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Quantum measurements of solid-state systems, such as the readout of supercon-

ducting quantum bits challenge conventional low-noise ampli�cation techniques. Ide-

ally, the ampli�er for a quantummeasurement should minimally perturb the measured

system while maintaining su¢ cient sensitivity to overcome the noise of subsequent

elements in the ampli�cation chain. Additionally, the drift of materials properties in

solid-state systems mandates a fast acquisition rate to permit measurements in rapid

succession. In this thesis, we describe the Josephson Bifurcation Ampli�er (JBA)

which was developed to meet these requirements. The JBA exploits the sensitivity of

a dynamical system - a non-linear oscillator tuned near a bifurcation point. In this

new scheme, all available degrees of freedom in the dynamical system participate in in-

formation transfer and none contribute to unnecessary dissipation resulting in excess



noise. We have used a superconducting tunnel junction, also known as a Josephson

junction to construct our non-linear oscillator. The Josephson junction is the only

electronic circuit element which remains non-linear and non-dissipative at arbitrarily

low temperatures. This thesis will describe the theory and experiments demonstrat-

ing bifurcation ampli�cation in the JBA and its application to the measurement of

superconducting quantum bits. By describing the JBA as a parametrically driven

oscillator, we will demonstrate that the ultimate sensitivity of the JBA is limited

only by quantum �uctuations. Using this treatment, we will identify the connection

between the four main aspects of working with a dynamical bifurcation: parametric

ampli�cation, squeezing, quantum activation and the Dynamical Casimir E¤ect.
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(Cg) Gate capacitance of the island of a CPB

(CJ) Intrinsic capacitance of Josephson junction

(CS) Shunting capacitance to lower the plasma frequency of the Josephson
junction

(EC) Charging energy of a CPB (single electron units)

(EJ) Josephson energy

(Ek) Energy of kth eigenstate of a CPB

(g) Acceleration due to gravity

(GJBA) Gain of JBA in bistable mode

(I0) Josephson critical current

(I�B ) Upper and lower bifurcation current

(Ie) Error current in the JBA

(IN) Noise current in the JBA

(IRF ) Amplitude of RF current drive

(kB) Boltzmann constant
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(LJ) Josephson inductance

(LS) Stray inductance in the microfabricated capacitor

(Ng) Reduced gate polarization charge on the island of CPB

(jNi) Charge state with N Cooper pairs on the island of a CPB

(N̂) Operator for number of Cooper pairs on the island of CPB

(OH) High amplitude state of the JBA

(OL) High amplitude state of the JBA

(OS) Unstable state (saddle point) of the JBA

(Pswitch) Probability of switching from OL to OH

(Q) Quality factor of a resonator

(R) Source resistance of current source driving the JBA

(RS) Stray resistance in the microfabricated capacitor

(SI0) Critical current sensitivity of JBA in A /
p
Hz

(T ) Temperature

(Techo) Echo time for a qubit

(T') Pure dephasing time for a qubit

(T1) Relaxation time for a qubit

(T2) Total dephasing time for a qubit

(TN) Noise temperature of an ampli�er

(u) Slow, complex amplitude of oscillator response
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(URF ) Amplitude of RF voltage applied the gate port

(�U) Energy barrier height for escape

(Z) Complex impedance

(Z0) Characteristic impedance

(CPB) Cooper pair box

(IOT) Input Output Theory

(HEMT) High Electron Mobility Transistor

(JBA) Josephson Bifurcation Ampli�er

(qubit) A quantum two level system used a quantum bit



Chapter 1

Introduction

Ampli�cation using a laser, a maser or a transistor is based on energizing many

microscopic systems. Atoms in a cavity or conduction electrons in a channel are some

typical examples. Each microscopic degree of freedom is weakly coupled to the input

signal. The overall power gain of the system, which is determined by the product

of the number of active microscopic systems and their individual response to the

input parameter, can be quite substantial. However, noise can result from the lack

of control of each individual microscopic system. In this thesis, we explore another

strategy for ampli�cation. We utilize a system with only one, well controlled degree

of freedom, which is driven to a high level of excitation. The input signal is coupled

parametrically to the system and in�uences its dynamics leading to ampli�cation. The

superconducting quantum interference device (SQUID) [1] and the radio frequency

single electron transistor (RF-SET) [2] are two well known devices which use this

strategy. The system we have chosen is a driven, non-linear oscillator biased near

a dynamical bifurcation. We call this device the Josephson Bifurcation Ampli�er

(JBA) since the non-linear oscillator is constructed using a Josephson junction [3].

21
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The main advantage of the JBA over the SQUID and the RF-SET is that there is no

intrinsic dissipation resulting in minimum noise and back-action.

In this dissertation, we exploit the non-linearity of a Josephson junction [3], which

is a superconducting tunnel junction and therefore the only electronic circuit element

which remains non-linear and non-dissipative at arbitrary low temperatures. The pri-

mary goal of the JBA was to readout the quantum state of superconducting quantum

bits (qubits). Superconducting qubits are electronic circuits made to behave like arti-

�cial atoms [4, 5, 6, 7]. We map the two quantum states of the qubit to two di¤erent

driven states of the non-linear oscillator which is bistable under appropriate driving

conditions. Bistability has been extensively studied in non-linear optical systems too,

but they have always been plagued by dissipation in the non-linear medium (see [8]

for a review). We have also explored the possibility of using the JBA as a linear,

phase preserving, parametric ampli�er [9] operating at the quantum limit [10].

This work brings together ideas from di¤erent areas of physics like non-linear dy-

namics, non-equilibrium statistical mechanics, quantum measurements, quantum lim-

ited ampli�cation and experimental techniques like cryogenics, ultra-low noise mea-

surements and microwave engineering. In this introduction, we will �rst discuss the

ampli�cation process and the restrictions placed on it by quantum mechanics. This

will be followed by a discussion on the use of bifurcations for ampli�cation. We will

then brie�y talk about superconducting quantum circuits and highlight the challenges

in reading out their quantum state. Finally, we will summarize the key experimental

results of the work carried out for this dissertation.
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1.1 Ampli�cation and quantum limited detection

Ampli�ers are an important part of any experiment carrying out high precision mea-

surements. In particular, cryogenic, low noise ampli�ers working in the microwave

domain have recently found a growing number of applications in mesoscopic physics,

astrophysics and particle detector physics [11, 12]. An ampli�er is needed in order

to raise the level of a weak input signal to a macroscopic level so that it can over-

come the noise of conventional signal processing circuitry. The room temperature

signal processing electronics are generally quite noisy and cannot be directly used to

measure very weak signals from typical cryogenic, mesoscopic physics experiments.

A sensitive, low noise ampli�er is required to interface the extremely weak signals

coming from an experiment to the noisy room temperature electronics.

A linear ampli�er is one whose output is linearly related to its input signal. This

de�nition is quite broad and includes both frequency-converting ampli�ers, whose

output is at a frequency di¤erent from the input frequency, and phase-sensitive am-

pli�ers, whose response depends on the phase of the input signal. We will be mostly

considering phase-insensitive linear ampli�ers which preserve the phase of the input

signal.

An ampli�er must have two important properties. Firstly, the output power of

the ampli�er should be large enough, so that any further processing of the signal

does not degrade the signal to noise ratio. At the same time, the ampli�er must

add the minimum possible noise to the signal during the ampli�cation process. The

ampli�cation process in general degrades the signal-to-noise ratio. This is shown

schematically in Fig. 1.1. Quantum mechanics places a restriction on this added

noise. When this is quantum minimum is achieved, the ampli�er is labeled quan-
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Figure 1.1: General ampli�cation process. An ampli�er in general degrades the signal
to noise ratio. At the input of an ampli�er, there is the signal to be ampli�ed (a sine
wave here) and some noise associated with the impedance of the signal source. The
ampli�er ampli�es both these components but also adds a certain of amount noise
(shown in green) associated with the ampli�cation process. Quantum mechanics
places a restriction on the minimum amout of this added noise and when this is
achieved, the ampli�er is labelled �quantum limited�.

tum limited. The development of quantum limited ampli�ers has gained considerable

popularity in recent times. Apart from the detectors required to measure the state of

quantum bits necessary for quantum computation, there are many other areas of re-

search which require quantum limited detectors. Detection of gravitational radiation

[13] using mechanically resonant detectors and measuring the zero point displace-

ments of nano-mechanical resonators [14] are some examples. Presently, ampli�ers

based on superconducting quantum interferences devices (SQUIDs) [15] and the radio

frequency single electron transistor (RF-SET) [16] are two systems which can operate

close to the quantum limit.

The quantum noise associated with ampli�cation has been discussed by many au-

thors [17, 18, 10]. General thermodynamic constraints impose the existence of �uctu-
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ations not only for dissipation but for ampli�cation processes as well. In the limit of

zero temperature, these thermal �uctuations reduce to quantum �uctuations which

are governed by the Heisenberg�s uncertainty principle. These quantum �uctuations

determine the ultimate performance of any ampli�er and hence play an important

role in high precision measurements. The exact manifestation of this quantum limit

depends on the kind of measurement being performed [18]. Quantum mechanics does

not impose any restriction on the ultimate precision of a single measurement of a

single quantity (say, position of a particle), but only on the combined precision of two

conjugate variables (for example, position and momentum). For the typical case of

continuous measurement of the amplitude and phase of a sinusoidal signal, the min-

imum noise energy (EN) an ampli�er must add to a signal at frequency !s is given

by

EN = kBTN = ~!s=2: (1.1)

Here EN is referred to the input. This is often called the standard quantum limit and

applies to phase-preserving ampli�ers. The minimum noise energy (EN) can also be

expressed as a noise temperature (TN) as shown in equation 1.1. The above limit has

been derived in various ways by di¤erent authors [17, 18, 10]. A more recent analysis

incorporates ideas from quantum network theory where ampli�cation is described

as an e¤ective scattering process [19, 20]. In this treatment, signals travel to and

from the ampli�er via semi-in�nite transmission lines. The current and voltage along

the line are treated as propagating quantum �elds. The incoming �elds represent the

input signal and �uctuations while the outgoing �elds describe dissipation and output

signals. The commutation properties of the input and output �eld operators lead to

the fact that the ampli�er must add a minimum amount of noise given by equation
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1.1. We will use this �eld representation to study the quantum behavior of the JBA

in chapter 7.

1.2 Amplifying using a bifurcation

The idea of amplifying signals using a bifurcation has been around for a long time [21,

22]. Any of the di¤erent types of bifurcation could be used, and only the details of the

small signal sensitivity are determined by the type of bifurcation [22]. Bifurcations are

quite common and have been observed in electrical, optical, chemical and biological

systems (see [21] for references). An example of bifurcation ampli�cation in nature is

the ear. It turns out that the cochlea, the hearing organ in our ear, is biased close to a

Hopf bifurcation [23]. This leads to several remarkable properties in our hearing like

compression of dynamic range, in�nitely sharp tuning at zero input and generation

of combination tones. The ear is essentially a non-linear ampli�er, i.e., the response

depends quite strongly on the strength of the input signal. Researchers in robotics

and medical sciences are currently in the process of constructing a hearing sensor

which can mimic the non-linear properties of the cochlea [24].

Bifurcation ampli�cation is also not new to the �eld of superconducting device

physics. The well known Josephson parametric ampli�ers [9] also exploit the near-

ness to a bifurcation. These devices are capable of achieving large gain and can show

interesting quantum e¤ects like squeezing of noise below the vacuum �oor [25]. Tra-

ditionally, they have always been plagued by the "noise rise" problem where the noise

tends to grow with the gain. It has been suggested that this is due to instabilities

in dynamical systems operating near a bifurcation point [26]. In the JBA, we use

this instability to our advantage to make a highly sensitive threshold detector. The
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main application of this mode of operation of the JBA is to measure the state of

superconducting quantum bits (see section 1.3). We should point out that the JBA

can also be operated as a parametric ampli�er (see chapter 7). We now discuss how

we can access a bifurcation in a non-linear oscillator made with a Josephson junction.

1.2.1 The Josephson junction

Figure 1.2: a) A simpli�ed representation of a Josephson tunnel junction- two super-
conductors separated by a small insulating barrier. b) The circuit representation of a
Josephson junction showing the ideal tunnel element (X) with critical current I0 and
a capacitor CJ in parallel.

The Josephson junction is made of two superconducting electrodes separated by a

small insulating barrier (Fig.1.2(a)). As �rst understood by Josephson, the junction

can be viewed as a non-linear, non-dissipative electrodynamical oscillator[3]. The

tunneling of Cooper pairs in the junction manifests itself as a non-linear inductor

(LJ) shunting the geometric capacitance (CJ) formed by the two electrodes and the

insulating layer. The constitutive relation of the non-linear inductor also known as
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the Josephson relations, can be written as

I(t) = I0 sin � (t) (1.2)

� (t) =

Z t

�1
dt0V (t0)='0

where I(t), � (t) and V (t) are the current, gauge-invariant phase-di¤erence and voltage

across the junction respectively. The parameter I0 is the junction critical current and

is the maximum current that can passed through the junction in its superconducting

state. Here, '0 = ~=2e is the reduced �ux quantum. For small oscillation amplitude

(j�j << 1), the frequency of oscillation for zero bias current is given by the so-called

plasma frequency

!p =
1p
LJCJ

(1.3)

where

LJ =
'0
I0

(1.4)

is e¤ective junction inductance.

1.2.2 Bifurcation in a RF driven Josephson oscillator

The di¤erential equation describing the dynamics of a Josephson junction oscillator

driven with a RF current is given by

CS'0
d2�(t)

dt2
+
'0
R

d�(t)

dt
+ I0 sin(�(t)) = IRF cos (!dt) (1.5)

Here is � is the gauge-invariant phase di¤erence across the junction, I0 is the critical

current of the junction, CS is the shunt capacitance, R is the source impedance of the
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current drive and provides damping, !d is the drive frequency and '0 = ~=2e is the

reduced �ux quantum. In our experiments, we always shunt the Josephson junction

with an additional capacitance (CS >> CJ) to reduce the plasma frequency (see

section 2.2). The sine term, whose origin is the current-phase relation of the Josephson

junction (1.2), is the source of non-linearity in the oscillator. Under appropriate

driving conditions, this non-linear oscillator can have two steady driven states di¤ering

in amplitude and phase[27, 28]. We will call these two states as the low amplitude

state (OL) and the high amplitude state (OH) respectively. Fig. 1.3 shows the non-

linear resonance curves for such a system. The �gure shows a plot of the normalized

oscillation amplitude (�max=2�) as a function of detuning (1 � !d=!p) for di¤erent

drive current amplitudes.

We note that for small drive amplitudes, the response is the familiar Lorentzian

response of a linear oscillator. As the drive current is increased, the resonance curves

start to bend towards lower frequencies, a signature of the non-linear behavior. The

direction of bending of the resonance curves is determined by the sign of the non-linear

term. In the Josephson oscillator, the non-linear term is negative (sin (�) ' �� �3=6)

and hence the resonance curves bend towards lower frequencies1. For larger drive

amplitudes, the solution becomes multi-valued. The two stable solutions are indicated

with crosses for the curve with the largest drive amplitude (red) while the unstable

solution is marked with a circle. For a given drive frequency, the systems displays

bistability within a certain range of drive amplitude such that

I�B < IRF < I
+
B (1.6)

1The resonance curves in a system where the non-linear term is positive will bend towards higher
frequencies, e.g. a mechanical reed
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Figure 1.3: Non-linear resonance curves in a driven Josephson oscillator as a function
of relative detuning 1 � !d=!p and drive amplitude IRF=I0. !p is known as the
plasma frequency and is the frequency for small oscillations. The resonance curves
bend over as the drive ampltude is increased and become multi-valued for certain
parameters. In this regime, for a given drive frequency and amplitude, there are two
stable solutions (OL and OH ) and an unstable solution (OS). Maximum response
for small amplitude oscillations occurs at !d = !p. For higher drive amplitudes,
maximum response occurs at frequencies below !p. The sign of the �rst non-linear
term, which is negative in our case, determines the direction of this shift.

where I�B and I+B are called the lower and upper bifurcation currents respectively.

For IRF < I�B , only the low amplitude state exists while for IRF > I
+
B , only the high

amplitude exists. The saddle-node bifurcation is found in the vicinity of the upper

bifurcation current I+B and this where the JBA is biased. In what follows, whenever

we mention bifurcation point/current, we mean the upper bifurcation point/current.

This bifurcation point is extremely sensitive to the system parameters, for example

the critical current I0.
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Figure 1.4: Schematic diagram of the Josephson bifurcation ampli�er (JBA). A junc-
tion with critical current I0, parametrically coupled to the input port, is driven by an
RF signal which provides the power for ampli�cation. In the vicinity of the dynami-
cal bifurcation point IRF = IB, the phase of the re�ected signal � depends critically
on the input signal. The circulator C prevents the noise of the following ampli�er
from reaching the oscillator ensuring that the �uctuations felt by the oscillator cor-
responds to the noise of a 50 
 resistor at the bath temperature Tb. Inset: Example
of a parametric input coupling circuit using a SQUID.

1.2.3 Operating principle of the JBA

We now describe the principle of operation of the JBA which is represented schemat-

ically in Fig. 1.4. The central element is a Josephson junction whose critical current

I0 is modulated by the input signal using an application-speci�c coupling scheme,

such as a SQUID loop (see inset of Fig. 1.4) or a superconducting single electron

transistor like in superconducting charge qubits [29]. This has been labelled as the

input port. The junction is driven with a sinusoidal signal IRF sin(!dt) fed from a

transmission line through a circulator. This is called the drive port. As explained

above, when the drive frequency !d is detuned from the plasma frequency !p, the

system can have two possible oscillation states which di¤er in amplitude and phase.
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Starting in the lower amplitude state, at the bifurcation point IRF = I+B � I0, the

system becomes in�nitely sensitive, in absence of thermal and quantum �uctuations,

to variations in I0. In general, thermal or quantum �uctuations broaden this tran-

sition and at �nite temperature T , sensitivity scales as T 2=3(see chapter 2). The

re�ected component of the drive signal, measured through another transmission line

connected to the circulator, is a convenient signature of the junction oscillation state

which carries with it information about the input signal. This is the output port of

the JBA. This arrangement minimizes the back-action of the ampli�er since the only

�uctuations felt at its input port arise from the load impedance of the circulator,

which is physically separated from the junction via a transmission line of arbitrary

length and can therefore be thermalized e¢ ciently to base temperature2. The JBA

maps the tiny changes in the e¤ective critical current of the junction (via the input

signal) to changes in occupation probability of the two oscillation states which can be

easily measured. This is the essence of the operation of the JBA and can be used to

detect any signal which can be coupled to oscillator parameters. The main applica-

tion of the JBA was to readout the quantum state of a superconducting qubit which

is discussed next.

1.3 Superconducting quantum circuits

Nano-fabrication technology has enabled the fabrication of various kinds of nanoscale

devices which have been shown to behave quantum mechanically. An example is

superconducting quantum bits which are electronic circuits made to behave like ar-

2A common problem with DC SQUID ampli�ers is the inability to cool the shunt resistors
e¤ectively [15].



CHAPTER 1. INTRODUCTION 33

ti�cial atoms [30]. These devices are promising candidates for building a scalable

quantum computer, which relies on the coherent manipulation and entanglement of

these quantum bits. In order that these systems behave quantum mechanically, they

have to be well isolated from the environment but at the same time one must be able

to manipulate and detect the quantum state of these systems with relative ease.

Quantum systems like atoms, ions etc. are inherently well protected from the

environment and show good quantum coherence. It would seem like a natural choice

to use these systems for implementing quantum bits and at present trapped ion sys-

tems are the most advanced in terms of progress towards multi-qubit systems [31, 32].

However, the small size scale, and their inherent decoupling from the environment

makes it quite di¢ cult to manipulate and detect their state, though a lot of progress

has been made recently in this regard. Another major issue is the scalability of these

systems. A successful implementation of a quantum computer requires thousands

of such quantum bits and the ability to entangle them - a major challenge for sys-

tems based on trapped atoms/ions. This is where the solid state implementation of

quantum bits may have a signi�cant advantage, especially superconducting quantum

circuits. Since these circuits are made using standard lithography techniques, it is

possible to make thousands of quantum bits with relative ease. The challenge lies in a

di¤erent area, namely their coherence properties which are typically much worse than

their atomic counterparts. These nanoscale circuits are still much more macroscopic

than their atomic counterparts, containing billions of atoms. Their macroscopic na-

ture makes it easy to couple to them using wires, but at the same time makes them

much more susceptible to sources of noise and decoherence. A lot of clever circuit

design and optimal choice of fabrication material and techniques is required to pro-
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tect them from environmental noise. Nevertheless, a lot of progress has been made

in improving the coherence properties of superconducting quantum bits and several

�avors of qubit designs with di¤erent readout schemes have emerged [6, 7, 33, 34, 28].

Superconductors are a good choice for making quantum circuits for several reasons.

First, billions of electrons in a small piece of superconductor, pair up as Cooper pairs

and settle down in a ground state which can be described as one collective degree

of freedom [35]. This collective degree of freedom can then be used as our quantum

variable to implement our "arti�cial atom", i.e., a superconducting circuit containing

billions of atoms behaves like an e¤ective single atom. Also, superconductors are

practically dissipationless since the Cooper pairs can �ow without any resistance3.

Dissipation in quantum circuits can lead to decoherence. But how does one build

a circuit which has energy levels like an atom ? The most simple implementation

of a quantum multi-level system is a quantum harmonic oscillator which in circuit

representation would be a superconducting LC oscillator. At low enough temperature

T such that kBT << ~!p, where !p =
p
1=LC is the plasma frequency of the

oscillator, the di¤erent energy levels can be resolved. The problem with a harmonic

oscillator is that all the levels have the same spacing (~!p) between them. This

prevents one from isolating two levels which can then be used as an e¤ective quantum

two level system. A non-linear circuit element is required to achieve an anharmonic

level structure. As discussed in the previous section, a Josephson junction behaves

like a non-linear inductor and is the element of choice for building these quantum

anharmonic oscillators for implementing quantum bits.

3In practice, there is always a �nite amount of dissipation due to quasiparticles (unpaired elec-
trons), but their population is suppressed exponentially at low temperatures. Also, the frequencies
used must be below the gap frequency of the superconductor.
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Various kinds of qubits have been implemented using superconducting tunnel junc-

tions [30]. At the start of this thesis work, the superconducting qubit system with

the longest coherence time (� 500 ns), was the "quantronium" design developed at

CEA-Saclay, France [6]. The "quantronium", also known as the charge-phase qubit,

is a slight modi�cation to the charge qubit which is based on the Cooper pair box cir-

cuit [36, 37] and was the �rst superconducting qubit system to demonstrate coherent

oscillations [4]. One can also use superconducting loops interrupted with Josephson

junctions to form what is known as the �ux qubit [5]. Another design, called the

phase qubit [7] uses the plasma mode of a current biased Josephson junction to im-

plement the quantum two level system. Fig. 1.5 shows SEM images of these di¤erent

types of qubits.

We have chosen the quantronium design as our qubit for the work described in

this thesis. The quantronium design uses a split Cooper pair box4 as shown in Fig.

1.6a. In this circuit, there are two small junctions with Josephson energy EJ=2 and a

large readout junction with a Josephson energy ERJ � 50EJ , all in a superconducting

loop. There are two control parameters which controls the energy spectrum of the

quantronium�the gate charge Ng = CgU=2e, and the superconducting phase � across

the two junctions which can be set by a �ux (�m = �='0) through the loop or

by applying a current bias (�R = arcsin(I'0=E
R
J )) to the readout junction. The

quantronium has a special property when biased at the so called "sweet spot" (Ng =

0:5; � = 0). At this bias point, the transition frequency between the �rst two qubit

states is stationary with respect to both control variables Ng and �, i.e., the system

becomes immune to charge and �ux noise to �rst order. The quantum states of the

4See chapter 4 and ref. [38] for more details about the quantronium circuit
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Figure 1.5: Di¤erent varieties of superconducting qubits. (a) The original charge
qubit based on the Cooper-pair box and readout using a probe junction [4]. (b)
The charge-phase qubit based on the split Cooper pair box. The quantum states are
manipulated via the charge port while the readout is done via the phase port [6]. (c)
The di¤erent quantum states of the �ux qubit correspond to a di¤erent direction of
the circulating current in the loop. Readout is carried out by measuring the associated
�ux using a SQUID [5]. (d) A phase qubit uses the two lowest levels in a current-
biased Josepshson junction as the quantum states. The inherent metastability is
exploited for the readout [7].

qubit are now the symmetric and anti-symmetric superposition of 0 and 1 Cooper pair

on the island, the average charge in both states being the same. In order to measure

the qubit state, we now move in phase (�) and measure the persistent current which

�ows in the loop with a qubit state dependent magnitude. This way, we avoid moving

away from Ng = 0:5, where the qubit is protected from 1=f charge �uctuations which

are the dominant source of decoherence in charge qubits.

The original quantronium design used the switching of the readout junction from
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Figure 1.6: (a) The original quantronium circuit with DC readout. The quantro-
nium is based on the split Cooper pair box which comprises of two small (EJ=2)
Josephson junctions in a superconducting loop. A large Josephson junction (ERJ ) is
inserted in the loop and used to readout the quantum state. There are two con-
trol parameters which controls the energy spectrum of the quantronium�the gate
charge Ng = CgU=2e, and the superconducting phase � across the two junctions
which can be set by a �ux (�m = �='0) through the loop or by applying a current
bias (�R ' arcsin(I'0=ERJ )) to the readout junction. The e¤ective critical current of
the quantronium depends on the quantum state of the qubit. The readout junction is
current biased with an approriate pulse and the switching of the junction from its su-
perconducting state to its voltage state is monitored by measuring the voltage across
the junction. The switching probability varies with the qubit state, hence providing
the readout mechanism. (b) Ramsey fringe data measured in a quantronium qubit
with DC readout at CEA-Saclay obtained from ref. [6]. The Ramsey decay time is
about 500 ns, the longest value measured in superconducting qubits at that time.
But, the readout contrast is only 10%. The improvement of the readout contrast was
one of the main motivations behind the development of the JBA.
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its superconducting state to the voltage state to discriminate between the qubit states.

In the absence of an external current bias, the system remains at the �magic�point

and one can carry out quantum manipulations by applying microwave pulses to the

gate port. The measurement process is initiated by passing a current through the big

junction, which in turn imposes a phase across the split Cooper pair box. The loop

currents thus generated, modify the amount of current �owing through the readout

junction. By carefully biasing the system with a current pulse of the right amplitude

and length, one can make the readout junction switch into its voltage state with high

probability when the qubit is in state j1i and very low probability when it is in state

j0i. This way one could discriminate between the two qubit states. Fig. 1.6b shows

the result of a Ramsey fringe experiment [6] yielding a coherence time T2 � 500ns.

At the start of this thesis work, this was the best result in the superconducting qubit

community and an important reason for choosing this system for our work. The

quantronium design also allows the separation between the read (phase) and write

(charge) ports which prevents complications due to cross-talk between the read and

write operation.

Nevertheless, there were still a few problems in the original design which needed

to be recti�ed in order to achieve better operation. A major issue was the generation

of quasi-particles when the readout junction switched into its voltage state. It is now

widely accepted that the presence of quasi-particles near the qubit is very harmful.

It leads to heating, poisoning of the qubit states and limits the repetition rate of

the experiment because one has to wait long enough to make sure that all the quasi-

particles have di¤used out (which can be quite long at the extremely low temperatures

at which the experiments are performed � 10 mK). Moreover, the recombination
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process can itself produce excess noise for the adjacent circuitry[39]. The observed

contrast of Rabi oscillations and Ramsey fringes was also quite low (� 10%) [6] though

it was subsequently improved to about 40% using a clever combination of �ux and

current bias [40]. It was clear that a better readout was needed which would address

all these problems. This was the main motivation behind the development of the

Josephson Bifurcation Ampli�er.

Instead of probing the loop currents by biasing with a DC current and measuring

the probability of switching into the voltage state, we decided to bias the junction

with an AC current (microwaves) and probe the inductance of the quantronium.

The readout junction was shunted with a capacitor to form a non-linear oscillator

and energized with microwave pulses to bias it near a saddle-node bifurcation. The

qubit state modi�ed the bifurcation point of the non-linear oscillator which resulted

in the JBA ending up in either the low amplitude state or the high amplitude state

depending on whether qubit was in state j0i or j1i. Analogous to the previous

measurement scheme one can now measure the probability of switching from one

oscillation state to another to discriminate between the qubit states. This purely

dispersive method has the advantage of high speed and high �delity, with no on-

chip dissipation. This method avoids generation of quasi-particles since the readout

junction remains in the superconducting state at all times.

The next section brie�y summarizes the key results obtained in this thesis.
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1.4 Summary of key results

1.4.1 JBA Measurements

The existence of a plasma like mode of oscillation in Josephson junctions was �rst

predicted by Josephson himself [3]. Several experiments followed which probed the

microwave power absorption at the plasma resonance [41, 42]. In our experiment, we

directly measure the plasma resonance in a coherent microwave re�ection experiment,

measuring both the magnitude and the phase of re�ected microwave signal. Typical

junction fabrication parameters limit the plasma frequency to the 20 - 100 GHz range

where techniques for addressing junction dynamics are inconvenient. We have chosen

to shunt the junction by a capacitive admittance to lower the plasma frequency by

more than an order of magnitude and attain a frequency in 1-2 GHz range (microwave

L-band). In this frequency range, a simple on-chip electrodynamic environment with

minimum parasitic elements can be implemented, and the hardware for precise signal

generation and processing is readily available. Since there is no intrinsic dissipation in

the oscillator in principle5, the phase of the re�ected signal contains all the information

about the resonance characteristics. The response of the system was studied in both

the linear and non-linear regime by varying the drive power and the result is shown

in Fig. 1.7.

The normalized re�ected signal phase as a function of drive frequency and power

is presented in the right panel of Fig. 1.7 as a two dimensional color plot. For

small excitation power, we recover the linear plasma resonance at 1:54GHz, shown

in yellow corresponding to � = 0. As the power is increased above �115 dBm, the

5In practice, the on-chip capacitive admittance always provides some dissipation but it is usually
very small.
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Figure 1.7: Normalized re�ected signal phase � (wrap-around color scheme) as a
function of excitation frequency !d=2� and excitation power P . Experimental data
is shown in the right panel. A vertical slice taken at !d=2� = 1:375 GHz (dashed line
in the inset) shows the abrupt transition between two oscillation states of the system.
The left panel is the result of numerical simulations of the full circuit including stray
elements, and shows very good agreement with the experimental results.

plasma frequency decreases as expected for the non-linear oscillator. The boundary

between the leading-phase region (green) and the lagging-phase region (red) therefore

curves for high powers. When we increase the drive power at a constant frequency

slightly below the plasma frequency, the phase as a function of power undergoes an

abrupt step (dashed line), as predicted. This represents the transition from the low

amplitude state to the high amplitude state. For yet greater powers (> �90 dBm),

we encounter a new dynamical regime (black region in Fig. 1.7) where � appears to

di¤use between the wells of the cosine potential. This was con�rmed by the presence

of an unambiguous audio frequency AC resistance in the black region (see section

3.4). In the inset of right panel of Fig. 1.7, we illustrate the sequence of dynamical

transitions by plotting � as a function of incident power at !d=2� = 1:375GHz. For
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P < �102 dBm, the phase is independent of power (� oscillates in a single well in the

harmonic-like, phase-leading state, letter A). For �102 dBm < P < �90 dBm, the

phase evolves with power and � still remains within the same well, but oscillates in

the anharmonic phase-lagging state (letter B). Finally, for P > �90 dBm, the average

phase of the re�ected signal saturates to -180 degrees, corresponding to a capacitive

short circuit. This last value is expected if � hops randomly between wells, the e¤ect

of which is to neutralize the Josephson inductive admittance.

The above measurements were taken using a network analyzer which only allows

for slow frequency sweeps. In other measurements (see Chapter 3), where the power is

ramped in less than 100 ns, we veri�ed that the transition between dynamical states

is hysteretic, another prediction of the theory. To explain the complete frequency

and power dependence of the transitions shown in the right panel of Fig. 1.7, we

have performed numerical simulations by solving the full circuit model (equation

1.5 + stray elements). The result of this calculation is shown in the left panel of

Fig. 1.7. It correctly predicts the variation of the plasma frequency with excitation

power, and the boundaries of the phase di¤usion region. The agreement between

theory and experiment is remarkable in view of the simplicity of the model which

uses only measured parameters, and only small di¤erences in the exact shape of

region boundaries are observed.

1.4.2 Qubit measurements

As discussed in section 1.2, the transition from the low amplitude state to the high

amplitude state of the JBA depends sensitively on the critical current of the junction.

This is exploited to make a readout for superconducting qubits using the JBA. The
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Figure 1.8: Schematic showing the measurement setup of a quantronium with JBA
readout. The big readout junction along with the shunt capacitors forms the non-
linear oscillator which is the central element of the JBA. The quantronium and the
non-linear oscillator are coupled via the shared readout junction. Qubit manipulations
are carried out by sending microwave pulses to the charge (write) port while the state
of the qubit can be measured by sending microwave pulses to the phase (read) port.

general idea of the readout is depicted in Fig. 1.8.

The quantronium qubit and the JBA are coupled via the shared big junction. The

quantum state of the qubit a¤ects the critical current of the readout junction and

hence the state of the qubit can be readout by measuring the state of the JBA. The

qubit state is prepared by sending microwave pulses to the charge port (chapter 4)

while the readout operation is performed by sending microwave pulses to the phase

port and analyzing the phase of the re�ected signal. This way, the state of the

qubit is encoded in the phase of the signal re�ected from the JBA. A typical qubit

measurement sequence starts with qubit preparation and manipulation by sending

appropriate microwave pulses to the charge port. This is followed by a readout

operation where a microwave pulse is sent to the phase port which energizes the

JBA and biases it near its bifurcation point. The signal re�ected from the JBA is
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then analyzed to determine whether the JBA is in the low amplitude state or the high

amplitude state. The process is then repeated thousands of times and the probability

of switching from the low amplitude to the high amplitude state is determined (output

signal). The measurement is arranged so that the switching probability is close to

zero when the qubit is in its ground state while the switching probability is close to

one when the qubit is in its �rst excited state. Ideally, we would like the switching

probability to be zero for qubit ground state and one for qubit excited state. The

optimization of the qubit readout performance is discussed in chapter 6.

The coherence properties of di¤erent qubit samples were measured and typical

results are shown in Fig. 1.9. Panel (a) shows the Rabi oscillation data. The Rabi

decay time eT2 was found to be in the range 0:8� 1:7�s depending on the sample and
precise biasing conditions. A linear dependence of the Rabi oscillation frequency �Rabi

with the microwave drive amplitude UmaxRF was observed (see Fig. 5.7b), in agreement

with the theory of driven two level quantum systems. We can now calibrate the

� pulse required to prepare the qubit in the excited state. Panel (b) shows the

decay of the excited state lifetime (T1) with typical lifetimes being in the range of

1 � 5 �s. The values of T1 obtained with our dispersive readout are comparable

with the results of Vion et. al. [6], but are signi�cantly shorter than the values

expected from coupling to a well thermalized 50
 microwave environment shunting

the qubit. The loss mechanisms giving rise to the observed energy relaxation are not

understood at this time. Panel (c) shows the Ramsey oscillation data which allows

one to measure the decay time of qubit phase coherence during free evolution of the

qubit state. Typical Ramsey decay times observed were T2 � 300 ns. The Ramsey

fringes decay time T2 has a component due to energy relaxation and one due to
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Figure 1.9: Summary of qubit coherence measurement. (a)Rabi oscillations of the
switching probability as a function of the duration � of a square pulse applied on the
gate. Solid green curve is an exponentially decaying sinusoidal �t with eT2 = 1:6�s.
(b) Decay of the excited state switching probability after preparing the qubit in
the excited state by a � pulse, as a function of the waiting time tw between the
preparation pulse and the readout pulse. Solid green curve is an exponential �t with
a decay constant T1 = 3.2�s. The dashed line indicates the value of Pswitch in the
absense of a � pulse. (c) Ramsey fringes obtained with two �=2 pulses separated by
the time interval �t. The pulse frequency was detuned from the Larmor frequency by
20MHz. The green curve is a exponentially decaying sinusoid �t. The decay time T2
is 320ns. (d) Switching probability as a function of maximum drive current and qubit
state. The vertical dotted line represents value of drive current at which maximal
di¤erence in Pswitch is observed. The solid line connects the observed data points in
the j0i state and the dashed line is a copy of the solid line horizontally shifted to
overlap the j1i state data at low values of Pswitch.
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pure dephasing: 1=T2 = 1= (2T1) + 1=T', where T' represents pure dephasing. In our

measurements, T2 is usually dominated by pure dephasing which is due to �uctuations

in the qubit transition frequency originating from 1=f o¤set charge noise. Recent

qubit measurements using the cavity version of the JBA show that the dephasing

times are compatible with the magnitude of the typical 1=f o¤set noise seen in these

systems [43]. Immunity to 1=f charge noise can be achieved by increasing the EJ=EC

ratio in these qubits and we observed some improvement in the pure dephasing time

for such samples (see chapter 5). This strategy is now being implemented in some

new qubit implementations which use very large EJ=EC ratios to almost eliminate

the gate charge dependence of the transition frequency [44, 45].

