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Atomic systems display a rich variety of quantum dynamics due to the different possible symmetries
obeyed by the atoms. These symmetries result in selection rules that have been essential for the quantum
control of atomic systems. Superconducting artificial atoms are mainly governed by parity symmetry. Its
corresponding selection rule limits the types of quantum systems that can be built using electromagnetic
circuits at their optimal coherence operation points (“sweet spots”). We use third-order nonlinear coupling
between the artificial atom and its readout resonator to engineer the selection rules of our atom, allowing us
to drive transitions forbidden by the parity selection rule for linear coupling to microwave radiation.
A Λ-type system emerges from these newly accessible transitions, implemented here in the fluxonium
artificial atom coupled to its “antenna” resonator. We demonstrate coherent manipulation of the fluxonium
artificial atom at its sweet spot by stimulated Raman transitions. This type of transition enables the creation
of previously inaccessible quantum operations, such as the control and readout of physically protected
artificial atoms.
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I. INTRODUCTION

Atoms exhibit complex level-transition structures, which
are governed by the interactions between their components.
Superconducting artificial atoms, however, presently have
much simpler level-transition structures. As superconduct-
ing circuits emerge as a leading platform to investigate
quantum information and coherent quantum physics [1],
there is growing interest in engineering their selection rules
[2–7] to implement a larger variety of quantum dynamics in
artificial atoms.
All superconducting circuits at their sweet spots—

operating points where the circuits are insensitive to certain
environmental noise mechanisms—obey parity symmetry.
This symmetry forbids transitions between states of the
same parity under a microwave drive [2,8]. Away from the
sweet spots, all transitions are allowed, but at the cost of
lower qubit coherence [9]. The ability to drive such
transitions can lead to the implementation of a different
class of artificial atoms. Moreover, it is necessary for the
control and measurement of physically protected qubits
[10–13]—circuits which implement error correction at the
hardware level but whose inherent protection results in the
quasi-impossibility of manipulating them directly. Is it

possible then, in superconducting circuits, to break the
parity selection rule while still operating at the sweet spot?
In this article, we present a method for driving forbidden

transitions in superconducting artificial atoms. Using non-
linear coupling between the atom and an ancilla resonator, we
create an atom with engineered selection rules while main-
taining the symmetry, and thus the coherence properties, of
the sweet spot. We implement nonlinear coupling using a
fluxonium artificial atom [14,15] inductively coupled to an
“antenna” resonator [16,17].We demonstrate the creation of a
Λ-type system in which the states of the fluxonium can be
manipulated by a resonator excitation using the now-allowed
transition. We then use this structure to cool the fluxonium
atom to one of its two lowest energy eigenstates by resonator
decay through spontaneous Raman scattering. Finally, we
present coherent manipulation of the fluxonium through the
Λ-type system by driving Rabi oscillations between the
fluxonium ground and excited states, using stimulated
Raman transitions through a virtual resonator excitation.

II. FLUXONIUM-RESONATOR SYSTEM

The fluxonium artificial atom is a superconducting
circuit made up of a Josephson junction in parallel with
a large linear inductance. While the fluxonium can be
operated at any applied external flux through the fluxonium
loop, Φf

ext, its flux-noise-insensitive sweet spots are located
at Φf

ext=Φ0 ¼ m, mþ 1=2, where Φ0 is the magnetic flux
quantum and m ∈ N. Here, we focus on the behavior of the
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fluxonium at its mþ 1=2 sweet spots, where the transition
frequency between its ground state jgi and first excited state
jei is h1 GHz. At the sweet spots, the potential of the
fluxonium is a symmetric function of the flux ϕq across the
fluxonium junction. Hence, transitions are allowed only
between states of opposite parity, and transitions such as
jgi ↔ jfi are forbidden by a parity selection rule [15,18].
Coupling to a resonator breaks the fluxonium parity

symmetry, but the total parity of the fluxonium-resonator
excitations remains conserved and a parity selection rule still
holds in the coupled system [8,19]. The level diagram for this
system, with its allowed and forbidden transitions, is shown
in Fig. 1. The states are labeled js; ni, where s is the state of
the fluxonium and n is the resonator photon number. States
with even (odd) total parity are shown in red (blue).
Transitions are allowed only between states of opposite total
parity (the solid black lines).The dashed magenta lines
show forbidden transitions such as jg; 0i ↔ je; 1i and
jg; 0i ↔ je; 1i, and the ability to drive them gives us access
to a Λ-type structure, as shown in the figure. Low-frequency
transitions such as jg; 0i ↔ je; 0i are not forbidden but are
suppressed due to a small dipole moment and the filtering of
the fluxonium environment at low frequencies.
The parity selection rule holds only when the external

drive is coupled to the odd ϕq fluxonium operator via linear
coupling to the antenna resonator. Nonlinear third-order
coupling between the fluxonium and the resonator would
lead to the drive coupling to operators such as ϕ2

q or ϕqϕr,
where ϕr is the resonator flux. These even operators can
drive transitions of equal parity at the fluxonium sweet spot
(see Appendix B for more details). One would therefore
like to implement third-order coupling between the fluxo-
nium and its resonator to drive these forbidden transitions.

