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Stabilization and operation of a Kerr-cat 
qubit

A. Grimm1,4,6 ✉, N. E. Frattini1,6, S. Puri2, S. O. Mundhada1, S. Touzard1, M. Mirrahimi3,  
S. M. Girvin2, S. Shankar1,5 & M. H. Devoret1 ✉

Quantum superpositions of macroscopically distinct classical states—so-called 
Schrödinger cat states—are a resource for quantum metrology, quantum 
communication and quantum computation. In particular, the superpositions of two 
opposite-phase coherent states in an oscillator encode a qubit protected against 
phase-flip errors1,2. However, several challenges have to be overcome for this concept 
to become a practical way to encode and manipulate error-protected quantum 
information. The protection must be maintained by stabilizing these highly excited 
states and, at the same time, the system has to be compatible with fast gates on the 
encoded qubit and a quantum non-demolition readout of the encoded information. 
Here we experimentally demonstrate a method for the generation and stabilization 
of Schrödinger cat states based on the interplay between Kerr nonlinearity and 
single-mode squeezing1,3 in a superconducting microwave resonator4. We show an 
increase in the transverse relaxation time of the stabilized, error-protected qubit of 
more than one order of magnitude compared with the single-photon Fock-state 
encoding. We perform all single-qubit gate operations on timescales more than sixty 
times faster than the shortest coherence time and demonstrate single-shot readout 
of the protected qubit under stabilization. Our results showcase the combination of 
fast quantum control and robustness against errors, which is intrinsic to stabilized 
macroscopic states, as well as the potential of these states as resources in quantum 
information processing5–8.

A quantum system that can be manipulated and measured tends to 
interact with uncontrolled degrees of freedom in its environment, 
leading to decoherence. This presents a challenge to the experimen-
tal investigation of quantum effects and in particular to the field of  
quantum computing, where quantum bits (qubits) must remain coher-
ent while operations are performed. Most noisy environments are only 
locally correlated and thus cannot decohere quantum information 
encoded in a non-local manner. Therefore, quantum information can 
be protected through the use of spatial distance9–11 or entangled qubit 
states12,13. Crucially, this concept can be extended to non-local states 
in the phase space of a single oscillator2,14, with the additional benefit 
of involving fewer physical components, a property termed hardware 
efficiency. The latter is desirable because fully protecting a quantum 
system against all forms of decoherence is likely to involve several layers 
of encodings, and it is crucial to introduce efficient error protection 
into the physical layer while maintaining simplicity6,7,15.

A natural choice for non-locally encoding a qubit into the phase space 
of an oscillator is superpositions of macroscopically distinct coherent 
states—the so-called Schrödinger cat states. Here we choose the states 
C α α| ⟩ = (| + ⟩ ± | − ⟩)/ 2α

±  with average photon number n α¯ = | |2  and, 
respectively, even and odd photon number parity as the Z eigenstates 
of the encoded qubit (Fig. 1a). The coherent states α| + ⟩ and α| − ⟩ are 

the approximate X eigenstates (Supplementary Information section I), 
and their distance in phase space ensures protection against any noise 
process that causes local displacements in this space. Crucially, this 
leads to a suppression of phase flips that is exponential in the average 
photon number n (refs. 1,2). In particular, photon loss, the usual noise 
process in an oscillator, cannot induce transitions between α| + ⟩ and 

α| − ⟩ because they are eigenstates of the annihilation operator â. This 
is not the case for their superpositions, so a stochastic photon-loss 
event corresponds to a bit-flip error on the encoded qubit: C C∓a α^| ⟩ = | ⟩α α

± , 
which also affects the parity-less Y eigenstates C α α| ⟩ = (| + ⟩ i| − ⟩)/ 2α

i ∓∓ , 
where i = −1. However, for a given single-photon-loss rate κa, the bit- 
flip rate of approximately nκ2 ¯ a (ref. 16, Supplementary Information  
section XI) increases only linearly with the photon number. A qubit 
with such ‘biased noise’ is an important resource in fault-tolerant quan-
tum computation17,18. Additional layers of error correction can then 
focus strongly on the remaining bit-flip error6,7,18. This substantially 
reduces the hardware complexity compared with conventional 
approaches that use qubits without such error protection.