Panel (d) shows the S-curves corresponding to the qubit being in the ground and

excited state. The open circle points in blue and red correspond to data for the

qubit ground and excited states respectively while the solid black line is the best �t

through the ground state data. The dashed black line is the same as the solid black

line but shifted to match the excited state data for low switching probabilities. This

was done to indicate the small di¤erence in the shape of the excited state S-curve

resulting in the reduction of readout contrast. The observed contrast for this data is

about 15� 30% smaller than expected. In a set of experiments described in chapter

6, we used two readout pulses in succession to determine that a 15 � 30% loss of

qubit population occurs, even before the resonator is energized to its operating point.

We attribute this loss to spurious on-chip defects [46]. As photons are injected into

the resonator, the e¤ective qubit frequency is lowered due to a Stark shift via the

phase port [47]. When the Stark shifted frequency coincides with the frequency of

an on-chip defect, a relaxation of the qubit can occur. Typically, the qubit frequency
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spans 200 � 300MHz before the state of the qubit is registered by the readout, and

3 � 4 spurious resonances are encountered in this range. Chapter 6 discusses these

issues in more detail.

1.4.3 Escape measurements in the quantum regime

The ultimate sensitivity of the JBA depends on the e¤ective intensity of �uctuations

felt by it at the operating temperature (chapter 2). As the operating temperature

approaches zero, quantum �uctuations start becoming important. In the classical

regime, the transitions are governed by some kind of activation process and ther-

mal noise activates the system over an e¤ective barrier [27]. But what mechanism

governs the transition as T ! 0 ? More importantly, what sets the classical to quan-

tum crossover temperature? Borrowing ideas from the theory of macroscopic quan-

tum tunnelling (MQT) in current biased Josephson junctions (see [48] and references

therein), we can make an educated guess that the crossover temperature must be

related to the plasma frequency of the oscillator. It turns out that for this driven,

non-linear system, the transition between the metastable states is predominantly due

to an activation process even as T ! 0[49, 50, 51], but the origin of �uctuations is

the zero-point �uctuations of the oscillator. There has also been some recent work on

the signatures of quantum behavior in driven non-linear systems and its dependence

on system parameters[52].

The escape in the quantum regime is closely connected to the Dynamical Casimir

E¤ect (DCE)� an elusively weak phenomenon predicted about 40 years ago [53, 54]

but whose theory remains essentially experimentally unveri�ed. In perhaps the most

promising opto-mechanical realization of the DCE [55], one of the mirrors of a Fabry-
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Perot cavity is driven by a force that periodically varies the cavity�s geometric length

at a frequency 
 which is a multiple of the lowest cavity mode frequency !0. Ac-

cording to prediction, even when the cavity is at a low temperature T such that it is

initially void of all real electromagnetic radiation (~!0 >> kBT ) and contains only

virtual zero-point quantum �uctuations, the mirror motion should spontaneously cre-

ate thermal radiation inside the cavity. Our experiment implements a fully electrical

version of the DCE where we have periodically varied the frequency of an electromag-

netic resonator not by mechanical means, but through an element whose reactance

can be modulated by an electrical signal. This element is the Josephson tunnel junc-

tion in the JBA which can be modelled as an inductor which is both non-linear and

purely dispersive. The non-linearity enables electrical modulation of the resonator

inductance while the absence of dissipation eliminates parasitic channels of heat pro-

duction.

Our implementation can be classi�ed as a pumped, doubly degenerate parametric

resonator operating in the quantum regime. Its operation can be described as the

parametric conversion of positive frequency components at the idler and signal fre-

quencies into their negative counterparts. Josephson parametric ampli�ers[9] which

essentially perform the same function are also potential candidates for observing the

DCE, but a major experimental challenge is to detect the small e¤ective temperature

of the output photon �eld produced by the DCE, and requires a detector with mini-

mal coupling loss and quantum-noise limited sensitivity. In our experiment, we use a

unique approach by operating the non-linear resonator close to a saddle-node bifur-

cation which can then also function as a detector. Thermal noise that, according to

the DCE, should be generated from the ampli�cation of quantum �uctuations inside
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the resonator, here provokes the switching of the system from the initially prepared

low amplitude state into the high amplitude state. By performing a calibration in

the high temperature regime where the switching process is dominated solely by ordi-

nary black-body thermal radiation, we can infer the temperature of the spontaneously

created noise in the quantum regime and compare it to theory.

The theory of quantum escape [49, 50, 51] predicts6 that the e¤ective temperature

is given by

Teff (T ) =
~!d
2kB

coth

�
~!d
2kBT

�
(1.7)

From the above equation, we can see that in the classical regime (kBT � ~!d), the

e¤ective temperature Teff tends to the physical temperature T . On the other hand,

as T ! 0, Teff ! ~!d=2kB. We note that this result is di¤erent from the MQT

results where the saturation temperature is given by ~!d=7:2kB [48]. This is due to

the fact the escape from the metastable state in the JBA takes place via quantum

activation and not via tunneling.

The experimental procedure is similar to the MQT experiment [48]. We bias the

JBA near the bifurcation point and monitor the rate of escape as a function of the

distance to the bifurcation point. Since we know this expected dependence from

theory [27], we can infer the e¤ective escape temperature. This experiment is then

repeated for di¤erent temperatures and the corresponding escape temperatures are

recorded (see chapter 8 and [56]). Since we expect the escape temperature to be equal

to the physical temperature in the classical regime, we normalize the data so that

the measured escape temperature matches the physical temperature in the classical

regime. This can only be done if we are sure that the only source of �uctuations

6This result is derived in Chapter 7 using a di¤erent approach based on Input-Output theory.
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felt by the system in the classical regime is the thermal noise corresponding to that

temperature. In order to verify this, we also measured at every temperature point, the

escape from the DC current biased junction which provides an independent calibration

of the noise intensity in the system. We then observe how the escape temperature

in the RF case varies as the physical temperature is lowered. The experiment was

performed on two samples with di¤erent plasma frequency and the result is shown in

Fig. 1.10.

The blue square points correspond to the sample with the !p=2� = 1:67 GHz while

the red circles correspond to the sample with !p=2� = 4:69 GHz. The corresponding

drive frequencies are !d=2� = 1:525 GHz and !d=2� = 4:450 GHz. The solid colored

lines are a plot of equation 1.7 as a function of physical temperature for the corre-

sponding values of drive frequency. We note that the solid lines �t the data quite

well. The dashed black line represents the equation Tesc = T for comparison. In the

inset, we show the data for the escape temperature inferred from DC switching mea-

surements and the DC saturation temperatures are indicated with colored arrows on

the main plot. For our system parameters, we should have measured TMQT
eff = T over

the entire temperature range. We believe that the small residual deviations are due

to improperly thermalized �lters and noise in the dual biasing con�guration. Another

possibility is the contribution of higher frequency plasma dynamics due to residual

inductance in series with the shunting capacitor. Nevertheless, we note that the data

for escape in the quantum regime agrees well with the theoretical predictions and the

saturation temperatures corresponds to ~!d=2kB. This experiment provides evidence

for the existence of the electrical version of DCE at microwave frequencies involving a

Josephson junction RF driven near its dynamic bifurcation point. From the point of
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Figure 1.10: Escape temperature v.s. bath temperature for an RF driven Joseph-
son oscillator biased near a bifurcation point. The escape temperature is inferred
by monitoring the transition rates from the low amplitude to the high amplitude
state of the Josephson oscillator. The blue square points correspond to the sample
with the !p=2� = 1:67 GHz while the red circles correspond to the sample with
!p=2� = 4:69 GHz. The corresponding drive frequencies are !d=2� = 1:525 GHz and
!d=2� = 4:450 GHz. The solid colored lines are a plot of equation 1.7 as a function
of physical temperature for the corresponding values of !d. We note that solid lines
�t the data quite well. The dashed black line represents the equation Tesc = T for
comparison. The errors in the measurement of escape temperature are set by the
amount of statistics obtained and the stability of the drive power. It is usually less
than 5%. In the inset, we show the data for the escape temperature inferred from
DC switching measurements and the DC saturation temperatures are indicated with
colored arrows on main plot.
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view of signals coming from the load impedance, the RF biased junction behaves as a

parametric ampli�er and, in the quantum regime, converts quantum �uctuations into

thermal noise. In other experiments described in chapter 8, we have characterized

the performance of the JBA as a parametric ampli�er for amplifying small signals

coupled via the drive port. Data indicates that performance near the quantum limit

is possible.

1.5 Thesis overview

Quantum measurements of solid-state systems, such as the readout of superconduct-

ing quantum bits challenge conventional low-noise ampli�cation techniques. Ideally,

the ampli�er for a quantum measurement should minimally perturb the measured

system while maintaining su¢ cient sensitivity to overcome the noise of subsequent

elements in the ampli�cation chain. Additionally, the drift of materials properties

in solid-state systems mandates a fast acquisition rate to permit measurements in

rapid succession. In this thesis, we harness the sensitivity of a dynamical system -

a non-linear oscillator tuned near a bifurcation point to meet these requirements. In

this new scheme, all available degrees of freedom in the dynamical system participate

in information transfer and none contribute to unnecessary dissipation resulting in

excess noise. We have used a superconducting tunnel junction which can be viewed

as a non-linear inductor to construct our non-linear oscillator. The superconduct-

ing tunnel junction is the only electronic circuit element which remains non-linear

and non-dissipative at arbitrary low temperatures. As the key component of present

superconducting ampli�ers, it is known to exhibit a high degree of stability.

We have performed a novel, phase-sensitive, microwave experiment demonstrat-
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ing that the Josephson plasma oscillation can transition between the two dynamical

states predicted for a driven non-linear system[28]. Using di¤erent samples, we have

shown that this dynamical phenomenon is stable, reproducible and can be precisely

controlled, thus opening the possibility for practical applications like ampli�cation

which we call the Josephson Bifurcation Ampli�er. A signal coupled to the critical

current of the junction can be detected by monitoring the changes in the dynamical

state of the non-linear oscillator[57]. This approach was used to develop a non-linear,

dispersive readout for superconducting qubits by coupling a Cooper-pair box with

the JBA[29]. In order to perform a readout, the resonator is RF-energized to a level

where its oscillation state now acts as a sensitive pointer of the qubit state. This tech-

nique does not generate any dissipation on chip since the resonator is only damped

by circuitry outside the chip, i.e., a 50
 transmission line with a matched circulator

and ampli�er, and enables a high-�delity qubit readout with a MHz repetition rate.

We have measured Rabi oscillations and Ramsey fringes with su¢ cient speed that

real time �ltering to correct for drifts in the charge and �ux bias becomes possible.

Also, several successive readouts may be performed within the energy relaxation time

of the qubit (T1). This gives valuable information on the readout-induced interaction

between the qubit and its environment, and accounts for the observed contrast. The

JBA was also used as a parametric ampli�er to amplify small signals coupled via the

drive port (as opposed to parametric coupling of signals in the qubit readout) achiev-

ing signal gain of about 20 dB and near quantum limited noise temperature. The

parametric ampli�er model of the JBA also helps us understand its behavior in the

quantum regime. The dynamical transition between the metastable states of the JBA

takes place via an activation process even in the limit T ! 0 as opposed to a tunnel-
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ing process for escape in static systems. The JBA acts as a parametric ampli�er for

the quantum �uctuations and converts them into thermal �uctuations which in turn

leads to the activation process which causes transitions. Theory predicts that the

e¤ective temperature of the ampli�ed quantum noise is given by ~!d=2kB where !d is

the drive frequency. Experimental data shows good agreement with this prediction.

The material in this thesis is arranged as follows. Chapter 2 describes the theoret-

ical aspects of the JBA, discussing the properties of the driven, non-linear oscillator

and how it is used to build an ampli�er. Chapter 3 deals with the experiments con-

ducted to characterize the performance of the JBA and also discusses some practical

aspects of implementing a JBA. Chapter 4 talks about the implementation of the

qubit readout using the JBA. The properties of the basic Cooper-pair box is dis-

cussed followed by the implementation of the quantronium qubit and how to measure

it using the JBA. The expected readout performance is characterized with the help

of numerical simulations. Chapter 5 discusses the experiments which characterize the

coherence properties of the quantronium qubit with a JBA readout. Both frequency

domain and time domain measurements are discussed. Chapter 6 deals with the issue

of qubit readout performance. It describes experiments with multiple readout pulses

to determine the information �ow during a qubit readout and to account for any losses

in qubit population. Experiments which characterize the losses in the environment

coupled to the qubit are also discussed. We move on to discuss the JBA as a doubly

degenerate parametric ampli�er in Chapter 7. This chapter uses Input-Output theory

to describe the physics of escape from metastable states. This technique is applied

to the JBA which provides useful insights into its behavior in the quantum regime.

Chapter 8 then describes experiments which explore the behavior of the JBA as it
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goes from the classical to the quantum regime. In particular, measurements of the

transition rates from the low amplitude to the high amplitude states as a function of

temperature, are described. Data describing the performance of the JBA as a para-

metric ampli�er are also presented. Finally, we provide some directions for future

experiments in chapter 9 and conclusions of this thesis in chapter 10.



Chapter 2

Josephson Bifurcation Ampli�er: Theory

In this chapter we will introduce the Josephson Bifurcation Ampli�er (JBA), the main

subject of research in this thesis. We will begin by describing a driven, non-linear

oscillator and its properties. We will then describe how one can use such a system to

make a sensitive detector/ampli�er. Finally, we will discuss the various properties of

the JBA and derive formulae to compute its performance.

2.1 General properties of a driven non-linear oscillator

Periodically driven non-linear oscillators often have several stable states, that cor-

respond to steady state oscillations di¤ering in their amplitude and phase. A well

known example of a non-linear oscillator is a simple pendulum(Fig. 2.1 (a)).

In a linear oscillator, the restoring force is proportional to the displacement. But

the restoring force in a pendulum is proportional to the sine of the angle �v with

respect to the vertical, which makes it non-linear. In other words, the frequency of

oscillations depends on its amplitude or energy. As the oscillation energy increases,

56
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Figure 2.1: a) Simple pendulum as a non-linear oscillator. The restoring force is
proportional to the sine of the angular displacement which is the origin of the non-
linearity. The frequency for small oscillations is given by (g=l)1=2. b) A plot of the
normalized angular frequency (!0= (g=l)

1=2) as a function of the normalized oscilla-
tion energy of the pendulum. �maxv now refers to the amplitude of oscillation. The
energy of oscillation is given by the potential energy at maximum displacement i.e.
mgl (1� cos �maxv ) with the maximum value mgl at �maxv = �. We note how the
frequency �rst decreases linearly with energy. The slope at the origin is �1=4 as
indicated by the dashed line. The green line is the expected behavior for a linear
oscillator. We have assumed that there is no damping in the pendulum

the frequency of oscillation decreases (sin �maxv � �maxv ). This behavior is illustrated

in Fig. 2.1(b). The frequency of small oscillations (sin �v ' �v) is given by !0 =p
g=l, where g is the acceleration due to gravity and l is the length of the pendulum.

Now consider the situation where the pendulum is subject to periodic driving at a

frequency !d < !0. If the pendulum has �nite damping, this driving frequency has

to satisfy1 !0 � !d >
p
3� where � is the amplitude damping coe¢ cient. For a

large enough strength of driving, the pendulum can respond in two di¤erent ways

[58]. It can either respond by oscillating with a small amplitude at frequency !d

where its natural frequency (� !0) is di¤erent than the driving frequency. This is the

1This condition is derived in the next section
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Figure 2.2: Oscillation amplitude of a linear and non-linear oscillator as a function
of frequency for increasing drive amplitudes. a) Linear oscillator: the shape of the
resonance curve doesn�t change with drive amplitude. Maximum response occurs at
the natural frequency !0. b) Non-linear oscillator: the resonance curves bends over
as the drive amplitude is increased and becomes multi-valued for certain parameters.
Maximum response for small amplitude oscillations occurs at !0. For higher drive
amplitudes, maximum response occurs at frequencies below !0. The sign of the
�rst non-linear term which is negative for the pendulum, determines the direction
of this shift. The intersection of the dashed line with the red curve shows the two
possible oscillation states (x). The intersection marked with a circle corresponds to
an unstable state. This is discussed in the next section.

o¤-resonant behavior. Or, it can oscillate with a larger amplitude thereby lowering

its natural frequency and bringing it closer to the driving frequency. This is the

resonant behavior. These two modes of oscillation are possible for the same driving

condition, i.e., the system is bistable. In contrast to a linear oscillator, it is possible

to drive a non-linear oscillator into resonance by changing either the frequency or

amplitude. An example of resonance curves in a linear and non-linear oscillator is

shown schematically in Fig. 2.2. This phenomenon is quite generic in non-linear

oscillators provided certain conditions are satis�ed. We will discuss these conditions

in detail in the next section.
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Figure 2.3: Circuit diagram of a capacitively (CS) shunted Josephson junction biased
with a current source I(t) with source impedance R.

2.2 Josephson junction oscillator

In this section, we will describe how to use a Josephson junction to make a non-linear

oscillator. This will be our prototypical system from now on and we will use this

example to discuss the properties of a driven non-linear oscillator.

2.2.1 Bistability in driven Josephson oscillator

The Josephson junction was introduced in section 1.2.1 and can be viewed as a non-

linear inductor. In our experiments, we always shunt the Josephson junction with an

additional capacitor (CS) to bring down the plasma frequency from around 20 GHz

to about 1:5 GHz so that the microwave circuit design is easier to implement. Since

CS >> CJ , we will ignore the junction capacitance CJ from now on. The e¤ective

circuit in our experiments can be reduced to that a capacitively shunted junction

driven by a current source I(t) with source impedance R. The circuit is shown in

Fig.2.3b and the equation describing its dynamics is given by

CS'0
d2�(t)

dt2
+
'0
R

d�(t)

dt
+ I0 sin(�(t)) = I(t): (2.1)
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Note that the above equation is identical to the well known RCSJ equation (resistively

and capacitively shunted junction). The resistance R is often used in literature to

describe the quasi-particle resistance of the junction. It is also used to describe a

shunt resistance whose function is to damp the plasma oscillations of the junction.

This is not the case here. In our experiments, we use microwave signals, propagating

on a transmission line to bias the Josephson oscillator (Fig.2.3a). Here, the resistance

R describes the characteristic impedance (which is real) of the transmission line or

equivalently, the source impedance of the matched, microwave signal generator. At

microwave frequencies, there are no ideal current or voltage sources and they usually

have a �nite source impedance R = 50 
. We have chosen to represent the microwave

source as an ideal current source shunted with a resistance R. Since we always work

with the junction in its superconducting state, the Josephson oscillator has no intrinsic

dissipation2. Dissipation enters equation 2.1 only due to the fact that the oscillator is

connected to a transmission line which provides a mechanism for energy to leak out

of the oscillator. See section 7.1 for a more detailed discussion of these ideas.

In equation 2.1, the non-linear term is given by the sine of the phase di¤erence

across the junction - just like in the pendulum. Similarly, the frequency of natural

oscillations decreases with increasing amplitude. We will now derive the condition

for bistability when this non-linear oscillator is subject to harmonic driving, i.e.,

I(t) = IRF cos(!dt). Rewriting the above equation for a harmonic drive at frequency

!d, and retaining only the �rst non-linear term in the expansion of the sine term, we

2This is true provided the operating temperature (� 10 mK) is much lower than the critical
temperature of the superconductor (� 1 K). Also the frequencies used (� 1 GHz) are much below
the gap frequency (� 100 GHz) of the superconductor.
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get:
d2�(t)

dt2
+ 2�

d�(t)

dt
+ !2p

�
�(t)� �(t)

3

6

�
= !2p

IRF
I0
cos(!dt) (2.2)

where � = 1=2RCS is the damping rate of the oscillation amplitude and !p =p
I0= ('0CS) is the plasma frequency. We expect that the oscillator will respond

predominantly at the frequency of driving (!d). Therefore, it is convenient to de-

scribe the dynamics by using dimensionless, slow complex amplitudes [27] as below:

�(t) =

s
2!d�!

3

(u(�) exp (i!dt) + u

�(�) exp (�i!dt)) (2.3)

where


 = !2p=6 (2.4)

is the magnitude of the coe¢ cient of the non-linear term (_ � (t)3),

�! = !p � !d (2.5)

is the detuning of the drive from the plasma frequency, and

� = �!t (2.6)

is the new dimensionless, slow time variable. Substituting 2.3 into 2.2, we get:

�!

!d

d2u

d� 2
+ (
2�

!d
+ 2i)

du

d�
+

�
2

�
!2p � !2d
2!d�!

�
+
i2�

�!
� 2 juj2

�
u(�) = 2

p
� (2.7)
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where

� =
3
!4pI

2
RF

32I20!
3
d(�!)

3
(2.8)

is the reduced drive strength. We will now make some approximations. We only

consider under-damped oscillators, i.e., 2�=!p << 1. Also !d � !p, i.e., �!=!d <<

1. Making these approximations, equation 2.7 reduces to

du

d�
= � u



� iu

�
juj2 � 1

�
� i
p
� (2.9)

where


 = j�!j =� (2.10)

is the reduced detuning.

In order to �nd the steady state solutions, we set du=d� = 0 and we get a complex

algebraic equation

� u



� u

�
juj2 � 1

�
= i
p
� (2.11)

Multiplying equation 2.11 by its complex conjugate, we get a cubic equation for the

modulus square of the complex amplitude juj2:

juj2


2
+ juj2

�
juj2 � 1

�2
= � (2.12)

Provided 
 >
p
3, the above equation has three real roots for a certain range of �.

The extreme points of this range are called the bifurcation points and are given by
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Figure 2.4: Steady state solutions of the driven non-linear oscillator for di¤erent
values of reduced detuning 
. The magnitude square of reduced oscillation amplitude
is plotted as a function of reduced drive power ~P = 
3�. The x and y axes have been
scaled to clearly depict the variation with 
. We observe multi-valued solutions for

 >

p
3. The turning points of the curves for 
 >

p
3 are the bifurcation points (��B)

and are indicated for the curve with 
 = 3:0

the solution to the equation d�=d(juj2) = 0:

��B (
) =
2

27

 
1 +

9


2
�
�
1� 3


2

�3=2!
(2.13)

The smallest and largest roots of equation 2.12 correspond to the small and large

amplitude mode of oscillation while the third root represents an unstable solution.

The complex amplitude corresponding to the three solutions can be obtained by

plugging the solution of equation 2.12 into equation 2.11. Fig. 2.4 shows a plot of

equation 2.12 for di¤erent values of 
.

The plotted quantities have been scaled to clearly indicate the variation in the

steady state amplitudes and bifurcation points as 
 changes. The turning points of

each curve correspond to the bifurcation points ��B. �
+
B (upper bifurcation point)
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corresponds to the drive amplitude above which the low amplitude state no longer

exists, while ��B (lower bifurcation point) corresponds to the drive amplitude below

which the high amplitude state vanishes. If the oscillator is driven at a certain

detuning 
, and the drive amplitude is slowly increased from zero, the amplitude

of oscillation will follow one of the curves shown above until the amplitude �+B is

reached, at which point the oscillator will make a transition from the low amplitude

state to the high amplitude state. If the drive amplitude is now slowly decreased, the

oscillator will continue to stay in the high amplitude state until ��B is reached and the

oscillator transitions back to the low amplitude state. This implies that the response

of the oscillator is hysteretic.

We can now identify two conditions for bistability of a driven non-linear oscillator:


 >
p
3 (2.14a)

��B (
) < � < �+B (
) (2.14b)

The �rst condition places a restriction on the minimum detuning for the drive fre-

quency from the plasma frequency for a given damping, i.e., !p�!d >
p
3�. We will

call this value the critical detuning 
c and the corresponding critical drive strength

�c:


c =
p
3 (2.15)

�c =
8

27

The bistability diagram shown in Fig. 2.5 is a plot of equation 2.13. For values
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Figure 2.5: Bistability diagram in the plane of reduced drive power ( ~P= ~Pc =
(
3��B)=(


3
c�

�
c )) and detuning (
). The power is plotted on log units to enable

easy comparison with experimental plots. The x-axis has been plotted as a negative
quantity to emphasize that for the Josephson oscillator, we need !d � !p < 0 to
observe bistability. The red and blue curves represent the upper (�+B) and lower (�

�
B)

bifurcation points as a function of 
 for 
 >
p
3. The area between these two curves

(shaded in gray) is the bistable region. The black curve (
 �
p
3) represents the

value of � for which d(juj2)=d� is maximum. The green dot represents the critical
point (
c; �c) and marks the onset of bistability. Note that this plot is universal and
does not depend on the particular parameters of the system.

of 
 > 
c, the red and blue curves correspond to the upper (�
+
B) and lower (�

�
B)

bifurcation points respectively. For values of 
 � 
c, the black curve depicts the real

part of equation 2.13, which is the value of � at which d(juj2)=d� is maximum. The

green dot identi�es the critical point which marks the onset of the bistable region

(shaded in gray). We will use these ideas in the next section for making a sensitive

detector.

We can now write down the expressions for the bifurcation points in terms of the
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drive current by using equation 2.8 in equation 2.13:

I�B = 8I0

q
�3��B (2.16)

where we have approximated3 !p � !d. Here, � is the relative detuning given by

� =
�!

!p
(2.17)

Equation 2.16 is useful for getting numerical estimates for the bifurcation current in

a real experiment. We will see in section 2.3 how changes in the critical current a¤ect

the bifurcation current and hence provide a way for detecting small changes in critical

current.

In this analysis, we have assumed that the oscillator is damped via a frequency

independent impedance R. This can be extended to the general case where this

impedance Z(!) can be a function of frequency. It turns out that bistability can still

be observed provided constraints similar to equations 2.14 are satis�ed. See reference

[59] for more details. The experiments are engineered to minimize the variation of

this impedance, especially near the plasma frequency of the oscillator.

2.2.2 Dynamics in quadrature amplitude plane

The driven states of the non-linear oscillator can be visualized in the plane of in-phase

(�k) and quadrature phase (�?) components of the oscillations amplitude �, i.e.,

�(t) = �k cos!dt+ �? sin!dt (2.18)

3See Appendix A for expressions without this approximation
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The quadrature variables are just another way of parameterizing the solution and

are related to the complex amplitude u de�ned earlier in equation 2.3 (�k _ u + u�,

�? _ u � u�). In this plane, the steady state solution can be represented as points

(�k,�?) and we can also draw trajectories to show dynamics. Fig. 2.6 shows four

such plots. The color code depicts the magnitude of the error current jIej[60], which

can be thought of as the restoring force in this plane driving the system to steady

state. The error current jIej
�
�k; �?

�
is computed by substituting equation 2.18 into

equation 2.2 and averaging over one period of the drive

jIej
�
�k; �?

�
I0

=

�
d2�(t)

dt2
+ 2�

d�(t)

dt
+ !2p

�
�(t)� �(t)

3

6

�
� !2p

IRF
I0
cos(!dt)

�
(2.19)

The above equation illustrates why this quantity is called the error current. The

steady state solutions correspond to the points where the error current goes to zero

(OL; OH and OS). At all other points (�k; �?), equation 2.2 is not satis�ed for a

given value of IRF . The error current can be thought of as the additional drive

current required to satisfy equation 2.2. The �rst three panels (a,b,c) in Fig. 2.6 are

computed for the parameters Q = 20, � = 0:129 and three di¤erent drive amplitudes

as indicated in the plots. Panel (d) shows the case when the system is driven at the

plasma frequency with a power corresponding to the bifurcation power for � = 0:129,

but we note that there is only one steady state as condition 2.14a is not satis�ed. Panel

(b) also shows some trajectories like the separatrix (red dashed line) which separates

the basins of attraction of the two steady states labelled as OL (low amplitude) and

OH (high amplitude). The black dashed line is the escape trajectory from the low
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Figure 2.6: Poincaré sections of an RF-driven Josephson junction withQ = 20. Panels
(a), (b) and (c) have � = 0:129 and di¤erent drive strengths corresponding to the
system being below bifurcation point, near bifurcation point and above the bifurcation
point respectively. The coordinates �k and �? are the in-phase and quadrature-phase
components of the junction gauge-invariant phase di¤erence �. The color code gives
the magnitude of the error current Ie [60] which describes the �force�on �. In panel
(b), where the system is near the upper bifurcation point, the two stable oscillation
states are labeled by OL and OH . The basins of attraction corresponding to the two
states are separated by the red dashed line (separatrix). Point OS which lies on the
separatrix is the saddle point at which the escape trajectory from state OL (black,
dashed line) meets the retrapping trajectory into state OH (black, solid line). Panel
(d) has � = 0 and IRF=I+B = 1 and does not display bistability since it doesn�t satisfy

 = 2�Q >

p
3.
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amplitude and intersects the retrapping trajectory (black solid line) at the saddle

point (OS). The escape trajectory is the path of least action [61] which takes the

system, in the presence of �uctuations, from the low amplitude state to the high

amplitude state via the saddle point. More about escape rates will be discussed in

section 2.3.2

2.3 Josephson Bifurcation Ampli�er

2.3.1 Operating principle

We will now describe how to use the driven Josephson oscillator as a sensitive detec-

tor. The idea is based on the fact that the driven oscillation state of the Josephson

oscillator depends very sensitively on the parameters of the oscillator when operated

in the vicinity of the bifurcation points. This is the origin of the name Josephson

Bifurcation Ampli�er (JBA). Small changes in a parameter of the oscillator (e.g.

critical current) are ampli�ed into large changes in the oscillation state which can be

measured in an experiment. There are two possible modes of operation.

The �rst one is in the hysteretic regime (
 >
p
3) where the oscillator is bistable.

If we bias the oscillator near its upper bifurcation point (�+B), a small change in a

parameter of the oscillator can make the oscillator transition from the low amplitude

state to the high amplitude state. In this mode, the JBA acts as a two state ampli�er

or a threshold detector. Fig. 2.7 schematically illustrates the bistable mode of opera-

tion. The oscillator response is plotted as a function of the RF drive amplitude (non

reduced). The two curves correspond to the oscillator response for a small change in

a parameter of the oscillator e.g. the critical current of the Josephson junction. The
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Figure 2.7: Operating principle of the JBA in the bistable mode. The oscillator
response is plotted as a function of the RF drive amplitude (non reduced). The two
curves correspond to the oscillator response for for two di¤erent values of the critical
current of the Josephson junction. The dashed line is the optimal bias point for
detecting this di¤erence in critical current. At this bias point, the oscillator will end
up in the low (OL) or high (OH) amplitude state depending on whether the critical
current is lower (red curve) or higher (blue curve).

dashed line is the optimal bias point for discriminating this change. At this bias point,

the oscillator will end up in the low amplitude or the high amplitude state, depending

the whether the critical current is smaller (red curve) or larger (blue curve). This

forms the basis of detection. This mode of operation results in an extremely non-

linear ampli�er, though it is possible to implement an e¤ective linear ampli�er using

the bistable mode as explained later in this section. The second mode of operation is

in the non-hysteretic regime (
 �
p
3), where the oscillator has only one stable state

and the oscillation state is a smooth function of the properties of the oscillator. We

will be primarily interested in the bistable mode of operation.

The procedure for coupling input signals to change the oscillator properties will

depend on the particular application. One of the properties of the Josephson oscillator
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that can be changed easily is the critical current (I0) or equivalently the Josephson

inductance (LJ = '0=I0). From now on, we will consider small changes in the critical

current of the Josephson junction as our input signal. We will see in later chapters

how one can couple to the critical current of the Josephson junction in various ways

for di¤erent applications.

Till now, we have completely ignored the e¤ect of �uctuations. In practice there

are always �uctuations present in the system. The most important source of �uctu-

ations is the Johnson noise of the shunt impedance (R, see Fig. 2.3 (b)) which also

provides damping. In a carefully designed experiment, this should be the only source

of �uctuations and the only way to lower this noise is by lowering the operating tem-

perature. The presence of �uctuations makes the two oscillation states metastable,

i.e., the oscillator can make transitions between the two states (with a certain proba-

bility) even when it is biased away from the bifurcation points. The transition curves

are no longer in�nitely sharp and acquire a �nite width which depends on the inten-

sity of �uctuations. It is now convenient to talk in terms of occupation probabilities

of the two metastable states. The measurement protocol now works like this. We

slowly ramp the drive current amplitude (IRF ) and bias near the bifurcation point

(I+B ) with the JBA in the low amplitude state. After a �xed amount of time (tw), we

probe the state of the oscillator. By repeating this many times, we can compute the

probability of switching from the low amplitude state to the high amplitude state for

di¤erent bias amplitudes. We call this quantity the �switching probability�(Pswitch).

Fig. 2.8 shows such switching probability curves or S curves for two junction critical

currents and two di¤erent intensity of �uctuations. The red curves correspond to a

lower critical current than the blue curves. The dashed lines correspond to the higher
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Figure 2.8: Switching probability or S curves indicate the probability of the JBA
switching from the low amplitude state to the high amplitude when biased near the
upper bifurcation point (�+B). S curves are plotted as a function of the bias ampli-
tude. Solid lines correspond to lower intensity of �uctuations while the dashed lines
correspond to higher intenstity of �uctuations. The red and blue curves correspond
to di¤erent critical currents of the junction with the red one being lower than the
blue one. The change in switching probability (�Pswitch) for a given change in critical
current is smaller for larger intensity of �uctuations.

intensity of �uctuations. We note that the change in switching probability (�Pswitch)

for a given change in critical current gets smaller when the intensity of �uctuations

gets larger.

Small changes in critical current now result in small changes in switching proba-

bility. This mapping is linear for small changes and can be the basis of building an

e¤ective linear ampli�er. Note that the switching probability is an average quantity

and requires several measurements of the state of the oscillator. So the JBA can

act as a linear ampli�er for small, slow changes in critical current permitting sev-

eral preparations and measurements of the oscillator state before the critical current

changes signi�cantly. For detecting changes in a single measurement without too

much uncertainty, the shift in the S curve due that change in critical current must be
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comparable to its width. In order to compute S curves and measurement sensitivity,

we need to compute the �uctuation induced transition rates between the metastable

states. This will be the subject of the next section.

2.3.2 Transition Rates

The theory of �uctuation induced transitions between metastable states in a driven

non-linear oscillator has been the subject of several papers [61, 27, 62] and the transi-

tion rates have been computed by di¤erent techniques. We will present results based

on the method followed in reference [27] because it provides easy to use formulae.

The starting point is the equation of motion for the driven Josephson junction

(2.1), but now we will include a noise term which is responsible for the transitions

between the metastable states

CS'0
d2�(t)

dt2
+
'0
R

d�(t)

dt
+ I0 sin(�(t)) = I(t) + IN(t): (2.20)

Here IN(t) is the noise current corresponding to the Johnson noise in the resistor R

at temperature T . The noise current is white with a correlation function given by

hIN(t)IN(0)i =
2kBT

R
�(t) (2.21)

where T is the temperature of the resistor R and �(t) is the Dirac delta function [60].

Using the procedure outlined in section 2.2.1 we can arrive at the following equation

of motion for the complex amplitude u

du

d�
= � u



� u

�
juj2 � 1

�
� i
p
� +~{N (�) (2.22)
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where ~{N (�) is the reduced noise current in the new notation and is related to IN (t)

by

~{N (�) = �i
p
3
!2p

(2!d�!)
3=2

IN (t)

I0
exp (�i!dt) : (2.23)

Its correlation function is given by

h~{N (�)~{�N(0)i =
3
!4p

4 (!d�!)
3

kBT�!

RI20
� (�) ;

D
~{N (�)~{N

�
�
0
�E
= 0 (2.24)

Using !d=!p � 1, we can simplify the above equation to

h~{N (�)~{�N(0)i =
kBT

EJ

Q

2
2
� (�) = 4�N� (t) (2.25)

where �N characterizes the reduced current noise. Using the procedure described in

ref. [27], the complex equation 2.22 when expanded4 near �+B can be reduced to a

Langevin equation for an e¤ective coordinate y (�) given by

dy

d�
= �dV

dy
+~{N (�) (2.26a)

V (y) = � b
3
y3 + �y (2.26b)

The above equation describes the motion of a particle di¤using in a cubic potential

V (y) where

b (
) =
1

27
p
�+B

�

2
�
1 +

p
1� 3=
2

�
+ 9
p
1� 3=
2 + 9=
2 � 6

�
(2.27)

4A similar equation can also be derived for expansion around the other bifurcation point ��B .
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Figure 2.9: Metapotential for the e¤ective slow coordinate. Its form is cubic when
� ! �+B. The minima at �

p
�=b corresponds to the low amplitude state while the

maxima at +
p
�=b corresponds to the unstable solution also known as the saddle

point (in phase space).

� (
; �) =
1

2

�+B � �p
�+B

(2.28)

When the system is biased near a bifurcation point, its motion becomes over-

damped and one of the coordinates becomes much slower than all the other time

scales in the problem [27]. Consequently, the equation describing the dynamics can

be simpli�ed and the multidimensional equation 2.22 can be reduced to a simple

1-D motion of an e¤ective slow coordinate 2.26a. This separation of time scales is

discussed using a di¤erent approach in chapter 7.

