier. The pure Josephson element has a current-voltage relation [98],

I(t) = Io sin(�(t)='o); (1.4a)

where,

'o =
~
2e

(1.5)

is the reduced �ux quantum; Io =
'o

LJ (I=0)
= ~

2eLJ (I=0)
is the junction critical current

for switching to the resistive state; and �(t) is the branch �ux de�ned as in [21],

�(t) =

Z t

�1
V (t0)dt0; (1.6)

with the integral of the electric �eld taken along a line inside the element.

The ubiquity of the Josephson junction in superconducting qubit systems owes to

it being the only known non-dissipative and nonlinear circuit element. Its nonlinear

character allows us to create circuits with several required or desirable properties:

anharmonic spectra � thus allowing reliable operation in an arti�cially truncated

subspace of the system�s full Hilbert space; tunable interactions of the circuits with

external control signals �allowing e.g. the qubit readout mechanism to be e¤ectively

switched o¤ during state manipulation or free evolution; and tunable interactions

between qubit subcircuits for implementing two- or multi-qubit gates.

Given these two properties, a variety of superconducting qubit systems can be

envisioned, with creativity in circuit design typically limited only by the available

fabrication processes. Though the systems are still evolving, we can simplify the dis-

cussion with some classi�cations. First, the circuits can be labeled as implementing

qubits of the charge, �ux, or phase variety depending on the circuit variable to which

are coupled external signals for state manipulation. Qubits of each type have been
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Figure 1.2: A Josephson junction is a thin layer of insulating oxide separating two
superconducting electrodes. Bottom: Schematic and SEM of a junction formed by
evaporation of superconducting material through a shadow mask at two di¤erent
angles, with an oxidation between the two evaporations. A Josephson junction is
formed where the two layers overlap. Middle: The non-linear current voltage relation
of the Josephson junction. Top: Equivalent circuit diagram with the geometric
capacitance CJ separated from the pure Josephson element characterized by LJ , the
slope of the current-�ux relation at � = 0.

13



implemented successfully. This work focuses primarily on qubits of the charge and

�ux type, discussed in more detail below.

1.3.2 Charge Qubits

The archetypal charge qubit, the Cooper pair box, consists of a superconducting

island separated from a superconducting reservoir by a Josephson tunnel junction

of characteristic energy EJ and raised to a potential Ug by placing charge on an

e¤ective gate capacitor Cg [29]: This circuit is described by the Hamiltonian

bH = EC( bN �Ng)� EJ cosb�; (1.7)

where EJ is the junction�s Josephson energy and EC = (2e)2Cg=2C�, where C� =

CJ + Cg is the total capacitance to the island.

A closely related circuit is the split Cooper pair box, implemented by splitting

the single junction into two nominally identical junctions, each of energy EJ=2, and

connecting the reservoirs to form a loop. The two split junctions behave like a single

junction with a variable Josephson energy EeffJ = EJ cos(��ext=�o), where �ext is

the externally applied �ux through the loop. The Hamiltonian of the split CPB is

the same as that of the CPB with EJ ! EeffJ . The split box is thus a dynamically

tunable Cooper pair box.

The extent to which the energy bands of the CPB deviate from the parabolic

bands of a purely capacitive circuit is determined by the aspect ratio EJ=EC . In-

creasing this ratio tends to �atten the bands, making the system�s transition energies

less strongly dependent on �uctuations in the external bias. However, it also reduces

the systems anharmonicity, which is essential if the circuit is to behave as an e¤ective

two-level system.
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The CPB may be manipulated by applying DC or radio-frequency voltage signals

to the gate capacitor. When the CPB is biased at Ng = 1=2; its Hamiltonian may

be written in the form

2H=~ = !�z + 2
 cos(!rf t+ �)�x; (1.8)

where !=2� is the qubit transition frequency, and 
 the amplitude of the applied

AC signal at frequency !rf=2�:

The split CPB has the advantage that it may be operated at a saddle point of

the transition energy ~! (Ng;�): When the system is DC biased at Ng = 1=2 and

� = 0 and subject to exclusively AC control, the derivatives @!=@Ng and @!=@� both

vanish, making the system immune, to �rst order, to �uctuations in both charge

and phase. A qubit taking advantage of this property has been nicknamed the

quantronium by Vion, et al. [26, 75], and we will look to it in more detail shortly.

1.3.3 Flux Qubits

The archetypal �ux qubit, the radio-frequency superconducting quantum interference

device, or RF SQUID, consists of a superconducting loop of inductance L interrupted

by a Josephson junction of energy EJ and biased with an external �ux �ext [25, 28].

The Hamiltonian describing this circuit is

H =
q2

2CJ
+
�2

2L
� EJ cos(

�� �ext
'o

); (1.9)

where q is the charge on the capacitance CJ , and � is the �ux through the loop.

When the �ux frustration N� = �ext=�o is half-integer, the potential landscape

for the phase across the Josephson element is a symmetric double well, as shown
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schematically in 1.3. The system�s two lowest-lying states are then the symmetric

and anti-symmetric linear combinations of the phase localized in either well. For

EJ >> EC and LJ � Lloop, the Hamiltonian of the RF SQUID may be written as

2H=~ = !�z + 2
 cos(!rf t+ �)�x; (1.10)

the same form as that of the CPB.

1.3.4 Phase Qubits

A phase qubit is a large current biased Josephson junction. It is illustrated, along

with its tilted washboard potential, in 1.3. A high impedance current source is

obtained by using an inductively coupled �ux bias. To increase the non-linearity of

the phase qubit, the DC bias current is taken close to the junction critical current

Io. This system has the advantage of having a built-in readout mechanism. The

excited state has a much higher probability of tunneling out of the well in the tilted

washboard potential. This rate can be increased further by adiabatically decreasing

the barrier height using a fast DC pulse. When the system tunnels, a measurable

voltage of 2�=e develops across the junction, where � is the superconducting energy

gap. The �rst time resolved measurements were by Martinis et al. [27].

1.3.5 The Quantronium

The measurements presented in Chapter 7 have been made on quantronium-style

superconducting qubits [129]. This circuit was the �rst superconducting qubit tech-

nology to demonstrate coherence properties that made extensions to multiqubit sys-

tems feasible. The quantronium circuit as implemented consists of a split Cooper

pair box (see Appendix A) with aspect ratio EJ=EC � 1 connected in parallel with a
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Figure 1.3: Three main types of superconducting qubit and their potential energy
landscapes. a. Flux qubit with its double well potential. First two energy levels
are symmetric and anti-symmetric superpositions of the persistent current states
corresponding to the two minima of the potential energy. b. Cooper pair box with
its cosine potential. The energy levels are superpositions of charge states of the
superconducting island. c. Phase qubit and its tilted washboard potential. The
system tunnels through the barrier with a much higher rate when excited, causing a
voltage of 2�=e to develop across the junction.
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Figure 1.4: a. SEM image of quantronium qubit circuit implemented by Vion et
al. b. Equivalent circuit diagram. c. Two lowest lying energy surfaces of the
quantronium system as a function of the DC-controlled bias parameters Ng, the gate
charge, and �, the imposed phase di¤erence across the circuit.

large Josephson junction used for reading the qubit state. The optimal working point

of this circuit is at Ng = 1=2 and � = 0, where the two lowest eigenstates are the

symmetric and antisymmetric combinations of zero and one excess Cooper pairs on

the island. This point corresponds to a saddle point of the transition energy surface;

the qubit is therefore immune to �rst-order to �uctuations in charge and �ux. The

�rst two energy surfaces are shown for EJ=EC = 1.

One-qubit gates may be implemented in the quantronium system without moving

away from optimal working point by applying purely radio frequency pulses at or

near the qubits transition frequency !=2�: Working at this �sweet spot�, the times

for longitudinal relaxation T1 and pure dephasing T' have been measured to be 1.8�s
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and 500ns, respectively [26].

In addition to the �rst-order immunity to charge and �ux noise when it is operated

at the sweet spot, the success of the quantronium in achieving long coherence times

can also be attributed to its low sensitivity to �uctuations in each junction�s critical

current Io [30].

1.4 Coupling Schemes

There are several ways we could build up multi-qubit circuits from the core one-qubit

technologies, and the body of work on this topic is already su¢ ciently rich to resist

synopsis. Nonetheless, we can o¤er a rough taxonomy of the various proposals in

1.5 and 1.6. We emphasize that the appeal of a certain coupling strategy will be

tied to the one-qubit technology being considered and the facilities and aims of the

particular experimentalist.

First, we can characterize qubit�qubit coupling schemes by the signals used to

control the qubit transition energies. They may be �xed, subject to DC control,

or subject to AC control. The qubit�qubit coupling energy may be similarly clas-

si�ed. The nature of the coupling subcircuit provides a third point of distinction:

it may be made either linear, comprising only simple inductances and capacitances,

or non-linear through the inclusion of one or more Josephson junctions. Finally, we

must also distinguish between two broad styles. Qubits that interact through an

auxiliary quantum circuit that can transfer the delicate quantum information over

distances that are large compared with the qubits themselves, or are comparable to

the wavelength of the photons they couple between the qubits, can be thought of as

interacting through a quantum bus, in analogy to the classical data bus that shuttles

information around a classical processor [97, 79]. This classi�cation is illustrated in
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Figure 1.5: Coupling schemes for superconducting qubits. i. Schematic specifying
qubit and coupling control (microwave (green), DC (yellow), �xed (gray)) and cou-
pling type (linear (purple) or non-linear (magenta)). ii. Example circuit diagram
based on quantronium charge/phase design. Many other incarnations are possible.
a. DC controlled qubits with �xed linear coupling. Qubits are DC-tuned into reso-
nance for two-qubit gates. b. Fixed-frequency qubits with non-linear DC controlled
coupling. The Cooper pair box coupling subcircuit acts as a tunable e¤ective capac-
itance. c. Microwave controlled qubits with �xed linear coupling. Weak coupling
capacitance gives rise to non-secular coupling Hamiltonian. Qubits are driven into
resonance with mircowave pulses d. Fixed-frequency qubits with microwave con-
trolled non-linear coupling.
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Figure 1.6: Taxonomy of proposals to couple superconducting qubits.
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1.6; the various proposals are expounded below.

1.4.1 Fixed linear coupling, DC controlled qubits

The earliest work proposed coupling qubits together through a �xed linear circuit

element such as a capacitor, and tuning the qubit transition energies into and out

of resonance with DC control signals [79, 80, 40]. This minimal approach to the

problem requires no additional control lines or nonlinear circuit elements beyond

those required for the simultaneous operation of two uncoupled qubits, though fast

tuning of the frequencies does require DC lines with very large relative bandwidth.

The tuning, achieved by modulating loop �uxes or gate charges, necessarily moves

the qubits away from their optimal DC bias points, and this will in most cases have

a deleterious e¤ect on the individual qubit coherence times [30].

1.4.2 DC controlled coupling, �xed qubits

Two superconducting qubits having �xed detuned transition frequencies may be

coupled via a subcircuit containing one or more Josephson junctions [41, 53]. The

strength of the interaction is tuned directly through external control lines. One-qubit

gates are implemented as if the each qubit is the only one present, since the coupling

is e¤ectively o¤under typical conditions. Two-qubit gates are performed by applying

DC pulses to the coupling subcircuit which exploit the non-linearity in the coupling

to adjust the value of an e¤ective capacitance (when coupled via a Cooper pair box)

or inductance (coupled via a SQUID) that couples the individual qubit modes to one

another. Once the coupling is ramped up, the system is left to evolve for a speci�ed

time. As above, rapid switching of the interaction requires large relative bandwidth

of the DC control lines. This approach is powerful, yet also technically demanding.
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In addition to two copies of a qubit circuit, it requires a non-linear subcircuit and

extra control lines with bandwidth at DC that further expose the system to low

frequency noise.

The essential advantage of this approach is the capability to statically tune the

interaction to a precise zero. For both charge and �ux qubits, there is a stray

interaction due to the trivial on-chip proximity of the two circuits. The e¤ective

inductance or capacitance of the non-linear coupling subcircuit can be negative in

each case, and this allows the cancellation of the stray direct couplings during one

qubit gate operations [53].

1.4.3 Fixed linear coupling, RF controlled qubits

We proposed to circumvent the need for additional control lines or non-linear el-

ements in the subcircuit by using exclusively microwave signals to drive detuned

qubits into resonance [105]. This technique, here presented for completeness of the

�eld overview, is discussed at length in Chapter Three. Our original strategy of this

sort calls for resonant microwave pulses� as required for standard one-qubit gates�

to be applied to the qubits simultaneously to perform two-qubit gates. When the

drive powers match the condition � = j!1 � !2j = 
1 + 
2 a strong e¤ective inter-

action develops through the Rabi sidebands of the two driven qubits [121, 81]. The

use of only linear coupling elements minimizes exposure to stray interaction with

the environment, while the use of exclusively microwave signals allows the qubits to

remain biased throughout the two-qubit gate at the optimal working point where

coherence is maximized. The primary challenge of this approach derives from the

practical limits on the drive amplitudes 
 in order that the state remain in the com-

putational subspace and gate errors due to the Bloch-Siegert shift not be too large.

The always-on interaction can be neglected up to order !2xx=�
2 in the one-qubit gate
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�delity, and actively refocused using the techniques developed in NMR once higher

�delities are required [16, 99]. Also, the e¤ective coupling strengths are limited in

this particular irradiation protocol to 1/8th of the bare coupling, which itself must

be small to satisfy the weak �xed coupling condition !xx << � that allows it to

be ignored during the implementation of one-qubit gates. The protocol achieves an

on/o¤ ratio of 20dB without any sophisticated e¤orts to cancel the coupling dur-

ing one-qubit rotations, see Chapter Three. Alternative irradiation schemes simplify

the protocol and can render the e¤ective coupling tunable through the amplitude

of the microwave drive, ultimately reaching a limiting strength of one-half of the

bare coupling strength [116]. The sidebands employed in this scheme have been ex-

perimentally observed in a recent experiment by Baur, et al [54]. A very similar

coupling was experimentally realized by Majer et al. [79]. They applied a single

non-resonant microwave pulse simultaneously to both qubits, with pulse parameters

chosen such that the AC Stark-shifted qubit transitions became resonant. The qubits

were coupled through the e¤ective LC circuit formed at that frequency by an on-chip

superconducting resonator.

1.4.4 RF controlled coupling, �xed qubits

Bertet et al [42] and Niskanen et al [43] proposed the use of a microwave driven

non-linear subcircuit to couple �xed o¤-resonant qubits. In their scheme the cou-

pling subcircuit is driven through an added microwave control line� requiring only

a small relative bandwidth� at the qubits�di¤erence or sum frequency j!1�!2j=2�.

Notably, this scheme leads to an e¤ective interaction strength that increases linearly

with microwave drive amplitude 
, so the scheme can be applied to qubits with

comparatively large detunings by simply increasing the applied signal level. Also,

this proposal does not require DC excursions of any kind, so the qubits may remain
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at their optimal working point. The protocol is very elegant, and has been experi-

mentally tested in a series of measurements performed at NEC by Nakamura, et al.

[113].

1.4.5 Quantum bus

The quantum bus described earlier can be implemented in one of two ways. The bus

mode can be de�ned by a linear circuit of �xed frequency, or a tunable non-linear

circuit. The �rst proposal came from Blais et al [78], who suggested coupling two

�xed o¤-resonant qubits through an AC current biased Josephson junction. The

bus is tuned into and out of resonance with each of the qubits in turn, entangling

the �rst qubit and the bus mode, then transferring the entanglement to the second

qubit. Later, Sillanpää et al. and Majer et al demonstrated coupling of supercon-

ducting qubits through a mode de�ned geometrically in a superconducting coplanar

waveguide resonator [97, 79].

1.5 Summary of key results

We now summarize some key results of this work, beginning with tools we have

developed to better understand quantum gates, entanglement, and gate protocols.

1.5.1 The discrete Hilbert space Hn

Quantum gates are rotations in Hilbert space. Though this continuity is perhaps

the quintessential quantum property allowing exponential computational speedup

for certain tasks, it is practically very troubling, as errors and imperfections in the

rotations are themselves continuous [7, 12]. When combined with the basic properties
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of quantum measurement, this makes it challenging to detect and debug small errors

so as to achieve the gate �delity required for quantum error correction schemes.

It is useful in this regard� be it conceptually or practically� to limit the state

of the system to some discrete and �nite collection of allowed states having well

characterized observable properties. We have created a procedure for arriving at

such a discrete n-qubit Hilbert space where the nearest-neighbor angular separation

is �=2. The resulting set of states constitutes a uniform sampling of the underlying

continuous space, implying that the �gures formed by these sets are the Hilbert space

equivalent of the Platonic solids. The states have the desirable property that they

may be navigated with only Cli¤ord group operations (see 2.36). They are the space

in which a digital quantum computation takes place [88].

The n-qubit discrete Hilbert space is found by forming all the maximal Abelian

(ie. mutually commuting) subsets of the n-qubit Pauli matrices, then retaining only

states that are simultaneous eigenvectors of each element of the subset. The number

of states in the discrete set, which we call a uniform Hilbertian polyhedron and denote

Hn for n qubits, is shown below, along with the number of maximal Abelian subsets,

each of which contributes one basis of 2n states to the discrete set.

n 1 2 3 4 5 6 7

states in Hn 6 60 1080 36; 720 2; 423; 520 315; 057; 600 81; 284; 860; 800

bases in Hn 3 15 135 2; 295 75; 735 4; 922; 775 635; 037; 975

classical states 2 4 8 16 32 64 128

A system con�ned to the discrete Hilbert space has considerably simpli�ed dy-

namics. The nearest neighbor distance of �=2 of course implies that we need not

consider rotations of any �ner angle. The discrete dynamics owing to individual
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Hamiltonian terms proportional to a Pauli operator acting on the full Hilbert space

can then be represented graphically, see 1.7.

1.5.2 Visual representation of two-qubit gates

We may go a step further and seek a graphical representation not of the relationship

between the operators acting on the Hilbert space, but of the states themselves.

For one qubit, this tool has already been developed, the Bloch sphere. Is there an

equivalent for two-qubit states? The Bloch sphere provides a faithful depiction of one-

qubit states in real space due to the rather coincidental isomorphism between SU(2),

the group of one-qubit rotations, and O3 , the group mapping real three-dimensional

space into itself. The group of two-qubit transformations, SU(4), is isomorphic to

O7, so a real space representation of two-qubit states must �nd a way to faithfully

decompose O7 into a visually interpretable useful composite of lower-dimensional real

spaces. Ideally, we should like this decomposition to have the geometrically faithful

attributes of the one-qubit Bloch sphere.

We arrive at such a representation through an avenue similar to the one taken in

the above discretization. First, we classify the �fteen non-identity two-qubit Pauli

matrices, operators that describe all possible measurements of a two-qubit system�

as either local (having the identity occurring once in the direct product decomposi-

tion, e.g. �x�w) or non-local (identity doesn�t occur in decomposition, e.g. �x�x).

The six local operators are separated into the three acting on the �rst qubit and

the three acting on the second qubit. The expectation values of these operators

describe the reduced density operators �1 and �2 of the individual subsystems [7].

They are plotted on orthogonal x; y; z-axes, producing a Bloch sphere picture for the

local dynamics of each individual qubit. It is essential to note that �1 and �2 vanish

for pure maximally entangled states. In that case the information is contained in
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Figure 1.7: Graph of the set S2 of two-qubit generalized Pauli matrices �j (circles
bearing the subscript of the matrix in letter notation) and by the pseudostabiliz-
ers (triangles formed by three connected circles). The three �0s in a triangle share
four common eigenvectors which form an orthonormal basis spanning the two-qubit
Hilbert space. The �fteen triangles thus give �fteen sets of four basis vectors. Shaded
triangles correspond to entangled states while non-shaded triangles correspond to
product states. Neighbouring triangles have one (non-identity) � in common, and
each (non-identity) � is shared by three triangles. The line segments joining the
vertices of a triangle correspond to pairs fj; kg of commuting matrices; each seg-
ment therefore speci�es a �=2 rotation Xj;k = (�j + i�k)=

p
2 that transforms the

eigenvectors of an adjacent triangle into its neighbour. The �gure thus constitutes a
�roadmap�for navigating the discrete set H2. Repeated circles indicate the closure
of the graph.

28



the remaining nine (non-local) Pauli operators describing correlations of the local

observables.

We represent these by collecting together those which mutually anti-commute,

creating three ordered pairs of expectation values, e.g.

(rxx; rxy; rxz)

then subtracting from each component the product of the two corresponding local

expectation values. This subtraction amounts to removing the trivial classical cor-

relations. We obtain three entanglement vectors that fully describe the information

stored non-locally in the system:

gx1 = (rxx � rwxrxw; ryx � rwxryw; rzx � rwxrzw) (1.11)

gy1 = (rxy � rwyrxw; ryy � rwyryw; rzy � rwyrzw) (1.12)

gz1 = (rxz � rwzrxw; ryz � rwzryw; rzz � rwzrzw) (1.13)

These vectors can be simultaneously plotted on a single 3D coordinate system to

give a full and succinct graphical representation of the entanglement of the two-

qubit system. The details of this representation, and some examples of its utility,

are presented in chapter 2.

1.5.3 Continuous two-qubit dynamics

The dynamics of a quantum system in the presence of non-unitary processes is de-

scribed by a master equation. Most generally the time-evolution of the density
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Figure 1.8: Representation of a two-qubit state in three real dimensions. The individ-
ual qubit state dynamics are plotted on Bloch spheres (red and blue). The non-local
dynamics are plotted as a tri-vector on the entanglement sphere. The entanglement
trivectors indicate the direction in Hilbert space along which the non-local quantum
information is concentrated. For the state shown, measurement of the observables
YX, ZX, XY, YY, XZ, ZZ will yield no information, while measurement of the set
of commuting operators {XX; Y Z; ZY } will fully specify the two-qubit state. The
entanglement trivector thus indicates which measurements will uncover the largest
violation of a Bell type inequality for the given quantum state.

operator � may be written in the Lindblad form [37],

d�

dt
= �i~[H; �] + 1

2

X
j

�
[Lj; �Lyj] + [Lj�;L

y
j]
�
; (1.14)

where H is the system Hamiltonian and the Lj�s are the Lindblad operators describ-

ing the e¤ects of the environment. The one-qubit version of this equation is common.

In this thesis we will make extensive use of the two-qubit version. A very useful form

of this is derived by writing each of H, � and the Lj�s in the basis of n-qubit Pauli

matrices (the Lj�s describe non-unitary dynamics, so they take complex coe¢ cients).

Then, the dynamics of the system are structurally governed by the commutative and

anti-commutative properties of the ��s. We obtain a set of 4n� 1 coupled �rst order

linear di¤erential that describe component-wise the 2n � 2n density operator:

dri
dt
=

4n�1X
k=1

4n�1X
l=1

4n�1X
j=1

(hkrlMkli + ajrlGjli) ; (1.15)
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where the hk�s describe the Hamiltonian,

hk =
1

2
Tr(�ykH); (1.16)

and are directly interpretable as the transition energies of the two-qubit system. The

rl�s are the components of the two-qubit Bloch vector,

rl =
1

2n
Tr(�yl�); (1.17)

and the aj�s are the Lindblad-Pauli coe¢ cients that incorporate non-unitarity. The

matrices Mkli and Gjli contain the (anti-) commutative structure of the two-qubit

Pauli matrices:

Mkli =
1

8i
Tr ([�k;�l]�i) ; (1.18)

Gjli =
1

8
Tr ([�j;�l�j]�i) : (1.19)

These objects may be calculated once and for all, and Mathematica code to produce

automatically is appended. This form of the master equation allows one to easily

study the e¤ects of various noise processes.

1.5.4 Two-qubit gates at optimal bias point

The FLICFORQ register

Early schemes for performing two-qubit gates relied on dynamic tuning of either

the qubit transition frequencies [49, 80] or a subcircuit controlling the qubit�qubit

interaction [78, 41, 53]. We proposed to use exclusively microwave control signals�

and their limited relative bandwidth� with simple linear coupling reactances such
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Figure 1.9: Superconducting two-qubit circuits for performing universal quantum
gates at optimal bias point with linear �xed couplings. (a) Charge qubits coupled
by capacitor. (b) Flux qubits coupled by mutual inductance.

capacitors or inductors that give rise to an always-on weak and o¤-diagonal coupling.

Without the dependence on DC control signals of other earlier schemes, the qubit

transition energies and the qubit�qubit coupling remain �xed throughout, while the

non-secular coupling enters as a second order perturbative correction to the eigen

energies, and can be neglected in the absence of certain special con�gurations of

the microwave drive parameters up to errors proportional to (!xx=j!1 � !2j)2. We

nicknamed this approach FLICFORQ for Fixed LInear Couplings between Fixed O¤-

Resonant Qubits. FLICFORQ, as such, is a style of quantum register, but it also

implies a class of certain control signals. As the couplings are �xed, they are not

subject to external control signals, and as the qubit frequencies are �xed, they may

not be DC tuned to perform a two-qubit gate.

At optimal bias and in the two-level approximation, these two-qubit systems are

described by the Hamiltonian

2H=~ = !1�
z
1 + 2
1 cos(!

rf
1 t+ �1)�

x
1

+ !2�
z
2 + 2
2 cos(!

rf
2 t+ �2)�

x
2 + !xx�

x
1�

x
2 ; (1.20)

where !j=2� is the transition frequency of qubit j; 
j and !
rf
j =2� are, respectively,
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the amplitude and frequency of the microwave signal applied to the write port of

qubit j; and !xx=2� = (tent)�1 is the coupling frequency (if only the �x1�
x
2 term were

present in H, the time needed to go from a computational basis state to a maximally

entangled state would be tent=4). To ensure the qubits remain decoupled in the

absence of control signals, FLICFORQ systems should satisfy the weak coupling

constraint that the non-secular coupling !xx be much weaker than the inter-qubit

detuning � = j!2 � !1j.

Now, the task is to show how the weak o¤-diagonal inter-qubit coupling !xx may

be used to perform two-qubit gates without adjusting !1 and !2.

FLICFORQ with double-resonant irradiation

When the microwave �eld strengths 
1and 
2 are tuned to satisfy [105],


2 + 
1 = j!2 � !1j (1.21)

the upper Rabi sideband of the low frequency qubit overlaps the lower Rabi sideband

of the high-frequency qubit, and the qubits develop a pure coupling Hamiltonian in

the rotating frame given by

2Heff=~ = !effxx [(�
y
1�

y
2 + �z1�

z
2) cos(�1 � �2)

+ (�z1�
y
2 � �y1�

z
2) sin(�1 � �2)]; (1.22)

of e¤ective strength

!effxx = !xx=8: (1.23)

This situation is depicted below in the dressed state picture [81].

As 1.22 is a universal Hamiltonian [56], this scheme allows us to perform any
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Figure 1.10: Energy levels of qubit + rf photons systems with (inner levels) and
without (outer levels) qubit-photon coupling. Outer : systems have an in�nite ladder
of doubly-degenerate levels corresponding to products of a photon number state
(green, orange) and a qubit state (red, blue). Inner : Photon�qubit coupling lifts
degeneracy in each manifold by Rabi frequency 
1;2. Transitions between adjacent
manifolds (wavy arrows) correspond to absorption/emission of a photon from dressed
qubit system. The o¤-resonant qubits can be put on speaking terms by adjusting
Rabi frequencies such that 
1 + 
2 = !1 � !2 � �. Shown is the symmetric case
where 
1;2 = �=2
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two-qubit gate with strictly no DC excursions from the optimal bias point of either

qubit, and with no need for a tunable coupling between the two qubits. This scheme

can produce an on/o¤ ratio of approximately 20dB, see Chapter Three. Much higher

on/o¤ ratios are possible if the residual coupling during one-qubit gates is actively

cancelled or refocused.

Generalization to o¤-resonant pulses The protocol can be generalized to the

case of o¤-resonance microwave pulses [101]. The matching condition is analogous to

3.2 but then contains the generalized Rabi frequencies �j =
q

2j + �2j in place of the

drive strengths 
j. The o¤-resonant case allows one to make use of a detuning �eld

of the microwave drives from the respective qubits, along with the drive strengths,

to cover the spectral distance between !1 and !2.

FLICFORQ with cross-resonance irradiation

The double-resonant irradiation scheme calls for Rabi drive amplitudes that are com-

parable to the inter-qubit detuning. This can lead to some di¢ culty, and practically

limits the scheme to systems where the inter-qubit detuning is less than perhaps sev-

eral hundred megahertz, and possibly up to a gigahertz or so with of resonant pulses.

But the gate speed decreases drastically if one moves too far towards detuned pulses,

see 1.11 and ref. [101]. We developed an alternative irradiation protocol that relaxes

these constraints and avails the FLICFORQ scheme to circuits having a broad range

of parameters.

One needs to simply irradiate one qubit with a signal at the frequency of another.

Then an e¤ective interaction emerges,

2Heff=~ = !effxx (�
x
1�

x
2 cos�1 + �x1�

y
2 sin�1)] (1.24)
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Figure 1.11: E¤ective interaction strength generated by cross-resonance irradiation
as a function of drive strength : detuning ratio 
=� (solid); generalized o¤-resonant
FLICFORQ scheme of Ashhab and Nori (dashed); and original double-resonant
driving of original FLICFORQ scheme (point at intersection of red lines). Equal drive
amplitudes are assumed for the latter two. At small drive strengths the cross reso-
nance e¤ect is proportional to 
=�, while o¤-resonant FLICFORQ coupling strength
goes only as (
=�)4. The horizontal and vertical red lines emphasize that satisfying
the matching condition 
2 + 
1 = !2 � !1 with resonant pulses constrains all the
available controls and thus does not admit tunability of the interaction strength.

whose strength,

!effxx =
!xx

2
p
1 + (�=
)2

;

increases linearly with the drive amplitude [116]. We call this gate scheme cross

resonance. It is the minimal two qubit gate strategy: entangling two qubits requires

only a single microwave tone applied to one of the qubits� the frequency !rf selects

the target qubit, the amplitude 
 sets the gate speed, and the phase � selects the

principal axis in Hilbert space of the resulting two-qubit rotation.Like double reso-

nance, this scheme produces an on/o¤ ratio of approximately 20dB when the residual

coupling is not refocused.
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It may seem surprising that a dynamically tunable interaction strength is pos-

sible when the qubits are coupled only through a static linear reactance. But the

qubits are themselves non-linear and mix the applied signals with virtual photons at

their transition frequency. In essence, FLICFORQ with cross resonance irradiation

achieves tunable coupling by exploiting these nonlinearities already present in the

individual qubit subcircuits.

