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Nonequilibrium quasiparticle excitations (QPs) can constitute a significant source
of dissipation in superconducting quantum devices. Surprisingly, the precise
mechanisms by which these QPs are generated are to this day unknown. This
dissertation describes our recent work seeking to understand the dynamics of
nonequilibrium QPs and the limits they impose on the coherence of supercon-
ducting qubits. In the popular transmon qubit, QPs can cause dissipation when
they tunnel across the Josephson junction of the circuit. Our experiments have fo-
cused on detecting changes in the charge-parity of offset-charge-sensitive trans-
mon qubits: a signature of these QP tunneling events. Specifically, we extract
QP-induced relaxation and excitation rates by correlating changes in the charge
parity of the device with transitions between qubit states. This is achieved both by
coherent mapping of charge parity onto the qubit state and by direct-dispersive
detection of the joint qubit and charge-parity state. We find that QP-induced dis-
sipation can be on equal footing with all other loss mechanisms and that QPs
can be the dominant source of residual qubit excited-state population. Addi-
tionally, we have identified another mechanism that can induce both dissipation
and charge parity switches, namely photon-assisted QP generation and tunneling
(PAT) processes. Finally, we demonstrated that improved high-frequency RF fil-
tering can significantly aĴenuate QP generating radiation, extending the energy
relaxation time of transmon that was previously limited by QP-related processes
by a factor of two.
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Ĥq general qubit Hamiltonian

ω01 qubit transition frequency

Pi equilibrium population of qubit state |i⟩

General decoherence
T1 qubit energy relaxation time

Tϕ qubit pure-dephasing time

T2 qubit coherence time (= (1/2T1 + 1/Tϕ)
−1)

Γij total transition rate from qubit state |i⟩ to |j⟩

F̂i a noisy environmental variable that couples to σ̂i of the qubit

ϕF phase accumulation from due to noise source F

SFF [ω] power spectral density of fluctuations of a variable F̂

Quantum circuits

Q̂ charge operator
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1
Introduction
The goal of this dissertation is to introduce the reader to the physics of nonequilibrium
quasiparticle excitations (QPs) in superconductors and how they interact with super-
conducting qubits for quantum information processing. QPs are fundamental electronic
excitations out of the superconducting ground state which can couple directly to the elec-
tromagnetic modes of a superconducting quantum circuit. These QPs constitute an in-
trinsic source of decoherence in superconducting qubits, placing a fundamental limit on
qubit performance, along with that of a wide variety of other superconducting devices.
It is therefore of broad interest to understand and mitigate the effects of these QP ex-
citations. Even neglecting this technical motivation, the fact that the observed number
of QPs is more than ten orders-of-magnitude greater than would be expected at the tem-
perature of our experiments remains unexplained and therefore captivating.

1.1 Motivation

One of the most promising candidate platforms for scalable, fault-tolerant quan-
tum information processing is based on superconducting electrical circuits that
behave quantum mechanically [Devoret and Schoelkopf 2013; Vool and Devoret
2017]. In this particular implementation, physical qubits—the quantum analog
of transistors—are embodied by anharmonic oscillators made of superconduct-
ing metals [Bouchiat et al. 1998; Mooij et al. 1999; Koch et al. 2007; Manucharyan
2012]. The quantum state of a superconducting qubit can be prepared and ma-
nipulated coherently by AC voltages at microwave frequencies (∼ GHz). Genera-
tors, waveguides, and filters that operate in this frequency band are commercially
available, which greatly simplifies the construction of new experimental setups
while reducing cost. However, operating in this frequency range requires very
low temperatures (≲ 100 mK) to reach the quantum regime, which is typically
achieved with dilution refrigerators or nuclear demagnetization refrigerators.

The performance of superconducting qubits has improved significantly over
the last few decades, and is already good enough to demonstrate elementary
single- and two-qubit operations [Yamamoto et al. 2003; DiCarlo et al. 2009].
Unfortunately, the fidelity of these operations is not yet at the level required

1
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for large-scale quantum computation involving hundreds or thousands (or even
many more!) qubits contributing to a distributed quantum algorithm. Many
groups are seeking to implement quantum error-correction techniques, which
may overcome the imperfections of state-of-the-art devices by encoding informa-
tion in clever ways that can be insensitive to certain types of errors [GoĴesman,
Kitaev, and Preskill 2001; Fowler et al. 2012; Mirrahimi et al. 2014]. While it is
more or less agreed upon that some form of quantum error correction will be
necessary in a universal quantum computer in order to reduce error rates to an
acceptable level, improvements to the physical devices themselves will relieve
some of the burden by making individual qubits more robust.

Improvements to single-qubit performance extend what’s called the qubit co-
herence time T2, which itself is a function of two timescales. The energy relaxation
time T1 is the timescale on which a prepared qubit state decays to the thermal-
equilibrium distribution of eigenstates. The dephasing time Tϕ is the timescale
on which the certainty of the phase of a superposition state decays (in the ab-
sence of energy relaxation). The total decoherence rate 1/T2 = 1/2T1 + 1/Tϕ

directly measures the rate of mixing between anti-parallel superposition states of
the qubit. Broadly speaking, decoherence arises due to the qubit interacting with
its environment, which can never be completely eliminated in order to preserve
the ability of an experimenter to control and readout the qubit state. Significant
improvements to these timescales are generally few and far between [Paik et al.
2011; Wang et al. 2019], as it is not trivial to determine the exact mechanisms that
limit T1 and Tϕ. Currently, we believe that dephasing times are limited by photon
shot noise [Sears et al. 2012; Wang et al. 2019], which shifts the qubit transition
frequency in the presence of a fluctuating photon population in the other electro-
magnetic modes to which the qubit is coupled. Regarding the relaxation time, we
believe that most devices are limited by a combination of two mechanisms that
can absorb energy stored in the qubit: imperfect dielectric materials [Wang et al.
2015; Dunsworth et al. 2017; Calusine et al. 2018; Woods et al. 2019] and nonequi-
librium quasiparticle excitations (QPs) in the superconductors that make up our
devices [Martinis, Ansmann, and Aumentado 2009; Catelani et al. 2011; Wang et
al. 2014; Serniak et al. 2018]. Understanding and mitigating the laĴer mechanism
has been the motivation of the work presented in this dissertation [Serniak et al.
2018; Serniak et al. 2019; Houzet et al. 2019].

The superconducting state is characterized by pair-correlated occupation of
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electron levels around Fermi energy. These Cooper-paired electrons support a
dissipationless DC supercurrent and are responsible for nearly perfect diamag-
netism. An important consequence of the pair interaction is the opening of a
gap (2∆) in the electronic density of states centered at the chemical potential.
When cooled to temperatures well below the critical temperature Tc = ∆/1.76kB

at which superconductivity appears, any electronic QP excitations above this gap
should be suppressed as long as T ≪ ∆/kB . In practice, however, we find that
the fraction of Cooper pairs broken into QP excitations xQP, also called the QP
density, typically falls in the range of 10−9–10−5. We can predict the ratio of ther-
mally generated QP excitations to Cooper pairs xth.

QP with the relation [Catelani
et al. 2011]

xth.
QP =

√
2πkBT/∆e

−∆/kBT . (1.1)

Let’s consider a device made out of thin-film Al, our favorite superconductor, sit-
ting at the base temperature of a dilution refrigerator (∼ 20 mK). Inserting into
Eq. 1.1 the known value of TAl

c ≈ 1.35 K (for a film 20 nm thick [Chubov, Ere-
menko, and Pilipenko 1969]), which corresponds to a superconducting energy
gap ∆ ≈ 205 µeV, one would expect a thermally generated xth.

QP ∼ 10−52! This
huge discrepancy between observation and expectation defines what we mean
by nonequilibrium QPs in our devices. BCS superconductivity and QP excitations
will be discussed in depth in Chapter 3.

These nonequilibrium QPs are fundamental electronic excitations out of the
superconducting ground state which can couple directly to the electromagnetic
modes of a superconducting qubit, potentially limiting both T1 and Tϕ (depend-
ing on the qubit). Our work has focused on understanding their effect in the
popular transmon qubit [Bouchiat et al. 1998; Koch et al. 2007; Paik et al. 2011],
which is constructed by shunting a Josephson junction (JJ) with a large capac-
itance. Our JJs are superconductor-insulator-superconductor tunnel junctions,
which for the intents and purposes of this section act as nonlinear inductors,
across which Cooper pairs and QPs can tunnel. The aforementioned combination
of elements creates a circuit with eigenstates (Fig. 1.1) similar to that of a simple
harmonic oscillator, but the JJ nonlinearity makes it such that the energy required
to add another excitation decreases with the total excitation number (the circuit
has negative anharmonicity). There are a few names for this circuit: the Cooper-
pair box and the transmon, that denote the parameter regime in which a given
device operates but are otherwise topologically equivalent.
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We write the Hamiltonian of the Cooper-pair-box/transmon circuit as

ĤCPB = 4EC

(
n̂− ng +

P − 1

4

)2

− EJ cos φ̂, (1.2)

which contains two operators: φ̂ is the difference of the superconducting phase
across the junction and n̂ is the number of Cooper pairs that have traversed the
junction. The energy spectrum of the circuit is fully described by the Josephson
coupling energy EJ , the single-electron charging energy EC ,1 and a continuous
parameter ng , which is the dimensionless offset-charge difference between the
two junction electrodes, with units of Cooper-pair number. Here we also include
a parameter P , the charge parity of the circuit, which is defined as the parity of
the number of electrons that have crossed the JJ, and can take values of ±1 de-
pending on if the number is even or odd. When QPs tunnel across the JJ they will
change the charge parity, effectively shifting ng by 1/2. With this in mind, we
can index the eigenstates of the transmon |i, p⟩ with two discrete labels: i denotes
the plasmon-excitation number and p denotes the charge parity, and include this
effect directly in the Hamiltonian.

In the extreme transmon limitEJ/EC ≫ 1 (and in practice,EJ/EC ≈ 50–200)
the qubit transition frequency is effectively insensitive to offset-charge fluctua-
tions. In the Cooper-pair box limit (EJ/EC ≈ 1), there is extreme dispersion of
the energy levels with respect to offset charge. Further details of this circuit as a
function of EJ/EC will be discussed in Chapter 4. What’s important to note here
is that in the intermediate regime, which we call the offset-charge-sensitive (OCS)
transmon regime (EJ/EC ≈ 20), one can directly detect the discrete change in
the eigenspectrum corresponding to charge-parity switches [Fig. 1.2]. Because
OCS devices are are quite similar in most ways to traditional transmons, they are
an excellent proxy with which to probe QP dynamics. In fact, with these devices
we can directly measure the rates of QP-induced transitions! These experiments
will be described in Chapter 6.

The rates of these transitions can be calculated theoretically due to the fact
that QPs are so intimately related to the physics of superconducting qubits. Since
superconducting qubits are described by marrying quantum circuit theory and
BCS superconductivity, it is natural to include the effects of nonequilibrium QPs

1It may be surprising to see an electrical circuit described by energy scales, however these can be
cast in terms of traditional parameters like capacitance and inductance, as described in the caption of
Fig. 1.1. This will be developed further in later chapters.
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ϕ̂, P

Figure 1.1 | (a) The transmon circuit, which is parameterized by the single-
electron charging energy EC = e2/2CΣ (where CΣ = CJ + CS + Cg) and the
Josephson coupling energy EJ = ϕ20/LJ , where e is the charge of an electron
and ϕ0 = ℏ/2e is the reduced flux quantum. The operator φ̂ is the dynami-
cal superconducting phase difference across the JJ, marked by a boxed “x”. An
offset charge ng = CgVg/2e can be imposed between the two JJ electrodes by a
capacitively-coupled voltage source Vg . As described in the text, when a single
QP tunnels through the JJ, the charge parity P can change between “even” and
“odd.” (b) The transmon potential (solid blue), compared to a harmonic poten-
tial (dashed blue), with plasmon eigenstates of the transmon represented in the
φ-basis. Thin lines indicate the eigenenergies of the states. Chosen parameters
reflect EJ/EC = 19 in order to emphasize the anharmonicity of the circuit. (c)
Transmon eigenspectrum vs ng , separated into distinct charge-parity manifolds.
The energy difference of plasmon state i between different manifolds is called
the charge dispersion δϵi(ng). (d) Maximum charge dispersion δϵi of the plas-
mon states as a function of EJ/EC , normalized by the product of the plasma
frequency ωp =

√
8EJEC and ℏ.
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directly in a coupling Hamiltonian, which takes the simple form of single electron
tunneling across the JJ.

ĤQP,φ̂ = t
∑
l,r,s

eiφ̂/2ĉ†rsĉls + H.c. (1.3)

The above hopping Hamiltonian takes an electron with spin s from the left side
of the junction (ĉls) and puts it on the right side (ĉ†rs). In this process, the elec-
tron picks up a phase factor, where φ̂ is the dynamical phase across the junction,
coupling the electron to the qubit. In BCS superconductivity, these electrons are
dressed by the pairing interaction, giving QP excitations in the superconductor a
mixture of electron and hole character. This modifies the above tunneling Hamil-
tonian and allows for interference effects between tunneling processes. Chapter 5
is dedicated to understanding the coupling between superconducting qubits and
QPs, and further development of this tunneling Hamiltonian will be presented

S SI

even
odd

Figure 1.2 | QP tunneling in the OCS transmon. Left: Density of QP states νs
in the excitation representation versus the reduced energy ε/∆ in the leads of a
superconductor-insulator-superconductor (SIS) JJ. The x-axis also represents po-
sition x across the junction. The blue arrows indicate tunneling processes of QPs,
shown as purple dots. Solid arrows correspond to plasmon-state-conserving
processes, dashed arrows represent QP-induced qubit relaxation, and doĴed ar-
rows represent QP-induced qubit excitation. Right: Offset-charge dispersion of
the two lowest energy plasmon eigenstates of an OCS transmon separated into
charge-parity manifolds. The energies ϵ0 and ϵ1 are time-averaged energies of the
ground and first-excited plasmon states, respectively, assuming ergodic fluctua-
tions of n̂ and/or charge parity. Arrows correspond to those in in the left panel.
Detecting transitions between charge-parity manifolds can probe QP dynamics.
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there.
Assuming that the nonequilbrium QP population has an energy distribution

that closely resembles a thermal, Fermi-Dirac distribution [Martinis, Ansmann,
and Aumentado 2009; Goldie and Withington 2013], the QP-induced bound on
the T1 of transmon qubits would be [Catelani et al. 2011]

1

T1
≥ xQP

π

√
2∆ω01

ℏ
. (1.4)

The aforementioned range of xQP therefore limits T1 ≲ 1 µs-10 ms, with current
state-of-the-art transmons falling right in the middle of that range (T1 ≈ 100 µs).
It is therefore important to determine whether or not QPs are the dominant relax-
ation mechanism in our qubits, and if so, to figure out how to mitigate their ef-
fects. Furthermore, under the same thermal assumption, the observed xQP would
correspond to an effective electron temperature of ∼ 150 mK. Under these con-
ditions, the ratio of the QP-induced excitation rate ΓQP

01 of the qubit to the QP-
induced relaxation rate ΓQP

01 will obey Bolĵmann statistics and detailed balance,
leading one to predict that

ΓQP
01

ΓQP
10

= e−ℏω01/kBT ≈ 0.28, (1.5)

which shows that QP-induced excitation should be suppressed relative to QP-
induced relaxation at low temperature.

Our experiments [Chapter 6] indicated that this was, however, not the case,
and that QP-related transitions were just as likely to excite the qubit as to relax
it [Serniak et al. 2018]. This is contrary to the above arguments, though recently
we developed a theory that may explain this phenomenon [Houzet et al. 2019].
This theory of these photon-assisted tunneling (PAT) processes will be presented
in Chapter 5, and experiments that could possibly distinguish this mechanism
from nonequilibrium QP tunneling will be discussed in Chapter 8.

1.2 Results of the dissertation

Our work has utilized OCS transmons to probe the rates of decoherence induced
by nonequilibrium QPs in superconducting qubits. Technically speaking, the
goal was to detect changes in the transition spectrum corresponding to switches
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between the two charge-parity manifolds of states. This relies on detecting the
charge parity of the circuit in a single shot, which, akin previous works in other
devices [Naaman and Aumentado 2006; Court et al. 2008; Shaw et al. 2008], has
been achieved in OCS transmons with state-of-the-art energy-relaxation times.
We accomplished this task in two ways: by performing coherent manipulations
within the qubit subspace to map the charge-parity onto the plasmon state of an
OCS transmon [Ristè et al. 2013; Serniak et al. 2018], and by taking advantage of
the natural, charge-parity dependent coupling between the OCS transmon and an
ancillary readout mode to perform direct dispersive readout of the joint charge-
parity and plasmon eigenstate [Serniak et al. 2019]. The laĴer is similar to “quan-
tum capacitance” measurements [Shaw et al. 2009], but extended to the quantum
regime in the language of circuit QED [Blais et al. 2004; Zhu et al. 2013].

These methods allow for studies of QP-induced decoherence by correlating
charge-parity switches with changes in the plasmon state of the transmon. Con-
trary to many coherence studies that seek to understand and reduce loss from
imperfect dielectric materials [Wang et al. 2015; Dunsworth et al. 2017; Calusine
et al. 2018; Woods et al. 2019], our experiments are able to determine, without the
need for broad statistics, whether individual qubits are limited by QP-related dissi-
pation. This allows for faster feedback when optimizing parameters of the device
or the experimental setup to reduce QP-induced loss. By modeling the time dy-
namics of the system, we were able to extract all relevant transition rates of the
device, and found that QP-induced relaxation was on equal footing with other
forms of loss, indicating that if our device were free of QPs, T1 would increase
to ∼ 200 µs. Surprisingly, we found that excitation events of the transmon were
usually correlated with charge-parity switches, indicating that QP-related pro-
cesses can be responsible for the residual excited-state population in our devices.
Furthermore, we found that QP-induced relaxation and excitation occurred at
the same rate, suggesting that if charge-parity switches were indeed caused by
nonequilibrium QPs, their energy distribution would not be well approximated
by a Fermi-Dirac distribution that accounts for their apparent densityxQP ≈ 10−7.

Throughout our experiments, we had assumed that charge-parity switches
were coming from nonequilibrium QPs already present in the device.2 We have
now identified another process involving QPs can also produce charge-parity
switches: photon-assisted QP generation and tunneling (PAT) processes concen-

2Note that at the time of this writing, this assumption is neither confirmed or discounted.
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trated at the JJ in our devices [Houzet et al. 2019]. Theoretically, this mechanism
would predict that the ratio of of PAT-induced excitation and relaxation events
will be close to unity and that the presence of gap-engineered QP traps would not
effect the rate of this interaction, consistent with the results presented in Chap-
ters 6 and 7. Experiments to probe whether or not PAT processes are the dominant
source of charge-parity switches are currently underway, and will be reviewed
in Chapter 8 of this dissertation.

We demonstrated that the rate of charge-parity switches, our proxy for QP
density, could be reduced to negligible levels (at least until the limit on T1 due
to dielectric loss is improved) by careful filtering of high-frequency radiation on
the microwave lines used to address the qubit. By adding an additional high-
frequency filter near the qubit-cavity system, we found the charge-parity lifetime
could be increased by almost two orders-of-magnitude, to the extent that qubit
decoherence was no longer limited significantly by QPs. In this regime, we mea-
sured the T1 of the aforementioned device to be ≈ 200 µs, in perfect agreement
with our predictions. These experimental techniques demonstrate a glimmer of
certainty in the otherwise subtle world of coherence studies. By performing ex-
periments tailored toward exposing the effects of QP-induced decoherence in in-
dividual devices, one can determine with certainty whether or not QPs are limit-
ing that device. Arguably, this should be a prerequisite experiment for anyone
interested in studying the effects of dielectric losses or other mechanisms of de-
coherence in order to exclude the effects of nonequilibrium QPs.

These projects began in an aĴempt to reduce QP-induced decoherence by im-
plementing gap-engineered QP traps in our devices. This involved depositing
bilayers of Al and Ti, another superconductor with a smaller superconducting
gap, without breaking vacuum such that there will be a proximity effect between
the two layers and the gap of the Al JJ electrodes would be reduced. This notion
of a proximitized-superconducting QP trap has the potential to produce efficient
traps without introducing additional losses. We found that by including these QP
traps in transmon devices, experimentally generated QPs were evacuated away
from the JJ faster than in devices without traps, however the steady-state charge-
parity lifetime was unchanged. These results are presented briefly in Chapter 7,
and though for a time this was extremely confusing, our recent theoretical devel-
opments may explain this effect [Houzet et al. 2019], as gap-engineered QP traps
would have no effect on dissipation induced by PAT events.



2
Quantum Information with

Superconducting Circuits
The many research fields related to the term quantum computing have grown by
leaps and bounds over the last few decades. This chapter serves as a brief over
view of the basic units of quantum computing technologies—qubits—and to in-
troduce the strengths of (and challenges facing) the field of superconducting quan-
tum circuits.

2.1 Quantum bits

In 1982, Richard Feynman proposed storing and manipulating information en-
coded in the state of a quantum system [Feynman 1982]. Since then, realizing
this task has motivated decades of scientific endeavors and occupied the minds
of researchers across many fields of experimental physics. In fact, this challenge
is in many ways analogous to that of the tasks pursued in the 1940’s to engineer
the first solid-state computers, as it has been fueled by the development of basic
hardware that is capable of storing and processing information. The field of quan-
tum information science has grown by leaps and bounds over recent years, due in
no small part to the expected applications of quantum computers. Scientists, and
now the general public due to increased popularization of the field, anticipate
that quantum-based technologies will be crucial to solving complex problems in
cryptography, drug design, climate modeling, and many-body physics to name
a few.