Note that such coupling would preserve the protection
offered at the sweet spot with respect to flux noise.
Figure 2(a) shows a diagram of a fluxonium atom

nonlinearly coupled to its resonator. The fluxonium
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FIG. 1. Level diagram of a fluxonium atom at Φf
ext=Φ0 ¼

mþ 1=2 coupled to an electromagnetic resonator. At these sweet
spots, only transitions between states of even parity (red) to states
of odd parity (blue) are allowed. Transitions within the even or
odd manifold are forbidden by a parity selection rule. By using
nonlinear coupling between the resonator and the artificial atom,
we can break the selection rule and drive forbidden transitions
(magenta). We can thus construct a Λ-type system spanned by the
jg; 0i, je; 0i, and je; 1i states.
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FIG. 2. (a) Schematic of the fluxonium artificial atom coupled to
an antenna resonator. The fluxonium is made up of a small phase-
slip junction (black) shunted by a linear inductance (dark blue). It is
coupled to the resonator (light blue) by sharing an inductance
comprising SNAILs (magenta), which induce the nonlinear cou-
pling.An external fluxΦf

ext is threaded through the fluxonium loop.
(b) The SNAIL is composed of three large Josephson junctions in
parallel with a smaller Josephson junction. An external magnetic
fluxΦS

ext is threaded through the SNAIL loop. (c) A SEM image of
the device sketched in (a), with colored arrows indicating the
different circuit elements. The area of the fluxonium loop is
Af ¼ 350� 10 μm2 (d) A SEM image of a SNAIL, where the
junctions corresponding to the numbered junctions in (b) are
indicated. The ratio between the large-junction and small-junction
areas is α ¼ 0.4� 0.02, and the area of the SNAIL loop is
AS ¼ 6� 0.2 μm2.We can tuneΦf

ext andΦS
ext quasi-independently

using a global magnetic field due to the large ratio Af=AS ≃ 60.
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artificial atom is made up of a small junction (black)
shunted by a large linear inductance (dark blue). The
resonator is composed of a linear inductance and a
capacitor (light blue). The nonlinear coupling is mediated
by a nonlinear inductance made up of five three-
wave-mixing dipole elements—each named the supercon-
ducting nonlinear asymmetric inductive element (SNAIL)
(magenta) [20].
A circuit diagram of the SNAIL is shown in Fig. 2(b),

which consists of three large Josephson junctions in parallel
with a smaller Josephson junction. As an external flux ΦS

ext
is threaded through the SNAIL, it becomes a nonlinear
element with third-order nonlinearity. The SNAIL design
appears similar to that of the flux qubit [21,22], but the
devices are operated in very different regimes. In the flux
qubit, the area ratio (α) between the small and the large
junction is chosen to be approximately 0.8, which leads to a
double-well potential at ΦS

ext ¼ 0.5. The SNAIL is
designed to have α < 0.5 to maintain a single potential
well, and it is operated around ΦS

ext ¼ 0.1–0.4 to create the
asymmetric potential well necessary for three-wave mixing.
The three-wave-mixing capability of the SNAIL has
recently been proposed and implemented for quantum-
limited amplification [20,23,24], but we use it here to
implement nonlinear coupling between the fluxonium and
its antenna resonator. Figure 2(d) shows a scanning electron
microscope (SEM) image of the SNAIL, composed of
Al-AlOx-Al junctions, fabricated using the bridge-free-
fabrication technique [25,26] on a sapphire substrate. In our
implementation, α ¼ 0.4� 0.02.
A SEM image of the full device is shown in Fig. 2(c).

The large inductance of the fluxonium (dark blue) is built
from 126 array junctions. The resonator inductance
includes the five shared SNAILs as well as six unshared
junctions. The antenna resonator capacitance is provided by
two 0.5-mm-long leads. The resonator frequency is
fr ¼ 6.82 GHz, and the fluxonium qubit transition

frequency at its Φ0=2 sweet spots is fq ¼ 500 MHz.
This sample is housed in a WR-102 waveguide and
measured in reflection through an impedance-matched
adapter [27].

III. SPECTROSCOPY

In Fig. 3, we show two-tone spectroscopy of the jg; 0i ↔
je; 1i transition around different fluxonium sweet spots. A
continuous-wave tone is swept around the frequency of the
jg; 0i ↔ je; 1i transition, while another tone at fr is used to
measure the corresponding resonator response. The mea-
surements are done around the Φf

ext=Φ0 ¼ mþ 1=2
fluxonium sweet spots, where m ¼ 0, 2, 4, and 6 for
Figs. 3(a)–3(d), respectively. Though identical drive and
measurement parameters are used at all of the different
sweet spots, the responses are significantly different. In
Fig. 3(a), no transition is observed above the noise, which is
consistent with previous fluxonium measurements of this
forbidden transition [15]. In Figs. 3(b)–3(d), however, the
transition emerges and becomes increasingly visible at
higher external flux. At higher external fluxes, the size of
the three-wave-mixing term of the SNAIL increases, which
results in a corresponding increase in the drive strength of
the formerly forbidden transition. The insets in Fig. 3 show,
for each sweet spot, the corresponding drive amplitude of
the forbidden transition through the nonlinear coupling
element. These values are based on a theoretical estimate of
our three-wave-mixing coefficient, and a measurement of
the drive amplitude from Raman experiments (see
Appendixes C and D). The fluxonium coherence time at
the Φf