The e¤ect can also be understood in the dressed atom picture. Whereas the above

double resonance scheme makes use of the Rabi sidebands in the Mollow triplet of

the driven quantum system, here we make use of the central peak [121]. The cross-

resonance condition is precisely that which arranges this peak to overlap with the

undriven qubit�s bare transition.

1.5.5 Fourier approach to quantum gates

Though these two schemes address the key requirements, we can reasonably wonder

what other drive signal con�gurations and e¤ective interactions are possible.

More generally, we may broaden the question to include schemes where the qubits

are subjected to DC control and where the coupling is not limited to be along �x1�
x
2

only. We emphasize that this question is important not only from the perspective

of two-qubit gates, but also from the need to better understand the possible pitfalls

when aiming to perform high �delity one-qubit rotations. We had better, in other

words, be aware of any strong e¤ective interactions present in the system, whether

we intend to exploit them when we wish to do two-qubit gates or simply to know to

avoid them when we wish not to.

We have developed an approach to this problem based on Fourier analysis of

the system Hamiltonian in a special rotating reference frame wherein the system

dynamics are purely non-local. When applied to the two-qubit FLICFORQ-type
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Hamiltonian the theory reveals other important con�gurations of the drive parame-

ters which result in a signi�cant inter-qubit interaction. Our general approach is

sketched here, with a formalized presentation in Chapter Four.

We �rst transform the lab frame Hamiltonian to a special multiply rotating ref-

erence frame chosen to nullify the single-qubit terms in the Hamiltonian. In the case

of two microwave-driven qubits, this frame rotates about four axes at four frequen-

cies. Arriving to this quadruply rotating frame (i.e. the quad frame) requires two

time-dependent and two time-independent rotations of each qubit. There, the full

system dynamics are described by a purely non-local Hamiltonian. In the absence

of any secular couplings, all terms are oscillatory at multiple frequencies, so under

most conditions the e¤ective Hamiltonian in this frame rapidly averages to zero.

However, we have seen above that there are some special con�gurations under

which these time dependences cancel and the quad frame Hamiltonian (QFH) devel-

ops static terms. In general, we can identify all such con�gurations for an n-qubit

system with the following technique.

The Hamiltonian is in general a non-linear function of the controls coupled to the

system. We collectively denote these knobs by a control vector �(t). We take the

symbolic Fourier transform of the purely non-local Hamiltonian H(�(t)), producing

a Fourier decomposition of the form,

H(!;�) =
X
j

hj(�)�j(!;�) (1.25)

where hj is an e¤ective coupling Hamiltonian of m 6 n qubits whose strength

may depend on �; and �j(!;�) = �[gj(!;�)] is the Dirac delta function whose

argument gj(!;�) is a purely additive function of ! and the oscillation and drive

frequencies in the problem. For example, in the two-qubit case, most generally
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gj = f(!; !rf1 ; !
rf
2 ; �1; �2), where �j =

q
(!rfj � !j)2 + 
2j is the generalized Rabi

frequency of qubit j. An e¤ective inter-qubit coupling emerges whenever � is ad-

justed such that one of gj = 0.

The set of �k�s de�ned according to:

� = �k , gk (0;�) = 0: (1.26)

can be thought of as the entanglement modes of the system. Each is associated with

a strength and a direction in Hilbert space, i.e. a particular combination of the pos-

sible couplings. When the strength of the e¤ective Hamiltonian at an entanglement

mode depends on a parameter in � not appearing in the particular gk, the e¤ective

Hamiltonian is dynamically tunable. In other words, certain controls can be used

to turn on the e¤ect while others are used to adjust its strength and direction. The

Fourier approach is developed in more detail in chapter 4.

Two-qubit entanglement modes

A study of the two-qubit FLICFORQ-style Hamiltonian produces the associated

entanglement modes:

!rf1 � !rf2 = 0 (1.27a)

�1 � !rf1 � !rf2 = 0 (1.27b)

�2 � !rf1 � !rf2 = 0 (1.27c)

�1 � �2 � !rf1 � !rf2 = 0 (1.27d)

The �rst of these is particularly interesting. On one hand, it implies that an e¤ective

coupling can be turned on by simply irradiating one qubit at the transition frequency
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of the other, as we saw above with cross-resonance. But on the other hand, this en-

tanglement mode could adversely a¤ect the �delity of one-qubit rotations performed

with resonant control in the presence of crosstalk. The one-qubit errors resulting

from this e¤ect for some practical systems are discussed in chapter 5. A discussion

of the other modes is also in Chapter Five.

1.5.6 GHZ state production

We have applied the Fourier approach to the study of the three-qubit systems, yield-

ing strategies to produce tripartite entangled states.

DC control

For three-qubit Hamiltonians of the form

H =
~
2

2X
k=1

�
!k�

z
k + 2
k cos(!

rf
k t+ �k)�

x
k

�
+
~
2

3X
j;i=1;j 6=i

!ji�
x
j�

x
i + !123�

x
1�

x
2�

x
3 : (1.28)

GHZ-type states can be produced with simple DC control of the qubit frequencies

by tuning the qubit transition frequencies to satisfy,

!1 + !2 � !3 = 0: (1.29)

Then, an e¤ective pure three-body interaction emerges

4Heff=~ = !123(�
x
1�

x
2�

x
3 + �x1�

y
2�

y
3 + �y1�

x
2�

y
3 � �y1�

y
2�

x
3) (1.30)

40



that generates with high �delity GHZ states directly without the need for pair-wise

two-qubit gates, irradiation, or tuning the qubits into resonance. This suprising

result takes advantage of the three-body secular point, where, in the presence of a

weak three-body coupling term, any two of the qubits may conspire to exchange

energy with the third [117].

AC control

We can also employ AC control over the qubit transition frequencies. There is an

entanglement mode of the driven three qubit system at,

!rf1 + !rf2 � !rf3 = 0; (1.31)

whereat we �nd

8H=~! !123�
x
1�

x
2�

x
3 cos �1 cos �2 cos �3 cos[�1 + �2 � �3]: (1.32)

Together, these AC and DC entanglement modes suggest an experimental strategy

for directly exploiting a weak3 three-body interaction to generate GHZ states: aim

the qubit frequencies (at optimal bias) to fall, through fabrication and circuit design,

in the vicinity of the DC mode !1 + !2 � !3 = 0; the natural scatter in fabrication

parameters will of course prevent this from being rigorously satis�ed. If possible, use

DC tuning to make up for any discrepancies. Otherwise, simply apply irradiation to

access the AC mode !rf1 + !rf2 � !rf3 = 0. See chapter 5 for more details, including

simulations of the three-qubit Bloch equations that con�rm our analytical results

from the Fourier approach.

3We haven�t set any of the two-body couplings to zero. These modes just do not activate them.
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1.5.7 Circuit design and fabrication

This work has employed some small innovations in the design and fabrication of su-

perconducting circuits. First, we have designed and operated quantronium circuits

with the readout mode de�ned by the odd mode of a coplanar stripline (CPS) su-

perconducting resonator. The original microwave readout of the quantronium was

performed by DC switching measurements of the readout junction [129, 26], and

later at Yale with the Josephson Bifurcation Ampli�er (JBA), where a lumped ele-

ment on-chip shunt capacitance formed a non-linear resonator with the quantronium

readout junction [139, 140, 131]. Size constraints, along with the need to limit stray

inductances in the lines connecting the capacitance to the quantronium, necessitated

the development of a more subtle approach for the simultaneous readout of multi-

ple qubits. This type of readout has also been implemented using the geometrically

de�ned modes of a coplanar waveguide (CPW) superconducting resonator, an imple-

mentation called the Cavity Bifurcation Ampli�er (CBA). Yet, the CPW geometry

is even more spatially extensive, and the particular geometry of the resonator and

qubit system makes it rather tricky to realize coupled qubit circuits with independent

control and readout. The CBA also does nothing to simplify the fabrication process

compared to the JBA. Rather than a multi layer capacitor technology, it relies on

a resonator de�ned through optical lithography, and quantronium circuits de�ned

through one or more SEM lithography steps [132].

The CPS geometry was developed to address both of these shortcomings. Though

the resonators are long, they are very narrow, and may be meandered to �t in a

single SEM �eld of view, allowing the resonator and qubit circuits to be fabricated

in a single SEM lithography and double-angle evaporation step. This short sample

fabrication time is a considerable advantage for any circuits, but especially in regards
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to multiqubit circuits, where our imperfect control over fabrication parameters is

made more acute by the need for multiple copies to turn out with usable parameters

simultaneously. Also, the CPS geometry couples rather elegantly to the quantronium

circuits, as the parallel split Cooper pair box and readout junction can be placed as

a termination at the end of the �=4 resonator. This leaves the qubit islands exposed

and free to be coupled to one another with whatever coupling subcircuit we wish to

add, here a simple capacitor.

Furthermore, the CPS + quantronium has allowed us to address one of the rather

subtle challenges in obtaining devices with reliable and predictable parameters. In

the standard Dolan bridge lithography technique, both very small (� 0:05�m2 qubit

mode) junctions and very large (� 10�m2 readout mode) junctions are made in the

same step and each de�ned by depositing metal under a suspended bridge. Because

the shift between the two images formed by the deposited metal in a double angle

evaporation is practically limited by the resist thickness, large area junctions can

only take on elongated geometries. This has two problems. First, the critical current

density of a junction is set not only by the oxidation parameters, but also by edge

e¤ects that depend on the area-to-perimeter ratio. This leads to the practical obser-

vation that large and small junctions formed in the same double angle evaporation

and oxidation will have very di¤erent critical current densities. And second, it re-

quires long and narrow suspended bridges whose delicacy presents a common failure

mode.

In an attempt to alleviate these issues, we made many of our circuits with a

hybrid mask with Dolan bridges to de�ne the small junctions and ledges that provide

mechanical shielding of the substrate, but do not require deep trenches or suspended

bridges, to de�ne the large junctions. This allows better control the large and small

junction critical current densities. as we have extricated ourselves from an awkward
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Figure 1.12: Superconducting circuit implementing coupled quantronia in coplanar
stripline (CPS) geometry. a. Optical image of chip ~3mm2 chip. Control signals are
launched onto chip via large bonding pads (top and bottom rectangles), connected
to interdigitated CPS resonator input capacitor. At left with scratches are probe
pads for test quantronia. b. SEM images of the individual quantrium subcircuits
terminating the CPS resonators. Qubit islands are topologically exposed, making it
easy to achieve inter-qubit capacitive coupling. c. Equivalent circuit diagram. All
control signals are coupled to CPS even (write) or odd (read) mode.

reliance on long and often �imsy bridges for achieving the large area junctions.

Sample images of coupled coplanar stripline quantronium circuits and equivalent

circuit diagrams are shown in 1.12.

1.5.8 Experimental results

We have carried out microwave measurements of these circuits in a dilution refriger-

ator at 20mK using the microwave measurement setup of 7.4.

Qubit readout Earlier results on the JBA + quantronium and CBA + quantron-

ium have obtained maximum S-curve separation between the ground and �rst excited

state of 35% and 50%, respectively [132, 131]. Our results, shown below, demonstrate

an 80% separation.

We have not conclusively identi�ed the source of this improved contrast, though

44



Figure 1.13: High raw visibility readout of coplanar stripline quantronium circuit.
Left: Switching probability as a function of readout pulse latch level with no qubit
control pulse (blue), �=2-pulse (green), �-pulse (red). Location of maximum separa-
tion indicates optimal readout pulse height. Right: Sample Rabi oscillations. Points
correspond to mean switching probability for 2000 events. Fit (blue) indicates raw
visibility of 87%.

the di¤erences between the 80% separation we have observed and the earlier observed

values are too large to be due simply to decreased relaxation of the qubit being

measured.

Qubit control We have carried out individual qubit Rabi oscillations experiments

on two separate samples of capacitively coupled quantronium-style qubits with CPS

resonator readouts. By performing synchronous Rabi experiments on each qubit of a

coupled qubit sample, we have demonstrated simultaneous independent manipulation

and read out of two interacting quantum circuits.

The data support the conclusion that we have achieved simultaneous independent

control and readout of the quantum states of two interacting electrical circuits.

Qubit-qubit coupling We have obtained preliminary evidence to support our

proposed cross-resonance irradiation scheme. The �xed non-secular coupling owing

to the island�island coupling capacitance leads to a microwave power dependent

e¤ective coupling strength when one qubit is irradiated at the frequency of the other.
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Figure 1.14: Simultaneous independent control and readout of two coupled supercon-
ducting qubits. A Rabi train of microwave pulses was applied to qubit 1 at 15.60GHz
and to qubit 2 at 16.50GHz. Pulses were produced by splitting the output from a sin-
gle Tektronix AWG channel and using each copy to drive a direct conversion mixing
setup with an LO signal at the respective microwave frequency. Readout pulses are
also synchronous, but orginate from separate Agilent 80MHz AWG�s, each enslaved
to the master clock of the Tektronix AWG.

1.6 Conclusion

There are a selection of techniques available to the experimentalist by which to im-

plement two-qubit gates in superconducting circuits. Individual qubit subcircuits

may be tuned through either microwave or DC controls, or not at all. They can

be linked together through �xed linear subcircuits, or through non-linear subcircuits

subject, again, to either DC or microwave control. This thesis has focused on the

case of �xed linear coupling of microwave controlled qubit subcircuits, an approach

advantaged by its reliance on purely high-frequency signals requiring comparatively

tiny relative bandwidth; by the simplicity of scaling from successful one-qubit exper-

iments; by the lack of added control lines that would inevitably complicate system

operation and add interactions with stray degrees of freedom in the electromagnetic

environment; and by the relative ease with which the circuits themselves may be
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Figure 1.15: Rabi beating of two superconducting qubits subject to cross-resonance
irradiation. Q1 is irradiated at the transition frequency of Q2 (16.331GHz), and the
state of Q1 is read out. Di¤erent traces correspond to di¤erent drive powers; e¤ective
interaction strength increases with drive amplitude.
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fabricated.

For qubit circuits in this FLICFORQ style, we have developed speci�c irradi-

ation protocols and control sequences to exploit the tunabilities provided by the

Hamiltonian to realize non-local rotations in the two-qubit Hilbert space. We have

developed a general technique that can be applied to these and a broad class of other

interacting qubit systems. Application of the technique has uncovered the possibil-

ity for several other irradiation schemes while also containing within it our earlier

results and those of others. In particular, it reveals a truly minimal recipe for a

fully tunable two-qubit gate in the FLICFORQ architecture. On the other hand, we

have identi�ed e¤ects that will have to be accounted for, such as crosstalk-enhanced

coupling, if high-�delity one-qubit control is to be realized.

When applied to three-qubit systems, our Fourier approach leads to the prediction

that a very weak and static o¤-diagonal three-body coupling term in a three-qubit

Hamiltonian can be exploited to directly generate maximal tripartite entanglement,

even when the three-body coupling is by far the weakest energy scale in the problem

and the qubits are far detuned from one another, a �nding which bears on the

optimal design of superconducting quantum registers. Finally, we have designed and

measured samples of capacitively coupled quantronium qubits, obtaining preliminary

evidence to support the cross-resonance gate protocol.
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Chapter 2

Two-Qubit Toolkit

2.1 Introduction

In this chapter we derive some useful tools for the quantum gate problem. First, we

simplify the problem by deriving a discrete Hilbert space with a �nite transformation

group that nonetheless admits a description of a broad class of quantum gates. We

show how the discrete rotations connecting states in the discrete space form a natural

language for quantum gates and quantum logic. We then make connection back to

the continuous Hilbert space wherein practical quantum gate protocols take place.

We also give a representation of a two-qubit state in real space and show how it can

be used to set the measurement axes in a Bell measurement. We will make use of

the tools developed in this chapter throughout much of the thesis.

2.2 Discrete Hilbert space

The discrete nature of the con�guration space for n classical bits is the key property

allowing robustness of digital computation. The Hilbert space Hn for n qubits, on

the other hand, is a continuous complex manifold. This continuity appears essen-
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tial to the exponential speed-up of some quantum computing algorithms, such as

Shor�s factoring algorithm [3], over their classical counterparts1. But it also poses a

challenging problem for the experimentalist: errors in quantum gates are themselves

continuous, so even minute errors can accumulate throughout the execution of an

algorithm and lead to its failure.

Yet, quantum error correction and fault-tolerant computation schemes have been

developed to meet this challenge[89, 6, 90]. That reliable quantum computation is

possible using both a noisy quantum register and noisy gates is a result of surpassing

importance. However, such schemes still place stringent �delity requirements on the

basic quantum gates and the quantum register: estimates for the threshold error

probability above which they fail are typically 10�5�10�6 [7].

Can universal control of a scalable quantum register with this level of �delity

be realized? If so, are there concepts we can borrow from digital computation that

might facilitate the development of this technology? If not, are there intermedi-

ate computational paradigms that might relax these requirements, but still exploit

�extra-classical� phenomena such as quantum parallelism and quantum entangle-

ment? We note that these are still possible in a discrete Hilbert space.

Quantum gates are typically implemented by applying time-dependent �elds to

a qubit system. They correspond to rotations of a unit vector in Hn, with the angle

of rotation usually determined by the duration and amplitude of the pulse which

generates the �eld. In principle, such rotations are simple to implement, given an

appropriate time-dependent Hamiltonian. But in practice, noise in both the qubit

system and applied �elds inevitably leads to errors. Sophisticated techniques that

build up a desired gate from a sequence of rotations about successively orthogonal

axes have been developed to mitigate the e¤ects of noise. In the �eld of NMR,

1As evinced by the Gottesman-Knill theorem, for example. See [86].
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especially, techniques for performing high-�delity rotations are now very mature[91].

Yet such techniques for protecting against noise are not directly generalizable to

arbitrary angles and axes of rotation. As a result, most experimental protocols

for quantum manipulations rely as heavily as possible on a small set of rotations,

usually by an angle of �=2 or �, speci�cally optimized for the given qubit system. In

the landmark experiment by Vandersypen, et al, in which an NMR-based quantum

processor was used to factor the number �fteen via Shor�s algorithm, the protocol

contained a single rotation by an angle less than �=2� a conditional �=4 rotation[35].

Nonetheless, universal control of a quantum register requires in theory only a

�nite number of discrete gates, provided the gates form a universal set. Then an ar-

bitrary �software-level�quantum gate can be constructed to a precision � by concate-

nating O(logc(1=�)) discrete gates from the universal set (c � 2)[7]. However, given

that each discrete gate itself would likely comprise a sophisticated series of rotations,

the prospect of concatenating O(logc(1=�)) such gates to create each software-level

operation� and doing so before the register decoheres� makes the �delity require-

ments of fault-tolerant computing schemes all the more exacting.

Much of this di¢ culty in achieving high-�delity control of a quantum register

can be alleviated by limiting ourselves to non universal sets of quantum gates which

generate only �nite transformation groups. A �nite transformation group implies a

�nite number of possible states, so this is equivalent to imposing a discretization on

the underlying Hilbert space: the quantum register becomes �digital�. By suitably

choosing the transformation group, the allowed states can be selected to have certain

well-de�ned properties, such as known expectation values with respect to a set of

measurement operators.

As an illustration of this idea, consider the task of testing the experimental proto-

col for generating one-qubit rotations, which can be represented on the Bloch sphere.
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Suppose we wish to optimize the �delity of a �=2 rotation about the y-axis in a given

qubit system. Starting from the state j0i, we perform a counter-clockwise �=2 ro-

tation about the y-axis, yielding the target state j+xi = (j0i + j1i)=
p
2, then we

perform a measurement in the fj0i ; j1ig basis. By repeating this many times, we

obtain the expectation value h�zi of the target state j+xi. Assuming imperfections

in the state preparation and readout have been accounted for, this expectation value

would approach zero if our �=2 gate were perfect, since h+xj�zj+ xi = 0, while

deviations from zero would imply an imperfect �=2 gate. Speci�cally, h�zi = �

would imply that, on average, the gate has performed a rotation by an angle of

2 arccos
p
(� + 1)=2. With knowledge of other one-qubit discrete states and their ex-

pectation values h�ii, we could also test rotations about the x- and z-axes. By direct

generalization, this simple protocol can be used to test rotations on any number of

qubits, provided we have an appropriate discrete set of target states.

Also, quantum feedback and bang-bang control techniques that dynamically cor-

rect or decouple quantum processes are often described by a �nite set of operations

and allowed states[92]. By performing continuous weak measurements on the quan-

tum system, it is possible to control and correct quantum state evolution through

feedback[93, 94]. Incorporating these techniques into quantum computing experi-

ments could also be facilitated if the number of processes involved were reduced to

include only a small class of rotations connecting states with well-de�ned properties.

Having explained why we wish to consider a discrete subset of the full continuous

Hilbert space, we would now like to draw a geometrical analogy. Since we do not

want to privilege any region of Hilbert space over any other, the set must comprise a

uniform sampling of Hn. The structure of the �nite sets we have in mind is exempli-

�ed in real space by the Platonic solids� geometrical �gures such as the tetrahedron,

cube and octahedron characterized by the geometric equivalence of their vertices�
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which represent discrete subsets uniformly spanning a sphere in R3. In short, we

are seeking to generalize the Platonic solids to Hilbert space by selecting from Hn a

�nite set of states corresponding to the vertices of a 2n-dimensional complex uniform

polytope. We call such subsets uniform Hilbertian polytopes, and denote them by

Hn.

In discretizing an n-qubit register, what extra-classical phenomena must be sacri-

�ced? If we select the transformation group to include only � rotations� the quantum

generalizations of the NOT gate� we generate only a discrete set of 2n states, and

fall back on a purely classical register, with no possibility for quantum entanglement.

But, as we will show, the next level towards �ner rotations, the transformation group

based on �=2 rotations, is su¢ cient for rich extra-classical behavior: the number of

discrete states in the set then grows as 2(n
2+3n)=2[95], the majority of which are en-

tangled for n > 2. Also, the super-extensive growth of the discrete set relative to the

classical number of states 2n implies that a great deal of the quantum parallelism

possible in the full Hilbert space remains possible in the discrete set. Though such a

digital quantum register would not allow algorithms which are exponentially faster

than their classical counterparts (Gottesman-Knill theorem), a possible reduction of

an algorithmic scaling speed from O(n2) to O(n) could still be useful.

At the same time, within the framework of traditional quantum computation, a

discrete set and its associated transformation group can provide a useful �roadmap�

for navigation in the entire Hilbert space.

The notion of discrete sets of n-qubit states is not novel. Indeed, discrete sets have

already been considered in quantum error-correcting codes. There, a special set of 2k

orthogonal states, to be used as codewords for the basis states of k encoded qubits,

are selected from a higher-dimensional continuous space Hn. Gottesman�s stabilizer

formalism provides a general framework for describing and producing quantum error-
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correcting codes, and allows an analysis of a broad class of quantum networks in the

Heisenberg picture[86, 96]. Powerful though it is, the stabilizer formalism approaches

the problem of discretization algebraically; it does not address the geometric relation-

ship between the discrete quantum states, nor the relationships among the various

gates that connect these states.

The purpose of this section is thus to provide such a geometric approach to the

uniform discretization of Hn, and to suggest the use of such discrete sets, either as

an arena for exploring extra-classical behavior, or as a heuristic tool for the analy-

sis of certain quantum information processing problems. We refer to these notions

collectively as digital quantum information2.

For simplicity, we focus here on the one- and two-qubit Hilbert spaces. However,

most of our results are directly generalizable to higher-dimensional spaces. When

possible, we use a language that makes this generalization straightforward, if tedious.

In section 2, we treat the discretization problem using stabilizer theory and derive a

class of generalized �=2 rotations belonging to the Cli¤ord group that connect states

in the discrete set. Later in section 3, we present an alternate, purely geometric

approach to discretization based on shelling the high dimensional lattices.

2.2.1 Discretization based on stabilizer theory

Stabilizers and the generalized Pauli matrices

We begin this section with some essential results from stabilizer theory. First, de�ne

the n-qubit Pauli group Gn as the set of all n-fold tensor products of 2 � 2 Pauli
2Later, we will use the phrase rigorously, in reference to the information content of the discrete

Hilbert space.
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matrices, with four possible overall phases to satisfy the closure requirement:

Gn = f�w; �x; �y; �zg
n 
 f�1;�ig ; (2.1)

where3

�w = �0 =

264 1 0

0 1

375 ; �z = �1 =

264 1 0

0 �1

375 ;
�x = �2 =

264 0 1

1 0

375 ; �y = �3 =

264 0 �i

i 0

375 :
Clearly, each element of Gn acts on the n -qubit Hilbert space. Gn has order 4n+1,

and is generated by a minimal set of 2n elements, i.e. two non-identity �0s acting on

each qubit. We refer to individual elements of Gn as generalized Pauli matrices, and

denote them ���:::� = ��
��
� � �
�� . The generalized Pauli matrices share many

of the properties of the 2� 2 Pauli matrices. For example, they all either commute

or anti-commute, and

�yj = �j (Hermitian), (2.2)

�2j = id (Square root of unity), (2.3)

Tr�yj�k = 2
n�jk (Orthogonal). (2.4)

A stabilizer is an Abelian subgroup of the Pauli group. In the present work,

we are predominantly concerned with the commutation properties of the generalized

Pauli matrices, so we neglect the phases f�1;�ig required for closure of Gn under

multiplication. That is, we deal with the set Sn of 4n generalized Pauli matrices
3The present numbering scheme has been chosen to coincide with the binary vector space rep-

resentation of stabilizer codes, as in [96].
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rather than the group Gn. To distinguish the Abelian subsets of Sn from the Abelian

subgroups of Gn, we refer to the former as pseudostabilizers, a name which also

highlights the close relationship between this work and stabilizer theory.

The largest possible subsets of Sn whose elements all mutually commute have

2n elements. These maximal pseudostabilizers will form the foundation of our dis-

cretization procedure.

The uniform Hilbertian polytope Hn

We are now in a position to discuss a formal de�nition for the uniform Hilbertian

polytope for n qubits. First, we establish the desired properties the discrete sets

must have. We seek to construct Hn, such that:

1. It contains all the states jb0b1:::bn�1i corresponding to the classical bit

con�gurations.

2. Each state of Hn is geometrically equivalent to all the others (uniformity).

3. The distance between two normalized states 	j and 	k, de�ned as

djk = 2 cos
�1(h	jj	ki) (2.5)

satis�es4

djk � �=2 for all j ; k . (2.6)

4. It is the largest set of states which satis�es the above requirements.

Denote by san the maximal pseudostabilizers in Sn. Then these desired properties

are obtained if we adopt the following construction for the vertices of Hn:

De�nition 1 An n-qubit state vector is an element of Hn if and only if it is a

4Discretizations with a �ner minimum distance may be useful and would be interesting to explore.
For one qubit this could correspond, for instance, to the icosahedral geometry.
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common eigenvector of each element of a maximal pseudostabilizer san. That is, if

�j is a generalized Pauli matrix on n qubits belonging to san; j	ji is an n-qubit state

vector, and �j is an eigenvalue of �j belonging to the vector j	ji ;

j	ji 2 Hn , �j j	ji = �j j	ji for all �j 2 san: (2.7)

As a consequence of this de�nition, and from the theory of stabilizers, we �nd:

a) Each san, which has 2
n � 1 elements di¤erent from the identity, generates

2n di¤erent discrete states all separated by djk = �. Each state corresponds to a

unique pattern of �j = �1.

b) Each san shares exactly half, or 2
n�1, of its elements with its nearest

neighbors; 2n�2 with its second-nearest neighbors, etc. Any discrete state in Hn

therefore has n �levels�of non-orthogonal neighboring states.

c) For each san and each of its nearest neighbors s
b
n one can associate by

a general algorithm a transformation from the common eigenvectors of san to those

of sbn: That is, any two states of Hn are linked by a �nite sequence of similarity

transformations.

d) The similarity transformations are formed from generalized orthogonal

�=2 rotations of the form:

Xa
k l =

1p
2
(�k + i�l) , where �k;�l 2 san. (2.8)

The superscript a denotes a subset san to which both its �
0s belong and the subscripts

specify the �0s. The inverse operations are:

(Xa
k l)

�1 =
1p
2
(�k � i�l) = �iXa

l k. (2.9)
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This de�nition implies that for any X,

XyX = id (Unitary), (2.10)

X4 = �id (�=2 Rotations), (2.11)

which is consistent with the property that a spin-1=2 acquires an overall phase of

ei� = �1 when rotated by 2�:

e) The X�s generate the Cli¤ord group Cn, de�ned as the normalizer of the

Pauli group[96], which has the property of leaving Hn invariant (proof to follow).

f) The set Sn of generalized Pauli matrices on n qubits contains

s =
n�1Y
k=0

(2n�k + 1) (2.12)

maximal pseudostabilizers san. Each has 2n elements, and contributes 2n simul-

taneous eigenvectors. The uniform Hilbertian polytope on n qubits Hn therefore

contains

Vn = 2
n

n�1Y
k=0

(2n�k + 1) (2.13)

vertices, or states[95]. The following table gives the �rst values of Vn, along with

the number of classical bit con�gurations for comparison.

n 1 2 3 4 5 6 7

Vn 6 60 1080 36; 720 2; 423; 520 315; 057; 600 81; 284; 860; 800

Cn 2 4 8 16 32 64 128

The digital quantum information in n qubits can be de�ned as the information

content of Hn, i.e. as log2 Vn. It is easy to show that Vn grows as 2
(n2+3n)=2, so this

information content is super-extensive in n. While it is insu¢ cient for algorithms
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which would be exponentially faster than classical ones, it is nonetheless a remarkable

property for a discrete space.

We now turn to an explicit construction of the uniform Hilbertian polytope for

the one- and two-qubit cases.