The backbone of traditional (classical) computers is the voltage-biased tran-
sistor functioning as a switch, where a control voltage turns the switch “on” and
“off”. The two switch configurations construct the basis for binary digital logic:
the state of the transistor represents one “bit” of information. Electric current
flowing through the transistor denotes the “0” logical state, and no current flow-
ing denotes the “1” logical state. The quantum analog to one bit of information
is called a “qubit” (just a portmanteau of “quantum” and “bit”). It is a two-level
quantum system that is distinguishable from a classical system in that it can ex-

10
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Figure 2.1 | Bloch sphere representation of a single qubit state. Pure states of the
two-level qubit are represented by points on the surface of the Bloch sphere and
are fully parameterized by the polar angle θ and azimuthal angle ϕ. The energy
eigenstates |0⟩ and |1⟩ are located at the North and South poles, respectively.

hibit effects of quantum coherence. Particularly, these qubits can utilize the quan-
tum notions of superposition and entanglement to create more complex states
than just the energy eigenstates |0⟩ (the ground state) or |1⟩ (the excited state). In
general, any pure quantum state of a single qubit can be decomposed and wriĴen
as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ . (2.1)

This general qubit state can be represented by one of the infinite number of points
on the surface of a Bloch sphere [Fig. 2.1]. Here, θ and ϕ represent the polar and
azimuthal angles, respectively, that fully constrain the wavefunction |ψ⟩ describ-
ing the state of the qubit. This simple example shows the effect of quantum su-
perposition, in which the state of the qubit can be decomposed into a coherent,
weighted sum of energy eigenstates, where the prefactors are probability ampli-
tudes, and therefore their squares must sum to one.1 By measuring the state of the
qubit in the correct basis (in this case measuring the σ̂z component of the qubit),
the superposition will be projected into either |0⟩ or |1⟩. The basis states of the
Bloch sphere are the Pauli operators σ̂i defined as

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, and σ̂z =

(
1 0

0 −1

)
. (2.2)

1Indeed, cos2 θ
2
+

∣∣∣eiϕ∣∣∣2 sin2 θ
2
= 1 for all θ and ϕ.
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Equivalently to Eq. 2.1, the state of the qubit can also be represented as a po-
larization vector in the basis of the Pauli operators S⃗ =

(
⟨σ̂x⟩, ⟨σ̂y⟩, ⟨σ̂z⟩

)
, where

the components ⟨σ̂i⟩ = ⟨ψ| σ̂i |ψ⟩ denote the expectation value of the operator σ̂i.
The standard transform between spherical and Cartesian coordinates allows one
to switch between pictures.2

Not all states are pure states, however, and qubits can occupy states where
there is classicalprobability to be in either one or the other. Thesemixed states (and
pure states, as well) can be described by the density operator ρq =

∑
i

wi |ψi⟩ ⟨ψi|,

which is a sum over all statistically possible quantum states with classical prob-
ability weights wi. For a two-level qubit in the Pauli basis, this can be wriĴen

ρq =
1

2

(
I + ⟨σ̂x⟩σ̂x + ⟨σ̂y⟩σ̂y + ⟨σ̂z⟩σ̂z

)
(2.3)

where I is the identity operator. In the density operator formalism, operator ex-
pectation values can be computed by ⟨σ̂i⟩ = Tr

(
ρqσ̂i

)
, for example. Pure states

have Tr(ρ2q) = 1 by definition, which distinguishes them from mixed states,
which have 1

2 ≤ Tr(ρ2q) < 1. Another way of saying this is that the amplitude
of the Bloch vector describing a mixed state is < 1, or that mixed states reside
within the Bloch sphere as opposed to on its surface. For this reason, the density
operator formalism is particularly useful for describing mixed states. Before con-
tinuing, it’s worth writing down the density matrix ρq

(
|ψ⟩
)

for a few common
states represented in the energy eigenbasis. Energy eigenstates (eigenstates of σ̂z)
are particularly simple:

ρq
(
|0⟩
)
=

(
1 0

0 0

)
ρq
(
|1⟩
)
=

(
0 0

0 1

)
, (2.4)

where one can intuit that the diagonal elements of ρq
(
|ψ⟩
)

indicate the popula-
tions of the energy eigenstates—the probabilities that they will be the outcome of
a projective measurement in the σ̂z-basis. For the elementary real superpositions
of energy eigenstates |±⟩ = (|0⟩± |1⟩)/

√
2 (which are in fact eigenstates of σ̂x) we

can compute

ρq
(
|±⟩
)
= ρq

(
|0⟩√
2
± |1⟩√

2

)
=

1

2

(
1 ±1

±1 1

)
. (2.5)

2⟨σ̂x⟩ = sin θ cosϕ, ⟨σ̂y⟩ = sin θ sinϕ, and ⟨σ̂z⟩ = cos θ.
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The above superposition is what we would call maximally coherent. In contrast,
a maximally mixed state would be given by a classical statistical mixture of oc-
cupying each of the energy eigenstates half the time: M = 1

2 |0⟩ +
1
2 |1⟩. In this

case,

ρq (M) =
ρq
(
|0⟩
)

2
+
ρq
(
|1⟩
)

2
=

1

2

(
1 0

0 0

)
+

1

2

(
0 0

0 1

)
=

1

2

(
1 0

0 1

)
. (2.6)

The obvious difference between Eq. 2.5 and Eq. 2.6 being the lack of off-diagonal
components in the mixed state. These are often called coherences, as their mag-
nitude indicates a coherent superposition as opposed to a mixed state. One can
also confirm that Tr

(
ρq
(
|±⟩
)2)

= 1, while Tr
(
ρq (M)

2
)
= 1/2, indicating that

M is a maximally mixed state.

2.2 Qubit decoherence

The fragility of quantum information is a severe impediment to the realization
of full, fault tolerant quantum computation. In essence, if the dynamics of the
qubit take it from a pure state towards a mixed state, at least some of the quan-
tum information is lost. In the absence of engineered projective measurements,
a qubit prepared in a superposition state is only useful as long as the angles θ
and ϕ are well defined. In reality, however, this doesn’t last forever: information
about those angles is lost due to decoherence. This occurs via coupling to unmon-
itored environmental degrees of freedom which can gain information about the
quantum state, effectively measuring the qubit. This coupling gives the qubit
a sensitivity to environmental parameters that can “kick” the state of the qubit
around on the Bloch sphere, and once the experimenter loses track of that po-
sition it is impossible to recover. The exact mechanisms by which this happens
depend on the physical implementation of the qubit and how it is coupled to the
environment. Understanding and controlling these couplings is the primary goal
in trying to improve the performance of physical qubits.

These efforts seek to improve the coherence time of the qubit T2, which can be
limited by two types of noise processes. First, there are processes that induce
qubit transitions by having some spectral component at the qubit transition fre-
quency f01. These processes reduce the energy relaxation time T1, which is defined
as the timescale on which the autocorrelation function of the qubit state decays
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to thermal equilibrium. Second, there are processes that produce noise on the
energy of the qubit states such that f01 fluctuates in time. These contribute to the
pure dephasing time Tϕ, which is the timescale after which the phase ϕ of a super-
position |Ψ⟩ = 1/

√
2
[
|0⟩+ exp(iϕ) |1⟩

]
is no longer well defined due to spectral

diffusion. This definition assumes the absence of T1 processes.
In order to describe these noise processes mathematically, we’ll start with a

generic qubit Hamiltonian. In the absence of any coupling to the environment,
any two level qubit can be represented by a simple qubit Hamiltonian

Ĥq =
ℏω01

2
σ̂z (2.7)

that simply takes into account the energy difference ℏω01 between qubit eigen-
states in terms of the transition frequency between them ω01. With this is a foun-
dation, we will build Hamiltonians with environmental couplings in order to il-
lustrate the effects of different types of noise.

2.2.1 Energy relaxation

Energy relaxation, also called depolarization, refers to processes that produce
noise on the polar angle θ, which couple to σ̂x and σ̂y of the qubit. These pro-
cesses can induce transitions between energy eigenstates. In terms of the density
matrix, these processes mix the diagonal elements (the populations), as well as
induce decoherence of the off-diagonal elements. There are two rates associated
with T1, the qubit relaxation rateΓ10 and the qubit excitation rateΓ01, which com-
bine to give 1/T1 = Γ10 + Γ01. The notation Γij denotes the transition rate from
qubit state |i⟩ to qubit state |j⟩. To describe these processes, lets consider a sim-
ple qubit Hamiltonian that includes noise coupling to σx (equivalently, it could
couple to σy). This can be wriĴen as

Ĥ =
ℏω01

2
σ̂z +

ℏ
2
F̂xσ̂x (2.8)

where F̂x is a noisy environmental variable that can induce rotations about the σ̂x-
axis of the Bloch sphere. We will assume that the fluctuations of F̂x are sta-
tionary. In the absence of other environmental couplings, the noise coupling to
the σ̂x component of the qubit can be characterized by the power spectral density
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of Sxx[ω] = SFF [ω]:

Sxx[ω] =

∫ ∞

−∞
eiωt

⟨
F̂x(t)F̂x(0)

⟩
dt (2.9)

which is defined here as the Fourier transform of the autocorrelation function
of F̂x [Clerk et al. 2010]. Assuming small fluctuations, we can use perturba-
tion theory in the form of Fermi’s golden rule to calculate the transition rate
between some initial energy eigenstate |i⟩ to some final energy eigenstate |j⟩
induced by this noisy environment. In doing so, we take as the bare Hamilto-
nian Ĥq = ℏω01

2 σ̂z and the perturbing Hamiltonian Ĥ1 = ℏ
2 F̂xσ̂x. Writing it in the

most convenient and general form, Fermi’s golden rule states that the transition
rate between eigenstates of a quantum system coupled to some environmental
noise is

Γij =
1

ℏ2
∣∣∣⟨j| Ĥ1 |i⟩

∣∣∣2 Sxx[ωij ]. (2.10)

Here, ⟨j| Ĥ1 |i⟩ is the transition matrix element of Ĥ1 linking eigenstates |i⟩ and |j⟩,
and Γij is the transition rate from |i⟩ to |j⟩. Sxx[ωij ] represents the component of
the noise at the transition frequency ωij . State transitions during which the qubit
loses energy are said to be of positive frequency (ω01), while transitions during
which the qubit gains energy are said to have negative frequency (−ω01). This
matrix element represents coupling strength of the environmental noise to the
qubit. This noise will be responsible for both relaxation excited state back to the
ground state as well as qubit excitation. Although spontaneous qubit excitation
is relatively rare in most practical cases, it is important to consider as it effects T2
identically to qubit relaxation. Restricting our discussion to the two levels of a
qubit we find:

Γ10 =
1

ℏ2
∣∣∣⟨0| Ĥ1 |1⟩

∣∣∣2 SFF [ω01], and

Γ01 =
1

ℏ2
∣∣∣⟨1| Ĥ1 |0⟩

∣∣∣2 SFF [−ω01].

(2.11)

As long as Ĥ1 is Hermitian, ⟨0| Ĥ1 |1⟩ = ⟨1| Ĥ1 |0⟩, therefore the ratio of excitation
to relaxation rates will be given by SFF [−ω]/SFF [ω]. Detailed balance states that
the ratio of these rates will be equal to the ratio of the equilibrium populations
of |1⟩ and |0⟩, P1/P0. With elementary statistical mechanics we can compute this
in terms of an effective temperature T (assuming that the qubit is coupled to an
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excitation relaxation

Figure 2.2 | Quantum power spectral density of current noise SII [ω] emiĴed by a
conductor (with conductanceG) at temperature T , which in the quantum regime
kBT ≪ ℏω is asymmetric between positive and negative frequencies ±ω.

environmental bath in thermal equilibrium) as

Γ01

Γ10
=
SFF [−ω01]

SFF [ω01]
=

P1

P0
= e−ℏω01/kBT . (2.12)

As we will discuss in Chapters 5 and 6, measuring these rates can be a useful di-
agnostic tool with which to probe the source of qubit depolarization. A so-called
“hot” qubit, where there is significant excited state population described by an
effective temperature greater than the temperature of the cryostat could just be
a result of poor thermalization of the qubit to the cryostat. However, as will be
discussed in later chapters, a large residual excited-state population could also
indicate a specific form of decoherence induced by a process coupling the qubit
to both superconducting quasiparticles and high-frequency photons in the envi-
ronment [Serniak et al. 2018; Houzet et al. 2019].

As an example, one source of noise that clearly demonstrates the aforemen-
tioned thermal properties is the natural current noise produced by a conduc-
tor [Nyquist 1928]. The power spectral density of current fluctuations through
a conductor at temperature T , is [Schoelkopf et al. 2003; Clerk et al. 2010]

SII [ω] = ℏω
(

coth
ℏω

2kBT
+ 1

)
Re
{
Y [ω]

}
, (2.13)

which just depends on the frequency of interest, temperature, and the admiĴance
of the conductor Y [ω], which for simplicity we will assume is classical and con-
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stant, Y [ω] = Y [−ω] = G (where G is the conductance).3 As depicted in Fig. 2.2
and evident from Eq. 2.13, SII [ω] is asymmetric about ω = 0—a defining char-
acteristic of quantum noise—and obeys detailed balance (Eq. 2.12)4. The corre-
spondence principle is satisfied in the high-temperature limit of kBT ≫ ℏω in
that SII [ω] becomes symmetric. This will be important in analogy with the dis-
sipative quasiparticle current through a josephson junction, as will be discussed
in Chapter 5.

2.2.2 Qubit dephasing

We will now consider qubit dephasing, by which knowledge of the azimuthal
angle ϕ is destroyed, in the absence of depolarization. In analogy to the energy
relaxation processes that couple to the longitudinal components of the qubit state
(σ̂x and σ̂y), dephasing processes couple to σ̂z directly. In other words, these
processes only effect the off-diagonal elements the density matrix, and do not
induce transitions between energy eigenstates. A generic coupling of this type
could be included in the qubit Hamiltonian in the same way as in Eq. 2.8.

H =
ℏω01

2
σ̂z +

ℏ
2
F̂zσ̂z. (2.14)

The noisy variable F̂z now couples to σ̂z , which effectively shifts the qubit fre-
quency ω01 by F̂z . Thats why, colloquially, people refer to dephasing processes
as inducing noise on the transition frequency of the qubit. We will assume that
the noise is stationary with an average value of zero. As a consequence of this
noise, the qubit superposition will accumulate an additional phase [Ithier et al.
2005]

ϕF =

∫ t

0

F̂z(t
′)dt′ (2.15)

It’s worth emphasizing that low frequency accumulation of the phase is not al-
ways detrimental. In fact, there are experimental protocols that can coherently
reverse the accumulation of phase (Hahn echo sequences and other dynamical
decoupling techniques [Bylander et al. 2011]), rendering noise near ω = 0 harm-
less. If these techniques are not implemented, and assuming the noise is station-

3This is also called the fluctuation-dissipation theorem [Kubo 1966].
4As a reminder, cothx = ex+e−x

ex−e−x .
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ary and uniform at low frequencies,

⟨eiϕF ⟩ =
⟨
e−

∫ t
0
dτF̂z(τ)

⟩
≈ e

− 1
2

⟨
(
∫ t
0
dτF̂z(τ))

2
⟩
≈ e−

1
2SFF [0]t. (2.16)

We’re left with a phase that diffuses on a timescale

Tϕ =
2

SFF [0]
(2.17)

in the absence of qubit depolarization, otherwise known as the pure dephasing
time.

2.2.3 The decoherence time T2

Energy relaxation processes and dephasing processes combine to decohere a qubit
prepared in a superposition state. The coherence time T2 is related to the others
by 1/T2 = 1/2T1 +1/Tϕ. This is the decay timescale for the magnitude of the off-
diagonal terms of the density matrix. It can be thought of very similarly to T1, but
instead of representing decay between eigenstates of σz (|0⟩ and |1⟩), it describes
decay between eigenstates of σx (|+⟩ and |−⟩). While this derivation will not
be presented here, there are two ways of thinking about the problem. First, the
noise processes in the previous two sections can be decomposed as Kraus opera-
tors that reduce the off-diagonal elements of the density matrix [Preskill 1998; Yu
and Eberly 2003]. The second, and more involved, approach follows the Bloch-
Redfield theory of decoherence [Wangsness and Bloch 1953; Redfield 1957]. The
final result shows how the density matrix evolves as a function of time, in terms
of T1 and T2. If the qubit is initialized in a superposition state |ψ⟩s = α |0⟩+β |1⟩,
the evolution follows this form where, for convenience, we assume that the envi-
ronment is at T = 0:

ρq
(
|ψs⟩

)
(t) =

(
1 + (|α|2 − 1)e−t/T1 αβ∗e−t/T2

α∗βe−t/T2 |β|2e−t/T1

)
. (2.18)

Since T = 0, there is no steady-state population of |1⟩. Extending the above to
finite temperatures just complicates the diagonal elements, and can be found by
solving the usual Bloch equations for the qubit polarization. Because quantum
information processing relies on operations where a qubit is prepared in a super-
position state, T2 is an important figure-of-merit for single-qubit performance.
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2.3 Requirements for physical qubits

Physical qubits can be realized in any quantum system from which a 2D Hilbert
space can be constructed and coherently controlled. Natural quantum systems
often have many energy eigenstates (|0⟩, |1⟩, |2⟩, ...), and can be used as a qubit so
long as a computational basis of two energy eigenstates can somehow be isolated
from the rest. This requires negligible equilibrium population of states outside
of the computational basis (lets say |0⟩ and |1⟩, though the basis need not be the
two lowest energy eigenstates), as well as the ability to coherently control popu-
lation dynamics between the qubit basis states. Both conditions can be trivially
met in quantum systems with only two energy eigenstates, of which there are a
few practical examples such as the spin degree of freedom of single electrons and
some nuclei in an applied magnetic field. Otherwise, the first condition can be
satisfied if ℏω01 ≫ kBT , such that the system will be in the ground state |0⟩ the
vast majority of the time and transitions to higher excited states due to thermal
fluctuations will be rare. The second condition can be satisfied in multi-state sys-
tems in which the Hamiltonian doesn’t couple the computational basis states to
any additional states, or in systems where the transition spectrum is sufficiently
sparse such that even though there is no intrinsic protection built into the Hamil-
tonian, transitions between states can be individually addressed. These include
cold atoms, trapped ions, and superconducting artificial atoms.

Unfortunately, the above conditions aren’t the only ingredients required for
quantum-computing glory. Reaching the quantum regime of ℏω01 ≫ kBT puts
a constraint on the frequency difference between basis states purely due to the
cryogenic technologies that are currently available and cost effective.5 The most
prevalent low-temperature cryostat is the 3He/4He dilution refrigerator, which
is commercially available from multiple manufacturers and can typically sustain
base temperatures of 10 − 20 mK for months at a time. With this in mind, ω01

needs to be greater than ∼ 1 GHz in order to reach the quantum regime in those
cryostats. Other refrigeration methods, such as adiabatic paramagnetic or nu-
clear demagnetization can reach similar (even slightly lower) temperatures, but
suffer from lower cooling power and require frequent remagnetization, meaning
that every so often one must warm-up the experiment and apply a strong polar-

5Neglecting driven-dissipative techniques that have been developed for cooling quantum sys-
tems to their ground state.
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izing magnetic field on the order of a few Tesla.6

Furthermore, it is required that the quantum system can be controlled much
faster than any other dynamics of the system. This timescale is called the gate
time, the time it takes to perform some logic gate. Most crucially, one must be
able to perform many operations on the qubit within the coherence time. Both
the gate time and T2 depend on the exact embodiment of the qubit and the limi-
tations that that architecture imposes. The next section will discuss how artificial
atoms are implemented in superconducting quantum circuits and the decoher-
ence mechanisms relevant to that implementation.

2.4 Superconducting qubits

Qubits encoded in the state of a superconducting quantum circuit go beyond sat-
isfying the aforementioned basic requirements, and are considered to be one of
the leading candidate platforms for fault-tolerant quantum computation. Super-
conducting qubits can be fabricated using standard micro- and nano-fabrication
techniques, and controlled using commercially available RF equipment that was
developed for use in radar systems. These combine to make experiments on su-
perconducting qubits relatively accessible, with one downside being that experi-
ments need to be performed at temperatures far below the superconducting criti-
cal temperature of thin-film Al (Tc ≈ 1.3 K), the material of which most supercon-
ducting qubits are based, as well as below the convenient operating frequencies
of a few GHz. This is typically achieved in dilution refrigerators, which present
a significant cost barrier.

The amazing thing about superconducting qubits is that they can be repre-
sented theoretically as combinations of classical circuit elements operating in the
quantum regime. This means that the parameters of the qubit are defined by
values of capacitors, inductors, and the backbone of our species of quantum cir-
cuits: the Josephson junction. Josephson junctions (JJs) are superconducting tun-
nel junctions that act as nonlinear inductors. This nonlinearity is the most crucial
component of superconducting qubit circuits, particularly to achieve coherent
qubit control with standard microwave-frequency drives.

