Amplifying Quantum Signals with the Josephson Bifurcation Amplifier (JBA)

IRFAN SIDDIQI

R. Vijay, E. Boaknin, M. Metcalfe, F. Pierre, C.M. Wilson, C. Rigetti, L. Frunzio, and M. H. Devoret

Department of Applied Physics Yale University

Acknowledgements: D. Prober, M. Dykman, D. Vion, D. Esteve, R.J. Schoelkopf, & S. Girvin

THE READOUT PROBLEM FOR SQUBITS

Devoret & Schoelkopf (2000)

WANT:

- Readout ON: $T_1 / \tau_{meas} >> 1$
- Readout OFF: T_1 , T_{o} not reduced
- Short duty cycle
- No energy dissipated on chip

(sensitivity, low backaction) (good switch, low backaction) (speed to fight drifts) (no noise to junction)

ARTIFICIAL ATOM : SPLIT COOPER PAIR BOX

$$\hat{H} = \sum_{n} \left[E_{C} (n - N_{g})^{2} | n \rangle \langle n | - \frac{1}{2} E_{j} \cos\left(\frac{\Phi / \Phi_{0}}{2}\right) (|n\rangle \langle n + 1| - |n + 1\rangle \langle n|) \right]$$

$$\downarrow$$

$$E_{C} = \frac{(2e)^{2}}{2(C_{g} + C_{j1} + C_{j2})}$$

$$E_{j} = \frac{\hbar}{2e} i_{0} = \varphi_{0} i_{0}$$

BOX ENERGY SPECTRUM

CAN'T READ CHARGE OR CURRENT!

QUANTRONIUM (a.k.a. Charge-Phase Qubit)

• $I_{DC}=0 \rightarrow \text{Readout off}$

 1/f charge & flux noise immunity

•
$$T_1 = 1.8 \ \mu S$$

 $T_{\phi} = 500 \ ns$ ~10³ ops!
(D. Vion et al., Science 2002)

- Quasiparticles

 -slow reset (>10µs)
- Reduced Visibility

DC DRIVE

 $|qubit=0> → (I_{DC} < I_0)$ zero-voltage state $|qubit=1> → (I_{DC} > I_0)$ voltage state

READOUT: WHY NOT USE PHOTONS?

$$\delta(t) = \delta_{\max} \sin(\omega t + \gamma)$$

 $i_{RF} < i_B (I_0, \Delta \omega)$ → low-amp. & phase lagging (RF readout 0) $i_{RF} > i_B (I_0, \Delta \omega)$ → high-amp. & phase leading (RF readout 1)

BIFURCATION AMPLIFICATION

- Bifurcation amplifier: sensitive to any input variable coupled to I_0 minimal back-action
 - no on-chip dissipation
 - efficiently thermalize load
 - back-action narrow band

SCHEMATIC RF SETUP T = 300K

SCHEMATIC CRYOGENIC SETUP

NEW ERA OF FILTERS!

JUNCTION + MICROWAVE CAPACITOR

MINIMAL STRAY INDUCTANCE

$$L_{stray} = 0.003 \text{ nH}$$

RF-DRIVEN JUNCTION: PHASE DIAGRAM

PHASE DIAGRAM: EXP & THY IN GOOD AGEEMENT

- Dark region corresponds to well-jumping
- All parameters in prediction measured experimentally!

I.S. et al, cond-mat/0312553

DYNAMICS OF DYNAMICAL SWITCHING

Hysteresis
 I_B and I_B, correct !

$$I_{B} = \left[\frac{16}{3\sqrt{3}}\alpha^{3/2} \left(1-\alpha\right)^{3/2}\right] I_{0} \qquad \alpha = \left(1-\frac{\omega}{\omega_{p}}\right) = 0.122$$

RF vs. DC

time

time

SWITCHING HISTOGRAMS

- Latching
- 40 ns rise + 20 ns settle
- $\tau_{\rm m}$ = 300 ns
- N = 1.5 x 10⁵
- Overlap = 6 x 10⁻⁵

SWITCHING PROBABILITY

- $\Delta I_0 / I_0 = 1\%$
- d = 80% @ 250mK d = 57% @ 340mK d = 49% @ 540mK
- Predict d > 95% @ 60mK
- $\Delta I_B / I_B = 6\%$

$$\frac{\Delta I_B / I_B}{\Delta I_0 / I_0} = \frac{3}{4\alpha} - \frac{1}{2} = 5.6$$

I.S. et al, cond-mat/0312623

Single Shot, Latching Qubit Readout >95% Fidelity 10-20 MHz Rep. Rate !

1D METAPOTENTIAL

- Expand system near bifurcation
- Reduce to cubic metapotential

$$\Gamma_{_{0\to1}}^{dyn} = \frac{\omega_a}{2\pi} \exp\left(-\frac{\Delta U^{dyn}}{kT}\right)$$

$$\frac{i_{RF}}{I_B}^2 \Big)^{3/2}$$
 escape coordinate

$$\Delta U^{dyn} \left(I_0, i_{RF}, \alpha \right) = \left[\frac{64\hbar}{18e\sqrt{3}} I_0 \alpha \left(1 - \alpha \right)^3 \right] \left(1 - \left(\frac{i_{RF}}{I_B} \right)^2 \right)^2$$
$$u_0^{dyn} \approx 10 \text{ K}$$
$$\omega_a = \left[\frac{4}{3\sqrt{3}} RC \left(\alpha \omega_p \right)^2 \right] \left(1 - \left(\frac{i_{RF}}{I_B} \right)^2 \right)^{1/2}$$
$$\omega_{a0} \approx (2\pi) \cdot 350 \text{ MHz}$$

(M. Dykman)

ESCAPE RATES FOR DYN. SWITCHING

$$u_0^{dyn} = 9.1 \text{ K for } I_0 = 1.12 \,\mu\text{A}, T_{st}^{esc} = 340 \,\text{mK}$$

(THY = 10.0 K)
$$u_0^{dyn} = 10.7 \,\text{K for } I_0 = 1.17 \,\mu\text{A}, T_{st}^{esc} = 340 \,\text{mK}$$

(THY = 11.0 K)

YALE QUANTRONIUM

- Observe I_0 modulation with gate volage
- Spectroscopy in progress
- T=400mK!

CRITICAL CURRENT FLUCTUATIONS

 Apply fixed i_{RF} and observe variation in switching probability P(t) caused by I₀(t)

SUMMARY & PERSPECTIVES

BIFURCATION AMPLIFICATION OBSERVED AS PREDICTED

- GAIN
- SPEED
- ESCAPE RATES
- ABSENCE OF EXCESS DISSIPATION
- **QUBIT MEASUREMENTS:** Bell Inequalities, Error Correction
- **QUANTUM LIMIT:** Quantum Diffusion vs MQT, Ultimate T_N
- NOISE: Temperature dependence of 1/f
- APPLICATIONS: Current Standard, Single Photon Detectors