ext=Φ0 ¼ 0.5 and 6.5 sweet spots is measured to be
identical, and equal to T2R ¼ 6 μs.
The frequency of the jg; 0i ↔ je; 1i transition is lowest

at the sweet spots because it is the sum of the flux-
dependent jg; 0i ↔ je; 0i fluxonium transition frequency
and the approximately constant resonator frequency.

Φf
ext/Φ0

6.47 6.50 6.53

0

15

–15
4.47 4.50 4.532.47 2.50 2.53

7.3

7.4

7.5

7.6

0.47 0.50 0.53

F
re

qu
en

cy
 (

G
H

z)
P

hase of signal reflected
 off resonator (deg)

(a) (b) (c) (d)

,0

e,1

25 kHz

,0

e,1

120 kHz

,0

e,1

210 kHz

,0

e,1

300 kHz

〉 〉 〉 〉

〉〉〉〉

FIG. 3. (a)–(d) Two-tone spectroscopy of the jg; 0i ↔ je; 1i transition with a SNAIL-fluxonium device in the vicinity of
Φf

ext=Φ0 ¼ 0.5, 2.5, 4.5, and 6.5, respectively. As the external flux is increased, the third-order coupling strength of the SNAIL
grows, and the nominally forbidden transition becomes visible. The values for the jg; 0i ↔ je; 1i coupling strength are given in the
insets. The change in the sign of the reflected phase near Φf

ext=Φ0 ¼ 6.51 is due to a change in the dispersive coupling χ between the
fluxonium and the resonator.
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The resonator frequency decreases slightly at higher
external flux due to the increasing linear inductance of
the SNAIL. This effect manifests itself in our measurement
as the minimum transition frequency being slightly lower
for sweet spots of higher external flux. Notice that, in
Fig. 3(d), the sign of the phase response changes. This
change is likely due to a change in the fluxonium-resonator
dispersive shift, which is also observable in a direct
measurement of the fluxonium transition [18].

IV. Λ-SYSTEM OPERATIONS

Driving parity-forbidden transitions, such as jg; 0i ↔
je; 1i and je; 0i ↔ jg; 1i, allows us to construct a Λ-type
system in which the fluxonium qubit states jg; 0i and je; 0i
are the low-energy states, and the excited state is a
resonator excitation state such as jg; 1i or je; 1i.
Previous superconducting implementations of Λ-type sys-
tems employed flux-tunable qubits away from their sweet
spot [28–31], effective driven systems [32,33], or two-
photon transitions [34–36]. Here, we present a physical
implementation of a Λ-type system at the fluxonium sweet
spot using direct drives.
We demonstrate that our circuit can be treated as a

Λ-type system by performing both incoherent and coherent
operations using Raman transitions. All measurements are
performed at the Φf

ext=Φ0 ¼ 6.5 fluxonium sweet spot. We
first demonstrate cooling of the fluxonium artificial atom
by spontaneous Raman scattering. The black dots in
Fig. 4(a) correspond to a standard Rabi-amplitude experi-
ment on the fluxonium qubit, where a Gaussian pulse of
20-ns σ width and varying amplitude is applied at fq. As
the amplitude is varied, the qubit population oscillates
between thermal equilibrium and inverted population.
From the oscillation amplitude, we infer that the qubit
had 60% probability to be in the ground state jgi, which
corresponds to a temperature of 62 mK. This experiment is
repeated after applying a tone resonant with the je; 0i ↔
jg; 1i transition for 5 μs. After this duration, the fluxonium
has 94% probability to be in jgi, which corresponds to
9 mK—well below thermal equilibrium. We thus demon-
strate cooling of the fluxonium to its ground state by the
Raman process shown in the inset of Fig. 4(a). We also
initialize the qubit in jei by applying a tone resonant with
the jg; 0i ↔ je; 1i transition before performing the Rabi
experiment (blue). This tone inverts the fluxonium pop-
ulation and prepares it in jei with 91.5% probability. The
ground-state population is calibrated from qubit measure-
ments in conjunction with a theoretical model for Raman
cooling (see Appendix D).
We are also able to coherently control the qubit through

the Λ-type system. Figure 4(b) shows Rabi oscillations of
the fluxonium qubit via a virtual transition through the
je; 1i state. Two tones are applied at the qubit for varying
lengths of time after we initially prepare the fluxonium