6Which is an additional cost barrier in and of itself.
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2.4.1 Superconducting quantum circuits

Elementary electricity and magnetism courses that teach the physics of electrical
circuits typically speak in terms of two degrees of freedom: voltage and current.
This is always treated classically because the macroscopic behavior of lumped-
element circuits doesn’t rely on any inherently “quantum” effects when writing
down Kirchhoff’s laws. However, this doesn’t mean that circuits can’t be treated
in the quantum regime under the necessary circumstances. In doing just that, we
will use the variables Q and Φ, which denote the excess charge on one side of the
circuit element and the flux difference across the element, respectively, in place
of position and momentum. They are defined as integrals of the classical current
I or voltage V :

Q(t) =

∫ t

−∞
I(t′)dt′ and Φ(t) =

∫ t

−∞
V (t′)dt. (2.19)

The limits of integration indicate that the charge and flux remember the history
of the circuit. In order to make all of these dynamical variables “quantum,” one
just puts a “hat” on them to promote them to operators:

Q→ Q̂ I → Î Φ → Φ̂ V → V̂ . (2.20)

The operators Q̂ and Φ̂ are canonically conjugate, and analogously to position
and momentum, Q̂ = −iℏ ∂

∂Φ and the commutator [Φ̂, Q̂] = −iℏ. For the time be-
ing, we’ll only consider dissipationless circuits, meaning there will be no explicit
conductors or resistors, just lossless elements like capacitors, inductors, and non-
linear elements. With this in mind, the simplest Hamiltonian we can write down
is that of the quantum, harmonic LC-oscillator (QHO)

ĤQHO =
Q̂2

2C
+

Φ̂2

2L
(2.21)

where the first term corresponds to the energy stored in the capacitor, and the
second corresponds to the magnetic energy in the inductor.7 Though we will
not cover it here, one can write the Hamiltonian for any circuit, no maĴer how
complicated with the methods discussed in the recent review of Ref. Vool and

7Note that the energies agree with the typical formulas UC = 1
2
CV 2 and UL = 1

2
LI2 via the

constitutive relations of capacitors and inductors.
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Devoret 2017.
In a Hamiltonian, we’re used to parameterizing terms with coupling rates

and energies, partially because it’s cleaner to work in unitless coordinates. To
this end, and since we’ll be dealing with superconductors, we will work with
the charge number operator n̂ = Q̂/2e (note the 2e, as this is the number of
Cooper pairs) and the phase difference operator φ̂ = Φ̂/ϕ0, where ϕ0 = ℏ/2e
is the reduced magnetic flux quantum. The canonical commutator now takes the
form [φ̂, n̂] = i. The QHO Hamiltonian now takes the form

ĤQHO = 4e2
n̂2

2C
+ ϕ20

φ̂2

2L
(2.22)

As mentioned in the introduction, we typically parameterize the Hamiltonian in
terms of energies, so here we define the single-electron charging energyEC = e2

2C

and the inductive energy EL =
ϕ2
0

L .
The QHO can also be wriĴen in terms of ladder operators â and â†: bosonic

annihilation and creation operators for excitations (photons) in the oscillator. Our
dynamical variables can be mapped to these ladder operators by φ̂ = φzpf(â+ â

†)

and n̂ = −inzpf(â−â†), where the magnitudes of zero point fluctuations are given
by φzpf =

√
ℏZ0/2/ϕ0 and nzpf =

√
ℏ/2Z0/2e, where Z0 =

√
L/C is the charac-

teristic impedance of the oscillator. In these two forms, the QHO Hamiltonian is
represented

ĤQHO = 4EC n̂
2 +

EL

2
φ̂2 = ℏωLC

(
â†â+

1

2

)
, (2.23)

where the oscillator resonant frequency ωLC =
√
8ELEC , also called the plasma

frequency defines the frequency difference between eigenstates. Here we can see
that the eigenstates of the QHO are eigenstates of the excitation number operator
â†â, also called Fock states.

But what’s so quantum about whats been stated here? Surely, describing
any old LC-oscillator on a circuit board with operators shouldn’t make it “quan-
tum?” That’s because quantum effects are washed away when the oscillator is
strongly coupled to a lossy environment. This adds dissipation to the system,
which makes the eigenstates of the oscillator coherent states, which are superpo-
sitions of Fock states. In the presence of dissipation, quantum effects are only
visible when the total energy stored in the oscillator is close to ℏωLC . This can be
achieved by cooling the oscillator to the quantum regime where kBT ≪ ℏωLC ,
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but even then there are still electronic degrees of freedom that can dissipate en-
ergy stored in the oscillator, which won’t make a good qubit.8 In order to enter the
quantum regime with liĴle intrinsic dissipation, one needs to construct the oscil-
lators out of superconducting materials, which would ideally be dissipationless
at frequencies below the superconducting gap 2∆/h. More details on the super-
conducting state will be discussed in Chapter 3.

2.4.2 Josephson-junction-based qubits

So in order to study the quantum nature of electronic circuits, we’ve resigned our-
selves to work at low temperatures with superconducting devices. There’s still
an issue in that the φ̂2 potential of the QHO makes it such that the energy differ-
ences between all nearest neighbor eigenstates are all identical: ℏωLC . This makes
it impossible to separately address transitions between eigenstates with simple
microwave drives. Without any source of nonlinearity this will always be the
case, hence the need for nonlinear circuit elements if we would like to construct
qubits from our quantum circuits. If we wish to keep things simple (and gener-
ally we do), the simplest thing would be to replace either the linear capacitor and
linear inductor of the SHO with a nonlinear version. Luckily, these supercon-
ducting elements exist in micromechanical superconducting resonators [Teufel
et al. 2011], and the more ubiquitous Josephson junction (JJ) [Josephson 1962].

The most common embodiment of a JJ is is formed by a superconductor-
insulator-superconductor tunnel junction [Fig. 2.3]. The important part here is
that there are two superconductors sandwiching another material, which can be
an insulator, a normal metal, a semiconductor, or even a ferromagnet, depending
on the application. The microscopic details of superconductivity and JJs will be
discussed in Chapter 3, but that won’t hinder the discussion of JJs from the stand-
point of quantum circuit theory. For the intents and purposes of this section, a JJ
is a nonlinear inductor, with a current phase relation given by

IJ = I0 sinφ. (2.24)

8This is just stating the Joule-Lenz law, that metallic conductors will dissipate with a power =
I2R, where R is the resistance of the conductor.
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500 nm

S

S
insulator =

Figure 2.3 | Scanning electron micrograph of an Al/AlOx/Al Josephson junction
fabricated using the “bridge-free” technique. As this device was fabricated on
an insulating sapphire substrate, it was necessary to deposit a thin anti-charging
layer (iridium) for imaging. Image was taken at a rotation angle of 45◦ with a 60◦

tilt.

where I0 is the critical current of the JJ—the maximum DC supercurrent that the
junction can support without dissipation. Combining the above equation with
the definition of φ̂ in terms of V̂ allows us to calculate the associated nonlinear
inductance.9

VJ =LJ
∂IJ
∂t

ϕ0
∂φ

∂t
=LJI0

∂ sinφ
∂φ

∂φ

∂t

LJ =
ϕ0

I0 cosφ

(2.25)

It’s nice to note a convenience: the T = 0 critical current of the JJ can be computed
from knowable junction parameters by the Ambegaokar-Baratoff relation

I0 =
π∆

2eRn
, (2.26)

9The current phase relation 2.24 is referred to as the first Josephson relation, with the defini-
tion VJ = ϕ0

∂φ
∂t

referred to as the second.
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where Rn is the normal state resistance of the junction. It’s important to men-
tion that LJ is fundamentally different than a linear inductance, as no magnetic
energy is actually stored in the JJ. Instead, it is a kinetic inductance, which stores
energy in the motion of charge carriers without sustaining an additional mag-
netic field. The energy stored in a JJ (UJ ) can be computed similarly to a regular
inductor by calculating the work done to “charge” the JJ with current at some
time t:

UJ(t) =

∫ t

0

IJVJdt
′ = ϕ0

∫ φ0

0

I0 sinφdφ = ϕ0I0 (1− cosφ0) . (2.27)

After charging the JJ is left with some fixed phase bias φ0. Since constant terms
in the Hamiltonian just add a rotation to the dynamics of the eigenvectors, we
typically ignore the “1” and write

UJ = −EJ cosφ0, (2.28)

Where EJ = I0ϕ0 =
ϕ2
0

LJ
=

π∆ϕ2
0

ℏRn
is the Josephson coupling energy.

The linear inductor of the QHO can be replaced with a JJ in order to create
an anharmonic quantum oscillator, which nowadays is called the transmon qubit.
The circuit topology of the transmon is identical to a device called the Cooper-
pair box, it is just operated in a different parameter regime. The distinctions are
important, so much so that the circuit will get its own chapter in this disserta-
tion [Chapter 4]. Neglecting charging effects due to environmental degrees of
freedom10, the Hamiltonian of the circuit reads

Ĥt−mon = 4EC n̂
2 − EJ cos φ̂ (2.29)

This superconducting qubit is compared with the QHO in Fig. 2.4. The wave-
functions and eigenenergies are only slightly different when choosing parame-
ters appropriate for comparison, but the difference is enough to make a signif-
icant technological impact. The right panel shows that the transition frequen-
cies between nearest-neighbor eigenstates decreases, with increasing level index i,
which is exactly the ingredient necessary to address transitions independently
with microwave-frequency voltage pulses. We define the anharmonicity of the
qubit to be K = ω12 − ω01, the magnitude of which determines how quickly

10This is valid in the regime EJ ≫ EC , also known as the transmon regime
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EC EC

EJEL

Figure 2.4 | Left: Quantum harmonic oscillator circuit, parameterized by en-
ergies EL and EC . Below, harmonic potential (blue dashed line) with circuit
eigenergies normalized byEL, and overlaid wavefunctions. Center: Cooper-pair
box/transmon circuit, parameterized by energies EJ and EC . Below, comparing
the transmon potential (blue solid line) to the harmonic potential with circuit
eigenenergies normalized by EJ , and overlaid wavefunctions. Right: transition
frequencies ωi,i+1 (normalized by ω01) between nearest-neighbor eigenstates |i⟩
and |i+ 1⟩, for the QHO (black) and for a transmon circuit for a variety ofEJ/EC

(colors). The circuit anharmonicity decreases with increasing EJ/EC .

one can do operations on the qubit, and in most cases the faster the beĴer. The
transmon qubit is perhaps the simplest superconducting qubit, which supports
its popularity throughout the field.

Transmons satisfy the the technological requirements necessary to implement
a qubit, but it is by no means the only circuit that does so. Fig. 2.5 compares
the transmon circuit to two other common superconducting qubits: the C-shunt
flux qubit [You et al. 2007; Yan et al. 2016] and the fluxonium [Manucharyan et
al. 2009; Pop et al. 2014]. Both of these alternatives have a transition spectrum
that is tunable by an externally applied magnetic flux through a superconduct-
ing loop containing JJs, and can aĴain much larger anharmonicity than the trans-
mon. The loop of a C-shunt flux qubit contains three to four JJs, one of which
has EJ smaller by a factor α. The fluxonium JJ is shunted by a large inductance
such that EL ≪ EC < EJ . This inductance is so large that it’s called a superin-
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Figure 2.5 | Three examples of common superconducting qubits. The transmon,
the capacitively-shunted (C-shunt) flux qubit, and the fluxonium qubit. While
they may appear to be variations on a theme, there are significant differences
make one device more advantageous over the others for certain situations.

ductance since its impedance is on the order of the resistance quantum for Cooper
pairs Rq = h

(2e)2 ≈ 6.5 kΩ. The superinductance is typically implemented with
an array of large JJs [Masluk et al. 2012] or, as recently demonstrated, with a high-
kinetic-inductance superconductor wire [Hazard et al. 2019].

2.4.3 Decoherence of superconducting qubits

Coherence times of superconducting qubits have increased many orders of mag-
nitude over the last few decades, with state-of-the-art qubits having measured T1
and T2 on the order of 100 µs. With gate times as low as 10 ns in some cases, this
means that about 104 single-qubit operations can be performed before decoher-
ence, which together display the primary advantage of the supeconducting qubit
architecture: it’s possible to do a lot of fast operations. Achieving this level of
coherence has primarily come from three realizations.

First, confining energy to a single microwave mode in the presence of other
microwave modes is not trivial. By cleaning up the microwave environment
and controlling the coupling to the other modes in the system, the spontaneous
emission of photons from the qubit into the microwave environment can be sup-
pressed. This loss mechanism is known as the Purcell effect, and the limits that
it imposes on qubits are now relatively well understood [Houck et al. 2008]. Un-
fortunately, the Purcell limit cannot be extended infinitely, as the ability for an
experimenter to measure the qubit relies on there being some coupling to an an-
cillary readout mode, but this can be made arbitrarily small with properly engi-
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neered microwave filters. In some sense, the Purcell limit is the ultimate technical
limit on qubit coherence.

Second, not every material is lossless. Normal metals, for instance, are very
efficient dissipators since they have ∼ 1023 electronic degrees of freedom with
a large density of states. Less obvious is that insulators can have defects in the
bulk and especially at surfaces that can absorb energy from the qubit. Vacuum,
however is indeed a lossless dielectric. By engineering the qubit to maximize
the amount of energy stored in vacuum, coherence times of qubits and supercon-
ducting resonators have improved significantly [Paik et al. 2011; Minev, Pop, and
Devoret 2013].

Third, the most enticing property of superconductors, namely the lack of lossy
QP excitations, breaks down in the presence high-frequency radiation. This is not
a surprising effect, but for some time it was not understood to what level these
excitations would limit qubit performance. By equipping experimental setups
with beĴer shielding at infrared frequencies, the density of QP excitations has de-
creased and resulted in improved qubit and resonator performance [Córcoles et
al. 2011; Barends et al. 2011].

So, what currently limits T1 and T2 in superconducting qubits? Generally
speaking, there’s no obvious answer, as so many details about the materials used
in qubit devices and the environment to which they are coupled varies between
different experimental setups and certainly varies between laboratories. It is gen-
erally believed that dephasing times are limited by photon shot noise [Sears et al.
2012; Wang et al. 2019], which shifts the qubit transition frequency in the presence
of a fluctuating photon population in the other electromagnetic modes to which
the qubit is coupled. In flux-tunable qubits, flux noise can also be a limiting fac-
tor when biased away from so-called sweet spots, where the derivative of ω01 with
respect to flux is zero.11

As far as dissipation mechanisms limiting T1 are concerned, we believe that
there are two primary culprits. First, lossy imperfections at the surfaces of di-
electric materials can contribute to both capacitive (coupling to electric field) and
inductive (coupling to current or magnetic field). These could be dislocations in
the crystal structure or paramagnetic impurities on the surface acting as two-level
fluctuators. The second mechanism (and the subject of this dissertation) is that of
QP excitations in the superconductors that make up the qubit electrodes. If ev-

11The same goes for qubits that are tunable with an electrostatic gate, in which charge noise can
be a significant detriment to phase coherence.
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erything in the system was thermalized to the base temperature of our cryostats
(∼ 20 mK), the QP-induced limit on T1 could be longer than the lifetime of the
universe!12 Surprisingly, there appear to be many orders of magnitude more QPs
than would be expected, which can significantly limit qubit T1. The rest of this
dissertation will describe in detail the physics of these nonequilibrium QPs and
how they couple to and cause dissipation in superconducting qubits. This in-
cludes a new mechanism that couples the qubit to both QPs and high-frequency
photons in a four-body process that we call photon-assisted quasiparticle gener-
ation and tunneling (PAT) [Houzet et al. 2019]. Finally, there will be a discussion
of the devices and techniques we implemented to probe QP-induced dissipation,
with experimental data and results [Serniak et al. 2018; Serniak et al. 2019] pre-
sented in the final chapters.

12This assumes the device had an even number of electrons when it was cooled down. If the
number of electrons is odd the QP-induced limit on coherence can actually be preĴy severe, as will
be discussed in Chapter 5.



3
Quasiparticle Excitations

in BCS Superconductors
The gapped energy spectrum of superconductors, along with the advent of mod-
ern cryogenic techniques which ensure a relative lack of excitations above the
superconducting gap, has spawned many technologies based on thin-film super-
conducting devices. In fact, when cooled to dilution refrigerator temperatures
T ≈ 20mK, there are so few excitations that signatures of their spontaneous pro-
duction by high-frequency photons and phonons can be directly detected by sim-
ple DC transport and/or RF reflectometry experiments. Devices operating under
these principles include microwave kinetic inductance detectors (MKIDs), super-
conducting nanowire single photon detectors (SNSPDs), and transition-edge sen-
sors (TESs). Each of these utilize quasiparticle excitations (QPs) — fundamental
excitations out of the BCS ground state — as a measurable resource that makes the
detector “click.” Superconducting qubits, on the other hand, rely on the macro-
scopic coherence of the superconducting ground state to function efficiently, and
the presence of any QP excitations will limit their performance to some level. If the
entire experimental setup was in thermal equilibrium at 20 mK there would be so
few QPs that it wouldn’t be an issue for qubits, however there is overwhelming
evidence for an abundance of nonequilibrium QPs, which can limit state-of-the-art
qubits. In this chapter, we will review the superconducting ground state and con-
sider the excited states of a superconductor in which QP excitations are present.
Then, we will discuss the plethora of observations that indicate a nonequilibrium
density of QPs and discuss the energy distribution of these QPs via analysis of a
kinetic equation. Finally, we will conclude with a brief discussion of Josephson-
junction physics.

3.1 BCS superconductivity

Superconducting materials are typically characterized by their unique electrody-
namic properties, namely their support of perfect DC conductivity and perfect
diamagnetism (at least in bulk, type-I superconductors), which are exhibited at

30
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temperatures less than Tc, the critical temperature below which the material un-
dergoes a second-order phase transition into the superconducting state. It took
nearly 50 years after the first discovery of these properties for a consistent mi-
croscopic theory to be developed by Bardeen, Cooper, and Schrieffer [Bardeen,
Cooper, and Schrieffer 1957]. They describe the phenomenon of superconductiv-
ity as arising through phonon-mediated interaction between time-reversed pairs
of electrons (opposite spin and momenta). So-called ”good” BCS superconduc-
tors have an energy gap ∆ in the electronic density of states around the Fermi
energy εF , however the pairing interaction is weak such that ∆ ≪ εF . This gap
is related to the critical temperature Tc at which the material enters the supercon-
ducting phase by ∆ = 1.74kBTc, in the weak coupling limit.1

3.1.1 The BCS Hamiltonian

This section draws from and combines the discussions of BCS in Refs. de Gennes
1999, Tinkham 2004, and Bretheau 2013. Before considering the microscopic de-
tails that make a superconductor a superconductor, we should establish a simple
picture for normal metals. Until otherwise noted, we will assume to be working
atT = 0. In a normal metal, and assuming independent electrons, the many-body
Hamiltonian of the electron system can be wriĴen as

Hn.m. =
∑
ks

ξk ĉ
†
ksĉks (3.1)

Above, ĉks is the fermionic annihilation operator for electrons with momentum k

and spin s. The total energy of the electron system is just a sum over the energies
associated with level occupation, with ξk = ℏ2k2/2me − εF being the kinetic
energy of an electron with mass me and momentum k with respect to the Fermi
energy εF , and ĉ†ksĉks giving the occupation of the electron state indexed by k

and s. In a BCS superconductor, the energy of the system is described by the
“BCS-pairing Hamiltonian,” which adds to the electrons in a normal metal a pair-

1While this prefactor may seem at first glance to be a numerical artifact, 1.76 = π/eγ , where γ is
the Euler-Mascheroni constant.
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Figure 3.1 | Occupied levels in a normal metal and superconductor in 1D. Here,
horizontal lines represent levels that can be occupied by time-reversed pairs of
electrons, which have opposite spin and momenta: k ↑ and −k ↓. Not shown
are the degenerate pairs with transposed spin. In a normal metal (left) at T = 0,
these levels are occupied by electron-like particles up to the Fermi energy (ξ = 0)
in the ground state. In a BCS superconductor (right), the ground state is a coher-
ent superposition of all combinations of levels being either doubly-occupied with
electrons or doubly-occupied with holes. This pair correlation extends above and
below the Fermi energy, and decays on an energy scale given by the supercon-
ducting energy gap ∆.

interaction term:

HBCS =
∑
ks

ξk ĉ
†
ksĉks +

∑
k,k′

V ∗
kk′ ĉ

†
k↑ĉ

†
−k↓ĉ−k′↓ĉk′↑ (3.2)

The first term in Eq. 3.2 is the same as above, and the second term represents the
aĴractive interaction (for Vkk′ < 0) that coherently shuffles pairs of electrons with
opposite spin and momenta ±k to states with momenta ±k′. This introduces cor-
relations in the occupation of states with opposite momenta, and therefore the ex-
pectation value of operator products in Eq. 3.2 (e.g. ⟨ĉ−k′↓ĉk′↑⟩)2 will be nonzero,
in contrast to a normal metal. Even at this stage in the discussion there is evi-
dence of many body entanglement, of which many see superconductivity as an
archetypal example. Assuming the superconductor is not too small, there will be
many Cooper pairs contributing to the condensate and therefore the fluctuations

2Here, ⟨⟩ denotes the time average
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of ĉ−k′↓ĉk′↑ will be relatively small. These ingredients suggest the applicability
of a mean-field approach, which turns out is convenient for considering excited
states of the system. We’ll make the mean-field approximation by seĴing

ĉ−k′↓ĉk′↑ = ⟨ĉ−k′↓ĉk′↑⟩+
(
ĉ−k′↓ĉk′↑ − ⟨ĉ−k′↓ĉk′↑⟩

)
(3.3)

and so on for other operator pairs. Brackets denote the time average of the oper-
ator product, and the term in parentheses represents small fluctuation from the
mean. We’ll then neglect terms that are second-order in this small parameter.
This substitution results in an effective pairing Hamiltonian

Heff
BCS =

∑
ks

ξk ĉ
†
ksĉks +

∑
kk′

Vkk′

(
⟨ĉ†k↑ĉ

†
−k↓⟩⟨ĉ−k′↓ĉk′↑⟩

+ ⟨ĉ†k↑ĉ
†
−k↓⟩

(
ĉ−k′↓ĉk′↑ − ⟨ĉ−k′↓ĉk′↑⟩

)
+
(
ĉ†k↑ĉ

†
−k↓ − ⟨ĉ†k↑ĉ

†
−k↓⟩

)
⟨ĉ−k′↓ĉk′↑⟩

) (3.4)

where some terms will cancel to give

Heff
BCS =

∑
ks

ξk ĉ
†
kscks +

∑
kk′

Vkk′

(
⟨ĉ−k′↓ĉk′↑⟩ĉ†k↑ĉ

†
−k↓ + ⟨ĉ†k↑ĉ

†
−k↓⟩ĉ−k′↓ĉk′↑

− ⟨ĉ†k↑ĉ
†
−k↓⟩⟨ĉ−k′↓ĉk′↑⟩

) (3.5)

Now we will define ∆k = −
∑
k′
Vkk′⟨ĉ−k′↓ĉk′↑⟩, the BCS pair potential. With this

substitution, the effective BCS Hamiltonian begins to take on an intuitive form.

Heff
BCS =

∑
ks

ξk ĉ
†
ksĉks −

∑
k

(
∆∗

k ĉ−k↓ĉk↑ +∆k ĉ
†
−k↓ĉ

†
k↑ + constant

)
(3.6)

The pair potential can be thought of as the energy that is saved when an electron
enters the Cooper pair condensate (often called the condensation energy), with the
pair of bilinear operators representing the Cooper pairs. In order to diagonalize
the BCS mean-field Hamiltonian, we perform what is known as the Bogoliubov-
Valatin transformation, redefining

ĉk↑ = u∗kγ̂k↓ + vkγ̂
†
k↑

ĉ†−k↓ = −v∗kγ̂k↓ + ukγ̂
†
k↑.