Here we show that such a protected qubit can be stabilized 
autonomously in a simple and versatile implementation similar to a  
superconducting transmon under parametric driving. Unlike in other 
hardware-efficient encodings19–21, the most nonlinear mode of our 
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system encodes and stabilizes the qubit without requiring auxiliary 
nonlinear modes that could introduce additional uncorrectable errors.

For this protected qubit to be practical, it is essential that operations 
can be performed faster than the shortest decoherence timescale,  
here the bit-flip time. We experimentally demonstrate such fast gate 
operations and quantum non-demolition single-shot readout in  
a system that maintains phase-flip protection via the simultaneous 
stabilization of two opposite-phase coherent states.

Our approach is based on the application of a resonant single-mode 
squeezing drive to a Kerr-nonlinear resonator4. In the frame rotating at 
the resonator frequency ωa, the system is described by the Hamiltonian

H ħ Ka a ϵ a a^ / = − ^ ^ + ( ^ + ^ ), (1)cat
†2 2

2
†2 2

where K is the Kerr nonlinearity, ϵ2 is the amplitude of the squeezing 
drive and ħ is the reduced Planck’s constant. Some intuition on this 
system can be gained from computing H⟨ ˆ ⟩cat  as a function of classically 
treated phase-space coordinates. There are two stable extrema at 

α ϵ K± = ± /2 , as indicated by the markers in Fig. 1c. They correspond 
to the lowest degenerate eigenstates of the quantum Hamiltonian4 
(Supplementary Information) and thus do not decay to vacuum.  

These eigenstates are separated from the rest of the spectrum by an 
energy gap E ħ Kn/ ≈ 4 ¯gap  (Supplementary Information section III, 
Supplementary Fig. 1), which sets the speed limit for operations and 
readout. The energy barrier between these eigenstates prevents  
jumps along the X-axis of this ‘Kerr-cat qubit’ (KCQ). If no squeezing 
drive is applied, Ĥcat reduces to the Hamiltonian of an anharmonic 
oscillator. This resembles a superconducting transmon with anharmo-
nicity 2K, commonly used to encode a ‘Fock qubit’ (FQ) into the first 
two photon number states 0⟩ and 1⟩ (Fig. 1b). Its classical energy dis-
plays one single extremum in phase space harbouring the quadrature 
expectation values of both X eigenstates without the protection of an 
energy barrier (Fig. 1c, right panel). By toggling the squeezing drive, a 
Kerr-nonlinear resonator can be tuned to implement either type of 
qubit.

Our experimental implementation consists of a superconducting 
nonlinear resonator placed inside a three-dimensional (3D) micro-
wave cavity (Fig. 1d). This is a standard setup in 3D transmon qubits 
with a few key modifications (Methods). The foremost modification, 
employing a superconducting nonlinear asymmetric inductive ele-
ment (SNAIL)22 as a nonlinear inductor (Fig. 1f), allows us to create 
single-mode squeezing by applying a coherent microwave drive ωs 
at twice the resonator frequency ωa and makes the resonator flux  
tunable. Here we tune our device to a frequency ωa/2π = 6 GHz and  
Kerr nonlinearity K/2π = 6.7 MHz. At this frequency, the FQ has an 
amplitude damping time T1 = 15.5 μs and a transverse relaxation time 
T2 = 3.4 μs.

The FQ is employed for initialization and measurement of the KCQ 
during most experiments described in this work. This is possible 
because the states C|0⟩, | ⟩α

+  ( C|1⟩, | ⟩α
− ) spanning the two Bloch spheres 

have the same even (odd) photon number parity, which is conserved 
by the system Hamiltonian (equation (1)). Consequently, ramping the 
squeezing drive on and off slowly with respect to 1/2K, as sketched in 
Fig. 1c, adiabatically maps between the FQ and KCQ (Methods).