The one-qubit case, H1

We show here that H1 is isomorphic to an octahedron. For one qubit, the set Sn is

simply the Pauli matrices: S1 = f�w; �x; �y; �zg. The last three �0s anti-commute

with one another, while they all commute with the identity �w. So the three sets of

mutually commuting matrices are trivial to construct: s11 = f�w; �zg ; s21 = f�w; �xg

and s31 = f�w; �yg :

When the elements of s11 are diagonalized, we obtain the computational basis:

j+zi = j0i ; (2.14)

j�zi = j1i : (2.15)

s21 generates the pair

j+xi = j0i+ j1ip
2

; (2.16)

j�xi = j0i � j1ip
2

: (2.17)

And s31 generates

j+yi = j0i+ i j1ip
2

; (2.18)

j�yi = j0i � i j1ip
2

: (2.19)
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There are three orthogonal �=2 rotations, which form the seed of H1:

X1
0 1 =

1p
2
(�0 + i�1) ;

X2
0 2 =

1p
2
(�0 + i�2) ;

X3
0 3 =

1p
2
(�0 + i�3) :

(2.20)

The diagonalization of the seed elements leads directly to the six eigenstates, as

summarized in the table below. The states are listed here as unnormalized row

vectors for clarity, and are separated into columns according to their eigenvalues.

Set 1 + i 1� i

1 (1; 0) (0; 1)

2 (1; 1) (1;�1)

3 (1; i) (1;�i)

Each of the �=2 rotations has an inverse:

(Xk
0 k)

�1 = �iXk
k 0 =

1p
2
(�0 � i�k) . (2.21)

It is easy to verify that

(Xk
0 k)

2 =
1

2
(�0 + i�k)

2 = i�k (2.22)
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and that the X 0s are mapped into one another by similarity transformation:

Xj
0 jX

i
0 i

�
Xj
0 j

��1
=

1

2
p
2
(�0 + i�j) (�0 + i�i) (�0 � i�j)

=
1

2
p
2
(2�0 + 2i �ijk�k)

= Xk
0 k if �ijk = 1

=
�
Xk
0 k

��1
if �ijk = �1 (2.23)

This implies that each X transforms a member of H1 into its neighbor.

Proof. If

Xj j	ji = �j j	ji

and if ��	i(j)� = X i j	ji ;

then

X iXj(X i)�1
��	i(j)� = X iXj j	ji

= �jX
i j	ji

= �j
��	i(j)�

therefore
��	i(j)� is an eigenvector of Xk.

The X 0s with their inverse generate a twenty-four element group isomorphic to

the octahedral group of pure rotations which leaves the octahedron invariant.

The two-qubit case, H2

The set of generalized Pauli matrices for two qubits S2 comprises 42 = 16, 22 � 22

matrices given by ��� = ��
 ��; �; � = w; x; y; z, as presented below. We write the
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index on the �0s in binary, then concatenate the two strings to form the new index

for the �0s. For example, �y 
 �z=�3 
 �1=�11 
 �01=�1101=�13.

�ww = �0 =

266666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377777775
�wz = �1 =

266666664

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

377777775

�wx = �2 =

266666664

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

377777775
�wy = �3 =

266666664

0 �i 0 0

i 0 0 0

0 0 0 �i

0 0 i 0

377777775

�zw = �4 =

266666664

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

377777775
�zz = �5 =

266666664

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

377777775

�zx = �6 =

266666664

0 1 0 0

1 0 0 0

0 0 0 �1

0 0 �1 0

377777775
�zy = �7 =

266666664

0 �i 0 0

i 0 0 0

0 0 0 i

0 0 �i 0

377777775

�xw = �8 =

266666664

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

377777775
�xz = �9 =

266666664

0 0 1 0

0 0 0 �1

1 0 0 0

0 �1 0 0

377777775
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�xx = �10 =

266666664

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

377777775
�xy = �11 =

266666664

0 0 0 �i

0 0 i 0

0 �i 0 0

i 0 0 0

377777775

�yw = �12 =

266666664

0 0 �i 0

0 0 0 �i

i 0 0 0

0 i 0 0

377777775
�yz = �13 =

266666664

0 0 �i 0

0 0 0 i

i 0 0 0

0 �i 0 0

377777775

�yx = �14 =

266666664

0 0 0 �i

0 0 �i 0

0 i 0 0

i 0 0 0

377777775
�yy = �15 =

266666664

0 0 0 �1

0 0 1 0

0 1 0 0

�1 0 0 0

377777775
The products of these matrices can easily be found from

������ = (�� 
 ��) (�� 
 ��) = (����)
 (����) : (2.24)
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The maximal pseudostabilizers in S2 are presented below.5

Subset # Letter notation Number notation

1 f�ww;�wz;�zw;�zzg f�0;�1;�4;�5g

2 f�ww;�wx;�zw;�zxg f�0;�2;�4;�6g

3 f�ww;�wy;�zw;�zyg f�0;�3;�4;�7g

4 f�ww;�wz;�xw;�xzg f�0;�1;�8;�9g

5 f�ww;�wx;�xw;�xxg f�0;�2;�8;�10g

6 f�ww;�wy;�xw;�xyg f�0;�3;�8;�11g

7 f�ww;�wz;�yw;�yzg f�0;�1;�12;�13g

8 f�ww;�wx;�yw;�yxg f�0;�2;�12;�14g

9 f�ww;�wy;�yw;�yyg f�0;�3;�12;�15g

10� f�ww;�zz;�xx;�yyg f�0;�5;�10;�15g

11� f�ww;�zz;�xy;�yxg f�0;�5;�11;�14g

12� f�ww;�zx;�xz;�yyg f�0;�6;�9;�15g

13� f�ww;�zx;�xy;�yzg f�0;�6;�11;�13g

14� f�ww;�zy;�xz;�yxg f�0;�7;�9;�14g

15� f�ww;�zy;�xx;�yzg f�0;�7;�10;�13g

Each of these �fteen sets, or pseudostabilizers, will yield four simultaneous eigenvec-

tors, contributing four states to H2. We therefore recover the result that H2 has

sixty states.

These subsets can be classi�ed as corresponding to entangled or product states

by examining their generators. Note that each pseudostabilizer is generated by any

two of its non-identity elements. The presence of the one-qubit identity �w when the

5Constructing the subsets of mutually commuting Pauli matrices can be done through a series
of logical steps. The key is to note that [�jk;�lm] = 0 requires either [�j ; �l] = [�k; �m] = 0 or
f�j ; �lg = f�k; �mg = 0
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generators are decomposed into tensor products of one-qubit Pauli matrices implies

that the states corresponding to that subset are product states. Conversely, the

absence of the identity in this decomposition indicates that the states corresponding

to that Abelian subset are fully entangled states. The subsets whose generators do

not contain the one-qubit identity are denoted here and below by an asterisk(�).

We can obtain all the states of H2 directly by forming a mixed linear combi-

nation of the �rst two non-identity elements from within each set. For instance

X3;12 =
1p
2
(�wy + i�yw), when diagonalized, gives four orthogonal eigenvectors with

four di¤erent eigenvalues. (Note that other rotations from s12, such as X12 ;15 =

1p
2
(�12 + i�15) and X3;15 =

1p
2
(�3 + i�15) will produce the same four eigenvectors,

but with permuted eigenvalues.) We thus construct in this manner �fteen generalized

X 0s; each having a di¤erent principal axis, which form the seed of H2: Diagonaliza-

tion of the seed X 0s exhaustively gives the eigenvectors constituting H2. We list

these eigenvectors below, separated into columns corresponding to the eigenvalues

(�1 � i). For clarity, we list them as unnormalized row vectors. Again, entangled
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Figure 2.1: Graph of the set S2 of two-qubit generalized Pauli matrices �j (circles
bearing the subscript of the matrix in letter notation) and by the pseudostabiliz-
ers (triangles formed by three connected circles). The three �0s in a triangle share
four common eigenvectors which form an orthonormal basis spanning the two-qubit
Hilbert space. The �fteen triangles thus give �fteen sets of four basis vectors. Shaded
triangles correspond to entangled states while non-shaded triangles correspond to
product states. Neighbouring triangles have one (non-identity) � in common, and
each (non-identity) � is shared by three triangles. The line segments joining the
vertices of a triangle correspond to pairs fj; kg of commuting matrices; each seg-
ment therefore speci�es a �=2 rotation Xj;k = (�j + i�k)=

p
2 that transforms the

eigenvectors of an adjacent triangle into its neighbour. The �gure thus constitutes a
�roadmap�for navigating the discrete set H2. Repeated circles indicate the closure
of the graph.
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states are denoted by an asterisk on the set label.

Set �1� i �1 + i 1� i 1 + i

1 (0; 0; 0; 1) (0; 1; 0; 0) (0; 0; 1; 0) (1; 0; 0; 0)

2 (0; 0;�1; 1) (�1; 1; 0; 0) (0; 0; 1; 1) (1; 1; 0; 0)

3 (0; 0; i; 1) (i; 1; 0; 0) (0; 0;�i; 1) (�i; 1; 0; 0)

4 (0;�1; 0; 1) (0; 1; 0; 1) (�1; 0; 1; 0) (1; 0; 1; 0)

5 (1;�1;�1; 1) (�1; 1;�1; 1) (�1;�1; 1; 1) (1; 1; 1; 1)

6 (�i;�1; i; 1) (i; 1; i; 1) (i;�1;�i; 1) (�i; 1;�i; 1)

7 (0; i; 0; 1) (0;�i; 0; 1) (i; 0; 1; 0) (�i; 0; 1; 0)

8 (�i; i;�1; 1) (i;�i;�1; 1) (i; i; 1; 1) (�i;�i; 1; 1)

9 (�1; i; i; 1) (1;�i; i; 1) (1; i;�i; 1) (1; i; i;�1)

10� (0;�1; 1; 0) (�1; 0; 0; 1) (1; 0; 0; 1) (0; 1; 1; 0)

11� (i; 0; 0; 1) (0;�i; 1; 0) (0; i; 1; 0) (�i; 0; 0; 1)

12� (1; 1;�1; 1) (�1; 1; 1; 1) (1;�1; 1; 1) (1; 1; 1;�1)

13� (i;�i; 1; 1) (i; i;�1; 1) (i; i; 1;�1) (�i; i; 1; 1)

14� (i; 1;�i; 1) (�i; 1; i; 1) (i;�1; i; 1) (i; 1; i;�1)

15� (�1;�i; i; 1) (�1; i;�i; 1) (1;�i;�i; 1) (1; i; i; 1)

Note that the �rst stabilizer of the product sector corresponds to the computa-

tional basis, while the �rst stabilizer of the entangled sector corresponds to the Bell

basis.

This method not only �nds the states of H2 in an exhaustive way. It also pro-

vides a road map for navigating the discrete set. To illustrate this, consider three

pseudostabilizers which we call sa, sb and sc. They have two generalized Pauli ma-

trices in common, one of them being the trivial �0. We chose one of the two and call
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it �m. Consider three � 6= �m;

�j 2 sa; �k 2 sb; and �l 2 sc (2.25)

such that

f�j;�kg = f�k;�lg = f�l;�jg = 0: (2.26)

Since all pairs of generalized Pauli matrices that do not commute must anti-commute,

they also satisfy

[�j;�m] = [�k;�m] = [�l;�m] = 0: (2.27)

Then it is easy to show by a direct calculation that

Xa
mj =

1p
2
(�m + i�j) ; (2.28)

Xb
mk =

1p
2
(�m + i�k) ; (2.29)

Xc
m l =

1p
2
(�m + i�l) ; (2.30)

have one of the properties:

Xb
mkX

a
mjX

b
km = Xc

m l (2.31)

or

Xb
mkX

a
mjX

b
km = (X

c
m l)

�1 = �iXc
lm (2.32)

depending on whether the two anti-commuting �0s in the decomposition of �j�k

appear in cyclic order or anti-cyclic order, respectively. This means, following the

proof given for the one-qubit case, that all the eigenvectors of sa are transformed

into the eigenvectors of sc by the transformation Xb.
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All together, there are 120 di¤erent generalized two-qubit �=2 rotations generated

by the scheme

Xi j =
1p
2
(�i + i�j) ; (2.33)

where �i and �j commute.

Among these X 0s, there is a subset that plays an important practical role. These

are �=2 rotations of the form

X0 j = X0 �� =
1p
2
(�0 + i�j) � (��)1=2; (2.34)

where �� $ j are the equivalent tags of the Pauli matrix in the letter and numeric

notations, respectively. They correspond to the unitary time-evolution operator

U (t) = ei�j� (2.35)

with � = �=4, and are thus directly implemented by a Hamiltonian proportional to

�j. These rotations constitute the practical means of navigating H2. They can be

seen as the �primitives�of the Cli¤ord group, as we show below.

But �rst, it is important to note that the generalized Pauli matrices in the above

arguments are not limited to the two-qubit case, but can in fact be over any number

of qubits. These results are therefore directly generalizable to larger Hilbert spaces

Hn and larger discrete sets Hn. We duly conclude that our generalized �=2 rotations

on n qubits, constructed from the pseudostabilizers san, leave Hn invariant.
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2.2.2 The generalized �=2 rotations generate the n-qubit Clif-

ford group

So far we have successfully discretized the continuous Hilbert space Hn, and in doing

so we have described a class of generalized �=2 rotations that leave the Hn invariant.

From the point of view of operators acting in Hn, this discretization means we have

reduced the continuous transformation group SU(2n) to a �nite group. Here we show

that this �nite group is the n-qubit Cli¤ord group Cn:

The Cli¤ord group is de�ned as the normalizer of the Pauli group. That is, a

unitary operator X is contained in Cn if and only if

X�X�1 2 Gn 8 � 2 Gn: (2.36)

First, let us show that our X 0s are elements of Cn. That is,

Xj k =
1p
2
(�j + i�k) 2 Cn if [�j;�k] = 0: (2.37)

We have

�j�l = "jl�l�j; (2.38)

�k�l = "kl�l�k; (2.39)

where "jl = �1 and "kl = �1:Thus,

Xj k�lX
�1
j k =

1

2
(�j + i�k) �l (�j � i�k) (2.40)

=
1

2
�l ("jl�j + i"kl�k) (�j � i�k) (2.41)

=
1

2
"jl�l (�j + i"kl"jl�k) (�j � i�k) : (2.42)
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If "kl"jl = 1;

=
1

2
"jl�l (2�0 + i�k�j � i�j�k) (2.43)

= "jl�l 2 Gn: (2.44)

If "kl"jl = �1;

=
1

2
"jl�l (�i�k�j � i�j�k) (2.45)

= �i"jl�l�j�k 2 Gn: (2.46)

So the generalized �=2 rotations on n qubits are elements of the Cli¤ord group.

Now note that the Cli¤ord group is generated by the Hadamard,

H = 1p
2

2641 1

1 �1

375 (2.47)

phase,

S =

2641 + i 0

0 1� i

375 (2.48)

and CNOT,

CNOT =

266666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

377777775
(2.49)

gates[7]. The Hadamard gate may be composed from the one-qubit �=2 rotations
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X0 2 and X0 1:

H = X0 2X0 1(X2 0)
�1

= �iX0 2X0 1X0 2

=
�i
2
p
2

2641 i

i 1

375
2641 + i 0

0 1� i

375
2641 i

i 1

375
=

1p
2

2641 1

1 �1

375 : (2.50)

The phase gate may be trivially constructed from a single one-qubit �=2 rotation:

S = X0 1

=

2641 + i 0

0 1� i

375 ; (2.51)
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while the CNOT is simply the product of three X 0s:

CNOT = (X0 2)
�1X0 6(X0 4)

�1

= �X2 0X0 6X4 0

=
�1
2
p
2

266666664

i 1 0 0

1 i 0 0

0 0 i 1

0 0 1 i

377777775

266666664

1 i 0 0

i 1 0 0

0 0 1 �i

0 0 �i 1

377777775

266666664

1 + i 0 0 0

0 1 + i 0 0

0 0 �1 + i 0

0 0 0 �1 + i

377777775

=
1p
2

266666664

1� i 0 0 0

0 1� i 0 0

0 0 0 1� i

0 0 1� i 0

377777775
: (2.52)

So our generalized �=2 rotations allow a direct construction of a gate set that gen-

erates the Cli¤ord group. The �nite transformation group leaving Hn invariant,

generated by the generalized �=2 rotations on n qubits, is thus the n-qubit Cli¤ord

group Cn.

One of the motives we presented for this work was the di¢ culty we anticipate in

achieving the reliability requisite for fault-tolerant quantum computation. Clearly,

limiting the register to a �nite number of possible states must alleviate this di¢ culty,

but by how much?

It can be derived from the properties of the Pauli group that each pseudostabi-

lizer san has n levels of non-orthogonal neighbors. Since the eigenstates of neighbor-

ing pseudostabilizers are connected by a single �=2 rotation, any state on Hn can

be reached from any other in at most n + 1 such rotations. This is to be compared

with the result that an arbitrary state in the full Hilbert space can be reached to
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within an error � by concatenating O(logc(1=�)) rotations from a universal set, with

c � 2. In addition, note that the CNOT and H gates are not directly implemented

by a physical Hamiltonian, but must be built up from �=2 rotations which are natu-

rally realized with accessible �eld variations, so there is a second simpli�cation from

working with the �=2 rotations rather than standard universal gate sets such as {H,

S, T, CNOT}.

From an experimentalist�s point of view, therefore, the X 0s form a very natural

language for building quantum gates. A rotation of the form X0 j = (�0 + i�j) =
p
2

is directly implemented by a term in the Hamiltonian proportional to �j. And

as shown above, this class of rotations generates Cn. The X 0s are thus the basic

instructions for a sort of �machine language�for quantum processors. The following

section shows a simple example of their calculus.

2.2.3 Sample application of digital quantum information:

Gottesman tables and synonyms for CNOT

The Hamiltonian describing a given physical system determines which of the gen-

eralized �=2 rotations will be directly realizable in that system. Implementing

CNOT according to the decomposition in section 2.5 requires a physical system

with a Hamiltonian proportional to �zx in order to realize the entangling operation

X0 6 = (�ww + i�zx)=
p
2. Though this type of inter-qubit interaction is possible6,

most qubit systems rely on a less exotic interaction, such as one proportional to

�zz or �xx. How can we implement the CNOT gate in one of these more standard

registers? Speci�cally, suppose the system is described by an e¤ective two-qubit

6and indeed, in Chapter Five we will give a rather simple prescription for generating it from a
�xed non-secular interaction when one qubit it irradiated at the transition frequency of the another.
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Hamiltonian of the form

H = a(t)�wz + b(t)�wx + c(t)�zw + d(t)�xw + e(t)�xx; (2.53)

where the tuning parameters a; b; c; d; e allow the relative strengths of the terms to

be adjusted during an experiment.

Any n-qubit gate is fully speci�ed by giving its induced transformation of some

minimal set of 2n generators of the n-qubit Pauli group. For gates in the Cli¤ord

group Cn, this action by de�nition maps Pauli group elements into one another. It

is thus very helpful when addressing questions of this sort to construct a table to

track the image of the 2n generators under some concatenated string of the available

rotations. For example, the CNOT gate is described by[86],

CNOT

WX WX

XW XX

WZ ZZ

ZW ZW

: (2.54a)

This table can be generalized to a string of rotations. In the left-most column is some

initial set of 2n independent generators �typically X and Z on each qubit, though

any two independent generators per qubit would do. Cli¤ord group rotations are

written along the top row. Moving across the table, each successive column contains

the image of the previous column under the transformation denoted at the top of

that column.

The task of implementing CNOT from a naturally realizable set of gates thus

comes down to constructing a table whose �rst and last columns are identical to
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2.54a but along the top of which are only the naturally available gates. In the

example at hand, it is straightforward to construct

(ZW)1=2 (XW)1=2 (ZW)�1=2 (XX)1=2 (ZW)1=2 (XW)1=2 (WX)�1=2

WX WX WX WX WX WX WX WX

XW �YW ZW ZW YX XX XX XX

WZ WZ WZ WZ XY �Y Y ZY ZZ

ZW ZW YW XW XW �YW ZW ZW

.

(2.55)

Because the �rst and last columns of 2.54a and 2.55 are identical, the words written

across the top of the table that connect the columns have the same action. We refer

to such pairs as synonyms, and to the construction as a whole as a Gottesman table.

While the gate CNOT is a completely general quantum logic transformation, the

sequence of rotations appearing in 2.55 is tailored to the example system described by

2.53. And of course CNOT is not a special case; a synonym suitable for a particular

implementation could likewise be calculated for any gate in C2:

We will make use of these tools in a very practical context in Chapters Three and

Five, where we derive microwave pulse sequences to implement universal gates.

2.2.4 Conclusion

In this section we have presented a geometric method for producing from the con-

tinuous Hilbert space Hn a discrete, uniform sampling Hn. Because all the states

in the discrete set are geometrically equivalent, Hn represents a generalized Platonic

solid in Hn: This method is closely related to the stabilizer formalism of quantum

error-correcting codes. Inherent in our construction is a description of how di¤erent
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elements of Hn are related by transformations generated by physical Hamiltonians

expressed in the basis of generalized Pauli matrices. This has been demonstrated

in detail for H1 and H2, and is obtainable by direct analogy for higher-dimensional

spaces. These ideas provide a useful tool for analyzing problems in traditional quan-

tum computation, as the example above illustrates. And though computation over

the discrete set Hn is clearly less powerful than computation in the full Hn, it is po-

tentially more powerful than classical computation. The results of this discretization

appeared in ref. [88].

2.3 Generalized Bloch equations

Classical information processing can be performed using only two basic boolean op-

erations: the NOT and AND gates. Likewise, any unitary operation in quantum

information processing can be decomposed into a sequence of one-qubit and two-

qubit operations called quantum gates. The one-qubit gates can be viewed as �nite

rotations of an e¤ective spin-1/2 representing the qubit under the in�uence of a

magnetic-like �eld. The two-qubit operations are more complicated unitary trans-

formations of the two-qubit Hilbert space into itself involving an interaction between

the quantum bits. While quantum information theory treats a quantum algorithm

as a sequence of discrete gate operations, the gates themselves are in fact continu-

ous rotations performed in practice by applying time-dependent �elds to the qubit

systems. Therefore even tiny errors �due to noise in the applied �elds or stray de-

terministic �elds, for example �can accumulate, leading to full bit-�ip or phase �ip

errors in the qubits�state.

For one-qubit gates, the qubit�s continuous evolution can be studied using the

Bloch equations: a set of three linear, �rst order, coupled di¤erential equations
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describing the expectation values of the e¤ective spin-1/2 along the x-, y-, and z-axes.

While the Bloch equations�solution is in general numerical if the time dependence

of the �eld is arbitrary, the equations are exact in the sense that they make no

assumptions whatsoever about the strength of the �eld or its direction. They are

therefore essential to the study of one-qubit systems and ensembles of non-interacting

qubits.

Two-qubit gate operations require an interaction between the two qubits. When

qubit-qubit interactions are present, quantum information will in general �ow from

�local�degrees of freedom involving individual qubits into �non-local�ones involving

correlations between qubits �a phenomenon known as quantum entanglement. Any

complete description of the continuous time evolution of an interacting qubit system

must therefore describe both its local and non-local degrees of freedom. In this

article, we present a direct generalization of the Bloch equations that provides such

a description without making any assumptions whatsoever about the �elds or the

qubit-qubit interaction.

It is worth noting that the study of systems with many interacting spins is com-

monplace in the �eld of NMR. There, interacting spins are treated by decomposing

the total spin into multiplets and by using the notion of tensorial spin operators

[14]. In quantum information processing, where each spin is a priori addressable

separately in both �write�and �read�operations, and where qubit-qubit interactions

do not a priori have any symmetry, these notions are of limited interest. We are thus

following an alternative approach, where all components of the density matrix and

all possible interactions are treated on the same footing.
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2.3.1 One-qubit dynamics: Bloch equations

The Bloch equations describing the evolution of a spin-1/2 particle �or more gen-

erally any two level quantum system � in an external, time-dependent magnetic

�eld are derived by �rst considering the Pauli spin matrices as a basis for both the

spin-1/2 Hamiltonian and the spin-1/2 density operator. We can then write the

time-dependent Hamiltonian H and the density operator � as linear combinations of

these four basis matrices:

H =
3X
j=0

�jTr(�
y
jH) (2.56)

=
3X
j=0

hj�j (2.57)

= h0�0 + ~h � ~�; (2.58)

� =
1

2

3X
k=0

�kTr(�
y
k�) (2.59)

=
1

2

3X
k=0

rk�k (2.60)

=
1

2
(r0�0 + ~r � ~�); (2.61)

where we have separated out the trivial �0 dependence of both H and �, which will

not contribute to the dynamics, and written the remaining terms as three-component

vectors ~h and ~r, respectively. Note that j~rj= 1 while j~hj can take any value. The

time-dependence of � under the in�uence of H is given by the Heisenberg equation

of motion:
d

dt
� =

1

i}
[�;H]: (2.62)
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With the above linear expansions, this becomes

d

dt

3X
k=1

rk�k =
1

i}
[
1

2

3X
k=1

rk�k;

3X
j=1

hj�j] (2.63)

=
1

2i}

3X
k=1

3X
j=1

rkhj[�k; �j]: (2.64)

By taking the scalar product of the last equation with a basis matrix �i; we obtain

an equation for each component dri=dt of the vector derivative:

d

dt

3X
k=1

rkTr(�k�i) =
1

2i}

3X
k=1

3X
j=1

rkhjTr([�k; �j]�i) (2.65)

d

dt
ri =

1

}

3X
k=1

3X
j=1

hjmkjirk; (2.66)

where mkji =
1
2i
Tr([�k; �j]�i) is the (kji)th component of a 3 � 3 � 3 tensor which

here coincides with the fully antisymmetric tensor "123ijk . In vector notation, the last

set of equations can be written

d

dt
~r =

1

}

3X
i=1

3X
k=1

3X
j=1

hjmkjirkx̂i =
=

h � ~r: (2.67)

The matrix
=

h is the super-operator associated with the one-qubit Hamiltonian H; it

is a 3� 3 antisymmetric matrix with a priori time-dependent entries. It reads

=

h =

266664
0 h3 �h2

�h3 0 h1

h2 �h1 0

377775 : (2.68)

The vector ~r(t) is often called the Bloch vector, while the equations for its three

80



components rx; ry and rz are often called the Bloch equations. They can be put into

the more familiar form
d

dt
~r =

1

}
(~h� ~r): (2.69)

The solution ~r(t) gives the motion of a unit vector in three real dimensions. Since

ri = Tr(�yi�) is the expectation value of the operator �i in the state �, the vector

~r(t) represents the time-dependent expectation values of the measurement operators

associated with �1; �2 and �3.

2.3.2 General two-qubit dynamics

We now examine a two-qubit system. We will use as a basis for operators in the

two-qubit Hilbert space the sixteen linearly independent 4� 4 matrices of the Pauli

set S2, as introduced earlier. That is, we will use the set

f�w; �z; �x; �yg
2 =

�w 
 �w �x 
 �w �y 
 �w �z 
 �w

�w 
 �x �x 
 �x �y 
 �x �z 
 �x

�w 
 �y �x 
 �y �y 
 �y �z 
 �y

�w 
 �z �x 
 �z �y 
 �z �z 
 �z

= �0 � � ��15 (2.70)

as de�ned in the Notation section preceding the body of the thesis. We will refer

to the subset of these matrices which act non-trivially just one of the two qubits as

the local two-qubit Pauli matrices. These elements appear in the �rst row and in

the �rst column above. Similarly, those which act non-trivially on both of the qubits

will be referred to as non-local two-qubit Pauli matrices (ie. the other nine above,

�i 
 �j; i; j = x; y; z) .

As a reminder, these matrices retain many of the properties of the one-qubit

Pauli matrices. They all either commute or anti-commute, and they are all linearly
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independent and orthogonal:

1

4
Tr(�yj�k) = �jk for all j; k (2.71)

and therefore form a basis for 4� 4 matrices (note that non-hermitian operators will

take complex coe¢ cients). As in the one-qubit case, we can thus write any two-qubit

Hamiltonian and the density operator of any two-qubit system as linear combinations

of these basis elements:

H =
1

2

15X
j=0

�jTr(�
y
jH) (2.72)

=
1

2

15X
j=0Hj

�j (2.73)

=
1

2
(H0�0 +

�!H � ~�); (2.74)

� =
1

4

15X
k=0

�kTr(�
y
k�) (2.75)

=
1

4

15X
k=0

rk�k (2.76)

=
1

4
(r0�0 +

�!r � ~�); (2.77)

where we have again separated out the �0-dependence ofH and �: The time-evolution

of the state � is described by the Heisenberg equation:

d

dt
� =

1

i}
[�;H] (2.78)
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which becomes

d

dt

15X
k=1

rk�k =
1

i}
[
1

4

15X
k=1

rk�k;
1

2

15X
j=1

Hj�j] (2.79)

=
1

8i}

15X
k=1

15X
j=1

rkHj[�k;�j] (2.80)

Projecting onto the set formed by the �0s; we get

d

dt
Ri =

1

8i}
Tr

 
15X
k=1

15X
j=1

rkHj[�k;�j]�i

!

=
1

8i}

15X
k=1

15X
j=1

rkHjTr([�k;�j]�i)

=
1

}

15X
k=1

15X
j=1

rkHjMkji; (2.81)

where Mkji =
1
8i
Tr([�k;�j]�i) is the (kji)th component of a 15 � 15 � 15 tensor

we call the two-qubit super-commutator. Evaluating the entries in the two-qubit

super-commutator is facilitated by noting that

(�i 
 �j)(�k 
 �l) = �i�k 
 �j�l: (2.82)

Carrying out this calculation allows us to write the two-qubit analog of the Bloch

equations:
d

dt
�!r = 1

}

15X
i=1

15X
k=1

15X
j=1

rkHjMkjix̂i =
=

H � �!r (2.83)

We call
=

H the two-qubit super-operator. It is a 15 � 15 matrix with a priori time-

dependent entries which, in its structure, contains all the commutation and anti-

commutation properties of the two-qubit Pauli matrices. Explicitly, the dynamics of

a two-qubit system with any Hamiltonian is described by the �fteen coupled, linear,
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�rst-order di¤erential equations generated by the super-operator
=

H, presented below.

The solution to this set of di¤erential equations is a �fteen-component time-

dependent vector �!r (t) analogous to the Bloch vector of a single qubit. It con-

stitutes a complete description of the continuous time evolution of the two-qubit

system. Since ri(t) = Tr(�yi�(t)) is the expectation value of the two-qubit mea-

surement operator �i for the state �(t), the solution is given completely in terms of

observable quantities. Such a solution is easily obtained by numerical integration on

any standard personal computer.