(3.7)
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Here, the electron creation/annihilation operators are now decomposed as super-
positions of other fermionic operators, with |uk|2+|vk|2 = 1 to conserve probabil-
ity. These new fermionic operators create and destroy what we call Bogoliubov
quasiparticle excitations (QPs). It is important to mention here that the transfor-
mation above is wriĴen in a particular form corresponding to the excitation picture
of superconductivity, which will be discussed in the next section. Continuing, we
will invert the transformation:

γ̂†k↑ = u∗k ĉ
†
k↑ − v∗k ĉ−k↓

γ̂†k↓ = u∗k ĉ
†
−k↓ + v∗k ĉk↑.

(3.8)

These Bogoliubov operators obey the usual fermionic anticommutation relation
{γ̂†k↓, γ̂k↓} = 1, and are a superposition of electron creation (c†) and hole cre-
ation (c) operators. We can show that the Bogoliubov transformation diagonal-
izes the Hamiltonian with the proper selection of uk’s and vk’s. Skipping the
algebra, from Eq. 3.6 we find

Heff
BCS = EGS +

∑
k

√
ξ2k + |∆k|2(γ̂†k↓γ̂k↓ + γ̂†k↑γ̂k↑) (3.9)

Here, EGS =
∑
k

(ξk − εk + ∆k⟨ĉ†k↑ĉ
†
−k↓⟩) is the total energy of the superconduct-

ing ground state, and the sum term gives the energy of QP excitations at posi-
tive (spin ↑) and negative (spin ↓)3 energies with respect to the Fermi level. This
is measured relative to the normal-metal ground state energy, is linear in the
volume of the superconductor and scales as ∆2. At this point, we’ll make a sim-
plifying assumption that the BCS interaction strength Vkk′ = V , independent of
momentum as long as ξk, ξk′ < ℏωD, the Debye frequency, which acts as the cutoff
for the phonon-mediated pair interaction. With this, we see that ∆k = ∆ is also
independent of momentum. As evidenced by Eq. 3.9, the energy of these funda-
mental QP excitations εk =

√
ξ2k +∆2, which has a minimum of ∆ at ξk = 0. For

this reason, ∆ is called the superconducting energy gap for single-particle excita-
tions. All of this was made possible by choosing the proper values of uk and vk:

3Our choice to spin-polarize excitations of positive and negative energy is for convenience and fits
within the excitation representation of superconductivity that will be described later. For the current
discussion, this assignment is inconsequential.
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Figure 3.2 | Magnitude squared of the BCS occupation factors uk and vk as a func-
tion of relative quasiparticle kinetic energy ξk (left) and the interaction-dressed
total quasiparticle energy εk (right), with each energy scale normalized by the
gap ∆.

|vk|2 = 1− |uk|2 =
1

2

(
1− ξk

εk

)
=

1

2

(
1− ξk√

ξ2k +∆2

)
(3.10)

The dependence of uk and vk on ξk indicates that the electron-hole character of
the QP excitation is a function of its energy [Fig. 3.2]. This gives rise to interesting
interference effects in QP-transport processes.

3.1.2 Single-particle density of states

Since ∆ ≪ εF in the weak-coupling regime of BCS, we can approximate the nor-
mal density of states νn(ξ) as constant with a value equal to its value at the Fermi
level ν0 ≡ νn(εF ). From this, we can compute the density of states for excitations
of a BCS superconductor

νs = ν0
dξ

dε
= Re

{
ε√

ε2 −∆2

}
. (3.11)

Mathematically, the superconducting density of states νs is infinite at ∆, however
this is will never be the case in physical systems due to broadening of the energy
levels. Notably, νs = 0 for ε < ∆, producing the famous superconducting energy
gap 2∆ for pairs of QP excitations when T = 0.

It’s important to note that our choice to work in the excitation picture is just
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that: a choice, which defines the form of the Bogoliubov transform Eq. 3.8. Now
for a bit of nomenclature: generally speaking, dressed electrons in a normal metal
are sometimes called quasiparticles, as they are not simply electrons moving in
free space. Along this line, electrons in a superconductor that are additionally
dressed by the pair-interaction, are often called Bogoliubov quasiparticles, or Bo-
goliubons, for the sake of distinguishing them. In the excitation picture of super-
conductivity, as the name suggests, we have distinguished Bogoliubons that are
excitations out of the ground state from those that contribute to the condensate.
Those excitations we call QP excitations4, which is the traditional nomenclature
from many-body physics. The excitation picture of superconductivity is com-
pared with the single-particle picture, which is perhaps more intuitive to compare
with a normal metal in Fig. 3.3. Moving from the single-particle to excitation
picture we have transformed hole-like excitations at energies < εF into particles.
These hole excitations remove spin ↑, and therefore create spin ↓. The assumption
here being that there is no asymmetry between particle and hole excitations (no
charge imbalance).

3.2 QP excitations out of the BCS ground state

We managed to massage the BCS coupling Hamiltonian (3.2) into a diagonal
form (3.9) where the Bogoliubov operators (3.8) create QP excitations out of the
superconducting ground state, and we did all of this without writing down any
sort of ground-state wavefunction for the superconductor. Due to its diagonal
form, its clear to look for a ground state wavefunction |BCS⟩G that satisfies the
relations

γ̂k↑ |BCS⟩G = γ̂k↓ |BCS⟩G = 0, (3.12)

indicating that the BCS ground state is devoid of QPs. BCS took a ground-state
wavefunction of the form

|BCS⟩G =
∏
k

(uk + vke
iφĉ†k↑ĉ

†
−k↓) |vac.⟩ (3.13)

4denoted in this section and the rest of this dissertation as QPs
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QP excitations

single-particle picture excitation picture

Figure 3.3 | Density of states and QP excitations in the single-particle picture
and the excitation picture. One arrives at the excitation by taking the states in the
single-particle picture (with energies ε′), transforming all the particles below the
Fermi energy into holes (and vice versa), and then flipping the negative energy
states across ε′ = 0. Energy windows in the excitation picture have twice the
degeneracy of those in the single-particle picture.

in the phase basis. This BCS ground state is made up of a coherent superposition
of occupied and unoccupied time-reversed electron pairs. Here, we’ve chosen to
make the occupation factors uk and vk real, extracting the phase between them,φ,
explicitly. Now the uk’s and vk’s have an intuitive definition, they are the prob-
ability amplitudes for a pair being empty or occupied, respectively, and φ is the
phase of the superconducting order parameter. Finally, |vac.⟩ is a state repre-
senting an electron vacuum, upon which the condensate is built. It’s important to
note that the above wavefunction does not conserve particle number, but has a
well defined superconducting phase φ. Taking the Fourier transform of Eq. 3.13
performs what is called the “Anderson projection,” and is well defined in par-
tice number, allowing φ to fluctuate. When the QP operators act on the ground
state, they definitively break a Cooper pair, leaving an unpaired electron-hole
excitation.

γ̂†k↑ |BCS⟩G = ĉ†k↑

∏
k′ ̸=k

(uk′ + vk′eiφĉ†k′↑ĉ
†
−k′↓) |vac.⟩

γ̂†k↓ |BCS⟩G = ĉ†−k↓

∏
k′ ̸=k

(uk′ + vk′eiφĉ†k′↑ĉ
†
−k′↓) |vac.⟩

(3.14)
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Figure 3.4 | A pair of QP excitations (purple) in an isolated superconductor,
obtained from acting γ̂†ksγ̂

†
k′s̄ on the BCS ground state, where s̄ is the opposite

spin of s. This is depicted in the excitation picture (left) and in a wavefunction
schematic (right) near the Fermi energy (ξ = 0) [see Fig. 3.1]. Fermion-number
parity must be conserved in an isolated superconductor, indicating that QPs must
be generated in pairs requiring total energy ≥ 2∆, which could come from high-
frequency phonons or photons (orange). In the wavefunction schematic, this has
the effect of definitively occupying states k ↑ and −k′ ↓, removing their cor-
responding time-reversed pairs from the coherent superposition of many-body
states that is the BCS ground state (indicated by the purple box).

Each QP excited in the system necessarily removes a Cooper-pair level from the
condensate, and requires an excitation energy εk =

√
ξ2k +∆2. The diagonal

form of the Hamiltonian (3.9) is in direct analogy to a normal metal, with the
transformation ĉks → γ̂†ks, which makes sense with the fact that states with QP
excitations are the excited energy eigenstates of a superconductor.

3.3 Thermal QPs

As temperature is increased from T = 0, there will be some probability that QPs
will be excited above the gap. When cooled to temperatures well below the crit-
ical temperature Tc = ∆/1.76kB at which superconductivity appears, any elec-
tronic QP excitations should be suppressed as long as T ≪ ∆/kB . We define
three quantities that describe how many quasiparticles there are in a device: the
total number of quasiparticles in the deviceNQP, the number of quasiparticles per
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unit volume nQP, and the number of quasiparticles normalized by the number of
Cooper pairs xQP = nQP/nCP = NQP/NCP. We’ll mainly focus the normalized
density xQP, since it is an intrinsic quantity that can be applied more generally
across different devices. Simply, one can find xQP by integrating all of the filled
states in the excitation picture5:

xQP =
1

ν0

∫ ∞

0

f(ε)νs(ε)dε. (3.15)

To present a compact, analytical formula for the density of thermally-generated
QPs xth.

QP, we will make two assumptions: first, that the excited QPs have a Fermi-
Dirac distribution in energy6

f(ε) = fFD(ε) =
1

eε/kBT + 1
, (3.16)

and second, that there are very few QPs such that they are localized very near
the gap edge. This second assumption allows us to express the approximate su-
perconducting density of states ν̃s(ε) = ν0/

√
2(ε−∆) for ε ≥ ∆. With this, we

can evaluate Eq. 3.15 to find the ratio of thermally generated QP excitations to
Cooper pairs xth.

QP with the relation [Catelani et al. 2011]

xth.
QP ≈

√
2πkBT/∆e

−∆/kBT . (3.17)

This is valid for T ≪ ∆, and can also be thought of as the fraction of broken
Cooper pairs: xQP = nQP/nCP = nQP/2ν0∆, where nQP is the number of QPs per
unit volume and nCP is the number of Cooper pairs per unit volume7. We will
return the discussion of QPs in the next section.

What happens to the gap ∆ in the presence of QP excitations at finite tem-
perature? We previously defined the pair potential in terms of expected electron
occupation, and we saw that the pair potential and the superconducting gap are
numerically the same. Lets compute ∆k (keeping the k-dependence for general-

5The lower limit of integration here is 0, not ∆, to include situations where νs does not agree
perfectly with the BCS prediction. For instance, some disordered superconductors show evidence of
a soft gap, where the coherence peaks are broadened and there are many available subgap QP states.

6The validity of this assumption will be discussed in a later section. SPOILER ALERT: it’s a
reasonably good approximation.

7In superconducting Al films, nCP = 4× 106 µm−3
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Figure 3.5 | Thermally generated QP density xth.
QP as a function of T/∆ calculated

using the analytical approximation in Eq. 3.17. The gray shaded region indicates
the range of residual x0QP observed empirically at low temperature. Inset: relative
error of Eq. 3.17 to exact numerical integration assuming a Fermi-Dirac distribu-
tion of QPs (Eq. 3.15). The small, grey band indicates the same band as in the
main figure.

ity) in terms of Bogoliubov operators:

∆k = −
∑
k′

Vkk′⟨c−k′↓ck′↑⟩ =−
∑
k′

Vkk′⟨(−vk′ γ̂†k′↑ + u∗k′ γ̂k′↓)(u
∗
k′ γ̂k′↑ + vk′ γ̂†k′↓)⟩

=−
∑
k′

Vkk′u∗k′vk′⟨1− γ̂†k′↑γ̂k′↑ − γ̂†k′↓γ̂k′↓⟩.

(3.18)

We can recognize ⟨γ̂†k′↑γ̂k′↑⟩ and ⟨γ̂†k′↓γ̂k′↓⟩ as being the occupation probability of
electron-like and hole-like QP states with energy εk:

⟨γ̂†k′↑γ̂k′↑⟩ = ⟨γ̂†k′↓γ̂k′↓⟩ = f(εk′). (3.19)

Substituting to get the equation fully in terms of energies

∆k = −V
∑
k′

∆k′

2εk′
tanh

(
εk′

2kBT

)
(3.20)

and taking it to the continuum limit and making the constant-interaction approx-
imation gives the familiar self-consistency equation in integral form for the gap ∆
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as a function of T

− 1

ν0V
=

∫ ℏωD

0

dξk′
1

2
√
ξ2k′ +∆2

tanh

(√
ξ2k′ +∆2

kBT

)
(3.21)

where the Debye frequency ωD sets the cutoff energy of the phonon-mediated
pair interaction. Sending ∆ → 0 gives the familiar form of the equation for the
critical temperature Tc at which superconductivity appears

kBTc = 1.13ℏωDe
−1/ν0V . (3.22)

Along with direct measurements of Tc, one can use this to estimate the effective
pair-coupling strength V .

3.4 Nonequilibrium QPs

QP excitations can significantly hinder the performance of a variety of supercon-
ducting devices, typically to an extent that scales linearly with the QP density,
which motivates the broad goal of reducing xQP. Though possible in certain ex-
periments, it is a luxury to be able to count the total number of QPs in a given
device. More often than not, an empirical xQP is aĴained by comparing an ex-
trinsic metric, such as T1 of a qubit, to theoretical limits imposed by a certain
thermally generated xQP. With these techniques, experimenters infer that xQP typ-
ically falls in the range of 10−9–10−5 [Aumentado et al. 2004; Segall et al. 2004;
Naaman and Aumentado 2006; Shaw et al. 2008; Martinis, Ansmann, and Au-
mentado 2009; Barends et al. 2011; Saira et al. 2012; Pop et al. 2014; Visser et al.
2014a; Nsanzineza and Plourde 2014; Wang et al. 2014; Vool et al. 2014; Visser
et al. 2014b; Bal et al. 2015; Taupin et al. 2016; Gustavsson et al. 2016; Serniak
et al. 2018; Grünhaupt et al. 2018; Serniak et al. 2019]8, which corresponds to an
effective QP temperature T eff

QP ≈ 120–210 mK, much greater than the tempera-
ture at which our experiments are performed. Most JJ based-superconducting
devices are based on thin films of Al, and are thermally anchored to the mixing
chamber of a dilution refrigerator (∼ 20 mK). If we insert this temperature into
Eq. 3.17 along with ∆ ≈ 205 µeV = 1.76kBTc, one would expect xth.

QP ∼ 10−52!
This discrepancy that there are many, many orders of magnitude more QPs than

8and many more!
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expected defines the presence of what we refer to as nonequilibrium QPs in our
devices.

The exact source of these nonequilibrium QPs is to this day unknown, but
has been the motivation for many theoretical works [Bespalov et al. 2016; Cate-
lani and Basko 2019; Houzet et al. 2019] which may guide future experiments.

3.5 Kinetics of nonequilibrium QPs

Here we write and solve numerically the kinetic equation governing the occu-
pation function f(ε) for QPs in a superconductor subject to environmental cou-
pling [Kaplan et al. 1976; Chang and Scalapino 1977; Martinis, Ansmann, and
Aumentado 2009; Catelani, Glazman, and Nagaev 2010; Goldie and Withington
2013]. The kinetic equation computes the derivative of the QP occupation func-
tion, and includes scaĴering processes between these different QP states as well
as pair generation and pair recombination. This can be decomposed into contri-
butions from different interactions:

df(ε)

dt
= g(ε) + Ise-ph + Ipe-ph + Ie-e (3.23)

The first term accounts for generation of QPs, and its energy dependence will
depend on the exact processes that create QPs in our circuit. In general, we can
write it as

g(ε) = ηgPg(ε)νs(ε), (3.24)

where Pg(ε) is the power spectrum of QP-generating radiation, νs(ε) is the su-
perconducting density of states, and ηg is an absorption efficiency, which need
not be constant as a function of ε, however we will assume so here. A plausible
mechanism for non-equilibrium QP generation is via blackbody radiation from
fridge components at an elevated temperature. This source of photon flux can be
characterized by the traditional blackbody power spectrum:

PBB(ε) ∝
ε3

eε/kBTBB − 1
. (3.25)

While this may be the most realistic case, we will consider the extreme case of
QP injection in a narrow band of energies, in an aĴempt to reach a steady-state
f(ε) that deviates maximally from the typically assumed Fermi-Dirac distrubu-
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Figure 3.6 | Numerical simulation of the QP kinetic equation to determine the
equilibrium QP energy distribution f(ε) in the presence of electron-phonon scat-
tering and a constant generation source between 2.4∆ and 2.6∆.

tion [Eq.3.16]. The the second and third terms in Eq.3.23 correspond to electron-
phonon scaĴering and recombination processes, respectively. Electron-phonon
scaĴering will tend to cool quasiparticles toward the gap edge assuming that the
phonons are well-thermalized to the fridge temperature, with a phonon occupa-
tion distribution

N(ε) =
1

eε/kBTph − 1
. (3.26)

The electron-phonon scaĴering collision integral shuffles QPs from state ε to ε1

Ise-ph =
1

τ0∆ν0

∫ ε

∆

dε1

(
ε− ε1
∆

)2
(
1− ∆2

εε1

)
νs(ε1)

×
{
[1− f(ε)]f(ε1)N(ε− ε1)

− f(ε)[1− f(ε1)][N(ε− ε1) + 1]
}

+
1

τ0∆ν0

∫ ∞

ε

dε1

(
ε− ε1
∆

)2
(
1− ∆2

εε1

)
νs(ε1)

×
{
[1− f(ε)]f(ε1)[N(ε− ε1) + 1]

− f(ε)[1− f(ε1)]N(ε− ε1)
}
,

(3.27)
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accounts for both heating and cooling of QPs due to phonons. The phonon-
induced pair-scaĴering collision integral

Ipe-ph =
1

τ0∆ν0

∫ ∞

∆

dε1

(
ε+ ε1
∆

)2
(
1 +

∆2

εε1

)
ν(ε1)

×
{
[1− f(ε)][1− f(ε1)]N(ε+ ε1)

− f(ε)f(ε1)[N(ε+ ε1) + 1]
} (3.28)

includes terms corresponding to thermal-phonon-induced recombination and
generation of QPs, however the laĴer is strongly suppressed at low temperatures.

QPs can scaĴer with each other as indicated by Ie-e, however this term will be
negligible if xQP is small and if we restrict ourselves to only considering QPs with
energy < 3∆. Above this threshold energy 3∆, a QP can cool to the gap edge by
breaking a Cooper pair in a “QP multiplication” process, and the large density of
states will make the process comparable in strength to phonon scaĴering.

The QP occupation function can be obtained by integrating the kinetic equa-
tion. Fig. 3.6 shows the numerically simulated f(ε) subject to the interactions
described above, and compares it to a thermal distribution that corresponds to
approximately the same xQP. The QP kinetic equation is solved by iteration, with
each consecutive estimate fj+1(ε) = fj(ε)+δfj(ε)δtwith timesteps of δt = 20 ns,
with final refinement at 1 ns timesteps. Numerical inputs are∆ = ∆Al = 205µeV,
electron-phonon scaĴering rate τ0 = 438 ns [Kaplan et al. 1976], and equilibrium
phonon temperature Tph = 35 mK. The product ηgPg(ε) is chosen arbitrarily to
produce a reasonable QP density and gives xQP = 6.5× 10−7 in steady-state. As
evident in Fig. 3.6, the distribution is not quite Fermi-Dirac, but the deviation is
relatively minute, confirming that a thermal distribution is a valid approxima-
tion. There is a visible feature corresponding to the QP injection between 2.4∆

and 2.6∆, however this is more than three orders of magnitude smaller than f(∆).

3.6 Josephson effects

As the work in this dissertation relies on Josephson-junction based superconduct-
ing qubits, it would be remiss not to mention the underlying physics of Josephson
junctions. The nonlinear current-phase relation of a Josephson tunnel junction is
the backbone of the vast majority of superconducting quantum circuits, save for
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Figure 3.7 | Schematic of a superconductor-normal metal-superconductor junc-
tion with a pair of Andreev bound states responsible for a phase-dependent su-
percurrent through the junction. Andreev reflection processes scaĴer an elec-
tron (hole) into a hole (electron) with opposite spin and momentum, transferring
charge of magnitude 2e into the superconducting condensate.

purely-linear superconducting resonators. The two Josephson relations describe
the dynamics of the current and superconducting phase φ across the junction:

IJ =I0 sinφ

VJ =ϕ0
dφ

dt

(3.29)

At the heart of our modern understanding of the Josephson effect are An-
dreev bound states: states with energies less than ∆ that are localized at minima
of the superconducting pair potential. In practice, this potential landscape can
come from any superconductor-X-superconductor sandwich, where X can be a
normal metal, semiconductor, insulator, ferromagnet, or a superconductor with
a different ∆. A thorough discussion of the Bogoliubov-de Gennes formalism
used to describe Andreev physics can be found in Landry Bretheau’s thesis from
the Quantronics group in Saclay [Bretheau 2013], and discussion of long-junction
phenomena will be considered in the future thesis of Max Hays. Here we will
describe some of the basic results relevant for large, weakly transmissive tunnel
barriers, such as commonly used Al/AlOx/Al Josephson junctions.

On the microscopic level, a defining characteristic of superconductor is that
electrons impinging from a normal metal will undergo Andreev reflection pro-
cesses at the N-S interface. Andreev reflection differs from traditional (specular)
reflection in that not only is momentum exchanged, but also charge. A normal
electron with |ξ| < ∆ will bounce off of a superconductor as a hole with oppo-
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√
1− τ

Figure 3.8 | The Andreev-bound-state energy has a minimum at phase bias
φ = π. This phase dispersion separates the bound state from the single parti-
cle density of states at all values φ ̸= 0(mod2π).

site spin and momentum [Fig. 3.7]. These Andreev reflection processes allow for
current biasing of superconducting leads with bias voltages less than the gap. If
a normal region is sandwiched between two superconductors, constructive in-
terference can produce Andreev bound states: subgap states within the junction
responsible for the coherent transport of Cooper pairs.