We now show that we indeed implement the Hamiltonian (1), and 
thus initialize and stabilize a KCQ, by demonstrating the unique features 
of Rabi oscillations around the X axis of its Bloch sphere. To this end, 
we apply an additional coherent drive ϵ a ϵ aˆ + * ˆx x

†  with amplitude ϵx 
and frequency ωa = ωs/2 to the system. This lifts the degeneracy between 
the states α| + ⟩ and α| − ⟩, and therefore leads to oscillations with a Rabi 
frequency

Ω ϵ α= Re(4 ) (2)x x

between their superposition states along the purple circle in Fig. 1a. 
This picture is valid for large enough α and for ≪ϵ E ħ/x gap  (ref. 4; see 
also Supplementary Information section IV). Note that equation (2) is 
different from the Rabi frequency of a FQ in two ways. First, it depends 
on the amplitude of the squeezing drive through α ϵ∝ 2 . Second, it 
varies with the phase of the applied Rabi drive arg(ϵx) (for simplicity 
we chose ϵ2, α ∈ ℝ).

We first focus on the effect of the squeezing drive on the Rabi fre-
quency. We initialize in | ⟩α

+C  and apply a Rabi drive with constant |ϵx| and 
arg(ϵx) = 0 for a variable time Δt and a variable amplitude ϵ2 (Fig. 2a). 
Figure 2b shows the Rabi frequencies for each ϵ2, extracted from the 
oscillations in the measured FQ 0⟩-state population fraction at the end 
of the experiment. For ϵ2 = 0, we are simply driving FQ Rabi oscillations 
giving a direct calibration of |ϵx|/2π = 740 kHz. For large values of ϵ2, 
the Rabi frequency becomes a linear function of ϵ2 , confirming the 
theoretical prediction of equation (2). The solid black line shows a 
one-parameter fit to a numerical simulation of our experiment  
(Methods).

We now turn to another unique feature of these Rabi oscillations by 
setting ϵ2/2π = 15.5 MHz and varying Δt and arg(ϵx). As expected, the 
measured oscillations shown in Fig. 2c are π-periodic in arg(ϵx). Three 
cuts through this data (dashed lines) are shown in Fig. 2d. The top panel 
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Fig. 1 | Qubit encoding, stabilization and implementation. a, Bloch sphere of the 
protected Kerr-cat qubit (KCQ) in the large-α limit (Supplementary Information 
section I). The states on all six cardinal points are labelled, indicated by coloured 
markers, and their Wigner function16 phase-space representations are sketched. 
Here, CZ α α|± ⟩ = | ⟩ = (| + ⟩± | − ⟩)/ 2α

±  and C ∓∓Y α α|± ⟩ = | ⟩ = (| + ⟩ i| − ⟩)/ 2α
i . The 

continuous X(θ) gate with the arbitrary rotation angle θ and the discrete Z(π/2) 
gate are shown by a purple circle and a blue arrow, respectively. b, Bloch sphere of 
the single-photon Fock qubit (FQ). c, Energy (E) dependence of equation (1) on 
classical phase-space coordinates Re(a) and Im(a) for squeezing drive amplitudes 
ϵ2/2π = 17.75 MHz (left) and ϵ2 = 0 (right) with a sketch showing the adiabatic ramp 
of the drive over a time τramp ≫ 1/2K. Black lines are constant energy contours. The 
quadrature expectation values of the X|± ⟩ states from a, b are indicated by their 
respective markers. d, Photograph of the nonlinear resonator (purple frame) 
inside the copper section of the readout cavity (Methods). Also represented are the 
X(θ)-rotation drive (ωa) and the squeezing-generation drive (2ωa). e, Schematic of 
the nonlinear resonator with pad offset δ to set the dispersive coupling to the 
readout cavity (Methods) and spiral symbol representing the nonlinear inductor 
(SNAIL element). f, Scanning electron micrograph of the SNAIL element consisting 
of four Josephson junctions in a loop threaded by an external magnetic flux Φ.
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corresponds to a phase difference of π/2 between the coherent state 
amplitude and the Rabi drive, meaning that oscillations are suppressed. 
The middle and bottom panels at respective phase differences of π/4 
and 0 display increasing Rabi frequencies, with the latter corresponding 
to the red star marker in Fig. 2b. In the bottom panel, the black line is the 
result of a numerical simulation scaled to match the contrast of the data. 
The black lines in the top and middle panels use the same scaling factor 
and are thus parameter-free predictions in good agreement with the 
measured data. Having benchmarked our simulation in this way, we use 
it to compute the full density matrix of the resonator, which we represent 
with Wigner functions (Fig. 2e). Apart from slight asymmetries due to 
the finite ramp time of the initial mapping pulse, they agree well with 
the expected Z| + ⟩, Y| + ⟩, Z| − ⟩ and Y| − ⟩ states of the KCQ.