2.3.3 Graphical representation of the dynamical equations

The structure of the super-operators
=

h and
=

H governing one- and two-qubit dynamics

can be represented graphically. We will introduce our graphic conventions by �rst

examining the simple one-qubit case. Recall that each component drx=dt; dry=dt and

drz=dt of the time-derivative of the Bloch vector ~r(t) depends on the two products

of a Bloch vector component rk (k = x; y; z) and a �eld component hj (j = x; y; z)

for which their corresponding basis matrices satisfy [�k; �j] = �2i�i: A map of all

the directed threesomes fk; j; ig satisfying [�k; �j] = �2i�i therefore fully describes

the equations. This simple map is shown below.

Likewise, each di¤erential component dRi=dt in the di¤erential equations gov-

erning two qubits depends on all the products of a density operator coe¢ cient Rk

and a Hamiltonian coe¢ cient Hj for which their corresponding basis matrices satisfy

[�k;�j] = �2i�i: Since any two generalized Pauli matrices anti-commute if they do

not commute, each threesome dRi=dt;Hj; Rk of a non-zero matrix element of
=

H cor-

responds to a set of three mutually anti-commuting �0s; i.e. an anti-Abelian subset

of the set of two-qubit Pauli matrices. In addition, because each two-qubit Pauli ma-
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Figure 2.2: Graphical representation of general one-qubit dynamics. The triangle is
to be read as drx=dt = ryhz � rzhy, etc. Terms corresponding to cyclic permutations
are positive, as indicated by the arrows on the triangle. The action of a Hamiltonian
hz along Z is thus to perform a rotation on the projection of ~r(t) into the plane spec-
i�ed by the side of the triangle opposite Z, the XY -plane. The rotation performed
by hz transfers amplitude from X (Y ) to Y (X) at the rate 1

~hzrx (
1
~hzry).

trix (excluding the identity) anti-commutes with exactly half of the complete set of

sixteen, each will be shared between four anti-Abelian subsets. The structure of the

matrix
=

H can therefore be represented by a map of the twenty anti-Abelian subsets.

This map is shown in Figure 2.

2.3.4 n-qubit dynamics

As we might expect, these equations can be extended to provide a complete con-

tinuous time-dependent representation of the dynamical evolution of any number of

qubits. We now make this generalization.

As above, write the Hamiltonian in the form:

H =
!0
2
�0 +

!1
2
�1 +

!2
2
�2 + � � �+

!4n

2
�4n

H =
1

2

4n�1X
j=0

!j�j: (2.84)
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Figure 2.3: Graphical representation of continuous two-qubit dynamics. The struc-
ture of the equations governing two-qubit systems follows directly from the anti-
Abelian subsets of the two-qubit Pauli matrices. Each subset is represented as a
triangle whose vertices are two-qubit Pauli matrices (e.g. ZZ = �z 
 �z). As in
the one-qubit case, each side of a triangle speci�es a plane of rotation, but here the
underlying space is �fteen-dimensional rather than three-dimensional. For illustra-
tion, consider the triangle with vertices ZZ;WX;ZY: This triangle is to be read as
dRzy=dt = HzzRwx � HwxRzz; along with all other permutations. Clockwise cycles
are positive, while counterclockwise cycles require a negative sign (as indicated by
the small triangle at the bottom). The action of a two-qubit Hamiltonian Hzz is to
perform simultaneous rotations on the projection of ~R(t) into the four planes WX-
ZY; ZX-WY; XW -Y Z; XZ-YW; as speci�ed by the sides appearing opposite ZZ in
the above triangles. The rotation performed by Hzz in the WX-ZY plane transfers
amplitude into Rzy(Rwx) at the rate 1

~HzzRwx(
1
~HzzRzy). The other rotations have

analogous rates.
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Now de�ne the generalized �elds Hj as

Hj =
1

2n�1
Tr(�yjH); (2.85)

which are thus just the !0js. This allows us to write the Hamiltonian as

H =
1

2

4n�1X
j=0

Hj�j (2.86)

=
1

2
(H0�0 + ~H � ~�): (2.87)

The n-qubit density operator can be written

� =
1

2n

4n�1X
k=0

�kTr(�
y
k�) (2.88)

=
1

2n

4n�1X
k=0

Rk�k (2.89)

=
1

2n
(R0�0 + ~R � ~�); (2.90)

where we have again separated out the �0-dependence ofH and �: The time-evolution

of the state � is described by the Heisenberg equation 2.78 which becomes

d

dt

4n�1X
k=1

Rk�k =
1

i}
[
1

2n

4n�1X
k=1

Rk�k;
1

2

4n�1X
j=1

Hj�j] (2.91)

=
1

2n+1i}

4n�1X
k=1

4n�1X
j=1

RkHj[�k;�j] (2.92)
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Projecting onto the set formed by the �0s; we get

d

dt
Ri =

1

2n+1i}
Tr

 
4n�1X
k=1

4n�1X
j=1

RkHj[�k;�j]�i

!

=
1

2n+1i}

4n�1X
k=1

4n�1X
j=1

RkHjTr([�k;�j]�i)

=
1

}

4n�1X
k=1

4n�1X
j=1

RkHjMkji; (2.93)

where Mkji =
1

2n+1i
Tr([�k;�j]�i) is the (kji)th component of a (4n� 1)� (4n� 1)�

(4n� 1) tensor we call the N-qubit super-commutator. With these de�nitions, all the

entries in the super-commutator are �1 or 0: Evaluating these entries is facilitated

by noting that

(�i 
 �j 
 � � � )(�k 
 �l 
 � � � ) = �i�k 
 �j�l 
 � � � (2.94)

Carrying out this calculation allows us to write the n-qubit analog of the Bloch

equations:
d

dt
~R =

1

}

4n�1X
i=1

4n�1X
k=1

4n�1X
j=1

RkHjMkjix̂i =
=

Hn � ~R: (2.95)

This requires the calculation of
=

Hn once and for all for each dimensionality of interest.

This best carried out with a math engine such as Mathematica for n > 2:

2.3.5 Lindblad form

The last piece of the puzzle connecting the discrete and continuous Heisenberg pic-

tures involves treating dissipation. While projective measurements of the Pauli op-

erators can be described within Gottesman�s Heisenberg representation [86], weak

continuous measurement and dissipative processes cannot. To do so we account for
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couplings to the environment, which give rise to non-unitary processes, by adding, in

the appropriate form, the dissipation terms, yielding a (Markovian) master equation.

The time-evolution of the density operator � may be written in the Lindblad form

[37],
d�

dt
= �i~[H; �] + 1

2

X
j

�
[Lj; �Lyj] + [Lj�;L

y
j]
�
; (2.96)

where H is again the system Hamiltonian and the Lj�s are the Lindblad operators

describing the e¤ects of the environment. The one-qubit version are the common

Bloch equations. We may proceed as above, writing each of H, � and the Lj�s in

the basis of two-qubit Pauli matrices (as the Lj�s describe non-unitary dynamics,

they will take complex coe¢ cients in the Pauli expansion). We obtain again a set of

�fteen coupled �rst order linear di¤erential equations:

dri
dt
=

4n�1X
k=1

4n�1X
l=1

4n�1X
j=1

(hkrlMkli + ajrlGjli) ; (2.97)

where,

hk =
1

2
Tr(�ykH); (2.98)

the rl�s are the components of the two-qubit Bloch vector,

Rl =
1

4
Tr(�yl�); (2.99)

and the aj�s are the Lindblad-Pauli coe¢ cients. The key to writing down or encoding

these equations for simulations lies in calculating the matrices Mkli and Gjli that

contain the commutative and anti-commutative structure of the two-qubit Pauli
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matrices:

Mkli =
1

8i
Tr ([�k;�l]�i) ; (2.100)

Gjli =
1

8
Tr ([�j;�l�j]�i) : (2.101)

These objects may be calculated once and for all, and Mathematica code to produce

automatically is in Appendix B. This form of the master equation allows one to easily

study the e¤ects of various noise processes.

This master equation is the �nal bridge from the crisp and conceptually powerful

description of the system according to the discrete Heisenberg representation, and

the subtle continuous dynamics, both dissipative and coherent, required to fully

understand and study the dynamics of practical systems. Ultimately, we can use the

continuous picture to study and optimize protocols which then would be able to be

deployed as black-box type quantum gate operations.

2.3.6 Conclusion

We have presented a framework for the numerical study of arbitrary n-qubit dynam-

ics. By writing both the Hamiltonian and density operator in a basis of n-qubit

Pauli matrices, we arrive at a (4n� 1)� (4n� 1) super-operator that generates a set

of �fteen coupled di¤erential equations easily solved by numerical integration. Al-

though the structure of these equations cannot be directly interpreted geometrically

as a cross-product between the Bloch vector and the �eld vector like in the one-qubit

Bloch equations, the two-qubit case at least can be represented in graphical form as

a map of the twenty anti-Abelian subsets of the two-qubit Pauli matrices.

Our equations remain fully general; they can treat all the possible types of noise

and all the possible stray interactions between the two qubits which may degrade
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the �delity of a gate operation. This generality, combined with the ease of numerical

integration of a large but linear system, makes this technique immediately useful for

the study and implementation of real two-qubit systems.

2.4 Visual representation of two-qubit states

There is only one road to follow, that of analysis of the basic elements in order to

arrive ultimately at an adequate graphic expression.

- Wassily Kandinsky

2.4.1 Bloch sphere revisited

The Bloch sphere is used in many branches of physics, but nowhere is it so crucial as

in quantum computing and its precursory �elds such as NMR and quantum optics.

This common tool is a manner of representing in the Euclidean space R3 the state of

any two-level quantum system. Most generally, the wave function j i of a two-level

quantum system may be written as a complex linear combination of the basis states

associated with the two energy levels

j i = �j0i+ �j1i (2.102)

subject to the normalization constraint that ensures the coe¢ cients describe proba-

bilities:

a2 + �2 = 1: (2.103)
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Since the overall phase of a quantum state is not observable, we may without loss of

generality take the coe¢ cient of j0i to be real and non-negative and rewrite j i as

j i = cos �j0i+ ei� sin �j1i: (2.104)

The pure two-level system is thus characterized by two real numbers, and this is the

key property allowing it to be represented R3.

At a deeper level, the group of unit-determinant transformations of the Hilbert

space of a two-level quantum system, SU(2), is isomorphic to the group of rotations

in three real dimensions O(3), allowing the Bloch sphere to provide a geometrically

faithful real-space representation of the quantum state.

It may be graphically phrased in either the Heisenberg picture, where the opera-

tors representing observables are dynamical quantities, or in the Schrödinger picture,

where the states contain the system�s time dependence. In the latter, the dynamical

state is represented as a point on a Cartesian sphere in R3 whose coordinates are

x = sin 2� cos�

y = sin 2� sin�

z = cos 2�: (2.105)

Rotations of the state in Hilbert space manifest as rotations of the sphere.

In the former, the Bloch sphere is a Cartesian sphere inR3 whose axes correspond

to the expectation values of the standard spin-1/2 measurement operators �x, �y,

and �z. In this case, the Bloch vector may represent also impure states, or even, as

we shall see, the product portion of a partially entangled two-qubit state. Indeed,

it is this Heisenberg version of the Bloch sphere that we will make the most use
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of. Also, note that one advantage of the Heisenberg version is that it makes the

relationships between the measurement operators explicit. Just as the x; y; z-axes

are mutually orthogonal, so are the matrices �x, �y,�z, so a rotation about e.g. �z

transforms the component of the state aligned along �x to �y.

We can make these ideas quantitative with the following prescription. As in the

previous section, form the density operator � associated with the state j i then write

� as a linear combination of the Pauli matrices

� =
1

2

1X
k=0

�kTr(�
y
k�) (2.106)

=
1

2
(r0�0 +

�!r � �!� ): (2.107)

The projection of � onto the identity doesn�t contain any relevant information, so

we need only focus on the components rx; ry; rz of
�!r :This triplet of real expectation

values form precisely the components of the Bloch vector in the Heisenberg picture.

2.4.2 Two-qubit representation

We have developed a generalization of this Heisenberg-picture one-qubit Bloch sphere.

The two qubit state may be written as a linear combination of four basis functions:

j i = �j00i+ �j01i+ 
j10i+ �j11i (2.108)

subject to the normalization constraint

�2 + �2 + 
2 + �2 = 1 (2.109)
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and again, the overall phase is meaningless. This amounts to six real parameters,

and indeed, it is well known that SU(4), the transformation group for two qubits, is

isomorphic to O(6). The general two-qubit state may thus represented in terms of

six angles; this formulation was recently given by Havel and Doran [107].

In terms of a graphical representation, it would also be desirable to have picture

which would represent explicitly the expectation values of measurement operators,

like the one-qubit Bloch sphere in the Heisenberg picture. To this end, we o¤er the

following prescription.

As in the one-qubit case, project the two-qubit density operator onto the basis

of Pauli matrices, here the �s:

� =
1

4

15X
k=0

�kTr(�
y
k�) (2.110)

=
1

2n
(R0�0 +R ��); (2.111)

where R is the �fteen-component vector of expectation values of the �s, and � is the

vector of �s, identi�ed, as usual, by the numbering system of section 2.1.1. There are

nine non-local and six local components of R. We separate the local components, in

two sets of three, one set pertaining to each qubit, and represent them in two copies

of the familiar one-qubit Heisenberg picture Bloch sphere. In this case, however,

these two local vectors,

Rq1 = (rwx; rwy; rwz) = (r1; r2; r3) (2.112)

and

Rq2 = (rxw; ryw; rzw) = (r4; r8; r12) (2.113)

need not be of unit length, and indeed may vanish altogether when the state at hand

94



is a fully entangled one. If the two qubit system forms but a subspace of a larger

many-qubit register, their magnitudes may vary independently, as one may become

entangled with another qubit not in the subspace, but if these are the only two qubits

present, then the magnitudes are constrained to be equal.

We must now represent the nine non-local components of R, those which contain

the non-classical correlations present in the system. In so doing it is desirable to

isolate the purely non-local quantum information from the local quantum information

by subtracting from each of the nine components the trivial classical correlations.

Then, we may arrange the nine components into the entanglement matrix: E :

E =

0BBBB@
rxx � rwxrxw rxy � rwyrxw rxz � rwzrxw

ryx � rwxryw ryy � rwyryw ryz � rwzryw

rzx � rwxrzw rzy � rwyrzw rzz � rwzrzw

1CCCCA (2.114)

or, with the de�nitions

gx1 =

0BBBB@
rxx � rwxrxw

ryx � rwxryw

rzx � rwxrzw

1CCCCA gx2 =

0BBBB@
rxx � rwxrxw

rxy � rwyrxw

rxz � rwzrxw

1CCCCA

gy1 =

0BBBB@
rxy � rwyrxw

ryy � rwyryw

rzy � rwyrzw

1CCCCA gy2 =

0BBBB@
ryx � rwxryw

ryy � rwyryw

ryz � rwzryw

1CCCCA

gz1 =

0BBBB@
rxz � rwzrxw

ryz � rwzryw

rzz � rwzrzw

1CCCCA gz2 =

0BBBB@
rzx � rwxrzw

rzy � rwyrzw

rzz � rwzrzw

1CCCCA

(2.115)
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Figure 2.4: Representation of a two-qubit state in three real dimensions. The individ-
ual qubit state dynamics are plotted on Bloch spheres (red and blue). The non-local
dynamics are plotted as a tri-vector on the entanglement sphere. The entanglement
trivectors indicate the direction in Hilbert space along which the non-local quantum
information is concentrated. For the state shown, measurement of the observables
YX, ZX, XY, YY, XZ, ZZ will yield no information, while measurement of the set
of commuting operators {XX; Y Z; ZY } will fully specify the two-qubit state. The
entanglement trivector thus indicates which measurements will uncover the largest
violation of a Bell type inequality for the given quantum state.

we can write it more succinctly as

E =
�
gx1 gy1 gz1

�
=

�
gx2 gy2 gz2

�t
. (2.116)

This entity 7 characterizes both the magnitude and the direction in Hilbert space of

the two-qubit entanglement. The magnitude may be de�ned as the norm of E ,

jEj = 1

3
Tr(E tE); (2.117)

which is a valid entanglement monotone for all pure states [134]. As such, E=1 for a

maximally entangled two-qubit state, while E=0 for a fully factorable product state;

and single qubit rotations leave E invariant.

The g�a�s make up an entanglement trivector whose three components may be

7Tthe two possible decompositions, in terms of the g�1 �s or the g
�
2 �s, are informationally equiv-

alent.
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simultaneously plotted on a single R3 Cartesian coordinate system, see �gure 2.4.

They indicate which two-qubit observables contain the non-local quantum informa-

tion stored in the system. Since two-qubit observables must be built up from cor-

relative measurements of the one-qubit operators, this representation thus visually

indicates which Bell-type measurement protocol would reveal the largest correlations

for the given two-qubit state. See �gure 2.5.

For two-qubit states in the discrete set H2, the vectors g�a are each of unit length

and mutually orthogonal

gxa � gya = gxa � gza = gya � gza = 0 (2.118)

with

gxa = g
y
a � gza: (2.119)

2.4.3 Applications of the two-qubit representation: illustra-

tion of cnot gate

The action of the cnot gate is typically understood as �ipping the state of the

target qubit if the control qubit is in state one, otherwise leaving it alone. This is

a caricature phrased in the language of classical computing; the gate is of course a

continuous rotation, and it is necessarily more complex. This is made evident by

viewing it through our representation.The CNOT gate also induces a phase rotation

on the control qubit when the target is not �ipped. This crucial e¤ect has been called

the phase kickback and has no classical analog.

With the tools of this chapter squared away in our quantum toolbox, I now turn

to the main topic of this thesis: providing solutions to the quantum gate problem

that allow us to generate entanglement in superconducting qubits.
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Figure 2.5: Representation of two-qubit maximally entangled states in real space,
with associated measurement axes for one-qubit observables. The representation
allows one to easily identify the measurements that will reveal the maximal Bell
inequality violation. A rotation of the two-qubit state in the entangled subspace
must be accompanied by a rotation of the measurement apparatus in real space
in order to observe maximal violation. Top: singlet state (j01i � j10i)=

p
2, with

measurement axes oriented in xz plane. Bottom: maximally entangled two-qubit
state, (j00i + j01i + ij10i � ij11i)=2, with measurement axes oriented in yz plane.
In each case, the system will show maximal violation of the Bell inequality hQSi+
hRSi+hRT i�hQT i � 2 for the observablesQ,R,S,T shown on the one-qubit spheres.
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Figure 2.6: Illustration of the CNOT gate. a. The standard quantum logic or
�musical score�representation, largely in analogy with classical logic. b. The cor-
responding unitary transformation. c. Illustration of CNOT in our representation
by its action on an input state where the control qubit is prepared in a superpo-
sition state

p
2j icontrol=j0i-j1i and the target is j it arg et=j1i. The result is the

EPR pair. d. Action of CNOT when both qubits are prepared in the superposi-
tion

p
2j icontrol =

p
2j itarget=j0i-j1i. The control gate performs a � rotation of

the control. This phase kickback of the CNOT is not captured by the standard
representation.
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2.5 Conclusion

We have presented a method of discretizing the n-qubit Hilbert space with a tech-

nique very closely related to the stabilizer theory of quantum error correcting codes.

This discretization provides a map of the underlying Hilbert space. It provides some

of the bene�ts and extra-classical behavior associated with quantum mechanics, such

as maximally entangled multi-qubit states, without the headaches inherent in the full

continuous space. Interestingly, its information content does not grow exponentially

in the number of qubits, placing it as an intermediate paradigm for computation

between the classical and full quantum cases.

The discrete Hilbert space and the rotations that navigate it form a discrete

Heisenberg-picture machine language for quantum computation, one that we have

found to be much more natural and powerful than the standard language constructed

by analogy with classical computation.

This discrete Heisenberg picture can be extended to capture the full continuous

dynamics with the n-qubit Bloch equations. We started with the quantum Liouville

equation, and by making use of the family of n-qubit Pauli operators, derived the

4n � 1 coupled �rst order linear di¤erential equations that describe the system.

Our representation of two-qubit gates allows one to envision in 3D the action of

particular gate.

Taken together, these tools for a sort of alternative approach to practical problems

in quantum computing, one we think is both more powerful and more adapted to

practical concerns of actually building operational systems than the familiar standard

language.
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Chapter 3

Two-Qubit Gates at Optimal Bias

Point

3.1 Introduction

In this chapter we present a family of solutions to the two-qubit quantum gate

problem for the case of superconducting qubits sharing a static, weak and linear

non-secular interaction and each independently controlled by exclusively microwave-

frequency electric �elds.

I begin with a discussion of the circuits themselves before moving on to the

irradiation strategies.

3.2 The FLICFORQ system

The design of a two-qubit system involves a series of trade-o¤s and optimizations.

Early schemes for performing two-qubit gates relied on dynamical tuning of either

the qubit transition frequencies [49, 80] or a subcircuit controlling the qubit�qubit
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interaction [78, 41, 53]. The former requires DC pulses that move the qubits away

from their optimal bias points for coherence, while the latter requires additional

control lines and non-linear elements that inevitably introduce additional couplings

to uncontrolled degrees of freedom in the environment.

We �rst sought to develop a coupling scheme that would improve the chances of

experimental success by both minimizing the required complexity in fabrication and

measurement, and maximizing the expected qubit performance.

The need to minimize fabrication and measurement complexity naturally leads

to the use of simple �xed linear coupling elements, such as capacitors and inductors,

that do not require dynamical tuning through external control lines. The need to

maximize qubit coherence times leads to the use of exclusively microwave signals so

the qubits may remain at their optimal DC bias points throughout the gate operation.

This strategy was also motivated by the success of liquid NMR quantum com-

puting, where the nuclear spins making up the quantum register have �xed detuned

Larmor frequencies (set by the static polarizing magnetic �eld) and share exchange

couplings that are determined, once and for all, by the molecular structure [16].

We are, in essence, constructing sort of arti�cial molecules �qubit circuits having

�xed, detuned Larmor frequencies and �xed coupling strengths �and, like in NMR,

using AC �elds to perform one and two-qubit gate operations [16, 135]. The essential

di¤erence between our molecules and those of NMR resides in the qubit�qubit cou-

plings and the way they are exploited. In NMR, the secular terms in the coupling

Hamiltonian (those that commute with the Zeeman Hamiltonian and thus act to

�rst order) dominate the spin-spin interaction. Two-qubit gates are realized as the

spins precess freely, while refocusing pulses are applied in order to do nothing [99].

In our scheme, the coupling is purely non-secular, and acts only to second order. So

with respect to the AC control signals, we are in rather the opposite case of NMR:
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here, the coupling may be neglected during the one-qubit gates and free evolution,

but must be enhanced through irradiation pulses to perform two-qubit gates.

I will refer to this gate scheme by the nickname FLICFORQ: F ixed LInear

Couplings between F ixed O¤-Resonant Qubits. FLICFORQ, as such, is a style

of quantum register, but it also implies a class of certain control signals. As the

couplings are �xed, they are not subject to external control signals, and as the qubit

frequencies are �xed, they may not be DC tuned. Our task, then, comes down to

constructing microwave control sequences that enhance the non-secular coupling and

give rise to a strong enough qubit�qubit interaction to entangle the qubits.

A FLICFORQ register could be implemented using most any quantum computing

technology, but it is particularly applicable to superconducting qubits of the charge

or �ux variety. We focus here on two-qubit registers (sample circuits shown in �gure

3.1), the simplest that allow the realization of a universal set of quantum gates;

comments on extensions to larger systems will follow. The optimal bias conditions

for the circuits shown are with half a Cooper pair worth of charge on the e¤ective

gate capacitance (not shown), e.g. Ng1 = Ng2 = 1=2 for charge qubits, where

Ng = CgU=2e is the dimensionless gate charge; or N�1 = N�2 = 1=2 for �ux qubits,

whereN� = �ext=�o is the �ux frustration in the qubit loops. Under these conditions,

the systems are immune, to �rst order, to variations in the control parameters, such

as 1=f charge noise in the Josephson junctions or substrate or noise due to the motion

of trapped �ux [30].

At optimal bias and in the two-level approximation, these two-qubit systems are

described by the Hamiltonian

2H=~ = !1�
z
1 + 2
1 cos(!

rf
1 t+ �1)�

x
1

+ !2�
z
2 + 2
2 cos(!

rf
2 t+ �2)�

x
2 + !xx�

x
1�

x
2 ; (3.1)
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Figure 3.1: Superconducting two-qubit circuits for performing universal quantum
gates at optimal bias point with linear �xed couplings. (a) Charge qubits coupled
by capacitor. (b) Flux qubits coupled by mutual inductance.

where !j=2� is the transition frequency of qubit j; 
j and !
rf
j =2� are, respectively,

the amplitude and frequency of the microwave signal applied to the write port of

qubit j; and !xx=2� = (tent)
�1 is the coupling frequency (if only the �x1�

x
2 term

were present in H, the time needed to go from a computational basis state to a

maximally entangled state would be tent=4). To ensure the qubits remain decoupled

in the absence of control signals, we impose the weak coupling constraint that the

non-secular coupling !xx be much weaker than the interqubit detuning� = j!2�!1j.

3.3 Entanglement by double-resonant irradiation

An analysis of this problem using the dressed state formalism of quantum optics [81]

can point the way to one possible solution, as it allows us to understand how the

very weak non-secular interqubit coupling !xx may be used to produce maximally

entangled two-qubit states, see �gure 3.1. For the moment, consider only resonant

microwave pulses applied to each qubit simultaneously.

When the AC drive �elds and qubits are uncoupled, each qubit + �eld system has

an in�nite discrete ladder of doubly-degenerate energy levels, labelled by the qubit

state j1i or j0i and the photon number jNi, and separated by !rf1;2 = !1;2.Taking the
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Figure 3.2: Energy levels of qubit + rf photons systems with (inner levels) and
without (outer levels) qubit-photon coupling. Outer : systems have an in�nite ladder
of doubly-degenerate levels corresponding to products of a photon number state
(green, orange) and a qubit state (red, blue). Inner : Photon�qubit coupling lifts
degeneracy in each manifold by Rabi frequency 
1;2. Transitions between adjacent
manifolds (wavy arrows) correspond to absorption/emission of a photon from dressed
qubit system. The o¤-resonant qubits can be put on speaking terms by adjusting
Rabi frequencies such that 
1 + 
2 = !1 � !2 � �. Shown is the symmetric case
where 
1;2 = �=2
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qubit��eld coupling into account lifts the degeneracy, splitting the two states in each

manifold by the �eld strength (Rabi frequency) 
1;2. The two dressed qubits may

then absorb and emit energy at frequencies !1 � 
1 and !2 � 
2, respectively. The

irradiation thus splits the single-mode qubit spectra into two sidebands. Choosing


1 + 
2 = � (3.2)

causes the upper sideband of one qubit to overlap the lower sideband of the other,

and they can then exchange photons of energy ~(!1�
1) = ~(!2+
2) through the

coupling reactance.

A more quantitative picture of the qubit�qubit interaction follows from an analy-

sis using rotating reference frames. First, note that measurement in the compu-

tational basis commutes with the �z1;2 terms in H, and that one-qubit RF pulses

perform pure �x and �y rotations in the doubly Larmor-precessing frame R(2) rotat-

ing at !1;2 about �z1;2; respectively. This allows us to de�ne all gates in R
(2), where

the qubits are static in the absence of irradiation pulses.

Then an e¤ective Hamiltonian for a FLICFORQ system under doubly-resonant

irradiation may be obtained by moving from R(2) to a quadruply-rotating frame R(4)

which, in addition, rotates at 
1;2 about �x1;2; respectively [55]. We now focus on the

case where 
1;2 = �=2, as depicted in �g. 2, for which one obtains in R(4) in the

rotating wave approximation,1

2H0=~ =
!xx

8
f(�y1�

y
2 + �z1�

z
2) cos(�1 � �2)

+ (�z1�
y
2 + �y1�

z
2) sin(�1 � �2)g: (3.3)

1All other terms in H0 oscillate rapidly and average to zero.
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This Hamiltonian can be used as the sole non-local generator of arbitrary two-qubit

gates [56, 57, 58, 59, 60, 61]. Noting the established capability for arbitrary local

unitaries with the same microwave control hardware we have assumed here [26, 71],

this FLICFORQ scheme is thus a simple and practical implementation of a universal

quantum register with only local microwave control.

In general, the extraction of some desired e¤ective interaction from a naturally

available interaction calls for the interleaving of one qubit rotations with periods of

evolution under the available interaction2. Regarding 3.3 as the available interaction

in the present case, we now show how the primitive �=2 rotation (de�ned as in 2.33),

Ryy =
1p
2
(1� i�y1�

y
2) ;

which we demonstrated in Chapter One to be generator of the Cli¤ord group, can

be extracted by simply adjusting the phase of the resonant tone applied to one of

the qubits.