ground state using Raman cooling. One is detuned
150 MHz below the resonator frequency [black arrow in
the inset of Fig. 4(b)], and the other is detuned below the
jg; 0i ↔ je; 1i transition by ð150þ ΔÞ MHz, where Δ is a
variable additional detuning [the magenta arrow in the inset
of Fig. 4(b)]. We observe a typical Rabi oscillation pattern,
which shows that we can control a qubit with transition
frequency fq ¼ 500 MHz by applying tones of only
around 7 GHz. Note that the optimal detuning of the
jg; 0i ↔ je; 1i transition corresponds to Δ ¼ 60 kHz due
to a Stark shift of this transition. From Δ, we can extract a
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FIG. 4. (a) Rabi flops of the fluxonium jg; 0i ↔ je; 0i tran-
sition with different initial preparations before applying a 20-ns σ
pulse at fq. The black dots correspond to the qubit starting in
thermal equilibrium, where we measure the qubit to be 60% in
jgi, corresponding to 62 mK. The red dots correspond to initially
cooling the qubit to jgi by applying a tone resonant with the
je; 0i ↔ jg; 1i transition (see the inset). The qubit then is in jgi
with a 94% probability. The blue dots correspond to initially
preparing the qubit in jei by applying a tone resonant with the
jg; 0i ↔ je; 1i transition (see the inset), which results in a 91.5%
probability for the qubit to be in jei. The solid lines are sinusoidal
fits to the measured Rabi oscillations. (b) Rabi oscillations of the
fluxonium jg; 0i ↔ je; 0i transition by a Raman process through
the je; 1i state (see inset). The je; 0i ↔ je; 1i tone is applied
150 MHz detuned from resonance, and the jg; 0i ↔ je; 1i is
applied at 150 MHzþ Δ.
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drive amplitude of g3=2π ¼ 3 MHz for the jg; 0i ↔ je; 1i
transition due to nonlinear coupling (see Appendix E).
The methods described above extend the quantum

control of atomic physics by Raman transitions to super-
conducting circuits. In atomic physics, these transitions
couple levels whose direct transition is forbidden and thus
protected from environmental noise. However, the circum-
stances in which this idea can be exploited occur in a
limited number of atoms only. By contrast, in super-
conducting artificial atoms we can engineer circuits to
implement the transitions needed for this quantum control.
Here, as a proof of principle, we apply this method to the
fluxonium artificial atom, whose jgi ↔ jei transition can
be directly driven. This Raman control is absolutely
essential for more-complex physically protected qubits
[10–13], however, whose inherent protection makes them
impossible to directly control and read out. Note also that
our technique separates qubit control from the qubit
transition frequency. Previous two-photon implementations
[35,37] of the jg; 0i ↔ je; 1i transition relied on the direct
jg; 0i ↔ je; 0i transition and thus cannot be used for the
control of protected qubits. With our method, one can
perform coherent operations on the qubit while its direct
transition remains completely isolated.

V. CONCLUSIONS

In conclusion, nonlinear coupling between a qubit and a
resonator can be used to directly drive transitions forbidden
by parity symmetry at the fluxonium sweet spot. This
method implements a Λ-type system within superconduct-
ing circuits. We create in this paper a transition which
completes the triangle spanning the jg; 0i, je; 0i, and je; 1i
states of the fluxonium qubit coupled to an antenna
resonator. We then demonstrate cooling of the fluxonium
qubit by spontaneous Raman scattering, and coherent
oscillations between the ground and excited states driven
by a stimulated Raman process.
The ability to drive previously forbidden transitions in a

superconducting circuit opens the door to applications in
microwave quantum optics [38] and autonomous error
correction [39]. While we focus here on Λ-system physics,
our ability to drive a two-excitation transition can also be
understood as tunable mode coupling, useful for the single-
drive implementation of protocols for photon detection [33]
and remote entanglement [40–42].
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APPENDIX A: THEORETICAL DESCRIPTION
OF A SNAIL

A sketch of a SNAIL circuit element can be seen in
Fig. 2(b). A detailed derivation and analysis of this circuit is
given in Refs. [18,20], and in this appendix we give only a
brief overview. We can express the potential (inductive)
energy of the SNAIL as

USNAILðφÞ¼−αEJ cosφ−nEJ cos

�
ΦS

ext=ϕ0−φ
n

�
; ðA1Þ

where φ is the superconducting phase across the small
junction of the SNAIL, EJ is the Josephson energy of the
large SNAIL junction, α is the ratio between the small and
large junctions, n is the number of large junctions in the
SNAIL loop (in our implementation, n ¼ 3), ΦS

ext is
the external flux through the SNAIL loop, and ϕ0 is the
reduced magnetic flux quantum. In this description, we
eliminate the dynamics of the modes within the n-junction
array and consider the circuit as a single degree of freedom
with equal phases across the array junctions.
To expand Eq. (A1) as a nonlinear inductor, we must first

find the minimum φmin of the potential. This minimum
depends on ΦS

ext and α, and it can be numerically obtained
for each. Then we can expand the SNAIL potential around
the minimum, using the new coordinate φ̃ ¼ φ − φmin. We
express the Taylor expansion of the potential as

USNAILðφ̃Þ ¼ c2φ̃2 þ c3φ̃3 þ c4φ̃4 þ � � � ; ðA2Þ

where cm is the coefficient of themth order in the expansion.
c2 is related to the linear inductance of the SNAIL as
LS ¼ ½ϕ2

0=ð2c2EJÞ�. These coefficients also depend onΦS
ext,

α, and n, and they can be obtained numerically.