Next, we characterize the mapping operation and a set of single-qubit 
gates on the KCQ by performing process tomography (Methods). In 
all subsequent experiments, the average photon number of the cat 
states is set to n̄ ≈ 2.6 and frequency shifts induced by the squeezing 
drive are taken into account by setting ∼ω ω/2 =s a , where ∼ωa is the 
Stark-shifted resonator frequency (Supplementary Information section 
II). The pulse sequence for tomography of the mapping between the 
FQ and the KCQ is shown in Fig. 3a and the measured state vectors are 
plotted on a Bloch sphere in Fig.  3b. An estimate of the fidelity 
ℱ ≈ 0.855 ± 0.002map  (± one standard deviation here and for all subse-
quent values) is obtained by using the Pauli transfer matrix approach23 
(Supplementary Information). This number reflects the fidelity of the 
tomography FQ pulses as well as of the mapping itself, because, apart 
from a normalization by the FQ Rabi contrast, the presented fidelities 
include state-preparation-and-measurement (SPAM) errors (Supple-
mentary Information section V). We expect these errors to be domi-
nated by decoherence during the comparatively slow adiabatic ramps. 
This could be remedied in future experiments by using optimal pulse 
shapes, which can reduce the duration of the mapping operation by a 
factor of more than 40 with respect to its present value4.

We now turn to the pulse sequence shown in Fig. 3c, which addition-
ally performs an X(π/2) gate on the KCQ. The process tomography data 
(Fig. 3d) shows the desired rotation around the X-axis with a fidelity of 
ℱ ≈ 0.857± 0.001X (π/2) . Comparing this value to ℱmap indicates that 
ℱX (π/2) is mostly limited by SPAM errors. From a complementary  
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Fig. 2 | Rabi oscillations of the protected KCQ. a, Pulse sequence to perform 
the following functions: (1) initialize the KCQ ( C|0⟩ → | ⟩α

+ ), (2) drive Rabi 
oscillations for a varying time Δt, and (3) map onto the FQ and perform 
dispersive readout. ωs, ωs/2 and ωb are the frequencies of the respective drives. 
A black arrow indicates the endpoint of the numerical simulations performed 
for b, d, e (Methods). b, Dependence of the Rabi frequency Ωx on ϵ2 . 
Experimental data are open grey circles. The solid black line is a one-parameter 
fit to the data used to calibrate ϵ2 (Methods). The red star indicates the 
condition ϵ2/2π = 15.5 MHz used for c, d, e. c, Dependence of the experimentally 
measured Rabi oscillations on time Δt and on the phase of the Rabi drive arg(ϵx). 

The colour scale gives the ground state population of the FQ (P0) at the end of 
the experiment. d, Cuts of c for the three Rabi-drive phases indicated by dashed 
lines. Open grey circles are the experimental data and black lines are the 
simulation. Symbols in the bottom panel indicate the times for which the 
simulated oscillator state is shown in e. e, Simulated phase-space 
representation of the oscillator density matrix corresponding to the Z| + ⟩, 

Y| + ⟩, Z| − ⟩ and Y| − ⟩ states of the KCQ (from top to bottom). The colour scale 
gives the value of the Wigner function W(a) as a function of the real and 
imaginary part of the phase-space coordinate a.
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measurement (Supplementary Fig. 3), we estimate the infidelity  
due to over-rotation and decoherence during the gate operation to 
about 0.01.

As this operation is compatible with an arbitrary angle of rotation, 
only a π/2 rotation around the Z-axis is needed to reach any point on 
the KCQ Bloch sphere. Nominally, such a gate is incompatible with the 
stabilization as it could be used to go between the states α| + ⟩ and α| − ⟩. 
However, for ϵ2 = 0, the free evolution of the Kerr Hamiltonian for a 
time π/2K ≈ 37.3 ns achieves the required operation4,24,25 (Methods and 
Fig. 3e). The tomography data shown in Fig.  3f gives a fidelity 
ℱ ≈ 0.811 ± 0.001Z (π/2) . We attribute the reduction of fidelity with  
respect to ℱmap to the difference between the actual gate time 
TZ(π/2) = 38 ns and π/2K, and to the finite rise time of the step function 
in ϵ2 of about 4 ns; both of which are not limitations of our device but 
of our room-temperature electronics (Supplementary Information 
section VI).