For bias points such that � > 0, i.e., � < �+B, the potential V (y) has a local

minima and a saddle point at �
p
�=b respectively (see Fig. 2.9). The local minima

corresponds to the low amplitude state of the JBA while the saddle point is the

unstable solution (see section 2.2.1). The escape problem has now been reduced to a
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standard Kramer�s [63, 64] problem for escape over barrier. It is now straightforward

to write down the escape rate from the low amplitude state of the JBA and it has an

Arrhenius like form given by

�RFesc =
!RFa
2�

exp

�
��URFesc
kBT

�
(2.29)

where the exponent has been written as the ratio of an e¤ective barrier energy (�URFesc )

over thermal energy (kBT ). !RFa is called the attempt frequency (or inverse equili-

bration time) and is given by

!RFa = 2
p
b� (2.30)

while the expression for the barrier height is given by

�URFesc = kBT
�V

�N
=
4

3

�3=2

b1=2
1

�N
: (2.31)

Using equations 2.25,2.27 and 2.28 in equations 2.30 and 2.31, and simplifying5 in the

limit of large detuning 
 >> 1, we arrive at the following expressions

!RFa = !RFa0

�
1�

�
IRF=I

+
B

�2�1=2
(2.32a)

�U = URFesc

�
1�

�
IRF=I

+
B

�2�3=2
(2.32b)

5See Appendix A for expressions without this approximation
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where

!RFa0 =
2

3
p
3

�!2

�
(2.33a)

URFesc =
32

9
p
3
EJ



Q
: (2.33b)

As expected for a cubic potential, the barrier height goes to zero with a 3=2 power law

as one approaches the bifurcation point. It is important to note that the Kramer�s

escape rate given by equation 2.29 is valid when �URFesc =kBT >> 1, i.e., only in the

limit of small escape rate [63].

The above expressions illustrate the dependence of the escape rate on various

parameters of the experiment. The dominant e¤ect comes due to changes in the

barrier height as it is inside the exponential. The drive amplitude IRF is one obvious

way of controlling the escape rate but we also see its dependence on the critical current

of the junction via various parameters (EJ = '0I0; !p = (I0='0CS)
1=2; I+B (I0)). This

provides for a mechanism to detect changes in critical current via changes in switching

probability. We will discuss the sensitivity of the JBA to changes in critical current

in the next section.

2.3.3 Measurement sensitivity

There are two important quantities which go into determining the sensitivity of the

JBA to changes in critical current. The �rst quantity is the variation of the bifurcation

current I+B with critical current I0. This quantity for 
 >> 1 can be written as follows

@I+B
@I0

=
I+B
I0

3

4�
: (2.34)
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We can reorder the above equation in the following way

@I+B=I
+
B

@I0=I0
=
3

4�
(2.35)

and note that the fractional variation in the bifurcation current (@I+B=IB) is always

bigger than the fractional variation in critical current (@I0=I0) since 3=4� > 1.

We introduced the idea of a switching probability curve or an S-curve in section

2.3.1. The width of the S-curve which depends on the intensity of �uctuations (given

by temperature T ) is the second quantity which determines the sensitivity of the

JBA. We will now de�ne this mathematically. Since we know the escape rate from

the low amplitude state to the high amplitude state of the JBA, we can de�ne the

probability of switching in a given time tw

Pswitch(IRF ; I0) = 1� exp
�
�tw�RFesc (IRF ; I0)

�
(2.36)

where Pswitch(IRF ; I0) has been de�ned as function of two parameters - the drive

amplitude IRF and the critical current I0 as we are interested in the variation of

Pswitch with respect to these two parameters. The S-curve is basically the plot of

Pswitch v.s. IRF for a given I0 (Fig. 5.11). In order to compute the sensitivity, we

need to calculate @Pswitch=@I0, which is given by

@Pswitch
@I0

= �s
1

I0

�
URFesc
kBT

�2=3�
I0
I+B

@I+B
@I0

�
(2.37)

where �s � 1 is a scaling factor which depends weakly on the operating parameters.

We can now compute the smallest change in critical current �I0 that can be resolved
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(�Pswitch � 1) in a single measurement

�I0 =

�
@Pswitch
@I0

��1
(2.38)

This is can be expressed in terms of a current sensitivity SI0(in A/
p
Hz) given a time

tpulse by the following equation

SI0 = �I0
p
tpulse =

�
@Pswitch
@I0

��1p
tpulse (2.39)

The time tpulse is the total time of a single measurement which includes the time to

energize the JBA, the wait time tw, the time to record the oscillation state and the

time to ramp down the JBA. This time scale is set by the inverse damping rate � of

the JBA and we can write

tpulse = �po
1

2�
(2.40)

where �po � 10 is the pulse overhead factor. We can now write down the full expression

for the sensitivity as

SI0 =
32=3

4
p
2

p
�po

�s

1p
�
I
1=3
0

�
kBT

'0

�2=3
�1=3 (2.41)

We note that the sensitivity depends quite weakly on most parameters, the strongest

being the temperature (T 2=3). The dependence on I0 is quite weak (I
1=3
0 ) which

means that there is �exibility in choosing the value of junction critical current. An

important point to be noted is that the above analysis involves many approximations

which have been used to simplify calculations and see trends clearly. Often, many of

these approximations become too crude in real experiments and the only way to get
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accurate predictions is to do full numerical simulations (Appendix C). Nevertheless,

the above formulae serve as a guide to the phenomena and provide quick estimates.



Chapter 3

Josephson Bifurcation Ampli�er: Experiments

In this chapter, we will discuss the experiments that were carried out to characterize

the performance of the Josephson Bifurcation Ampli�er. We will begin by discussing

the experimental setup and then go on to describe the measurement of the Josephson

oscillator resonance in the linear and non-linear regime. The hysteresis and bista-

bility measurements of the JBA will then be discussed. We will then describe the

experiments implementing the JBA as a sensitive detector and also discuss the noise

and sensitivity issues. Finally, we will discuss some practical issues concerning the

successful implementation of the JBA.

3.1 Experimental setup

The basic experiment that was carried out to probe the properties of the Josephson

oscillator was a phase-sensitive microwave re�ection experiment. A microwave signal

is sent via a transmission line to the oscillator, and the signal which is re�ected from

the oscillator is ampli�ed and its relative magnitude and phase recorded. For an ideal

81
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electrical oscillator made with dissipationless inductors and capacitors, the magnitude

of the re�ected signal is the same as the incident magnitude, and all the information

is contained in the relative phase of the re�ected signal.

The Josephson junction is the only known electrical element which remains non-

linear and non-dissipative at arbitrarily low temperatures. Typical junction fabrica-

tion parameters limit the plasma frequency of the Josephson oscillator to the 20 - 100

GHz range where techniques for addressing junction dynamics are inconvenient. We

have chosen to shunt the junction by a capacitive admittance to lower the plasma

frequency by more than an order of magnitude and attain a frequency in 1-2 GHz

range (microwave L-band). In this frequency range, a simple on-chip electrodynamic

environment with minimum parasitic elements can be implemented, and the hardware

for precise signal generation and processing is readily available.

Sample LJ(nH) !p=2�(GHz) CS(pF) LS(nH) RS (
)
1 0:28 1:18 39� 1 0:20� :02 0:8
2 0:18 1:25 30� 4 0:34� :04 0:8
2a 0:17 1:66 18� 1 0:32� :02 0:8
3 0:32 1:64 16� 1 0:27� :02 � 0:0
4 0:38 1:81 19� 1 0:03� :02 � 0:02
5 0:40 1:54 19� 1 0:15� :02 � 0:0
6 0:28 1:80 27� 1 0:01� :02 � 0:0

Table 3.1: Sample parameters. LJ = '0=I0 and !p are measured values. CS and LS
are �t values to the data. Samples 1,2 and 2a have a 100 nm thick Au underlayer,
sample 3 has a 50 nm thick Nb underlayer, sample 4 has a 1 �m thick Cu underlayer,
and sample 5 has a 200 nm thick Nb underlayer.

In the �rst step of sample fabrication, a metallic underlayer �either a normal metal

(Au, Cu) or a superconductor (Nb) �was deposited on a silicon substrate to form

one plate of the shunting capacitor, followed by the deposition of an insulating Si3N4

layer which is the dielectric material in the capacitor. Using e-beam lithography and
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Figure 3.1: Optical image (false color) of the microfabricated on chip capacitor is
shown in the left panel. Top right panel shows the actual pro�le of the di¤erent
layers in the ground plane. The additional layers (Ti and Cr) sandwiching the Cu
layer are there to protect the Cu layer during the deposition of Si3N4. The bottom
right panel shows a SEM image of a Josephson junction.

double-angle shadow mask evaporation, we subsequently fabricated the top capacitor

plates along with a micron sized Al=Al2O3=Al tunnel junction. Fig. 3.1 shows an

optical image of the chip capacitor along with the actual pro�le of the ground plane

layer. The other metallic layers (Ti and Cr) were employed for protecting the Cu

layer during the deposition of the dielectric layer. It also ensured that the Cu layer

would stick properly to the silicon substrate. Also shown in the bottom right corner

is a SEM image of the Josephson tunnel junction. The critical current of the junction

was in the range I0 = 1�2 �A corresponding to a Josephson inductance in the range

LJ = 0:15� 0:3 nH. By varying both the dielectric layer thickness and the pad area,

the capacitance CS was varied between 16 and 40 pF. Sample parameters are listed
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in Table 3.1.

Figure 3.2: Optical image of the base temperature stage of the cryostat is shown in
the left and the lower right panel. The top right panel shows the microwave launch
circuit.

The junction + capacitor chip is placed on a microwave circuit-board and is wire-

bonded to the end of a coplanar stripline which is soldered to a coaxial launcher

a¢ xed to the side wall of the copper sample box (Fig. 3.2). We anchor the RF

leak-tight sample box to the cold stage of a 3He refrigerator with base temperature

T = 280mK. The measurement setup is schematically shown in Fig. 3.3 while Fig.

3.2 shows a photograph of the base temperature stage with the layout of the various



CHAPTER 3. JOSEPHSON BIFURCATION AMPLIFIER: EXPTS 85

microwave components.

Figure 3.3: Schematic of the measurement setup. Thick lines correspond to 50

coaxial transmission lines. The network analyzer is used for CW measurements. For
probing the dynamics (section 3.3), the pulse generator and phase detector were used.
A lumped element model for the junction chip and measurement line is shown. The
two ideal current sources actually represent external sources.

Microwave excitation signals are generated by a HP 8722D vector network ana-

lyzer or a pulse generator and are coupled to the sample via the -13 dB side port

of a directional coupler after passing through cryogenic attenuators. The re�ected

microwave signal passes through the direct port of the coupler, and is ampli�ed �rst

using a cryogenic 1:20� 1:85GHz HEMT ampli�er with noise temperature TN = 4K
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before returning to the network analyzer or a phase detector1. The isolators allow

microwave signals to propagate only in one direction, preventing the HEMT ampli-

�er noise from reaching the sample. The attenuators on the input line carry out a

similar function by attenuating the thermal noise from higher temperature stages.

In later experiments we have also used various kinds of microwave �lters to prevent

spurious noise from reaching the sample. All this ensures that the �uctuations felt by

the sample correspond to the temperature of the cold stage to which it is anchored.

This is important for maximizing the sensitivity of the JBA when implemented as a

readout. A DC bias current can also be applied to the junction by way of a bias tee

and a passive �lter network.

3.2 Frequency domain measurements

3.2.1 Linear resonance

We locate the linear plasma resonance by sweeping the excitation frequency from 1

to 2 GHz and measuring the re�ection coe¢ cient

�R(!d) = Iin=Iout e
j� = (Z(!d)� Z0)=(Z(!d) + Z0) (3.1)

where Z0 = 50
 is the characteristic impedance of our transmission lines and Z(!d)

is the impedance presented to the analyzer by the chip and the measurement lines.

For an ideal LC resonator without intrinsic dissipation, we expect a phase shift �� =

�!d�!p��!d�!p = 2�, which we veri�ed by placing a chip capacitor and an inductive

1A pulse generator and a phase detector were used for the time domain measurements described
section 3.3.
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wire bond in place of the junction chip. An important aspect of our experiment is

that Q is now determined by the ratio Z0=ZJ � 10, where ZJ =
p
LJ=CS and not by

the intrinsic junction losses which are negligible. An excitation power (at the level

of the sample) P = I2RFZ0=4 t �120 dBm (1 fW) corresponding to a drive current

amplitude of IRF = 9nA� I0 keeps the junction in the linear regime.

Figure 3.4: Normalized re�ected signal phase � as a function of excitation frequency
for sample 5. The open circles are measured data for LJ = 0:40 nH. The solid line
is calculated from the equivalent circuit model shown in the inset. The magnitude of
the re�ected signal is unity within experimental uncertainity.

In Fig. 3.4, we present the re�ected signal phase � as a function of excitation

frequency for sample 5. In order to remove the linear phase evolution associated with

the �nite length of the measurement lines, we have subtracted from our measurement

in the superconducting state, the re�ection coe¢ cient measured with the junction in

the normal state. The point where � = 0 is the linear-regime plasma frequency. For

sample 5, !p= 2� = 1:54GHz.

The precise frequency and critical current dependence of the re�ected signal phase
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of our samples can be accounted for by a 3-element model for the electrodynamic

environment seen by the junction. This lumped element model is shown in the lower

right corner of Fig. 3.3. The parasitic inductance LS and resistance RS model the

non-ideality of the shunting capacitor CS. They arise from the imperfect screening of

currents �owing in the capacitor plates and the �nite conductivity of these plates. The

plasma frequency in the linear regime is determined by the total inductance LJ +LS

and capacitance Ceff = CJ + CS ' CS; and is given by the following relation:

�
1

!p

�2
= CS(LJ + LS) =

'0CS
I0

+ CSLS: (3.2)

We thus plot (2�=!p)
2 versus 1=I0 = LJ='0 in Fig. 3.5 for samples 1, 2, 2a, 4 and

5. As the critical current is decreased by applying a magnetic �eld, the junction

inductance increases, and the plasma frequency is reduced. For each sample, a linear

�t to the data of Fig. 3.5 yields the values of CS and LS (see table 3.1). The �t values

for CS agree well with simple estimates made from the sample geometry. Samples 1

and 2 have nominally the same capacitance but di¤erent critical current, and hence

lie approximately on the same line in Fig. 3.5.

A total of four capacitive pads were used to make the shunting capacitor in samples

1 and 2, and after initial measurements, we scratched o¤two of the pads from sample 2

to obtain sample 2a, and the resulting capacitance is indeed halved. For samples with

a thin underlayer (1,2 and 3), a stray inductance in the range LS = 0:20 � 0:34 nH

is observed. For samples 4 and 5 with a signi�cantly thicker underlayer, LS was

reduced to 0:026 nH and 0:15 nH respectively. This behavior is consistent with the

calculated screening properties of our thin �lms. To verify that the values of CS and



CHAPTER 3. JOSEPHSON BIFURCATION AMPLIFIER: EXPTS 89

Figure 3.5: Inverse square of the plasma frequency (2�=!p)
2 as a function of the

inverse critical current 1=I0 for samples 1, 2, 2a, 4 and 5. Solid lines are linear �ts to
the data corresponding to the model of Fig. 3.4, with a single best �t line drawn for
samples 1 and 2 which nominally di¤er only in I0.

LS were not a¤ected by the magnetic �eld used to vary I0, we varied LJ by applying

a bias current [42] at zero magnetic �eld. The parameters extracted using the DC

bias current method agreed with the ones extracted using the magnetic �eld method.

Using LS and CS we can accurately predict the observed resonant lineshape of Fig.

3.4, in which RS � 0. For samples with a normal underlayer, we �nd the data is

accurately �t by RS = 0:8
 for sample 1 and 2 while RS = 0:02
 for sample 4.

Finally, we have independently veri�ed the e¤ect of the shunting capacitor on the

plasma resonance by performing resonant activation experiments [65]. The escape

rate from the zero voltage state of the DC current biased junction was enhanced

when the applied microwave frequency equalled the reduced plasma frequency.



CHAPTER 3. JOSEPHSON BIFURCATION AMPLIFIER: EXPTS 90

3.2.2 Non-linear resonance

We now address the measurement of the non-linear regime of the plasma resonance.

The re�ection coe¢ cient as a function of frequency for increasing power for sample 5

is presented in the right panel of Fig. 3.6 as a two dimensional color plot, in which

each row is a single frequency sweep, similar to Fig. 3.4. For small excitation power,

we recover the linear plasma resonance at 1:54GHz, shown in yellow corresponding to

� = 0. As the power is increased above �115 dBm, the plasma frequency decreases,

as is expected for a junction driven with large amplitude [65]. The boundary between

the leading-phase region (green) and the lagging-phase region (red) therefore curves

for high powers. This curvature has an interesting consequence. When we increase

the drive power at a constant frequency slightly below the plasma frequency, the

phase as a function of power undergoes an abrupt step, as predicted. This represents

the transition from the low amplitude state to the high amplitude state. From now on

we will call these states as state OL and state OH respectively. For yet greater powers

(> �90 dBm), we encounter a new dynamical regime (black region in Fig. 3.6) where

� appears to di¤use between the wells of the cosine potential. This was con�rmed by

the presence of an unambiguous audiofrequency ac resistance in the black region (see

3.4). In the right panel of Fig. 3.6 (inset), we illustrate the sequence of dynamical

transitions by plotting � as a function of incident power at !d=2� = 1:375GHz. For

P < �102 dBm, the phase is independent of power (� oscillates in a single well in the

harmonic-like, phase-leading state, letter A). For �102 dBm < P < �90 dBm, the

phase evolves with power and � still remains within the same well, but oscillates in

the anharmonic phase-lagging state (letter B). Finally, for P > �90 dBm, the average

phase of the re�ected signal saturates to -180 degrees, corresponding to a capacitive
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short circuit. This last value is expected if � hops randomly between wells, the e¤ect

of which is to neutralize the Josephson inductive admittance.

Figure 3.6: Normalized re�ected signal phase � (wrap-around color scheme) as a
function of excitation frequency !d=2� and excitation power P is shown for sample
5. Experimental data is shown in the right panel while the left panel is the result
of numerical simulations. A vertical slice taken at !d=2� = 1:375 GHz (dashed line)
shows the abrupt transition between two oscillation states of the system.

The value of the current IB for the A-B transition, which is a function of both

the relative detuning � = 1 � !d=!p and power P , is in good agreement with the

analytical theory which retains only the �rst anharmonic term in the cosine potential

(see chapter 2). For instance, the slope of the A-B transition line (equation 2.8 and

2.13) at the linecut in Fig. 3.6, dP (dBm)=d�(%) = 0:8 for the experiment while we

calculate its value to be 0:7. Furthermore, in measurements in which the power is

ramped in less than 100 ns, we veri�ed that the transition between dynamical states

is hysteretic, another prediction of the theory. To explain the complete frequency and

power dependence of the transitions shown in the right panel of Fig. 3.6, we have
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performed numerical simulations by solving the full circuit model of the lower right

corner of Fig. 3.3, including the exact junction non-linear constitutive relation. The

result of this calculation is shown in the left panel of Fig. 3.6. It correctly predicts the

variation of the plasma frequency with excitation power, and the boundaries of the

phase di¤usion region. The agreement between theory and experiment is remarkable

in view of the simplicity of the model which uses only measured parameters, and only

small di¤erences in the exact shape of region boundaries are observed2.

3.3 Time domain measurements

The measurements described so far characterized the time averaged response of the

Josephson oscillator under continuous microwave excitation. We will now describe

the experiments which probed the response of the JBA at short time scales (� 10

ns) under pulsed microwave excitation. Sample 6 was used for this experiment and

had a Josephson junction with critical current I0 = 1:17�A, an on-chip lithographic

capacitance CS = 27 pF resulting in a reduced plasma frequency !p=2� = 1:80GHz.

The stray elements LS and RS were negligible for this sample. The dynamics of

the transition between the two oscillation states were probed using microwave pulses,

generated by the amplitude modulation of a CW source with a phase-locked arbitrary

waveform generator with 1 ns resolution. As described in the previous section, the

re�ected signal from the sample was passed through a circulator at base temperature

T = 0:25K to a matched HEMT ampli�er at T = 4:2K. At room temperature, the

re�ected signal was further ampli�ed, mixed down to 100MHz and �nally digitally

2It is important to mention that the overall topology of Fig. 3.6 is not signi�cantly a¤ected by
changes in the parameter values within the bounds of Table 3.1
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demodulated using a 2GS=s digitizer to extract the signal phase �.

3.3.1 Hysteresis and bistability in the JBA

Figure 3.7: (a) Triangular waveform envelope used for measuring hysteresis. (b)
Hysteretic variation of the re�ected signal phase with drive current IRF=I0. Symbols
denote the mode of �, with up and down triangles corresponding to increasing and
decreasing IRF , respectively. The dotted line is h�i. The calculated bifurcation points,
I+B and I

�
B , are marked on the horizontal axis. The low amplitude and high amplitude

states are marked as OL and OH .

We �rst probed the drive current dependence of the re�ected signal phase � (IRF )

by applying a 4�s long symmetric triangular shaped pulse with a peak value 0:185 I0.

The demodulated re�ected signal was divided into 20 ns sections, each yielding one

measurement of � for a corresponding value of IRF . The measurement was repeated

6 � 105 times to obtain a distribution of �(IRF ). In Fig. 3.7, the mode of the

distribution is plotted as a function of IRF=I0. For IRF=I0 < 0:125, the bifurcation

ampli�er is always in state OL, � is constant and assigned a value of 0 deg. As the

drive current is increased above IRF=I0 = 0:125, thermal �uctuations are su¢ ciently

large to cause transitions to the OH state. In the region between the two dashed
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lines at IRF=I0 = 0:125 and IRF=I0 = 0:160, � displays a bimodal distribution with

peaks centered at 0 and 74 deg with the latter corresponding to the ampli�er in the

OH state. The dotted line in Fig. 3.7 is the average re�ected signal phase h�i.

When IRF=I0 is increased above 0:160, the system is only found in state OH . In

the decreasing part of the IRF ramp, the system does not start to switch back to

state OL until IRF=I0 = 0:065. The critical switching currents I+B for the OL ! OH

transition and I�B for the OH ! OL transition, calculated from numerical simulations

to treat the inductance of wire bonds, are denoted with ticks in Fig. 3.7, and are

in good agreement with experiment. The hysteresis I�B < I+B is a consequence of

the asymmetry in the escape barrier height for the two states. Thus, the OL ! OH

transition at IRF = I+B is nearly irreversible, allowing the bifurcation ampli�er to

latch and store its output during the integration time set by the sensitivity of the

follower ampli�er.

We then characterized in detail the switching in the vicinity of the OL ! OH

transition. We excited the system with two di¤erent readout pulse protocols. In the

�rst protocol, the drive current was ramped from 0 to its maximum value in 40 ns

and was then held constant for 40 ns before returning to 0. Only the �nal 20 ns of the

constant drive period were used to determine the oscillation phase with the �rst 20 ns

allotted for settling of the phase. Histograms taken with a 10MHz acquisition rate

are shown in Fig. 3.8. In the upper panel, the two peaks corresponding to states OL

and OH can easily be resolved with a small relative overlap of 10�2. The �nite width

of each peak is due to the output noise and is consistent with the noise temperature

of our HEMT ampli�er. In this �rst method, the latching property of the system

has not been exploited. In our second protocol for the readout pulse, we again ramp
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Figure 3.8: Histograms of the re�ected signal phase at iRF==0 = 0:145. The upper
histogram contains 1:6� 106 counts with a measurement time �m = 20 ns. The lower
panel, taken with the latching technique, has 1:5 � 105 counts with a measurement
time �m = 300 ns. Data here has been taken under the same operating conditions as
in Fig 3.7. The dashed line represents the discrimination threshold between the OL
and OH state.

for 40 ns and allow a settling time of 20 ns, but we then reduce the drive current by

20% and measure the re�ected signal for 300 ns. In that latter period, whatever state

was reached at the end of the initial 60 ns period is "latched" and time is spent just

increasing the signal/noise ratio of the re�ected phase measurement. As shown in the

lower panel of Fig. 3.8, the two peaks are now fully separated, with a relative overlap

of 6 � 10�5 allowing a determination of the state OH probability with an accuracy

better than 10�3. This second protocol would be preferred only for very precise time-

resolved measurements of I0 or for applications where a low-noise follower ampli�er

is impractical.
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Figure 3.9: Switching probability curves at T = 280 mK (open circles) and T =
480 mK (closed circles) as a function of the normalized drive current IRF=I0. The
discrimination power �d is the maximum di¤erence between the two curves at the
same temperature. The two curves di¤er by approximately 1% in I0 with the curve
corresponding to the higher critical current lies at higher values of IRF=I0.

3.3.2 JBA as a readout

A third experiment was performed to study the switching probability Pswitch (IRF )

from state OL to OH for di¤erent values of the temperature T and critical current

I0, the latter being varied with a magnetic �eld applied parallel to the junction

plane. Using the readout protocol and the discrimination threshold shown in Fig.

3.8, we obtain the switching probability curves shown in Fig. 3.9. De�ning the dis-

crimination power �d as the maximum di¤erence between two switching probability

curves which di¤er in I0 (see sections 2.3.3 and 4.3.5), we �nd that at T = 280mK,

�d = 57% for �I0=I0 = 1% �the typical variation observed in a superconducting
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charge-phase qubit [6]. The switching probability curves should shift according to

(�IB=IB)=(�I0=I0) = 3=4� (equation 2.35), which for our case takes the value 6.1.

In Fig. 3.9, the curves are shifted by 6%, which agrees well with this prediction.

For the case of the DC current biased junction, similar curves would shift only by

1%. Comparable discrimination power using DC switching has only been achieved in

these devices at T � 60mK: As the temperature is increased, the switching probabil-

ity curves broaden due to increased thermal �uctuations and the discriminating power

decreases: at T = 480mK, �d = 49%. Correspondingly, the discrimination increases

as the temperature is lowered. The experimentally achieved values of discrimination

power were in good agreement with the theoretical predictions and numerical simu-

lations. Numerical simulations of the combined JBA+qubit system will be discussed

in the next chapter.

As discussed in section 2.3.3, the sensitivity of the JBA as a detector of critical cur-

rent variations is determined by the width of the S-curves, which in turn is determined

by the e¤ective intensity of �uctuations felt by the JBA. A well designed experimental

setup will ensure that this intensity of �uctuations is set by the thermal/quantum

�uctuations corresponding to the operating temperature of the JBA. It is possible

to determine the e¤ective temperature felt by the JBA by carefully measuring the

escape rates from state OL to OH as a function of the various bias parameters. The

classical theory of escape was brie�y described in section 2.3.2. Chapter 7 describes

a theory of escape which is applicable both the classical (kBT >> ~!p) and quantum

(kBT >> ~!p) regimes. The escape measurements are described in chapter 8. These

measurements will help in determining the ultimate sensitivity of the JBA.
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3.4 Microwave design considerations

In this section, we will discuss some important considerations to ensure that a well

controlled bifurcation can be observed. In particular, we will discuss the microwave

characteristics of the shunting capacitor which reduces the bare plasma frequency of

the Josephson junction. A more detailed and generalized discussion on this topic can

be found in reference [59].

Figure 3.10: Magnitude and phase of the re�ected power. Data shown is for sample 1
with a 100 nm Au ground plane. The stray parameters RS = 0:8 
 and LS = 0:2 nH.
The strong dip in the magnitude response and the smaller phase shift at resonance is
a consequence of the dissipation in the oscillator due to the stray resistance.

A driven, non-linear oscillator of any type can undergo some kind of transition at

a critical power/frequency and even show sensitivity to system parameters. But that

does not always mean that it can be used as a detector; e.g., a transition into a chaotic

regime might be very hard to control and hence not be practically implemented. In

other cases, the back-action of the detector/ampli�er on the system being measured
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might become uncontrolled. The kind of bifurcation described theoretically in the

previous chapter and experimentally in this one, is controllable and well behaved

as a function of bias parameters (frequency and power). In order to observe this

bifurcation phenomena and use it e¤ectively as a detector/ampli�er, we need to ensure

that the non-linear system is constructed correctly.

During the initial stages of this experiment, we realized that the design of the

shunting capacitor had to be implemented carefully to ensure that it behaved as

a capacitor at the relevant frequencies. Fabricating ideal, lumped circuit elements

operable at microwave frequencies is non-trivial. Typically, the lumped element will

have capacitance, inductance and resistance depending on how it is fabricated and

the frequencies at which it is being used. As we go to higher frequencies (> 5 GHz), it

is much easier and practical to use distributed circuit elements like transmission line

resonators. This was one of the reasons for the development of the Cavity Bifurcation

Ampli�er (CBA) which uses transmission line resonators with an embedded Josephson

junction to implement the non-linear oscillator [66].

The �rst generation of our microwave capacitors were made using a thin (100

nm) Au ground plane. This was followed by Nb ground planes (50 and 200 nm) and

then thick (1 �m) Cu. As discussed in section 3.1, imperfect screening currents in

the capacitor plates due to the �nite conductivity (Au and Cu) and thickness of the

ground planes, results in a stray inductance (LS) and a stray resistance (RS). The

inset shown in Fig. 3.3 depicts a model which accounts for the stray inductance and

resistance. The samples made with superconducting Nb ground planes did not have

any stray resistance while the data for samples with Au and Cu ground planes lead

to a value of RS = 0:8 
 and 0:02 
 respectively. The best results were obtained with
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Figure 3.11: Magnitude (a) and phase (b) of the re�ected power as a function of
drive power and frequency. Data is shown for sample 1 which has a Au ground plane
and shows strong absorption near resonance in the magnitude response. The phase
response shows a diminished phase shift at resonance and a di¤erent behavior as a
function of power. Note that a di¤erent color scheme (as compared to Fig. 3.6) is
used here for the phase plot to depict the features more clearly.

the 1 �m Cu ground planes with the value of LS = 0:026 nH while the other samples

had a value in the range of 0:15� 0:34 nH.

The samples with Au ground planes and a large stray resistance (0:8 
) did not

show the correct bifurcation phenomena. The line shape of the linear resonance was

also signi�cantly a¤ected as shown in Fig. 3.10. The presence of the stray resistance

results in dissipation in the oscillator, and the phase shift in the re�ected signal as

one goes through resonance, is much less than 360 degrees. The direction of the phase



CHAPTER 3. JOSEPHSON BIFURCATION AMPLIFIER: EXPTS 101

shift can also get reversed. The full non-linear response for this sample is shown Fig.

3.11. Note that a di¤erent color scheme (as compared to Fig. 3.6) is used here for

the phase plot to depict the features more clearly.

As before, the resonant frequency starts to decrease with increasing power but one

encounters the well-hopping regime (the wavy region in the top half of the plot) before

the bistable regime can be reached. A simple explanation of this phenomena is that

the presence of the stray inductance and resistance dilutes the e¤ective non-linearity

of the oscillator. This leads to a higher critical power to enter the bistable regime.

As the value of the RF current �owing through the Josephson junction approaches

the critical current (I0), the system tends to become unstable. A more detailed

theoretical discussion on the exact condition can be found in reference [59]. Numerical

simulations of the full system including all the stray parameters showed that the

phase particle is not con�ned to one well of the washboard potential of the Josephson

junction but hops randomly between di¤erent wells. On average, this new dynamic

state has a re�ected phase value of zero but does not correspond to the high oscillation

state of the JBA as described in the previous chapter. The di¤usive motion of the

phase particle in this regime results in a �nite audio frequency ac resistance which

was measured with a lock-in ampli�er. The lock-in output voltage was monitored as

the drive power at a �xed frequency was swept through the transition region. The

resulting curves are shown in Fig. 3.12.

The upper panel shows the data for a sample 1 with a 100 nm thick Au ground

plane. We note that the lock-in voltage starts to rise exactly at the same power at

which the re�ected phase starts to change sharply signifying a transition to a di¤erent

state. In the lower panel, data is shown for a sample 6 with a 1 �m thick Cu ground
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plane with negligible stray resistance and a LJ=LS ratio of about 28. The lock-in

voltage remains at zero as the power is swept through the transition and the phase

changes sharply. This is the signature of a clean transition from the low amplitude

to the high amplitude state of the JBA.

Figure 3.12: Audio frequency ac resistance of a non-linear oscillator as a function
of drive power at a �xed frequency. The upper panel shows data for sample 1 with
non-negligible values for stray inductance and resistance. The systems undergoes a
transition into a state where the phase particle hops randomly between the wells of
the washboard potential. This results in a �nite audio frequency resistance which is
depicted by the rising lock-in voltage at the transition point. The lower panel shows
data for a sample 6 with negligible stray parameters. The sharp phase shift here,
signi�es a transition from the low amplitude to the high amplitude of the JBA. The
lock-in voltage remains at zero, signifying a clean transition.

It is clear from the above discussion that the bifurcation phenomena is very sen-

sitive to the stray elements in the circuit and one should ensure that they are kept to
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a minimum. Irrespective of the stray parameters, the well-hopping regime is always

encountered at high enough drive power (the black region in Fig. 3.6 and the white

region in Fig. 3.11). The stray parameters determine whether one can approach the

critical power required for observing the bifurcation phenomena before running into

the well-hopping regime. For future experiments, we decided on using a 500 nm thick

Cu ground plane for the capacitors. This provided us with a small stray resistance

(< 0.05 
) and LJ=LS ratio greater than than 20. The thickness of the ground plane

was reduced from 1 �m to make the fabrication procedure easier. These parameters

provided us with a clean bifurcation and su¢ cient room to vary drive frequency and

power without running into the well-hopping regime. Furthermore, we noted that the

transition into the well-hopping state showed su¢ cient sensitivity to system parame-

ters and could in principle be used for making a detector. But the di¤usive nature

of the phase particle in this regime can lead to strong back-action e¤ects. This rules

out its application for measuring delicate systems like superconducting qubits. We

will discuss these back-action e¤ects on qubits in chapter 6.

In conclusion, we have performed a novel, phase-sensitive, microwave experiment

demonstrating that the Josephson plasma oscillation can transition between the two

dynamical states predicted for a driven non-linear system. Using di¤erent samples,

we have shown that this dynamical phenomenon is stable, reproducible and can be

precisely controlled, thus opening the possibility for practical applications like am-

pli�cation. We have also studied its response in the time domain and successfully

implemented a readout protocol to discriminate small changes in critical current of

the Josephson junction. With the JBA operating at T = 280mK, it is possible to

resolve with a signal/noise ratio of 1 a 10 nA variation in I0 in a total time � 80
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ns, corresponding to a critical current sensitivity of S1=2I0
= 3:3 � 10�12A � Hz�1=2

(see section 2.3.3). The critical current (I0) of typical junctions is about 1 � 2 �A

leading to a fractional sensitivity of S1=2I0
=I0 ' 10�6Hz�1=2. If we replace the junc-

tion with a SQUID, this would correspond to a �ux sensitivity of approximately

S
1=2
� =�0 = 10

�6Hz�1=2. This is comparable to the �ux sensitivity obtained in typical

DC SQUIDs [67] though the best DC SQUIDs have a �ux sensitivity of 10�8�0Hz�1=2.

The �ux sensitivity in the SQUID-JBA device could be enhanced by increasing the

critical current of the junction and going to lower temperatures. The advantage of

the JBA over DC SQUIDs [15] resides in its extremely low back-action. Since there

is no on-chip dissipation, the only source of back-action is the matched isolator load,

which is e¢ ciently thermalized at T = 280mK. An important point is that in the

JBA, only �uctuations from the load that occur in a narrow band centered about

the plasma frequency contribute to the back-action, whereas in the SQUID noise

from many high frequency bands is also signi�cant. Finally, the bifurcation ampli-

�er does not su¤er from quasiparticle generation associated with hysteretic SQUIDS

[68] and DC current-biased junctions [38] which switch into the voltage state. Long

quasiparticle recombination times at low temperatures limit the acquisition rate of

these devices while the recombination process itself produces excess noise for adjacent

circuitry [39].

We will discuss the implementation of JBA as a readout for superconducting

qubits in the next three chapters.



Chapter 4

JBA as a qubit readout

In this chapter, we will describe the implementation of the JBA as a qubit readout.

Speci�cally, we will use the so-called quantronium qubit which was developed at

CEA-Saclay [6]. We will �rst describe the Cooper pair box (CPB) circuit [36, 69, 37]

and then go on to discuss the split Cooper pair box circuit on which the quantronium

qubit is based. The material presented on the Cooper pair box and the quantronium is

based on the Cottet thesis [38]. This will be followed by a description of the combined

quantronium and JBA system. We will discuss how the properties of the quantronium

a¤ect the JBA and the principle of the qubit readout. We will �nally look at some

numerical simulations which will provide us with an idea of the performance of the

JBA as a qubit readout.

4.1 The Cooper pair box

The Cooper pair box circuit (Fig. 4.1) consists of a superconducting island which

is connected to a superconducting reservoir via a Josephson junction. The island is

105
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biased by an external voltage source U via a gate capacitance Cg. The Josephson

junction has a Josephson energy EJ and capacitance CJ . The two energy scales

in the description of the circuit are the Josephson energy EJ and the electrostatic

energy EC . EC is the electrostatic energy required to put one extra electron on the

superconducting island and is given by

EC =
e2

2C�

where e is the electron charge and C� is the total capacitance of the island given by

C� = CJ + Cg (4.1)

Figure 4.1: Physical layout and circuit diagram of a Cooper pair box. It consists
of a superconducting island coupled to a superconducting reservoir by a Josephson
junction. The island is biased with an external voltage source U via a gate capacitor
Cg.
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4.1.1 Hamiltonian in charge basis

The operator describing the number of excess Cooper pairs on the island is written

in dimensionless form

N̂ =
q̂island
2e

(4.2)

where q̂island is the excess charge on the island. Similarly, the external bias voltage U

can be written in dimensionless form in units of excess Cooper pairs as

Ng =
CgU

2e
(4.3)

where Ng is called the reduced gate charge and is a continuous variable. In terms of

these dimensionless variables, we can write the electrostatic part of the Hamiltonian

of the Cooper pair box as

Ĥel = 4EC

�
N̂ �Ng

�2
(4.4)

The Josephson part of the Hamiltonian allows for coupling between di¤erent charge

states. Using a set of charge states jNi such N̂ jNi = N jNi, we can write

ĤJ =
EJ
2

X
N

(jNihN + 1j+ jN + 1ihN j) (4.5)

The total Hamiltonian of the CPB is given by

Ĥ(Ng) =
X
N

�
4EC

�
N̂ �Ng

�2
jNihN j + EJ

2
(jNihN + 1j+ jN + 1ihN j)

�
(4.6)
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Denoting the energy eigenstates of the above Hamiltonian as jki1, we can write

Ĥ(Ng)jki = Ekjki (4.7)

where Ek is the energy of the eigenstate jki. Fig. 4.2 shows the discrete energy

levels2 associated with the eigenstates of the above Hamiltonian. The energy levels

are periodic in the external gate charge Ng with a period of 1. We note that the

Josephson coupling term lifts the degeneracy between the ground and �rst excited

state at Ng = m+ 1=2, where m is an integer. The dotted lines represent the energy

levels in the absence of the Josephson term.