Choosing the microwave frequencies to be resonant and the amplitudes 
1;2 to

satisfy 3.2 switches the interaction from being only a second order e¤ect propor-

tional to (!xx=�)2, where it can be ignored or actively cancelled [135, 82, 62], to a

strength of !xx=8 where it has a strong e¤ect on the system�s evolution. However,

as the Hamiltonian 3.3 contains multiple terms, some of which do not commute, the

engendered gate will be rather complicated. The most straightforward case is when

the microwave phases are either the same, e.g. �1 = �2 = 0, or di¤erent by �=2,

e.g. �1 � �2 = �=2. As any of the individual terms in 3.3 would su¢ ce for universal

control, we can consider the former case without loss of generality. Then the two

terms present, directed along �y1�
y
2 and �

z
1�
z
2, commute and the unitary evolution of

2There has been a great deal of work studying methods and costs of simulating one Hamiltonian
with another. The references [56, 57, 58, 59, 60, 61] are all relevant, especially [59] and refs. therein.
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the system proceeds according to

U(to; t) � exp[�iH0(t� to)=~]

= exp[�i!xx(t� to)(�
y
1�

y
2 + �z1�

z
2)=16]

= exp[�i'
2
�y1�

y
2] exp[�i

'

2
�z1�

z
2]; (3.4)

where,

' =
(t� to)!xx

8
: (3.5)

The gate naturally implemented in the FLICFORQ system irradiated according to

3.2 with �1;2 = 0 is thus,

D(') = fcos '
2
I � i sin

'

2
�y1�

y
2g (3.6)

�fcos '
2
I � i sin

'

2
�z1�

z
2g (3.7)

= Ryy(')Rzz('); (3.8)

where I have used standard de�nitions of rotation operators R(') [7]. Note that

under these conditions, shifting the relative phase �1 � �2 of the irradiation signals

by � allows one to generate the inverse operation D(�'). Applying the irradiation

for a duration t � to = 4�=!xx corresponding to ' = �=2 generates the two-qubit

�=2 rotation,

D = Ryy(�=2)Rzz(�=2)

= (1� i�y1�
y
2)(1� i�z1�

z
2)=2; (3.9)

where I have used the bare �D�to denote this particular discrete black-box unitary

transformation. The D gate and its inverse are generators of the Cli¤ord group
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and are thus universal when augmented with local unitaries. They have Gottesman

tables:

D

WX XW

XW WX

WZ YX

ZW XY

and

D�1

WX XW

XW WX

WZ �Y X

ZW �XY

: (3.10)

To demonstrate the universality of D and D�1, we explicitly construct a synonym

for the canonical two-qubit gate CNOT, in the spirit of 2.55:

D�1 (WY )1=2 D (WX)1=2 (ZW )1=2

WX XW XW WX WX WX

XW WX WZ YX YX XX

WZ �Y X �Y Z �ZY ZZ ZZ

ZW �XY �XY ZW ZW ZW

. (3.11)

A comment is in order. We have asked only for the minimal and simplest hardware

��xed linear coupling circuit elements. We have restricted ourselves to exclusively

microwave control of static and detuned qubits, meaning there is no reliance on

fast tuning of the qubit transition frequencies and the implied large relative band-

width of the control lines. We have restricted the available microwave control signals

themselves to those typically used to perform individual one-qubit rotations, namely

signals resonant with the (uncoupled) qubits�transition frequencies. And under these

restrictions, made with an eye towards maximizing both qubit coherence and exper-

imental feasibility, we have shown how control of the four experimental knobs 
1(t),


2(t), �1(t) and �2(t) allows one to implement any rotation of the two-qubit Hilbert
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space.

We now turn to the issue of timing. Note that the evolution operator U in R(2)

is related to the evolution operator U 0 in R(4) according to

U = R(t)U 0(t� to)R�1(to); (3.12)

where

R(t) = expfit(!R1 �x1 + !R2 �
x
2)g (3.13)

is the one-qubit rotation operator connecting R(2) and R(4), so in general a two-

qubit gate must be accompanied by the appropriate one-qubit rotations. However,

for 
1;2 = �=2, R(t) reduces to the identity operation at times tsyncm = 4�m=�

when the two frames R(2) and R(4) coincide. So one can always do away with the

initial one-qubit rotation R�1(to) by choosing to initiate two-qubit gates only at

times to = tsyncm .

Also, the CNOT synonym 3.11 requires two applications of D, a trait the emerges

from the presence of two commuting non-local terms in the e¤ective Hamiltonian

under the conditions at hand. A protocol to construct a more e¢ cient generator of

the Cli¤ord group can be obtained by applying the notion of refocusing as in NMR

[135, 82, 62, 15]. Here, we refocus the �z1�
z
2 term in 3.3 by adjusting the phase of

the irradiation on one of the two qubits by �. The e¤ective Hamiltonian acquires an

overall sign due to

cos(�1 � �2)! cos(�1 � �2 � �) = � cos(�1 � �2); (3.14)

but the term �y1�
y
2 acquires also a second sign change because the phase �ip, when

translated back to the laboratory frame, amounts to an instantaneous �z rotation
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by � on the a¤ected qubit, resulting in �y1�
y
2 ! ��y1�

y
2. The result is an inversion of

only the �z1�
z
2 term in 3.3. As in NMR, letting the system evolve for equal durations

under the two inverse Hamiltonians refocuses any dynamics owing to the inverted

term.

We have veri�ed the e¢ cacy of this phase �ip numerically. The result is a pro-

tocol to produce the rotation (Y Y )1=2, which is a minimal generator of the Cli¤ord

group and need only be deployed a single time to produce CNOT, as the following

Gottesman table veri�es,

(WZ)1=2 (ZW )1=2 (Y Y )1=2 (XW )1=2 (WY )1=2 (WZ)�1=2 (ZW )�1=2

WX �WY �WY �WY �WY �WY WX WX

XW XW XW ZY Y Y Y Y �Y X XX

WZ WZ WZ �Y X ZX ZZ ZZ ZZ

ZW ZW �YW �YW ZW ZW ZW ZW

.

(3.15)

Figure 3.3 explicitly depicts the pulse sequence that uses this refocusing scheme

to implement (Y1Y2)1=2. The phases are initially chosen �1;2 = 0, and after tent, the

phase �2 of the signal applied to qubit 2 is adjusted by �. After another tent the

�z1�
z
2 term in H0 is refocused, and the universal gate (1+ i�y1�

y
2)=
p
2 = (Y1Y2)

1=2 has

been implemented.

We have performed simulations of the protocol generating (Y Y )1=2 as shown in

3.3 by solving the two-qubit Bloch equations as developed in Chapter Two. The

simulations do not rely on the rotating wave approximations leading to the e¤ective

Hamiltonian 3.3, nor on a perturbative expansion of the time-dependent Hamil-

tonian. However, we did use a two-level approximation and square RF pulses for the

simulation results presented.
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Figure 3.3: (a) Polar representation of pulse sequence for the universal two-qubit gate
(Y Y )1=2 at optimal bias using FLICFORQ. Two-qubit pulses (black) have amplitude
�=2 and duration tent, and are initiated only at times tsyncm = 4�m=� (grey dashed
lines) when the doubly- and quadruply-rotating frames coincide. One-qubit pulses
(grey) have amplitude ( ��

!xx
mod 2�)=tsync and duration tsync. (b) Sample simulation

of pulse sequence using the full time-dependent Hamiltonian (1) and parameters !L1 =
1:1060; !L2 = 1:0527; !xx = :003679. Initial state is j00i: Simultaneous vanishing
of each reduced density operator indicates generation of maximally entangled state.
Final state is (j00i�ij11i)=

p
2; gate �delity is > :99, with errors due to Bloch-Seigert

shift. Plotted are the components of each reduced density operator (��i = h��i i). (c)
Schematic experimental set-up for producing pulses to implement universal gates
with FLICFORQ.
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3.4 Gate �delity under double-resonant irradia-

tion

3.4.1 Errors in one-qubit rotations due to �xed coupling

The presence of the always-on coupling will cause some degree of error in the single

qubit rotations. How large will these e¤ects be? The coupling Hamiltonian Hxx and

the Larmor terms Hz do not commute,

[Hxx;Hz] 6= 0; (3.16)

so the �rst order corrections to the energy levels will vanish,

E
(1)
00 = E

(1)
01 = E

(1)
10 = E

(1)
11 = 0: (3.17)

To second order, the energies will shift according to

E
(2)
00 = � !2xx

!1 + !2

E
(2)
01 = �!

2
xx

�

E
(2)
10 =

!2xx
�

E
(2)
11 =

!2xx
!1 + !2

: (3.18)

By assumption we are in the weak coupling regime where !xx � j!1�!2j � !1;2 so

the energy shifts will lead to an error rate in the one-qubit rotations of approximately

10�3. Note that these errors are due to the very slight residual entanglement of the

qubits in the absence of driving, so they can be corrected by performing brief two-

qubit rotations using any of the schemes presented in this thesis.
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3.4.2 Leakage due to strong driving

What will be the dominant sources of �delity loss in this gate scheme? As with other

gate schemes for superconducting qubits, there will be errors due to leakage to states

outside the computational subspace. The fast Rabi �opping used here to bring two

detuned qubits into resonance �the essential new �technology�this scheme requires

�may make this more signi�cant. Rabi frequencies up to approximately 150MHZ

are commonly achieved in a broad range of technologies, with frequencies as high

as several hundred MHZ reported [63]. The leakage will depend strongly on the

anharmonicity of the qubit systems, which is typically set by fabrication and bias

parameters. For example, for charge qubits at optimal bias our simulations indicate

that the ratio of the e¤ective Josephson energy EJ to the Cooper pair charging en-

ergy EC should satisfy EJ=EC . 2 if the leakage probability due to strong driving

(
j � :1!j) is to be . 1%. These simulations assume a constant driving level inte-

grated over the duration of a typical two-qubit gate pulse. They do not account for

imperfect pulses, where bandwidth e¤ects or dispersion can cause leading or trail-

ing edge distortion that could be more e¢ cient at generating excitations outside the

computational subspace. However, these e¤ects can largely be managed by careful

engineering of the microwave pulse amplitudes [64, 65]

3.4.3 The rotating wave approximation

The above derivation of the e¤ective Hamiltonian 3.3 required a rotating wave ap-

proximation for the drive signal on each qubit. (The rotating wave approximation

regards the oscillatory �elds applied to each qubit along �x as a superposition of two

�elds rotating in opposite directions in the xz plane, their �y components always

equal and opposite; in a frame rotating about �z at the respective drive frequency
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Figure 3.4: Leakage probability for charge qubits under strong resonant driving as a
function of EJ=ECP . Simulations are performed by keeping the lowest seven energy
levels and driving system at a constant driving level 
 = !=10 (Left panel) and

 = !=20 (Right panel). The strong leakage as the aspect ratio passes through the
harmonic point whereat !01 = !12 is as expected. As the gate scheme is applicable
when �1;2 � !xx � 
, we have not included �nite lifetime e¤ects.

one of these is thus static while the other oscillates at twice the drive frequency. The

RWA is to discard this counter-rotating term.) The e¤ect of the term is to slightly

renormalize the qubit frequency, an e¤ect known as the Bloch-Siegert shift [69]. An-

alytical results can be obtained for the leading order corrections with a perturbative

analysis [70]. For the purposes of quantum gates it can be viewed as leading to

oscillations in the qubit state at frequency 2!rf and of amplitude of order 
=!rf

[128]. These e¤ects will have minimal impact on one-qubit rotations, since 
 can

be chosen to be small. For the two-qubit gates, however, 
1;2 are set by �, which

is constrained by � � !xx, so the e¤ect could be more troublesome. There is thus

a trade-o¤ in selecting system parameters for optimal gate �delity �to reduce the

two-qubit errors in one qubit gates, we should like to make !xx=� as small as pos-

sible. To avoid errors due to Bloch-Siegert shift during the two-qubit gates, though,

we would like to keep � and thus 
1;2 small compared with !1;2. Parameters in
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the general range of those used in our simulations approximately balance these two

e¤ects. We emphasize that these errors are all deterministic in nature and can be

accounted for in a straightforward manner.

3.4.4 Other sources of error

In practice, there will also be gate errors due to imperfect microwave pulses. Since

one-qubit rotations are sensitive to the integrated applied irradiation power, con-

structing pulses to perform high-�delity one-qubit gates should be straightforward.

Producing the two-qubit pulses, however, will be more di¢ cult: the strength of the

e¤ective qubit�qubit interaction depends strongly on the amplitude of both RF sig-

nals, so the gates will be very sensitive to variations in the pulse amplitudes. For

the parameters used in simulations and a qubit linewidth � 2MHz, the uncertainty

in the pulse amplitudes should not be more than about 0:5%. Though challenging,

this level of stability is possible with commercially available electronics.

Finally, the cross-coupling of write signals between two qubits will also lead to

gate errors. In practice, this can be actively compensated with supplementary pulses.

We note that these e¤ects leading to gate errors are predominantly systematic

and can thus, in principle, be reduced or eliminated. Also, as we will see later,

there are con�gurations of the drive parameters that can lead to spurious e¤ective

coupling terms during one-qubit rotations. But we note that the situation is at least

as hopeful as in NMR, where there is also a secular coupling term to be nulli�ed, in

addition to the non-secular term we have here [135]. It is our hope that some of the

techniques for combatting gate errors that have been developed in NMR quantum

computing can be adapted or extended to suit FLICFORQ systems. For example,

the error rate due to the always-on coupling could be largely reduced by dynamically

decoupling the qubits with refocusing pulses [15, 16], or with short cross-resonant
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pulses of appropriate phase to take advantage of the e¤ect described by 5.10 and 5.1.

Here, this would be achieved by performing appropriately timed � rotations about

�y, which anticommutes with the coupling term �x1�
x
2 . The techniques of composite

pulses, pulse shaping, and phase ramping could prove similarly useful. For one-qubit

gates, some early steps have been taken in this direction [71].

3.4.5 Entanglement modulation depth and bandwidth

Gate schemes can be quantitatively compared by de�ning the following characteris-

tics. The entanglement bandwidth � is the maximal rate of entanglement generation

allowed by the scheme3. Here we have simply,

� =
1

8

!xx
2�

(3.19)

as the e¤ective interaction strength is set once the e¤ect is switched on by satisfying

3.2 with the resonant drive amplitudes.

The error rate can be discussed by de�ning the entanglement modulation depth

� as,

� =
F2q

1� F1q
; (3.20)

where F1q and F2q stands for some �delity measure of the one and two-qubit gates �

we will use the trace �delity F = 2=nTr[U yidealUactual] where U is the evolution oper-

ator. As the one-qubit rotations are, collectively, limited in �delity by the residual

entanglement introduced through the two-qubit gate hardware unless we perform

refocusing or otherwise actively compensate for the weak coupling, this measure

identi�es the modulation depth of the entanglement in the system.

3For experimental systems, this number can be compared to the dephasing time T' to give a
quality factor of the two-qubit control.
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In the �xed coupling scheme, the energy eigenstates will pick up some entangled

character proportional to (!xx=�)2, and this limits the �delity of one-qubit rotations

when the coupling is uncompensated, while the two-qubit rotations will likely be

limited in �delity by the Bloch-Siegert oscillations when EJ=EC . 1:5. We �nd,

� ' 1��2=!2

!2xx=�
2

=
�2

!2xx
� �4

!2xx!
2 (3.21)

where ! is average of the qubit frequencies. In the weak coupling regime !xx �

j!1 � !2j � !1;2 these characteristics evaluate to,

� � 100 = 20dB,

and

� =
�

4!xx
(3.22)

with larger modulation depths possible by actively cancelling the residual couplings.

3.5 Other protocols for gates at optimal bias

3.5.1 Generalization to o¤-resonant drive

The above protocol was the �rst proposal for generating entanglement in two-qubit

superconducting circuits while keeping both qubits biased at their respective optimal

bias points in both charge and �ux throughout the entire gate protocol. The idea was

supplemented by ideas from other groups, a few of which are now described.First, the

above dressed state picture can be rather directly extended to include the more gen-
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Figure 3.5: Schematic of sidebands of the doubly driven two-qubit system generalized
to case of o¤-resonant microwave signals. (a) When the signals are detuned by �j =

j!j �!rfj j the e¤ective precessional frequencies are �j =
q

2j + �2j and sidebands of

the driven systems emerge at !rfj � �j. The sidebands closer to the undriven qubit
frequencies contain a large portion of qubit eigenstate and less photon number state,
and vice versa (depicted through the weight of color-dashed lines). (b) dressed state
picture.
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eral case of dual o¤-resonant driving, a task carried out by Ashhab et. al [101]: This

extension partially addresses one complaint about the original FLICFORQ proposal

- namely the requirement for strong driving signals in order to bridge the spectral gap

between the two qubits4. By driving the qubits away from their respective transition

frequencies, the matching condition contains the generalized precessional frequencies

�j =
q

2j + �2jrather than simply the drive strengths 
j. In other words, it allows

one to make use of a detuning �eld of the microwave drives from the respective

qubits, along with the drive strengths, rather than the drive strengths alone. This

case is depicted below.

The e¤ective coupling strength obtained in this case is, from Ashhab et al,

!effxx
!xx

=
1

4

241 + x� 1
4xq

1 +
�
x� 1

4x

�2
352 ; (3.23)

where x = 
=� , and the drive amplitudes applied to each qubit are assumed to be

equal. This case is discussed further when we turn to the cross-resonance irradiation

protocol.

3.5.2 Driven non-linear coupling

Though the above generalization to o¤-resonant driving somewhat relaxes the re-

quirements for large driving �elds, the protocol nonetheless requires qubits that are

relatively close in frequency to be useful5. In charge qubits, this is a problem one

can approach with con�dence, as the qubit frequencies depend only linearly on the

junction critical currents, the parameter in which the natural scatter in the fabri-

4It is worth noting that the limits on drive strengths in a given system have nothing to do
with the available microwave power, but rather the desire to remain in the arti�cially truncated
computational portion of the quantum circuits�full Hilbert space.

5Note that the e¤ective coupling goes as 
4for weak driving.
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Figure 3.6: Schematic circuits for implementing two-qubit gates at optimal bias with
parametric driving of a non-linear coupling subcircuit. Adding a non-linear element
to the coupling allows the e¤ective interaction strength to be tuned by varying some
external control parameter �, which for charge qubits (a) would be a voltage bias
and for �ux qubits (b) a current bias. When the coupling is modulated at one of
!1 � !2 the interaction strength increases linearly with the drive strength.

cation process is manifest. With �ux qubits, however, the situation is less hopeful:

there, transition frequencies are exponentially sensitive to junction critical currents.

It should also be noted that the risk of generating excitations outside the trun-

cated computational portion of the quantum circuits subspace depends, for a given

ratio of the drive strength to the qubit transition frequency, strongly on the an-

harmonicity of the system�s spectrum of transitions. In more recent experiments

involving only weakly anharmonic systems, these constraints on drive strengths are

also very important.

Bertet et al and proposed a solution to the problem that allows the qubits to

remain at optimal bias but also allow one to entangle broadly detuned qubits without

the need of strong driving �elds. This elegant solution was also studied by Niskanen

et al [43]. The solution calls for a non-linear coupling subciruit, speci�cally a third

�ux qubit with larger energy splitting than the other two, to be driven at the sum

or di¤erence frequency of the two targeted qubits. Idealized circuits implementing

this system are shown below.
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These systems implement an e¤ective Jaynes-Cummings interaction between the

target qubits with a strength linearly dependent on the drive. This makes it possible

to use microwave power (but not applied to the qubits themselves!) to overcome

the interqubit detuning and generate entanglement. The e¤ective Hamiltonian when

the coupling strength is varied harmonically with amplitude �!xx at the di¤erence

frequency !rfxx = j!1 � !2j is,

2Heff
(�)=~ = �!xx

�
��1 �

+
2 + �+1 �

�
2

�
One could enact an anti-Jaynes-Cummings interaction by instead modulating the

coupling at the sum of the qubit frequencies, i..e !rfxx = !1 + !2, which leads to

2Heff
(+)=~ = �!xx

�
��1 �

�
2 + �+1 �

+
2

�
= 2�!xx(�

1
x�

2
x � �1y�

2
y): (3.24)

This style of coupling, and its linear dependence on the drive strength, has been

experimentally veri�ed by the NEC group[113].

3.6 Limitations

We have presented a few solutions to the two-qubit quantum gate problem for super-

conducting charge and �ux qubits. Since we studied the dual-resonant driving case

presented in [105], we have realized �and our colleagues gently pointed out �some

of the limitations of the protocol. In searching for other, perhaps better procedures,

we ran into a di¤erent problem: the techniques we were using to develop solutions

were not particularly powerful.

The main problem is that they did not allow us to identify with con�dence a
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certain scheme as being optimal. Guided by our own or others� intuition, or by

previous results from other quantum computing �elds such as ion traps or NMR, we

proceeded by a sort of trial and error, testing ideas and protocols through simulations

of the two-qubit master equation. Of course, after identifying a potential solution,

calculating the corresponding e¤ective Hamiltonian was another task in itself. To

do so, we relied, as we did in the FLICFORQ paper, on rotating frames and the

identi�cation of static terms in a special frame once certain constraints had been

imposed6.

Though fruitful, this technique didn�t address the main issue of drawing general

conclusions about a solution, or to identify new solutions. To do so, we would need

a tool that could encapsulate a broad range of schemes and place them all on the

same footing.

6This technique was orginally brought to our attention by Daniel Esteve, though we later found
it in an early paper by Hartman and Hahn[55].
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Chapter 4

Fourier Approach to The Quantum

Gate Problem

...and one should �ght for the form only insofar as it can serve as a means

of expression of the inner resonance.- Wassily Kandinsky, from Der Blaue

Reiter (1912)

First, let me phrase the problem clearly. Consider the (idealized) Hamiltonian of

a two-qubit system coupled to classical control �elds,

H � H(�) =
nX
k=1

�
!k�

z
k + 2
k cos(!

rf
k t+ �k)�

x
k

�
;

+
~
2

X
j;i=fx;y;zg

!ji�
j
1�
i
2; (4.1)

where !k are the qubit transition frequencies; 
k are the drive strengths; !
rf
k the

drive frequencies; �k the drive phases; !ji is the e¤ective coupling strength directed

along �j1�
i
2, and � is the vector of parameters � = f!ji[t]; !k[t]::::�k[t]g:The quantum

gate problem may be stated as follows:
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Problem 2 Idealized Quantum Gate Problem: Given the Hamiltonian (3.1)

with some or all of the parameters f!ji; !k; !rfk ;
k; �kg dynamically controlled by

lab-level knobs and others controlled through circuit design and fabrication1, derive

a control sequence, i.e. specify a trajectory of �(t) = f!ji[t]; !k[t]::::�k[t]g over the

interval fto; tg which implements in time t� to a particular transformation U of the

two-qubit Hilbert space.

The problem may be extended to address non-idealized systems by including in

the Hamiltonian a description of their particular noise and decoherence properties,

and it may be phrased in terms of a bound on the �delity of the realized transfor-

mation.

In essence, the quantum gate problem is di¢ cult because it involves inverting the

Shrodinger equation. Given a time-dependent Hamiltonian acting over time t � to,

quantum mechanics tells us the resultant unitary transformation of the underlying

Hilbert space:

U(to; t) = T exp
�
� i
~

Z t

to

dt0H(t0)
�

(4.2)

where T is the time-ordering operator, and numerical integration provides a solution

when an analytic form is not obvious.

I now describe our approach to the quantum gate problem. We will use a Fourier

decomposition of the Hamiltonian in a special rotating reference frame to identify

all the modes of the qubit system. Carrying this out without a priori restrictions

on �(t) allows us to identify all the entanglement modes of the two qubit system.

These modes are associated with a direction in the underlying Hilbert space, and are

navigable via the control vector �(t).

Before that, we comment brie�y on a related problem, which incorporates the

1We do not make any particular assumptions about the degree and speed of control of any of
these parameters for the time being.
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non-idealities of the quantum register. When the noise and decoherence properties

of the system are built into H, the problem may be extended to include the study

of methods by which we may not only engender a desired coherent evolution of

the state of the system, but also how the trajectory of the control vector may be

selected to minimize the in�uence of the noise, relaxation, and dephasing terms inH.

Ultimately, this more realistic quantum gate problem is one of the most important

challenges facing experimentalists and theorists working towards the implementation

of quantum computer [48].

While this problem currently de�nes an exciting �eld of research2, the focus of

this thesis is largely on the idealized quantum gate problem.

4.1 Fourier Analysis of the Transformed Hamil-

tonian

We now show how to identify these modes, using the two-qubit FLICFORQ Hamil-

tonian in equation 3.1 as an example.

4.1.1 Multiply-rotating references frames

We begin by taking the lab frame Hamiltonian through a series of time-independent

and time-dependent transformations that, one by one, nullify and simplify the one-

qubit dynamics and transfer that complexity to the qubit�qubit interaction term,

ultimately arriving to a special frame wherein the Hamiltonian is purely non-local.

The nulli�cation of the individual one-qubit terms is depicted below.

2Recent results have been very encouraging, c.f. [119]
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Figure 4.1: Illustration of the transformations to null out one-qubit dynamics. a
Move to a frame rotating about �z at the drive frequency !rf . b Perform a time-
independent rotation about �z to account for the microwave signal phase and bring
the e¤ective �eld into the laboratory xz-plane. c Tilt the remaining �eld by the
mixing angle � with a time independent rotation about �y. d Move now to a rotating
frame that precesses also with the generalized Rabi oscillations of frequency � =p
�2 + 
2 with a time-dependent rotation about �x. No local terms remain in the

Hamiltonian. For �nite drive amplitudes 
 one RWA is made per qubit after each
of a and d.
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Starting from the Schrödinger equation,

�
 = � i

~
H (4.3)

make the substitution

 ! U o; (4.4)

where U is the rotation operator connecting two reference frames where the state is

described by  and  o, to obtain

�
U o + U

�
 o = �

i

~
HU o: (4.5)

Multiply on the left by U�1, solve for
�
 o, and the Schrödinger equation in the new

frame is seen to be
�
 o = �

�
i

~
U�1HU + U�1

�
U

�
 o; (4.6)

implying a Hamiltonian H0 in the new frame of

H0 = U�1HU � i~U�1
�
U: (4.7)

We will make use of the unitary operators

U�j (�) = exp(�i���j =2) (4.8)

where � is a Pauli matrix, � = fx; y; zg and j = f1; 2g. The action of these operators
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by conjugation according to U�1�U may be summarized as:

Ux(�) Uy(�) U z(�)

�x �x �x cos � + �z sin � �x cos � � �y sin �

�y �y cos � � �z sin � �y �y cos � + �x sin �

�z �z cos � + �y sin � �z cos � � �x sin � �z

: (4.9)

First, we transform the FLICFORQ Hamiltonian to a frame that precesses with

the drive on each qubit, i.e. at !rf1 about �z1 and !
rf
2 about �z2, with

U(1) = U z1 (!
rf
1 t) + U z2 (!

rf
2 t)

= exp(�it(!rf1 �z1 + !rf2 �
z
2)=2): (4.10)

With the de�nition

�j � !j � !rfj ; (4.11)

the Hamiltonian in this doubly rotating frame becomes:

2HA = �1�
z
1 + 
1�

x
1 cos�1 + 
1�

y
1 sin�1

+ �2�
z
2 + 
2�

x
2 cos�2 + 
2�

y
2 sin�2

+ !xx[�
x
1 cos(!

rf t)� �y1 sin(!
rf t)]

� [�x2 cos(!rf t)� �y2 sin(!
rf t)]; (4.12a)

where I have performed a rotating wave approximation[100] by ignoring the terms

on each qubit that precess in this new frame at twice the drive frequency.

The driving �elds, oscillatory in the lab frame, are static here, their time-dependence
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having been transferred to the coupling term.

Next, we perform time-independent rotations by angles �1;2 about �
z
1;2, respec-

tively, to transfer the irradiation phase dependences also to the non-local term. Ap-

plying

U(2) = U z1 (�1) + U z2 (�2)

= exp(�i(�1�z1 + �2�
z
2)=2); (4.13)

we obtain

2H(2) = �1�
z
1 + 
1�

x
1

+ �2�
z
2 + 
2�

x
2

+ !xx[�
x
1 cos(!

rf
1 t+ �1)� �y1 sin(!

rf
1 t+ �1)]

� [�x2 cos(!
rf
2 t+ �2)� �y2 sin(!

rf
2 t+ �2)]; (4.14a)

and the static irradiation �elds are now aligned directly along the �x1;2-axes. The

detuning �elds are directed along �z1;2, respectively, so the total e¤ective one-qubit

�elds in this frame are of magnitudes

�j =
q
�2j + 


2
j : (4.15)

They are located in the qubits �x1 ; �
y
2-planes and form angles

�j = arctan(�j=
j)

with the �x1;2-axes.

In the last step, we will null out these remaining one-qubit dynamics, but �rst
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we tilt the e¤ective �elds into direct alignment with the �x1;2-axes with another time-

independent rotation, this time about �y1;2. We apply

U(3) = Uy1 (�1) + Uy2 (�2)

= exp(�i(�1�
y
1 + �2�

y
2)=2); (4.16)

and obtain

2H(3) = �1�
x
1 + �2�

x
2

+ !xx[cos(!
rf
1 t+ �1)(�

x
1 cos �1 � �z1 cos �1)� �y1 sin(!

rf
1 t+ �1)]

� [cos(!rf2 t+ �2)(�
x
2 cos �2 � �z2 cos �2)� �y2 sin(!

rf
2 t+ �2)]: (4.17a)

Again, we note the transferal of the system�s complexity from local to non-local

terms.

Finally, we perform the second set of time-dependent transformations by moving

to a frame rotating at the residual precessional frequencies �1;2 about �
x
1;2 with the

unitary

U(4) = Ux1 (�1t) + Ux2 (�2t)

= exp(�it(�1�x1 + �2�
x
2)=2); (4.18)

and this brings us to a quadruply rotating frame wherein the Hamiltonian is purely
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non-local:

2H(4) =+ !xx[cos(!
rf
1 t+ �1)(�

x
1 cos �1 � (�z1 cos(�1t) + �y1 sin(�1t)) sin �1)

� (�y1 cos(�1t)� �z1 sin(�1t)) sin(!
rf
1 t+ �1)]

� [cos(!rf2 t+ �2)(�
x
2 cos �2 � (�z2 cos(�2t) + �y2 sin(�2t)) sin �2)

� (�y2 cos(�2t)� �z2 sin(�2t)) sin(!
rf
2 t+ �2)] (4.19a)

This is the quad frame FLICFORQ Hamiltonian (QFH). It contains all the dynamics

of the original FLICFORQ system. In essence, we have moved to a special frame

that precesses with the driven dynamics of each qubit, and in so doing have imbued

the once static coupling term with multiple time dependences.

Our task is now to �nd a set or sets of parameters �all of which have been left

fully general thus far �that cause the coupling to become static in this frame so that

its e¤ect will be accumulated over time rather than averaged out. .

We note that the a priori time dependent nature of all terms in the QFH is

a manifestation of the non-secular nature of the coupling, as this allows it to be

neglected under typical conditions.

4.1.2 The coupling matrix

We may expand the QFH and project it onto the basis of two-qubit Pauli matrices

according to

H�� =
1

4
Tr(��1�

�
2H(4)); (4.20)
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and represent it as the 3�3 matrix of coe¢ cients

M(t)=

0BBBB@
mxx mxy mxz

myx myy myz

mzx mzy mzz

1CCCCA : (4.21)

This matrix representation organizes the various terms and allows us to treat the

linearly independent elements individually.

4.1.3 Fourier analysis

The QFH Hamiltonian derived above is still highly complex, and one might wonder

what we have gained with all this work. Indeed, we have merely transferred the

complexity of the two individual driven one-qubit dynamics into the qubit�qubit

interaction term.