APPENDIX B: THEORETICAL DESCRIPTION
OF THE DEVICE

Figure 2(a) shows a sketch of our circuit in which a
fluxonium artificial atom is coupled to an antenna resonator
by sharing a nonlinear inductance composed of SNAILs.
To understand the behavior of the circuit quantitatively, let
us simplify it into an effective circuit given in Fig. 5(b). The
fluxonium is now represented by a small junction (black)
with Josephson energy EJ and capacitive energy EC,
shunted by a linear inductance Lq (dark blue). An external

flux Φf
ext is threaded through the fluxonium loop. The

resonator (light blue) is represented as an LC oscillator with
capacitance Cr and unshared inductance Lr. The N SNAIL
array which couples the two systems (in our implementa-
tion, N ¼ 5) is reduced to a single effective SNAIL
(magenta). We represent the SNAIL as having only
second-order and third-order terms.
We can label the superconducting phase across the

SNAIL array as φS, and we assume that it is divided
equally across all N SNAILs in the array. Thus, we can
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calculate the coefficients of the total SNAIL array from
those of the SNAIL:

ctot2 φS
2 ¼ Nc2

�
φS

N

�
2

; ðB1Þ

where c2 is the second-order coefficient of a single SNAIL
in the array, and ctot2 is the second-order coefficient of the
whole array. Thus, ctot2 ¼ c2=N or Ltot

S ¼ NLS. Linear
inductances in series are simply added, as expected. A
similar calculation shows that ctot3 ¼ ðc3=N2Þ, so the third-
order nonlinearity is suppressed by an additional factor
of N. Higher-order nonlinearities are similarly suppressed
by higher and higher factors, making the low-order non-
linearity assumption better.
The circuit in Fig. 5(b) has only two true degrees of

freedom, and we choose to use the phase across the
Josephson junction φq, and the phase across the resonator
capacitanceφr. These operations are related to the fluxonium
and resonator flux operators given byφq ¼ ϕq=ϕ0 andφr ¼
ϕr=ϕ0, where ϕ0 is the reduced magnetic flux quantum.
We can derive the Hamiltonian for the circuit by

following the circuit quantization protocol [43]. A very
similar derivation is given in Ref. [44], with a shared linear
inductance replacing the SNAIL. The addition of the
SNAIL adds a three-wave-mixing term to the simple
fluxonium-resonator Hamiltonian, of the form

H3WM ¼ ctot3

�
LrLtot

S

LqðLr þ Ltot
S Þφq þ

Ltot
S

Lr þ Ltot
S
φr

�
3

; ðB2Þ

where we assume that Lq ≫ Lr, Ltot
S . This three-wave-

mixing Hamiltonian gives rise to several effects through its
different mixing terms, but let us focus on two terms of
special importance:

Hjgi−jfi ¼ 3ctot3

�
Ltot
S

Lq

�
2 L2

rLtot
S

ðLr þ Ltot
S Þ3 φrφq

2; ðB3Þ

Hjg;0i−je;1i ¼ 3ctot3

Ltot
S

Lq

LrðLtot
S Þ2

ðLr þ Ltot
S Þ3 φr

2φq: ðB4Þ

The term in Eq. (B3) is proportional to the term φrφq
2.

With an additional resonator drive, this term gives rise to an
even drive term of the form φq

2, which is able to drive the
fluxonium jgi ↔ jfi transition at the fluxonium sweet spot
as hgjφq

2jfi ≠ 0. To understand this effective coupling
term, first notice that, from circuit quantization,
φr ¼ φr

ZPFðar þ a†r Þ, where ar is the resonator decay
operator and φr

ZPF represents the zero-point fluctuations
of the resonator phase operator. We can now add a drive
term of the form ϵðar þ a†r Þ in the drive frequency rotating
frame, where ϵ is the resonator drive amplitude. By
applying the displacement operator, we end up with a
drive term of the form φr

ZPFαrφq
2, where αr is the coherent-

state amplitude in the resonator.
The term in Eq. (B4) similarly leads to a drive term of the

formφqφr. This is another even term, but one that allows us
to drive forbidden joint transitions such as jg; 0i ↔ je; 1i
and je; 0i ↔ jg; 1i [45]. Equation (B4) should thus remind
us of tunable mode coupling, as it gives rise to both a beam-
splitter term which enables the je; 0i ↔ jg; 1i transition
and a two-mode squeezing term which enables the jg; 0i ↔
je; 1i transition. Thus, our selection-rule-breaking drive can
also be understood as a tunable coupling between modes,
such that the parity is preserved.
There are two important things to notice in the coefficients

of Eqs. (B3) and (B4). First of all, they both depend on Lr in
the numerator. Lr is the unshared resonator inductance, and

Lr

Crr q

(a) (b)