4.1.2 Hamiltonian in phase basis

It is often convenient to represent the CPB Hamiltonian in terms of superconducting

phase operator �̂ of the island. �̂ and N̂ are like the position and momentum operators

and the relation between the canonically conjugate variables is given by

N̂ =
1

i

@

@�̂
(4.8)

The operator exp(�i�̂) acting on the charge states jNi produces the following e¤ect

exp(�i�̂)jNi = jN � 1i (4.9)

1 jki which is an energy eigenstate is written in bold to distinguish it from jNi which represents
a state with N excess Cooper pairs on the island e.g. j1i represents the �rst excited state of the
hamiltonian while j1i is the state with one excess Cooper pair.

2These plots were created using calculations based on the phase representation as discussed in
the next section.
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Figure 4.2: Energy levels of the Cooper pair box with EJ=EC = 4:0 as a function of
gate charge Ng. The ground state and the �rst three excited states are shown. The
dotted lines correspond to the case where the Josephson coupling term is absent.

Using equations 4.8 and 4.9 we can rewrite the CPB Hamiltonian (4.6) in phase

representation as

Ĥ(Ng) = 4EC(
1

i

@

@�
�Ng)2 � EJ cos

�
�̂
�

(4.10)

The advantage of using the phase representation is that the Schrödinger equation

associated with the above Hamiltonian can be solved analytically in terms of the

Mathieu functions. The Mathieu functions which are the solutions to the Mathieu

equation can be computed easily using the software package Mathematica (see [38]

for more details and Appendix B for a Mathematica notebook demonstrating the

calculations)
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4.1.3 The split Cooper pair box

Figure 4.3: Physical layout and circuit diagram of a split Cooper pair box. This
circuit is similar to the CPB except that the single junction has been replaced by
two junctions in a loop. Now we have two parameters (ng and �) which control the
properties of the split CPB.

The split Cooper pair box circuit is shown in Fig. 4.3 and is a small modi�cation

to the basic CPB circuit. The single Josephson junction is replaced by two nominally

equal junctions in a loop. This leads to two control parameters with which we can tune

the properties of the split CPB - the gate charge Ng and the loop �ux �=2� = �=�0.

Let d describe the asymmetry in the two junctions so that the Josephson energy of

the two junctions can be written as

EJ1 =
EJ
2
(1 + d) (4.11a)

EJ2 =
EJ
2
(1� d) (4.11b)

where EJ = EJ1 + EJ2. Now, the total capacitance C� = Cg + CJ1 + CJ2 where CJ1

and CJ2 are the individual junction capacitances. The superconducting phase �̂ of
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the island is now equal to the di¤erence in the phase across the individual junctions

�̂ =
�̂1 � �̂2
2

(4.12)

while the net phase across the two junctions is given by their sum

�̂ = �̂1 + �̂2 (4.13)

where �̂1 and �̂2 are the individual phases across the two junctions. We will treat �̂

as a classical parameter � since in our measurements, the impedance across the split

junction is always kept lower than the resistance quantum h=e2 (see chapter 2 in [38]).

The external �ux � imposes a phase3 � such that � = '0� where '0 = �0=2� is the

reduced �ux quantum. So Ng and � are the two external control parameters.

The electrostatic part of the Hamiltonian remains the same as before (4.4) while

the Josephson part of the Hamiltonian can be written as

ĤJ = �EJ1 cos(�̂1)� EJ2 cos(�̂2) (4.14)

Using equations 4.11,4.12,4.13, and after carrying out some trigonometric manipula-

tions, we write the Josephson Hamiltonian as

ĤJ(�) = �EJ cos(
�

2
) cos(�̂) + dEJ sin(

�

2
) sin(�̂) (4.15)

The above Hamiltonian reduces to the CPB Hamiltonian for d = 0 and � = 0.

For d = 0, the split Cooper pair box can be considered as a CPB with a tunable

3Assuming that the loop inductance is much smaller than Josephson inductance of the junctions
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Josephson energy as Ĥ(�) = �EJ cos(�=2) cos(�̂). The full Hamiltonian in the phase

representation for the split CPB can now be written as

Ĥ(Ng; �) = 4EC(
1

i

@

@�
�Ng)2 � E�J(d; �) cos

�
�̂ + �(d; �)

�
(4.16)

where

E�J(d; �) = EJ

r
1 + d2 + (1� d2) cos(�)

2
(4.17a)

tan�(d; �) = �d tan(�
2
) (4.17b)

The properties of the split CPB are periodic in both Ng (period 1)and � (period 2�).

In what follows, whenever a particular value of Ng or � is speci�ed, it is assumed that

the same would be true for other values which are separated by integer number of

periods e.g. Ng = N0 is the same as Ng = N0 +m where m is any integer. Similarly

� = �0 is the same as � = �0 + 2�m.

4.2 The quantronium

If we take the split CPB circuit and insert a large Josephson junction (with Josephson

energy ERJ such that E
R
J >> EJ) in the loop, we get the circuit shown in Fig. 4.4.

This circuit has been nicknamed quantronium to illustrate the fact that this circuit

behaves like an arti�cial atom with the big junction being equivalent to the nucleus

and the small junctions being equivalent to electrons. This modi�cation allows one

to impose a phase di¤erence � across the split CPB junctions by means of passing a

current through the large Josephson junction, which we will call the readout junction.
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Figure 4.4: Circuit diagram of the quantronium. It consists of three junctions in a
superconducting loop. The large readout junction (ERJ ) is about 100 times bigger than
the two small junctions (EJ=2). Like the split CPB there are two control parameters
(Ng = CgU=2e and �). The phase � can now be controlled via an external �ux (�m)
or with a current bias.

Since ERJ >> EJ , most of the current will pass through the large junction and the

phase �R developed across the readout junction can be written as

�R(t) � arcsin
I(t)

I0
(4.18)

where I0 = ERJ ='0 is the critical current of the large Josephson junction and I(t) is

the applied current bias. The net phase developed across the CPB junctions is equal

to the sum of the phases imposed due to an external �ux (�m = �='0) and the phase

across the readout junction

� = �m + �R (4.19)

4.2.1 Quantronium as a quantum bit

When the external control parameters Ng and � are tuned appropriately, the lowest

two energy levels are su¢ ciently separated from the other levels. These two lowest
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levels form an e¤ective two level system and can then be used as a quantum bit or

qubit. We will represent these two states as j0i and j1i. The quantum states of a

two level system can be conveniently depicted using �ctitious spin 1=2 or the Bloch

sphere representation [70]. In this representation, j0i and j1i correspond to the north

and south pole of a unit sphere. Any normalized superposition of j0i and j1i can

then be represented as a point on this sphere with a unit Bloch vector connecting the

origin to this point. Fig. 4.5 illustrates this idea. This representation is also quite

useful in illustrating quantum manipulations on the two level systems.

Figure 4.5: Bloch sphere representation of a two level system. The ground state j0i
corresponds to the North pole while excited state j1i corresponds to the South pole.
Any other point on the sphere corresponds to a superposition of j0i and j1i.

The energy surfaces corresponding to the lowest two states is shown in Fig. 4.6

as a function of Ng and �. We note that for Ng = 0:5 and � = 0, the gradient of

the energy surfaces w.r.t. Ng and � is zero. This implies, that at this bias point, the

energy di¤erence between the two levels is insensitive to �uctuations in the external

control parameters Ng and � to �rst order. In other words, the transition frequency
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�01(Ng = 0:5; � = 0) = [E1 � E0](Ng=0:5;�=0) at this operating point is protected from

noise in Ng and � to �rst order:

�
@�01
@Ng

�
Ng=0:5;�=0

= 0 (4.20)�
@�01
@�

�
Ng=0:5;�=0

= 0 (4.21)

This point has been nicknamed the "sweet spot" and is the optimal point to operate

the quantronium qubit. Note that, other operating points where @�01=@(Ng; �) = 0

exist e.g. Ng = 0 and � = 0. But, the second derivative4 in charge @201�=@N
2
g has

a larger value at Ng = 0 when compared to its value at Ng = 0:5. Hence the best

protection from noise in Ng and � is achieved at the "sweet spot". This is important

because low frequency noise in the control parameters can cause dephasing of the

qubit [6, 40]. Unless speci�ed otherwise, all qubit manipulations are carried out at

the "sweet spot", i.e., Ng = 0:5 and � = 0.

The qubit state manipulations are carried out using techniques borrowed from

Nuclear Magnetic Resonance (NMR) experiments [71]. This involves applying a mi-

crowave frequency signal of amplitude URF and frequency �RF to the gate electrode.

This results in an additional time dependent term in the Hamiltonian 4.16 of the split

CPB

ĤRF = �8EC�Ng cos(2��RF t)N̂

where �Ng = CgURF=2e is the reduced gate voltage amplitude. Under the in�uence

of this drive, the qubit state vector precesses in a frame rotating at �RF at a frequency

4The second and higher derivatives at the sweet spot depend on the ratio EJ=EC and can be
tuned by adjusting sample parameters.
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Figure 4.6: Ground and �rst excited energy level of the quantronium as a function of
the control parameters Ng and �. Data is shown for an EJ=EC ratio of 4: The bias
point Ng = 0:5, � = 0 is nicknamed the sweet spot because the transition frequency
�01, to �rst order, is insensitive to noise in the control parameters (Ng, �).

[38] given by

�p =

q
�2Rabi + (�01 � �RF )

2 (4.22)

When this driving �eld is resonant with the qubit transition frequency, i.e., �RF = �01,

the system undergoes Rabi oscillations [72] at a rate given by

�Rabi =
8EC�Ngh1jN̂ j0i

h
(4.23)

We note that �Rabi is proportional to the drive amplitude URF and to the matrix ele-

ment between the ground and �rst excited state. In the Bloch sphere representation,

this corresponds to the Bloch vector rotating from the North pole to the South pole

around the xB axis. When the qubit evolves freely (�Rabi = 0) e.g. between successive
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Rabi pulse, the Bloch vector precesses around the zB axis in a frame rotating at �RF ,

at a rate given by the Ramsey [73] frequency

�Ramsey = j�01 � �RF j (4.24)

Thus, a combination of driven and free evolution allows one to prepare any qubit

state on the Bloch sphere.

4.2.2 Readout strategies

We now discuss the various strategies that can be used to measure the state of the

qubit. We need to exploit some property of the quantronium which depends on its

quantum state. The control ports (gate and �ux/phase) also allow us to couple to

the qubit and measure its properties. For the quantronium qubit, there are four

quantities that can be conveniently measured to determine the state of the qubit.

These are the island charge (Qk _ @Ek=@Ng), the loop current (Ik _ @Ek=@�), the

island capacitance (Ck _ @2Ek=@N2
g ) and the loop inductance (Lk _

�
@2Ek=@�

2
��1
).

The �rst CPB based qubits employed a charge measurement technique to readout the

qubit state [4]. Measuring the charge requires an electrometer coupled to the island

of the CPB [74], but the ground and the excited state have the same average charge

when operated at the sweet spot. Hence, one has to move away from the sweet spot

(in gate charge) at the time of measurement which can lead to rapid decoherence [40].

The original quantronium qubit readout [6] was based on measuring the current in

the loop. The loop currents modi�ed the e¤ective critical current of the readout junc-

tion. This change was detected by measuring the switching of the readout junction
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from the superconducting state to the voltage state. This measurement also involved

moving away from the sweet spot (in phase/�ux) during the readout, because the

average current at the sweet spot was zero for both qubit states. Furthermore, the

switching of the readout junction into the voltage state led to the generation of qua-

siparticles which take a long time to recombine at low temperatures resulting in a

slow repetition rate of the experiment. The presence of quasiparticles near the qubit

can cause dissipation and lead to decoherence.

It is now well understood that dispersive measurements of the qubit state [75,

76, 77, 33], which probe the reactive part of the response of the circuit, perform

better as qubit readouts. For the CPB based qubits, this amounts to measuring the

capacitance or inductance of the qubit. This can be done by coupling the qubit to

a resonator and measuring its response under AC excitation. The measurement can

now be performed at the sweet spot as the technique probes the second derivative

(w.r.t. charge or phase) of the energy surface which has a di¤erent value for the

two qubit states even at the sweet spot. In fact, the di¤erence is maximum at this

operating point, making it ideal for measurement. Our measurement technique using

the JBA involves the measurement of the inductance by coupling the quantronium

qubit to a non-linear resonator via the phase port. Using the phase port o¤ers the

additional advantage of separating the write port (charge) from the readout port

(phase). Experiments probing the e¤ective capacitance of the CPB have also been

successfully implemented [33, 78]. It should be pointed out that the idea of an e¤ective

capacitance or inductance is valid only when the readout frequency is much smaller

than the qubit transition frequency. This condition is satis�ed for the JBA readout.

In general, one should characterize the qubit by a state dependent e¤ective impedance.
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We discuss the JBA readout in more detail in the next section.

4.3 Measuring the quantronium with the JBA

Figure 4.7: Circuit diagram of a quantronium with a JBA readout. The big readout
junction along with the shunt capacitors forms the non-linear oscillator which is the
central element of the JBA. The quantronium and the non-linear oscillator are coupled
via the shared readout junction. The control parameters U(t) = URF (t) cos!RF t and
I(t) = IRF (t) cos!dt are analogous to electromagnetic probe �elds in an atomic
system and induce a charge excitation of the write port and a phase excitation of the
read port, respectively. Under appropriate driving conditions, the two qubit states
are mapped to the two driven states of the non-linear osciilator forming the basis of
the readout.

4.3.1 E¤ective Hamiltonian

The combined quantronium with JBA circuit is schematically depicted in Fig. 4.7.

The set of three junctions consists of two small junctions, which we assume to be

identical5 and have a Josephson energy (EJ=2) comparable to the charging energy

5The small asymmetry (< 10%) in the two junctions of the split CPB does not a¤ect its properties
signi�cantly at � = 0, where the qubit is operated.
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(EC) of the island between them, and a large readout junction, whose Josephson

energy (ERJ ) is approximately 100 times larger than that of each small junction.

The readout junction is shunted with capacitors (CS) to reduce its plasma frequency

to the 1 � 2 GHz range. The readout junction together with the shunt capacitors

form the non-linear resonator which is the central element of the JBA readout. The

quantronium qubit and the non-linear resonator are phase coupled via the shared

readout junction. The gauge-invariant phase di¤erence �̂ of the island with respect

to the mid-point of the capacitance shunting the large junction is analogous to the

position of the electron relative to the nucleus of the atom, while the gauge-invariant

phase di¤erence �̂ across the large junction is the absolute position of the nucleus.

Neglecting the dissipation induced in the transmission lines, the total Hamiltonian of

the split Cooper pair box biased at the sweet spot and coupled to a JBA resonator

is Ĥ(t) = Ĥbox(t) + Ĥres(t) with

Ĥbox(t) = 4EC

�
N̂ � 1

2
+
CgU (t)

2e

�2
�
 
EJ cos

�̂

2

!
cos �̂ (4.25)

Ĥres (t) =
q̂2

2Cs
� ERJ cos �̂ � '0I (t) �̂

This Hamiltonian has been written supposing that the asymmetry between the two

small junctions is zero5, and the DC values of the o¤set gate charge and loop �ux have

been compensated to operate at the sweet spot, i.e., Ng = 1=2 and �m = 0 and hence

�R = � (see 4.19). Here, N̂ and q̂=2e are the momenta conjugate to the generalized

positions �̂ and �̂, respectively. The control parameters U(t) = URF (t) cos!RF t and

I(t) = IRF (t) cos!dt are analogous to electromagnetic probe �elds in an atomic

system and induce a charge excitation of the write port and a phase excitation of the
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read port, respectively.

If we keep these two lowest states in the Hilbert space of Ĥbox [40] and we express

Ĥres in terms of the photon creation and annihilation operators, we obtain an e¤ective

Hamiltonian

Ĥeff =
2CgU (t)

e
EC�X �

EJ
2
�Z + ~!p (1 + ��Z) aya (4.26)

��
�
1 +

�

4
�Z

��
a+ ay

�4 � f �a+ ay� I (t)
where

!p =

s
ERJ
'20CS

(4.27a)

� =
EJ
4ERJ

(4.27b)

� =
ERC
12

=
1

12

(e)2

2CS
(4.27c)

f = '0

�
2ERC
ERJ

�1=4
(4.27d)

The photon annihilation operator a is related to �̂ by

�̂ =
a+ ay

(ERJ =2E
R
C )

1=4
(4.28)

which represents the decomposition of the gauge-invariant phase di¤erence into anni-

hilation and creation operators of the �plasma�mode whose bare frequency is !p. The

operators �X and �Z are the Pauli spin operators and ERC = e
2= (2CS) is the single

electron charging energy of the readout junction. In this e¤ective Hamiltonian, the

expansion of cos �̂ is carried out only to the �rst anharmonic term, which describes
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the non-linear resonator dynamics with su¢ cient accuracy for a bifurcation readout

(see chapter 2).

Let us describe the role of each term in equation 4.26. The �rst term describes the

in�uence on the qubit of the charge port drive which is used to manipulate its state.

The second term describes the free evolution of the qubit at the Larmor frequency

!01 = EJ=~. We have supposed here that the ratio EJ=EC is su¢ ciently small that

corrections to the Larmor frequency involving EC are small. To model the behavior

of qubit samples with an appreciable EJ=EC ratio, we would keep higher order terms,

yielding renormalized values of the coe¢ cients in equation 4.26. The third term

describes the dominant coupling between the qubit and the resonator. Note that this

term commutes with the Hamiltonian of the qubit when U = 0, o¤ering the possibility

of quantum non-demolition measurements6 (see chapter 6 for more details). The

fourth term describes a decrease in the frequency of the resonator when its photon

population increases (chapter 2). Finally, the �fth term describes the excitation of

the resonator by the drive current applied through the phase port. When the drive

current is increased while its frequency is su¢ ciently below !p the system becomes

metastable with two possible dynamical states with di¤erent oscillation amplitudes

(chapter 2). We exploit this bistability for our readout, which we describe in the next

section.

4.3.2 Measurement protocol

It is clear from the Hamiltonian (4.26) above that the dynamics of the non-linear

resonator depend on the value �Z = �1 corresponding to the state of the qubit.

6This is strictly true in the limit of zero asymmetry d = 0. For �nite values of d, corrections to
the QND fraction of order d2 exists [79].
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In particular, the small oscillation �plasma�frequency !e�p = !p (1� �) varies with

the qubit state. We probe the nonlinear resonator by sending down the phase port

transmission line a microwave pulse with carrier frequency !d = !p ��!, such that

the detuning �! >
p
3

2Q
!p where Q is the quality factor of the plasma resonance

(chapter 2). In our circuit, the damping of the plasma resonance arises from the

characteristic transmission line impedance Zc = 50
 and thus Q = ZcC!p ' 10�20.

For this value of detuning, when ramping up the drive current IRF the resonator

switches from one dynamical state to another when

IRF > I
+
B

�
!d; !

e�
p

�
(4.29)

where I+B is the bifurcation current (equation 2.16). Therefore, by choosing the max-

imum pulse amplitude

I+B [!d; !p (1� �)] < ImaxRF < I+B [!d; !p (1 + �)] (4.30)

we can determine, by measuring if the resonator has switched or not, whether the

qubit was in state j0i or j1i.

The dynamical states of the resonator di¤er in both the amplitude and phase

of the forced oscillations at frequency !d. In this work, we have chosen to use a

re�ectometry setup in which all the information about the resonator state is carried

by the re�ected drive signal phase �. This last property occurs because the probed

circuit is not intrinsically dissipative (in absence of quasi-particles, which is very well

realized in our measurements) and the power re�ected from the chip is equal to the

incident power in steady state.
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As explained in chapter 2, a further advantage of the non-linear resonator is that

the switching is strongly hysteretic. Once a switching event has occurred we can de-

crease the drive current IRF to a value which, while much smaller than I+B [!d; !p (1� �)],

is still higher than the reverse bifurcation �retrapping� current I�B . This latching

property conserves the information about the qubit state acquired during a small

time interval �m in the resonator and allows us to probe the re�ected phase � during

a time typically longer than �m. This helps in determining the re�ected signal phase

with much higher accuracy (see section 3.3) without being a¤ected by any subsequent

evolution of the qubit.

4.3.3 E¤ective critical current

The last two subsections gave us a simple picture to understand the coupling between

the qubit and the JBA. The calculation was carried out in the limit EJ=EC << 1.

But in order to make accurate predictions for the performance of the JBA as a qubit

readout, we will use the full expressions for the loop currents computed in the phase

representation. We saw in chapter 2 that the JBA converts changes in the critical

current of the Josephson junction to changes in switching probability, i.e., the JBA

ampli�es changes in critical current. Hence, it is convenient to consider the changes

in e¤ective critical current of the qubit+JBA system as the main signal of interest7.

This can then be converted to changes in switching probability once the parameters

of the JBA are known (see section 2.3.3).

We need to compute the loop currents of the quantronium as a function of � in

order to determine its e¤ect on the critical current of the Josephson junction, i.e., we

7This is equivalent to considering the changes in e¤ective inductance (LJ _ I�10 ) but is compu-
tationally more convenient.
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need to calculate the current-phase relationship for the quantronium. For the readout

junction, this is given by the standard Josephson relationship I(�) = I0 sin �. For DC

experiments, the critical current is the maximum current that can be passed before

the junction switches into its voltage state and is given by I (� = �=2) = I0. Here, we

will de�ne the e¤ective critical current as the slope of the current-phase relationship

at � = 0.

Ieff0 =

����@I(�)@�

����
�=0

(4.31)

This is related to the fact that we are essentially probing the inductance of the

quantronium which is proportional to the inverse of this slope.

LeffJ = '0

�����@I(�)@�

����
�=0

��1
(4.32)

For the bare readout junction, Ieff0 = I0, but this not true for the quantronium which

typically has a non-sinusoidal current-phase relationship. The loop currents in the

quantronium are given by [38]

ik (Ng; �) =
1

'0

@Ek(Ng; �)

@�
(4.33)

Then from equation 4.31, we can write the e¤ective critical current for the quantro-

nium as

ieffk (Ng; �m) =
1

'0

@2Ek(Ng; � = �m)

@�2
(4.34)

where �m takes into account an external �ux bias. The above expression can be

computed in terms of the Mathieu functions (Appendix B). Fig. 4.8 shows a plot of

the loop currents in the ground and excited state at Ng = 0:5. The parameters used
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correspond to the four qubit samples whose data is presented in chapters 5 and 6.

Figure 4.8: Loop currents for the ground and �rst excited state of the quantronium
qubit are plotted as a function of phase � (for Ng = 0:5). Theoretical curves are
shown for four di¤erent qubit samples. One can observe how the shape of the loop
currents depends on the EJ=EC ratio.

We note that the current-phase relationship for the quantronium depends on the

EJ=EC ratio quite strongly. For small values of EJ=EC , the loop currents have oppo-

site signs for the ground and excited states, but for larger values, they have the same

sign. However, the slopes at � = 0 are always di¤erent allowing one to discriminate

between the two states. The ground state properties of the quantronium are often the

�rst quantities to be measured in an experiment. We plot in Fig. 4.9 the variation
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of the e¤ective critical current in the ground state ieff0 (Ng; �m) as a function of gate

charge (Ng) for a few di¤erent values of external �ux (�m). We note that the e¤ective

critical current varies periodically with Ng with period 1. It has a maximum value at

Ng = 0:5. It also varies periodically with �m with period 2� with a maximum value

at �m = 0.

Figure 4.9: Variation in e¤ective critical current of the quantronium in its ground state
with Ng for three di¤erent values of applied �ux (�m). Qubit parameters correpond
to sample A (chapter 5). The signal is periodic in Ng with period 1. It is also periodic
in � with period 2� (not shown here).

The conversion from changes in e¤ective critical current to the switching proba-

bility of the JBA is linear only for small changes (see section 2.3.3). This can lead

to signi�cant variations from the above predictions when the quantronium properties

are measured in a real experiment. Also, when the JBA is energized, it imposes a

signi�cant deviation in � around the mean value. When operating at values of �m

signi�cantly di¤erent from zero, the observed variation in switching probability in an
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experiment can vary signi�cantly from the above prediction. The qubit can also Zener

tunnel between the ground and excited state during measurements near �m = 0:5,

which can a¤ect the switching probability. In order to fully understand the e¤ect of

the quantronium on the JBA, we carried out classical numerical simulations of the

JBA but used the modi�ed current-phase relations to fully incorporate the e¤ect of

the quantronium. This is discussed in more detail in the next section. Nevertheless,

the e¤ective critical current discussed above provides a convenient way to predict the

expected signal in a qubit measurement using simple analytical formulae and without

resorting to time consuming numerical simulations.

4.3.4 Qubit readout optimization

We now consider the problem of choosing the parameters for the quantronium and

JBA to achieve the best possible qubit readout. As discussed in chapter 3, the JBA

parameters are dictated by the requirement that !p=2� � 1� 2 GHz8, Q � 20 and

R = 50 
. This leads to a junction critical current I0 � 1 �A and shunt capacitance

CS � 30 pF. For the quantronium, we are looking to maximize the change in e¤ective

critical current (�ieff01 ) between the two qubit states. This is entirely determined by

the choice of EJ and EC . In order to achieve robust microwave design and signal

manipulation, it is better to keep the qubit Larmor frequency �01 < 20 GHz. The

qubit Larmor frequency also depends on EJ and EC . Once �01 is �xed, the other free

parameter is the ratio EJ=EC . It can be shown that the critical current variation

�ieff01 / �01. Fig. 4.10 shows the variation of �ieff01 =�01 with EJ=EC .

8This is not a fundamental requirement but only constrained by our choice of experimental
setup. We have succesfully operated the JBA up to 4:5 GHz and to about 10 GHz with geometric
resonators (CBA).
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Figure 4.10: Di¤erence in e¤ective critical current (�ieff01 ) between the ground and
excited state of the quantronium as a function of EJ=EC . �i

eff
01 is larger for larger

values of �01. As EJ=EC ratio increases beyond a value of 10, �i
eff
01 tends to saturate.

We note that �ieff01 =�01 has two asymptotic values for small and large values of

EJ=EC . It starts out with a value of around 0:5 at low values of EJ=EC . It then

decreases with increasing values of EJ=EC but tends to saturate to value of around 0:3

for EJ=EC > 10. This is related to the fact that the Larmor frequency �01 �! EJ for

EJ=EC << 1 while �01 �!
p
8EJEC for EJ=EC >> 1. Also, the loop currents have

opposite signs for EJ=EC << 1 resulting in a bigger signal while the loop currents

tend to have the same sign for EJ=EC >> 1. As discussed earlier in this chapter,

the sensitivity to low frequency charge noise decreases dramatically with increasing

EJ=EC and typically EJ=EC > 4 is used. The experiments presented in the next

two chapter were carried out on four samples with EJ=EC ratios of 6, 2:7, 17:5, and
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1:8. From the above plot, we can estimate that for values of EJ=EC > 10, we get a

critical current variation (�ieff01 ) of about 0:3 nA per GHz for the Larmor frequency.

If we have �01 = 20 GHz, we can get a critical current variation between 6 and 10 nA

depending on the EJ=EC ratio. In section 4.4, we will use these numbers to predict

the performance of the JBA as a qubit readout.

As discussed above, the value of �ieff01 is limited to a certain range due to experi-

mental constraints. In order to enhance this signal, we developed a new circuit which

uses two readout junction in series to increase the coupling between the JBA and the

quantronium. The two readout junctions now have twice the original value of ERJ

which results in the double junction JBA (DJBA) having the same plasma frequency

as the single junction JBA. This circuit e¤ectively doubles the coupling and the hence

the e¤ective change in critical current (�ieff01 ). Numerical simulations with the DJBA

con�rm this e¤ect (section 4.4).

4.3.5 Qubit readout performance

We now de�ne a few quantities which are useful for gauging the performance of a

qubit readout. The �rst quantity is the gain or transfer function of the detector. In

the case of JBA, the relevant quantity is the change in switching probability (�Pswitch)

per unit change in critical current of the junction (�I0). We will denote this quantity

by

GJBA =
�Pswitch
�I0

: (4.35)

This quantity only depends on the parameters of the JBA (including pulse parameters

and temperature) and does not depend on the qubit parameters. It characterizes the

sensitivity of the detector. As mentioned earlier in this section, equation 4.35 is valid
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only for small changes in critical current and the gain drops as �I0 increases. For

a qubit readout, the qubit parameters set the value of �I0. So the gain can be

computed for the given value of �I0.

The next quantity characterizes a given qubit readout system. Once the parame-

ters of the qubit are known, we can calculate �I0 = �ieff01 and hence the expected

�Pswitch. We call this quantity the discrimination power and is given by

�dp = �i
eff
01 GJBA

�
�ieff01

�
(4.36)

where we have written gain GJBA as a function of �i
eff
01 to emphasize that the gain

has been calculated for a particular value of �ieff01 . This quantity tells us the expected

performance of the given qubit readout system. While setting up an experiment, we

will try to adjust the parameters so that the value of �dp is as close to 1:0 as possible.

We will compute this number for a few systems in the next section.

The next quantity called contrast (�c) is the actual �Pswitch observed in a qubit

readout experiment. This is the actual performance of the qubit readout achieved in

a given experiment. This incorporates all possible problems in the qubit as well as

the readout.

The three quantities GJBA, �dp, and �c allow us to gauge the anticipated and the

actual performance of the qubit readout system. There are two more quantities which

are sometimes useful to characterize a qubit readout. The �rst one is called the readout

�delity (�f) and takes into account imperfections in the qubit e.g. �nite qubit lifetime

and state preparation of the qubit. These imperfections can reduce the contrast in an

experiment and the readout �delity allows us to isolate the qubit/technical problems
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from the detector performance. Note that the readout �delity still includes any back-

action e¤ects which could be present during a measurement. The last quantity is

called visibility and is given by

�v =
�c
�dp

(4.37)

This quantity compares the achieved performance (�c) to the anticipated performance

(�dp) of a qubit readout system. In a typical experiment, the quantities �dp,�f and �c

line up as follows

�dp � �f � �c (4.38)

though ideally we would like �dp = �f = �c = 1:0. Chapter 6 discusses experimental

results which help us identify some of the problems which results in a reduced contrast.

4.4 Numerical simulations

We will now brie�y describe the numerical simulations that were carried out to char-

acterize the performance of the JBA as a qubit readout. The equation of motion

for the JBA was given in equation 2.1. In order to incorporate the e¤ect of the

quantronium, we just add a term corresponding to the current-phase relationship of

the quantronium (4.33)

CJ'0
d2�(t)

dt2
+
'0
R

d�(t)

dt
+ I0 sin �(t) + ik (Ng; �m + �) = I(t) + IN (t) (4.39)

where k, Ng and �m are constants for a given problem and determine the qubit state,

gate bias and �ux bias respectively. The loop current function ik (Ng; �m + �), is

incorporated in the numerical simulation by storing a sampled version (calculated in
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Mathematica) in an array for given values of k, Ng and �m. I(t) is the RF current drive

and IN (t) is the Johnson noise current corresponding to a given temperature. A C++

code solves the above equation (in reduced units) using the 4th order Runge-Kutta

method. The details of the implementation are given in Appendix C.

Each numerical experiment involves simulating the above equation for a given set

of parameters. The simulator outputs � (t) from which we can determine the state of

the JBA at the end of a particular numerical experiment. By repeating the experiment

many times one can compute the switching probability Pswitch. One can then study

the variation of Pswitch as a function of the control parameters like drive amplitude

and temperature. In Fig. 4.11 we show plots of the switching probability curves or S-

curves which plot the variation of Pswitch with drive amplitude. Numerically simulated

S-curve data9 is shown for typical qubit parameters with�ieff01 = 4:5 nA (corresponds

to Sample B, see chapter 5) for both the ground and the excited state. A simulation

temperature of T = 80 mK was used, while !p=2� = 1:7 GHz and !d=2� = 1:55 GHz

for the JBA. The value of temperature (T ) used for this simulation is our best guess for

the e¤ective temperature10 which was determined through other measurements (not

described here). This allows us to determine the expected discrimination power (�dp)

which is computed by taking the maximum of the di¤erence between the S-curves

corresponding to the two qubit states. The discrimination power tells us how good

the JBA will perform as a qubit readout e.g. �dp = 0:7 implies that the JBA should

measure the qubit state correctly 70% of the times. The panels (a) and (b) compare

9The actual equation used in the numerical simulation is slightly di¤erent from equation 4.39
to incorporate e¤ects of stray parameters in the circuit. See section 3.2.1 and Appendix C for more
details.

10The e¤ective temperature of the JBA when T << ~!p, is given by Teff = ~!p= (2kB) (chapter
7&8). It could be higher if the microwave lines connected to the JBA are not su¢ ciently �ltered.
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Figure 4.11: Switching probability curves computed using numerical simulations of
the quantronium+JBA circuit. The e¤ect of the quantronium was incorporated by
including the current-phase relation of the quantronium. Data is shown for typical
qubit parameters with �ieff01 = 4:5 nA (corresponds to Sample B, see chapter 5).
A simulation temperature of T = 80 mK was used, while !p=2� = 1:7 GHz and
!d=2� = 1:55 GHz for the JBA. Panel (a) shows the case for a single junction JBA
while panel (b) is for the double junction JBA and we see an improvement in �dp from
0.7 to 0.9. An interesting feature to note is that the width of the S-curves (in units
of current) is roughly the same for the two cases but the shift is double in panel (b).
This is a consequence of enhanced (roughly double) coupling to the quantronium in
the double junction JBA. Also note that the typical values of ImaxRF are also double
in panel (b) due to the fact that the critical currents of the individual junctions are
doubled to keep the same !p.
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results for the single junction JBA with the double junction JBA which provides

enhanced coupling to the quantronium and hence higher discrimination power.

The ultimate goal is to get �dp = 1:0 (and �c = 1:0), but a readout with �dp < 1

is still usable. It just means that the experiment has to be repeated several times in

order to determine the qubit state accurately. As discussed in the previous section,

discrimination power mainly depends on two quantities. The �rst is the e¤ective

change in critical current (�ieff01 ) when the qubit state changes. �i
eff
01 depends on

EJ and EC and determines the shift in the S-curves. The second is the e¤ective

temperature of the JBA which determines the width of the S-curves (sections 2.3.3

and 3.3.2). We will see in chapters 7 and 8 that the e¤ective temperature of the

JBA has a lower bound and is given by Teff = ~!p= (2kB). In order to get closer to

�dp; �c = 1:0, one can use tricks like enhanced coupling using the DJBA. In certain

cases, it is possible to access the second excited state (j2i) by sending a microwave

pulse at frequency �12 to the gate port, just before the measurement. For certain

range of parameters, �ieff02 is bigger than �ieff01 and can provide an improvement in

contrast. The next two chapters discuss experimental results of measurements carried

out on the quantronium qubit using the JBA.



Chapter 5

Qubit coherence measurements

In this chapter, we will describe the measurements that were carried out on the

quantronium qubit (see chapter 4) using the JBA, to probe its coherence properties.

The experiments were carried out in a dilution refrigerator with a base temperature of

12 mK. We will �rst discuss the new experimental setup for the qubit measurements.

The measurements characterizing the ground state of the split Cooper pair box will

then be discussed. This will be followed by the discussion of the spectroscopic mea-

surements of the excited state. We will then describe the time domain measurements

which characterize the coherence properties of the qubit. Finally, we will talk about

the �delity of the JBA readout.

5.1 Measurement setup

The principle of our experiment is schematically depicted in Fig. 5.1 and is based, as

discussed in the previous chapter, on the quantronium qubit, a three junction circuit

which is analogous to a one-dimensional atom. The set of three junctions consists of

136
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Figure 5.1: Schematic of the measurement setup. The quantronium qubit is a split
Cooper pair box with two small Josephson junctions in which a large junction is
inserted for readout. This latter junction is shunted by a capacitor and forms the
non-linear oscillator of the JBA readout. The qubit state is manipulated by sending
pulses to the gate (write port), while readout operation is performed by sending a
pulse to the non-linear resonator via the read port. The circulator (C) is used to
separate the incident and re�ected signals. The phase of the re�ected signal which
carries information about the qubit state is ampli�ed and measured.

two small junctions, and a large junction, whose Josephson energy is approximately

100 times larger than that of each small junction. The capacitors shunting the big

junction reduce the plasma frequency of the big junction to the 1 � 2 GHz range

and form the non-linear oscillator. As discussed in chapters 2 and 3, the non-linear

oscillator is the heart of the JBA readout. The quantronium qubit and the JBA

are coupled via the shared big junction. The quantum state of the qubit a¤ects the

properties of the JBA and hence the state of the qubit can be readout by measuring

the state of the JBA. The qubit state can be prepared by sending microwave pulses to

the gate (chapter 4) while the readout operation is performed by sending microwave

pulses to the non-linear oscillator via the read port and analyzing the phase of the

re�ected signal.
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Figure 5.2: Fridge setup for qubit measurements. There are three microwave lines
and one DC line. The readout injection and the RF gate line are attenuated and
�ltered whle the readout return line has isolators and lossy �lters. The DC gate
line has a voltage divider and copper powder �lters. Typical values of attenuators
used are indicated. They were varied between di¤erent experiments depending on the
parameters being optimized.
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The detailed setup of the fridge with the various microwave lines is shown in Fig.