However, with a purely non-local description of the system dynamics, we can

identify possible solutions to a given two-qubit quantum gate problem by look-

ing for static terms in M that arise when we impose certain constraints on � =

f!xx; !1; !2; !rf1 ; !
rf
2 ;
1;
2; �1; �2g.

To do so, we transform the QFH into Fourier space. The matrixM is useful in

this regard, as the Fourier transform, denoted

1p
2�

1Z
�1

H�� (t;� (s)) e
�i!tdt � F�� [!;� (s)] ,

may be calculated termwise, yielding the Fourier space quad frame Hamiltonian,
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denoted G[!]:

G[!;�]=

0BBBB@
Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

1CCCCA : (4.22)

The components are each of the general form

F�� = !xx
X
k

A
(��)
k (�1; �2; �1; �2)G

(��)
k (!;!rf1 ; !

rf
2 ; �1; �2); (4.23)

where

A
(��)
k [�(s)] = a

(��)
k exp[if

(��)
k (�1; �2; �1; �2)] (4.24)

a
(��)
k exp[if

(��)
k (�(s))] (4.25)

is a functional of a purely additive real function fk of the microwave phases and

the mixing angles; and

G
(��)
k [!;�(s)] = �[g

(��)
k (!; !rf1 ; !

rf
2 ; �1; �2)] (4.26)

= �[g
(��)
k (!;�(s))] (4.27)

denotes the Dirac delta function whose argument gk is a purely additive real function

of the frequencies in the problem.

Now we identify the modes of the system as the �k�s, where

�(��) = �
(��)
k , g

(��)
k (0;�) = 0: (4.28)
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Each mode is associated with a strength,

1p
2�

1Z
�1

Ak[�k]�[!]e
i!td!; (4.29)

and a direction �� in Hilbert space3, as setting � = �k will turn on one or more

e¤ective coupling terms in H.

4.1.4 Extraction of the e¤ective Hamiltonian

Once we have identi�ed the modes, the e¤ective Hamiltonian prevailing in the system

at � = �k is obtained by inverse Fourier transform:

H( ;�k) =
1p
2�

1Z
�1

G[!;�k]ei!td!: (4.30)

where H( ;�k) denotes a time-independent Hamiltonian. We have

H��( ;�k) =
1p
2�

1Z
�1

F��ei!td! (4.31)

=
!xxp
2�

1Z
�1

X
k0

A
(��)
k0 (�1; �2; �1; �2)G

(��)
k0 (0;!rf1 ; !

rf
2 ; �1; �2)e

i!td!(4.32)

=
!xxp
2�

1Z
�1

�[!]
X
k0

A
(��)
k0 [�k]�[gk � gk0 ]e

i!td! (4.33)

H��( ;�k) =
!xxp
2�

X
k0

A
(��)
k0 [�k]�[gk � gk0 ]: (4.34)

The last step is to return the e¤ective Hamiltonian from the special rotating

frame to the lab frame by inverting the original transformations outlined above.

3Note that a mode �(��)k is not ncessarily unique to G(��)k . In other words, each mode may
turn on di¤erent coupling types. The original FLIFORQ paper found the mode sampled under the
constraint !1 � !2 = 
1 +
2 was associated with Gyz, Gzy, Gyy, and Gzz.
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Finally, we note that as this approach in principle identi�es all the modes, it makes

it possible to make a quantitative comparison of the di¤erent possible con�gurations

and say with some degree of con�dence which approach is best suited to a particular

experiment. We now have a general constructive theory with which to approach our

problem. Indeed, most of the di¢ cult work is now done. The last step is to apply

it to some practical systems while taking account of the experimentally imposed

constraints.
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Chapter 5

Application of Fourier Approach

In the previous chapter we developed a strategy to help us �nd solutions to the

quantum gate problem. In this chapter, we apply the entanglement mode theory to

the study of practical qubit systems. We �rst use the formalism to reproduce earlier

results, both our own and others�, then delve into some new insights the theory has

brought. In particular, the theory easily adapts to describe the parametrically driven

coupling protocols described earlier, as well as indicating a new protocol we�ve called

cross-resonance that has several advantages compared to earlier work. Finally, we

apply the theory to the study of three qubit systems, demonstrating how to exploit

a weak e¤ective three-qubit interaction to generate a pure GHZ type Hamiltonian.

5.1 Two-Qubit Gates

5.1.1 Generalized FLICFORQ Protocols

The dual-resonant drive protocol applied to a system of qubits with �xed linear non-

secular couplings established the practical possibility of entangling qubits without

the need for external control over the qubit frequencies nor their coupling strength.
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Though technologies have morphed since that original proposal, many practical ben-

e�ts of not requiring DC control and using linear couplings remain. As a �rst ap-

plication, we study the FLICFORQ Hamiltonian, with the aim of testing the theory

against earlier results, and perhaps shedding new light on the quantum gate problem

in such systems.

We will apply the methods of the previous chapter to the Hamiltonian of (3.1),

2H=~ = !1�
z
1 + 2
1 cos(!

rf
1 t+ �1)�

x
1

+ !2�
z
2 + 2
2 cos(!

rf
2 t+ �2)�

x
2 + !xx�

x
1�

x
2 :

After transforming to the special quadruply rotating frame, we �nd

2H(4) =+ !xx[cos(!
rf
1 t+ �1)(�

x
1 cos �1 � (�z1 cos(�1t) + �y1 sin(�1t)) sin �1)

� (�y1 cos(�1t)� �z1 sin(�1t)) sin(!
rf
1 t+ �1)]

� [cos(!rf2 t+ �2)(�
x
2 cos �2 � (�z2 cos(�2t) + �y2 sin(�2t)) sin �2)

� (�y2 cos(�2t)� �z2 sin(�2t)) sin(!
rf
2 t+ �2)] (5.1a)
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The components of the coupling matrixM are,

2mxx = ~!xx cos �1 cos �2 cos(!
rf
1 t+ �1) cos(!

rf
2 t+ �2);

2mxy = ~!xx cos �1 cos(!
rf
1 t+ �1)

�
� cos(!rf2 t+ �2) sin (�2t) sin �2 � cos (�2t) sin(!

rf
2 t+ �2)

�
;

2mxz = ~!xx cos �1 cos(!
rf
1 t+ �1)

�
� cos (�2t) cos(!

rf
2 t+ �2) sin �2 + sin (�2t) sin(!

rf
2 t+ �2)

�
;

2myx = ~!xx cos �2 cos(!
rf
2 t+ �2)

�
� cos(!rf1 t+ �1) sin (�1t) sin �1 � cos (�1t) sin(!

rf
1 t+ �1)

�
;

2myy = ~!xx
�
cos(!rf1 t+ �1) sin (�1t) sin �1 + cos (�1t) sin(!

rf
1 t+ �1)

�
�
�
cos(!rf2 t+ �2) sin (�2t) sin �2 + cos (�2t) sin(!

rf
2 t+ �2)

�
;

2myz = ~!xx
�
� cos(!rf1 t+ �1) sin (�1t) sin �1 � cos (�1t) sin(!

rf
1 t+ �1)

�
�
�
cos (�2t) cos(!

rf
2 t+ �2) sin �2 � sin (�2t) sin(!

rf
2 t+ �2)

�
;

2mzx = ~!xx cos �2 cos(!
rf
2 t+ �2))

�
� cos(!rf1 t+ �1) cos (�1t) sin �1 + sin (�1t) sin(!

rf
1 t+ �1)

�

2mzy = ~!xx
�
� cos(!rf1 t+ �1) cos (�1t) sin �1 + sin (�1t) sin(!

rf
1 t+ �1)

�
�
�
� cos(!rf2 t+ �2) sin (�2t) sin �2 � cos (�2t) sin(!

rf
2 t+ �2)

�
;

2mzz = ~!xx
�
� cos(!rf1 t+ �1) cos (�1t) sin �1 + sin (�1t) sin(!

rf
1 t+ �1)

�
�
�
� cos(!rf2 t+ �2) cos (�2t) sin �2 + sin (�2t) sin(!

rf
2 t+ �2)

�
:

(5.2)

We Fourier transform each element and identify the entanglement modes of the
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system,

!rf1 � !rf2 = 0; (5.3a)

�1 � !rf1 � !rf2 = 0; (5.3b)

�2 � !rf1 � !rf2 = 0; (5.3c)

�1 � �2 � !rf1 � !rf2 = 0: (5.3d)

with

�j =
q
�2j + 


2
j (5.4)

where

�j = j!j � !rfj j: (5.5)

We have placed no constraints on 3.1 beyond the assumption of a weak non-secular

coupling !xx << j!1�!2j and have arrived to an exhaustive enumeration of the sys-

tem con�gurations that create from the weak non-secular coupling a strong e¤ective

interaction.

When we impose the constraints !rfj ! !j and �j ! 
j describing resonant

driving of each qubit the modes become,

!1 � !2 = 0; (5.6a)


1 � !1 � !2 = 0; (5.6b)


2 � !1 � !2 = 0; (5.6c)


1 � 
2 � !1 � !2 = 0: (5.6d)

With the drive amplitudes satisfying 
1+
2 = !1�!2 we �nd the e¤ective rotating
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frame Fourier Hamiltonian,

G =!xx
8

r
�

2

0BBBB@
0 0 0

0 cos(�1 � �2) � sin(�1 � �2)

0 sin(�1 � �2) cos(�1 � �2)

1CCCCA (5.7)

corresponding to

H=~ =
!xx
16
(�1y�

2
y + �1z�

2
z) cos(�1 � �2)

+(�1y�
2
z � �1z�

2
y) sin(�1 � �2)

This is the original result.

We now study these modes under the practical constraints emerging from various

experimental con�gurations.

Single-tone experiment

The simplest implementation of a FLICFORQ system would involve the application

of a single microwave tone to one of the two qubits. In this section, we apply to this

simple experiment the results of the prior sections, �rst in the limit of zero microwave

crosstalk, and then for arbitrary crosstalk.

Zero Crosstalk Consider the two-qubit experiment where the �rst qubit is irradi-

ated and the second is left alone. To adapt our above results to this case we need only

let the signal frequency on the unirradiated qubit !rf2 ! !2 and let the amplitude

vanish by imposing 
2 ! 0. Imposing both these limits simultaneously implies that

141



the mixing angle �2 ! 0. With these conditions, the ERCs reduce to

!rf1 � !2 = 0; (5.8a)

�1 � !rf1 � !2 = 0: (5.8b)

The �rst of these indicates that simply by irradiating one qubit at the transition

frequency of the other we may generate a strong e¤ective interaction, while the second

describes the case where one Rabi sideband of the driven qubit is in resonance with

the undriven qubit.

Single tone cross resonance I will refer to the case where !rf1 = !2 as cross

resonance. When we impose the set of constraints

f!rf1 ! !2; �2 ! 0; �2 ! 0; �2 ! 0g; (5.9)

the Hamiltonian prevailing in the system becomes

M =
!xx
4
cos �1

0BBBB@
cos�1 sin�1 0

0 0 0

0 0 0

1CCCCA ; (5.10)

where the mixing angle �1 is still given by

cos �1 =
1p

1 + (�=
1)2
: (5.11)

For �xed circuit parameters !xx, !1 and !2, the interaction strength increases with

the drive amplitude 
1. And critically, the e¤ect turns on linearly in the ratio 
1=�,

allowing it to be used to perform two-qubit gates between broadly detuned qubits
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with only comparatively weak driving �elds.

That this is possible at all, and that a dynamically tunable interaction strength

can emerge when the qubits are coupled only through a static linear reactance, may

at �rst seem surprising. The presence of the interaction can be understood in the

dressed state picture, as we will see shortly. And we note that the individual qubit

subcircuits are themselves non-linear. In essence, cross resonance exploits these

already present non-linearities to achieve tunable coupling, thus circumventing the

need for non-linear elements in the coupling subcircuit.

As with the original FLICFORQ proposal [105], cross-resonance can be under-

stood also in the dressed state picture of quantum optics, see �gure 5.1. Whereas

the matching condition 3.2 ensured that the upper and lower Rabi sidebands of the

lower and higher frequency qubits, resp., overlapped, here the condition 5.8a ensures

that the central transition at the irradiation frequency of the driven qubit + photon

system matches the bare transition of the undriven qubit. We are thus creating a

resonance between the central feature of the Mollow triplet [121] on qubit two with

bare transition at !1 of qubit one1.

It is instructive to look at the e¤ective Hamiltonian 5.10 in the doubly Larmor-

precessing frame wherein most practical measurements of qubit observables are per-

formed. To do so, we invert (in this order) the time-dependent rotations by angles

�1;2t and the time-independent rotations by angles �1;2 on each qubit. In that frame

we have,

1The e¤ect can also be derived in second order perturbation theory [122]. But one must of course
know �rst to look for it. Here, the Fourier approach identi�ed the e¤ect when we did not have any
prior knowldege of it, an important demonstration of why the technique is so useful.
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Figure 5.1: The cross-resonance e¤ect in dressed state picture. When qubit 2 (red)
is irradiated with photons (green) at the transition frequency of qubit 1 (blue),
transitions between neighbouring dressed state manifolds, occuring at !rf2 , become
resonant with !1. These form the center peak of the Mollow triplet. Note the location
of the center peak is set entirely by the microwave frequency and is independent of the
microwave amplitude. The makeup of the dressed states connected by the transitions
at !rf2 changes as 
2 increases, and this changing weight of the bare qubit transition is
responsible for the amplitude-tunability of the e¤ective interaction strength. Where
cross-talk is introduced, the e¤ect is "always on" but of frequency and amplitude-
dependent strength, as the two Mollow center peaks always line up.
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2H=~=!xx
2

0BBBB@
cos2 �1 cos�1 cos2 �1 sin�1 0

0 0 0

cos �1 cos�1 cos �1 sin�1 0

1CCCCA ; (5.12)

which, in terms of the inter-qubit detuning � and drive strength 
1, is

2H=~=!xx
2

1

1 + �2=
21

0BBBB@
cos�1 sin�1 0

0 0 0

�

1
cos�1

�

1
sin�1 0

1CCCCA : (5.13)

Perhaps the most important attribute of this cross-resonance protocol is that the

e¤ect turns on linearly in the ratio 
1=� , a stark contrast to the case in o¤-resonant

FLICFORQ where the e¤ect turns on as (
=�)4 [101]. For most practical imple-

mentations of this protocol the driving will satisfy 
1 � �, and only the ZX and

ZY terms are important. We thus have,

2H=~�
1!xx
2�

(cos�1�
z
1�
x
2 + sin�1�

z
1�
y
2): (5.14)

With �1 = 0 , this simple scheme naturally implements the most direct Cli¤ord

group generator of CNOT, the sort of exotic ZX coupling mentioned in Chapter

Two. The associated Gottesman table for CNOT has only three columns,

(WX)�1=2 (ZX)1=2 (ZW )�1=2

WX WX WX WX

XW XW �Y X XX

WZ �WY ZZ ZZ

ZW ZW ZW ZW

. (5.15)
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Figure 5.2: E¤ective interaction strength generated by cross-resonance irradiation as
a function of drive strength : detuning ratio 
=� (solid); generalized o¤-resonant
FLICFORQ scheme of Ashhab and Nori (dashed); and original double-resonant
driving of original FLICFORQ scheme (point at intersection of red lines). Equal drive
amplitudes are assumed for the latter two. At small drive strengths the cross reso-
nance e¤ect is proportional to 
=�, while o¤-resonant FLICFORQ coupling strength
goes only as (
=�)4. The horizontal and vertical red lines emphasize that satisfying
the matching condition 
2 + 
1 = !2 � !1 with resonant pulses constrains all the
available controls and thus does not admit tunability of the interaction strength.

We have therefore found a protocol with several advantages relative to our �rst

proposal in Chapter Three. The advantages as discussed there all apply. But now,

we need only control a single tone; the e¤ect is fully tunable and is switched on by

a frequency-only matching condition, a strong advantage given the ease with which

signal frequencies can be precisely controlled compared to signal amplitudes.

We have compared the e¤ective coupling strength found here to those obtained in

earlier proposals involving two driving tones, see �gure 5.2. Notably, cross-resonance

opens up the possibility of entangling pairs of broadly detuned, �xed-coupling qubits.

When the detuning is large, absolute limits on the drive strength�imposed by the ap-
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plicability of the RWA and the requirement to remain in the computational subspace�

necessarily place us in the regime of small 
=�. There, the only previous applicable

proposal, the o¤-resonant dual driving of Nori and Ashhab, gives rise to an e¤ective

interaction strength that vanishes as (
=�)4 [101], whereas cross-resonance e¤ects

an interaction that is linear in this parameter.

Working with larger detunings in turn makes it possible to use larger �xed cou-

plings while ensuring the separability constraint !xx << � is satis�ed, so any down-

ward adjustment in the interaction strength from the limits on 
 may be com-

pensated with an increased bare coupling. The applicability of cross-resonance to

broadly detuned qubits bears on the fabrication process, as well. There, the chal-

lenge of overcoming the natural spread in circuit parameters is greatly reduced when

our gate scheme can accommodate a large range of detunings.

In addition to the tunable coupling strength, cross-resonance also allows the cou-

pling direction to be tuned via the microwave signal. Each of the microwave signal

parameters thus plays an important role: the frequency switches on the coupling to

the target qubit; the amplitude controls the gate speed ; and the phase determines the

two-qubit gate.

We have veri�ed the analytic derivation of cross-resonance with simulations of

the full laboratory frame Hamiltonian master equation. The only approximation we

have made is the commonplace restriction of the qubit circuits to their two lowest-

lying states. We have, in particular, not made the rotating wave approximation(s)

as we did in the analytical treatment, nor have we kept only the DC terms in the

spectral decomposition of the Hamiltonian under the cross-resonance condition, as

we did in arriving to the e¤ective rotating frame Hamiltonian 5.10. Care must be

taken to interpret the results for the range of drive strengths where the two-level

approximation would be valid for the particular superconducting qubit circuit with
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Figure 5.3: Cross-resonance two-qubit gate time (time required to generate fully
entangled state from product state, and vice-versa) for three practical parameter
sets as function of absolute drive amplitude 
/2�. System parameters for the three
sets of simulations are shown in corresponding colors green, red and blue below graph.
Solid lines are from analytics (tent=�=2!effxx ) and the Fourier approach; points are
extracted from explicit simulation of full lab frame Hamiltonian master equation.
Inset: entanglement vs. time for point indicated by arrow at 
=0:5 GHz.
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which you�d like to implement the cross-resonance scheme. An analysis of state

leakage outside the computational subspace should otherwise be performed.

From the simulations, we may extract the two-qubit entanglement as measured

by the concurrence [85] as a function of time, and in turn the two-qubit gate speed

under cross-resonance. We �nd excellent agreement with the analytical results over

the broad and practical range of parameters tested.

Modulation depth and bandwidth The discussion of errors in Chapter three

applies also here, as all the hardware is nominally the same. The entanglement

bandwidth is now,

� =
!xx

4�
p
1 + (�=
1)2

� !xx
1
4��

(5.16)

and the modulation depth is,

� ' 1� 
2=!2
!2xx=�

2

� 100 = 20dB. (5.17)

Single tone sideband resonance The second entanglement resonance avail-

able in the single-tone experiment describes a Rabi sideband resonance. This type

of resonance has been exploited by us [105] and others [101] for two-qubit gates,

but only in the two-tone case. The one-tone case found here is a straightforward

simpli�cation, and like the two-tone instance it may be understood in the dressed

state picture.

The quad frame formalism is again useful to deduce the prevailing e¤ective Hamil-
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tonian under single-tone sideband resonance. Note that the relevant constraint equa-

tion is an implicit relation between the drive frequency and amplitude. Solving for

!rf1 the constraint becomes

!rf1 ! !21 + 

2
1 � !22

2(!1 � !2)
(5.18)

which, along with with the constraints imposing the single-tone situation (with the

tone applied to qubit 1),

f!rf2 ! !2; �2 ! 0; �2 ! 0; �2 ! 0g; (5.19)

yields the quad frame coupling matrix

M =
!xx
4

0BBBB@
0 0 0

� sin�1 � cos�1 0

� cos�1 sin �1 sin�1 sin �1 0

1CCCCA : (5.20)

This situation is also su¢ cient for universal two-qubit gates. It is interesting to

note that this case naturally incorporates the two extreme con�gurations we might

consider. The purpose of the drive, of course, is to push the qubits into some form

of resonance. Here, the spectral distance to be covered, �, may be made up of

either pure Rabi �opping when the tone is resonant (�1 ! 0, �1 ! 
1); or of an

AC Stark shift of the driven qubit when the tone is far detuned (
1 ! 0,�1 ! �1).

The presence of the mixing angle �1 in the sideband resonance e¤ective Hamiltonian

smoothly accounts for this entire range.

Finite crosstalk Any electrical circuit for implementing quantum bits will have

channels through which the microwave signals applied to one qubit will leak onto the
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Figure 5.4: Practical superconducting quantum circuits will always involve some
instrinsic crosstalk between signals applied to the individual qubit subcircuits.
Crosstalk can occur through the intentional couplings exploited for quantum gates,
or through stray e¤ective elements.

unirradiated qubits. This microwave crosstalk may occur through either intended

coupling channels �in the FLICFORQ case the capacitive or inductive elements used

to realize the weak non-secular couplings �or through stray elements unintended in

the circuit design. As FLICFORQ implies intended couplings in the regime where

!xx << �, the crosstalk through these channels will also be weak, but we cannot

necessarily say the same of the unintended crosstalk channels. They may emerge

from stray on-chip capacitances and inductances; from box modes of the sample

holder; from imperfections in the passive devices through which we couple signals to

chip, such as a hybrid or directional coupler. Indeed, they are notoriously di¢ cult to

pin down, and even harder to predict. For these reasons, it is important to consider

the possibility of crosstalk of the write signals.

Our preceding analysis is well suited to this task, as it lets us incorporate an

arbitrary level of crosstalk, with possible phase shifting of the crosstalk signal, into

the QFH of the single-tone experiment: we simply retro�t the general QFH results
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with a set of constraints that impose the crosstalk conditions. (With no loss of

generality, I will take qubit 1 as being intentionally irradiated, with qubit 2 feeling

only the crosstalk signal.) The microwave frequencies are set equal (!rf1 ! !rf2 !

!rf). The microwave amplitude of the unirradiated qubit becomes some fraction � 2

[0; 1], the crosstalk coe¢ cient, of the amplitude on the irradiated qubit (
2 ! �
1).

And the phases are equal but for the crosstalk phase shift � (�2 ! �1 + �).

With these relations imposed on the QFH, something seemingly magical hap-

pens: the QFH develops, without further restrictions, a static term whose strength

is determined by � and the drive amplitude and frequency relative to the qubit fre-

quencies. This e¤ect derives from the same ERC that gave us cross-resonance. As

the crosstalk parameter � is increased from zero, the cross-resonance condition loses

its delta function nature and becomes a broad e¤ect; the peak intensity moves slowly

from that of the cross-resonance without crosstalk case (peak at !rf1 = !2) to the in-

termediate frequency (!1+!2)=2 when the crosstalk is 100% (� = 1) and the system

becomes symmetric.This crosstalk resonance has been alluded to in earlier work by

Ashhab and Nori [106]. Our theory indicates that the Hamiltonian prevailing under

the crosstalk condition is

M =
!xx
4

0BBBB@
cos �1 cos �2 cos � 0 0

0 0 0

0 0 0

1CCCCA : (5.21)

This e¤ect may be made use of to entangle qubits. It is unique in that it does not

arise only through the satisfaction of a delta function matching condition. Instead,

the e¤ect is broadened by both the microwave drive level and crosstalk coe¢ cient.

At the same time, even if this is not the con�guration by which the experimentalist

is intending to couple the qubits, the crosstalk-induced coupling must be accounted
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Figure 5.5: E¤ective coupling strength under cross resonance in presence of mi-
crowave control signal crosstalk as function of drive frequency !rf and drive ampli-
tude 
 for two di¤erent levels of signal crosstalk. Qubit frequencies are indicated by
purple (Q1) and green (Q2) arrows. At zero crosstalk the cross-resonance e¤ect is
broadened by �uctuations in the drive signal photon number. The e¤ect broadens
as crosstalk is tuned on. Top: �=0:05; Bottom: �=0:85. At �=0:85, the range of
drive frequencies e¤ective at generating entanglement is dramatically broadened by
the presence of crosstalk. When a = 1 (not shown) the e¤ective couping stength is
symmetric about (!1 + !2)=2.
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for when interpreting experimental results.

Two-tone experiment

Constraints �1 � !rf1 � !rf2 = 0 The constraints

�1 � !rf1 � !rf2 = 0; (5.22)

�2 � !rf1 � !rf2 = 0; (5.23)

are the symmetric pairs associated with the condition where one of the drive tones

is �xed in both frequency and amplitude, while the other traces a path in the two-

dimensional control space f!rfa ;
ag. In these cases there is no dependence on one of

the drive amplitudes, so the matching condition is a constraint on three of the four

microwave knobs. The second entanglement resonance available in the single-tone

experiment describes a Rabi sideband resonance.

Solving the above we obtain

!rf1 ! !21 + 

2
1 � (!

rf
2 )

2

2(!1 � !rf2 )
(5.24)

which yields the quad frame coupling matrix

M = �!xx
4
cos �2

0BBBB@
0 0 0

sin(�1 + �2) 0 0

cos(�1 + �2) sin �1 0 0

1CCCCA : (5.25)

This situation is also su¢ cient for universal two-qubit gates. The drive strength


2 doesn�t appear in the constraint equation, leaving it free to adjust the gate speed,

again giving tunability of the coupling Hamiltonian.
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Constraints ��1 � �2 � !rf1 � !rf2 = 0 Last, and most complex are the twelve

constraints

��1 � �2 � !rf1 � !rf2 = 0: (5.26)

Satisfying them involves tracing a path in the full four-dimensional microwave control

space f!rf1 ;
1; !
rf
2 ;
2g.

Solving the above we obtain solutions

!rf1 ! 1

2
(!1 �

q

22 + (!2 � !rf2 )

2 � !rf2 (5.27)

�

21

q

22 + (!2 � !rf2 )

2

�!21 + !22 + 

2
2 � 2!

rf
2 (!2 � !1)

(5.28)

+

21(!1 � !rf2 )

!21 � !22 � 
22 + 2!
rf
2 (!2 � !1)

(5.29)

which yields the quad frame coupling matrix

M =
!xx
8
(sin �2 � 1)

0BBBB@
0 0 0

0 � cos(�1 � �2) sin(�1 � �2)

0 � sin(�1 � �2) sin �1 cos(�1 � �2) sin �1

1CCCCA : (5.30)

5.1.2 Protocols involving DC control of transition frequen-

cies

The earliest proposals for quantum gates involved DC control over the qubit frequencies[40].

With the constraints,

f!rf1 ! !1; !
rf
2 ! !2; �1 ! 0; �2 ! 0) (5.31)
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the modes are located only at

!1 = !2: (5.32a)

as we expect. The situation is trivial except for the instance where 3.1 is modi�ed to

include a secular coupling term. In that case, we obtain instead at mode present for

all �. This is the case in liquid state NMR, where the spins should be dynamically

decoupled in order to avoid entangling them under free evolution.

5.1.3 Protocols involving AC control of transition frequen-

cies

Another interesting case is when the qubit transition frequencies are harmonically

varied [87]. Here, we address the case where the rates and amplitudes satisfy

!zrfj ; �!j«!j. The Hamiltonian is,

2H=~ = (!z1 + 2�!1 cos(!
zrf
1 t+ �z1)�

z
1

+ (!z2 + 2�!
z
2 cos(!

zrf
2 t+ �z2)�

z
2

+ !xx�
x
1�

x
2 ; (5.33)

The Fourier technique can be applied to this case. We �nd entanglement resonances

at

!zrfj � !z1 � !z2 = 0:

That is, the qubits can entangled by modulating the transition frequency of one qubit

at the di¤erence or sum frequency j!z1 � !z2j with respect to the target qubit. When

this condition is met the e¤ective coupling strength again increases with the drive

strength �!j.

This entanglement resonance could be relevant to the systems recently used for
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two-qubit cQED experiments at Yale [144], where the modulation of !z could be

implemented through the �ux bias lines that address the qubits individually.

5.1.4 Protocols involving harmonic variation of the coupling

Many practical systems place the qubit�qubit coupling strength under experimental

control. The DC tuning case is straightforward. We turn in this section to systems

where one can harmonically vary the interaction strength !xx, as carried out exper-

imentally by Niskanen, et al[113]. The Hamiltonian is very very similar to 3.1, with

the substitution,

!xx ! !oxx + �!xx cos[!
rf
xxt] (5.34)

which we make prior to taking the Fourier transform of the Hamiltonian. There are

entanglement modes at

!1 � !2 � !rfxx = 0: (5.35)

whereat the e¤ective Hamiltonian is

2H=~ = 2�!xx(�1x�2x � �1y�
2
y) (5.36)

identical to the results of Bertet, et al obtained by di¤erent methods.

Crosstalk in the parametric pumping scheme

Of practical interest, there are also modes of the harmonically-varied coupling system

at

a�1 + b�2 + c!rf1 + d!rf2 + f!rfxx = 0 (5.37)

where

fa; b; c; d; fg = f0;�1g: (5.38)
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These can be used, with some care, to identify how the resonance condition is mod-

i�ed in the presence of crosstalk of the pumping signal onto the two qubits. When

the signal at !rfxx is the only one present but leaks onto each of the qubits, we have

modes at

!rfxx = �1 � �2

=

q
(�1
xx)2 + (!

rf
xx � !1)2 �

q
(�2
xx)2 + (!

rf
xx � !2)2 (5.39)

where �j is the crosstalk of signal applied to the coupling subcircuit onto qubit

j. When the crosstalk coe¢ cients become very small the condition reduces to the

results we found earlier in 5.36 and con�rmed by ref. [113, 42]. There are many other

modes to be investigated for this very interesting case. The results presented here

are incomplete, as a thorough examination of all the entanglement modes for the

various physical systems we have considered is beyond the scope of this work. What

we have presented should serve to demonstrate the utility of the Fourier approach,

and also to convey the richness of the space of possible solutions to the quantum

gate problem for even simple and idealized systems.