Φf
ext

Lq

EC

EJ

LS
tot

c3
tot

FIG. 5. (a) The fluxonium artificial atom is made up of a small junction (black) shunted by a large inductance, itself made of an array
of larger Josephson junctions (dark blue). Some of this inductance is shared with the resonator (light blue). In this design, the shared
elements (magenta) are taken to be SNAILs, which allows us to break selection rules at the fluxonium sweet spot. (b) The equivalent
circuit diagram. This circuit has two degrees of freedom, and we express the Hamiltonian as a function of φr, the flux across the
resonator capacitor, and φq, the flux across the fluxonium small junction.
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thus one would expect that, if the antenna shares more of its
inductance, it is more coupled to the fluxonium, and thus the
SNAIL is better able to drive the forbidden transitions. This
intuition is false, as when Lr ¼ 0, the SNAIL element is the
entire inductance of the resonator and the phase across it is
φr. There is still coupling between the two modes, mediated
by the Lq inductor, but the SNAIL does not participate in it
and thus there is no three-wave mixing for the qubit mode.
Thus, a substantial Lr, comparable to Ltot

S , is necessary to
drive the forbidden transitions.
The second thing to notice is that the coefficient in

Eq. (B4) is larger than Eq. (B3) by a factor of Lq=Ltot
S ,

which is experimentally about 50. Thus, this coupling
scheme is more suited to drive two-mode forbidden
transitions such as jg; 0i ↔ je; 1i and je; 0i ↔ jg; 1i.

APPENDIX C: CALCULATING THE DRIVE
AMPLITUDE g3

The term in Eq. (B4) allows us to quantify the effective
coupling strength of our nonlinear transitions. Let us take
this term and add a direct drive on the resonator of the form
ϵðar þ a†r Þ. As mentioned in Appendix B, we can displace
the resonator by the transformation ar → ar þ αr, where
the displacement is chosen to be the coherent steady-state
amplitude in the resonator αr ¼ ½ϵ=ðiκ=2 − ΔrÞ�, where Δr
is the drive detuning from the resonator resonance fre-
quency and κ is its linewidth. This transformation elimi-
nates the direct-drive term, and we end up with an
effectively undriven resonator.
The term in Eq. (B4), however, in this new frame gives

rise to the effective coupling term that we require. This
effective term is of the form

Heff ¼ 6φr
ZPFαrc

tot
3 ϕ3

0

Ltot
S

Lq

LrðLtot
S Þ2

ðLr þ Ltot
S Þ3 φrφq; ðC1Þ

and the drive amplitude term can then be simply obtained
by g3 ¼ hg; 0jHeff je; 1i.
We can separate the discussion of this term into three

components. The first one is the bare coupling term:

gbare3 ¼ 6φr
ZPFc

tot
3

Ltot
S

Lq

LrðLtot
S Þ2

ðLr þ Ltot
S Þ3 ; ðC2Þ

which includes the specific parameters of the design which
we discuss in Appendix B. The flux ΦS

ext through the
SNAIL strongly influences the value of ctot3 and, to a lesser
extent, Ltot

S . Thus, gbare3 is responsible for the improved
ability to drive the forbidden transition with increased flux
(see Fig. 3). Figure 6 shows gbare3 as a function of the flux
through the fluxonium loop, Φf

ext. Recall that, due to the
difference in loop areas, ΦS

ext ¼ Φf
ext=60.

The second component in the g3 term is the matrix
element hg; 0jφrφqje; 1i. Note that φr and φq are not the

field operators of the resonator and fluxonium modes, but
simply convenient bases made up of their linear parts.
Specifically, φq is the field operator of a linear mode very
different from the fluxonium qubit. The statements
hgjφqjfi ¼ 0 and hgjφq

2jfi ≠ 0 are true due to the selec-
tion rules, but calculating the value of the matrix element
requires a diagonalization of the fluxonium Hamiltonian
and is usually done numerically [44]. However, this matrix
element is identical for all fluxonium sweet spots
Φf

ext=Φ0 ¼ mþ 1=2, where m ∈ N. Thus, it can be treated
as a constant for the purposes of this paper, and, from a
numerical diagonalization of the Hamiltonian, we obtain
hg; 0jφrφqje; 1i ≃ 2 at the fluxonium Φ0=2 sweet spots.
It is also important to note that hg; 0jφrφqje; 1i ¼
he; 0jφrφqjg; 1i, and thus our drive term can excite
je; 0i ↔ jg; 1i and jg; 0i ↔ je; 1i with equal amplitude,
and the selection is made by the transition frequency to
which we tune our external drive.
The last component is αr ¼ ½ϵ=ðiκ=2 − ΔrÞ�, the coher-

ent population in the cavity during the drive. This term
is proportional to ϵ and thus shows an increase in transi-
tion rate as our drive amplitude increases. This is the
component we cannot estimate from system parameters,
thus limiting our ability to predict the transition rate of the
nonlinear transition. However, we have independent cali-
brations for the value of g3 from the spontaneous and
stimulated Raman transition measurements, as we discuss
in Appendix D, and we can use them to estimate the
population of the resonator.
Note, however, that we can directly calculate the ratio

g3=ϵ, which is the ratio of the rate atwhichwedrive forbidden
transitions such as jg; 0i ↔ je; 1i and je; 0i ↔ jg; 1i, and
the rate at which we directly drive resonator transitions
such as jg; 0i ↔ jg; 1i and je; 0i ↔ je; 1i. From our system
parameters at Φf

ext ¼ 6.5Φ0, we can estimate that g3=ϵ ¼
0.003. This rate comparison assumes that the transitions are
driven using a tone of the same drive amplitude, at a
frequency equal to the resonance frequency for each
transition.