5.2. There are three microwave lines - readout injection, readout return and qubit

injection. The injection lines as before (chapter 3) have attenuators and �lters while

the return line has circulators and lossy �lters. All this ensures that the only noise felt

by the qubit and the JBA corresponds to the �uctuations from a 50 
 resistor at the

base temperature. The qubit and readout pulses are created using similar techniques

as discussed in chapter 3. The measurements described in the next few sections were

carried out on three di¤erent samples (A-C) whose parameters are described in Table

5.1.

Sample !01=2�(GHz) EJ=EC T1;typical(�s) T2(ns) Techo(ns) �c �dp
A 18:989 6:0 1:0 300 300 0:61 0:70
B 9:513 2:7 4:0 320 400� 500 0:48 0:70
C 20:344 17:5 0:07 110 X 0:68 0:95

D 9:910 1:8 (0:1; 1:0)* 120 X 0:30 0:90

Table 5.1: Qubit samples and their parameters. The parameter �dp is the discrimina-
tion power of the readout while �c is the actual contrast achieved in the experiment.
Samples A and B had one large Josephson junction while samples C and D had
two large Josephson junctions in series for the JBA readout in order to increase the
discrimination power. (* - data could only be �t with a double exponential with
a short and long time scale as indicated, X - T1 was too short to carry out echo
measurements).

Samples A and B had a single large junction for the JBA readout while samples

C and D had two large junctions in series. This modi�ed design was introduced to

enhance the readout �delity. More details will be discussed in the last section and

the next chapter. In this chapter, we will mostly present data from samples A and B.

In the next three sections, we will present measurements which will characterize the

ground state and coherence properties of the qubit. The measurements are presented

roughly in the order in which they would be typically carried out while characterizing
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a qubit. This gives us a �avour of the sequence of operations involved during a typical

experiment.

5.2 Ground state characterization

The �rst step in a qubit measurement is to characterize the ground state properties

of the qubit as a function of the bias parameters (gate and �ux). But before one

can carry out any measurements, it is necessary to characterize the JBA readout, the

procedure for which was described in chapter 3. We identify an operating frequency

and the pulse parameters for the JBA readout. These parameters are often modi�ed

later to optimize the signal to noise ratio and the readout �delity. Once the readout

is ready, the only quantity that is monitored is the switching probability of the JBA

which is the main output signal of any measurement.

As discussed in the previous chapter, the properties of the quantronium are peri-

odic functions of the gate charge (Ng) and loop �ux (�l). At low enough temperature

(kBT << ~!01) and in the absence of any microwave irradiation on the qubit, the

qubit stays predominantly in its ground state due to the �nite lifetime of the excited

state. We monitor the switching probability of the JBA as a function of gate and

�ux bias and the result (sample A) is shown Fig. 5.3. Each trace is a plot of the

switching probability (Pswitch) as a function of the gate voltage for a given value of

�ux. The readout bias is adjusted at every value of �ux bias to give a mean value

of Pswitch = 0:5. As is expected, the modulations in Pswitch increase as the �ux bias

deviates from zero (or integer �ux quantum). The modulation magnitude at zero �ux

depends on the EJ and EC values of the Cooper-pair transistor. For large ratios of

EJ=EC , this modulation can be quite small and di¢ cult to measure. In that regard,
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Figure 5.3: Switching probability v.s. DC gate voltage for di¤erent values for bias
�ux. Data (sample A) shows the periodic nature of the ground state properties of
the quantronium. As discussed in chapter 4, the JBA probes the e¤ective critical
current of the quantronium which varies periodically with gate charge Ng with period
1. By noting that the period in gate voltage is 15 mV = 2e=Cg, we can extract the
gate capacitance of this sample Cg =21 aF. The magnitude of the modulation also
changes with the bias �ux as expected for the quantronium.
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it is often useful to change the value of �ux till you can see a sizable modulation

and then slowly bring the value of �ux back to zero. These measurements not only

provide a basic test of the functioning of the quantronium qubit, but also provide a

rough estimate for gate and �ux bias which corresponds to the double degeneracy or

"sweet spot" of the quantronium qubit. As discussed in the previous chapter, this

is the point where the qubit is least sensitive to �uctuations in the bias parameters.

For all measurements, unless otherwise indicated, higher switching probability cor-

responds to lower critical current and vice-versa. The switching probability has the

lowest value at the double degeneracy point (highest critical current), and increases

as one moves away in either charge or �ux direction.

5.3 Spectroscopy

After characterizing the ground state properties, we next determine the qubit energy

level splitting. The measurement protocol is identical to the one described in the

previous section, except that we now send a weak, continuous microwave signal to

the charge port. The energy level separation periodically changes as a function of gate

and �ux bias and when the frequency of the microwave signal equals to the energy

level separation, the qubit has a small probability of being excited to the next higher

state. This results in a change in the switching probability. Fig. 5.4 depicts such a

trace showing Pswitch as a function of Ng for a value of �l � 0. The peaks correspond

to the values of Ng where the energy levels are resonant with the incident microwave

signal. In this measurement, the spectroscopic probe frequency used, is slightly higher

than the qubit level separation at charge degeneracy point. This results in the two

closely spaced peaks on either side of the charge degeneracy point as the qubit level
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splitting increases as one moves away from the charge degeneracy point.

Figure 5.4: Spectrocopic peaks for sample A. The qubit is irradiated with a continuous
microwave signal while the gate bias is swept. The switching probably shows the usual
gate modulation but now has additional peaks at certain values of gate bias when
the qubit level spacing becomes resonant with the incident microwave radiation. The
microwave frequency used here is slightly larger than the Larmor frequency at the
charge degeneracy point.

We can then map the variation of the qubit level splitting as a function of gate

charge by using di¤erent probe frequencies. This data for sample A is shown in Fig.

5.5 and allows us to determine the EJ and EC values for the qubit. The brighter

regions correspond to the qubit being excited by the incident microwaves. The light

blue curve is the theoretical �t for the variation of qubit transition frequency with

gate charge. Sample A had a EJ=EC ratio of about 6 and the curvature of the

energy bands with charge is not too high even at Ng = 0. This is evident from the

spectroscopy data as shown in Fig. 5.5 We were able to carry out coherent operations

on the qubit at both Ng = 0:5 and Ng = 0 for sample A.

Now we know the approximate value of the Larmor frequency !01. We then
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Figure 5.5: Variation of qubit transition frequency with gate charge (sample A).
Spectroscopic peaks (bright regions) are observed at di¤erent locations for di¤erent
frequency of microwave irradiation. The light blue line is a theoretical �t which
provides the values of EJ and EC for the qubit.

measured the lineshape of the ground to excited state transition at the "sweet spot".

The gate and �ux bias was tuned to the "sweet spot" and the switching probability

was monitored as a function of the frequency of the microwaves irradiated on the

qubit port. The microwave power was slowly reduced till no further reduction in the

line width was observed[47]. The gate and �ux bias were also �nely adjusted to get

the smallest possible linewidth. Data for sample A is shown in Fig. 5.6. The red dots

are the data points and the solid green line is a Lorentzian �t to the data. The peak

in the data corresponds to the Larmor frequency, which is 18:985 GHz in Fig. 5.6.

This value is slightly di¤erent from the value mentioned in Table 5.1 as the data for

Fig. 5.6 was taken earlier in the run and the Larmor frequency often changes slightly

over time. The smallest linewidth (FWHM) observed for sample A was about 2MHz.

In the next section, we present the time domain measurements carried out on sam-
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Figure 5.6: Lineshape of the ground to excited state transition of the qubit for Sample
A. Data shows a plot of switching probability vs incident microwave frequency on the
qubit. Microwave power, gate and �ux bias are adjusted till the smallest linewidth is
observed which is about 2 MHz here.

ple B. Unless otherwise indicated, all time domain coherent operations were carried

out at the double degeneracy point, i.e., Ng = 0:5 and �l = 0.

5.4 Time domain measurements

The �rst time domain measurement to be carried out was the Rabi oscillations ex-

periment. We �rst applied to the charge port a pulse at the Larmor frequency !01 of

varying duration � and amplitude UmaxRF , which performs a �X rotation of the qubit.

This was followed by a readout pulse on the phase port. The resulting Rabi oscilla-

tions in the switching probability signal are plotted in Fig. 5.7a for varying � and

�xed UmaxRF . Near � = 0 we observe the Pswitch corresponding to qubit being in the

j0i state. As the pulse length increases, Pswitch increases, goes through a maximum
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Figure 5.7: a) Rabi oscillations of the switching probability of qubit sample B as
a function of the duration � of a square pulse applied on the gate with maximum
amplitude UmaxRF = 0:12mV. Solid green curve is an exponentially decaying sinusoidal
�t with eT2 = 1:6�s. Total acquisition time is 3 minutes and the repetition rate is
16�s, set by T1 (see below). b) Rabi oscillation frequency (�Rabi) measured in (a) as
a function of UmaxRF . Green line represents the expected linear dependence.
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where the qubit is purely in the j1i state, de�ning at this point the length of a � pulse.

The switching probability then decreases back to the j0i state value, indicating a full

2� rotation of the Bloch vector. This pattern repeats itself but with diminishing

contrast. The decay time eT2 is in the range 0:8 � 1:7�s depending on the sample
and precise biasing condition. The Rabi oscillation frequency �Rabi is plotted as a

function of UmaxRF in Fig. 5.7b. A linear dependence of �Rabi with UmaxRF is observed,

in agreement with theory. The shortest � pulse we generated was 2 ns long, and was

used in the echo experiments described below.

Having calibrated the � pulse, we then performed a qubit energy relaxation mea-

surement by introducing a waiting time tw between the � pulse and the readout pulse.

The decay of Pswitch with tw, shown in Fig. 5.8, is well �tted by a single exponential,

de�ning T1. For sample A, T1 was in the range 1:0� 1:3�s, and for sample B, T1 was

between 2:5�5�s. The values of T1 obtained with our dispersive readout are compa-

rable with the results of Vion et al. [6], and are signi�cantly shorter than the values

expected from coupling to a well thermalized 50
 microwave environment shunting

the qubit. The loss mechanisms giving rise to the observed energy relaxation are not

understood at this time.

Following measurements of the qubit energy relaxation, we performed a Ramsey

fringe experiment to determine the phase coherence of the qubit. In this experiment,

two �=2 pulses were applied to the charge port of the qubit at a frequency 10�20MHz

detuned from !01 followed by a readout pulse on the phase port. A free evolution

time �t was introduced between the two �=2 pulses. In Fig. 5.9, Pswitch is plotted

as a function of �t. In the Ramsey sequence, the �rst �=2 pulse tips the Bloch

vector from the north pole to the equatorial plane. During the time �t, the Bloch
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Figure 5.8: Decay of the excited state switching probability (sample B) after preparing
the qubit in the excited state by a � pulse, as a function of the waiting time tw
between the preparation pulse and the readout pulse. Data shown illustrates the
typical behavior observed with the switching probability decaying exponentially with
a single decay constant. Solid green curve is an exponential �t with a 3.2�s decay
constant. The exponential �t includes an o¤set and gain factor to account for the
fact that �d < 1. The dashed line indicates the value of Pswitch in the absense of a �
pulse.

vector precesses around the equatorial plane and is then rotated again by the second

�=2 pulse. For �t = 0, the two �=2 pulses back to back act as a single � pulse

and the observed value of Pswitch corresponds to the qubit being in the j1i state.

As �t increases, Pswitch decreases until it reaches the value corresponding to the

qubit being in the j0i state, corresponding to a free evolution time �t in which the

Bloch vector makes a � rotation in the equatorial plane. The switching probability

then continues to increase for larger values of �t until it reaches a maximum value,

corresponding to a time �t where the Bloch vector makes a full 2� rotation in the

equatorial plane. This oscillatory pattern then repeats but with decreasing contrast

corresponding to the loss of phase coherence with time. The Ramsey fringes decay in a
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Figure 5.9: Ramsey fringes (sample B) obtained with two �=2 pulses separated by
the time interval �t. The pulse frequency was detuned from the Larmor frequency
by 20MHz. The green curve is a exponentially decaying sinusoid �t. The decay time
T2 is 320ns. Same acquisition conditions as in Fig. 5.7.

time T2 which has a component due to energy relation and one due to pure dephasing:

1=T2 = 1= (2T1) + 1=T', where T' represents pure dephasing. In our measurements,

T2 is dominated by pure dephasing, except for sample C which had a small T1 ' 70

ns and large value of EJ=EC = 17:5. For sample A, T2 = 300 ns while sample B had

T2 = 320 ns. The decay of Ramsey fringes in sample C was dominated by energy

relaxation with T2 ' 120 ns and only slightly smaller than 2T1. We then extract a

value T' = 840 ns for sample C. Dephasing in charge qubits is usually dominated

by 1=f o¤set charge noise and a higher value of EJ=EC helps in providing immunity

against it. This is re�ected in the larger value of T' for sample C.

In order to correct dephasing of the qubit due to low frequency noise [80], we

performed an echo experiment in which we inserted a � pulse in the middle of the

two �=2 pulses of the Ramsey sequence. A set of Ramsey fringes and its corresponding
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echo decay are shown in Fig. 5.10 for sample B. For this sample, the decay constant

was increased to 400 � 500 ns using the echo technique. For sample A, the echo

technique did not increase the phase coherence time. We believe that for sample A,

which has a larger ratio of EJ=EC than sample B,and hence protected from 1=f o¤set

charge noise, the dominant source of dephasing is due to broadband noise emanating

from residual photons in our readout resonator [81], thus explaining the ine¢ cacy

of the echo sequence. It is possible that the 50
 environment shunting the qubit

on the phase port side was not fully thermalized to the refrigerator temperature of

10mK. For sample B, where an improvement was observed with the echo sequence,

there are likely two contributing factors. First, the ratio EJ=EC is much smaller

and o¤set charge noise played a stronger role. The low frequency component of this

noise can be corrected using an echo sequence. Second, we added more cryogenic

attenuation in the transmission lines directly coupling to the phase port to reduce

the resonator temperature, thereby potentially reducing the number of excess photons

in the readout resonator and their associated dephasing.

5.5 Readout �delity

We now come to question of the measurement �delity of the JBA readout. In all the

data shown in earlier sections, we note that the change in switching probability of

the JBA when the qubit makes a transition from the ground to the excited state, is

about 40 � 60%. An ideal readout would have a 100% change. This was one of the

main problems plaguing the quantronium qubit with a readout based on the switching

of the large Josephson junction from the superconducting state to the �nite voltage

state [6]. The central motivation for the development of the JBA was to improve
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Figure 5.10: Result of an echo experiment (sample B) where a � pulse was kept in
the middle of the two �=2 pulses separated by interval �t (black dots). The Ramsey
fringe data, obtained without the � pulse, is shown with red circles. The thick black
curve is an exponentially decaying �t.

the readout contrast (�c) of the qubit measurement. The JBA readout did achieve a

signi�cant improvement (more than a factor of 2) over the original scheme. The best

results gave us a readout contrast of about 68% for sample C (Fig. 6.10) where an

additional pulse was used to preferentially make the qubit transition from the �rst

to the second excited state. But the ultimate goal of near 100% readout contrast

still remains unachieved. We will analyze and discuss this issue in more detail in

the next chapter where we try to understand what exactly goes on during a qubit

measurement.

We characterized the readout by measuring Pswitch as a function ImaxRF and j	i,

as shown in Fig. 5.11. The blue circles correspond to the qubit in its ground state,

obtained by letting the qubit relax spontaneously, while the red circles correspond

to the qubit in its �rst excited state obtained by applying a � pulse, which will

be discussed below. An important remark is that only a slight change in shape



CHAPTER 5. QUBIT COHERENCE MEASUREMENTS 152

of Pswitch (ImaxRF ) between the two qubit states is observed, which indicates that the

switching process itself does not contribute strongly to the relaxation of the qubit. In

cases where the readout is suspected to induce signi�cant relaxation, the switching

probability curve for the qubit excited state displays a pronounced kink and can be

obtained by a weighted average of the observed curve for the ground state and the

prediction for the excited state [82]. The expected discrimination power of the qubit

readout is de�ned as

�dp = max
ImaxRF

[Pswitch (h�Zi	 = 1)� Pswitch (h�Zi	 = �1)]

and its value for various qubit samples are given in Table 5.1 along with the actual

contrast (�c) observed in the experiment. Numerical simulations of the full circuit

have been used to compute �dp. Note that several competing factors enter this calcu-

lation, yielding similar values for samples A and B. The error bars re�ect uncertainties

in the values of stray reactances on chip and the precise resonator temperature.

The observed discrimination power is about 15 � 30% smaller than expected.

In a set of experiments described in the next chapter, we used two readout pulses

in succession to determine that a 15 � 30% loss of qubit population occurs, even

before the resonator is energized to its operating point. We attribute this loss to

spurious on-chip defects[46]. As photons are injected into the resonator, the e¤ective

qubit frequency is lowered due to a Stark shift via the phase port (see section 6.2.2).

When the Stark shifted frequency coincides with the frequency of an on-chip defect, a

relaxation of the qubit can occur. Typically, the qubit frequency spans 200�300MHz

(Fig. 6.3) before the state of the qubit is registered by the readout, and 3�4 spurious

resonances are encountered in this range.
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Figure 5.11: Switching probability as a function of maximum drive current and qubit
state for sample B. The vertical dotted line represents value of drive current at which
maximal discrimination power is observed. The width in current of the curves is in
reasonable agreement with numerical simulations (data not shown). The solid line
connects the observed data points in the j0i state and the dashed line is a copy of the
solid line horizontally shifted to overlap the j1i state data at low values of Pswitch.

We also note from Table 5.1 that the expected discrimination power for samples

A and B was only 0:70. To increase the expected discrimination power, we must

use samples with either a larger qubit EJ or a stronger phase coupling between the

qubit and readout resonator. We used the latter approach in sample C by replacing

the large Josephson junction in the quantronium with two Josephson junctions in

series. This provided us with an expected discrimination close to unity but the

measured discrimination power showed only marginal improvement. Note that a

stronger coupling between the qubit and the resonator also leads to a larger shift in

e¤ective qubit frequency as the resonator is energized, leading to a possibly larger

loss of qubit population. Even the smallest loss in qubit population before the actual

measurement will prevent you from achieving 100% readout �delity.
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In conclusion, we have successfully implemented a non-linear dispersive readout of

the quantronium qubit using the Josephson Bifurcation Ampli�er. The readout speed

and discrimination power show a signi�cant improvement when compared with the

DC switching readout used in the original quantronium measurements [6]. Perhaps

even more important, in the present readout scheme, the total measurement time is

much smaller than T1, and it is possible to carry out experiments with multiple read-

out pulses to determine the information �ow during a qubit readout and to account

for any losses in qubit population. This important aspect can be used to determine

the degree to which the measurement is quantum non-demolishing. These ideas are

discussed in more detail in the next chapter.



Chapter 6

Qubit readout performance

In this chapter we will discuss the performance of the JBA as a qubit readout. We

saw in the previous chapter that it was theoretically possible to choose qubit and

JBA parameters to achieve a single shot readout. Experimentally we found that

the contrast was smaller than the predicted value. In this chapter, we would like to

analyze the possible causes of this reduced performance and provide a possible �x to

the problem. Speci�cally, we would like to separate the intrinsic sensitivity of the

JBA from other processes taking place during the readout operation which might

lead to reduced performance. We begin by discussing the quantum non-demolition

nature of the qubit readout with the JBA which allows successive measurements of

the qubit state to be carried out. We will then break down the readout process and

describe the evolution of the qubit state during the readout. The AC Stark shift of

the qubit Larmor frequency when the JBA is energized will then be described and we

will discuss its consequences on the readout process. Finally, we will discuss possible

methods by which the goal of a single-shot readout can be achieved.

155
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6.1 Quantum non-demolition readout using a JBA

Quantum non-demolition measurements are basically the ideal, textbook measure-

ments of a quantum system (see ref. [83] for a review). The measurement process

yields one of the eigenvalues of the measured observable and the quantum state imme-

diately after the measurement is the eigenstate corresponding that eigenvalue. Since

the eigenstate does not evolve under the free evolution of the system, one can then

repeatedly measure the eigenstate achieving the same result everytime. This is the

most important aspect of a QND measurement. QND measurements were originally

discussed in the context of gravitational wave detection using massive metal bars

[84]. They can also be useful in optical communication for tapping the signal from an

optical �bre without a¤ecting it. QND measurements can also be used for entangling

several quantum systems.

A measurement involves coupling a quantum system to a measuring system which

we call the "meter". The total Hamiltonian of the combined system can be written

as a sum of three terms

Ĥtotal = ĤQ + ĤM + ĤI (6.1)

where ĤQ,ĤM ,ĤI are the Hamiltonians of the the quantum system, the meter and

the interaction between them respectively. If we call the measured observable of

the quantum system as AQ, then a QND measurement requires the following two

conditions

h
ĤI ; ÂQ

i
= 0 (6.2a)h

ĤQ; ÂQ

i
= 0 (6.2b)
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The �rst condition ensures that there is no back-action of the meter on the measured

observable1 while the second condition ensures that the projected state does not evolve

after that measurement. In chapter 4, we derived the combined Hamiltonian of the

quantronium with the JBA (4.26) which we reproduce below for no gate excitation

(U (t) = 0)

Ĥtotal = �EJ
2
�Z + �~!p�Zaya+ (6.3)

~!paya� �
�
1 +

�

4
�Z

��
a+ ay

�4 � f �a+ ay� I (t)
The �rst term is the qubit Hamiltonian (ĤQ), the second term is the dominant2

interaction Hamiltonian (ĤI) while the rest of the terms constitute the Hamiltonian

of the driven, non-linear resonator - our meter (ĤM). The coe¢ cients � and � are

de�ned in equations 4.27b and 4.27c. If we choose �Z as our observable, then we

note that the QND conditions 6.2a and 6.2b are satis�ed. We should point out that

equation 6.3 was derived for the case of zero asymmetry (d = 0) in the quantronium

junctions (see 4.1.3) and only in this limit the QND conditions are fully satis�ed. For

�nite values of d, corrections to the QND fraction of order d2 exist [79].

With the QND conditions being satis�ed for the quantronium with a JBA readout,

we can make multiple measurements of the qubit state and determine the extent to

which they are QND. The fact that the qubits have a �nite lifetime for the excited

state is somewhat contradictory to the requirement that the qubit state should not

1A measurement always involves some backaction but the quantity being a¤ected could be dif-
ferent than the one being observed. In this case, the backaction leads to dephasing of the qubit but
does not cause any mixing of the qubit states.

2There is also a coupling term (/ �) between the qubit and the non-linear part of the resonator.
We neglect that term in this analysis for simplicity as it does not a¤ect the QND nature of the
readout.
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evolve between measurements. Since any measurement requires a �nite amount of

time to complete, there is always a �nite probability for the qubit to decay to its

ground state leading to errors in the subsequent measurements. But we can always

factor this out if we know the lifetime of the qubit excited state. In the next section,

we will discuss the results of multiple measurements of the qubit state and explore in

more detail the evolution of the qubit state during measurement.

6.2 Information �ow during qubit measurement

6.2.1 Multiple pulse measurements

The qubit was prepared in its ground state and then multiple readout pulses were

used to measure the qubit. This was repeated thousands of times to construct the

switching probability for each pulse. We observed that with the qubit in the ground

state, the switching probability associated with each pulse was the same, indicating

that the qubit remained in the ground state after every measurement. The same

procedure when repeated with the qubit prepared in the excited state, led to some

interesting results. In Fig. 6.1 we show the result of multiple measurements of the

excited state of the qubit for di¤erent readout frequencies. Data is shown for sample

A with !01=2� = 18:989 GHz (see Table 5.1). The plasma frequency of the JBA

readout was !p=2� = 1:81 GHz.

The switching probability data has been normalized and converted into a prob-

ability Pj1i of the qubit being in the excited state, by using the result of the �rst

measurement assuming that the �rst pulse makes a perfect measurement of the qubit

state. The time axis indicates the time delay between the � pulse used to prepare
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Figure 6.1: Multiple readout of qubit state (Sample A, !01=2� = 18:989 GHz) for four
di¤erent readout frequencies. The qubit is prepared in the excited state and measured
multiple times. The switching probability for each pulse has been normalised by the
result of the �rst measurement. Data is then plotted as the probability Pj1i of the qubit
being in the excited state after each measurement. Data for four di¤erent readout
frequencies are shown. The time axis indicates the time delay between the � pulse
and the subsequent readout pulses. The solid lines are exponential �t to the data and
the decay times are indicated in the legend. The black curve shown for reference is
the T1 decay where the time delay between the � pulse and a single readout pulse is
varied. We observe strong relaxation of the qubit with each measurement pulse. The
e¤ect is stronger as the readout frequency is lowered. No excitation was observed
when the qubit was prepared was the ground state (see Fig. 6.2). Data characterizes
the QND capability of the readout. While the ground state is fully preserved after a
measurement, the relaxation of the excited state is sped up.
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the excited state and the subsequent readout pulses. The black curve is the stan-

dard T1 measurement where the time delay between the � pulse and a single readout

pulse is varied. Data clearly indicates that the qubit relaxes after each measure-

ment and the relaxation is much stronger than what one would expect from the T1

measurement. The exponential �t to each data set (solid lines) provides an e¤ective

relaxation rate associated with the di¤erent readout frequencies. Another clear trend

is that the relaxation rate increases with increasing detuning (� = 1� !d=!p) of the

readout frequency. A large readout detuning is associated with stronger drives (Fig.

2.5). Nevertheless, there is clear indication that there is some QND character to the

measurement since the ground state is fully preserved after a measurement and the

excited state is preserved to some extent.

In order to understand the e¤ect of drive strength on the evolution of the qubit

state, we sent two readout pulses to the qubit prepared in the ground/excited state.

The switching probability of the second pulse was monitored as a function of the

amplitude of the �rst one. A typical result of such a measurement is shown in the right

panel of Fig. 6.2. The left panel shows the pulse protocol used for this measurement.

Since we are only interested in variations due to the amplitude of the �rst pulse, data

is normalized by the contrast obtained when the �rst pulse is of zero amplitude and

displayed as the probability Pj1i of the qubit being in the excited state:

Pj1i =

h
P
j1i
switch � P

j0i
switch

i
A=Aopth

P
j1i
switch � P

j0i
switch

i
A=0

(6.4)

This also accounts for the decay due to the �nite lifetime of the qubit excited state.

We note that the qubit excited state population starts to decay (red curve) even
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Figure 6.2: Two pulse measurements of the qubit state (Sample A, � = 0:061). Pulse
protocol is shown in the left panel and data on the right panel. A and Aopt are the
amplitudes of the �rst and second pulse respectively. The switching probability of the
readout pulse normalised by its value for A = 0 is plotted as the probability Pj1i of
the qubit being in the excited state as function of the normalised �rst pulse amplitude
(A=Aopt). No change is observed with the qubit prepared in state j0i (blue) while a
steady reduction is observed for the qubit in state j1i (red). We also note some sharp
dips at certain amplitudes indicating the presence of some resonant phenomena. Since
the JBA starts to measure only when A=Aopt ' 1, the qubit is decaying due to the
excitation of the resonator and not necessarily due to the measurement process. The
region shaded in green corresponds to amplitudes where pulse #1 starts to measure
strongly.

before the amplitude of the �rst pulse reaches the optimal value Aopt for readout

(shaded region). Since the JBA starts to measure only when A=Aopt ' 1, the qubit

is decaying due to the excitation of the resonator and not necessarily due to the

measurement process. Clearly some other e¤ect is causing the qubit decay. Apart

from the steady decay of the qubit population as a function of amplitude, we also

note some sharp dips at certain amplitudes indicating the presence of some resonant

phenomena. No excitation is observed when the qubit is prepared in the ground state

(blue curve). So the decay of the qubit excited state is related to the drive strength

or equivalently the amplitude of oscillations of the resonator. We speculate that these
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losses are due to resonances in the qubit environment arising from on-chip defects. As

the oscillation amplitude of the resonator increases, the e¤ective qubit frequency is

lowered due to a Stark shift [47] via the phase port. When the Stark shifted frequency

coincides with the frequency of an on-chip defect, a relaxation of the qubit can occur.

We characterize this frequency shift next.

6.2.2 AC Stark shift of qubit

The shifting of the qubit frequency due to the energizing of the oscillator can be

understood in two ways. From the discussion in section 4.1.3, we know the qubit

Hamiltonian and hence the Larmor frequency is a function of the two control pa-

rameters - Ng and � (4.6). When the resonator coupled to the qubit via the phase

port is energized, the phase � across the qubit oscillates, resulting in a modulation

of the qubit Larmor frequency. The frequency modulation which takes place at the

resonator drive frequency results in an average shift of the Larmor frequency. The

Larmor frequency is maximum at the phase bias point (� = 0) for the qubit and

decreases with increasing � and this results in the lowering of the Larmor frequency

in the presence of driving on the phase port. A similar e¤ect can be achieved if we

drive the gate port (Ng) with a frequency far detuned from the Larmor frequency to

prevent qubit excitation. But now, the direction of shift is towards higher frequen-

cies because the Larmor frequency is the smallest at the gate bias point (Ng = 0:5).

We can also understand the AC Stark shift via the phase port in another way by
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combining the �rst two terms in the Hamiltonian in 6.3 and writing it as

Ĥtotal = �
�
EJ � 2�~!paya

� �Z
2
+ (6.5)

~!paya� �
�
1 +

�

4
�Z

��
a+ ay

�4 � f �a+ ay� I (t)
The �rst term can now be seen as a spin 1=2 with a Larmor frequency which is

dependent on the number of photons (hayai) in the resonator [47]-the frequency shift

per photon being 2�~!p.

In order to calibrate these frequency shifts as a function of the readout amplitude,

we carried out the two pulse measurement described above with a small modi�cation.

With the qubit prepared in the ground state, we added a probe microwave signal on

the gate port overlapping in time with the �rst pulse which we now call the Stark

pulse (see Fig. 6.3). When the amplitude of the Stark pulse is large enough to

Stark shift the qubit (prepared in its ground state) into resonance with the probe

signal, we observe enhancement in Pswitch of the readout pulse #2 indicating resonant

excitation of the qubit. By repeating this measurement for di¤erent probe frequencies

(!probe < !01), we can map out the Stark shifted qubit frequency as a function of the

drive amplitude. A similar experiment can be carried out to calibrate the Stark shift

from the gate port with both the Stark and the probe pulse being applied to the gate

port. The result of such measurements on Sample B is shown in Fig. 6.3.

Panel (a) shows the pulse protocol used for this measurement. Panel (b) plots

Pswitch as a function of drive amplitude for three di¤erent probe frequencies. The

position of the peak corresponds to the amplitude at which the qubit is Stark shifted

into resonance with the probe frequency. Panel (c) maps out this dependence and
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Figure 6.3: Characterizing the AC Stark shift of qubit frequency with driving on phase
or gate port. Data shown for Sample B with !01=2� = 9:513 GHz. Panel (a) shows
the pulse protocols used. Pulse #1 is the Stark pulse which Stark shifts the qubit
(prepared in state j0i) into resonance with the probe pulse (!probe). The switching
probability of pulse #2 as a function of the amplitude of pulse #1 is shown for three
di¤erent probe frequencies in panel (b). By noting the amplitude corresponding to
the peaks we can map out the dependence of the Stark shifted qubit frequency and
the drive amplitude. The result of Stark shift via the phase port (!d=2� = 1:55 GHz,
brown squares, bottom axis) is shown in panel (c). Stark shift data via the gate port
is also shown (!RF=2� = 6:90 GHz, pink squares, top axis). The solid lines are the
expected quadratic �ts. For A=Aopt ' 1 on the phase port, we observe deviations
from the quadratic behaviour due to the non-linearity of the resonator. No such e¤ect
is observed for the Stark shift via the gate port as expected.
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plots the Stark shifted frequency as a function of drive amplitude for both phase

and gate driving. The solid lines are quadratic �ts to the data which indicate that

the Stark shift is proportional to the drive power and hence photon number in the

resonator. For drive amplitudes close to Aopt, the non-linearity of the resonator starts

coming into play and the frequency starts to change much faster. This is because the

oscillation amplitude now grows non-linearly with the drive amplitude. Also, for

A=Aopt � 1, the JBA starts to switch into its high amplitude state resulting in much

larger Stark shifts. No such e¤ect is observed for AC Stark shift via the gate port as

expected, since the oscillation amplitude of Ng is directly proportional to the drive

amplitude UmaxRF .

6.2.3 Quantifying the losses during readout

In order to quantify the loss in qubit population during readout, we came up with

a model to illustrate the evolution of the qubit state during di¤erent parts of the

readout pulse. Note that this is a very simplistic model and might not account for all

scenarios. The model evolved from analyzing typical qubit behavior in experiments.

Nevertheless, it provides a simple way to separate the intrinsic discrimination power

of the readout from the losses due to qubit decay. This model is illustrated in Fig.

6.4.

The readout pulse is separated into four parts - ARM, PROJECT, RECORD and

DISARM. The ARM phase is when the JBA is energized up to the optimal level for

readout. The PROJECT phase is when the qubit state is projected and the JBA

ends up in its low or high amplitude state. In the RECORD phase, the result of

measurement is latched and recorded and �nally in the DISARM phase the readout
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Figure 6.4: Information �ow during qubit readout - a model to explain qubit state
evolution during readout. The readout pulse is separated into four phases - ARM,
PROJECT, RECORD and DISARM. The bottom panel shows the evolution of the
qubit state during each phase. The qubit goes from j0i to j1i after a � pulse and
associated with each phase of the readout is a certain probability R to decay from j1i
to j0i. By carrying out multiple measurements of the qubit state, one can extract the
various decay probabilities and understand the relaxation processes during a readout
operation.

is turned o¤ by reducing the amplitude to zero. During each of these parts, the

qubit can relax to its ground state with a certain probability. We have neglected the

possibility of excitation from the ground state in this analysis since it is not observed

in experiments except in marginal cases discussed later in this section.

By using pulses of varying length we found that RARM = RDISARM . The qubit fre-

quency is swept downwards during the ARM phase and upwards during the DISARM

phase. The direction of this sweep does not a¤ect the qubit decay probability and
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hence RARM = RDISARM . Also, we found that the decay during the PROJECT phase

is usually smaller than the ARM phase and hence we can set3 that RPROJECT = 0.

Given these constraints we can analyze the data shown in Fig. 6.5 which shows data

for di¤erent readout frequencies with the �rst pulse amplitude close to Aopt. The

data for smaller amplitudes for the �rst pulse is similar to Fig. 6.2.

Also shown for reference are the switching probability curves for the ground and

excited state obtained from the �rst measurement pulse. For a single readout, only

the ARM and PROJECT phase is encountered, and we can write

�f = (1�RARM) (1�RPROJECT ) �dp (6.6)

where �f is the readout �delity (obtained from the observed contrast after accounting

for T1 losses) and �dp is the actual discrimination power of the readout (see 4.3.5).

From the data in Fig. 6.5, if we take the value of the qubit excited state population

(PAj1i) at an amplitude just before the S-curves start (indicated by dashed line A), we

get the losses associated with the ARM and DISARM phase of the readout

(1�RARM) (1�RDISARM) = PAj1i (6.7)

Solving for RARM = RDISARM (� 1), we get

RARM = 1�
q
PAj1i (6.8)

3This assumption need not always be true. The decay during the PROJECT phase can accounted
as a modi�ed T1 e¤ect. Note that the T1 of the qubit while it is being driven can be di¤erent than the
undriven T1 as shown later. It is also possible to combine the PROJECT and ARM phase together.
We usually observed that the dominant relaxation before the actual measurement was due to the
ARM phase.
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Figure 6.5: Results of two pulse measurements as described in Fig. 6.2 are presented
for di¤erent readout frequencies with the detuning values � indicated in the plots.
Data for Sample A is shown for pulse #1 amplitudes A ' Aopt. As the data in
Fig. 6.1 indicated, we observe an increase in relaxation as the detuning � is increased
which is associated with increasing drive strengths. By noting the values of Pj1i at po-
sitions marked A and B, one can extract the pre-measurement and post-measurement
relaxation associated with the readout. As described in the text, this can be used to
extract the intrinsic readout discrimation power. As before, the qubit ground state
j0i is not a¤ected except for the largest detuning shown in panel (d). Numerical sim-
ulations for this detuning indicated that the junction phase was crossing the values
� = �� resulting in Landau-Zener tunneling between the qubit states.
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Setting RPROJECT = 0, we can solve for �dp

�dp =
�fq
PAj1i

(6.9)

The value of Pj1i at an amplitude equal to the optimal readout amplitude (indicated

by dashed line B) tells us about the fraction of qubit excited state population which

survives after a full readout operation. We call this the QND fraction FQND given by

FQND = (1�RARM) (1�RDISARM) (1�RRECORD) = PBj1i (6.10)

where we have set RPROJECT = 0. Solving for RRECORD, we get

RRECORD = 1� PBj1i=PAj1i (6.11)

Processing the data in Fig. 6.5 using the technique described we can compute RARM

and RRECORD for the di¤erent readout frequencies. The result is summarized as

a function of readout detuning � in Fig. 6.6. The pre-measurement relaxation

(RARM) has a weak dependence on the detuning but the post-measurement relaxation

(RRECORD) has a very strong dependence. This implies that the observed contrast

doesn�t vary much with detuning4 as can been seen from the S-curves in Fig. 6.5. The

QND fraction which depends on RRECORD must decreases strongly with detuning as

we saw in Fig. 6.1.