5.2 Three-Qubit Gates

The capability to perform two-qubit gates between at least all nearest neighbor

qubits in a quantum register is su¢ cient to generate an arbitrary transformation of

the system�s full computational Hilbert space. In principle, then, everything can be

done by addressing the qubits pairwise. However, the capability to perform quantum

gates that directly entangle n > 2 qubits greatly reduces the number of operations

needed to implement a computational task over a large Hilbert space [142]. Further,
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the correlations between observables on individual subsystems contain ever more

sophistication as the degree of communal entanglement grows. While Bell states of

the form,

j i = j00i+ j11ip
2

(5.40)

can be used to statistically rule out local hidden variables theories, the three-qubit

analog known as the Greenberger-Horne-Zeilenger (GHZ) state [72],

jGHZi = j000i+ j111ip
2

(5.41)

can in principle rule out such theories in a single measurement. In the case of another

well know three-qubit state,

jW i = j001i+ j010i+ j100ip
3

; (5.42)

wherein �though the system contains some information in the two- and three-body

correlations �the individual qubits retain some independent character, such an eigen-

value violation of Bell-type inequalities is impossible.

States of the GHZ form can of course be generated by cascaded application of

entangling gates between pairs in the three-qubit system. Here, we apply the Fourier

analysis technique to study the three-qubit quantum gate problem. We report pro-

tocols to directly generate GHZ-type states in a single step, both in the presence and

absence of a weak e¤ective three-qubit coupling in the system Hamiltonian.
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Figure 5.6: Equivalent circuit diagrams for systems implementing the three qubit
Hamiltonian. Qubits shown are of (a) quantronium variety or (b) Delft-style �ux
qubits. In each case, a �xed linear coupling is implemented between each pair of
qubits that is o¤-diagonal in the computational basis.

5.2.1 GHZ state production with DC control

We now turn to the study of three-qubit FLICFORQ style Hamiltonians

H =
~
2

2X
k=1

�
!k�

z
k + 2
k cos(!

rf
k t+ �k)�

x
k

�
+
~
2

3X
j;i=1;j 6=i

!ji�
x
j�

x
i + !123�

x
1�

x
2�

x
3 : (5.43)

There is now the possibility of realizing an e¤ective three-body interaction of the sort

!123�
x
1�

x
2�

x
3 . Circuits described by this Hamiltonian could be implemented by direct

extension of the two-qubit circuits discussed earlier; two possible designs are in 5.6.

A three-body interaction will emerge, for example, if three quantronium circuits in

the intermediate EJ=EC regime where neither charge nor phase are good quantum

numbers are coupled to a common superconducting island. E¤ective three-body

couplings in a superconducting circuit have been exploited in the Josephson ring
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modulator [143], and systems have been proposed using optical lattices [126].

We now discuss how we exploit such a term under the weak coupling assumption,

!123; !ji � j!j � !ij: (5.44)

In the two qubit case, the restriction to coupling strengths far weaker than the inter-

qubit detuning allowed us to safely ignore the second-order e¤ects of the coupling

unless the qubits were otherwise brought into resonance. This is not so in the presence

of an e¤ective three-body interaction, as we now show.

We again move to a special frame where the system dynamics are purely non-

local, then analyze the Hamiltonian in Fourier space to identify the entanglement

modes associated to 5.432.

We begin by analyzing the system in the absence of any irradiation. In that case,

we �nd an entanglement mode when the three qubit frequencies are matched,

!1 = !2 = !3 (5.45)

as we expect. The e¤ective Hamiltonian is purely non-local

4H=~! !12(�
x
1�

x
2 + �y1�

y
2) + !13(�

x
1�

x
3 + �y1�

y
3) + !23(�

x
2�

x
3 + �y2�

y
3); (5.46)

This trigonal resonance may certainly be of use, as it generates directly maximally

entangled states of the GHZ type in 5.41 up to asymmetries in the pairwise couplings.

When the trigonal symmetry is broken the Hamiltonian will produce states compris-

ing a portion of tripartite entanglement of the GHZ-type and a portion of partial

2There is a great deal of information present in the various entanglement modes, and a thorough
study of all of them is beyond the scope of this thesis. We limit the discussion here to those of
obvious interest.
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pairwise entanglement of the W type in 5.42. Note that �perhaps surprisingly �

even though the e¤ective Hamiltonian is symmetric it does not contain the three-

coupling term. This might lead one to the conclusion that the three-body interaction,

especially if it is weak, has little in�uence over the dynamics of the systems.

However, the e¤ective three-coupling term, even when it is much weaker than all

the other energy scales in the system 3 can in appropriate conditions be the dominant

driver of the system�s dynamical evolution.

Searching for entanglement resonances that contain the three-coupling term !123

immediately identi�es a mode, in the absence of irradiation, located at

!1 + !2 = !3 (5.47)

There, an e¤ective pure three-body interaction emerges in the rotating frame:

8H=~! !123(�
x
1�

x
2�

x
3 + �x1�

y
2�

y
3 + �y1�

x
2�

y
3 � �y1�

y
2�

x
3): (5.48)

This suprising result is emphasized. Even when the system is not irradiated and

with the individual qubits parked at frequencies such that !123 is the smallest energy

in the problem, i.e. !123 � !ji � j!j � !ij � !i , one can extract an e¤ective pure

three-body interaction Hamiltonian with this very simple prescription. Needless to

say, this Hamiltonian generates GHZ-type states from product states4. How can we

understand the existence of such an e¤ect? The condition !1+!2 = !3 implies that

any two qubits can conspire to jointly exchange energy with the third. It is thus a

sort of three-body secular point, the equivalent of the point !1 = !2 in a two-qubit

3And it is of course o¤ diagonal in the computational basis.
4We note in passing its resemblance to the well known Mermin operator[118]
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system that allows the two systems to freely exchange energy.

As with cross resonance, this e¤ect must also be considered when trying to im-

plement high-�delity one-qubit rotations in the presence of an o¤-diagonal coupling,

as it could lead to unwanted residual entanglement if not properly managed.

Simulations

We have veri�ed these analytical results with numerical simulations. In the case

where !1 = !2 = !3 we expect a three-qubit entangled state to emerge once ini-

tializing the system to the computational basis state j000i and letting the e¤ective

Hamiltonian act for time

TGHZ =
2�

!ij
� 2� 1

4
=

�

!ij
; (5.49)

where the factor of two comes from the strength of the e¤ective Hamiltonian and the

1/4 corresponds to the time for a �=2-rotation. For the test parameters (all units

GHz),

!i=2� = 7:3; 
i = 0;!ij=2� = 0:1;!123=2� = 0:01 (5.50)

the system indeed evolves from a fully factorable product state to a GHZ state in

time,

TGHZ =
�

2� � 0:1GHz = 5ns;

as shown in 5.7.

For the case where !1 + !2 = !3 and,

!1=2� = 5:00; !2=2� = 6:30;!3=2� = 11:30; (5.51)
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Figure 5.7: Generation of entangled three-qubit states by tuning to !1 = !2 = !3.
Qubits are not iirradiated. The interaction is due the the three two-body coupling
terms �x1�

x
2 ,�

x
1�

x
3 and �

x
2�

x
3 , which are energy conserving when the qubits are reso-

nant. The three-qubit coupling term �x1�
x
2�

x
3 is present but not e¤ective. The vertical

dashed line is the three-body entanglement time predicted from Fourier analysis of
the purely non-local Hamiltonian.
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with couplings

!12=2� = 0:13;!12=2� = 0:10;!12=2� = 0:11; (5.52)

!123=2� = 0:04 (5.53)

we expect TGHZ = 25ns, in agreement with the simulations of 5.8.

5.2.2 GHZ state production with AC control

We can also employ AC control over the qubit transition frequencies. In fact, the

most recent result can be adapted even if it is impossible to DC tune the qubits to

the three-body secular point, as there is an entanglement mode of the driven three

qubit system at,

!rf1 + !rf2 = !rf3 ; (5.54)

whereat we �nd

8H=~! !123�
x
1�

x
2�

x
3 cos �1 cos �2 cos �3 cos[�1 + �2 � �3]: (5.55)

The e¤ective three-coupling strength is maximized when each of the tones are nearly

resonant, though in the limit of that case the qubits will entangle in the absence of

irradiation.

Together, these AC and DC pure three-coupling entanglement resonances suggest

an experimental strategy for exploiting a weak5 three-body interaction to generate

GHZ states: through fabrication and circuit design aim the qubit frequencies to fall

(at optimal bias, if applicable) in the vicinity of the DC mode !1 + !2 = !3; the

5We emphasize that the pairwise two-body couplings are still present in the lab frame Hamil-
tonian. These modes just do not activate them.
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Figure 5.8: Generation of maximally entangled three-qubit states by exploiting a
weak three-body coupling term �x1�

x
2�

x
3 with DC tuning to the three-body secular

point !1 + !2 = !3. Qubits are not irradiated, and reduced density operator com-
ponents are rendered in their respective Larmor-precessing frames. GHZ-type state
emerges in 25ns, in agreement with the analytical predictions. Left : !123=2� = 0:04.
Right : Veri�cation that the entanglement is due to the three-body interaction by
setting !123=2� = 0. With other parameters identical, the e¤ect disappears.
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natural scatter in fabrication parameters will prevent this from occurring exactly.

If possible, use fast DC tuning to access the three-body secular point. Otherwise,

apply irradiation to access the AC entanglement mode !rf1 + !rf2 = !rf3 .

Simulations

For qubits of frequency

!1=2� = 3:85; !2=2� = 7:95;!3=2� = 12:30; (5.56)

with two-body couplings

!12=2� = 0:13;!12=2� = 0:10;!12=2� = 0:11; (5.57)

and a three body coupling much weaker,

!123=2� = 0:04 (5.58)

irradiated with drives tones,

!rf1 =2� = 4:00; !
rf
2 =2� = 8:00; !

rf
3 =2� = 12:00; (5.59)

of amplitude


1=2� = 0:19; 
2=2� = 0:13; 
3=2� = 0:21; (5.60)

167



the analytical result,

!eff123 =
!123
4
cos �1 cos �2 cos �3 cos[�1 + �2 � �3]

=
!123
4

cos[�1 + �2 � �3]q
1 + �21=


2
1

q
1 + �22=


2
2

q
1 + �23=


2
3

predicts a GHZ state will be produced from the computational basis state j000i in

TGHZ = 59:51ns.

Numerical simulations of the full three-qubit microwave driven Hamiltonian are in

excellent agreement with this analytic result. Also shown are simulations for the

identical system and input state, but with !123 � 0. The e¤ect disappears as we

would expect from the theory.

168



Figure 5.9: Generation of maximally entangled three qubit states by exploiting a
weak three-body coupling term �x1�

x
2�

x
3 . The qubits are detuned from one another

and from the three-body secular point !1 + !2 = !3, but irradiated with tones
satisfying the related condition !rf1 + !rf2 = !rf3 . The simultaneous vanishing of
all nine components of the three reduced density operators indicates a maximally
entangled three-qubit state. Left : !123=2� = 0:04. Vertical magenta line indicates
the point at which a maximally entangles three-qubit state emerges as predicted
from the Fourier approach. Right : Veri�cation that the entnaglement is due to the
three-body interaction by setting !123=2� = 0. With other parameters identical, the
e¤ect disappears.
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Chapter 6

Device fabrication

6.1 Overview

Mesoscopic electrical circuits typically have features ranging from about 50 nanome-

ters to 5 millimeters. As such, their construction places strong demands on the

resolution and dynamic range of the equipment and techniques used in the fabri-

cation process. The standard techniques used to produce them involve optical and

electron beam lithography for pattern de�nition; sputtering, electron beam evapora-

tion, and various chemical vapor deposition techniques for thin �lm deposition; and

a host of chemical etching processes. In this work we have made e¤orts to limit our

reliance on all but the most accessible of these tools, e-beam lithography and e-beam

evaporation. Even so, doing fab is a complex and complicated procedure, neither

pure science nor pure art, perhaps somewhat akin to baking. Details are important,

though it�s often di¢ cult to say just which ones matter and which ones don�t. This

chapter describes some design considerations and standard fab techniques we have

relied upon to make our qubit circuits.

Our aim is to fabricate two-qubit circuits to implement and test the microwave
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controlled coupling schemes derived in Chapter 3 and Chapter 5, speci�cally the

minimal and straightforward cross-resonance scheme. The circuits will comprise two

copies of a quantronium style qubit, with a capacitance added between the two qubit

islands to realize the non-secular coupling.

6.2 Standard fabrication techniques

The workhorse of our fabrication e¤orts is electron beam lithography with shadow

mask evaporation. These procedures are established, �exible, straightforward, and

o¤er very fast turnaround from design to room temperature testing. In what follows

I describe the fabrication of a typical device employing these workhorse techniques.

I then comment on how other key procedures complement them and expand the

fabrication toolbox.

6.2.1 Typical device fabrication by e-beam lithography and

shadow mask evaporation

Substrate preparation

Our standard fabrication typically begins with a high resistivity (typically � >

20; 000
�cm) 300�m-thick two-inch wafer of Boron-doped silicon with only natu-

rally occurring oxide. Devices can be fabricated directly on the weakly conducting

silicon substrate, or we can add an insulating layer to facilitate the simple measure-

ment of room temperature circuit resistances. We have used both silicon nitride1

and thermally grown silicon oxide as an insulator.

The wafer must then be prepared with a bilayer resist. The bottom layer of

the bilayer resist is chosen to be more sensitive to exposure to an electron beam,
1Deposited by Plasma-Enhanced Chemical Vapor Depostion.
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allowing the it to removed from underneath an intact top layer in certain regions.

This undercut is an essential part of the shadow mask technique.

The wafer is cleaned in a sonic bath of isopropanol then methanol and dried with

nitrogen, then spun at approximately 3000rpm with a resist of methyl methacry-

late/methacrylic acid copolymer dissolved in ethyl lactate. We have used theMMA(8.5)MAA

Copolymer Series Resists from the MicroChemCorporation, with the particular resist

and the spinning speed chosen to generate a layer thickness tailored to the particular

device and fab procedure. Our devices have used a �rst layer thickness ranging from

650nm to 1:2�m. For thicknesses at the top extreme of this range two layers of MMA

are typically required.

After spinning the wafer is baked for 5min at 170�C; cooled for 1min; then spun

at approximately 4400rpm with a resist of polymethyl methacrylate in ethyl lactate

(we have used primarily the PMMA 950k series). The device is then baked under a

ventilated petri dish for 30min at 170�C.

The wafer with bilayer resist is at this point either diced into chips suitable for

one or a few devices, or, if required, an entire wafer of SEM alignment marks is

written and deposited in Au and Ti before applying a second bilayer for the actual

device fabrication.

Electron beam lithography

Chips of approximately (3-5mm)2 are mounted in the FEI Scanning Electron Micro-

scope for patterning with the electron beam. A layered pattern is composed using

a computer aided design program (we have used primarily AutoCAD, though there

are far better alternatives. Layers are assigned an electron beam spot size, and indi-

vidual elements are assigned current doses. Once the chip is aligned, the SEM beam

is focused and the stigmatism is corrected, the system automatically executes the
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Figure 6.1: Optical image of a shadow mask for a coupled qubit device. Qubits are
located at the ends of �=4 coplanar stripline resonators, and coupled with a capacitor
between their islands.

de�ned pattern of current doses.

The patterning by electron beam beaks chemical bonds in the resist, introducing

a di¤ering solubility of the exposed vs unexposed regions and between the top and

bottom layer of the resist in certain solvents. We use the solvent methyl isobutyl

ketone in a 1:3 ratio with isopropanol to develop the pattern for 60s, followed by 10s

in pure isopropanol to remove the MIBK and stop the solving.

The chip has now been patterned with a lithographically de�ned shadow mask.

Where both layers of resist have been removed, the substrate is exposed; where

only the bottom layer is removed, there is a region of undercut accessible through

an angled exposure to the evaporated metal. We now view the pattern under an

optical microscope to check for obvious defects and signatures of successfully de�ned

features smaller than the di¤raction limit. Some typical images of successful devices

are shown below.
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Double angle evaporation

The patterned chip is mounted in an electron beam evaporator for metal deposition.

The loadlocked system is pumped down to a pressure of approximately few x10�7T

in the loadlock and 5 x 10�8T in the main chamber near the metal target. Aluminum

is deposited at a rate of 1nm/s to a predetermined thickness, usually in the 30-60nm

range at an angle. A mixture of Argon and Oxygen is introduced into the loadlocked

portion of the machine bringing the pressure up to the 10�4 to 10�2T range, and the

device is left to oxidize for a duration of 5-20minutes. The pressure and duration

of this oxidation step are the main parameters we adjust to generate Josephson

junctions having the desired critical current densities.

After the oxidation step, the argon/oxygen mixture is pumped out of the system

and a second evaporation is performed at a di¤erent angle. The angles are chosen such

that they produce a shift between the two pattern images commensurate with the

device design. In order to realize a particular circuit topology, it may be necessary

to choose the angles and doses such that certain portions of the pattern are not

deposited on the substrate but rather on the wall of resist, ensuring it will not be

removed in the subsequent lifto¤ step.

After the second evaporation the chip is removed and the resist along with the

metal deposited on it are lifted o¤ by dissolving the resist in acetone at 65�C.

6.2.2 Bridge/ledge hybrid

The above procedure is powerful and �exible, but it is not without limitations. One

limitation is the size constraints on features imposed by the strength of the resist.

Making large junctions typically requires some combination of a large image shift

(sharp evaporation angles, thick resist) and a long suspended PMMA bridge. But
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Figure 6.2: Double angle evaporation using a bridge/ledge hybrid shadow mask. The
large junction is not formed by depostion under a bridge, while the small junctions
are.

it is challenging to fully remove a thick underlayer of MMA from beneath a PMMA

bridge without weakening it to the point of sagging or collapse. Furthermore, the

thick resist, heavy current doses to remove large regions of the bilayer, and large

shifts are conditions that make it very challenging to produce reliable, repeatable,

and symmetric pairs of small junctions, as required for our typical quantronium style

qubit devices.

To address these issues I have used a shadow mask design that combines Dolan

bridges, where the evaporated metal travels under a bridge, for the small junctions

with simple ledge shielding, where the metal travels in part under a ledge but mostly

175



has a clear path to the substrate, for the large junctions. In this case the required

resist thickness is reduced, and the sensitive dose settings under and near the large

bridge are done away with, generally making the shadow mask more robust.

This hybrid shadow mask technique has made it possible to reduce the asymmetry

of two small junctions to better than 1%.
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Chapter 7

Experiments

7.1 Introduction

We have carried out microwave measurements of coupled qunatronium circuits in the

CPS geometry in a dilution refrigerator at 20mK.

7.1.1 Previous Measurements

Readout of Superconducting Qubits via a Dynamical Bifurcation

Earlier measurements in Prof. Devoret�s group at Yale have established �rst the

Josephson Bifurcation Ampli�er (JBA) [139, 140, 131] and later the closely related

Cavity Bifurcation Ampli�er (CBA) [132] as single-shot readouts for superconducting

qubits. Though they di¤er in the details of their implementations, these two tech-

nologies exploit the current-dependent inductance of an added Josephson junction

in the quantum circuit to construct a non-linear oscillator which, when the readout

is switched on, is coupled to the mode storing the logical state of the qubit. Very

generally, a non-linear oscillator displays a dynamical bifurcation. Here, its coupling

to the qubit mode means the onset of the bifurcation depends on the logical state of
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the qubit. The switching of the non-linear oscillator between one of two meta-stable

oscillation states is then detected in the phase of the microwave signal re�ected o¤

the device.

The JBA + Quantronium Early measurements of quantum bits in implemented

in superconducting circuits measured the logical state with a DC switching measurement[26].

There, an added Josephson junction was again coupled to the qubit mode, making

the e¤ective critical current of the readout junction dependent on the logical state

of the qubit. By ramping the current through the junction to a midpoint between

the two state-dependent critical currents, the state could be inferred from the ob-

servation of a voltage pulse indicative of a switching of the readout junction to the

resistive regime.

The JBA was developed as an alternative to this DC switching method that

allows faster repetition rates1, less backaction of the readout onto the qubit mode,

and a greater sensitivity. It�s operation involves driving the readout junction with

an RF current pulse rather than a DC pulse. The dynamics of the driven oscillator

is described by

CS'0
d2�(t)

dt2
+
'0
R

d�(t)

dt
+ I0 sin(�(t)) = IRF cos (!dt) (7.1)

Here is � is the gauge-invariant phase di¤erence across the junction, I0 is the critical

current of the junction, CS is the shunt capacitance, R is the source impedance of

the current drive and provides damping, !d is the drive frequency and '0 = ~=2e is

the reduced �ux quantum. The sine term whose origin is the current phase relation

of the Josephson junction[137], is the source of non-linearity in the oscillator. Under

1In the DC current pulse technique, quasiparticles �ood the circuit when the readout junc-
tion switches to the resistive state, a problem which ultimately limited the repetition rate for the
experiment of Vion et al.
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Figure 7.1: Non-linear resonance curves in a driven Josephson oscillator as a function
of relative detuning 1 � !d=!p and drive amplitude IRF=I0. !p is known as the
plasma frequency and is the frequency for small oscillations. The resonance curves
bend over as the drive ampltude is increased and become multi-valued for certain
parameters. In this regime, for a given drive frequency and amplitude, there are two
stable solutions (�) separated by an unstable saddle point (o). Maximum response
for small amplitude oscillations occurs at !d = !p. For higher drive amplitudes,
maximum response occurs at frequencies below !p. The sign of the �rst non-linear
term, which is negative in our case, determines the direction of this shift.

appropriate driving conditions, this non-linear oscillator can have two steady driven

states di¤ering in amplitude and phase[138, 139]. We will call these two states as the

low amplitude state (OL) and the high amplitude state (OH) respectively. Fig. 7.1

shows the non-linear resonance curves for such a system. The �gure shows a plot of

the normalized oscillation amplitude (�max=2�) as a function of detuning (1�!d=!p)

for di¤erent drive current amplitudes.

For small drive amplitudes the response is the familiar Lorentzian response we

would expect of a linear system. But as the drive current is increased, the oscillation

amplitude increases, and the dynamics begin to sense the underlying non-linearity.

The resonance curves start to bend towards lower frequencies2, a tell-tale sign of the

2The direction of bending of the resonance curves is determined by the sign of the non-linear
term; here, we have sin (�) ' ���3=6 and hence the resonance curves bend towards lower frequencies.
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Figure 7.2: Schematic of a JBA coupled to a Quantronium qubit. The non-linear
readout oscillator formed by large junction in parallel with shunt capacitance is
energized through di¤erential mode RF signals (green) applied across the cricuit.
The readout is coupled to the even qubit mode (blue) through the shared large
junction. The readout is turned on by sending to the read port an RF pulse; the
phase of the re�ected signal encodes the result of the measurement of the (spin-1/2)
qubit operator �z on thge qubit mode.

non-linear behavior. For larger drive amplitudes, the solution becomes multi-valued.

The two stable solutions are indicated with crosses for the curve with the largest

drive amplitude (red) while the unstable solution is marked with a circle.

For a given drive frequency, the onset of bistable behavior depends on the ratio of

the drive amplitude IRF to the readout junction�s critical current Io. By coupling the

qubit mode to the readout mode through a shared large readout junction, Io may be

made to depend on the qubit state when the RF drive is applied across the readout

junction [140].The JBA allows single-shot readout of a superconducting qubit with

no on-chip dissipation and thus very fast repetition rates.

The shunt capacitors in the quantronium + JBA setup are employed to lower the

plasma oscillation frequency from the bare value in the 40GHz range a dressed value

in the 1-2GHz range, where the circuit is well described by a lumped element model.

Fabrication of the large, typically 30pF, capacitors is straightforward, but their large

dimensions have two undesirable e¤ects. First, it is not easy to fabricate a pure

capacitance at microwave frequencies, and stray e¤ective elements �namely a stray

inductance �can dilute or even destroy the bifurcation phenomena within the range
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of interest. Second, the sheer size of the capacitors make scaling to multiqubit circuits

challenging. In the original JBA work we used capacitors measuring 300�m�300�m,

and one can immediately see the problem in building multiple copies of such devices

in close enough proximity to realize a useful coupling between the two qubit modes.

See R. Vijay�s Yale Ph.D. thesis [131] for a complete study of the JBA and its

application to reading out superconducting qubits.

These factors, in addition to the goal of pushing the limits of the JBA by op-

erating it at higher frequencies, prompted a new incarnation of the bifurcation am-

pli�er wherein the Josephson junction whose inductance contributes the essential

non-linearity to the readout scheme is embedded in a geometrically de�ned transmis-

sion line resonator.

The CBA + Quantronium Geometrically de�ned coplanar waveguide (CPW)

transmission line resonators can easily be built in the range of typical qubit frequen-

cies of 5�20 GHz and with internal quality factors into the 106�s [123]. The CPW is

a planar cross-section of a coaxial cable, comprising two large ground planes sym-

metrically separated from a narrow center conductor. By interrupting the center

conductor of such a transmission line resonator with a large Josephson junction, the

resonator can be made non-linear and employed again as a bifurcation ampli�er.

In this version, coined the Cavity Bifurcation Ampli�er (CBA), operating fre-

quencies can be controlled through geometry without the risk of introducing stray

elements. They may be fabricated in a planar lithographic process with optical litho-

graphy for the resonator preceding electron beam lithography for the junction. The

resonance frequency of the CPW resonator is determined, for a given substrate and

enclosure, by its length. The center conductor is interrupted in two places to de�ne

input and output capacitances,Cin and Cout. These capacitances determine the rate
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at which energy may be added to and extracted from the resonator mode, as required

to both energize the non-linear oscillator and then to measure its oscillation state to

readout the measurement result.

The CBA resonance displays similar behavior to the JBA, and is operated in an

equivalent manner. It has been used by Metcalfe et al[145] to measure the state of a

quantronium style qubit embedded in the CPW.

Though it nicely solves the problems of operation at higher frequencies, the CBA

still leaves complications when it comes to implementing multi-qubit circuits. The

readout in this in-line geometry is coupled to the current in the center conductor of

the CPW, the readout cannot be placed too near the end of the resonator, where

the current is zero. If the qubit is to accompany the readout in a quantronium

style circuit, this means the qubits themselves will be physically far apart. Adding

additional lines to couple charges or �uxes from one qubit to another is troublesome

in the presence of the all-over ground planes. One solution is to place a few qubits in

each resonator, though this necessarily reduces the extent to which each qubit may

be individually manipulated and measured.

Coplanar Stripline Resonator These problems have been addressed by fabri-

cating the geometric resonator rather from a coplanar stripline resonator. Coplanar

striplines consist of two microstrips of width W separated by distance S atop a

conductor-backed dielectric of thickness D, with the resonator de�ned by a sym-

metric input capacitor on of the lines. This geometry is better suited to multiqubit

devices. The striplines do not call for an all-over ground plane as with the CPW,

and the readout junction and qubit circuit may be fabricated at the open end of a

�=4 resonator.

As we saw in the description of the JBA coupled to a quantronium style qubit,
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the readout mode is the di¤erential or odd mode that drives current through the

large readout junction, while the qubit mode corresponds to the even mode that

drives symmetric current through each of the small junctions of the SET.

In the CPS version of the Josephson bifurcation ampli�er, the even and odd mode

are each launched onto the chip through the same line and (nominally symmetric)

input capacitances, and are separated outside the sample box with a 180� hybrid.

Odd mode signals launched into the resonator drive current through the large readout

junction and thus energize the readout, while even mode signals symmetrically raise

and lower the potential of the small SET island and thus drive symmetric currents

through the SET junctions. In an ideal device these modes are orthogonal, though

in reality they can mix both on- and o¤-chip through broken circuits symmetries

originating from device imperfections (e.g. the two SET junctions aren�t identical),

imperfect bias conditions, or imperfect mode isolation in the 180� hybrid, among

other sources.

There are two central bene�ts of the CPS with read/write signal multiplexing

arrangement. First, the CPS resonators require only comparatively small regions of

the chip to be metallized. This makes it much easier to bring two nominally indepen-

dent qubits close enough to one another to couple them with a simple capacitance.

And it allows the fabrication to be done using a one-step all electron beam lithog-

raphy process3. Second, it allows us to do away with the gate line previously used

in the experiments on the JBA + quantronium to control the qubit mode, again

facilitating the coupling of the SET islands of respective qubits to one another via a

simple and small capacitance.

The CPS incarnation of the JBA/CBA is shown below.

3In trying to realize now two qubit circuits with the right parameters, the faster turnaround
time all e-beam process a¤ords is more than welcome.
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Figure 7.3: Superconducting circuit implementing coupled quantronia in coplanar
stripline (CPS) geometry. a. Optical image of chip ~3mm2 chip. Control signals are
launched onto chip via large bonding pads (top and bottom rectangles), connected
to interdigitated CPS resonator input capacitor. At left with scratches are probe
pads for test quantronia. b. SEM images of the individual quantrium subcircuits
terminating the CPS resonators. Qubit islands are topologically exposed, making it
easy to achieve inter-qubit capacitive coupling. c. Equivalent circuit diagram. All
control signals are coupled to CPS even (write) or odd (read) mode.

7.1.2 Aims

Our aim in our measurements was to test the microwave protocols for performing two

qubit gates we developed in chapters 3 and 5. To facilitate the extension to two and

possibly more qubits, we have adapted the design and operation procedures of the

CBA + quantronium and JBA + quantronium experiments to an implementation

where it is possible to retain full read and write control over each qubit independently

as additional qubits are added to the circuit.

With that in mind, the �rst aim of our measurements was to establish the coplanar

stripline geometry as a functional incarnation of the JBA. The second aim was to

demonstrate the simultaneous independent operation (i.e. both independent control

and readout at the same time) of two superconducting qubits on the same chip. Our

third aim was to demonstrate that a �xed weak non-secular coupling could be used to

deterministically entangle superconducting qubits, and to test some of the coupling
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protocols developed in chapter 3 and chapter 5.

7.2 Experiment design

The samples we have measured comprise two capacitively coupled coplanar stripline

quantronia (cCSQ) fabricated on a high resistivity silicon chip. A mounted sample

is shown �gure 8.5. Microwaves are launched onto the chip through a Southwest

Microwave edgemount connector that is secured directly to the printed circuit board

and substrate that carry the signals to the edge of the silicon chip. Each qubit

requires two signal-carrying lines. At the sample holder these correspond to one line

per arm of the CPS resonator; above the hybrid, they correspond to one line for each

of the readout and control microwave signals. We now describe the details of this

microwave measurement setup.