So far, we have characterized the basic properties and gate opera-
tions of the KCQ by mapping back onto the FQ and using the 
well-understood dispersive readout method. This readout, however, 
destroys the state of the KCQ. We now demonstrate an entirely new 
way to perform a quantum non-demolition measurement on the X 
component of the stabilized KCQ, which we call the ‘cat-quadrature 
readout’ (CR). We apply an additional drive at frequency ωcr = ωb − ωs/2, 
where ωb is the frequency of the readout cavity. Through the three-wave 
mixing capability of our system, this generates a frequency-converting 
interaction between the nonlinear resonator and the readout cavity. 
In the frame rotating at both ω ω/2 =s a

∼  and ωb, this adds the following 
term to equation (1):

H ħ g ab a b^ / = i ( ^ ^ − ^ ^). (3)cr cr
† †

Here, b̂ is the annihilation operator of the cavity field and gcr/2π = 1.7 MHz 
is the independently measured coupling strength (Supplementary  
Fig. 6). For a quadrature expectation value a a α⟨ ˆ + ˆ ⟩/2 = ±†  in the  
nonlinear resonator, this causes an effective coherent drive on the 
cavity and projects the KCQ onto the corresponding state α|± ⟩ along 
its X-axis. We gain information about the result of this projection by 
measuring the emitted cavity field.

We characterize the fidelity of this readout by first initializing the 
KCQ along its X-axis and then applying a CR pulse for a time Tcr = 3.6 μs 
as shown in Fig. 4b. Two histograms of the measured cavity field are 
shown in Fig. 4a for initialization in α| + ⟩ and α| − ⟩, respectively. Their 
separation is large enough to implement a single-shot readout by set-
ting a threshold at I/σ = 0 with total fidelity ℱ = 0.74 (Methods), where 
I/σ is a dimensionless quantity corresponding to the I-quadrature sig-
nal divided by the the standard deviation σ of the histograms. This 
fidelity is a lower bound including errors in state preparation caused 
by the thermal population of the FQ  1⟩ state (contributing an infidelity 
of about 2 × 4% = 8%) and imperfections during the initial FQ pulse and 
mapping. Finally, we characterize the quantum-non-demolition aspect 
of the CR as Q = 0.85 from two successive measurements (Methods).

We now use this CR to investigate the phase-flip time of the KCQ. The 
decay of the X⟨ ⟩ component for either initial state along this axis is 
measured using the pulse sequence shown in Fig. 4b. We fit the data to 
a single-exponential decay with characteristic times τ+X = 105 μs ± 1 μs 
and τ−X = 106 μs ± 1 μs. Additional measurements with dispersive read-
out confirm this result (Supplementary Fig. 7).

Similarly, the coherence times of both the Y⟨ ⟩ and Z⟨ ⟩ components 
are measured using CR, but employing only operations on the KCQ 
after the initial C|0⟩ → | ⟩α

+  mapping operation (Fig. 4d, f). The resulting 
decay curves are displayed in Fig. 4e, g. Single-exponential fits of the 
data yield the decay times τ+Y = 2.51 μs ± 0.06 μs, τ−Y = 2.60 μs ± 0.05 μs, 
τ+Z = 2.60 μs ± 0.07 μs and τ−Z = 2.56 μs ± 0.07 μs. These values are slightly 
smaller than the predicted bit-flip time due to photon loss 
τloss = T n/2 ¯1  = 2.98 μs. We expect that photon-gain processes play a role 
in this reduction (Supplementary Information section XI, Supplemen-
tary Fig. 8).