We note that the data in Fig. 6.5d show some excitation of the qubit state for

4This is because the discrimination power �dp also does not vary much with detuning.
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Figure 6.6: Readout induced relaxation as function of drive detuning for Sample A.
The pre-measurement (RARM) and post-measurement (RRECORD) relaxation data as
inferred from the data shown in Fig. 6.5 is plotted as a function of the detuning � of
the drive frequency. We note that RARM has a weak dependence on � while RRECORD
increases strongly with �.

amplitudes A & Aopt. We veri�ed using numerical simulations that for those readout

parameters, the phase of the readout junction was not contained within one well of

the cosine potential. This meant that the phase crossed the values � = �� where

the qubit spectrum has an avoided crossing. This can cause Landau-Zener tunnelling

resulting in the mixing of the qubit states as indicated by the fact that Pj1i tends

to the same value (circled region in Fig. 6.5d) irrespective of the initial state of the

qubit. Apart from this case, we note that the readout operation preferentially a¤ects

the qubit excited state.

The numbers extracted for �dp using this technique for the various qubit samples

were in good agreement with those obtained from numerical simulations (Table 5.1).

This suggests that the above model works well to account for losses during readout.
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6.3 Characterizing the qubit environment

It is clear from the data shown in the previous sections that the losses in the envi-

ronment seen by the qubit have an important role to play in the performance of the

qubit and its readout. The T1 measurements discussed in chapter 5 are not com-

patible with the values that would be expected from the designed electromagnetic

environment [40]. The decoherence in the qubit is set by the properties of an un-

controlled environment coupled to the qubit. It has been conjectured that the losses

are due to a collection of two level �uctuators (TLF) which could be present in the

substrate, in the oxide layer covering the metallic electrodes or in the oxide barrier

of the junction [85]. Such TLFs have been routinely observed as avoided crossings

in the spectroscopy of phase qubits which use large area Josephson junctions [46].

They have also been observed in CPB based qubits which typically use small area

Josephson junctions, though their occurrence is rarer [40, 86]. This collection of TLFs

usually result in an e¤ective, frequency dependent, lossy bath, but coherent coupling

between the qubit and the TLF has also been observed.

Fig. 6.7 shows spectroscopy data for sample C. Panel (a) shows the data obtained

in the �rst cooldown. The qubit frequency was varied by applying a magnetic �eld.

Each row is a plot of Pswitch (mean subtracted) plotted as a color v.s. qubit transition

frequency. The red regions correspond to the frequency where the excitation frequency

matches the qubit transition frequency. The dashed line is the expected dependence

calculated using the EJ and EC values for this sample (Table 5.1). One can clearly

observe a strong avoided crossing (� 0:2 GHz splitting) around 19:5 GHz along with

some weaker cutouts in the spectrum at a few other locations. There is also a cutout

in the spectrum at the sweet spot (�=�0 = 0) which explains the extremely low
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Figure 6.7: Spectroscopy data for Sample C before {panels (a) and (b)}and after
{panel (c)} thermal cycling to room temperature. The qubit frequency was varied by
applying a �ux through the quantronium loop in panel (a) while a Stark pulse was
used in panel (b). Dashed line in panel (a) is the expected dependence from theory.
One can clearly observe a strong avoided crossing (� 0:2 GHz splitting) around
19:5 GHz indicating that the qubit is coupled to a spurious two-level system in the
environment. Other, weaker features in the spectrum are also observed. Panel (c)
shows the spectroscopy data after the sample was warmed up to room temperature
and then cooled back down to 12 mK. The spectrum is now much cleaner but a
remnant of the avoided crossing is still visible(� 0:05 GHz splitting) at a slightly
shifted frequency. Also visible is an improvement in the spectroscopy linewidth.
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T1(< 10 ns) which was observed during the �rst cooldown. Panel (b) shows the same

data taken using a Stark pulse to shift the qubit frequency. Sample C had two readout

junctions in series for enhanced coupling to the split CPB, resulting in much larger

Stark shifts (� 1:6 GHz) as compared to sample B (� 0:2 GHz, 6.3). This is for Stark

pulse amplitudes less than those required for the JBA to switch. We can explain the

factor of 8 di¤erence observed in the maximum Stark shift between Sample B and

Sample C as follows. The two readout junctions double the phase excursion across the

split CPB resulting in 4 times the Start shift (quadratic dependence on amplitude).

The remaining factor of 2 is due to the Larmor frequency of Sample C being roughly

twice that of Sample B.

Panel (c) shows the spectroscopy performed on sample C after the sample was

warmed up to room temperature and cooled back down to 12 mK. The data is now

much cleaner with fewer cutouts. There is still a remnant of the avoided crossing

at 19:5 GHz which is now slightly shifted in frequency and weaker (� 0:05 GHz

splitting). Also, the cutout at the sweet spot is no longer present, resulting in an

improved T1 � 70 ns. This kind of behavior with temperature cycling is often seen

in solid state systems. The temperature cycling can lead to the rearrangement of the

microscopic defects leading to a change in the spectrum of the environment.

We also used T1 measurements as a way to characterize the environment as it is

a probe for the available decay modes at the qubit transition frequency. A common

feature we observed in all samples is the dependence of T1 on gate voltage U . Ideally,

the qubit properties should be the same as long as Ngmod 1 = 0:5, the sweet spot in

charge. But in practice, we always found that certain values of U where better than

others in terms of stability and T1 values. This variation of T1 with gate voltage for
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Sample B is shown in Fig. 6.8a. We note that variations in T1 of about a factor of two

is observed. The data point with the largest positive gate voltage had a parity jump

where one extra electron gets onto the island. Often, the gate voltage at which best

results are obtained changes with time. This dependence on gate voltage suggests that

the loss mechanism must involve some charged TLFs. Note that the qubit transition

frequency is kept the same as we are always biased at the sweet spot. In another

set of T1 measurements shown Fig. 6.8b, we varied the qubit transition frequency

by threading a �ux through the loop of the quantronium while keeping Ng = 0:5.

Again, we note variations as large as a factor of two while the expected variation

from theory is much smaller. We observe similar behavior when the frequency is

varied by changing gate charge. These kind of variations in T1 have been seen in

other superconducting qubit measurements [40].

Qubit properties like T1 can di¤er when they are driven by a strong �eld [40],

like during a readout operation. We carried out T1 measurements on Sample B in

the presence of strong driving on the phase and gate port. As discussed in 6.2.2,

driving the qubit on the gate or phase port leads to an AC Stark shift of the qubit

frequency. This is another way of characterizing the frequency dependence of the

qubit environment, though the driving can lead to additional e¤ects. Results of such

measurements are shown in Fig. 6.9. The measurement protocol is similar to the one

described in 5.4, but now we include a Stark pulse on either the gate or the phase

port during the time delay between the � pulse and the readout pulse.

We again see strong variations in T1 for di¤erent Stark shifted qubit frequencies.

The dashed line indicates the undriven Larmor frequency of the qubit. We also note

an overall reduction in T1 as the driving strength is increased, though the e¤ect is
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Figure 6.8: T1 measurements for Sample B are presented. Panel (a) shows the results
of T1 measurements as a function of DC gate voltage. Note that the qubit is always
kept at the sweet spot i.e. Ngmod 1 = 0:5 and �m = 0:0. Though the qubit properties
should remain the same, we observe signi�cant variation in T1 as the gate voltage is
varied indicating that the gate voltage is a¤ecting the spectrum of the qubit envi-
ronment. In panel (b), we change the qubit transition frequency by applying �ux
though the loop and measure T1 at each position. We again see large changes in T1
signi�cantly di¤erent from the expected smooth dependence from theory. Both data
sets indicate that the rate of qubit decay is set by the properties of an uncontrolled
environment coupled to the qubit.

much more pronounced (c.f. 6.8b) for driving on the phase/readout port. We can

conclude that there are two main e¤ects which explain the above data. The �rst

one is the frequency dependence of the qubit environment resulting in variations

in T1. The second e¤ect which is just related to the strength of the driving (and

not the associated Stark shift) is not fully understood at this time. A new theory

being developed for circuit QED systems suggests that noise leading to dephasing can

cause mixing of qubit states in the presence of strong driving, with the e¤ect being

proportional to the driving strength [87]. The fact that the JBA readout frequency

(� 1:5 GHz) is far detuned from the qubit Larmor frequency (& 10 GHz) should
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Figure 6.9: T1 measurements for Sample B in the presence of strong driving on the
phase (brown) and gate (pink) port. T1 values are plotted as a function of Stark
shifted frequencies with the dashed line indicating the undriven Larmor frequency.
The solid lines are just a guide for the eye. The standard T1 protocol is modi�ed
by incorporating a Stark pulse during the time delay between the � pulse and the
readout pulse. On top of the �uctuations in T1 values, we observe a steady decrease
with increasing drive amplitudes (larger Stark shifts). This e¤ect is more pronounced
with the driving on the phase port indicating that the variation in T1 is not just due
to a change in the qubit transition frequency (c.f. Fig. 6.8b) but also has something
to do with the strength of the driving.

provide protection from such e¤ects. But, the driving strength in the JBA readout

is much higher that those used in circuit QED experiments and it is possible that

some multi-photon process is involved. A more detailed study of the back-action of

the JBA on the qubit is required.

6.4 Approaching a single-shot readout

It is clear from the qubit measurement results that improvements on several fronts are

required to achieve the goal of a single-shot readout. In samples A and B, the expected

discrimination power was not 100% (Table 5.1) due to insu¢ cient change in the loop
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currents between the ground and the excited state. In order to increase this signal, we

developed the double junction JBA (DJBA) where the readout junction was replaced

by two readout junctions in series. This roughly doubled the coupling between the

readout junction and the qubit which was con�rmed by numerical simulations (section

4.4). Samples C was made with the DJBA readout and the measured S-curves are

shown in Fig. 6.10a.

The measured contrast is about 40% while the calculated discrimination power

is 95%. Using the two pulse experiment described above, we found that the qubit

relaxation during the ARM+PROJECT phase was much stronger (roughly 3 times)

in this sample as compared to samples A and B, resulting in a reduced contrast. We

believe that this is due to the much larger Stark shifts observed in the DJBA samples

due to the enhanced coupling with the qubit. The larger excursion in frequency

space results in a higher probability of encountering environmental resonances and

hence relaxation. This sample also had a much smaller T1 and as is evident from

Fig. 6.7, had several environmental resonances near the qubit Larmor frequency.

Nevertheless, we were able to improve the contrast further in sample C by using the

following technique. Due to the large EJ=EC (= 17:5) ratio, we were able to access

the second excited state j2i. The transition frequency between the �rst and second

excited state (!12 = 18:275 GHz) is now smaller than !01 = 20:344 GHz. It turns

out that for these qubit parameters, the change in the e¤ective critical current of the

split CPB is almost double in state j2i as compared to state j1i. The measurement

protocol now involves applying a � pulse at !12 before the readout operation. If the

qubit is initially in state j0i, it would remain in that state while if the qubit is in state

j1i, it would be transformed to j2i. In general, a qubit state �1j0i+ �2j1i would be
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Figure 6.10: Data for Sample C demonstrating enhanced contrast by exploiting the
second excited state of the qubit is shown. Panel (c) shows the pulse protocol used.
An additional � pulse at transition frequency !12 = 18:275 GHz is used to transform
state 1 to 2. This pulse has no e¤ect on state 0 since !01 = 20:344 GHz is signi�cantly
di¤erent from !12. For the qubit parameters of sample C, it turns out that state 2
has a much larger change in critical current resulting in a larger shift of the S-
curves. Panel (a) shows S-curves without this additional � pulse while panel (b)
shows data including the additional � pulse clearly indicating a larger shift and an
improved contrast. Panel (d) shows Rabi oscillations with the best contrast obtained
(�c = 0:68).
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transformed to �1j0i+ �2j2i.

The S-curves measured using this new technique are shown in Fig. 6.10·c. We

note an improved contrast �c = 0:63. The excited state S-curve (red) is now shifted

more because it now corresponds to the qubit being in state j2i which has a smaller

e¤ective critical current. There are still losses associated with the energizing of the

oscillator but overall we observe an improvement in the contrast. The excited state

S-curve is now a weighted average of the S-curve in state j2i, j1i and j0i depending

on the probability of decay from state j2i to j1i and from state j1i to j0i. There are

two e¤ects which result in the improved contrast. As explained above, the �rst one is

the larger change in e¤ective critical current in state j2i, though the e¤ective critical

current change for state j1i was already large enough to obtain �dp = 0:95. We believe

that a more important e¤ect is the fact that the qubit in state j2i is now sensitive to a

di¤erent range of frequencies. Due to the selection rules for the qubit transitions, the

most probable way for the qubit to relax is from j2i to j1i and then from j1i to j0i.

For the qubit to decay from j2i to j1i, the relevant frequency is !12 = 18:275 GHz.

As the oscillator is energized this frequency gets Stark shifted to lower frequencies.

It is possible that this frequency range has less environmental resonances resulting in

a reduced probability of relaxation during readout. The best contrast obtained using

this technique was about 68% as illustrated by the Rabi oscillation data shown in

Fig. 6.10d.

In conclusion, getting the qubit readout contrast within a few % of unity is an

important problem that needs to be solved for quantum computing applications. This

will allow interesting experiments like measuring the entanglement of multiple qubits

and testing Bell�s inequality [88] with good signal to noise. A single-shot readout
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will also enable more stringent tests of the theory of quantum measurements and

understanding the evolution of the qubit during a measurement operation [89].

The superconducting qubit community is yet to achieve a readout with near 100%

e¢ ciency but steady progress is being made. Phase qubits with about 90% readout

contrast are in the front of the race [90]. Flux qubits have demonstrated 87% contrast

using a non-linear resonator readout like the JBA [91]. They were able to change the

qubit frequency rapidly by applying �ux pulses just before the readout operation.

This way they were able to minimize the relaxation of the qubit during readout,

resulting in a better contrast. Circuit QED systems with charge qubits coupled to

superconducting cavities have achieved 100% visibility with weak measurements [86]

but the readout contrast is often limited to about 30% [92]. This has been improved

recently to about 70% [93]. They are mostly limited due to the noise temperature of

their following ampli�er but also observe mixing of qubit states when using a large

number of photons for measurement. Experiments using a CBA, the distributed ele-

ment version of the JBA, to measure the quantronium qubit have achieved a readout

contrast of 60% [43] though very recent CBA measurements using low Q (� 100),

coplanar stripline resonators indicate a readout contrast of about 85% [94].

All these di¤erent systems ultimately su¤er from some kind of qubit relaxation

during the readout process. The uncontrolled losses in the qubit environment are

partly responsible for this relaxation and hence further research in improving the

quality of the materials used in fabrication is required. Nevertheless, there is still

scope for improvement in readout design which might enable one to achieve 100%

readout contrast. A two stage readout process where a weak, yet projective mea-

surement is followed by a stronger ampli�cation stage to improve the signal to noise



CHAPTER 6. QUBIT READOUT PERFORMANCE 181

ratio seems to be a promising way for solving the problem. An example would be to

measure a qubit coupled to a linear resonator with a few photons and following it up

with a non-linear system like the JBA or a parametric ampli�er for further gain.



Chapter 7

Quantum escape and parametric ampli�cation:

Theory

In this chapter, we will address the problem of transitions between the metastable

states of the JBA in the quantum regime. In the classical regime, the transitions

are governed by an activation process with thermal noise activating the system over

an e¤ective barrier (see section 2.3.2 and ref. [27]). Now, we want to consider the

case as T ! 0 [49, 50]. What mechanism governs the transitions as T ! 0 ? Is there

tunneling between the metastable states or does a di¤erent mechanism exists? More

importantly, what sets the classical to quantum crossover temperature? Borrowing

ideas from the theory of macroscopic quantum tunnelling (MQT) in current biased

Josephson junctions [95, 48], we can make an educated guess that the crossover tem-

perature must be related to the plasma frequency of the oscillator. We will try to

answer these questions in the next few sections.

We will begin by discussing Input-Output theory (see [96] and reference therein)

and how we can use it to compute escape rates out of metastable states. We will treat

182
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the prototypical case of a harmonic oscillator coupled to a transmission line and as an

example, apply the results to compute escape rates for a DC current biased Josephson

junction. Following that, we will compute the transition rates in the JBA. The

calculation is based on treating the JBA as a doubly degenerate parametric ampli�er

[9]. We can then borrow well known techniques from the quantum optics community

for analyzing parametric processes and results in a much clearer understanding of the

escape dynamics in this non-equilibrium system. We will treat the JBA as a classical

system driven by quantum noise. In this treatment, we can calculate the transition

rates at any temperature, i.e., we can discuss both classical and quantum behavior

in the same formalism. The gain and noise performance of the JBA as a parametric

ampli�er will then be computed. We will conclude with a discussion on generating

squeezed states of light using the JBA.

7.1 Input-Output theory

We will consider a harmonic oscillator coupled to a transmission line to develop the

concepts of Input-Output theory (IOT). We can always reduce the problem under

consideration to this case. IOT deals with the relationship between the �elds entering

the oscillator (input �eld), the �elds inside the oscillator (internal �eld) and the

�elds exiting the oscillator (output �eld)1. It is reminiscent of the scattering theory

of microwave circuits where one relates the outgoing and incoming waves from an

arbitrary circuit with a scattering matrix. But IOT goes further than that. It allows

us to calculate the quantum statistical properties of the internal and the output �elds,

given the input �eld. Furthermore, the commutation relations that the �eld operators

1The system does not have to be a harmonic oscillator to use IOT.
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Figure 7.1: The prototypical system considered for analysis in this chapter is a har-
monic oscillator couple to a transmission line. The example shown here is an electrical
LC oscillator. The �ux (�) across the inductor and the charge (q) on the capacitor can
be used to describe the dynamics of the oscillator. Ain and Aout represent incoming
and outgoing signals.

must satisfy, place strict constraints on the quantum behavior of the oscillator. This

is a very interesting and important aspect of this treatment. We describe our system

with classical equations of motion but then subject it to quantum �elds (e.g. quantum

noise in the transmission line coupled to the harmonic oscillator). This results in the

system displaying quantum properties. A very nice review of these ideas is contained

in the chapter on IOT in ref. [96].

7.1.1 Harmonic oscillator coupled to a transmission line

Fig. 7.1 shows the prototypical system under consideration. The oscillator is repre-

sented as an electrical oscillator consisting of a parallel combination of an inductor

(L0) and a capacitor (C0). The canonically conjugate variables, �ux (�) across the

inductor and charge (q) on the capacitor can be used to describe the dynamics of

the oscillator. It is coupled to a 1-D transmission line with electromagnetic waves

travelling in both directions. The idea of representing signals on a transmission line

using incoming and outgoing waves is quite common in microwave engineering.
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Figure 7.2: A section of a transmission line of length dz is represented as a series
inductance Lldz and a capacitance Cldz to ground. Ll and Cl are the inductance and
capacitance per unit length of the transmission line.

One can derive the wave equation for voltage and current waves by treating the

dissipationless transmission line as an in�nite sequence of circuits consisting of induc-

tors and capacitors. Fig.7.2 illustrates this idea, where Ll and Cl are the inductance

and capacitance per unit length of the transmission line and dz is the length of the

section under consideration. The resulting wave equations for the voltage (V ) and

current (I) are as follows:

@V (z; t)

@z
= �Ll

@I(z; t)

@t
(7.1a)

@I(z; t)

@z
= �Cl

@V (z; t)

@t
(7.1b)

The characteristic impedance of the transmission line is given by Zc =
p
Ll=Cl and

the velocity of the waves is given by v =
p
1=LlCl. The solution to the above wave

equations can be written as:

V (z; t) =
p
Zc

�
Aout(t�

z

v
) + Ain(t+

z

v
)
�

(7.2a)

I(z; t) =
1p
Zc

�
Aout(t�

z

v
)� Ain(t+

z

v
)
�

(7.2b)
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Figure 7.3: The left panel shows a circuit driven by a voltage source Vs with source
impedance R. The right panel shows the same circuit now connected to a transmission
line with incoming (Ain) and outgoing (Aout) waves. The two cases depicted represent
the same situation if we make the identi�cation Zc = R and Vs = 2

p
RAin (t).

The voltage and current along the line can be represented as a linear superposition of

waves travelling in opposite directions. This gives now a concrete meaning to what

these waves represent. They could represent a signal launched on the transmission

line in order to drive the oscillator or they could represent the thermal/quantum

�uctuations in the transmission line. Note that the wave amplitudes Aout and Ain

have dimensions of square root of power. The total power crossing a point in the

transmission line is given by
�
jAinj2 � jAoutj2

�
=2.

Fig. 7.3 gives an example of an arbitrary circuit driven by a voltage source Vs(t)

with internal resistance R. The right panel shows the same circuit connected to a

transmission line of characteristic impedance Zc = R with incoming and outgoing

waves.

The two cases depicted are equivalent if we make the identi�cation Zc = R and

Vs(t) = 2
p
RAin(t). If we set z = 0 (the location of the circuit) in equations 7.2a and

7.2b, the outgoing wave computes to:

Aout(t) =
V (t)p
Zc
� Ain(t) (7.3)
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These relations are derived by imposing the appropriate boundary conditions on the

solutions given by equations 7.2a and 7.2b. We can now compute the response of the

system given the input �eld. Equation 7.3 is the essence of IOT. It relates the input

�eld Ain, the internal �eld V (t), and the output �eld Aout. In the above example,

the voltage source Vs should not only represent the intended drive signal, but also

the Nyquist noise of the resistance R, in order to completely describe the problem.

In the examples that follow, we will separate any intentional drive signal (classical)

from the noise so that Ain only represents the noise, which we will describe quantum

mechanically from now on.

We introduce quantum mechanics into the picture by quantizing the �elds on the

transmission line and representing them in terms of creation (ayin [!]) and annihilation

(ain [!]) operators of the quantum modes of the transmission line:

Ain(t) =
1

2�

 Z 1

0

d!

r
~!
2

�
ain[!] exp (�i!t) + ayin[!] exp (i!t)

�!
(7.4)

The �eld operators ain[!] and a
y
in[!] satisfy the standard commutation relations for

1-D scalar �elds given below, where we have used the conventions described in [19, 20]

but we restrict ! to only have positive values:

h
ain[!]; a

y
in [!

0]
i
= 2��(! � !0)

[ain[!]; ain [!
0]] =

h
ayin[!]; a

y
in [!

0]
i
= 0

h
n
ain[!]; a

y
in[!

0]
o
i = Saa (!) 2��(! � !0) (7.5)

Saa (!) = coth
�
~!
2kBT

�
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where Saa (!) is called the symmetrized spectrum and is equal to the sum of the

emission and absorption spectrum of ain [!]. The emission and absorption spectrum

are given by hain[!]ayin[!]i and ha
y
in[!]ain[!]i respectively.

We are now ready to analyze the properties of our system. The equation of motion

of a damped harmonic oscillator using the �ux (�) as the dynamical variable is:

d2�

dt2
+

1

RC0

d�

dt
+ !20� =

2

C0
p
R
Ain(t) (7.6)

where !0 = 1=
p
L0C0 is the plasma frequency of the oscillator and the right hand

side of the equation represents the quantum noise �eld driving the oscillator. We go

into the frequency domain by Fourier transforming the above equation which results

in the following equations for � [!] and its Hermitian conjugate �y[!]:

� [!] =
2

C0

r
~!
2R

ain[!]

(�!2 � i!=RC0 + !20)
(7.7)

�y [!] =
2

C0

r
~!
2R

ayin[!]

(�!2 + i!=RC0 + !20)

The above equations are the frequency domain solutions for the oscillator �ux subject

to quantum noise �elds. Using these solutions, it can be shown that the commutation

relation between the conjugate variables � and q = C0 (d�=dt) is given by

[�; q] = i~ (7.8)

We see that the conjugate variables satisfy the correct quantum mechanical relation.

We can also compute the zero-point energy in the oscillator at T = 0 in the limit of
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Figure 7.4: Panel (a) shows a Josephson junction with critical current I0, capacitance
CJ driven by a DC current source with source impedance R. Panel (b) shows the
potential energy pro�le when the circuit is biased with a current slightly less than the
critical current.

Q!1:

E0 =



�2
�

2L0
+
hq2i
2C0

=
~!0
2

(7.9)

which is the correct quantum mechanical result.

7.1.2 Escape in current-biased Josephson junction

Armed with our new tools, we will now analyze the well known problem of escape

from the zero voltage metastable state in a current biased Josephson junction [97].

This example will demonstrate the application of IOT to escape physics. Fig.7.4a

shows the familiar schematic of a Josephson junction biased with a current source

I(t). I0 is the critical current of the junction, CJ is the shunting capacitance, R is

the source impedance and I (t) = IDC is the DC current bias.

We note that the main di¤erence between this case and the one we analyzed in

the previous section, is the non-linearity of the junction and the DC current bias.

The current bias tilts the cosine potential of the junction, and the Nyquist noise from
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the resistor causes the junction to switch from the zero voltage state. We include the

e¤ect of the classical DC current drive in the classical equation of the motion for the

system and replace the resistor by a transmission line of characteristic impedance R.

Representing the quantum noise as an incoming �eld as before, we get the following

equation:

'0CJ
d2�

dt2
+
'0
R

d�

dt
+ I0 sin (�)� IDC =

2p
R
Ain(t) (7.10)

where � = �='0 is the superconducting phase di¤erence across the junction and '0 is

the reduced �ux quantum. In the absence of noise, the junction will develop a phase

� = �0 = sin
�1 (IDC=I0). This is the metastable state of the junction. The �uctuations

in � induced by the incoming noise cause transitions out of this metastable state. The

escape happens when � �uctuates from the equilibrium point �0 and reaches �s. This

point �s, where U (�) has a maximum as shown Fig. 7.4b, corresponds to a saddle

point in the phase space (�; _�) and hence is known as the saddle point. In order to

compute the �uctuations induced in � due to the noise, we expand the above equation

around the equilibrium point � = �0, i.e., we write � = �0 + x, where x is our new

dynamical variable. Substituting this in the above equation and retaining only terms

up to �rst order in x, we get:

d2x

dt2
+

1

RCJ

dx

dt
+ ~!

2

px =
2!2p

I0
p
R
Ain(t) (7.11)

where !p =
p
I0= ('0CJ) is the bare plasma frequency of the junction, while ~!p =

!p(1� (I=IDC)2)1=4 is the reduced plasma frequency. This is the step where we have

reduced the problem to an e¤ective harmonic oscillator driven by quantum noise,

as can be seen by comparing equation (7.11) with equation (7.6) and noting that



CHAPTER 7. QUANTUM ESCAPE: THEORY 191

Figure 7.5: The tilted washboard potential of a Josephson junction biased with a
DC current IDC . I0, is shown here in the cubic approximation (red). The poten-
tial representing the harmonic approximation is shown in green. �0 and �s are the
equilibrium and the saddle points respectively. Also illustrated is the overestimation
of the barrier height (�U� v.s. �U) in the harmonic approximation. The correction
factor � can be found by using a value �x� at which the harmonic approximation
gives the same barrier height as in the cubic case, and computes to � = 1=3.

x = �='0. The expression for the full potential for the DC biased junction is given

by:

U(�) = �'0I0 [cos (�) + � (IDC=I0)] (7.12)

In the limit when IDC=I0 ' 1, the tilted potential can be well approximated for

� ' �0 by a cubic potential. Fig. 7.5 shows the cubic potential (red) and the harmonic

approximation (green).

An important quantity for computing the escape probability is the distance from

the equilibrium point (�0) to the saddle point (�s). This is given by:

�x = �s � �0 = 2
p
2
p
1� IDC=I0 (7.13)
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Using the result of equation (7.7), we can compute the variance of x as:

�2x =
1

2�

Z 1

0

Sxx (!) d! =

�
2�!2p
EJ

�
1

2�

Z 1

0

2~!Saa (!) d!��
~!2p � !2

�2
+ !2�2

� (7.14a)

=

�
kBT

EJ

��
1� I2

I2DC

��1=2
; kBT >> ~~!p (classical limit) (7.14b)

=

�
~~!p
2EJ

��
1� I2

I2DC

��1=2
; kBT << ~~!p, (quantum limit), Q >> 1 (7.14c)

where EJ = '0I0 is the Josephson energy of the junction and � = 1=2RCJ is the

amplitude damping coe¢ cient.

The escape rate in general can be written in the following form

�esc =
!a
2�
exp

�
��Uesc
kBTesc

�
(7.15)

where �Uesc is the barrier height, Tesc is the escape temperature and characterizes

the intensity of �uctuations in the system, and !a=2� is the attempt frequency and

characterizes the time scale over which escape events occur. Note that changes to

the escape rate are dominated by the exponential factor. We will only compute this

exponent

Pesc = exp

�
��Uesc
kBTesc

�
(7.16)

and call Pesc the escape probability. This can be thought of as the probability to

escape per attempt while !a=2� gives the number of attempts per unit time. We can

now de�ne the escape probability for our case as

PDCesc = exp

�
���x

2

2�2x

�
(7.17)



CHAPTER 7. QUANTUM ESCAPE: THEORY 193

which is the probability that x will �uctuate by �x given the variance �2x of its

distribution. Note how �x2 plays the role of �Uesc and �2x plays the role of Tesc. The

factor � in the exponent is a scaling constant which accounts for the overestimation of

the barrier height in the harmonic approximation for the potential. This is illustrated

in Fig. 7.5. Instead of using �x, we can use the value �x� for which the harmonic

approximation gives the same barrier height as the cubic potential. We compute the

value of � to be

� =
1

3
: (7.18)

Note that this is a general result for the harmonic approximation of the cubic poten-

tial. We will use this value of � when we compute the escape from the metastable

states of the JBA in the next section. Computing PDCesc using equation (7.17), we get

in the classical limit (kBT >> ~~!p)

PDCesc = exp

 
�4
p
2

3

EJ
kBT

�
1� IDC

I0

�3=2!
. (7.19)

The actual expression for the escape rate for the DC current biased Josephson junction

in the classical limit, is given by [97]

�DCesc =
!p
2�

�
1� I2=I2DC

��1=2
exp

 
�4
p
2

3

EJ
kBT

�
1� IDC

I0

�3=2!
. (7.20)

Comparing the above two equations, we can see that the exponents are identical. It is

important to note that in the harmonic approximation, we are analyzing the system

only for small �uctuations around the metastable minimum, while an escape event is

essentially a large �uctuation. Even though the average �uctuations are small, there
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is always a small probability for the system to make a large �uctuation leading to an

escape event. The use of the harmonic approximation is justi�ed because it does not

signi�cantly a¤ect the spectrum of the �uctuations as the system is predominantly

found near the minimum of the potential. The procedure is valid provided we work

with small escape probabilities.

In the quantum regime kBT << ~~!p, the escape out of the metastable state of

the DC current biased junction takes place via quantum tunneling. This process is

called Macroscopic Quantum Tunnelling (MQT) since it involves the tunneling of a

macroscopic quantity - the phase of the Josephson junction. In this regime, the escape

rate [95, 48] is given (in the high Q limit) by

�DC�MQT
esc = ap

!p
2�

�
1� I2=I2DC

��1=2
exp

 
�4
p
2

3

EJ
~~!p=7:2

�
1� IDC

I0

�3=2!
(7.21)

where ap is a prefactor of order unity to account for �nite damping. We note that the

escape rate is now a constant independent of temperature with the e¤ective escape

temperature given by ~~!p=7:2kB. We can extend the method outlined in this section

to compute this result also. Note that the expression for �2x in the quantum limit

(7.14c) becomes independent of T and related to ~!p. But now these �uctuations in x

are arising from "virtual" zero point �uctuations and hence cannot activate over the

barrier. For tunneling through the barrier, we could use a di¤erent e¤ective �x in

the harmonic approximation to reproduce the result of equation 7.21.

We now have a method for computing exponents in the escape rates. In the next

section, we will apply this technique to the case of an RF driven Josephson oscillator.

We will be particularly interested in the quantum limit as T ! 0, and we will compare
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the results with the MQT case.

7.2 Escape dynamics in the JBA

We will begin by describing the JBA as a parametric ampli�er. We then proceed to

describe the system in the harmonic approximation so that we can use the techniques

developed in the previous section to compute escape rates.

7.2.1 Parametric ampli�er description of the JBA

We start with the classical equation of motion describing the driven, non-linear

Josephson oscillator. The initial part of this section reproduces some of the calcula-

tions done in section 2.2 to keep this chapter self-contained. We will use a slightly

di¤erent terminology as compared to chapter 2 to simplify calculations. We reproduce

equation 2.1 below, the starting point of our calculations:

CS'0
d2�(t)

dt2
+
'0
R

d�(t)

dt
+ I0 sin(�(t)) = I(t) (7.22)

where CS is the total capacitance shunting the junction2, R is the impedance of the

transmission line to which the oscillator is coupled, I0 is the critical current of the

junction, � is the superconducting phase across the junction, '0 is the reduced �ux

quantum and I(t) is now the RF drive current. Rewriting the above equation for a

harmonic drive at frequency !d, and retaining only the �rst non-linear term in the

2We have ignored the junction capacitance CJ since CJ << CS .
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expansion of the sine term, we get:

d2�(t)

dt2
+ 2�

d�(t)

dt
+ !2p

�
�(t)� �(t)

3

6

�
� !2p

IRF
I0
cos(!dt) =

2

CS'0
p
R
Ain(t) (7.23)

where !p = (I0=CS'0)
1=2 is the plasma frequency of the oscillator (for small oscilla-

tions), � = 1=(2RCS) is the damping rate of the oscillation amplitude, and Ain is the

quantum noise felt by the oscillator written in �eld representation. As explained in

the previous section, we have separated the classical harmonic drive (IRF cos (!dt))

from the input �eld (Ain) which only represents the quantum noise. In order to com-

pute the steady state classical solution, we set Ain to zero and use the technique of

harmonic balance, i.e., we assume a steady state harmonic solution at frequency !d

of the form3:

�c(t) = �ck cos(!dt) + �c? sin(!dt) (7.24)

where �ck and �c? are the in-phase and quadrature-phase components of the classical

solution. We substitute this solution into the di¤erential equation and equate terms

at frequency !d. After eliminating terms at frequencies higher than !d, we get two

algebraic equations for �ck and �c? :

fd
Q
�ck + f

2
d �c? + �c?

 
�2c? + �

2
ck

8
� 1
!

= 0 (7.25a)

fd
Q
�c? � f 2d �ck � �ck

 
�2c? + �

2
ck

8
� 1
!
� iRF = 0

3We use the quadrature amplitude representation as described in 2.2.2 instead of the complex
amplitudes of 2.2.1.
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where Q = RCS!p is the quality factor of the oscillator, fd = !d=!p is the dimension-

less drive frequency and iRF = IRF=I0 is the dimensionless drive current. The above

equations have three solutions in general. In the bistable regime, there are three

real valued solutions. The solution with the smallest (small amplitude state) and the

largest (large amplitude state) value of �2ck + �
2
c? represent the two metastable solu-

tions, while the third solution is the saddle point separating the two metastable states.

Fig.7.6 shows the solutions for some typical parameters, where �maxc =
q
�2k + �

2
?. The

di¤erent curves correspond to di¤erent drive current amplitudes. We note that for

small values of drive current, there is only one solution, while above a certain drive

amplitude, three solutions are possible for certain drive frequencies.

Now we incorporate the e¤ect of noise and do a perturbation expansion (harmonic

approximation) around the classical solution, i.e., we look for solutions of the type:

�(t) = �c(t) + �q(t) (7.26)

where �c(t) is the steady state classical solution in the absence of noise, while �q(t)

is the quantum part of the solution in the presence of thermal/quantum noise. By

substituting the above solution into di¤erential equation(2.2), and retaining terms

only up to �rst order in �q(t), we get the di¤erential equation describing the dynamics

of �q(t) in the harmonic approximation:

d2�q(t)

dt2
+ 2�

d�q(t)

dt
+ !20(j�maxc j2 ; t)�q(t) =

2

CJ'0
p
R
Ain(t) (7.27)
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Figure 7.6: Steady state solutions of a driven Josephson oscillator as a function
of relative detuning 1 � !d=!p and drive amplitude IRF=I0. The resonance curves
bend over as the drive ampltude is increased and become multi-valued for certain
parameters. In this regime, for a given drive frequency and amplitude, there are two
stable solutions (�) separated by an unstable saddle point (o). Maximum response
for small amplitude oscillations occurs at !d = !p. For higher drive amplitudes,
maximum response occurs at frequencies below !p. The sign of the �rst non-linear
term determines the direction of this shift (which is negative here).

where

!20(j�cj
2 ; t) = !2p

�
1� j�maxc j2 =4

� 
1 +

j�maxc j2

4� j�maxc j2
cos(2!dt� 2�)

!
(7.28)

tan � = �c?=�ck

We note that equation 7.27 represents a parametrically driven harmonic oscillator,

i.e., a harmonic oscillator with a time varying plasma frequency !20(j�maxc j2 ; t). The

frequency of the parametric drive (7.28) is twice the original drive frequency !d,

while the magnitude and phase of the parametric drive depends on the magnitude



CHAPTER 7. QUANTUM ESCAPE: THEORY 199

and phase of the classical solution �c. This demonstrates that the system behaves

like a parametric ampli�er when biased near the bifurcation point, resulting in the

ampli�cation of quantum noise (Ain) which is feeding the oscillator. It is this am-

pli�cation of quantum noise we are interested in studying. In the presence of this

ampli�ed quantum noise, the steady-state solutions become metastable and the sys-

tem can make transitions from one steady state to another. By solving the above

equation, we can compute the �uctuations felt by the system and hence compute the

transition rates between the metastable states. In particular, we are interested in

the transition from the low amplitude state to the high amplitude state, the quantity

we usually measure in experiments. Also, when implemented as a qubit readout, the

JBA is biased near this transition and the width of this transition sets the ultimate

sensitivity of the JBA readout. Note that the above equation for the parametrically

driven oscillator does not display bistability due to the fact that we have only retained

the terms linear in �q(t).