Φf
ext/Φ0
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FIG. 6. The bare coupling coefficient gbare3 [see Eq. (C2)] vs the
external flux through the fluxonium loop Φf

ext.
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APPENDIX D: CALIBRATION OF THE
FLUXONIUM GROUND-STATE POPULATION

In Fig. 4, we present the measurements of spontaneous
and stimulated Raman transitions in terms of the fluxonium
ground-state population. This axis is actually calibrated by
using known parameters and by assuming a Raman cooling
model for the results in Fig. 4(a), and we explain this
calibration in detail in this appendix.
Recall that we measure the state of the fluxonium via its

effect on the resonator frequency, and there are positions in
the in-phase and quadrature (IQ) phase space of the
reflected signal which correspond to the fluxonium being
in jgi and jei. Let us refer to half of the distance in phase
space between these two positions as A. Thus, if the initial
state of the fluxonium qubit is exactly jgi and it performs
perfect Rabi oscillations, the amplitude for these observed
oscillations would be A. However, as our qubit is in thermal
equilibrium, the actual measured amplitude is

Ath ¼ AðPg
th − Pe

thÞ ¼ Að2Pg
th − 1Þ; ðD1Þ

where Pg
th (P

e
th) is the probability that the fluxonium is jgi

(jei) in thermal equilibrium. Note that Ath is the amplitude
of the oscillations measured along the black curve in
Fig. 4(a).
Similarly, we can define the probability in jgi after the

je; 0i ↔ jg; 1i (red dots) Raman cooling sequence as Pg
red,

and the probability in jei after the jg; 0i ↔ je; 1i (blue
dots) Raman cooling sequence as Pe

blue. Their correspond-
ing Rabi oscillation amplitudes are then

Ared ¼ Að2Pg
red − 1Þ; ðD2Þ

Ablue ¼ Að2Pe
blue − 1Þ: ðD3Þ

We can also find expressions for Pg
red and Pe

blue. Let us
label the transition rate of the je; 0i ↔ jg; 1i transition as
gred. The Raman cooling thus involves a coherent excitation
to the state jg; 1i with a rate gred, followed by an incoherent
decay of the resonator to jg; 0i at rate κ. As our resonator
has a large decay rate κ ¼ 2π × 16.8 MHz, we can rea-
sonably assume that gred ≪ κ. We can thus adiabatically
eliminate the higher state. A similar process can be done for
the jg; 0i ↔ je; 1i transition and its rate gblue. Note that we
can assume gred ¼ gblue ¼ g3, as their corresponding matrix
elements are identical, as discussed in Appendix D. Thus,
we express the cooling rate for both processes using
adiabatic elimination:

Γcool ¼
4g23
κ

: ðD4Þ

The thermal fluxonium population can be described in
terms of an “up” rate Γ↑ which is the rate of transition
jgi → jei, and a “down” rate Γ↓ which is the rate of

transition jei → jgi. Their sum equals the total therma-
lization rate Γ↓ þ Γ↑ ¼ Γ1, and the qubit population is
related to them via

Pg
th ¼

Γ↓

Γ↓ þ Γ↑
¼ Γ↓

Γ1

ðD5Þ

from a detailed balance assumption in equilibrium.
The Raman cooling tones then enter to aid the different

thermal equilibration rates. The red tone cools the qubit to
jg; 0i, and thus the cooling rate Γcool aids Γ↓. Similarly, the
blue tone cools the qubit to je; 0i, and thus the cooling rate
Γcool aids Γ↑. We can thus express the populations after
cooling as

Pg
red ¼

Γcool þ Γ↓

Γcool þ Γ↓ þ Γ↑
¼ 4g23 þ κΓ↓

4g23 þ κΓ↓ þ κΓ↑
; ðD6Þ

Pe
blue ¼

Γcool þ Γ↑

Γcool þ Γ↓ þ Γ↑
¼ 4g23 þ κΓ↑

4g23 þ κΓ↓ þ κΓ↑
: ðD7Þ

Let us summarize all of these relations. Equations (D1)–
(D3) relate three measured quantities, Ath, Ared, and Ablue, to
expressions with several unknowns. From the following
equations, we see that we express all of these terms using
only three unknowns: A, g3, and Pg

th. All other unknowns
can be expressed using these three, as well as known
quantities such as κ ¼ 2π × 16.8 MHz and Γ1, which is
related to the qubit lifetime 1=Γ1 ¼ T1 ¼ 5.7 μs. Thus, we
can solve a set of three equations with three unknowns and
extract the thermal population of our fluxonium qubit.
The extracted qubit equilibrium temperature is 62 mK,