We’ll consider a “short” JJ (length much smaller than the superconducting
coherence length 9) with just a single conduction channel. In this quasi-1D junc-
tion, without breaking time-reversal symmetry, there are two spin-degenerate
Andreev bound states (referred to as the Andreev doublet) at energy

εA(φ, τ) = ∆

√
1− τ sin2(φ/2) (3.30)

in the excitation picture (relative to εF ), a is depicted in Fig. 3.8. The addition
of an arbitrary transmission coefficient τ for the conduction channel couples the
two ABS because it give the possibility for specular reflection within the weak
link, which induces a transition from one bound state to the other, as shown in
figure.

These Andreev bound states are of particular interest to the solid state quan-
tum computing community, and condensed maĴer physicists in general. The
ABS represents an engineerable Fermionic few-level system, which can inter-

9In bulk Al, the coherence length lbulk
c ≈ 1.2µm, however this is reduced in dirty superconductors

to an effective value leff
c ≈

√
lbulk
c lMFP, where lMFP is the electronic mean-free-path. In thin film

superconductors, this is limited by the thickness d of the film, giving leff
c ≈

√
lbulk
c d.
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face naturally with the superconducting qubit technology and circuit QED. Re-
sults from the Quantronics group at Saclay, who have has pioneered the study of
ABS [Bretheau et al. 2013; Olivares et al. 2014; Janvier et al. 2015] have shown the
coherent manipulation of these states in a superconducting atomic-point contact.
Furthermore, studies of Andreev bound states in proximitized semiconductor
nanowires [van Woerkom, Geresdi, and Kouwenhoven 2015; Hays et al. 2018;
Tosi et al. 2019] are of relevance to topological quantum computing. Systems
with large spin-orbit coupling and a large g-factor may enter a topological regime
when proximitized by a typical s-wave superconductor. This topological regime
may play host to Majorana bound states (with properties similar to those of the
ABS in the trivial regime) at the boundaries of the topological superconductor
which may prove useful as topologically-protected qubits in their own solid-state
quantum computing architecture.

As discussed in Chapter 2, the phase difference φ and the number of particles
transferred are conjugate variables, therefore we can express the current through
this junction via Hamilton’s equations of motion as

IA(δ, τ) = − 1

ϕ0

dεA
dφ

=
∆

4ϕ0

τ sin(φ)√
1− τ sin2(φ/2)

. (3.31)

This shows that there is a non-zero DC supercurrent10 which flows with the only
requirement that there is a phase difference imposed, not a voltage. The phase
difference is an integral over all past time of the applied voltage, so as long as
some voltage was applied at some point in the past, there is the potential for a
persistent supercurrent to flow through the junction. This is one of the most fun-
damental features of superconductivity, enabled by Andreev bound states.

As is evident from Eq. 3.31, if the channel is very opaque (τ ≪ 1) we recover
the sinusoidal current phase relation described in Chapter 2 that is characteris-
tic of a Josephson tunnel junction. In reality, SIS Josephson junctions (of which
most transmon qubits are based) typically have millions of conduction channels
contributing to Cooper pair transport. With this in mind, we can calculate the
critical current of the junction I0 from mesoscopic transport by considering N

10This assumes that the Andreev doublet is in its ground state, with no QPs occupation. As long as
εA ≫ kBT , this formula is a good approximation for the average Andreev current.
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parallel ABSs all with the same phase bias:

IJ =

N∑
i=1

∆τi
4ϕ0

sin(φ), (3.32)

From which we can identify the critical current as

I0 =

N∑
i=1

∆τi
4ϕ0

=
∆τ̄

4ϕ0

A(
λF /2

)2 (3.33)

with the factor A
(λF /2)2 accounting for the total number of conduction channels in

the junction, where A is the junction area and λF is the Fermi wavelength, and τ̄
is the average channel transparency. From the Landauer formula we can calcu-
late the total resistance of the junction in the normal state to be Rn =

RQ(λF /2)2

Aτ̄

with RQ = h/2e2 the single electron quantum of resistance, which allows us to
compare with Eq. 2.26:

I0 =
∆τ̄

4ϕ0

A(
λF /2

)2 ?
=

π∆

2eRn
, (3.34)

which can be shown to agree. If we consider an Al/AlOx/Al Josephson junction
with a critical current density= 50A/cm2,11 that would correspond to an average
channel transparency τ̄ = 5× 10−8.12

11Which is reasonable given standard junction fabrication techniques
12This assumes a Fermi wavelength λF = 0.1 nm and gap ∆ = 1.76kBTc with Tc = 1.35 K.



4
From the Cooper-Pair Box

to the Transmon
This chapter will describe various properties of the Cooper-pair-box/transmon
circuit, and emphasize the utility of an oft-maligned parameter regime of offset-
charge sensitivity which we call the OCS regime of the circuit. It is in this regime
that charging effects and quasiparticle dynamics can be studied in great detail.
In spite of reduced coherence due to charge sensitivity, OCS transmons are an
ideal proxy for understanding the effects of QP-induced dissipation in traditional
transmons. The discussion in next sections follows closely that of Refs. [Koch et
al. 2007; Serniak et al. 2019].

4.1 Properties of the circuit

The CPB/transmon circuit is simply that of a capacitively-shunted Josephson Junc-
tion (JJ) with capacitive coupling to charges in its environment [Fig. 4.1]. Electro-
magnetic excitations of the CPB/transmon are plasma oscillations of Cooper-pair
density, and can be visualized similarly to those in a superconducting dipole an-
tenna. The next sections we will detail the distinguishing features of the plasmon
eigenstates of the transmon: namely charging effects due to the high-impedance
Josephson junction and anharmonicity of the transition spectrum. Furthermore,
we will introduce the notion of charge-parity which is a crucial observable of the
circuit for experiments probing the effects of nonequilibrium QPs in supercon-
ducting qubits.

4.1.1 Offset charge and charge parity

When the Cooper-pair box (CPB)/transmon was briefly introduced in the Chap-
ter 2, charge dynamics were almost completely neglected: an issue that will be
remedied here. Revisiting the CPB circuit diagram and Hamiltonian of Chap-
ter 2, we will start by adding an important contribution to the dynamics of the
system, the offset charge ng . The potential energy stored in a capacitor increases
quadratically with the amplitude of a DC voltage applied across the capacitor.

49
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ϕ̂, PVg

Cg

Cs LJ , CJ

Figure 4.1 | Circuit diagram of a Cooper-pair box/transmon coupled to charges in
the environment (this is identical to Fig. 1.1(a)). Fluctuating charges in the envi-
ronment produce noise on the reduced charge offset ng = CgVenv/2e, whereCg is
an effective gate capacitance and e is the electron charge. In the transmon regime,
devices are fabricated with a large capacitance Cs shunting the JJ. The symbols
LJ and CJ are the inductance and the native capacitance of the JJ, respectively.
These are related to the characteristic energies of the circuit: the Josephson en-
ergy EJ = ϕ20/LJ and the single-electron charging energy EC = e2/2CΣ, where
CΣ = CJ + Cs + Cg . Finally, φ̂ and P denote the difference in superconduct-
ing phase across the junction and the number parity of QPs that have tunnelled
across the junction, respectively.

This voltage has the effect of inducing an excess charge |Q| = C|V | on each side
of the capacitor. In the case of the CPB, this can be accounted for by adding a volt-
age bias Vg across the JJ, which could be capacitively coupled via an electrostatic
gate as depicted in Fig. 4.1. Including this effect produces the CPB Hamiltonian
in its traditional form

ĤCPB = 4EC

(
n̂− ng

)2 − EJ cos φ̂. (4.1)

The dimensionless offset charge ng = CgVg/2e is a continuous parameter in the
Hamiltonian, and has “units” of the number of Cooper pairs. This ng can be
tuned by an electrostatic gate, but is always subject to contributions from drifting
environmental charges. This Hamiltonian is a function of two operators: n̂ is the
number of Cooper pairs that have been transferred through the JJ via Andreev
reflection, and φ̂ is the dynamical superconducting phase difference across the
JJ. As described in Chapter 2, EC is the charging energy associated with a single
electron on one junction electrode and EJ is the Josephson coupling energy.

Now, how do QPs fit into this picture? When a QP tunnels across the junction
it transfers a charge ±e, which would have the same effect as shifting ng by ±1/2.
As we will show momentarily, the Hamiltonian is symmetric with translation by
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integer Cooper-pair charge (2e, which shifts ng by ±1), prompting us to define
the charge parity P which denotes the parity of the total number of electrons that
have traversed the JJ. To take into account the charge parity in the Hamiltonian,
we make the transformation

ng → ng +
P − 1

4
(4.2)

which separates the contribution of QP tunneling from the effect imposed by an
external gate voltage. The experimental relevance of this transformation relies
on a separation of timescales between ng fluctuations and QP tunneling events
that change P . We will show that this is a valid assumption, with large ng drift
occurring on the timescale of minutes, and charge-parity switches occurring once
per ∼ ms. The parameter P will switch between values ±1 depending if the
charge parity is even (P = 1) or odd (P = −1). This convention is chosen such
that the charge-parity term does not contribute when the charge parity is even.
Again, coherent Cooper-pair transport does not change charge parity, but QP
tunneling will. With this transformation, the full CPB Hamiltonian now reads

ĤCPB = 4EC

(
n̂− ng +

P − 1

4

)2

− EJ cos φ̂. (4.3)

In order to keep things general (and for convenience when discussing QP dy-
namics in the OCS regime) we will index the eigenstates of the circuit |i, p⟩ by
two discrete labels: i denotes the plasmon-excitation number and p denotes the
charge parity. For readability, we will indicate i numerically (0,1,2...) and p with
label “e” or “o,” for “even” and “odd” charge parity, respectively. In examples
where the charge-parity is not important (such as the single-charge degeneracy
point ng = 0.25), the index p may be dropped.

4.1.2 Charge dispersion

The above discussion of offset charge and charge-parity would be unnecessary
if the eigenspectrum of the circuit was not effected by these quantities, and in
most QIP applications they can indeed be neglected because the circuit is engi-
neered in a parameter regime that negates their effect on the transmon spectrum.
However, these effects are interesting to study in order to characterize QP and
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Figure 4.2 | Eigenenergies ϵi,p normalized by EJ as a function of ng , indexed
by plasmon state i and charge parity p, for the five lowest-energy plasmon states,
from the CPB regime (left) to the transmon regime (right). Increasing EJ/EC

decreases the sensitivity of the spectrum to charging effects.

offset-charge dynamics, and devices can similarly be engineered to have an ex-
perimentally convenient degree of sensitivity. The control knob that one has to
control this sensitivity is the ratio EJ/EC .

The eigenspectrum of the circuit from the CPB regime (EJ/EC ≈ 1) to the
transmon regime (EJ/EC ≫ 1) (represented as EJ/EC = 100) is depicted in
Fig. 4.2, alongside our weapon of choice for studying QP dynamics, the OCS
transmon regime (EJ/EC ≈ 20). Shown are the eigenenergies ϵi,p(ng) of the joint
plasmon and charge-parity states as a function of ng , emphasizing that the eigen-
states are separated into two charge-parity manifolds. Beyond that, the most strik-
ing feature is the qualitative change in the eigenspectrum as a function ofEJ/EC .
As the ratio EJ/EC is increased, the eigenenergies ϵi,p(ng) becomes less and less
sensitive to ng . This is quantified by the charge dispersion δϵi of the i-th plasmon
state, defined as δϵi = |ϵi,e(0)− ϵi,o(0)| (or equivalently |ϵi,e(0)− ϵi,e(1/2)|).

The charge dispersion of the five lowest energy plasmon states is shown
in Fig. 4.3 as a function of EJ/EC . In the transmon limit, charging effects and
the presence of two charge-parity manifolds are typically neglected because the
charge dispersion decreases approximately exponentially with

√
EJ/EC [Koch

et al. 2007] [Fig. 4.3], and the spliĴing of the two lowest plasmon levels (those
relevant for coherent manipulation in quantum computing architectures) is over-
come by other sources of dephasing at the ∼ 10 kHz level [GambeĴa et al. 2006;
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Figure 4.3 | Left: charge dispersion δϵi for the five lowest plasmon eigenstates,
as a function of EJ/EC . Right: qubit anharmonicity K(ng) = ω12(ng) − ω01(ng)
normalized by theEC as a function ofEJ/EC , for the three values of ng with even
charge parity. Here,EJ is swept with fixedEC/2π = 350 MHz. The black dashed
line represents the asymptotic limit that K = −EC when EJ/EC → ∞. The grey
dashed line indicates K = 0, which is sometimes referred to as the defining line
between the CPB and transmon regime.1

Sears et al. 2012; Wang et al. 2019]. We will end up sacrificing a bit of coherence
in the OCS regime in order to probe QP and charge dynamics.

4.1.3 Anharmonicity

As discussed in Chapter 2, there is some minimum amount of nonlinearity nec-
essary for a multilevel quantum circuit to be considered a useful physical qubit.
This is quantified by the anharmonicity of the circuit K = ω12 − ω01, which is
depicted alongside the charge dispersion in Fig. 4.3. There, K is normalized
by EC and ploĴed for the extreme values of ng : the point where f01 is maxi-
mum (ng = 0), where f01 is minimum (ng = 1/2), and at the single-charge de-
generacy point (ng = 1/4). At large EJ/EC , all curves converge to EC . However
it’s important to note this is only the case in the extreme transmon limit, and K

deviates from EC by about 10% even at EJ/EC ≈ 100.
Reasonably large anharmonicity is crucial for achieving fast qubit operations

with high fidelity using microwave pulses. For example, the Pauli-X gate (anal-

1This is Michel’s definition, that transmons cross (trans-) the point of zero anharmonicity (-mon).
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ogous to the classical NOT gate) induces a π-rotation of the qubit around the σ̂x-
axis, and can be accomplished by applying a short microwave pulse with car-
rier frequency f01. Care must be taken when engineering these pulses to avoid
leakage of the transmon state into higher levels (|2⟩ and above), which can be
minimized using pulses with special envelopes (for example, see Ref. Chow et
al. 2010). This is due to the broad spectral width of fast pulses. In the simplest
example of a pulse with a Gaussian envelope, the pulse length, which is pro-
portional to the gate time, must be ≳ 3/K in order to avoid significant leakage.
For simple schemes utilizing only the two lowest transmon eigenstates as a qubit
basis, large anharmonicity is always preferred as long as charge-dispersion is suf-
ficiently suppressed.

4.1.4 Eigenvectors

The time-independent Schrodinger equation for the circuit can be solved analyt-
ically when represented in the phase basis[

4EC

(
−i ∂
∂φ̂

− ng +
P − 1

4

)2

− EJ cos φ̂

]
|i, p⟩ = ϵi,p |i, p⟩ , (4.4)

where it takes the form of the Mathieu equation when massaged into the correct
parameterization. While the phase basis eigenvectors are relatively convenient
when calculating QP-induced transition matrix elements [Chapter 5], we favor
numerical simulations in the charge (n̂) basis. The n̂ basis is more convenient
for calculating dispersive shifts with a resonator (see next section) and can be
extended to also study QP-induced transition rates.

As discussed in the last chapter, the Josephson effect arises due to coherent
transport of Cooper pairs across the JJ, which, by the language used above, would
change n̂. Consequently, we can express the Josephson term in its conjugate basis
in terms of n̂, which yields a Hamiltonian with only one degree of freedom. This
allows us to write the Hamiltonian in terms of charge and charge eigenstates as

ĤCPB =
∑
n

{
4EC

(
n− ng +

P − 1

4

)2

|n⟩ ⟨n| − EJ

2

(
|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|

)}
,

(4.5)

which is convenient to diagonalize numerically. As a general rule, one must in-
clude more than imax(EJ/32EC)

1/8 charge basis states n to compute the spectrum
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Figure 4.4 | Plasmon eigenstates represented in the n̂-basis with ng = 0, from
the CPB regime (left) to the transmon regime (right).

up to a maximum plasmon index imax [Girvin 2014]. In this form, the Josephson
term clearly couples nearest-neighbor charge states, corresponding to the trans-
fer of individual Cooper pairs across the JJ. The Cooper-pair box (CPB) is often
called a “charge” qubit, in the sense that the qubit-basis eigenstates are approxi-
mately eigenstates of the charge operator n̂. This is only strictly true in the limit
thatEJ/EC → 0. As shown in Fig. 4.4, asEJ/EC is increased, the wavefunctions
become more and more delocalized superpositions of n-states.

4.2 Transmon-cavity coupling

In principle, because the eigenspectrum of an OCS transmon can vary signifi-
cantly with ng , so too can the coupling between the OCS transmon and the ancil-
lary mode used to read out its state. An OCS transmon coupled to a single linear
readout mode is described by the Hamiltonian [Blais et al. 2004; Koch et al. 2007]

Ĥ = ĤCPB + ℏωrâ
†â+ ℏgn̂

(
â+ â†

)
. (4.6)

The first term is the CPB Hamiltonian presented above, and the second term de-
scribes the energy stored in the readout mode. There, ωr is the bare readout
mode frequency, g is the capacitive coupling rate between the OCS transmon and
the readout mode, and â is a bosonic annihilation operator for excitations in the
bare readout mode. The coupling term ℏgn̂(â+ â†) takes the form of a standard
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Figure 4.5 | Circuit diagram of an OCS transmon coupled to an ancillary readout
resonator, which is itself coupled to a microwave transmission line.

dipole coupling, and produces a transmon-state-dependent dispersive shift χi,p

of the readout-mode frequency relative to ωr. Such dispersive shifts are the basis
for qubit readout in cQED. Up to second order in perturbation theory, χi,p (also
called the Lamb shift) can be wriĴen [Manucharyan 2012]

χi,p = g2
∑
j ̸=i

2ωpp
ij

∣∣⟨j, p|n̂|i, p⟩∣∣2
(ωpp

ij )
2 − ω2

r

, (4.7)

which is valid for g
∣∣⟨j, p|n̂|i, p⟩∣∣ ≪ (ωpp

ij − ωr). Here, ωpp
ij is the transition fre-

quency between transmon states |i, p⟩ and |j, p⟩. In a QHO, the charge matrix
elements ⟨j, p|n̂|i, p⟩ coupling non-nearest-neighbor i and j are strictly zero due
to wavefunction symmetry. This however, is not strictly true for the transmon in
any experimentally reasonable regime, as evidenced by the numerical simulation
in Fig. 4.6. That said, in a traditional weakly anharmonic transmon, χi,p is very
well approximated by including only nearest-neighbor terms, except in the rare
case where a transmon transition is nearly resonant with the readout mode, as
near degeneracy can cause significant changes as evidenced from Eq. 4.7. For
this reason, it is especially important to include non-nearest-neighbor contribu-
tions to χi,p in CPB and OCS regimes, in which the charge dispersion of the trans-
mon levels can significantly change the detuning of transition frequencies from
the readout mode.

It is important to note here a discrepancy with what people often call the “dis-
persive shift” or “chi,” which harkens back to the days of spins coupled to cavities
described with the Jaynes-Cummings Hamiltonian. For clarity we will drop the
charge-parity index p as it is not relevant here. When the quantum system cou-
pled to a cavity is restricted to only two levels, the dispersive shift corresponding
to each level will only include one term of the above sum. Due to Hermiticity,
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Figure 4.6 | Charge matrix elements |⟨j|n̂|i⟩|2 for transitions out of the |0⟩ plas-
mon state at ng = 0.25 such that there is no dependence on charge parity.

the matrix elements ⟨0| n̂ |1⟩ = ⟨1| n̂ |0⟩, which leads to the two states having dis-
persive shifts of equal magnitude but opposite sign due to the sign of the transi-
tion frequencies. In that language, the distance between cavity frequencies corre-
sponding to |0⟩ and |1⟩ is 2χJC = χ1 − χ0 = 2χ0 ≈ g2/(ω01 − ωr), which is only
aĴainable by absorbing the matrix elements and a factor involving the frequen-
cies of order unity into g2.

4.3 OCS transmon

Devices fabricated in the intermediate OCS regime of EJ/EC combine the most
convenient parts of the CPB and transmon extremes to gain sensitivity to charge
fluctuations and QP dynamics. Although reintroducing charge sensitivity to the
transmon is generally a bad idea for quantum information experiments, we ac-
cept the corresponding reduction of coherence in exchange for experimental vis-
ibility of charge-parity dynamics. In order to do so, the name of the game will
be to detect changes in the transition spectrum due to changes in charge parity,
which occur when QPs are transferred across the JJ.

4.3.1 Physical device

If you met an OCS transmon on the street, you probably wouldn’t notice any-
thing that particularly distinguishes it from the crowd of traditional, weakly-
anharmonic transmons. They are fabricated using the same materials and tech-
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Figure 4.7 | Top left shows a photograph of one half of the 3D waveguide cav-
ity resonator used to readout the OCS transmon (in this case, it was machined
from 6061 Al, a superconducting alloy). Zooming in, the boĴom left shows the
sapphire substrate hosting the transmon mounted in the center of the cavity.
Zooming in further, the center panel shows an optical micrograph of the OCS
transmon, with large coplanar capacitor paddles that defineEC . On the right is a
scanning electron micrograph (SEM) of an Al/AlOx/Al Josephson tunnel junction
fabricated using the “bridge-free” technique [Lecocq et al. 2011]. This device is
representative of those used in Refs. Serniak et al. 2018 and Serniak et al. 2019.

niques2, housed in the same enclosures, and their states can be measured through
the same sorts of ancillary readout modes. One difference that does maĴer is the
susceptibility to various sources of noise via transition matrix elements, which for
comparison are ploĴed as a function of EJ/EC throughout this thesis. We find
that these typically vary by factors of order unity between the range of EJ/EC

representative of traditional transmons ≈ 100 and that of our OCS devices ≈ 20.
A physical device representative of those discussed in the remainder of the

thesis is shown in Fig. 4.7. All OCS transmon samples described in this thesis
are what would be colloquially referred to as 3D transmons [Paik et al. 2011], as
they were mounted in a 3D rectangular waveguide cavity (machined from either
6061 Al or OFHC Cu3). The fundamental TE mode4 of this cavity resonator was
used as the ancillary readout mode by which the qubit state is probed. In the ex-

2See Appendix A for details on the fabrication techniques
3OFHC stands for “oxygen-free high-conductivity”
4TE stands for “transverse electric”
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perimental implementations described in this thesis, this mode is characterized
by a resonant frequency frequency fr ∼ 9 GHz and linewidth κr/2π ∼ 2 MHz.
Importantly, we do not include a electrostatic gate to biasng of the OCS transmon,
instead relying on temporal-stochastic tuning to sample the majority of the ng
range. Luckily, the requisite drift occurs on the convenient timescale of a few
minutes.5

4.3.2 Experimental setup

All samples presented in this dissertation were thermally anchored to the mixing
chamber stage of an Oxford Triton 200 cryogen-free dilution refrigerator, with
a base temperature of ≈ 20 mK. All signals addressing the qubit/cavity system
were transmiĴed through the same microwave input line. The transmon state
is read out by detecting the amplitude and phase of a signal reflected from the
input of the cavity.6 The cold RF setup is detailed in Fig. 4.8, and here we will
follow the signal path.