7.2.2 Solutions in the frequency domain

The solutions to the di¤erential equation (7.27) are easily found by going to the

frequency domain. We de�ne the Fourier transform of �q(t) as �q[!] where the two

are related as given below:

�q (t) =
1

2�

Z 1

0

�
�q [!] exp(�i!t) + �yq [!] exp(i!t)

�
d!
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Note again that ! � 0. Taking the Fourier transform of equation(7.27), we get

�
!2p (1� ")� !2 � i2�!

�
�q[!]�

!2p"

2
exp(�2i�)�yq[2!d � !] (7.29)

=
4�
p
R

'0

r
~!
2
ain[!]

where " = �2c
4
; and

p
~!=2ain[!] is the Fourier representation of Ain[t]. We have

ignored terms at frequencies which are a multiple of !d. Note how the above equa-

tion couples the creation and annihilation operator for �q, a characteristic feature

of parametrically driven systems. After making the rotating wave approximation

(!p + ! � 2!p, !=!p � 1) for the coe¢ cient of �q[!] in equation(7.29), and a change

of variable �q[!] =
p
~!=�EJx[!], we get after simplifying

�
!p � !
�

� !p"
2�

� i
�
x[!]� !p"

4�
exp(�2i�)xy[2!d � !] = ain[!] (7.30)

We now make the following transformations into dimensionless variables

!p � !
�

� !p"
2�

=
!p � !d
�

� ! � !d
�

� !p"
2�

= 
� f � 2� (7.31)

where


 =
!p � !d
�

(7.32)

f =
! � !d
�

� =
!p"

4�

Using the above transformation we can now write 7.30 as
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Figure 7.7: Gain functions jA (f)j2 and jB (f)j2 are plotted for �=�+B = 0:0; 0:85; 0:95
where �+B is the value of � at the upper bifurcation point.. The functions jA (f)j

2 and
jB (f)j2 represent the emission and absorption spectrum of xq at T = 0. The green
curve for �=�+B = 0:0 is the result for a harmonic oscilaltor subject to quantum noise
only which has a �nite emission spectrum. As the system is driven to the bifurcation
point, the absorption spectrum starts to grow due to parametric ampli�cation of
quantum noise. In a sense, the spectrum starts to look classical with equal values for
emission and absorption.

(
� 2�� f � i)x[�f ]� � exp(�2i�)xy[�f ] = ain[f ] (7.33)

where the dimensionless frequency f refers to an o¤set from the drive frequency !d

and can have negative values, i.e., �f $ !d � �f . The above equation along with

its Hermitian conjugate forms a set of four coupled algebraic equations. The solution

can be written as follows

x[�f ] = A (�f) ain [�f ] +B (�f) ayin [�f ] (7.34)
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where the functions A (f) and B (f) are given by

A(f) = � 
� 2�+ f + i
�2 + (i+ f)2 � (
� 2�)2

(7.35a)

B(f) = � � exp (2i�)

�2 + (i+ f)2 � (
� 2�)2
(7.35b)

The function A (f) links the annihilation operators of x with the annihilation op-

erators of ain, while B (f) links the annihilation operators of x with the creation

operators of ain. This connection between creation and annihilation operators is a

characteristic feature of any ampli�cation process. Fig.7.7 shows a plot of the func-

tions jA (f)j2 and jB (f)j2 which represent the emission and absorption spectrum of

xq for T = 0. The di¤erent curves correspond to di¤erent drive strengths approach-

ing the upper bifurcation point. Note how the peak in both functions shifts towards

the drive frequency and grows in magnitude as the bifurcation point is approached.

This indicates an increase in ampli�cation as one approaches the bifurcation point.

The green curve for �=�+B = 0:0 represents the harmonic oscillator with no parametric

driving and hence only the emission spectrum is �nite, re�ecting the spectrum of

quantum noise at T = 0. In section 7.3, we will discuss the operation of the JBA as

a parametric ampli�er and we will see how the functions A (f) and B (f) determine

the gain and noise performance of the ampli�er.

7.2.3 Quadrature variables

The escape dynamics for this problem can be described best in the quadrature variable

space. We will separate x (t) into its two quadrature components as we did for the
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Figure 7.8: The schematic illustrates the noise dynamics in the quadrature variable
space. Xjj and X? are the original axes used to describe the classical solutions with
(0; 0) being the low amplitude state and (Xjjs,X?s) the saddle point. The noise ellipse
(red) is drawn with its major and minor axis representing the standard deviation of
the ampli�ed and squeezed quadrature respectively. The ellipse is also drawn in a
rotated coordinate system (Xjj�,X?�) where the cross-correlations between the two
quadratures is imaginary. When biased close to the bifurcation point, the saddle
point tends to fall along the major axis of the noise ellipse, allowing us to ignore the
other quadrature for computing the escape probability (1-D approximation).

classical solution in equation (7.24):

x(t) = Xk�(t) cos (!dt+ �) +X?�(t) sin (!dt+ �) (7.36)

The 2D coordinate system for the noise quadratures is rotated by angle � from the

one used for the classical solution. This is because we are trying reduce the problem

to 1D and for a certain angle �, the motion along one of the quadratures can be

ignored as explained below. In Fourier domain, we get:

X�[f ] = exp (�i�)x[f ] + exp (i�)xy[�f ] (7.37)
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where X� is the quadrature rotated by angle � and the other quadrature is found

by adding �=2 to the value of �. We will then �nd the angle �; along which the

�uctuations are maximum (the ampli�ed quadrature). The �uctuations in the other

quadrature are de-ampli�ed and the two quadratures have an imaginary correlation

function. When one is biased very close to the bifurcation point, this angle will

roughly correspond to the direction in which the saddle point lies in the quadrature

space. This allows us to neglect the de-ampli�ed quadrature (1D approximation). We

can then compute the distance to the saddle point and the variance of �uctuations

in X�[f ] for this angle, the two quantities needed to compute the escape probability.

Fig. 7.8 illustrates these ideas. Xk and X? are the original quadrature axes while

Xjj� and X?� are the rotated axes. The red ellipse is drawn with its major and minor

axis given by the standard deviation of the ampli�ed and de-ampli�ed quadratures

respectively. The blue circle represents the saddle point which is shown to lie (almost)

along the axis corresponding to the ampli�ed quadrature.

7.2.4 Escape rates

We need to compute the variance of X� and then �nd the angle � which maximizes

it. We reproduce here the commutation relations for the �eld operators ain [f ], but
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for dimensionless frequency f

h
ain[f ]; a

y
in [f

0]
i
=
2�

�
�(f � f 0)

[ain[f ]; ain [f
0]] =

h
ayin[f ]; a

y
in [f

0]
i
= 0

h
n
ain[f ]; a

y
in[f

0]
o
i = Saa (f)

2�

�
�(f � f 0) (7.38)

Saa (f) ' Saa(! = !d) = coth
�
~!d
2kBT

�

Note that we have approximated ! = !d in Saa (f) This is valid because the spectrum

for dynamical variables of the system have a sharp peak at ! � !d but the function

Saa (!) varies smoothly in this range. This is another manifestation of the rotating

wave approximation. The anticommutator in the frequency domain for X� [f ] gives

us the spectrum SX�X� (f) where

SX�X� (f)
2�

�
� (f � f 0) = h

n
X�[f ]; X

y
�[f

0]
o
i (7.39)

Using the commutation relations for the �eld operators (7.38), we compute the spec-

trum of �uctuations to be:

SX�X� (f) = Saa (f)

0B@ �
jA (�f)j2 + jA (f)j2 + jB (�f)j2 + jB (f)j2

�
+

2Re(exp (�2i�) (A (f)B (�f) + A (�f)B (f)))

1CA (7.40)
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Figure 7.9: The spectrum of the ampli�ed (red) and squeezed (blue) quadrature is
shown for �=�+B = 0:5; 0:85; 0:95 and 1:0, where �+B is the value of � at the upper
bifurcation point. The detuning used is 
 = 3. The green curve for � = 0:0 (no
driving) is shown for comparison. We note how the ampli�ed quadrature spectrum
grows as we approach the bifurcation while the squeezed spectrum shrinks. At the
bifurcation point �=�+B = 1:0, the ampli�ed spectrum diverges for f = 0, while the
squeezed spectrum remains �nite and does not go to zero.

Substituting for A (f) and B (f), we get

SX�X� (f) = Saa (f)

~
2 + 1 + �2 + 2�
n
~
 cos(2(� � �))� sin (2 (� � �))

o
+ f 2�

~
2 + 1� �2
�2
� 2f 2

�
~
2 � 1� �2

�
+ f 4

(7.41)

where ~
 = 
� 2�. The term in curly brackets changes with the angle � and the two

extreme values are �
p
1 + ~
2 corresponding to the ampli�ed and the de-ampli�ed



CHAPTER 7. QUANTUM ESCAPE: THEORY 207

quadratures. Fig. 7.9 shows the spectrum of the ampli�ed and de-ampli�ed quadra-

tures for 
 = 3 and four di¤erent values of �.

After making a variable change back to ��[f ] =
p
~!d=�EJX�[f ] (again, ! = !d)

and integrating over all frequencies, we get the variance for the ampli�ed (+) and

de-ampli�ed (�) quadratures

�2��� =
1

2�

~!d
�EJ

Z 1

�1
�SX�X� (f) df =

kBTeff
EJ

0@
q
(
� 2�)2 + 1q

(
� 2�)2 + 1� �

1A (7.42)

where Teff is an e¤ective temperature given by

Teff =
~!d
2kB

coth

�
~!d
2kBT

�
(7.43)

Let us evaluate equation 7.42 in a few interesting limits. In the absence of any drive

(� = 0), the system is identical to the harmonic oscillator. Setting � = 0, we get

�2��� (� = 0) =


�2�
�
= kBTeff=EJ which reduces to kBT=EJ in the classical limit and

~!p=2EJ in the quantum limit as expected. Here, we have replaced !d with !p since

in the absence of driving the oscillator responds maximally at !p. Note that �2��+

goes to in�nity when the denominator in equation 7.42 goes to zero. This condition

is satis�ed when

� = ��B =
1

3

�
2
�

p

2 � 3

�
(7.44)

which exactly corresponds to the bifurcation points (for 
 >
p
3). For the same

operating point, �2��� goes to kBTeff=2EJ which is a factor of two smaller than

�2��� (� = 0), the variance in the undriven case. This is a general result for squeez-

ing of the internal �eld in a cavity. The maximum squeezing one can obtain for the
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internal �eld is a factor of two [98]. Nevertheless, as we will see in section 7.3.3, the

output �eld can be squeezed much more [99]. We will need the variance of the am-

pli�ed quadrature �2��+, and then we can compute the escape probability by knowing

the distance to the saddle point which we call ���. The escape probability is given

by:

PRFesc = exp

 
��

��2�
2�2��+

!
(7.45)

where � is the same scaling factor introduced in the previous section and corrects

for the fact that in the harmonic approximation we overestimate the barrier. In the

calculations that follow, we will use � = 1=3 because the dynamics of this system

near the bifurcation point can be understood as that of a particle di¤using in a cubic

potential [27].

We expand the expressions for ��2� and �
2
��+

around the bifurcation point (7.44),

and after keeping only leading order terms in 
 (high detuning limit), we get

�2��+ =
1

2
p
3

kBTeff
EJ

�
1� I2RF=I2B

��1=2
(7.46a)

��2� =
32

9




Q

�
1� I2RF=I2B

�
(7.46b)

where the relative distance to the bifurcation point is given in terms of the ratio

I2RF=I
2
B, and IB is the upper bifurcation current. In general, the escape rate can be

written as:

�RFesc =
!RFa
2�

exp

�
��U

RF
esc

kBTRFesc

�
(7.47)

where !RFa is the attempt frequency, and the exponent is written as a ratio of a

barrier energy divided by an e¤ective temperature. Using the expressions in 7.46, we



CHAPTER 7. QUANTUM ESCAPE: THEORY 209

can write down the exponent as

�URFesc
kBTRFesc

= �
��2�
2�2��+

=
32

9
p
3




Q

EJ
kBTeff

�
1� I2RF=I2B

�3=2
(7.48)

where we have used � = 1=3. The expressions for barrier energy and escape temper-

ature then are

�URFesc =
32

9
p
3




Q
EJ
�
1� I2RF=I2B

�3=2
(7.49a)

TRFesc = Teff =
~!d
2kB

coth

�
~!d
2kBT

�
(7.49b)

These results for the escape exponent agree with the results derived by other authors

using a di¤erent technique [49, 50]. The procedure used here has the advantage of

clearly highlighting the parametric ampli�cation in the system and its role in the

escape process. It also allows us to make the connection with the Dynamical Casimir

E¤ect (DCE) [53] which predicts the creation of thermal photons from zero point

�uctuations in a parametrically driven cavity. We note that at high temperatures

(kBT >> ~!d), TRFesc tends to T , the bath temperature and hence reproducing the

classical result of section 2.3.2. But for kBT << ~!d, it saturates to a value of

~!d=2, the full dependence on temperature being given by equation 7.49b. This

�nite escape temperature, even at T = 0, is due to the parametric conversion of

zero point �uctuations into thermal noise which results in the activated escape from

the metastable state. This activation process dominates over any tunneling from the

metastable state, especially near the bifurcation point [50]. The conditions for which

tunneling might be observed is discussed is ref. [100]. We will discuss these ideas
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in more detail in the next chapter which describes the experiments carried out to

measure the escape out the metastable state in the JBA. The main objective of these

experiments is to measure TRFesc as function of T .

7.3 Parametric ampli�cation in the JBA

The JBA can be operated in a di¤erent mode to exploit the parametric ampli�cation

process. Instead of coupling an input signal to the critical current of the junction, we

can send a weak signal at frequency !s, along with the strong drive (known as the

pump) at frequency !d [9, 101]. Under proper conditions, this additional signal will get

re�ected from the JBA with gain. Another signal at frequency !i = 2!d � !s, called

the idler frequency is also created, a typical signature of a parametric ampli�cation

process. This mode of operation is called the four-wave or four-photon mixing since

four photons are involved (one each at !s and !i and two at !d). Another mode called

the three-wave or three photon mixing also exists where !s + !i = !d. This requires

that the non-linear element have an odd symmetry in the amplitude of the pump and

is achieved in the Josephson junction by applying a DC bias. When !s = !i, it is

called a degenerate parametric ampli�er and the gain of the ampli�er depends on the

phase of the input signal with respect to the pump. For !s 6= !i, it is known as a

non-degenerate parametric ampli�er with the gain being independent of the phase of

the input signal.

In this section, we will only be concerned with the four-photon mode. We will now

proceed to compute the gain and noise performance of such a parametric ampli�er.
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7.3.1 Parametric gain

In order to compute the gain, we need to compute the output �eld Aout[t]. Again, we

will work in the frequency domain to simplify our calculations. The relation between

the input and output �eld is given by

aout [f ] = �i2 x[f ]� ain [f ] (7.50)

where we have used the dimensionless frequency f . Using equations 7.34, we can

write aout[f ] in terms of the gain functions A (f) and B (f) as

aout [f ] = (�1� i2A (f)) ain[f ]� i2B (f) ayin[�f ] (7.51)

We consider the noise free case and set all signals at the idler frequency (�f) to zero,

i.e., ain [f ] now represents a classical signal at frequency f . We can then de�ne two

power gains Gs and Gi which are known as signal and conversion gain respectively

Gs (f) =

����aout [f ]ain [f ]

����2 = j�1� i2A (f)j2 (7.52a)

Gi (f) =

�����aout [�f ]ayin [f ]

�����
2

= j2B (�f)j2 (7.52b)

The quantity Gs is the power gain you can get for your input signal while Gi tells

you how much power is generated at the idler frequency (�f). Using equations 7.35,
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we can compute these gains and the result is

Gs (f) = 1 +
4�2�

(
� 2�)2 � �2 + 1
�2 � 2f 2 �(
� 2�)2 � �2 � 1�+ f 4 (7.53a)

Gi (f) = Gs (f)� 1 (7.53b)

The relation between Gs and Gi is again a characteristic feature of the parametric

ampli�cation process. Let us analyze the behavior of Gs in various limiting cases. For

no driving, i.e., � = 0, we get Gs = 1 and Gi = 0 as expected. The gain diverges4 for

f = 0 at the bifurcation points (7.44) where the �rst term in the denominator goes to

zero. For 
 <
p
3, when there is no bistability, the maximum gain is achieved when

�max =

r
1 + 
2

3
(7.54)

and is �nite. We also note that the gain is a symmetric function of frequency f . Fig.

7.10 shows a plot of Gs(f) as a function of f and �=�max for critical detuning 
 =
p
3.

7.3.2 Noise temperature and the quantum limit

We will now compute the noise performance of the parametric ampli�er. Equation

7.51 not only contains information about gain but also about the noise spectrum. If

we go back to considering ain and aout as noise �elds, we can compute the output

noise spectrum

~!Soutaa [f ] = Gs (f) ~!Sinaa [f ] + (Gs (f)� 1) ~!Sinaa [�f ] (7.55)

4Near points of diverging gain, the theory breaks down and higher order e¤ects start to contribute
keeping the gain �nite. Nevertheless, maximum gain is achieved at these points.
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Figure 7.10: The power gain of the JBA operated as a parametric ampli�er is plotted
(color) as a function of f and �=�max for critical detuning 
 =

p
3. The gain has a

single maximum at f = 0 for �=�max �
p
3 but two maxima at other bias points. The

gain is also symmetric function of f . At �=�max = 1:0 and f = 0, the computed gain
diverges but higher order e¤ects which have been ignored in this calculation will keep
the gain �nite.

where ~!Soutaa [f ] and ~!Sinaa [f ] represent the output and input noise energy respec-

tively. So the system ampli�es the noise at signal frequency f by Gs but also adds

an ampli�ed component of the noise at idler frequency (�f). The noise at signal

frequency f is considered to be a part of the input signal and hence the added noise

component is

EoutN = (Gs � 1)~!Sinaa [�f ] = (Gs � 1) kBTeff (7.56)
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where Teff is de�ned in equation 7.43 and ! = !d + �f . We also approximate

Saa [f ] = Saa [�f ] since the function varies slowly around f = 0 or ! = !d. We can

divide the added noise by the gain Gs to refer it back to the input and compute the

noise temperature in the limit Gs >> 1 as

TN =
EoutN

kBGs
= Teff =

~!
2kB

coth

�
~!
2kBT

�
(7.57)

We note that the noise temperature TN and the escape temperature TRFesc are given

by the same expression Teff . This is not surprising since both quantities are related

to the same parametric ampli�cation process which a¤ects the noise properties of the

both the internal and the output �eld. As T ! 0, we get the quantum limit [10] for

the noise temperature

TN =
~!d
2
: (7.58)

The ampli�er adds half a photon worth of noise to the signal. So an ideal parametric

ampli�er when operated at a temperature kBT << ~!d, is always quantum limited.

In practice, the noise temperature of a parametric ampli�er tends to increase with

increasing gain. This has been traditionally known as the "noise rise" problem in

parametric ampli�ers [26] and has prevented extensive practical applications. Oper-

ating points with high gain are typically close to bifurcation points. As the gain starts

to increase, higher order e¤ects which have not been treated in the theory described

above, can lead to instabilities which can enhance the noise. In the next chapter, we

will discuss some experimental results of operating the JBA as a parametric ampli�er.
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7.3.3 Squeezing

A parametric ampli�er can create squeezed states of the output �eld. The basic idea

is that the �elds coming out at signal frequency !d + �f and the idler frequency

!d��f are correlated. This applies to the noise �elds at the two frequencies as well.

We can combine the signal at frequencies !d � �f by beating the output �eld with a

signal at !d using a mixer. This homodyne spectrum at the output of the mixer (at

��f) can go below the vacuum/thermal �oor for a properly chosen phase di¤erence

between the original drive and the beating signal. This is the essence of squeezing.

This mixing operation can be written down in frequency domain as

amixout [f ] = exp (�i�) aout[f ] + exp (i�) aout[�f ] (7.59)

where amixout [f ] is the combined signal. Note the similarity between the above equation

and equation 7.37 which describes the quadrature components of the internal �eld.

It is not surprising that the expression for the spectrum of amixout [f ] is identical to

equation 7.40 but with A (f) and B (f) replaced by Aout (f) and Bout (f) where

Aout (f) = �1� i2A (f) (7.60)

Bout (f) = �i2B (f) :
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Figure 7.11: The ampli�ed (red) and squeezed (blue) spectrum of the output �eld
of the JBA biased at the critical point 
 =

p
3 and � = �max is shown for T = 0.

The green curve is the vacuum noise �oor corresponding to the undriven case. We
note that the squeezed spectrum goes to zero at f = 0 , corresponding to perfect
squeezing. At the same point, the ampli�ed spectrum diverges but in practice, higher
order e¤ects ignored in this calculation will keep it �nite.

The spectrum Smixaa (f) computes to

Smixaa (f) = 2Saa (f)0B@1 + 8�2 � 8~
� cos (2 (� � �)) + 4�
�
1 + f 2 + �2 � ~
2

�
sin (2 (� � �))

4f 2 +
�
�1 + f 2 + �2 � ~
2

�2
1CA
(7.61)

where ~
 = 
 � 2�. If we set � = 0 (no driving), we get Smixaa (f) = 2Saa (f) which

is the vacuum/thermal �oor. If the value of Smixaa (f) goes below 2Saa (f), we have

squeezing. The point of perfect squeezing is when Smixaa (f) = 0 for some f . It can

be shown that we get perfect squeezing at the bifurcation points (7.44) at frequency

f = 0, i.e., the drive frequency. At f = 0, Smix�aa (f) = 0 while Smix+aa (f) diverges.
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Fig. 7.11 shows the squeezed (blue) and ampli�ed (red) spectrum at T = 0 for the

critical point, i.e., 
 =
p
3, and � = �max. The horizontal line (green) is the vacuum

�oor. The squeezed spectrum is the same at all bifurcation points. In practice, it

is not possible to bias at the bifurcation points since the system will switch to the

other metastable state. Hence, it is best to bias near the critical point for observing

the maximum amount of squeezing. We will present some preliminary experimental

results in the next chapter.



Chapter 8

Quantum escape and parametric ampli�cation:

Experiments

In this chapter, we will discuss the experiments which measure the escape from the

low amplitude state of the JBA in the classical (kBT >> ~!p) and quantum regime

(kBT << ~!p). We will compare the results with the quantum escape theory de-

scribed in the previous chapter. We will begin by discussing the connection of the

quantum escape process in the JBA and the Dynamical Casimir E¤ect (DCE). This

will be followed by a discussion of the escape measurements. Finally, we will discuss

some preliminary experiments testing the performance of the JBA as a parametric

ampli�er. We will characterize its gain and noise properties and test its potential for

squeezing vacuum noise. These are proof of principle experiments and have not yet

been optimized for practical applications. The experiments described in this chapter

explore the connection between the four facets of a dynamical bifurcation: parametric

ampli�cation, squeezing, quantum escape and the DCE.

218
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Figure 8.1: Di¤erent schemes to implement a parametrically driven oscillator for ob-
serving the Dynamical Casimir E¤ect. (a) The opto-mechanical realization using a
cavity with a �xed and a moving mirror. The moving mirror modulates the resonant
frequency of the cavity (!r) at the driving/pump frequency (!p). The thermal pho-
tons spontaneously generated from zero point photons leak out of the right mirror and
can be detected. (b) An electrical implemention of the cavity with moving mirror. A
transmission line cavity with the �xed mirror made from a capacitor and the mov-
ing mirror made with a SQUID. The inductively coupled pump signal modulates the
SQUID inductance thereby modulating the resonant frequency of the cavity. (c) Our
implementation of the parametrically driven oscillator using a non-linear resonator
made with a Josephson junction. When biased with a drive at frequency !d near a
bifurcation point, the system behaves like a resonator whose frequency is modulated
at !pump = 2!d.
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8.1 Dynamical Casimir E¤ect

The paradoxical nature of quantum �uctuations is particularly well showcased in the

Dynamical Casimir E¤ect (DCE)� an elusively weak phenomenon predicted almost

40 years ago [53] but whose theory remains essentially experimentally unveri�ed (see

[102] for a review). In perhaps the most promising opto-mechanical realization of

the DCE [55], one of the mirrors of a Fabry-Perot cavity is driven by a force that

periodically varies the cavity�s geometric length at a frequency !pump which is a mul-

tiple of the lowest cavity mode frequency !0 (see Fig. 8.1a). According to prediction,

even when the cavity is at a low temperature T such that it is initially devoid of all

photons (~!0 >> kBT ) and contains only virtual zero-point quantum �uctuations,

the mirror motion should spontaneously create photons inside the cavity. The e¤ect

is surprising for two reasons: i) no free charge is involved in the radiation process

and ii) entropy appears to be created from a driven, but perfectly ordered system.

These photons obey the statistics of black-body radiation with some e¤ective tem-

perature, i.e., the distribution is thermal. As pointed out by several authors, the

DCE is intimately related with the Unruh e¤ect [103] in cosmology which posits that

vacuum �uctuations appear to an accelerated observer as a thermal bath with an

elevated temperature proportional to the acceleration. The Unruh e¤ect provides a

key semi-classical explanation of black-hole evaporation, and, like the DCE, remains

to be observed. Present experimental techniques lack the required sensitivity for the

unambiguous detection of the DCE by several orders of magnitude, though several

proposals exist [55, 104].

Traditionally, the DCE e¤ect has been discussed in the context of mechanical

motion of a mirror. The use of resonant cavities was introduced to enhance the
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photon production rate, with the cavity frequency being modulated by mechanical

means [55]. But if we believe that electrical degrees of freedom are equivalent to

mechanical ones, it is possible to construct an experiment to observe the DCE by

using an electrical resonator. We can periodically vary the frequency of an electrical

resonator not by mechanical means, but through an element whose reactance can be

modulated by an electrical signal. Fig. 8.1b shows a possible implementation using

a SQUID at the end of an electrical cavity. The SQUID inductance and hence the

e¤ective electrical length of the cavity can be varied by coupling a signal inductively.

Fig. 8.1a and Fig. 8.1b are essentially parametrically driven oscillators. As we saw in

the previous chapter, the JBA (8.1c) biased near the bifurcation point behaves like a

parametrically driven oscillator (see section 7.2.1). The JBA converts quantum zero

point �uctuations into thermal �uctuations via parametric ampli�cation. This is the

link between the JBA and the DCE. The traditional DCE e¤ect in cavities can be

thought of as parametric ampli�cation of zero point �uctuations (T = 0) with the

pump being applied to a mechanical degree of freedom. In the JBA, the pump is

applied to an electrical degree of freedom instead. The use of a Josephson junction

based non-linear resonator to observe the DCE has two main advantages. The non-

linearity enables electrical modulation of the resonator frequency while the absence

of dissipation eliminates parasitic channels of heat production.

The DCE predictions and experiments have been mostly concerned with measuring

the e¤ective temperature of the output �eld of the cavity which can be a signi�cant

experimental challenge. An unambiguous detection of the e¤ective temperature of

the photon �eld produced by the DCE requires a detector with minimal coupling

loss and quantum-noise limited sensitivity. The key feature of our experiment is that



CHAPTER 8. QUANTUM ESCAPE: EXPTS 222

we measure the e¤ective temperature of the internal �eld of the resonator. This is

valid because the output �eld and the internal �eld are related to each other (see

section 7.1). As we saw in the previous chapter, the thermal noise created from

the parametric ampli�cation of zero point �uctuations leads to the switching of the

JBA from its low amplitude state to the high amplitude state. By performing a

calibration in the high temperature regime where the switching process is dominated

solely by ordinary black-body thermal radiation, we can infer the temperature of the

spontaneously created noise in the quantum regime and compare it to theory. We

now proceed to describe these escape measurements.

8.2 Quantum escape measurements

8.2.1 Switching measurements in the JBA

The main goal of the experiment is to measure the transitions rates from the low

amplitude to the high amplitude state of the JBA. By characterizing these rates, we

can extract an e¤ective escape temperature TRFesc which is a measure of the intensity

of the �uctuations felt by the system. The escape rate from the low amplitude state

can be written as

�RFesc (IRF ) =
!RFa (IRF )

2�
exp

 
� URFesc
kBTRFesc

�
1� I

2
RF

I2B

�3=2!
(8.1)

where !RFa (IRF ) and URFesc are de�ned in equations 2.32a and 2.33b. I have written

�RFesc (IRF ) as a function of the drive current IRF only since we will be measuring the
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variation of escape rate with the drive current. We can rewrite the above equation as

~�RFesc (IRF ) =

�
URFesc
kBTRFesc

�2=3�
1� I

2
RF

I2B

�
(8.2)

where ~�RFesc (IRF ) is a reduced escape rate given by

~�RFesc (IRF ) =

�
log

�
!RFa (IRF )

2��RFesc (IRF )

��2=3
: (8.3)

If we plot ~�RFesc (IRF ) as a function of I
2
RF , we should get a straight line with a slope

~�slope and an intercept ~�int given by

~�slope = �
�
URFesc
kBTRFesc

�2=3
1

I2B
(8.4a)

~�int =

�
URFesc
kBTRFesc

�2=3
: (8.4b)

From these two quantities we can determine the bifurcation current IB and escape

temperature TRFesc using the following formulae

IB =
�
�~�int = ~�slope

�1=2
(8.5a)

TRFesc =
URFesc

kB~�
3=2
int

(8.5b)

where URFesc is computed using equation 2.33b. So the experiment involves measuring

�RFesc (IRF ) for di¤erent operating parameters and extracting the escape temperature

TRFesc . From the results of the previous chapter, we expect TRFesc to be given by

TRFesc =
~!d
2kB

coth

�
~!d
2kBT

�
: (8.6)
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We studied the variation of TRFesc with bath temperature T and drive frequency !d.

Two JBA samples with a plasma frequency of 1:67 GHz (sample LF) and 4:69 GHz

(sample HF) were measured to study the scaling of TRFesc with frequency.

In order to get an independent calibration of the intensity of �uctuations at every

operating temperature, we measured the escape rates from the superconducting state

to the voltage state of the DC current biased Josephson junction. The theory for

this experiment is well understood and has been experimentally veri�ed to be quite

accurate [48]. The escape rate for this process is given by

�DCesc (IDC) = ap
!p
2�
(1� IDC=I0)1=4 exp

 
�4
p
2

3

EJ
kBTDCesc

�
1� IDC

I0

�3=2!

where I0 is the critical current of the junction, EJ = '0I0 is the Josephson energy, !p is

the plasma frequency and ap is a prefactor of order unity to account for �nite damping.

Using the procedure described above, we can extract the escape temperature TDCesc by

measuring �DCesc (IDC). In our experiments, we were always in the classical regime

(kBT & ~!p (1� IDC=I0)1=4 =2�) where TDCesc = T , the bath temperature.

8.2.2 Combined RF and DC biasing scheme

One of the main challenges of this experiment was to implement an ultra low noise

biasing scheme. We want the JBA to only feel the thermal/quantum �uctuations

corresponding to the bath temperature T at which the experiment is carried out.

The ability to measure DC and RF switching in the same experimental setup adds

to the complication. The best DC biasing schemes are implemented using shielded,

twisted-pair wires which are excited di¤erentially. This not only eliminates interaction
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Figure 8.2: A schematic of the biasing scheme for combining singled-ended RF with
di¤erential DC signals. Shielded twisted-pair wires are used to carry out a four wire
DC I � V measurement. A 180 degree hybrid is used to split the RF signal into
two components which are phase shifted by 180 degrees, creating the di¤erential RF
drive. The RF and DC signals are combined using a "Bias Tee" before they reach
the device (inside blue box). A superconducting (at T = 12 mK) aluminum box is
used to shield the device from low frequency magnetic �elds since the twisted-pairs
have to be opened up before they can combined with the RF signals. This di¤erential
biasing scheme allows the creation of an ultra-low noise environment for the device
at both low and high frequencies.
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with the ground of the electrical system which is often noisy, but also minimizes

inductive pickup. RF signals are typically propagated on single ended coaxial lines

and since they can be capacitively coupled, grounding problems are usually not an

issue. In order to combine the di¤erential DC and single-ended RF bias lines we

had to transform the RF signal into a di¤erential one using a device called the 180

degree hybrid. Now we have two single ended RF signals with opposite phase and

each part is combined with the DC signal from the two wires of the twisted-pair

respectively. This is the most vulnerable part of the biasing circuit since the twisted-

pair now opens up into a loop and therefore prone to low frequency inductive pickup.

A superconducting (at T = 12 mK) aluminum box was used to shield this part of

the circuit from low frequency magnetic �elds. The combined signals then go to the

device enabling di¤erential excitation. The biasing scheme is shown schematically in

Fig. 8.2.

The �lter chain for the DC path (both current and voltage lines) included several

copper powder �lters made with twisted-pair wires for �ltering high frequency noise

(& 1 GHz). Pi �lters made with inductors and capacitors were used to �lter the

intermediate frequency noise and limit the bandwidth of the DC lines to about 10

kHz. In addition, for the current line, a 100:1 voltage divider at the 4K stage of the

fridge and a well thermalized bias resistor at the base temperature stage were used.

For the RF lines, the �lter chain on the input side included several attenuators (� 73

dB total) and re�ective �lters to set a pass band from 1 to 2 GHz for sample LF and

4 to 5 GHz for sample HF. The RF �lter chain for the output line was made up of

three circulators with two of them anchored at the base temperature and one at the

100 mK stage of the dilution refrigerator. A very important element of the RF output
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Figure 8.3: A picture of the base temperature stage of the experiment showing the
superconducting aluminum box containing the DC and RF circuitry.

line was the lossy low pass �lter. This �lter is basically a microstrip transmission line

where the dielectric has a frequency dependent loss. The main advantage of these

�lters is that they are well matched to the 50 ohm transmission lines thereby avoiding

re�ections and the possibility of setting up standing waves. The �ltering action comes

from a frequency dependent attenuation of the signal passing through. These can be

designed to have less than 1 dB attenuation in the pass band (< 2 GHz). The loss

outside the pass band can be as large as 60 dB. See [66] for more details. Fig. 8.3

shows an image of the aluminum box with DC and RF circuitry inside.
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8.2.3 Measuring escape rates

We will now describe the procedure for measuring the escape rates from the low

amplitude state of the JBA. The JBA was biased with a long trapezoidal pulse at

frequency !d with amplitude IRF . The pulse ramp time used was 40 ns for sample

LF and 10 ns for sample HF. The total pulse length was 1 ms. The phase of the

re�ected pulse is analyzed and the time (� switchi ) at which the JBA makes a transition

from low to high amplitude state is recorded. The experiment is repeated typically

for N = 105 times. We then construct the probability PL (�) of the JBA being the

low amplitude state as

PL (�) = 1�
1

N
�Ni=1�

�
� � � switchi

�
(8.7)

where

�(�) = 0 � < 0 (8.8)

= 1 � � 0

is the Heaviside unit step function. The probability PL (�) decays exponentially with

a decay constant given by the escape rate �RFesc

PL (�) = exp
�
��RFesc �

�
(8.9)

So by �tting an exponential to PL (�) we can determine �RFesc (IRF ) for di¤erent bias

amplitudes IRF . The results are shown in Fig. 8.4 where we have plotted the reduced

escape rate ~�RFesc (IRF ) as a function of I
2
RF=I

2
B for selected values of bath temperatures.
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Figure 8.4: A plot of the reduced escape rate ~�RFesc (IRF ) as function of I
2
RF=I

2
B at

di¤erent bath temperatures. Panel (a) shows data for sample LF with !p=2� = 1:670
GHz and !d=2� = 1:525 GHz. Panel (b) shows data for sample HF with !p=2� =
4:690 GHz and !d=2� = 4:450 GHz. The solid lines are straight line �ts to the data.
The slope and intercept of these �ts yield information about the escape temperature
TRFesc and the bifurcation current IB.