7.2.1 Measurement setup

Experiments were performed in a dilution refrigerator from CryoConcept at an op-

erational base temperature of 20�30mK. The measurement setup is shown in 7.4.

Microwave readout setup

Readout excitation Microwave pulses at the readout frequency are sent to the�-

port of a Krytar 6�20GHz 180� hybrid[127] through a -13dB directional coupler, also

from Krytar. The hybrid splits the pulse into a di¤erential signal across the its two

output ports, which in turn are connected to the arms of the CPS resonators through

input capacitors. The microwave readout pulses were created by direct conversion

through a two-level mixing chain. Mixers are from Marki Microwave. DC-going
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Figure 7.4: Cryogenic microwave measurement setup for our experiments on capaci-
tively coupled qubits.
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pulses to drive the IF ports of the mixing chain were created in Burst and Arb mode

of an Agilent 33250A 80 MHz Arbitrary Waveform Generator.

Readout detection The re�ected readout signal, which contains encoded in its

phase the state of the qubit mode, is recombined into a symmetric signal with respect

to ground on its return path through the 180� hybrid. The signal travels through the

directional coupler and two cryogenic circulators to a HEMT ampli�er operated at

4k, then an additional microwave ampli�er at room temperature. The signal is trans-

formed to DC by mixing it with a copy of the original excitation signal, then again

ampli�ed with a Stanford Research Systems SR445A DC�350 MHz preampli�er.

The voltage signal is �ltered and sampled by an Acqiris digital sampling card.

Statistics are accumulated by repeating the measurement approximately 104 times.

When histogrammed, the voltage levels show a well separated bimodal distribution

corresponding to the two oscillation states of the non-linear oscillator. The amplitude

of the readout excitation pulse is adjusted to control the weight in each mode of the

histogram.

Microwave �write�setup

Microwave pulses are produced by driving the internal IQ modulator of an Agilent

E8251A source with pulses from a Tektronix 1GS/s Arbitrary Waveform Generator.

The pulses are sent to the �-port of the 180� hybrid which splits the signal into two

symmetric copies relative to ground before passing to the qubit through the CPS

resonator. As the SET islands have capacitance to ground, these even mode signals

symmetrically drive currents through each junction of the SET.
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DC biases

Flux A cold coil mounted approximately 5mm from the sample is connected though

lossy copper powder and epoxy �lters to a Yokogawa voltage source. The voltage

applied to the coil allows the control of a global �ux bias for both qubits, but not

of each independently.

Charge The qubit circuits are charge biased with either a Yokogawa 7651 Pro-

grammable DC Supply, or, when performing charge sweeps, with an Agilent 33250A

Arbitrary Waveform Generator. The DC control signals are resistively divided and

passed through re�ective low-pass �lters and lossy low-pass �lters, once at room tem-

perature and again at 4k. The signals are then applied symmetrically to each arm

of the resonator through bias T�s at both the � and � ports of the 180 hybrid.

7.3 Measurement Results

We have measured two samples of capacitively coupled superconducting qubits. The

samples are fabricated in the quantronium style using a bridge/ledge hybrid shadow

mask and coupled to CPS versions of the JBA / CBA. We now highlight the results

of these measurements.

7.3.1 Qubit Readout

Phase diagrams

We have veri�ed the non-linear behavior of our CPS readout resonators by measuring

the phase of the re�ected di¤erential mode signal. For a series of discrete frequency

steps near the linear resonance point we ramp the power adiabatically with respect

to the switching dynamics of the non-linear and monitor the re�ected signal [131,

188



Figure 7.5: Characteristic phase diagram for a CPS resonator implementation of the
JBA/CBA. The linear resonance displays a quality factor of 80, and a bistable region
appears around 9.50GHz. Data were taken on Qubit 1 of sample CSQNOV07.

139, 140]. A plot of these data show the signal phase as a function of power and

frequency, and should demonstrate a characteristic bending of the linear resonance to

lower frequency as the power is increased. A characteristic phase diagram is shown

below. The extracted resonator Q for the linear resonance is 80.

Readout performance

Readout protocol To readout the state of the qubit mode we follow the procedure

developed by Siddiqi et al [131, 139, 140]. A di¤erential mode microwave pulse at

a drive frequency !d slightly detuned below the resonance frequency !p is applied

to the quantum circuit. The readout pulse has a �latching�shape as shown below.

The return signal is mixed to DC, digitized, and sampled. The sampled voltages

are histogrammed as the experiment is repeated many times with a minimal time

separation of a few T1 to ensure the qubit is in its ground state. The parameters

of the readout may be adjusted to maximize the separation of the two peaks in the
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bimodal histogram.

Tuning the readout protocol The power is ramped, at a rate limited by the

quality factor of the linear resonance, to a point Platch, to be optimized in what fol-

lows, near to the critical point where switching to the higher of the two bistable states

occurs with probability Pswitch. A histogram of the phase, encoding the switching

events, is created for a range of values of Platch. As this latch power increases so does

Pswitch, and the weight of the histograms in the switched state maps out a sigmoidal

curve nicknamed an s-curve.

To optimize the readout, the procedure is repeated with the qubit now in the

excited state. The excited state s-curve will be displaced and stretched relative to

the ground state s-curve. The optimal operation point of the readout, i.e. the latch

level Platch and the frequency !d, are those at which the spread between the ground

and excited state s-curves show the largest separation, a number called the contrast

of the readout.

S-curves Earlier results on the JBA + quantronium and CBA+ quantronium have

obtained maximum s-curve separation between the ground and �rst excited state of

35% and 50%, respectively [131, 132]. Our results, shown below, demonstrate an

80% separation.

We have not conclusively identi�ed the source of this improved contrast, though

the di¤erences between the 80% separation we have observed and the earlier observed

values are too large to be due simply to decreased relaxation of the qubit being

measured.
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Figure 7.6: High raw visibility of coplanar stripline quantronium circuit. Left: S-
curves: switching probability as a function of readout pulse latch level with no qubit
control pulse (blue), �=2-pulse (green), �-pulse (red). Location of maximum sepa-
ration indicates optimal readout pulse height. A perfect projective quantum mea-
surement would have a separation of 100% between the red and blue curves, with
the green curve always midway between the two. middle: Sample Rabi oscillations.
Points correspond to mean switching probability for 2000 individual measurements.
Fit (blue) indicates raw visibility of 87% in the Rabi trace.

7.3.2 Qubit Control

DC Modulations

The JBA readout is sensitive to the curvature of the energy surface, and this allows us

to characterize the properties of the ground state of the quantum circuit by measuring

the switching probability as a function of the circuit bias point in charge and �ux. In

addition to measuring the energy surface, this technique can spectroscopically probe

the systems transitions, see �gure.

Rabi oscillations

We have carried out individual qubit Rabi oscillations experiments on two separate

samples of capacitively coupled quantronium-style qubits with CPS resonator read-

outs. By performing synchronous Rabi experiments on each qubit of the coupled

qubit sample, we have demonstrated simultaneous independent manipulation and

read out of two interacting quantum circuits. The Rabi oscillations protocol, and
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Figure 7.7: Gate and �ux modulations of a quantronium circuit with CPS readout
resonator. In the bottom data we have added a spectroscopic tone to the even mode
at 16.137GHz, and aditional features corresponding to the qubit 0 ! 1 transition
are visible.
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Figure 7.8: Pulse protocol for Rabi oscillations experiment. A qubit control pulse
of amplitude 
 and duration tRabi is applied to the circuit�s even mode, followed
immediately by a latching readout pulse applied to the odd mode. The duration tRabi
is increased in 1ns steps, then the procedure repeated � 103 times, and switching
histograms are constructed for each tRabi.

resulting data, are depicted below.

In the Rabi oscillation experiment, an even-mode microwave pulse at the qubit

transition frequency and lasting tRabi is applied to the circuit, inducing a rotation

about �x whose angle is determined by the integrated pulse angle. By limiting to

�at top pulses, we can drive the system continuously between the states j0i and j1i.

Immediately after the Rabi pulse an odd-mode readout pulse is applied to the system

to readout the state of the qubit. By building up switching probability histograms for

each time duration tRabi we can map out a sinusoidal variation corresponding to the

state�s driven precession. The data support the conclusion that we have fabricated

and controlled two quantum bits each having independent read and write capability.
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Figure 7.9: Simultaneous independent control and readout of two coupled supercon-
ducting qubits. A Rabi train of microwave pulses was applied to qubit 1 at 15.60GHz
and to qubit 2 at 16.50GHz. Pulses were produced by splitting the output from a sin-
gle Tektronix AWG channel and using each copy to drive a direct conversion mixing
setup with an LO signal at the respective microwave frequency. Readout pulses are
also synchronous, but orginate from separate Agilent 80MHz AWG�s, each enslaved
to the master clock of the Tektronix AWG.

7.3.3 Qubit�qubit Coupling

Cross-resonance irradiation

We have obtained preliminary evidence to support our proposed cross-resonance

irradiation scheme of Chapter Five. We performed the following experiment in an

attempt to observe a signature of this e¤ect. First, we perform a Rabi oscillations

experiment on Q2 over a range of frequencies to locate its transition. Once Q2

is located, we switch the Rabi pulse train that was resonant with Q2 to Q1, and

measure Q1. Note that the presence of the cross-resonant e¤ect doesn�t depend on

the frequency of Q1. However, the observed oscillation frequency on Q1 as a result

of the drive will increase with the � = � = j!1 � !2j, while the e¤ective coupling

strength !effxx will decrease with �.

During a cross-resonant pulse on qubit 1 of amplitude 
 and phase � = 0 the
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e¤ective rotating frame Hamiltonian is

H =
!xx
4
cos ��x1�

x
2 (7.2)

where the angle � is given by

cos � =
1p

1 + (�=
)2
: (7.3)

The measurement of the switching probability of Q1 should reveal oscillations at the

frequency � =
p
�2 + 
2with nodes or beats at a frequency

!effxx =
!xx
2

1p
1 + (�=
)2

where the amplitude of oscillations goes to zero provided the microwave pulse is

properly tuned to !rf = !2. The beats correspond to a reduction of the expectation

values of the local measurement operators h�zi due to the generation of entanglement,

and occur every tent = �=(2!effxx ).Unfortunately, our measurement was hampered by

a rather unstable bias point of qubit 1, and to a lesser exent of qubit 2. Also, I did not

have the microwave equipment required to simultaneously drive and measure both

qubits at the time these data were taken, as would be required to conclusively identify

both qubits�transition frequencies under the bias conditions of the measurement.

We can, however, get a qualitative estimate of the bare coupling strength !xx by

taking into account the amplitude of the induced Rabi oscillations of the measured

qubit 1 due to the drive at !2, as this amplitude gives an approximate indication of

the ratio 
=�. This leads to the estimate that !xx=2� � 7MHz.

A more complete measurement would identify conclusively the transition fre-

quency of each qubit under the operating conditions. This could be done most easily
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Figure 7.10: Rabi beating of two superconducting qubits subject to cross-resonance
irradiation. Q1 is irradiated at the transition frequency of Q2 (16.331GHz), and the
state of Q1 is read out. Di¤erent traces correspond to di¤erent drive powers. The
e¤ective coupling strength !effxx depends on the drive amplitude 
 and the detuning
� = j!1�!2j, and has a maximum value of !xx=4. A node in the oscillations appears
every tent=�=2!effxx . The complete cancellation of the oscillations at the node occurs
when !rf1 = !2.
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Figure 7.11: Observed e¤ective coupling strength as a function of the rms drive
signal voltage. The data does not cover a large enough range to distinguis linear vs.
quadratic dependence. The red points are extracted from the above beating data
and the grey line is a linear �t.

by stepping the drive signal frequency of the Rabi tone through a range covering both

the irradiated qubit�s transition frequency and unirradiated qubit�s transition. The

irradiated qubit should then develop a beating in its Rabi signal when the tone be-

comes cross resonant. Repeating this procedure for a large range of drive amplitudes

would allow a more conclusive observation of the cross resonance e¤ect.
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Chapter 8

Conclusion

8.1 Conclusions

The central results of this work are the strategies we have developed for entangling

superconducting quantum bits and some of the techniques we have adapted to the

task. We began by formalizing some tools of general utility in quantum computa-

tion and particularly in solving the quantum gate problem, including the discretized

Hilbert space and the n-qubit generalization of the familiar Bloch equations.

Our results on discretization of the two-qubit Hilbert space �and the straight-

forward extension to larger systems �suggest that the continuity of Hilbert space,

and not merely the existence of entangled states within it, is the essential property

allowing the exponential speed up of certain quantum algorithms over their classi-

cal counterparts. Maximally entangled states emerge in a computational paradigm

where such a speed up would be impossible. It is worth noting that this conclusion

is contrary to the beliefs of many researchers in quantum information and quan-

tum computation, who tend to overemphasize the power of entanglement alone as a

computational resource.
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We proposed several schemes for performing two-qubit gates in superconducting

qubits. Our FLICFORQ scheme demonstrates that a switchable qubit-qubit coupling

can be achieved without tuning the qubit frequencies nor the coupling subcircuit, al-

lowing two-qubit gates to be performed at the optimal bias point, an operating con-

dition that can dramatically improve qubit performance. Our cross-resonance gate

scheme compliments and improves upon this result. It requires a single tone applied

to one of the two qubits to be entangled, and results in a coupling strength that

increases with the amplitude strength of the tone. In other words, the non-linearity

of the qubit circuits themselves can be used to achieve a tunable interaction. These

schemes achieve a two-qubit gate on/o¤ ratio of 20dB, with limits set by residual

entanglement during one-qubit gates when the �xed couplings are not refocused or

otherwise compensated, and doing so would allow much large ratios. The emergent

theme is clear: there is no fundamental need for complicated tunable sub-circuits to

couple our qubits. Simple linear couplings are su¢ cient.

The cross-resonance protocol emerged from a powerful (and to our knowledge

original) approach to the quantum gate problem: Fourier analysis of the qubits�

Hamiltonian in a special multiply-rotating reference frame where the system dynam-

ics are purely non-local. The technique can be applied to a broad class of quantum

computing systems. It can identify gate protocols that use DC or microwave control

over the qubits or the couplings, or a combination thereof. Importantly, the approach

is comprehensive: it identi�es all the con�gurations of available controls under which

a desired e¤ective Hamiltonian emerges.

A study of the three qubit case with the Fourier approach has led us to the

following prediction: with simple DC control over one of the qubit frequencies, a

very weak three-body coupling term present in the Hamiltonian can be made to
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dominate the full system dynamics even when the qubits are mutually far detuned

from another. This e¤ect opens up the possibility for direct generation of GHZ-type

states.

We have designed, fabricated and measured two-qubit circuits with the aim of im-

plementing two-qubit gates with our proposed protocols. The measurements, though

inconclusive, o¤er strong support for the validity of the cross-resonance scheme. We

have observed the anticipated beating in the Rabi oscillations of the cross-driven

qubit. The beat frequency was observed to increase with the amplitude of the drive

over a range of about 1.5. Our data are consistent with the cross-resonance theoret-

ical result, but they don�t allow us to draw conclusions with any certainty as to the

validity of the scheme for reliably performing two-qubit gates.

8.2 Future work

8.2.1 Gate strategies for cQED with �ux bias lines

Recent results have demonstrated independent control over two transmon qubits

in the cQED architecture. A common criticism of the scaling prospects of this

architecture is that the presence of just a single microwave port means two-qubit

gates can be done just one at a time. For a cavity containing several qubits, the

following control strategy would overcome this. By adding a few GHz of bandwidth

to the existing �ux lines, one can achieve couplings to spectrally distant qubits by

applying to the �ux bias line a signal at the di¤erence frequency of the two. That

is, modulate the frequency !1 at !rf = j!1 � !2j, where !2 is the frequency of the

targeted qubit. This protocol is very similar to the parametric pumping scheme of

Bertet, et al. The e¤ective coupling strength increases with the amplitude of the

drive signal.
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Though it requires a some microwave engineering of the �ux bias lines, we believe

this represents a good trade-o¤, as it opens up the possibility to entangle any pair

of qubits in the cavity, and to do so simultaneously.

8.2.2 Active cancellation of �xed coupling

One of the most useful features of a non-linear coupling subcircuit is that the tunable

coupling strength can be used to set the e¤ective interaction strength to a true zero

during one-qubit rotations. The full qubit-qubit coupling Hamiltonian contains two

contributions: the intended tunable interaction and the unintended stray interaction

owing to the trivial proximity of the two circuits on the chip. As the non-linear

coupling can typically be adjusted to give rise to both positive and negative e¤ective

couplings, any stray interaction can in principle be identically cancelled with the

tunable portion of the interaction [53]. With steady progress of the state-of-the-art

�delities of one- and two-qubit gates (cf. [146]), it will be important for �xed coupling

proposals to demonstrate that similar tunability is possible with microwave control.

The Fourier approach is a powerful way to address this problem. Indeed, it

can be seen immediately from 5.14 that a weak (
 � �) cross-resonant drive tone

with small-excursion phase modulations on time scales slow compared to 2�=!rf

but fast relative to the induced e¤ective coupling strength !xx
=� will continuously

refocus the second order interaction due to the �xed coupling. Performing this in

the background during one qubit operations would allow one to microwave tune the

interaction to a true zero in the same manner as [53]. A very interesting project

would formalize, extend and study the limits to this idea, and optimize the speci�c

protocol for some practical systems.
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8.2.3 Architectures for direct multi-qubit gates

Our prediction that weak multi-qubit e¤ective interactions can dominate the dynam-

ics of even mutually detuned multi-qubit systems is suggestive. While most quantum

algorithms are decomposed in the standard picture into one- and two- or sometimes

one- and three-qubit gates, this decomposition is costly in terms of the number of

operations required. One would be better o¤ constructing the called for 2n� 2n

unitary transformation of n qubits directly, rather than in 4�4 blocks as resulting

from two-qubit gates, for example. In terms of the study of entanglement or testing

quantum error correcting codes, generating entanglement across n qubits directly

would greatly simplify certain procedures.

Three-body e¤ects can arise in superconducting qubit circuits when the qubits

are operated in the intermediate regime where neither charge nor phase are good

quantum numbers. And a three-body mixing has been exploited for quantum mea-

surements with the Josephson ring modulator. Further, it is know that e¤ective

three-body interactions can be strong when polar molecules are trapped in optical

lattices, for example [126]. An analysis of potential architectures for realizing the

e¤ective multi-qubit interactions in superconducting qubits would shed light on this

interesting option. One candidate interaction would be the two-qubit gate scheme

employed by Di Carlo in recent cQED measurements at Yale, where a transition

outside the computational subspace is used to realize an e¤ective �z�z interaction

within it, the generalization of which, making use of e.g. the 0 ! 3 transition of a

transmon qubit, would allow the exciting possibility to realize a tunable three-body

interaction.
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8.2.4 Quantum gates in a dynamically decoupled subspace

An emerging topic of interest is the notion of dynamically decoupled subspaces for

quantum computing [119, 11]. By performing a specialized sequence of rotations

on individual qubits, they may be dynamically decoupled from interactions with

the environment that cause dephasing and relaxation, subject to limitations on the

modes present in the environment and the control we can exert over the qubits. An

interesting practical project would seek to combine the control required to remain

in such a decoupled subspace, and the various trade-o¤s in the system design, with

those required to realize multi-qubit gates with microwave control.
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Appendix A

The Quantronium qubit

A.1 Cooper pair box (CPB)

A Cooper pair box (CPB) is a small superconducting island connected to a voltage

source Vg through a capacitance Cg and to a superconducting reservoir through a

Josephson junction with capacitance CJ and characteristic energy EJ . The circuit

has one degree of freedom: the excess number of Cooper pairs of the island, N .

Charges may tunnel onto the island through the junction at an energy cost of EJ

per Cooper pair.

The Hamiltonian of the CPB contains two parts,

bH = bHel+ bHJ ; (A.1)

describing (respectively) the electrostatic energy associated with the charge stored

on the sum of all island capacitances C�; and the energy stored in the non-linear

inductance of the Josephson junction. The electrostatic portion Hel is,

bHel = 4EC( bN �Ng)
2;
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where the energy scale EC =
(2e)2

2C�
; Ng =

CgVg
2e

is the dimensionless gate charge in

units of Cooper pairs, and bN =
bQisland
2e

is the dimensionless operator associated with

the charge on the island. The eigenstates of the charge operator are written j Ni,

where bN j Ni = N j Ni, i.e. states of an integer number of excess Cooper pairs on

the island.

The Josephson term describes the tunneling of Cooper pairs through the junction,

and thus couples neighboring charge states:

bHJ = �
EJ
2

X
N2Z

�
j Nih N+1j+ j N+1ih N j

�
: (A.2)

In this basis of charge states the CPB is thus described by,

bH =
X
N2Z

�
4EC(N �Ng)

2j Nih N j �
EJ
2

�
j Nih N+1j+ j N+1ih N j

��
(A.3)

The energy eigenstates of the CPB can be found numerically by truncating the

summation in A.3 to a handful of charge states, with the particular number chosen

based upon the aspect ratio EJ=EC , which determines the charge-state makeup of

the energy states.

A.1.1 Phase basis

The energy eigenstates of the system may be found analytically by instead writing

A.3 in a basis of eigenstates j�i of the operator b� associated with the phase of the
superconducting condensate on the island. The phase and charge operators are

canonical conjugate variables in the sense,

bN = �i @
@�
; (A.4)
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Figure A.1: Energy levels of the Cooper pair box.

and b� = i
@

@N
: (A.5)

While the spectrum of eigenvalues of bN is discrete, the eigenvalues of b� are circular,
i.e. de�ned only mod[2�]. The operator exp[�ib�] acts to shift the charge by one
Cooper pair,

exp[�ib�]j Ni = j N�1i: (A.6)

while the operator exp[�i� bN ] correspondingly shifts the phase by � ;
exp[�i� bN ]j �i = j ��� i: (A.7)

In the phase basis the CPB Hamiltonian is,

bH = �4EC(i
@

@�
+Ng)

2j �ih �j �
EJ
2

�
e�i

b� + ei
b�� j �ih �j: (A.8)
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The time-independent Schrödinger equation becomes,

�4EC(i
@

@�
+Ng)

2j ki � EJ cosb�j ki = Ekj ki: (A.9)

This equation can be solved analytically in terms of Mathieu functions, see [129] for

a detailed derivation.

A.2 Split Cooper pair box (sCPB)

A closely related device splits the Josephson junction into two junctions in parallel

to create a loop through which �ux may be passed in order to tune the e¤ective

Josephson energy. If the two junctions have characteristic energies EJ1 = EJ(1+d)=2

and EJ2 = EJ(1� d) =2 and we make the identi�cations,

�+ ! (�1 + �2)=2;

and b�� ! (b�1 � b�2)=2;
where b�i is the phase across junction i, the sCPB is described by
bH =

X
N2Z

(4EC(N �Ng)
2j Nih N j

�EJ
2
(cos �+ � id sin �+)j Nih N+1j �

EJ
2
(cos �+ + id sin �+)j N+1ih N j)(A.10)

where we take the total phase across the junctions �+ to be a classical parameter

and the di¤erence of the phases �� to retain in quantum character [129]. For the

sCPB with no asymmetry, i.e. d = 0, the Hamiltonian reduces to that of the original
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simpler device with an externally tunable Josephson energy,

EJ = EJ cos �+;

as the total phase drop across the two junctions may be tuned with the application

of a magnetic �ux through the loop of the sCPB.

A.3 Energy Surfaces of the sCPB

The Mathieu functions used to solve the CPB case can be directly adapted to the

sCPB with the identi�cations

tan[
(d; �+)] = �d tan �+

and

EJ(d; �+) = EJ

r
1 + d2 � (d2 � 1) cos(2�+)

2

with which we obtain the sCPB time-independent Schrödinger equation in the phase

representation,

�4EC(i
@

@b�� +Ng)
2j ki � EJ cos(b�� + 
)j ki = Ekj ki: (A.11)

The energy surfaces for the three lowest lying states are shown below for EJ=EC = 1:

!01 = E1�E0 is at a saddle point and thus �rst order insensitive to noise in both

�+ and Ng.
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Figure A.2: Energy surfaces Ek(�+; Ng) for two lowest-lying states k = 0; 1 of the
split Cooper pair box. When the circuit is biased at 1 electron (Ng = 0:5) and zero
loop �ux (�+ = 0) the transition energy h!01 = E1 � E0 is at a saddle point and
thus �rst order insensitive to noise in both �+ and Ng:
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Appendix B

Mathematica code

B.1 The n-qubit Pauli matrices

In Mathematica 5.2, the two-qubit Pauli matrices can be generated and numbered

automatically with the function g2,

g2[a_, b_] : = BlockMatrix[Outer[Times, a, b]]

called in the following manner

Table[�n = Apply[g2, Take[Tuples[{w, x, y, z}, 2], {n+1, n+1}]], {n, 0, 15}].

The matrices are explicitly displayed with

Table[sn//MatrixForm], {n, 0, 15}].

The protocol can be extended to any number of qubits with a recursive de�nition
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of g. For example, the three-qubit Pauli matrices are equivalently generated and

numbered with the function g3,

g3[a_, b_, c_] : = BlockMatrix[Outer[Times, BlockMatrix[Outer[Times, a, b]], c]]

called by

Table[�n = Apply[g3, Take[Tuples[{w, x, y, z}, 3], {n+1, n+1}]], {n, 0, 63}].

B.2 The n-qubit super-operator

The super-operator governing the system dynamics can be generated as follows.

First, use the above code to de�ne the �n�s as the n-qubit Pauli matrices. Then

following the results of Chapter 2, the super-operator can be written,

Mkji =
�i
2N+1

Tr([�k;�j]�i);

while the dissipative portion of the Master equation requires that we evaluate

Kkji =
�1
2N+1

Tr([�k;�j�k]�i):

Each of these has been de�ned to contain only 0�s and �1�s. They can be explicitly

evaluated in a straightforward manner with :

M[a_, b_, c_] : =
-i
16
Tr[�a:�b:�c � �b:�a:�c]
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and

K[a_, b_, c_] : =
-1
16
Tr[�a:�b:�a:�c � �b:�a:�a:�c]

called according to

Table[M[a, b, c], {a, 1, 4n-1}, {b, 1, 4n-1}, {c, 1, 4n-1}]]

and similar for K.

The n-qubit Master equation in Bloch form is then produced by evaluating

ri ==
4n�1X
k=1

4n�1X
l=1

4n�1X
j=1

rl{hk M[k, l, i] -16 aj K[j, l, i]}.
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Appendix C

A wideband IQ modulator for

microwave pulse generation

In building up our experimental apparatus to test the microwave controlled cou-

pling schemes developed in chapter 3, we realized the need for a¤ordable and high-

performance microwave pulse generation equipment. Many of the devices used by

physicists doing measurements in the microwave domain are based upon or adapted

from core technologies developed for applications to commercial or military commu-

nications systems. As is often the case, we found that the commercially available

devices did quite meet our needs, so we had to tinker a little bit. In the end, we

designed and built a wideband I/Q modulator using a combination of o¤-the-shelf

and standard order products from a handful of companies.

Microwave qubit measurements require pulses of various shapes, durations and

duty cycles. A typical single qubit experiment will require at least two pulse channels,

one for the read pulses and one for the write pulses; multiqubit experiments will

in most cases require at least two channels per qubit. In our case, we were interested

in pulses lasting from a few ns to a few �s and having any shape we might wish
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Figure C.1: Schematic black box modulator.

to create. We decided to work with CPS resonators at around 10GHz, and qubit

frequencies lying either above or below the readout, so in order to be of general

use for the series of measurements, and perhaps others, we wanted a pulse creation

system with carrier bandwidth from 6-18GHz. and in the frequency range of 6-

18GHz. Since direct digital synthesis of signals in the 5-20GHz range is not yet

available [104], it is necessary to use analog electronics. There are several viable and

common approaches. The standard technique is to use a continuous wave (cw) signal

generator to produce a high level carrier signal, then to carve from this cw signal the

desired pulse train by sending it through a modulator. The modulating signals and

hardware may be either analog or digital. This general strategy is depicted in above.

The experimentalist must �nd a way of implementing such a pulse creation system

that meets the requirements and constraints of the particular experimental system,

and hopefully in an �exible and a¤ordable manner.

There are several well-known techniques in this regard, and there are several

others which we explored in the course of our due diligence on this project, all of which

I will outline here before moving to our �nal strategy, speci�c design considerations,

the instrument assembly and �nally test data.
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For low-frequency applications any desired signal may be created by coupling

random access memory loaded with waveform data to a microprocessor and a digital-

to-analog converter (ADC). This is the arbitrary waveform generator, or AWG, found

in some incarnation or another in most any physics lab. These instruments are purely

digital, and this severely limits the available output frequencies. This is typically

stated in terms of a sampling rate. A 1GS/s AWG may produce a signal with

components up to 500MHz.

A single channel of our IQ modulator is shown schematically above. The unit is

designed to be operated as a black box modulator. A microwave signal at the desired

carrier frequency and pulse shaping signals centered at DC are supplied as inputs,

and microwave pulses that are, ideally, a product of the inputs, emerge as output.

Our design e¤ectively implements a nuts-and-bolts version of the idealized IQ mixer.

We achieve a modulation depth (or on/o¤ ratio) of approximate 60dB over the full

carrier range of 5-18GHz by cascading three mixing stages with di¤erent diode power

levels and one ampli�cation stage in each of the I and Q arms. Phase balance between

the I and Q arms is achieved through a common IQ mixer inserted into the Q channel

and controlled with DC voltages. The phase balance may be calibrated once and

for all at each frequency and stored in an automated lookup table. The I and Q

modulation channels have 4GHz bandwidth, allowing extremely fast pulse rise and

fall times.

Our lab-built instrument�s performance is similar to that of the only known com-

mercially available device that meets this need: the �wideband external I/Q inputs�

option 016 on the Agilent E8267D-series vector signal generator. There, an on/o¤

ratio of 80dB is achieved from 3.2-20GHz, with nodulation bandwidth of 2GHz. This

is available only as a $16.9k option on a typically $60k instrument. Our device may

be constructed for $5k.
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