The input line is aĴenuated in stages to ensure that the noise on the input
of the cavity is relatively well thermalized to 20 mK. For optimal thermaliza-
tion efficiency all of this aĴenuation would occur at the mixing chamber stage
where the temperature is lowest, such that all of the re-emiĴed noise from the
aĴenuator7 would be at 20 mK, however this is avoided in practice due to the rel-
atively large heat load that would put on the mixing chamber. Instead, 60 dB of
explicit microwave aĴenuation is distributed over multiple temperature stages
as depicted in Fig. 4.8, with additional aĴenuation coming from the stainless-
steel microwave input lines. After this aĴenuation, the signal passes through a
K & L 12 GHz low-pass filter (LPF). This is a tubular cavity filter, which offers
50 dB rejection only up to ≈ 26 GHz, which means that it may not be sufficient
to out higher frequency radiation, such as pair-breaking radiation at frequen-
cies < 2∆ ≈ 100 GHz. For this we rely on homemade cavity filters filled with
commercially available Eccosorb CR-110, which is marketed as a high-frequency
absorber [Halpern et al. 1986], though we have not been able to directly test its
insertion loss at high frequency. However, we do have clear evidence that they
reduce the flux of QP generating radiation at the input of the cavity, as will be

5See Fig. 4.9.
6See Ref. Kranĵ et al. 2019 for a recent review of readout techniques.
7This is just Johnson noise, which is characterized by the electron temperature of the aĴenuator.
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Figure 4.8 | Example wiring diagram of the cryogenic microwave measurement
setup. The details presented here represent good practice with respect to reduc-
ing QP induced dissipation, more of which will be addressed in Chapter 7.
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discussed in later chapters. Furthermore, we found that by placing an additional
Eccosorb filter within the Cryoperm and Al shields was crucial to achieving the
largest suppression of QP generation. We note that the coldest radiation shield
that is not depicted is thermalized to the still plate ( ∼ 700 mK) of the dilution
refrigerator.

Our devices were measured in the dispersive regime of circuit-QED [Blais et
al. 2004], and a Josephson parametric converter (JPC) [Bergeal et al. 2010] was
used to achieve a single-shot qubit-readout fidelity of ≈ 0.97 in 3.84 µs with
single-photon-level readout-resonator occupation. The JPC amplifies in reflec-
tion, which necessitates the inclusion of microwave circulators to route the ampli-
fied signal out of the fridge without irradiating the qubit/cavity. These circulators
present a significant source of loss that limits the measurement efficiency, which
makes the quest for quantum-limited directional amplifiers (that amplify in trans-
mission) an important goal for large-scale quantum computation [Macklin et al.
2015]. The output line includes its own K & L and Eccosorb filters, going into two
isolators to protect the qubit/cavity system from noise from the high-electron-
mobility transistor amplifier (HEMT). The HEMT in our experiment was pro-
duced by Low Noise Factory, and has an operable range between 4 and 16 GHz.

QP dynamics are known to be influenced by a few aspects of the experimental
setup. For instance, magnetic fields can induce vortices which have been shown
to trap QPs, reducing QP induced dissipation [Nsanzineza and Plourde 2014;
Wang et al. 2014], though this advantage can be undermined by vortex flow dis-
sipation if the magnetic field at the sample is too strong [Wang et al. 2014]. To
minimize stray magnetic field at the sample, the transmon/cavity was mounted
in its own Cryoperm magnetic shield, separate from the JPC, and special care
was taken to not include any strongly magnetic materials inside the shield in or-
der to establish a baseline understanding of QP dynamics in our system. One
exception to this is the Eccosorb filter which is weakly magnetic, but without
large-scale magnetic order. The sample holder/readout cavity was mounted to
a copper bracket using brass screws and Mo washers, which were tested prior
to use with a magnetometer. Mo washers are a useful insurance in the world
of cryogenic thermalization because they have a relatively small thermal expan-
sion coefficient. A copper plate coated with carbon black suspended in Stycast
was placed inside the Cryoperm shield and thermalized to the sample mounting
bracket with copper braid. This is an aĴempt to absorb any photons that leak
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into the shield, which was shown to improve device performance due to the re-
duction of QP generating radiation [Barends et al. 2011; Córcoles et al. 2011]. An
OFHC Cu thermalization braid was aĴached directly to the Al readout cavity,
providing a direct thermal link to the mixing chamber stage.

4.3.3 Two-tone spectroscopy

The simplest feature with which we can characterize an OCS transmon is the ng
and dependence of f01. To a good approximation, f01(ng) = δϵ1 cos(2πng)/h.
One way characterize the drift of ng as a function of time via f01(ng) is to per-
form two-tone spectroscopy, in which the frequency of one tone fspec is varied
around f01(ng) to induce Rabi oscillations between |0, p⟩ and |1, p⟩. This tone
is turned off and another tone is applied at fixed frequency fro, which is de-
tected and demodulated at room temperature to find the complex measurement
responseR = Im+iQm. Each plasmon state of the OCS transmon will correspond
to a different response R, which is how we perform readout in the framework of
circuit QED. We apply a rotation on R such that the information discriminating
between |0, p⟩ and |1, p⟩ is contained fully in the Im quadrature, which is ploĴed
as a function of fspec. and time in Fig. 4.9.

At each timestep, the response goes dark at two frequencies (sometimes over-
lapping) denoting smaller average response Im. These frequencies are precisely
where fspec is resonant with fee01 or foo01 , the |0, e⟩ to |1, e⟩ and |0, o⟩ to |1, o⟩ transi-
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Figure 4.9 | Left: Theoretically calculated f01 as a function of ng and charge par-
ity. Right: Repeated two-tone spectroscopy measurements show offset-charge
drift on a timescale of minutes, with charge-parity switches occuring much faster
than the measurement time (≈ 40 s).
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tion frequencies, respectively. These two frequencies are symmetrically detuned
from the average transition frequency f01 = fpp01 (0.25) for both even and odd
p. This is evidence that at each timestep the measurement sweep samples both
charge-parity states, which means that detecting individual QP-tunneling events
will require a much faster measurement, as will be detailed in later chapters.



5
QP-Qubit Coupling
Dissipation to nonequilibrium superconducting quasiparticle (QP) excitations is
an intrinsic limitation to the coherence of superconducting qubits. The source of
these nonequilibrium QPs is not fully understood, as there are orders of magni-
tude more of them than would be expected at experimental temperatures. These
QPs can induce transitions of the qubit when interacting with high-impedance
parts of the circuit, namely when they tunnel across JJs [Catelani et al. 2011]. Ad-
ditionally, high-frequency photons in the environment can couple to the super-
conducting condensate and the qubit, generating QPs at the JJ in a process that
can also result in qubit transitions [Houzet et al. 2019]. The purpose of this chap-
ter is to present the machinery required to calculate the expected transition rates
of a qubit due to both of these processes: traditional QP tunneling across JJs, and
photon-assisted QP generation and tunneling (PAT). Luckily, measurements to
determine whether individual devices are limited by these QP processes exist for
transmon qubits, which offer straightforward metrics to assess the efficacy of var-
ious QP reduction techniques. We will compute all possible charge-parity tran-
sition rates in these devices and present numerical results that can be compared
with experiments [Ristè et al. 2013; Serniak et al. 2018; Serniak et al. 2019].

5.1 Full electronic Hamiltonian

The qubit degrees of freedom can be wriĴen alongside those those of QPs in a
general electronic Hamiltonian

Ĥel = Ĥq + ĤQP + ĤQP,φ̂. (5.1)

At this stage we will keep things general and not specify the form of Ĥq , which is
just the Hamiltonian of the isolated superconducting qubit under consideration.
Working in the excitation picture, ĤQP is simply the energy corresponding to
occupied quasiparticle states on the right and left junction electrodes:

ĤQP =
∑
l,s

εlγ̂
†
lsγ̂ls +

∑
r,s

εrγ̂
†
rsγ̂rs (5.2)

64
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Here, QP states on the right (left) of the junction are indexed by r (l) and have
energy εr (εl). The term ĤQP,φ̂ is an electron tunneling Hamiltonian that couples
the qubit phase degree of freedom φ̂ to the QPs tunneling across the junction:

ĤQP,φ̂ = t
∑
l,r,s

eiφ̂/2ĉ†rsĉls + H.c. (5.3)

Here ĉls is the fermionic annihilation operator for an electron occupying state l
with spin s on the left side of the JJ, and ĉ†ls is its Hermitian conjugate. This term
has the effect of transferring an electron from one side of the junction to the other
with a tunneling rate t/ℏ. The presence of the dynamical phase φ̂ couples these
electrons (and as we will see, QP excitations) to the qubit which allows for the
exchange of energy. Here we will develop this tunneling Hamiltonian to see the
effects of nonequilibrium QPs.

In a superconductor, pair-correlated level occupation mixes electrons and
holes, therefore the electronic excited states (QPs) have mixed electron-hole char-
acter. As described in Chapter 3, these QP excitations can be described by per-
forming the Bogoliubov-Valentin transformation

ĉl↑ = u∗l γ̂l↓ + vlγ̂
†
l↑

ĉ†−l↓ = −v∗l γ̂l↓ + ulγ̂
†
l↑,

(5.4)

where, again, γ̂l↓ is a fermionic annihilation operator for a QP excitation in state
l with spin ↓. Since we have accounted for the dynamical phase explicitly in the
tunneling Hamiltonian, we will henceforth treat the u’s and v’s as real. To study
the full effect of ĤQP,φ̂, we will make the above substitution, expand, and rear-
range to emphasize the terms that conserve QP excitation number and those that
do not. Including the Hermitian conjugate term and writing spin terms explicitly
we find

ĤQP,φ̂ = t
∑
l,r

[
eiφ̂/2

(
urγ̂

†
r↑ + vrγ̂r↓

)(
ulγ̂l↑ + vlγ̂

†
l↓

)
− e−iφ̂/2

(
urγ̂r↑ + vrγ̂

†
r↓

)(
ulγ̂

†
l↑ + vlγ̂l↓

)
+ eiφ̂/2

(
− vrγ̂r↑ + urγ̂

†
r↓

)(
− vlγ̂

†
l↑ + ulγ̂l↓

)
− e−iφ̂/2

(
− vrγ̂

†
r↑ + urγ̂r↓

)(
− vlγ̂l↑ + ulγ̂

†
l↓

)]
.

(5.5)
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We can distribute the products to get terms that are second order in fermionic
operators

ĤQP,φ̂ = t
∑
l,r

[
eiφ̂/2

(
urulγ̂

†
r↑γ̂l↑ + urvlγ̂

†
r↑γ̂

†
l↓

+ vrulγ̂r↓γ̂l↑ + vrvlγ̂r↓γ̂
†
l↓

)
+ e−iφ̂/2

(
− urulγ̂r↑γ̂

†
l↑ − urvlγ̂r↑γ̂l↓

− vrulγ̂
†
r↓γ̂

†
l↑ − vrvlγ̂

†
r↓γ̂l↓

)
+ eiφ̂/2

(
vrvlγ̂r↑γ̂

†
l↑ − vrulγ̂r↑γ̂l↓

− urvlγ̂
†
r↓γ̂

†
l↑ + urulγ̂

†
r↓γ̂l↓

)
+ e−iφ̂/2

(
− vrvlγ̂

†
r↑γ̂l↑ + vrulγ̂

†
r↑γ̂

†
l↓

+ urvlγ̂r↓γ̂l↑ − urulγ̂r↓γ̂
†
l↓

)]
,

(5.6)

regroup terms of like operator products, taking care to track the correct phase
factors

ĤQP,φ̂ = t
∑
l,r

[(
urule

iφ̂/2 − vrvle
−iφ̂/2

)
γ̂†r↑γ̂l↑

+
(
urvle

iφ̂/2 + vrule
−iφ̂/2

)
γ̂†r↑γ̂

†
l↓

+
(
vrule

iφ̂/2 + urvle
−iφ̂/2

)
γ̂r↓γ̂l↑

+
(
vrvle

iφ̂/2 − urule
−iφ̂/2

)
γ̂r↓γ̂

†
l↓

+
(
− urule

−iφ̂/2 + vrvle
iφ̂/2

)
γ̂r↑γ̂

†
l↑

−
(
urvle

−iφ̂/2 + vrule
iφ̂/2

)
γ̂r↑γ̂l↓

−
(
vrule

−iφ̂/2 + urvle
iφ̂/2

)
γ̂†r↓γ̂

†
l↑

+
(
− vrvle

−iφ̂/2 + urule
iφ̂/2

)
γ̂†r↓γ̂l↓

]
,

(5.7)
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and write it in a condensed form by pulling the spin index back into the sum

ĤQP,φ̂ = t
∑
l,r,s

[
(urule

iφ̂/2 − vrvle
−iφ̂/2)γ̂†rsγ̂ls

+ (urvle
iφ̂/2 + vrule

−iφ̂/2)γ̂†rsγ̂
†
ls̄

]
+ H.c.

(5.8)

where s̄ denotes the opposite spin of s. Here we are left with one term that con-
serves QP excitation number (γ̂†rsγ̂ls) and one term that creates two QP excita-
tions (γ̂†rsγ̂

†
ls̄). Finally, we can expand the complex exponentials to find

ĤQP,φ̂ = t
∑
l,r,s

{[
(urul − vrvl) cos

φ̂

2
+ i(urul + vrvl) sin

φ̂

2

]
γ̂†rsγ̂ls

+

[
(urvl + vrul) cos

φ̂

2
+ i(urvl − vrul) sin

φ̂

2

]
γ̂†rsγ̂

†
ls̄

}
+ H.c.

(5.9)

For an isolated qubit with no drives, and for ℏω01 ≪ 2∆, only the QP-number-
conserving terms in the tunneling Hamiltonian will contribute. These are pro-
cesses that we refer to as QP tunneling processes, as they represent the tunneling
of nonequilibrium QPs that already exist in the JJ leads from one side of the junc-
tion to the other. If, however, there is high frequency radiation ≳ 2∆ in the qubit
environment, QP-pair creation can occur at the junction (γ̂†rsγ̂

†
ls̄). The coupling

rate of photons at the junction should be much greater than that of phonons, so
we refer to these processes as photon-assisted QP generation and tunneling (PAT)
processes. Both processes will induce transitions of the qubit and, in the case of
the CPB/transmon, can be detected as a change of charge parity in the device.

5.2 QP tunneling

We’ll first consider the transition rates between qubit states i and j accompanied
by a transition of a Bogoliubon from state l on the left electrode to state r on the
right electrode (QP tunneling processes). The simplified tunneling Hamiltonian
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reads

ĤQP,φ̂ = t
∑
l,r,s

[
(urul − vrvl) cos

φ̂

2
+ i(urul + vrvl) sin

φ̂

2

]
γ̂†rsγ̂ls + H.c. (5.10)

Here we’re only including the QP-excitation-conserving term of 5.9, under the
assumptions that ℏωij ≪ 2∆ and there are no sources of pair-breaking radiation
in the environment. The QP induced qubit transition rates can be computed using
Fermi’s Golden Rule

ΓQP
ij =

1

ℏ
∑
l,r,s

∣∣∣⟨j, r|ĤQP,φ̂|i, l⟩
∣∣∣2 δϵi−ϵj+εl−εr (5.11)

where |i, l⟩ represents the initial joint qubit and QP state. The sum is over all QP
states, with the Kronecker delta enforcing energy conservation. Conveniently,
we can factor the φ̂ dependence of the matrix element out of the sum, leaving the
following simplified form.

ΓQP
ij = ΓQP

(∣∣∣∣⟨j| cos
φ̂

2
|i⟩
∣∣∣∣2 S−

QP[ωij ] +

∣∣∣∣⟨j| sin
φ̂

2
|i⟩
∣∣∣∣2 S+

QP[ωij ]

)
(5.12)

Here, ΓQP is a global factor for QP tunneling that depends on parameters of the JJ.
The factors S±

QP are QP spectral functions which include coherence effects arising
in the QP tunneling process. They necessarily account for the availability and
degeneracy of initial and final QP states separated in energy by ℏωij . Writing the
product of these factors directly in the excitation picture of superconductivity:

ΓQPS
±
QP[ωij ] =

8t2

ℏ

∫ ∞

0

dεl

∫ ∞

0

dεrf(εl)
[
1− f(εr)

]
νs(εl)νs(εr)

× (urul ± vrvl)
2

× δ(ϵi − ϵj + εl − εr).

(5.13)

The first line of the integral accounts for the degeneracy of initial and final states l
and r,1 the second line accounts for the QP energy dependence of the tunneling
matrix elements, and the third line enforces energy conservation. The factor of
eight is a product of three factors of two: one for spin degeneracy, and two for

1As a reminder, f(ε) is the QP energy distribution function, and νs(ε) is the superconducting
density of states.
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the doubling of the density of states in the excitation picture. Here we repeat the
definition of the u’s and v’s from Eq. 3.10

ul, vl =
1

2

√
1∓ ξl√

ξ2l +∆2
=

1

2

√
1∓

√
ε2l −∆2

εl
(5.14)

from which we can compute the QP tunneling coherence factors (urul ± vrvl)
2

(urul ± vrvl)
2 =

ξrξl ±∆2 +
√
(ξ2r +∆2)(ξ2l +∆2)

2
√
(ξ2r +∆2)(ξ2l +∆2)

=

√
(ε2r −∆2)(ε2l −∆2)±∆2 + εrεl

2εrεl
.

(5.15)

The first term in the numerator will integrate to zero in a more careful calculation,
assuming no charge mode disequilibrium2 [Tinkham 2004] and therefore we will
remove it from the rest of the discussion. With this, the coherence factors can be
simplified into a slightly more familiar form:

±∆2 + εrεl
2εrεl

=
1

2

(
1± ∆2

εrεl

)
(5.16)

This term has the effect of fully suppressing S−
QP for QPs at the gap edge. Substi-

tuting back into S±
QP we see that

ΓQPS
±
QP[ωij ] =

8t2

ℏ

∫ ∞

0

dεl

∫ ∞

0

dεrf(εl)
[
1− f(εr)

]
νs(εl)νs(εr)

× 1

2

(
1± ∆2

εlεr

)
× δ(ϵi − ϵj + εl − εr).

(5.17)

Energy conservation via the Dirac delta function can be enforced by selecting only
the contribution where εr = εl−ℏωij . Finally, we can write t2 in terms of physical
device parameters as it is related to the tunnel conductance of the junction is
given by t2 = Gt/Gqπν

2
0 , where Gt is the tunnel conductance and Gq = (2e)2/h

is the conductance quantum for Cooper pairs. The Ambegaokar-Baratoff relation

2Charge-mode equilibrium holds in the absence of specific QP injection at negative or positive
energies and when there is no strong difference in chemical potential between JJ electrodes.
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(Eq. 2.26) states EJ = Gt∆/2Gq which gives t2 = 2EJ/π∆ν
2
0 , finally yielding

ΓQPS
±
QP[ωij ] =

16EJ

πℏ∆ν20

∫ ∞

0

dεlf(εl)
[
1− f(εl − ℏωij)

]
νs(εl)νs(εl − ℏωij)

×

[
1± ∆2

εl(εl − ℏωij)

]
.

(5.18)

Here we will distinguish

ΓQP =
16EJ

πℏ
(5.19)

and

S±
QP[ωij ] =

1

∆ν20

∫ ∞

0

dεlf(εl)
[
1− f(εl − ℏωij)

]
νs(εl)νs(εl − ℏωij)

×

[
1± ∆2

εl(εl − ℏωij)

] (5.20)

to aid in our comparison with photon-assisted tunneling processes. With this,
one can calculate any QP-tunneling induced transition rate given knowledge of
the sin φ̂/2 and cos φ̂/2 matrix elements. In the case of a transmon, these can
be computed numerically either in the phase basis (using the Mathieu functions
form of the wavefunctions) or in a modified charge basis, as will be discussed in
Section 5.4.1.

The integral in Eq. 5.20 can approximated analytically when εl, ℏωij ≪ ∆,
by [Catelani 2014]

S+
QP[ωij ] ≃∆e−∆/Teffeωij/2Teff

[
K0

(
ωij

2Teff

)
+
ωij

4∆
K1

(
ωij

2Teff

)]
,

S−
QP[ωij ] ≃

ℏωij

2
e−∆/Teffeωij/2Teff

[
K1

(
ωij

2Teff

)
− ωij

4∆
K0

(
ωij

2Teff

)]
,

(5.21)

where Km is the modified Bessel function of the second kind of order m, assum-
ing the QP energy distribution f(ε) is a Fermi-Dirac distribution function with
characteristic temperature Teff.
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5.3 Photon-assisted tunneling

Our recent work identified another mechanism of QP-related decoherence that
can cause charge-parity switches: namely that of photon-assisted QP generation
and tunneling across a high-impedance JJ [Houzet et al. 2019]. Above we ne-
glected terms that did not conserve QP number because they would violate en-
ergy conservation as long as ℏωij < 2∆. However, in the presence of additional
drives from the environment, those pair creation terms can become important.

S I S

Figure 5.1 | Schematic of a superconductor-insulator-superconductor (SIS) tun-
nel junction, illustrating QP tunneling (red arrow) and photon-assisted tunneling
(orange arrows).