Our results demonstrate a 30-fold increase in the phase-flip time 
of the protected KCQ with respect to the FQ. Crucially, we perform a 
full set of single-qubit gates on the protected qubit on timescales that 
are much shorter than its bit-flip time. Although the measured gate  
fidelities are limited by SPAM errors, an upper bound of the error 
rate due to decoherence during the gate operations is given by:  
TX(π/2)/τ+Y ≈ TZ(π/2)/τ+Y < 2 × 10−2. The combination of error protection, 
fast gates and single-shot readout opens the door to using stabilized 
Schrödinger cat states as physical qubits in a future quantum computer. 
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data for α| + ⟩ ( α| − ⟩) and solid lines are Gaussian fits of width σ used to scale the 
quadrature axes, I and Q. Setting a threshold at I/σ = 0 (dashed line) implements a 
direct single-shot readout of the KCQ along its X-axis. b, CR pulse sequence for the 
measurements presented in a, c. After state initialization in α|± ⟩ (Y(±π/2) gate on 
the FQ and mapping), a pulse at frequency ωcr = ωb − ωs/2 is applied for a time 
Tcr = 3.6 μs converting the quadrature amplitude of the KCQ to a drive on the 
readout cavity at ωb. The wait time Δt is set to zero to obtain the results shown in a 

and varied in c. c, KCQ X⟨ ⟩-component coherence. Open blue circles are data and 
solid black lines are single-exponential fits with decay times τ+X = 105 μs ± 1 μs and 
τ−X = 106 μs ± 1 μs. d, Pulse sequence for e. After initialization in C∓| ⟩α

i  (mapping 
C|0⟩ → | ⟩α

+  and X(∓π/2) gate) and variable wait time Δt, a Z(π/2) gate is performed 
followed by CR. e, KCQ Y⟨ ⟩-component coherence. Open blue circles are data and 
solid black lines are single-exponential fits with decay times τ+Y = 2.51 μs ± 0.06 μs 
and τ−Y = 2.60 μs ± 0.05 μs. f, Pulse sequence for g. After initialization in C| ⟩α

±  
(mapping C|0⟩ → | ⟩α

+  and either X(0) or X(π) gate) and variable wait time Δt, a X(π/2) 
gate and a Z(π/2) gate are performed followed by CR. g, KCQ Z⟨ ⟩-component 
coherence. Open blue circles are data and solid black lines are single-exponential 
fits with decay times τ+Z = 2.60 μs ± 0.07 μs and τ−Z = 2.56 μs ± 0.07 μs.
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The simplicity of our implementation provides a straightforward path 
to coupling several KCQs and demonstrating operations between them. 
In particular, our qubit permits a noise-bias-preserving controlled-NOT 
gate6, which would be impossible with standard two-level qubits7. More-
over, KCQ s could be applied as auxiliary systems for fault-tolerant error 
detection on other logical qubits5. This will require further improve-
ments in device performance such as the bit-flip time, currently limited 
by losses due to the copper cavity.

The limitation of the phase-flip time also requires further investiga-
tion. Measurements performed at other flux points with different 
strengths of the third- and fourth-order nonlinearities indicate that 
coherence decreases when stronger drives have to be applied to the 
system to reach similar photon numbers. Similarly, an increase in pho-
ton number beyond the n̄ ≈ 2.6 operating point chosen in this work 
decreases coherence. This is probably related to heating effects asso-
ciated with the strong driving of Josephson junction devices26,27 caus-
ing leakage to higher excited states outside of the KCQ encoding. Such 
leakage can be counteracted through controlled two-photon dissipa-
tion back towards the states of the KCQ5. This dissipation-based 
approach to stabilization has been effective in achieving strongly  
biased noise28, but quantum operations that are much faster than all 
coherence timescales of the encoded qubit remain difficult to achieve29. 
The optimal solution should be to rely on a combination of two-photon 
dissipation, squeezing drive and Kerr nonlinearity for phase-flip  
suppression and on the Kerr nonlinearity for high gate speeds.

In addition to its applications in fault-tolerant quantum compu-
tation4–6,8, our system extends the understanding of bistability in 
parametrically driven Kerr nonlinear oscillators from the classical 
regime30–33 to the quantum regime where nonlinearity dominates over 
losses24,25,34,35. Our results demonstrate long-lived quantum superpo-
sitions of degenerate, macroscopically distinct semi-classical states 
arising from Hamiltonian bistability. Such states could shed light on the 
quantum-classical transition36 and can be useful in weak force measure-
ments37. Networks of coupled bistable oscillators can be mapped onto 
Ising spins and used to investigate non-equilibrium quantum phase 
transitions38 or to solve combinatorial optimization problems39–41. 
These examples suggest that our Kerr-cat system is likely to be applied 
both to quantum computation and for the investigation of fundamental 
quantum effects.
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Methods