which corresponds to Pg
th ¼ 0.6. We also obtain the popu-

lation after cooling to jgi, Pg
red ¼ 0.94, and the population

after cooling to jei, Pe
blue ¼ 0.915. This is the calibration of

the qubit population which is used in Fig. 4.
This analysis also gives us the transition rate,

g3 ¼ 2π × 0.87 MHz. Notice that we self-consistently
justify our assumption g3 ≪ κ. We can also compare this
measurement to the theoretical prediction. In Appendix D,
we discuss the calculation of the rate g3 [see Eq. (C1)],
where we can independently predict all of the coefficients
besides αr, which is the coherent-state population in the
resonator which enables this drive. From the measurement
of g3, we can estimate the photon population in the
resonator due to this cooling drive as jαrj2 ¼ 0.35.

APPENDIX E: ESTIMATION OF DRIVE RATES
FROM STIMULATED RAMAN TRANSITION

MEASUREMENTS

Notice that the Rabi oscillations in Fig. 4(b) are not quite
centered at Δ ¼ 0 but rather are slightly offset at
Δ ¼ 60 kHz. This shift is a result of the Stark shift in
the nonlinear mode, and it is related to the drive amplitude
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and the detuning by ΔStark ¼ ðg23=ΔrÞ. Notice that, in this
case, there is only one nonlinear mode, and only it
experiences a Stark shift.
The Stark shift allows us to estimate g3 ¼ 2π × 3 MHz.

Similar to the procedure at the end of Appendix D, we can
thus estimate the photon number in the resonator to be
jαrj2 ¼ 4.3. This value seems to contradict the transition
jg; 0i ↔ je; 1i, as there are more photons in the cavity. But
note that while this drive is on, we are in a displaced frame,
and the states jg; 0i and je; 1i are defined from this
displaced value. Also note that this value is larger than
that of the cooling drive by a factor of about 10, consistent
with the generator being set 10 dB higher for this
measurement. This is also the basis of the rate estimate
in Fig. 2, accounting for the change in the external drive
amplitude for the spectroscopy measurement.
Figure 7 shows a cut of Fig. 4(b) at Δ ¼ 100 kHz. To

quantify these oscillations, we can compare then to a
theoretical model given by

HΛ=ℏ ¼ ωra
†
r ar þ

ωq

2
σz þ

χ

2
a†r arσz

þ 2ϵ cosðωdtÞðar þ a†r Þ
þ 2g3 cosðωnltÞðarσ− þ a†rσþÞ; ðE1Þ

where ar is the resonator annihilation operator and the
fluxonium is modeled as a two-level system in the Pauli
σz basis. g3 is the transition rate of the nonlinear drive (the
same coefficient as is discussed in Appendix C), ϵ is the
coefficient of the direct resonator drive, and χ ¼
2π × 0.7 MHz is the dispersive coupling between the fluxo-
nium and the resonator (estimated from the IQ response
of the fluxonium). ωd ¼ ωr − Δr is the drive frequency
of the direct cavity drive, where ωr is the resonator
frequency and Δr ¼ 2π × 150 MHz is the drive detuning.

ωnl ¼ ωr þ ωq − Δr − Δ is the drive frequency for the
nonlinear transition, and it is detuned from the jg; 0i ↔
je; 1i resonance frequency byΔr þ Δ, where Δ is a variable
detuning [see Fig. 4(b)].
By moving to the rotating frames Ur ¼ eia

†
r arωdt and

Uq ¼ eiσzðωq−ΔÞt=2 and taking the rotating-wave approxi-
mation, we arrive at the time-independent Hamiltonian:

HΛ=ℏ ¼ Δra
†
r ar þ

Δ
2
σz þ

χ

2
a†r arσz

þ ϵðar þ a†r Þ þ g3ðarσ− þ a†rσþÞ: ðE2Þ

Notice that we have independent measurements for every
coefficient in Eq. (E2) except ϵ. We also know all of the
decay constants for the fluxonium and resonator, and the
initial population of the fluxonium (which is cooled to 94%
in jg; 0i by Raman cooling). Thus, we can simulate the
master equation for our system, and fit it to our measure-
ment in Fig. 7 with only a single fit parameter ϵ. This
numerical simulation result is shown as the green line in the
figure. Notice that we obtain good agreement with the
measurement, and thus we conclude that our Hamiltonian
in Eq. (E2) is a good description for the dynamics of the
system.
The value we get is ϵ ¼ 2π × 50.8 MHz, and from it we

obtain the effective Rabi rate of our oscillations ΩR ¼
½ð2g3ϵÞ=Δr� ¼ 2π × 2 MHz. Recall that, in Appendix C,
we estimate that, for the same drive amplitude,
g3=ϵ ¼ 0.003, and this value is consistent with our mea-
surements given that the direct resonator generator is set to
be −25 dB lower than the nonlinear drive generator in our
experiment.
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