The effect of an AC electric field coupled to the qubit-QP system is to impose
a time-dependent phase difference across the junction. We will consider a single
environmental mode at frequency ων , inducing φ = φ̂+ 2eV

ℏων
sinωνt, where V is

the voltage induced by photons in this mode across the junction, and is propor-
tional to the total electric field. The zero-point fluctuations of the phase of the
qubit induced by this mode will be

φzpf
ν =

2eVν
ℏων

(5.22)

where Vν is the voltage drop across the JJ due to half a photon occupying this
mode. If we assume φzpf

ν ≪ 1, to first order we find the relevant QP tunneling
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operators become

cos
φ̂

2
→ cos

φ̂

2
− φzpf

ν sin
φ̂

2
sinωνt,

sin
φ̂

2
→ sin

φ̂

2
+ φzpf

ν cos
φ̂

2
sinωνt

(5.23)

using standard trigonometric identities and limits. The first term corresponds
to the traditional QP tunneling processes discussed above. Of interest now is
the second term, which can generate pairs of QPs at the JJ provided ℏων ≳ 2∆.
We now return to the QP-tunneling Hamiltonian in the presence of this high-
frequency mode and taking into account the above transformation:

ĤQP,φ̂ = t
φ

zpf
v

2
sin(ωνt)

×
∑
l,r,s

{[
(urul − vrvl) sin

φ̂

2
+ i(urul + vrvl) cos

φ̂

2

]
γ̂†rsγ̂ls

+

[
(urvl − vrul) cos

φ̂

2
+ i(urvl + vrul) sin

φ̂

2

]
γ̂†rsγ̂

†
ls̄

}
+ H.c.

(5.24)

where we neglected the terms that are unaffected by the high-frequency drive.
Now that energy can be conserved, the pair-tunnelling term will dominate the
first term by a factor of order 1/xQP, and we will henceforth neglect the term
proportional to γ̂†rsγ̂ls. The transition rate due to photon-assisted QP tunneling
(PAT) can now be wriĴen via Fermi’s golden rule:

ΓPAT
ij =

1

ℏ
∑
l,r,s

∣∣∣⟨j, γ̂†rsγ̂†ls̄SC|ĤQP,φ̂|i, SC⟩
∣∣∣2 δℏων−εl−εr+ϵi−ϵj (5.25)

Where SC denotes the initial electronic state of the superconducting condensate,
including potential QP excitations. The PAT process produces produces a pair of
QPs γ̂†rs and γ̂†ls̄. As with the case of QP tunneling, the QP-photon contribution
can be factored away from the qubit-related part of the matrix element, and can
be wriĴen as

ΓPAT
ij = ΓPAT

(∣∣∣∣⟨j| cos
φ̂

2
|i⟩
∣∣∣∣2 S−

PAT[ωij ] +

∣∣∣∣⟨j| sin
φ̂

2
|i⟩
∣∣∣∣2 S+

PAT[ωij ]

)
. (5.26)
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The PAT spectral functionsS±
PAT take into account the degeneracy and availability

of pairs of final QP states, assuming there are, on average, n̄ν photons occupying
mode ν.

ΓPATS
±
PAT[ωij ] = n̄ν

8

ℏ

(
t
φ

zpf
ν

2

)2 ∫ ∞

0

dεl

∫ ∞

0

dεrνs(εl)νs(εr)

× (urvl ± vrul)
2

× δ(ℏων − εl − εr + ϵi − ϵj).

(5.27)

Here, we’ve made the assumption that there are very few QPs already excited, ne-
glecting terms like

[
1− f(εl)

]
≈ 1 that describe the availability of final QP states.

Just as in the QP-tunneling example, there is a coherence factor (urvl±vrul)2 that
takes into account interference between electron and hole trajectories.

(urvl ± vrul)
2 =

−ξrξl ±∆2 +
√
(ξ2r +∆2)(ξ2l +∆2)

2
√
(ξ2r +∆2)(ξ2l +∆2)

=
1

2

(
1± ∆2

εrεl

) (5.28)

In the second line, we made the same assumption as before that there is no charge
imbalance, and under this constraint the coherence factor for pair generation is
the same as that for QP scaĴering. Energy conservation is ensured by seĴing
εr = ℏωv + ℏωij − εl. PuĴing this all together, we find

ΓPATS
±
PAT[ωij ] = n̄ν

2EJ

πℏ∆ν20

(
φzpf
ν

)2 ∫ ∞

0

dεlνs(εl)νs(ℏων + ℏωij − εl)

×

[
1± ∆2

εl(ℏων + ℏωij − εl)

]
.

(5.29)

and distinguish

ΓPAT = n̄ν
2EJ

πℏ

(
φzpf
ν

)2
(5.30)

from
S±

PAT[ωij ] =
1

∆ν20

∫ ∞

0

dεlνs(εl)νs(ℏων + ℏωij − εl)

×

[
1± ∆2

εl(ℏων + ℏωij − εl)

]
.

(5.31)
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The above integral can be expressed analytically as [Houzet et al. 2019]

S±
PAT[ωij ] = (z + 2)E

(
z − 2

z + 2

)
− 4

z + 1± 1

z + 2
K

(
z − 2

z + 2

)
. (5.32)

For simplicity, we’ve defined z = (ℏωij + ℏων)/∆, the total energy available to
produce QPs via the PAT process.

The rate calculation above pertains to a single high-frequency photon mode,
with some average occupation, that can couple to the qubit. The coupling strength
is determined by the global factor ΓPAT, which itself depends on the phase fluc-
tuations induced by photons in the mode, characterized by φzpf

ν . This coupling
efficiency to the qubit depends on the exact geometry and topology of the cir-
cuit. The experimentally relevant embodiment (for our experiments [Serniak et
al. 2018; Serniak et al. 2019]) of a transmon qubit coupled to a 3D waveguide cav-
ity (Fig. 4.7) was considered in Ref. Houzet et al. 2019. Here we will describe the
calculation qualitatively, and quote the main results.

The qubit couples to modes that are polarized parallel to the JJ electrodes: in
the case of a 3D transmon, you can picture a dipole antenna with a JJ at the center.
The high-frequency modes of interest in this embodiment are TE modes confined
to a superconducting box which also houses the transmon. As long as the wave-
length of the pair-breaking radiation is still longer than the long dimension of this
antenna (say a few millimeters), one can treat the qubit as not perturbing the field
too much3. Additionally, the impedance of the transmon must be high enough
such that it can be treated as an open circuit, which is approximately satisfied
when

√
EC/EJ ≫ 1/137, the fine structure constant. Under these assumptions,

and after a detailed analysis, Houzet et al. 2019 found that, for an average mode,

ΓPAT ≈ n̄ν
g2ωr

πωijων
, (5.33)

where g is the vacuum-Rabi coupling rate to the fundamental TE mode of the 3D
cavity characterized by ωr. This is the mode typically used for dispersive readout
of the qubit [Paik et al. 2011] in this architecture, hence the subscript r. One can
measure/estimate g in various ways, and it is typically engineered to fall in the
range of 2π×40 MHz–150 MHz [Koch et al. 2007], which in general is dependent
on ωij . While monochromatic radiation may seem unrealistic, the finite density

3This is a sort of “dipole approximation.”
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of microwave modes in the 3D cavity, as well as distributed coupling strengths
to the qubit, may make it such that some narrow frequency ranges dominate.
Treating broad spectrum radiation is not particularly complicated, and will be
considered later.

5.4 Single-charge-tunneling matrix elements

The aforementioned QP-induced transition rates will vary depending on the ex-
act Hamiltonian of the qubit. Here we consider the charge-parity transition ma-
trix elements of a transmon qubit ⟨j, p̄| cos φ̂

2 |i, p⟩ and ⟨j, p̄| sin φ̂
2 |i, p⟩. QP- and

PAT-induced transitions between any plasmon states without a change in charge
parity are strictly forbidden

⟨i, p| sin
φ̂

2
|j, p⟩ = ⟨i, p| cos

φ̂

2
|j, p⟩ = 0. (5.34)

In the following, we will restrict our discussion to the plasmon state indices 0 and
1, with p denoting a charge-parity state and p̄ representing the opposite charge
parity. First we will present numerically exact matrix elements, and then com-
pare them to analytical approximations for the large EJ/EC transmon limit.

5.4.1 Numerical computation in the single-charge basis

We can compute the QP-tunneling matrix elements taking some cues from tra-
ditional numerical diagonalization of the transmon Hamiltonian. The transmon
Hamiltonian can be wriĴen in the charge basis as:

Ĥq =
∑
n

4EC(n̂− ng)
2 |n⟩ ⟨n| − EJ

2

(
|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|

)
(5.35)

Here, n̂ represents the number of Cooper pairs that have tunneled across the junc-
tion, and the natural unit of charge transfer is 2e. This Hamiltonian is parametric
in ng , and can be diagonalized independently at all values of ng . All of the eigen-
states of the transmon can be wriĴen as superpositions of |n⟩-states, and become
more delocalized in nwith increasing EJ/EC . Charge-parity switches result in a
change of ng by ±1/2, which is visible as a change in ⟨n⟩. Since we are interested
in the tunneling of QPs, a more natural basis is one where states can be wriĴen
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in terms of changes of charge by 1e. We introduce the single-charge operator n̂′,
and rewrite the Hamiltonian as

Ĥq =
∑
n′

[
EC(n̂

′ − 2ng)
2
∣∣n′⟩ ⟨n′∣∣− EJ

2

(∣∣n′⟩ ⟨n′ + 2
∣∣+ ∣∣n′ + 2

⟩ ⟨
n′
∣∣) ], (5.36)

where EC assumes its role as a single-electron charging energy. Here we choose
to not modify ng in this basis to preserve continuity with the n-basis result where
changes in charge parity correspond to shifts of ng by 1/2. In this basis, the even-
and odd-charge-parity (p = e, o) states are all eigenstates of the Hamiltonian with
the same parameter ng , with wavefunctions depicted in Fig. 5.2. Conveniently,
one can write the relevant QP tunneling operators as single-charge tunneling op-

〈 n|i,
p
〉

|0, e
〉

|0, o
〉

|1, o
〉

|1, e
〉 n-basis

〈 n′ |i
,p
〉

n ′-basis

5 0 5
n

〈 n|i,
p
〉

10 0 10
n ′

〈 n′ |i
,p
〉

Figure 5.2 | Wavefunctions of the even- and odd-charge-parity ground and ex-
cited states of a transmon qubit, depicted in the traditional charge basis (left) and
the single-charge basis (right). The top row depicts the wavefunctions at ng = 0,
and the boĴom row at ng = 0.25. Wavefunction components are offset vertically
for visibility. Here, EJ/EC = 23.
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erators
cos

φ̂

2
=

1

2

∑
n′

(∣∣n′⟩ ⟨n′ + 1
∣∣+ ∣∣n′ + 1

⟩ ⟨
n′
∣∣)

sin
φ̂

2
=

1

2i

∑
n′

(∣∣n′⟩ ⟨n′ + 1
∣∣− ∣∣n′ + 1

⟩ ⟨
n′
∣∣) (5.37)

by analogy with the cos φ̂ term.4

5.4.2 Transmon limit

In the transmon limit (EJ/EC ≫ 1) the expressions for the matrix elements take
the following approximate forms [Catelani 2014]. If the QPs are localized in en-
ergy near the gap edge ukup ≈ vkvp ≈ 1/2, and therefore the sin φ̂

2 term will
dominate the transition rate between plasmon states, which can be expressed

⟨1, p̄| sin
φ̂

2
|0, p⟩ ≃

(
EC

8EJ

)1/4

(5.38)

This statement is independently strengthened by intuition: as odd indexed plas-
mon states have even wavefunctions with respect to phase and odd indexed plas-
mon states have even wavefunctions, an odd function (such as sine) will be able
to drive transitions while an even function (in this example, cosine) will not. The
limiting case of the cosine term is

| ⟨1, p̄| cos
φ̂

2
|0, p⟩ | ∝ | sin(2πng)|

√
δϵ0δϵ1
ωp

(
EC

EJ

)1/3

(5.39)

where δϵi is the charge dispersion of the i-th plasmon state of the transmon.
This is smaller than the sine term by a factor of order δϵ1/ωp (see Fig. 4.3). The
plasmon-state-conserving rates will feel both terms. The cosine term will again
be suppressed due to the coherence factor, but will fight back against the sine
term due to the symmetry of the wavefunctions.

| ⟨i, p̄| sin
φ̂

2
|i, p⟩ | ∝ | sin(2πng)|

(
2

3

)2/3

Γ

(
1

3

)(
EC

8EJ

)1/6
δϵi
ωp

(5.40)

4This comes from the fact that φ̂ and n̂ are canonically conjugate, and therefore e±iφ̂ can be seen
as a translation of n̂ by one [de Gennes 1999]. Analogously, e±iφ̂/2 is a translation of n̂′ by one.
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50 100
EJ/EC

0.90

0.95

|〈0, ᾱ|cos
ϕ̂

2
|0, α

〉|2

50 100
EJ/EC
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|〈1, ᾱ|cos
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Figure 5.3 | Charge-parity transition matrix elements for a transmon qubit, as
a function of EJ/EC . Solid lines are numerically computed in the single-charge
basis, and dashed lines are analytic approximations in the transmon regime.6 All
curves evaluated at ng = 0.24.

where Γ(x) is the gamma function.5

⟨i, p̄| cos
φ̂

2
|i, p⟩ ≃ 1−

(
i+

1

2

)√
EC

8EJ
− 3

2

(
i+

1

4

)
EC

8EJ
(5.41)

These analytical expressions for the charge-parity transition matrix elements
are ploĴed alongside the matrix elements as computed numerically in the single-
charge basis in Fig. 5.3, as a function of EJ/EC . The dominant matrix elements
only vary by factors of order unity between the OCS regime and the traditional
transmon regime, demonstrating that the OCS transmon is an excellent proxy for
studying, and hopefully understanding, QP dynamics in state-of-the-art trans-
mons. There is good agreement between the approximations and exact solutions,
especially for the dominant matrix elements which have no appreciable depen-
dence on ng .

5The gamma function is defined as Γ(z) =
∫∞
0 xz−1e−xdx where z is complex.

6The analytic approximations for | ⟨0, p̄| cos φ̂
2
|1, p⟩ |2 and | ⟨i, p̄| sin φ̂

2
|i, p⟩ |2 are only computed

up to a constant prefactor.
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5.5 QP-induced transition rates

Combining the above sections, we can compute the QP induced transition rates
due to “traditional” QP tunneling as well as photon-assisted QP generation and
tunneling (PAT). Beyond the magnitude of these transition rates (which could po-
tentially limit T1 or Tϕ of a qubit), another interesting notion is that of the branch-
ing ratio of a QP-induced transitions. When a QP tunnels across the JJ of a trans-
mon, the charge-parity state will definitely change, but the plasmon state may or
may not change. The relative rates of plasmon-state-preserving to plasmon-state-
changing processes can inform us about the charge-parity-switching mechanism.
Restricting ourselves to the qubit manifold of states |0, p⟩ and |1, p⟩, where will
be four parity-switching transition rates that we are interested in: Γpp̄

10 , Γpp̄
01 , Γpp̄

00 ,
and Γpp̄

11 . The relation between these rates is what we refer to as the branching
ratio. For emphasis, we will call the rates ΓQP

ij or ΓPAT
ij , with the superscript re-

ferring to the mechanism. For simplicity, we will only quote rates at ng = 0 and
assume that the initial charge-parity state is even.

As described in the previous sections, there are three components that go into
the transition rates: a global coupling rate (ΓQP or ΓPAT), the single-charge tunnel-
ing matrix elements, and the spectral functions corresponding to QP tunneling
or PAT processes. The coupling rates and matrix elements were already com-
puted, which leaves the spectral functions. These are shown in Fig. 5.4. The
spectral functions accompanying the cos φ̂

2 matrix elements (S−
QP and S−

PAT) are
slightly suppressed from those of sin φ̂

2 due to the tunneling coherence factors.
Notably, S±

PAT is parameterized completely by the sum of ℏωij + ℏων . Here it is
clear that pair-breaking processes require energies of at least 2∆. Also, it’s in-
teresting to note that S±

PAT → (ℏωij + ℏων)/∆ at high frequencies, making the
spectral function contribution to the branching ratio of transition rates basically
negligible in that regime. This is also descriptive of the broad-spectrum limit if
the characteristic photon frequency ω̄ν ≫ ∆/ℏ.

With these quantities in hand, Fig. 5.5 shows the full QP-induced transition
rates as a function of ω01 of the transmon. These are computed by keeping EC

fixed and varying EJ to vary ω01. The parameters of the QP distribution are cho-
sen in accordance with a experiments: a nonequilibrium QP density xQP = 10−7,
corresponding to an effective temperature Teff ≈ 155 mK. Of note is the opposite
trend of the rates as a function of ω01, which could be used to distinguish be-
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Figure 5.4 | Spectral functions for QP tunneling (left) and photon-assisted
tunneling (right). Curves for S±

QP assume a thermal distribution of QPs at
an effective temperature of ≈ 155 mK, corresponding to xQP = 10−7, and
with ∆/h = 50 GHz.

tween the two processes. It’s interesting to compare between QP-tunneling, the
actors of which are fermions, and PAT, which is is fueled by bosonic excitations.
From the theory developed in Ref. Houzet et al. 2019, transition rates of a similar
magnitude to those produced by a nonequilibrium QP density xQP ≈ 10−7 can
be obtained with an average photon occupation n̄ν = 1.5× 10−2 in a mode7 with
ων ≈ 2.8∆/ℏ. As we did in that reference, we’ll consider a 3D transmon design
with the same QP density, which would have on the order of 5000 QPs in the de-
vice. One could interpret this as saying the charge-parity-switching efficiency of
a single ≈ 150 GHz photon occupying the readout cavity is about 106 times that
of a single QP in the device. Another way of saying it is that a single photon occu-
pying that mode would put the same limit on transmon T1 as would xQP ≈ 10−5.

Intuitively, the QP-tunneling induced transition rates depend approximately
linearly on xQP: the more QPs you have, the more charge-parity transitions, as
depicted in Fig. 5.6. However, the branching ratio of these parity switching rates,
as illustrated by ΓQP

11 /Γ
QP
10 and ΓQP

01 /Γ
QP
10 , is only weakly dependent on xQP. The

first ratio can be thought of the preference for a QP to not induce a plasmon transi-
tion in the circuit. For QP-tunneling induced transitions, this ratio is expected to
be less than 1. The second ratio is indicative of the thermodynamics of the dissi-

7This is a reasonable order of magnitude considering that similar occupation of a strongly-
coupled readout mode will limit Tϕ of transmons to the ∼ 10 µs level via photon-shot-noise de-
phasing [Sears et al. 2012], which isn’t far from the current state of the art.
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Figure 5.5 | Charge-parity transition rates for QP tunneling (left) and photon-
assisted tunneling (right). In the simulation, EC = 355 MHz was fixed while EJ

was varied to modify ω01. All simulations have set ng = 0. Curves for ΓQP
ij as-

sume a thermal distribution of QPs at an effective temperature of ≈ 155 mK,
corresponding to xQP = 10−7, and with ∆/h = 50 GHz. Curves for ΓPAT

ij assume
monochromatic high-frequency radiation at ων = 2.8∆/ℏ, with a steady-state
photon occupation n̄ν = 1.5× 10−2 and a frequency independent coupling rate g.

pative bath, should agree with detailed balance (Eq. 2.12) given a bath in thermal
equilibrium. Moving on to the right hand side of Fig. 5.6 we show dependence
of a similar parameter for PAT processes, the frequency of pair-breaking radia-
tion ων . In addition to increasing with ων , the charge-parity-transition rates will
increase linearly (and trivially) with photon occupation n̄ν . What’s interesting
here is how the branching ratio changes over this range of frequencies. The ratio
ΓPAT
11 /ΓPAT

10 changes appreciably over a reasonable range of parameters, and is> 1

above ων ≈ 2.2∆/ℏ. The thermodynamic ratio ΓPAT
01 /ΓPAT

10 ≈ 0.95 over the range
considered.8 These are both in stark contrast to the branching ratio of traditional
QP tunneling processes.

The limits these processes impose on qubit relaxation and excitation can be ex-
pressed analytically in the transmon limit. For QP tunneling processes, [Catelani
et al. 2011]

ΓQP
10 ≈ xQP

π

√
2∆ω01, ΓQP

01 ≈ ΓQP
10 e

−ℏω01/kBTeff , (5.42)

8ΓPAT
01 /ΓPAT

10 ≈ 0.95 tends toward 1 at higher and higher frequencies.
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Figure 5.6 | Charge-parity transition rates for QP tunneling (left) and photon-
assisted tunneling (right) as a function of relevant parameters of the dissipation
source: the QP density xQP for QP tunneling and the frequency of monochro-
matic pair-breaking radiation ων for PAT. Transmon parameters are chosen to
reflect those in Ref. Serniak et al. 2018. All calculations were performed with
ng = 0. In accordance with our physical devices, we consider superconducting
Al with ∆/h = 50 GHz. Curves for ΓPAT

ij assume n̄ν = 1.5× 10−2 and a frequency
independent coupling rate g.
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and for PAT processes

ΓPAT
10 ≈ ΓPAT

01 ≈ n̄ν
g2ωr

πωijων

√
EC

8EJ
. (5.43)

The branching ratios can also be approximated [Catelani 2014; Houzet et al. 2019].
The parameters listed above limit the T1 of transmon qubits to ≈ 200 µs, near that
measured in state-of-the-art devices.

Our treatment of monochromatic pair-breaking radiation may be sufficient
given the finite density of EM modes in realistic qubit sample holders. The other
extreme, which is maybe more plausible, would be a broad frequency distribu-
tion of incoming radiation. A reasonable distribution to study is that of a black-
body radiator, characterized by a power spectrum

PBB(ων) ∝
(ℏων)

3

eℏων/kBTBB − 1
. (5.44)

where TBB is the temperature of the blackbody. To compute the PAT-induced
charge-parity transition rates arising this distribution of photons, one can aver-
age over the contributions of monochromatic radiation at frequencies weighted
by the normalized spectrum. The path this radiation takes to get to the qubit is
unknown, but evidence [Chapter 7] suggests that it may arrive via the microwave
input/output lines. The filtering properties of microwave components at such
high frequencies has not been properly characterized, so while a blackbody spec-
trum may not be descriptive of what reaches the cavity, is about as good an ap-
proximation as we can do.