Experimental implementation
As described in the main text, our experimental implementation con-
sists of a superconducting nonlinear resonator placed inside a 3D 
microwave cavity (Fig. 1d, Supplementary Information section VI). The 
main differences with respect to a 3D transmon qubit are as follows. 
Large capacitor pads help reduce the Kerr nonlinearity of the resonator  
relative to a transmon and thus limit the drive strength ϵ2 necessary to 
reach appreciable coherent-state amplitudes. We orient the resonator 
such that its dipole moment is perpendicular to the electric field direction 
of the lowest-frequency cavity mode (ωb/2π = 8.9 GHz) to avoid strong 
hybridization despite the large pads, and reintroduce a small precisely 
tuned coupling necessary for dispersive readout by slightly offsetting the 
pads (note δ in Fig. 1e). Furthermore, instead of a single Josephson junc-
tion, we employ a SNAIL22 (Fig. 1f). This makes the resonator flux tunable 
and endows it with both third- and fourth-order nonlinearities. We use 
the former to generate single-mode squeezing by applying a coherent 
microwave drive ωs at twice the resonator frequency, thus converting 
one drive photon into two resonator photons through three-wave mixing; 
the latter yields the required Kerr nonlinearity. An in-depth description 
of the device design and a full list of system parameters are given in Sup-
plementary Information sections VI, VII, Supplementary Table 2.

Adiabatic mapping between the FQ and KCQ Bloch spheres
Without the large-α approximation from the main text, the expressions 
for the even and odd cat states are given by C N α α| ⟩ = (| + ⟩ ± | − ⟩)α α

± ± , 
where α ϵ K= /2  is the amplitude of the coherent states in the  
superposition and N = 1/ 2(1 ± e )α

n± −2 ¯  is a normalization coefficient 
accounting for α α|⟨ + | − ⟩| = e ≠ 0n−2 ¯  (ref. 4, Supplementary Information). 
These expressions are valid for all ϵ2/K and, in the limit ϵ2/K → 0, they 
become C n| ⟩ → | = 0⟩α

+  and C n| ⟩ → | = 1⟩α
− . This validates the mapping 

between the FQ and KCQ Bloch spheres, which share a common defini-
tion Z|± ⟩ = | ⟩α

±C  for their respective values of α. We perform the mapping 
by ramping the squeezing drive on and off with a hyperbolic-tangent 
profile over 320 ns. To avoid leakage to higher excited states, this time 
is chosen to be much longer than 1/2K, where 2K corresponds to the 
anharmonicity of the FQ.

Numerical simulation
Here we describe the numerical simulation performed to obtain the 
results shown in Fig. 2. For the data presented in Figs. 3, 4 we compen-
sate for all drive-related detunings by calibrating the drive frequen-
cies (Supplementary Information section VIII, Supplementary Fig. 5).  
However, when measuring the data shown in Fig. 2, it would be imprac-
tical to perform this calibration for each drive strength ϵ2. Instead we 
apply the tone generating the squeezing drive at twice the unshifted 
mode frequency ωs = 2ωa and the X-rotation drive a frequency ωs/2. The 
resulting system Hamiltonian is

H ħ Ka a g ξ a a K ξ a a ϵ a ϵ a^ / = − ^ ^ + 3 ( ^ + ^ ) − 4 | | ^ ^ + ^ + ^,x xs
†2 2

3
†2 2 2 † † ∗

where we have expressed ϵ2 in terms of the independently calibrated 
third-order nonlinearity g3 ≈ 20 MHz and the dimensionless drive 
strength ξ (Supplementary Information section II). The third term 
corresponds to a drive-dependent frequency detuning due to the a.c. 
Stark shift.

We perform a numerical simulation of our system, which is described 
by the master equation

D Dρ
ħ

H ρ κ n a ρ κ n a ρ^̇ = −
i

[ ^ , ^] + (1 + ) [ ^] ^ + [ ^ ] ^ ,s a th a th
†

here D O O O O O O Oρ ρ ρ ρ[ ^ ] ^ = ^ ^ ^ − ^ ^ ^ − ^ ^ ^† 1
2

† 1
2

† , ρ̂ is the simulated density  
matrix of the nonlinear resonator, the dot indicates  the time 

derivative, κa = 1/T1 is the single-photon-loss rate of the nonlinear 
resonator and nth = 0.04 its equilibrium thermal 1⟩-state occupation 
number. Our simulation mimics the experiment using the same rise 
times for the tanh ramps of the squeezing drive (320 ns) and the 
X-rotation drive (80 ns) up to the point just before mapping back 
onto the FQ marked by a black arrow in Fig. 2a. At this point, we com-
pute C Cρ⟨ | ^| ⟩α α