Panel (a) and (b) show data for sample LF and HF respectively. For both data sets

we observe straight lines1, with di¤erent slopes for di¤erent bath temperature. This

con�rms that the escape rate follows the behavior given by equation 8.1. We can

then extract the escape temperature TRFesc for each operating point. Note that in

the experiment, we control IRF by varying the pulse amplitude (ARF ) of the RF

generator. Since IRF _ ARF , we can plot ~�RFesc as a function of A2RF and extract the

bifurcation amplitude (AB _ IB) using equation 8.5a. Once we have AB we can plot

the data as a function of A2RF=A
2
B which is the same as I

2
RF=I

2
B. When plotted this

way, the straight lines should intersect ~�RFesc = 0 at I
2
RF=I

2
B = 1 at all temperatures

since the bifurcation current IB (and hence AB) does not depend on temperature. In

1Note that the vertical axis is inverted with 0 at the top.
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practice, we always observe small di¤erences in the extracted values of AB at di¤erent

temperatures. This could imply that the data starts to deviate from the prediction

of equation 8.1. But we found that this variation was predominantly due to the

slow increase in the attenuation of the input coaxial lines due to slowly decreasing

levels of liquid Helium in the dewar of the dilution refrigerator. We observed that the

extracted values of AB always increased with time even when the temperature was

kept constant and reverts back when the liquid Helium level is restored. The data

shown in Fig. 8.4 takes about 2 days to acquire since one has to wait for the system

to thermalize at each operating temperature. During such long periods, the liquid

Helium level can change appreciably. We also veri�ed that the extracted values of

AB remained constant when noise was added to the system to arti�cially elevate the

temperature. All these checks were done to ensure that our experiment really follows

the prediction of equation 8.1 and we can extract meaningful results for the value of

TRFesc . The data for each temperature in Fig. 8.4 has been plotted after normalizing

the x-axis with the value of IB (AB) extracted at the lowest temperature so that the

variations in IB (AB) are still visible.

8.2.4 Temperature dependence

In order to extract TRFesc from the data, we need the value of U
RF
esc . Data from numerical

simulations2 of the JBA circuit yielded a value for URFesc which was 10-20% than those

obtained from equation 2.33b. This would lead to a 10-20% smaller value for TRFesc

and we observed this discrepancy in the experiments. In order to overcome this

problem, we used the following procedure. At the highest temperature point, we

2The numerical simulations were used to compute escape rates in the JBA. Since we know the
precise temperature (T ) used in the simulations, we can extract URFesc by setting T

RF
esc = T .
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Figure 8.5: A plot of TDCesc vs T in a DC current biased Josephson junction. Data
for sample LF with !p=2� = 1:670 GHz is shown in red while that for sample HF
with !p=2� = 4:690 GHz is shown in blue. The dashed line is expected dependence
TDCesc = T . The data falls on the dashed line for high temperatures but TDCesc starts
to saturate at the low temperature. We believe the small deviations are due to
improperly thermalized �lters and un�ltered noise in the dual biasing con�guration.
The high frequency dynamics at the bare plasma frequency (� 20GHz) of the junction
can also contribute to this e¤ect.

assumed TRFesc = T , since that is the expected result in the classical regime. We can

then use equation 8.5b to extract URFesc = kBT
RF
esc
~�
3=2
int . This extracted value of U

RF
esc is

then used for all the lower temperature points. This is valid provided we can ensure

that the intensity of �uctuations felt by the JBA really corresponds to the thermal

�uctuations at temperature T . We veri�ed this by biasing the junction with a DC

current and measuring the escape rate from the superconducting to the normal state

of the junction. We used the procedure3 described in ref. [48] to measure the escape

3The measurement protocol is basically the same as the one for JBA switching but we use a
linear ramp instead of a trapezoidal pulse. This slightly changes the procedure for extracting the
escape rate from the data.
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Figure 8.6: A plot of TRFesc vs T in the JBA. Data for sample LF with !p=2� = 1:670
GHz and !d=2� = 1:525 GHz is shown as blue squares. Data for sample HF with
!p=2� = 4:690 GHz and !d=2� = 4:450 GHz is shown as red circles. The solid lines
are a plot of equation 8.6 for the corresponding values of !d for the two samples.
Data shows excellent agreement with the theoretical prediction. The dashed line is
the classical dependence TRFesc = T . The arrows indicate the lowest escape temperature
measured in the DC escape measurements for the corresponding sample. The errors
in the measurement of escape temperature are set by the amount of statistics obtained
and the stability of the drive power. It is usually less than 5%.

rates �DCesc (IDC) and extract the DC escape temperature T
DC
esc . The result for samples

LF and HF is shown in Fig. 8.5. We note that for both samples TDCesc = T for

higher values of T , while at low temperatures, TDCesc tends to saturate. At the lowest

bath temperature T ' 12 mK, TDCesc = 25 mK for sample LF and TDCesc = 35 mK for

sample HF. According to the MQT theory [48], we should have measured TDCesc = T

for both samples down to the lowest temperature of 12 mK. We believe that the

small residual deviations are due to improperly thermalized �lters and un�ltered

noise in the dual biasing con�guration. Another possibility is the contribution of
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high frequency dynamics at the bare plasma frequency of the Josephson junction.

This can happen due to the �nite stray inductance between the junction and the

microfabricated shunting capacitor (see section 3.2.1). Nevertheless, the DC escape

temperature data validates our normalization procedure described in the previous

paragraph.

Fig. 8.6 plots TRFesc extracted from the data shown in Fig. 8.4 as a function of

bath temperature T for both samples. The solid lines are a plot of equation 8.6 with

the corresponding values of !d used for the two samples. The agreement between

theory and experiment is excellent. Note that this is not a �t to the data. The

only scaling of data performed, as explained above, is the extraction of URFesc from

the highest temperature data point for each sample. The results for TRFesc not only

agree with theory for the lowest temperature point, but the functional dependence

on temperature as we cross-over from the classical (kBT >> ~!d) to quantum regime

(kBT << ~!d) is also nicely reproduced.

8.2.5 Detuning dependence

We also studied the variation of TRFesc as function of drive frequency !d for each sample

separately. Since the range of drive frequencies accessible for a given sample is small

(!d � !p), we expect that the saturation temperature TRFesc (T ! 0) = ~!d=2kB is

roughly constant for each sample. Fig. 8.7 shows a plot of TRFesc (T ! 0) as a function

of !d=2� for both samples. Data for sample LF (blue circles) show a fairly constant

value of the saturation temperature which is in good agreement with the theoretical

prediction (blue dashed line). However, the data for sample HF (red circles) shows a

much stronger variation in the saturation temperature. The agreement with theory is
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Figure 8.7: A plot of TRFesc vs !d=2� measured at a bath temperature T ' 12 mK
for samples LF (blue, bottom axis) and HF (red, top axis). The dashed lines are
the expected theoretical dependence TRFesc = ~!d=2kB. Data for sample LF shows
good agreement with theory but sample HF shows signi�cant deviations as the drive
frequency is decreased.

good only for the largest value of !d with TRFesc (T ! 0) falling steadily with decreasing

frequency. We do not fully understand this behavior at this time but we discuss one

possible mechanism below.

The theory described in the previous chapter is derived for operating points very

close to the bifurcation point. In practice, we always have to work at a �nite distance

from the bifurcation point so that the escape rate is small and can be conveniently

measured. Since we always work in a constant range of escape rates, the distance to

bifurcation increases as we go to higher temperatures (see Fig. 8.4). As we noted

in the previous chapter (Fig. 7.9), the position of the peak in the spectrum of the
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ampli�ed quadrature in the JBA depends on the distance to the bifurcation. For

large distances, the peak is located at f ' � j!p � !dj =� while at small distances the

peak is located at f = 0. In real frequency space, these two positions correspond to

!p and !d respectively, i.e., the peak moves from the plasma frequency to the drive

frequency as one approaches the bifurcation point. When we calibrate the barrier

height at the highest bath temperature, the relevant frequency is closer to !p while

for the data at the lowest temperature, this frequency moves to !d. This would

pose no problem if the impedance shunting the non-linear oscillator was frequency

independent as is assumed in the theory discussed in the previous chapter. In practice,

this becomes di¢ cult to implement, especially at higher frequencies. If the impedance

varies signi�cantly between these two frequencies, the calibration of the barrier height

becomes invalid at low temperatures leading to an error in the measured escape

temperature. Clearly, this e¤ect will be more pronounced for larger detuning (!p�!d)

as a larger frequency range is spanned. We now discuss some data which provides

evidence that the impedance shunting the junction varies with frequency signi�cantly.

Fig. 8.8 shows the 2D phase plot characterizing the non-linear resonance for sam-

ple HF. Each column is a plot of the re�ected signal phase (�, in color) as a function

of drive power. The di¤erent columns correspond to di¤erent drive frequencies. In

the bistable region, we swept the power in both directions to measure both the upper

and lower bifurcation points. Data for forward and reverse power sweeps are shown in

alternate columns clearly highlighting the hysteresis.The boundary of the bistable re-

gion shows ripples instead of the expected smooth variation. The fact that the upper

and lower bifurcation points move in opposite directions suggests that these ripples

are due to variations in the shunting impedance and not due to a frequency depen-
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Figure 8.8: A 2D phase plot characterizing the non-linear resonance for sample HF.
Each column is a plot of the re�ected signal phase (�, in color) as a function of
drive power (P=Pc). Pc is the critical drive power. The di¤erent columns correspond
to di¤erent drive frequencies. In the bistable region, we swept the power in both
directions to measure both the upper and lower bifurcation points. Data for forward
and reverse power sweeps are shown in alternate columns clearly highlighting the
hysteresis. Also visible are ripples in the boundary marking the bistable region,
indicating variations in the impedance shunting the JBA.

dent power coupling which would have caused them to move in the same direction.

The width of the hysteresis is proportional to the real part of the impedance4 at that

frequency. The use of the hybrid to implement the di¤erential RF biasing scheme can

lead to this impedance variation. The electric length of the two paths from the hybrid

to the junction have to be kept as identical as possible. Any asymmetry in the two

paths can lead to variations in the impedance seen by the junction. This is di¢ cult

to implement especially at higher frequencies. The 2D phase plot shown in Fig. 3.6

4The width of the hysteris is proportional to the relative detuning � and the quality factor Q of
the resonator. The dependence on � is smooth so any ripples in the hysteresis width has to do with
local variations in Q or the real part of the impedance at that frequency. See also ref. [59].
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and all other samples we measured without the di¤erential biasing scheme showed no

ripples in the width of the hysteresis. Sample LF also showed some variations in the

shunting impedance which is re�ected in the ripples in the measured TRFesc as seen in

Fig. 8.7, though the e¤ect here is much smaller.

At this stage, we believe that the disagreement with theory for sample HF is

predominantly due to the impedance variations, though we cannot completely rule out

other e¤ects not included in the theory described in the previous chapter. For future

experiments, we hope to solve this impedance variation problem by implementing the

non-linear oscillator using geometric resonators which would provide a much better

control over the impedance shunting the junction.

8.3 Parametric ampli�cation in the JBA

We now describe some preliminary experiments which test the performance of the

JBA as a parametric ampli�er (PARAMP). These are proof of principle experiments

and have not yet been optimized for practical applications.

8.3.1 Measurement protocol

The measurement protocol is as follows. We energize the JBA with a CW signal at

frequency !d close to the critical point. This signal is known as the pump. To this

pump, we add another input at frequency !s which is much weaker than the pump.

This is called the signal. As explained in section 7.3, the re�ected output from the

PARAMP contains an ampli�ed component of the signal at !s along with another

component called the idler at !i = 2!d � !s. Fig. 8.9a shows a schematic of the

measurement protocol while 8.9b shows the pump, signal and idler components in the
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Figure 8.9: Panel (a) shows a schematic of the measurement protocol for parametric
ampli�er experiments. The non-linear Josephson resonator is driven with strong tone
called the pump (!d). When a weak tone called signal (!s) is added to the pump,
the re�ected component at the output contains an ampli�ed version of the signal and
an additional tone called the idler (!i = 2!d � !s). The pump is re�ected with a
phase shift and only a fractional change in its amplitude. The circulator (C) is used
to separate the input from the output. Panel (b) shows the pump, signal and idler
components at the output of a PARAMP as measured by a spectrum analyzer. The
signal is usually kept 40 dB lower in power (before ampli�cation) than the pump.
Here it is only about 23 dB lower and the gain is about 15 dB.

output from the PARAMP as measured by a spectrum analyzer. The experimental

setup for the PARAMP measurements including the �ltering is similar to the readout

part of the qubit setup shown in Fig. 5.2. The pump and the signal were combined

at room temperature using a directional coupler and the output signal was measured

using a spectrum or network analyzer. The spectrum analyzer was used for noise

measurements while the network analyzer was to measure the gain of the PARAMP.
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8.3.2 Gain and noise temperature

We used the following procedure to measure the gain of the PARAMP. Using a net-

work analyzer, we �rst measured the transmission through the entire measurement

chain but with the pump o¤. In the absence of the pump, the JBA behaves like a

harmonic oscillator for a weak input. Since the intrinsic dissipation in the JBA is very

small, it re�ects the entire signal back, i.e., the gain is unity. We then repeat the same

measurement with the pump on and divide the result by the �rst measurement. This

directly gives us the gain of the PARAMP. We always ensure that the strength of the

signal is 40 dB lower in power than the pump to prevent saturating the PARAMP.

We do the same two measurements for determining the noise performance but record

the output power spectrum using a spectrum analyzer. The ratio of the two noise

spectrums gives us information about the noise added by the PARAMP.

Fig. 8.10 shows the gain as well as the noise spectrum (with pump on and o¤)

for an operating point close to the critical point. Note that the gain is maximum at

the pump frequency (1450 MHz) and is greater than 25 dB. The spurious peak at

1450 MHz in the noise spectrum is the remnant of the pump signal which we tried to

cancel by adding a coherent tone to the output at the pump frequency. The unwanted

pump signal at the output of the PARAMP within its band is one of the drawbacks of

this mode of operation. In the next chapter, we will brie�y outline a new, Josephson

junction based ampli�er which overcomes this problem.

Fig. 8.11 shows a plot of the power gain (color) of the PARAMP as a function of

signal frequency and pump power. The pump frequency used was 1450 MHz. This

plot qualitatively agrees with the predicted gain shown in Fig. 7.10 with regions of

single and double peaks in the gain as a function of frequency. An important di¤erence
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Figure 8.10: Gain (right axis )and noise measurements (left axis) in a PARAMP.
Pump frequency is 1450 MHz and the pump power is adjusted for maximum gain.
We note a maximum gain of about 27 dB at 1450 MHz which is the pump frequency.
Output noise as measured by a spectrum analyzer is plotted in black (pump o¤) and
red (pump on). The increase in noise with the pump on tells us about the noise added
in the ampli�cation process. The spurious peak at 1450 MHz in the noise spectrum
is the remnant of the pump signal which we tried to cancel by adding a coherent tone
to the output at the pump frequency

we note is that the gain is not perfectly symmetric about the pump frequency as

predicted by theory. This is due to the assumption in the theory that the resonator

has no intrinsic dissipation. If we include additional sources of dissipation, the gain

becomes asymmetric [101]. Also note how the bandwidth increases with decreasing

gain. This is a common feature of PARAMPS. Nevertheless, we can see that it is

possible to get about 50 MHz of bandwidth with a gain of about 15 dB.

We will now describe how to extract the noise temperature of the PARAMP. We

will call the frequency dependent power gain of the PARAMP as GP (!) and its

noise temperature TNP (!). In what follows, we will express the noise power as a
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Figure 8.11: Figure shows a plot of the power gain (color) of the PARAMP as a
function of signal frequency and pump power. The pump frequency used was 1450
MHz. This plot qualitatively agrees with the predicted gain shown in Fig. 7.10 with
regions of single and double peaks in the gain as a function of frequency.

temperature so that the output noise power of the PARAMP can be written as

T outNP = GP (!)TNP (!) : (8.10)

When the pump is o¤, the total output noise power is given by

T outN , pump o¤ (!) = GS (!) (TNS (!) + Tvac (!)) (8.11)

where GS (!) and TNS (!) are the gain and noise temperature of the measurement

chain while Tvac (!) = ~!=2kB is the e¤ective temperature of the vacuum. In our

experiments, TNS (!) >> Tvac (!) (see later) and hence we can ignore Tvac (!). With
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the pump on, we get

T outN , pump on (!) = GS (!)T
out
NP (!) +GS (!)TNS (!) : (8.12)

Taking the ratio of the two and diving by the gain of the PARAMP, we get,

T outN , pump on (!)

GP (!)T outN , pump o¤ (!)
= TN ,ratio = 1 +

TNP (!)

TNS (!)
: (8.13)

Since we can measureGP (!) and the ratio T outN , pump on (!) =T
out
N , pump o¤ (!) as described

above, we can compute TN ,ratio. We can then determine TNP (!) from the above equa-

tion if we know TNS (!). Accurately determining the system noise temperature of a

cryogenic setup is quite challenging and requires a well calibrated variable temper-

ature load or a calibrated noise source which works at cryogenic temperatures. We

were only able to make a rough measurement of the system noise temperature by

varying the temperature of the base temperature stage of our cryostat, and estimated

it to be TNS ' 12 K �20% within the frequency band of our experiment (1:3-1:5

GHz) . This number agreed with our estimate using the manufacture provided num-

ber for the noise temperature of the HEMT ampli�er (2:2 K) and about 6 dB of loss

in our output line from the sample to the HEMT ampli�er. This limits our accuracy

to determine the noise temperature of the PARAMP to �20%.

Fig. 8.12 shows plots of the gain and noise temperature (in color) as a function

of signal frequency and pump frequency. The pump power at each value of pump

frequency has been optimized for maximum gain. In panel (b), one should ignore

the blue region on either side as it does not represent valid data. Also, the noise

temperature data becomes noisy as one moves away from the pump frequency due
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Figure 8.12: Panel (a) and (b) show a plot of gain and noise temperature respectively
as a function of signal frequency and pump frequency. The pump power at each value
of pump frequency has been optimized for maximum gain. Note the di¤erence in
horizontal scales between the two panels. Also in panel (b), one should ignore the
blue region on either side as it deos not represent valid data. The noise temperature
data becomes noisy as one moves away from the pump frequency due to reduced gain.
The bright white line at the center of panel (b) is the remnant of the pump. The
di¤erent black lines are contours of constant gain with the gain increasing as one
approaches the pump frequency.

to reduced gain. The bright white line at the center of panel (b) is the remnant

of the pump. The di¤erent black lines are contours of constant gain with the gain

increasing as one approaches the center. We note that it is possible to achieve a noise

temperature in the range 0:08 - 0:15 K (green areas) with a gain of 15 dB and higher.

The quantum limited value for the noise temperature at a frequency !s=2� = 1:5 GHz

is ~!d=kB = 0:072 K. So the PARAMP achieves near quantum limited performance

with decent gain and is already good enough for practical applications like being the
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�rst stage ampli�er for experiments like dispersive qubit measurements. Though the

strong pump signal still needs to be isolated from the qubit using isolators. Section

9.3 discusses a modi�ed design to solve this problem.

8.3.3 Squeezing measurements

Squeezing of thermal and vacuum noise has been demonstrated in Josephson junction

based parametric ampli�ers [105, 25]. We discuss below some preliminary experiments

testing the ability of the JBA to squeeze vacuum noise (T << ~!d=kB). The mea-

surement protocol is similar to the one described in 8.3.1 but now we beat the output

signal with another signal at the pump frequency !d using a mixer. The beating

signal is phase locked with the pump. The output of the mixer is �ltered to remove

the high frequency components and fed to a spectrum analyzer. We now look at the

spectrum near zero frequency. We �rst looked at the case when a signal tone at !s

was present along with the pump at !d. The mixer combines the signals at !s and

!i = 2!d�!s and outputs them at a frequency j!d � !sj. The spectrum at j!d � !sj

is monitored as a function of the phase di¤erence (�LO) between the pump and the

beating signal. The result is shown in Fig. 8.13a. The black curve corresponds to

the pump being o¤ and shows no dependence on �LO while the red curve taken with

the pump on shows strong variations. At certain values of �LO, the red curve falls

below the black curve implying a destructive interference between the components at

!s and !i. When the same thing happens with the noise, it is called squeezing and

is shown in Fig. 8.13b.

Though the e¤ect is small we can clearly see the red curve dipping just below the

black curve which corresponds to the vacuum �oor. The squeezing e¤ect in the output
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Figure 8.13: Data demonstrating parametric ampli�cation and de-ampli�cation of an
input signal is shown in panel (a). The pump frequency used was 1450 MHz while
the signal frequency was 1460 MHz. The output of the PARAMP was beat with
another tone at 1450 MHz using a mixer. The magnitude of the resulting mixed
down signal at the di¤erence frequency 10 MHz is plotted as function of the phase
di¤erence (�LO) between the pump and the beating signal. The black curve is with
the pump o¤ while the red curve is with the pump. Panel (b) shows the same data
but without any signal at 1460 MHz. The output now corresponds to the output
noise spectrum of the PARAMP. The solid red curve is a sinusoidal �t to the data.
In both cases we see that for certain values of �LO, the red curve dips below the black
curve indicating destructive interference of components at the signal (1460 MHz)
and idler (1450 MHz) frequencies.

is small because of the high value of our system noise temperature TNS >> ~!d=2kB.

When only vacuum noise is feeding the measurement chain (pump is o¤), the output

noise expressed as a temperature has a value GS(TNS+Tvac) where Tvac = ~!d=2kB is

the temperature of vacuum noise. When the pump is on, we get GS(TNS + T squeezevac ),

where T squeezevac is the temperature of the squeezed vacuum. Even if we assume perfect

squeezing (T squeezevac = 0), the output noise is given by GSTNS. The ratio between the

two values which is e¤ectively what we measure is 1 + Tvac=TNS. In our experiment,
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Tvac=TNS ' 0:003 << 1, and hence the squeezing e¤ect in the output is very small.

We now provide a rough estimate of the amount squeezing achieved. From the noise

temperature measurements, our best estimate of Tvac=TNS � 0:004. The red curve

dips below the black curve in Fig. 8.13b by about 0:026 � 0:008 dB. We can then

estimate the amount of squeezing T squeezevac =Tvac. Unfortunately the error in the noise

measurements (estimated from the spread in the black data points) is so large that

the estimated amount of squeezing goes all the way from 10% to better than 100%

squeezing (which is not possible). At this point, we would just like to say that we

observe some evidence of squeezing but further improvements in the system noise

temperature and the precision of noise measurements are required to estimate the

amount of squeezing more precisely.



Chapter 9

Future directions

In this chapter, we will brie�y discuss the future directions and perspectives of ex-

periments related to the work done for this thesis.

9.1 Evolution of the JBA

The non-linear oscillator in the JBA was made by shunting the Josephson junction

with a micro-fabricated capacitor. As we learned in chapter 3, fabrication of such a

capacitor at microwave frequencies is not easy. The stray elements associated with this

capacitance can often lead to the absence of the bifurcation phenomena (section 3.4).

Moreover, improvements in the sensitivity and speed of the JBA requires operation

at higher frequencies. In order to meet these requirements, it was decided to use

geometric resonators instead of lumped element ones.

Geometric resonators can be easily fabricated with much better control of their

parameters. They were made by using a section of micro-fabricated transmission

line with capacitors at each end playing the role of mirrors in a cavity resonator.
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The resonant frequency is now given by the length of the transmission line and the

quality factor is controlled by the value of the capacitance. By fabricating them with

superconducting materials, the intrinsic dissipation can be made very small. The

non-linearity is introduced by placing the Josephson junction at the center of the

resonator where there is an antinode in current at resonance. Fig. 9.1 shows an

optical image of such a device.

Figure 9.1: Optical image of a Cavity Bifurcation Ampli�er. The upper half shows
the transmission line cavity. The lower half shows the input coupling capacitor, an
SEM image of the Josephson junction which is placed in the center of the resonator,
and the output coupling capacitor.

This device has been nicknamed the Cavity Bifurcation Ampli�er (CBA) [66].

Note that the physics of operation of the CBA is essentially the same as the JBA

since both are non-linear resonators. The CBA o¤ers the advantage of �exibility in

design, possibility of multiplexing, operation at higher frequencies and better control

over the impedance seen by the junction. The CBA has already been successfully

implemented as a qubit readout with similar performance as the JBA [43]. Future

qubit experiments in our group will use the new CBA design for the readout.
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9.2 Back-action of the bifurcation readout on a qubit

In chapter 6, we saw that the readout operation induced relaxation in the excited state

of the qubit, ultimately resulting in a reduced measurement contrast. Coupling to

spurious environmental modes due to the AC Stark shift associated with the readout

operation was identi�ed as one possible culprit. But this could not completely explain

the reduction in contrast observed. The qubit experiments carried out with the CBA

also su¤ered from this reduced contrast. We believe that the highly excited non-linear

oscillator has a "cooling" e¤ect on the qubits and hence leads to their relaxation. This

would be consistent with the fact that we never observed any excitation of the qubit

ground state during the readout. More theoretical analysis is required to compute the

e¤ective spectral density of �uctuations seen by the qubit on the phase port, when

the readout is energized.

It is also possible that coupling a bifurcation ampli�er directly to the qubit is

too invasive. We are slowly learning from experience that these quantum two level

systems are more delicate than we imagined them to be. To minimize the e¤ect of

the readout on the qubit state, the best approach seems to be the one involving a

linear resonator coupled to a qubit where the measurement is carried out with a few

photons. This approach is used in the circuit QED experiments [33]. The few photons

are enough to perform a fully projective measurement, but result in a poor signal to

noise due to limitations in the ampli�ers used to amplify these photons. This is

where the JBA could play a role. The JBA/CBA could be operated as a parametric

ampli�er to provide a �rst stage of ampli�cation for these few photons. As we saw in

chapter 7, we can achieve a gain of about 20 dB with a near quantum limited noise

temperature. This is already good enough to enable single-shot measurements of the
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qubit state. We hope to implement such a technique in the near future.

9.3 Josephson Parametric Converter

One of the main problems in using the JBA as a doubly degenerate parametric is

the presence of the strong pump signal right in the middle of the frequency band of

ampli�cation. Even though this signal could be �ltered out, this mode of operation is

quite impractical especially for measuring sensitive systems like the qubit. We need to

separate the modes associated with the signal (!s), idler (!i) and the pump (!pump)

frequencies. We have developed a new type of device called the Josephson Parametric

Converter (JPC) [106] to achieve this. Fig. 9.2 shows a schematic of this device which

is based on the Josephson ring modulator which consists of four Josephson junctions

in a loop.

Figure 9.2: A schematic of the Josephson Parametric Converter illustrating the sep-
aration of the signal, idler and the pump mode.

The two LC oscillators represent the signal (X) and the idler (Y) modes while

the pump (IP ) drives the common mode. The gauge-invariant phases corresponding
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to modes are de�ned as follows

�X = (�1 + �2 � �3 � �4) =4

�Y = (��1 + �2 + �3 � �4) =4 (9.1)

�Z = (�1 � �2 + �3 � �4) =4

where �1, �2, �3 and �4 are the gauge-invariant phases across the four junction. In

this representation the Hamiltonian of the four junction system reduces to

HJPC = �4EJ
�
cos �X cos �Y cos �Z cos

�

4'0
+ sin �X sin �X sin �X sin

�

4'0

�

where EJ is the Josephson energy of each junction and � is the �ux in the loop. If we

work at a �ux bias � = �0=2 where �0 is the �ux quantum, and for small excitations,

the Hamiltonian reduces to

Hmix
JPC = �2

p
2EJ

"
�X�Y �Z �

�
�2X + �

2
Y + �

2
Z

�
2

#
: (9.2)

The Hamiltonian contains a pure non-linear mixing term �X�Y �Z which allows three

mode mixing. The other term only leads to renormalization of the mode frequencies.

The implementation of this Hamiltonian is a key feature of the JPC design.

The device can be operated in either the ampli�cation mode with photon number

gain (!pump = !s + !i) or the frequency conversion mode with no photon number

gain(!pump = j!s � !ij). Preliminary experiments have yielded promising results

with gain as high 30 dB [106] and we are in the process of investigating the noise

performance and the dynamic range of the JPC.



Chapter 10

Conclusions

In this thesis, we have demonstrated that a dynamical bifurcation can be used for

amplifying quantum signals. The device which we call the Josephson Bifurcation

Ampli�er (JBA), exploits a bifurcation in a driven, non-linear oscillator made with a

Josephson tunnel junction and a shunting capacitor. The Josephson tunnel junction

is the only electronic circuit element which remains non-linear and non-dissipative

at arbitrary low temperatures. In this new scheme, all available degrees of freedom

in the dynamical system participate in information transfer and none contribute to

unnecessary dissipation resulting in excess noise.

We performed a novel, phase-sensitive, microwave experiment demonstrating that

the Josephson plasma oscillation can transition between the two dynamical states

predicted for a driven non-linear system[28]. Using di¤erent samples, we have shown

that this dynamical phenomenon is stable, reproducible and can be precisely con-

trolled, thus opening the possibility for practical applications like ampli�cation. Any

signal coupled to the critical current of the junction can be detected by monitoring

the changes in the dynamical state of the non-linear oscillator[57].
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This approach was used to develop a non-linear, dispersive readout for super-

conducting qubits by coupling a quantronium qubit with the JBA[29]. In order to

perform a readout, the resonator is RF-energized to a level where its oscillation state

now acts as a sensitive pointer of the qubit state. This technique does not gener-

ate any dissipation on chip since the resonator is only damped by circuitry outside

the chip, i.e. a 50
 transmission line with a matched circulator and ampli�er, and

enables a high-�delity qubit readout with a MHz repetition rate. We have mea-

sured Rabi oscillations and Ramsey fringes in the quantronium qubit with su¢ cient

speed that real time �ltering to correct for drifts in the charge and �ux bias becomes

possible. The coherence properties of the qubit were similar to those of other super-

conducting qubits. Exploiting the QND nature of the readout, we performed several

successive readouts within the energy relaxation time of the qubit (T1). This pro-

vided valuable information on the readout-induced interaction between the qubit and

its environment and was useful in understanding the observed contrast. Signi�cant

improvement was achieved in the readout contrast (68%) as compared to the original

quantronium measurements (10%, [6]).

The JBA was also operated as a parametric ampli�er to amplify small signals

coupled via the drive port (as opposed to parametric coupling of signals in the qubit

readout) achieving signal gain of about 20 dB and near quantum limited noise tem-

perature. We also showed some evidence of squeezing in the JBA. The parametric

ampli�er model of the JBA also helps us understand its behavior in the quantum

regime. The dynamical transition between the metastable states of the JBA takes

place via an activation process even in the limit T ! 0 as opposed to a tunnel-

ing process observed in static systems. The JBA acts as a parametric ampli�er for
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the quantum �uctuations and converts them into thermal �uctuations which in turn

lead to a transition via activation. The creation of thermal photons from zero point

quantum �uctuations is the essence of the Dynamical Casimir E¤ect which has been

traditionally discussed in the context of mechanical modulation of resonant cavities

as opposed to the electrical modulation in our case. Theory predicts that the e¤ective

temperature of the ampli�ed quantum noise when T ! 0 is given by ~!d=2kB where

!d is the drive frequency. Experimental data shows good agreement with this pre-

diction. The parametric ampli�er model of the JBA brings together four aspects of

working with a dynamical bifurcation: parametric ampli�cation, squeezing, quantum

activation and the Dynamical Casimir E¤ect.

In conclusion, we have developed a new ampli�cation principle harnessing the non-

linear, non-dissipative inductance of the Josephson junction. The JBA is competitive

with other cryogenic ampli�ers like the SQUID and the RF-SET, especially when low

back-action is required. The JBA principle is already being used by several groups

for measuring quantum systems and is well on its way to become a general purpose

ampli�er/detector for low temperature physics experiments.



Appendix A

JBA formulae

In this appendix, we will provide formulae for computing quantities related to the

JBA. These formulae have been computed by retaining higher order terms in detuning

� and the inverse of the quality factor 1=Q and provide better estimates especially

for small Q.

1. Upper bifurcation current

I+B =
16

3
p
3
I0�

3=2 (1� �)3=2
�
1 +

9

4
2

�1=2
(A.1)

2. Barrier height

URFesc =
64

9
p
3
EJ� (1� �)3

�
1 +

9

4
2

�
(A.2)

3. Critical detuning


c =
p
3� 3

4Q
(A.3)

Note that the critical frequency is no longer universal for small Q. In practice,
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the approximation 
c =
p
3 gives less than 5% error for Q > 5.



Appendix B

Mathematica formulae

In this Appendix, I provide some useful Mathematica formulae to compute various

qubit related quantities. Note that the symbols used in the formulae may di¤er from

ones used in the thesis but I describe all symbols used. These formulae were written

for Mathematica version 5.0.

1. Energy levels of a split Cooper-pair box: The function returns the energy

levels in units of EJ . Multiply the result by EJ to get the real energy. The function

takes �ve arguments: ng is gate charge in units of single electron, ib is the level number

starting from 1 (ground state), EjoEc is the ratio EJ=EC , d is the asymmetry in the

two junctions of the split Cooper-pair box and �flux is the �ux in the loop in units

of �ux quantum. The function can also be used to compute the transition frequencies
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between levels by subtracting the energy of two levels.

EnergyLevels[ng_; ib_; EjoEc_; d_; �flux_] :=

(ng1 = Abs[Mod[ng + 1; 2]� 1; If [ng1 == �1; ng1 = 0:999];
1

EjoEc
MathieuCharacteristicA[ib�Mod[ib; 2]� (�1)ibng1;

�
 
0:5EjoEc

r
1 + d2 + (1� d2)Cos [2��flux]

2

!
])

2. Loop currents in the split Cooper-pair box: The function returns the

loop currents in the nA. The function arguments are the same as described above

except for EjGHz which is the Josephson energy given in GHz, and � is is the phase

(divided by 2�) across the split Cooper-pair box. The derivative of this function with

respect to � at � = 0 gives the e¤ective critical current. The e¤ective inductance is

proportional to the inverse of the e¤ective critical current.

iloopnA[ng_; ib_EjoEc_; d_; �_; EjGHz_] :=

2:01 EjGHz D[EnergyLevels[Mod[ng; 2;�1]; ib; EjoEc; d; y]; y]=:fy ! �g

With these two functions, we can calculate all the relevant numbers concerning

the measurement of the quantronium qubit with the JBA.



Appendix C

Numerical simulations

Here, I will describe the procedure used to simulate the behaviour of the JBA by

numerically solving the di¤erential equations describing its dynamics. The full circuit

including the important stray elements is shown in Fig. C.1.

Figure C.1: Full circuit model of the JBA including important stray elements

I0 is the critical current of the readout junction, i0 is the e¤ective critical of the

qubit, CS is the on-chip capacitance shunting the junction and R is the impedance of

the transmission line bring signals in and out of the device. TheThe stray elements

LS, RS, and LB are highlighted in red. The inductance (LS) is due to the imperfect

screening of currents in the capacitor plates by the ground plane and also due the

thin leads which connect the capacitor with the junction. The resistance (RS) is
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due to the �nite conductivity of the Cu ground planes used in the capacitor. The

inductance (LB) is the inductance of the wire bonds used to connect the JBA sample

to the transmission line. Usually, LS < 20 pH, RS < 0:05 
 and LB < 1 nH. The two

small junctions represent the qubit and its e¤ect is incorporated by using the state

dependent loop currents. The three variables (highlighted in blue) used to describe

the dynamics of the system are �, the phase across the readout junction (and the

qubit), q the charge on the capacitor CS, and IL, the current through the wire bond

inductance.

C.1 Equations of motion

The three coupled di¤erential equations describing the dynamics of the system in

terms of these variables are given below:

_� (t) =
1

'0 f1 + (LS=LJ) cos (� (t)) + (LS=L
q
J) f

q
d (� (t))g�

q (t)

C
+RS fIL (t)� I0 sin � (t)� i0f q (� (t))g

�

_q (t) = IL (t)� I0 sin (� (t))� i0f q (� (t))

_IL (t) =
R

LB

�
IRF (t)� IL (t)�

q (t)

RCS
� RS
R
fIL (t)� I0 sin (� (t))� i0f q (� (t))g

�
where LJ = '0=I0 is the linearised Josephson inductance of the readout junction,

LqJ = '0=i0 is the linearised inductance of the qubit, fq (�) is the function describing

the loop currents of the qubit in a given state and f qd (�) = @f q=@� is the function

describing the derivative. Before numerically solving these equations, we transform

them to reduced units. Since, the typical plasma frequency of the JBA is about 1
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GHz and the critical current of the junction is about 1 �A, we change into a system

of units where time is measured in ns, current in �A. So we make the following

transformations

t = 109�

� (t) = 2�x (�)

q (t) = RCs 10
�6y (�)

IL (t) = 10�6z (t)

In these new system of variables x (�), y (�) and z (�), the equations become

_x (�) =
Q

f1 + (LS=LJ) cos (2�x (�)) + (LS=LqJ) f
q
d (2�x (�))g�

fJGHz
I0�A

��
y (�) +

RS
R
fz (�)� I0�A sin 2�x (t)� i0�Af q (2�x (�))g

�

_y (�) =
2�

Q
fJGHz [z (�)� I0�A sin (2�x (�))� i0�Af q (2�x (�))]

_IL (t) =
2�

Q
fJGHz

�
LJ
LB

�
�
IRF�A (�)� z (�)� y (�)�

RS
R
fz (�)� I0�A sin 2�x (t)� i0�Af q (2�x (�))g

�

The reduced equations are solved using 4th order Runge-Kutta method [107]. The

code is written in C++ and the compiled code is imported into the Labview software

which o¤ers many data processing routines and easy to use graphical interface. The

drive and the noise current are generated in Labview. The noise signal is generated
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by using a Gaussian distributed random number generator in Labview. In order to

correctly mimic thermal noise current at temperature T and resistance R, the random

number generator is set to zero mean and a standard deviation Irmsgiven [60]by

Irms =

r
2kBT

R�t

where �t is the time step used in the numerical simulation. In reduced units de�ned

above this becomes

irms�A =

r
2kBT

R��
1023

where irms�A is the standard deviation of the current noise distribution.

The loop current functions f q and f qd are computed in Mathematica and passed

on to the C++ code as an array of 1000 values de�ned for a range of � going from 0

to �. The code uses linear interpolation compute the functions from these array of

values.
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