Autonomous stabilization of an entangled state of two transmon qubits

Shyam Shankar

Department of Applied Physics, Yale University

Zaki Leghtas Anirudh Narla Luigi Frunzio Michael Hatridge Katrina Sliwa Mazyar Mirrahimi Uri Vool Steve Girvin Michel Devoret

Acknowledgements: Rob Schoelkopf and RSL members, Michael Rooks and YINQE

Classical feedback

Quantum feedback

"back-action" : in general, measuring the state of a quantum system can perturb it

Quantum feedback

"back-action" : in general, measuring the state of a quantum system can perturb it

Challenge

design feedback such that back-action absent
when in desired state

Resources for quantum computing

 $|\psi\rangle = \frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)$ superposition $\langle Z \rangle = 0, \langle X \rangle = 1$

Measure Z \rightarrow back-action randomly gives +1 or -1, average = 0

Measure X \rightarrow No back-action, X = +1 always

Resources for quantum computing

Measure individual qubits \rightarrow back-action gives +1 or -1 randomly

Measure joint parity \rightarrow no back-action, parity = -1 always

Challenges : decoherence

Environmental noise

Dephasing : T_{ϕ}

Environmental noise

Challenges : decoherence

Environmental noise

Environmental noise

Solution: Quantum feedback

 maintain superposition/entanglement against decoherence

Circuit QED architecture

Superconducting transmon qubit

Josephson junction with shunting capacitor \rightarrow anharmonic oscillator

Qubit frequency ~ 4 – 10 GHz, T_1 , T_{ϕ} ~ 10 – 100 μ s

Koch et al., Phys. Rev. A (2007)

How do we measure the qubit : dispersive readout

"Quantum non-demolition" measurement of Z No back-action if state is $|g\rangle$ or $|e\rangle$

Multiple single-qubit feedback experiments : ENS, Berkeley, Delft, Yale, ETH

- Almost equal and large dispersive shifts $(\chi_{Alice} \sim \chi_{Bob} > \kappa)$
- Autonomous
 → No external controller

Why $\chi_{Alice} \sim \chi_{Bob}$: quasi-parity measurement

 f_{Alice}^0 ...

 $f_{\rm Bob}^{\,0}$

- Select Bell state: $|\phi_+, 0\rangle$ pumped to n photon manifold
 - by phase of drives

- Select Bell state: $|\phi_+, 0\rangle$ pumped to n photon manifold
 - by phase of drives

– one drive phase π shifted

- one drive phase π shifted

– rate κ

System-reservoir characteristics

Achieve κT_1 , $\kappa T_{\phi} > 100^{-1}$

Experiment protocol

Tomography results vs *T*_S

Tomography results vs T_S

Converges to $|\phi_-\rangle$ And remains stable much longer than T_1 , T_{ϕ}

Fidelity to Bell state

Exponential rise, $\tau = 960 \text{ ns} \sim 10 \text{ k}^{-1}$ figure for entanglement $T_{S} (\mu s)$

- Improved to 77 % by monitoring cavity output
- Expect above 90 % in future version with improved T_1

S. Shankar et al., arXiv:1307.4349, to appear in Nature

Qulab and friends

Thank you