+ + .
We calibrate the abscissa of Fig. 2b by fitting this simulation to the 

Rabi frequency obtained at the maximum strength of the squeezing 
drive using the corresponding value of ξ (or equivalently ϵ2) as the only 
free parameter. We then perform the simulation for all other values of 
ϵ2 to obtain the solid black line shown in the figure. The black line in 
the bottom panel of Fig. 2d corresponds to the result of one of these 
simulations (marked by a red star in Fig. 2b) scaled to match the contrast 
of the data. This accounts for the fact that in the experiment the state 
C| ⟩α

+  is mapped onto the 0⟩ state of the FQ, which is then measured. This 
process as well as the finite mapping and measurement fidelities are 
not part of the simulation. The black lines in the other two panels of 
this figure are obtained by changing arg(ϵx) but using same scaling 
factor.

Experimental details of the gate process tomography
Here we describe pulse sequences used to obtain the data presented 
in Fig. 3a, c, e. At the beginning of each sequence, the FQ is initialized 
in one of the six states X|± ⟩, Y|± ⟩ and Z|± ⟩. These are then adiabati-
cally mapped onto the KCQ. Each sequence ends with the reverse 
mapping and measurement of the resulting X⟨ ⟩, Y⟨ ⟩ and Z⟨ ⟩ compo-
nent of the FQ state using appropriate FQ pulses (grey box in the 
figures).

To perform the X(π/2) gate, we apply a Gaussian pulse with a duration 
of 24 ns and a maximum amplitude of ϵX , π

2
 = 6.5 MHz.

To implement a Z(π/2) gate, we abruptly set the squeezing  
drive amplitude to zero for a duration TZ(π/2) = 38 ns and then switch 
it on again, as shown in Fig. 3e. Our room-temperature electronics 
limit the rise and fall times of ϵ2 to about 4 ns with a maximum time 
resolution of 2 ns.

Experimental details of the CR
During the CR, we perform heterodyne detection of the emitted cavity 
field. The data in Fig. 4a are a histogram of 3 × 105 measurements of this 
demodulated and integrated field.

We conservatively define the total readout fidelity as ℱ = 1− 
p α α p α α( − | + ) − ( + | − ) = 0.74, where p(−α | +α) = 0.13 (p(+α | −α) = 0.13) 
is the probability of measuring the qubit in α| − ⟩ ( α| + ⟩) after initializa-
tion in α| + ⟩ ( α| − ⟩).

We characterize the quantum-non-demolition aspect by evaluating 
Q P α α P α α= ( ( + | + ) + ( − | − ))/2 = 0.85, where P(i | i) is the probability 
of obtaining the measurement outcome i in two successive measure-
ments (Supplementary Information section IX, Supplementary  
Fig. 6).

Supplementary information content
The accompanying Supplementary Information contains further 
details on: the general encoding (section I), the full system Hamilto-
nian (section II), direct spectroscopy of the energy gap (section III, 
Supplementary Fig. 1), the continuous X rotation (section IV), the 
characterization of the gate operations (section V, Supplementary 
Figs. 2, 3, Supplementary Table 1), the experimental setup (section 
VI, including a detailed wiring diagram in Supplementary Fig. 4), 
the system parameters (section VII, including a summary Supple-
mentary Table 2), the experimental tune-up sequence (section VIII, 
Supplementary Fig. 5), the CR (section IX, Supplementary Fig. 6), 
the measurement of the KCQ coherence times obtained by mapping 
back onto the FQ and performing dispersive readout (section X, 
Supplementary Fig. 7) and a discussion of the impact of different 



decoherence processes on the KCQ (section XI, Supplementary 
Fig. 7).

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
Numerical simulations were performed using a Python-based open 
source software (QuTiP). Custom Python code was used to obtain 
and analyse the experimental data following standard practices as 
outlined in Methods and the Supplementary Information. The code 
used in this study is available from the corresponding authors upon 
reasonable request.
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