We consider charge-parity transitions from blackbody distributed PAT pro-
cesses in Fig. 5.7. For each blackbody temperature TBB that defines the PAT fre-
quency distribution we keep the total number of photons fixed to 1.5 × 10−2.
Therefore, the transition rates plateau when the characteristic photon energies
approach 2∆/2.9. The ratio ΓPAT

11 /ΓPAT
10 increases linearly with TBB in this range,

but will plateau to a ratio of matrix elements at high blackbody temperature,
when the superconducting DOS plays less of a role. In the ploĴed range of val-
ues, ΓPAT

01 /ΓPAT
10 varies significantly, and therefore could be responsible for a wide

variety of experimental observations.



84 Chapter 5 | QP-Qubit Coupling

0.2 0.4 0.6 0.8
kBTB.B. /∆

10-1

100

tra
ns

itio
n 

ra
te

s (
kH

z)

ΓPAT
01

ΓPAT
10

ΓPAT
00

ΓPAT
11

2

4

ΓPAT
11 /ΓPAT

10

0.2 0.4 0.6 0.8
kBTB.B. /∆

0.6

0.8

ΓPAT
01 /ΓPAT

10

Figure 5.7 | Charge-parity transition rates due to photon-assisted tunneling pro-
cesses arising from a blackbody distribution of pair-breaking radiation, with
characteristic temperature TBB. Transmon parameters are chosen to reflect
those in Ref. Serniak et al. 2018. All calculations were performed at ng =
0. In accordance with our physical devices, we consider superconducting Al
with ∆/h = 50 GHz. The distribution is normalized such that the total num-
ber of pair-breaking photons is 1.5× 10−2.

5.6 Ultimate limit on transmon coherence?

Thermal QP excitations constitute an intrinsic sort of dissipation in superconduct-
ing qubits. Lets flash-forward to a future where our qubits are perfectly isolated
from pair-breaking radiation such that there are no PAT processes, and that there
are no other limiting dissipation mechanisms: all issues related to fabrication and
dielectric loss have been solved9. A typical 3D transmon device has on the order
of 1×104 µm3 of Al making up the two junction electrodes and shunt capacitance.
That means that there are approximately 8 × 1010 electrons paired-up in the su-
perconducting condensate. But what happens if the device cools down with an
odd number of electrons? The pairwise BCS interaction would leave 1 QP exci-
tation by default, which would on it’s own give an effective xQP ≈ 10−11, about
two orders-of-magnitude lower than the best that been observed experimentally
in pure aluminum devices [Serniak et al. 2019]. Lets say that the odds are 50-50
that the qubit has an odd number of electrons versus an even number. In this sce-
nario, half of the time you measure a new transmon, the limit on T1 would be no

9Lets, for the time being, neglect the fact that the qubit needs to be addressable and read-out, so
that there is no Purcell decay either.



5.7 | Other superconducting qubits 85

more than a few seconds! I can only imagine the level of superstition that would
develop on the 4th floor of Becton given this reality. BeĴer bring your lucky rab-
bit’s foot to work on the first day of new cooldown! Of course, other techniques
could be employed to reduce the effect of this QP, such as the implementation of
gap-engineered QP traps [Chapter 7] [Riwar et al. 2016].

5.7 Other superconducting qubits

Extending the ideas presented above to other qubit circuits is relatively straight-
forward. Typically, those would correspond to circuits with more than one JJ. QP-
tunneling induced limits on the coherence of common qubits such as the SQUID
transmon, flux qubit, and fluxonium are discussed in Ref. Catelani et al. 2011. It
boils down to taking into account the coupling of QPs to the qubit at each individ-
ual junction and weighting them appropriately. These contributions will include
the same global rates and spectral functions defined in the previous sections, with
matrix elements depending on the qubit circuit. One important difference is this:
it is crucial to take into account the phase drop across each junction in circuits
with closed loops and a flux bias, as this can lead to QP interference effects.



6
Probing QP Dynamics

in OCS Transmons
While superconducting qubits are considered to be a strong candidate architec-
ture for large-scale, fault-tolerant quantum computation, they suffer from rela-
tively short coherence times compared to many natural quantum systems. In all
likelyhood, this downside is deeply intertwined with the strongest upsides of
superconducting qubits: customization and engineerability. Modern nano- and
micro-fabrication techniques facilitate a high degree of control over device pa-
rameters, but unfortunately introduce limitations on materials used and can po-
tentially lead to contamination of otherwise perfect materials. Understanding
these sorts of materials losses, as well as those related to the fabrication tech-
niques, are a substantial roadblock in the way of achieving significantly longer
single-qubit coherence times. Studies of these decoherence mechanisms typi-
cally rely on statistical analysis of many samples, searching for correlation be-
tween sensitivity to the loss mechanism and T1, which is a difficult but crucial
undertaking [Wang et al. 2015; Calusine et al. 2018; Woods et al. 2019]. This is
due, unfortunately, to a simply stated observation: device performance is not
always consistent between samples. Devices fabricated on the same wafer that
were processed in parallel show varied coherence times, which suggests strong
local coupling to materials defects or inconsistent dissipation induced by a poorly
understood measurement setup. Furthermore, there are a multitude of potential
culprits for qubit decoherence, which makes correlations difficult to interpret.

The measurements outlined in this chapter take a different approach to un-
derstanding decoherence: determining with certainty the limits imposed by one
particular loss mechanism on individual devices. The loss mechanism is that re-
lated to nonequilibrium QP excitations in our superconducting devices, and the
devices: OCS-transmon qubits. This is made possible by the intimate relation-
ship between QPs and the physics that define our artificial atoms, namely elec-
tromagnetism and superconductivity. Quantum circuit theory and cQED utilize
BCS theory in its description of superconducting qubits, and QPs can be taken
into account with a natural extension of the Hamiltonian. This is important not

86
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only for theoretical understanding of our results, but for the measurent protocol
itself. We rely on the notion of the transmon charge parity: the parity of the num-
ber of single-charges that have traversed the JJ. When a QP tunnels across the JJ,
the charge parity switches. Luckily, these switches can be detected as a change in
the eigenspectrum of the OCS transmon, akin to changing the offset charge1 ng

by 1/2.
This chapter will detail our experimental protocols for studying QP dynamics

in OCS transmons. These rely on the ability to determine the charge-parity of an
OCS transmon in a single shot, and draws upon previous works by Naaman and
Aumentado 2006, Court et al. 2008, Shaw et al. 2008 and Ristè et al. 2013. First,
we will discuss the techniques and results of Ref. Serniak et al. 2018. This re-
lied on coherent manipulation of the transmon’s plasmon state to determine the
charge-parity-dependent transmon frequency, and showed correlation between
charge-parity switches and transmon excitation events. At the time of that writ-
ing this was very surprising, however our recent theory work in Ref. Houzet et al.
2019 may explain why this was observed: photon-assisted QP generation tunnel-
ing (PAT) processes which rely on the occupation of high frequency (ℏων > 2∆)
modes in our readout cavity. We will describe the agreement and discrepan-
cies between our experiment and this theory. Then, we will present a new tech-
nique for detecting charge-parity switching events, that doesn’t require any co-
herent manipulation of the transmon. Our work in Ref. Serniak et al. 2019 showed
that, if circuit parameters are chosen properly, there can be a charge-parity-state-
dependent dispersive shift of a readout mode. This enables high-fidelity disper-
sive detection of the transmon’s charge-parity state, that doesn’t suffer if T2 ≪ T1.

6.1 Mapping charge-parity onto the plasmon state

To probe the interaction between nonequilibrium QPs and a transmon qubit, we
slightly relax the transmon-defining condition that the Josephson coupling en-
ergy EJ is much greater than the charging energy EC [Schreier et al. 2008; Sun et
al. 2012], entering what we refer to as the offset-charge-sensitive (OCS) transmon
regime. In this regime, the charge-parity-preserving ground to first-excited-state
transition frequency fpp01 = (ϵ1,p − ϵ0,p)/h has a measurable dependence on the
charge parity p of the device, and switches between f01±δf01 when a QP tunnels

1Remember: offset charge is in “units” of Cooper pair number
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Figure 6.1 | QP-tunneling-induced transitions in transmon qubits (duplicate of
Fig. 1.2). Left: density of states νs versus the reduced energy ε/∆ in the leads of
a superconductor-insulator-superconductor (SIS) JJ, in the excitation representa-
tion. Grey arrows represent tunneling processes of QPs, shown as purple dots.
Dashed, doĴed, and solid lines correspond to relaxation, excitation, and inter-
band transitions of the qubit, respectively, with associated inelastic QP scaĴering.
Right: the two lowest plasmon energy levels of an offset-charge-sensitive trans-
mon qubit (vertical axis not to scale) as a function of offset-charge ng , in units of
2e. These levels are shifted depending on the charge parity (even or odd) of the
qubit. The time-average energies of the ground and first-excited plasmon states
are denoted ϵ0 and ϵ1, respectively, assuming ergodic fluctuations of ng and/or P .
Arrows correspond to those on the left. Not shown are PAT processes, which also
change the charge parity of the circuit and can induce all transitions in the right
panel of the figure.
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across the JJ or PAT process occurs [Fig. 4.9]. (the qubit energies switch between
the manifolds indicated by solid and dashed lines in Fig. 6.1). The deviation δf01
is an approximately sinusoidal function of the dimensionless offset-charge ng ,
which undergoes temporal fluctuations due to reconfiguration of mobile charges
in the environment. Insofar as hδf01(ng) ≪ kBT , QP tunneling dynamics will not
depend strongly on ng . The authors of Ref. Ristè et al. 2013 originally took advan-
tage of this frequency spliĴing to track ng , map the charge parity onto the state of
a transmon, and correlate qubit relaxation with parity switches [Catelani 2014].
Extending their experiment, we were able to extract not only the QP-induced re-
laxation rate, but also the QP-induced excitation rate by detailed modeling of the
correlations between charge-parity switches and qubit transitions [Serniak et al.
2018].

The rest of this section will focus on a single transmon qubit with aver-
age frequency f01 = 4.400 GHz and EJ/EC = 23, corresponding to a maxi-
mum even-odd spliĴing 2δf01(0) = 3.18 MHz. The average measured relax-
ation time T1 = 95 µs is on par with state-of-the-art transmons, and the equi-
librium ground state population P0 = 0.74 corresponds to an effective qubit
temperature of 160 mK. This is relatively anomalous for superconducting qubits,
though we will show with certainty that this is correlated with charge-parity
switches, implicating nonequilibrium QPs or PAT processes as the culprit. Re-
sults from a second sample with similar parameters is discussed in Section 6.1.8.
Chips were mounted in an Al 3D rectangular readout cavity [Paik et al. 2011]
and anchored to the mixing chamber of a cryogen-free dilution refrigerator
at 20 mK. This readout mode is characterized by frequency fr = 9.204 GHz
and linewidth κ/2π = 1.8 MHz. These devices were measured in the dis-
persive regime of circuit-QED [Blais et al. 2004] (dispersive shift χqr/2π =

χ0,p − χ1,p = 3.8 MHz, which was approximately independent of p), where a
Josephson Parametric Converter (JPC) [Bergeal et al. 2010] was used to achieve a
single-shot qubit-readout fidelity of ≈ 0.97 in 3.84 µs with an average readout-
resonator occupation n̄r ≈ 3.

6.1.1 Charge-parity-independent Ramsey interferometry

Our experimental protocol relies on a separation of timescales between drift of
ng and discrete switches of P . Luckily, the dynamics of ng are much slower than
those of P . The slow background fluctuations of n̂ were tracked by monitoring
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Figure 6.2 | Monitoring slow fluctuations of δf01(ng). (a) Depiction of the Ram-
sey sequence. High-fidelity qubit measurements M1 and M2 have thresholded
outcome 0 or 1, corresponding to the ground and first-excited states of the qubit,
respectively. (b) Ramsey fringes of ⟨M1M2⟩ oscillate at δf01(ng), which is mea-
sured every ∼ 4 s as shown in (c). The grey dashed line marks the frequency
obtained from the fit in (b). The right-side y-axis shows the conversion from
δf01(ng) to ng . Due to symmetry of the eigenspectrum, this measurement tech-
nique maps all values of ng into the range [0, 0.25].

δf01(ng) using the Ramsey sequence depicted in Fig. 6.2(a). Here, an initial mea-
surement M1 initializes the plasmon state of the transmon in either the ground
or first excited state. A π/2 pulse around the X-axis prepares the transmon in a
superposition of these states. The carrier frequency of the Gaussian π/2-pulses is
chosen to be f01, which is symmetrically detuned from fee01 and foo01 at all values
of ng . This ensures that the phase evolution of even- and odd-parity states on
the equator of the Bloch sphere will interfere constructively, resulting in Ramsey
fringes [Fig. 6.2(b)] characterized by a single oscillation frequency δf01(ng) and
a decay constant T2 that is insensitive to fast charge-parity switches. Here, it is
crucial that the second π/2-pulse is along the same axis as the first. Repeated
Ramsey experiments [Fig. 6.2(c)] show that ng fluctuates on a timescale of min-
utes, which is long enough to perform experiments that rely on prior knowledge
of δf01(ng).
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Figure 6.3 | Pulse sequence used to map the charge-parity of the OCS transmon
onto its plasmon state.

6.1.2 Charge-parity-mapping pulse sequence

Using a similar pulse sequence [Fig. 6.3], we map the charge parity of the trans-
mon onto the plasmon state [Ristè et al. 2013; Serniak et al. 2018]. Two π/2-pulses,
now about orthogonal axes, are separated by a delay τ(ng) = 1/4δf01(ng), which
ensures that the bloch vectors corresponding to even and odd charge parity are
antiparallel on the equator of the Bloch sphere at the time of the second π/2-pulse.
This constitutes an effective π-pulse conditioned on charge parity (πe,o). This
charge-parity-mapping operation only discerns between transition frequencies
greater-than or less-than f01, and we refer to these as “even” and “odd” charge-
parity states, respectively, despite the inability to measure absolute parity. This
also limits our visibility of ng values to the “half-Brillouin zone” [0, 1/4] ⊂ R. The
relative phase of the π/2-pulses controls whether the πe,o sequence is conditioned
on even or odd charge parity. The charge parity P = (2M1 − 1)(2M2 − 1) is cal-
culated in post-processing.

To observe charge-parity switches in real time, we repeated the charge-parity-
mapping sequence every ∆texp = 10 µs for ∼ 600 ms [Fig. 6.4(b)]. The power
spectral density SPP of these parity fluctuations was averaged over 20 inde-
pendent charge-parity jump traces [Fig. 3]. SPP was fit to the characteristic
Lorenĵian of a random telegraph signal,

SPP [f ] =
4F2/TP

(2/TP )2 + (2πf)2
+ (1−F2)∆texp, (6.1)

from which a charge-parity lifetime TP = 77 ± 1 µs and mapping fidelity
F = 0.91± 0.01 were obtained. This model assumes that charge-parity mapping
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Figure 6.4 | Detecting fast charge-parity switches in an offset-charge-sensitive
transmon qubit. Inset (a) Charge-parity mapping pulse sequence, which results
in an effective charge-parity-conditioned π-pulse, πe,o. Inset (b) A 1 ms snapshot
of a ∼ 600 ms long charge-parity jump trace. Main: Measured power-spectral
density of charge-parity fluctuations SPP (purple), with a Lorenĵian fit (orange)
corresponding to TP = 77± 1 µs.

errors leading to non-unity F are uncorrelated with charge-parity, though T1-
related errors tend to bias toward measuring even charge parity (discussed be-
low). A“chi-squared” analysis of the model suggests that this has a negligible
effect on the output of the model. For more details, see Ref. [Machlup 1954; Ristè
et al. 2013]. Each jump trace was acquired after confirming that δf01(ng) ≥ 1MHz
by the monitoring of ng described above. This conditioning was introduced to in-
crease the fidelity F of the charge-parity mapping, as δf01(ng) is less sensitive to
fluctuations of ng at near-maximum δf01(ng); also, the qubit is less likely to de-
phase during the correspondingly shorter τ(ng). As discussed in Chapter 5, the
charge-parity transition rates are for all intents and purposes insensitive to ng as
long as δϵ0, δϵ1 ≪ kBT .

6.1.3 Correlating charge-parity switches and plasmon transitions

The fact that TP ≈ T1 hints at the possibility that our transmon may be limited
by QP-induced dissipation. Following Ref. [Catelani 2014], the total relaxation
rate Γ10 can be decomposed into the sum of two contributions: the rate of re-
laxation accompanied by a charge-parity switch (Γeo

10), which we aĴribute solely
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to QP-tunneling or PAT-induced loss, and the rate of relaxation from charge-
parity-conserving mechanisms (Γee

10), such as dielectric loss. As there is no pre-
ferred parity, these transition rates are symmetric under exchange of even and
odd (Γeo

ij = Γoe
ij and Γee

ij = Γoo
ij ). Similarly to the total relaxation rate, the total

excitation rate is given by Γ01 = Γeo
01 + Γee

01. We resolve these distinct contribu-
tions by concatenating two parity-mapping sequences (yielding outcomes p and
p′) separated by a variable delay τ [Fig. 6.5(a)]. This measurement determines
both the charge parity and plasmon state before and after τ , which allows us to
correlate qubit transitions with charge-parity switching events. From our data,
we compute ρ̃(j, pp′|i)(τ): the probability of measuring outcome m3 = j after a
delay τ given that m2 = i, with or without a parity switch (pp′ = −1 or +1,
respectively).

6.1.4 Master equation model

To model these quantities, we employ a master equation describing the flow of
probability between different transmon states

ρ̇pi =− (Γpp̄
īi

+ Γpp̄
ii + Γpp

īi
)ρpi

+ Γp̄p
īi
ρp̄
ī
+ Γp̄p

ii ρ
p̄
i + Γpp

īi
ρp
ī
,

(6.2)

where ρpi is the probability of finding the system in qubit state i and charge parity
p, and i is read as “not i.” We evolve the above model numerically with initial
conditions determined by M2 and P , and fit all eight conditional probabilities
ρ̃(j, pp′|i)(τ), a subset of which are shown in Fig. 6.5(c, d).

In addition, we calculate the charge-parity autocorrelation func-
tion ⟨PP ′⟩ij(τ), again conditioned on outcomes m2 = i and m3 = j, re-
spectively [Fig. 6.5(b)], and fit to functions of the form

⟨PP ′⟩ij(τ) = ρpi (0)

[
ρpj (τ)− ρp̄j (τ)

ρpj (τ) + ρp̄j (τ)

]
. (6.3)

The maximum correlation ⟨PP ′⟩ii(0) is limited by the fidelity of the correlation
measurement (which in principle is dependent on the readout fidelity of plasmon
state i), and qualitatively, the deviation of ⟨PP ′⟩ij(0) from this maximum ampli-
tude is related to the ratio Γeo

ij /Γij .
Equations 6.2 and 6.3 do not account for any measurement infidelities,
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(a)

(b)

(c)

(d)

M4M3

πe,o τ
M2M1

P ′P

πe,o

t

Figure 6.5 | Correlating charge-parity switches with qubit transitions. (a) Pulse
sequence depicting the charge-parity correlation measurement. The charge-
parity conditioning of the state-mapping sequence (whether we implement a
πe or a πo pulse) is varied between measurements to balance charge-parity-
dependent errors. (b) Charge-parity autocorrelation function ⟨PP ′⟩ conditioned
on the outcomes m2 = i and m3 = j. (c) Conditioned probabilities ρ̃(j, pp′|i)(τ)
with and without a charge-parity switch (pp′ = +1 or −1, respectively). The
relative amplitudes of curves with and without parity switches (triangles and
squares, respectively) indicate the likelihood that those transitions were corre-
lated with quasiparticle-tunneling events. Theory lines are obtained from a least-
squares fit to the master equation described in the main text. (d) Probabilities
ploĴed in (c) after rescaling τ by Γij , the overall decay rate governing each curve
at large τ . The crossing of curves with pp′ = −1 (black-dashed line) indicates that
charge-parity-switching events are more likely to excite than relax the transmon.
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which can skew the observed correlations. These include parity- and qubit-
state-dependent errors, such as spontaneous qubit transitions during the parity-
mapping sequence, as well as global errors such as pulse infidelity due to un-
certainty in δf01(ng). The following few pages will detail how we take into ac-
count some of the errors inherent in this measurement scheme in our modeling
of ρ̃(j, pp′|i)(τ) and ⟨PP ′⟩ij(τ).

Modeling correlations between qubit transitions and charge-parity switches

We measured correlations between charge-parity switches and qubit transitions,
which reveals the extent to which the qubit coherence is limited by nonequi-
librium quasiparticle excitations. To correlate these processes, we perform two
charge-parity mapping sequences, separated by a variable delay τ [Fig. 6.5(a)].
From this, we group the measurement sequences conditioning on starting in
qubit state i and parity p, and ending up in qubit state j and parity p′. We com-
pute two quantities from this data: the conditioned probabilities of all of these
events ρ̃(j, pp′|i)(τ), and the qubit-state-conditioned charge-parity autocorrela-
tion function ⟨PP ′⟩ij(τ). To model the dynamics between states of the system,
we define a master equation describing the dynamics of joint plasmon-state and
charge-parity occupation probabilities ρpi .

ρ̇pi =− (Γpp̄
īi

+ Γpp̄
ii + Γpp

īi
)ρpi

+ Γp̄p
īi
ρp̄
ī
+ Γp̄p

ii ρ
p̄
i + Γpp

īi
ρp
ī
.

(6.4)

Here, Γpp̄
īi

is a conditional transition rate, with i (̄i) and p () denoting the con-
ditioned (other) qubit state and charge parity, respectively. Because the charge
dispersion of the transmon energy levels is small relative to the scale of thermal
fluctuations, the conditional rates are symmetric with the exchange of p and p̄.
We evolve this master equation with initial conditions set by conditioning on the
initial qubit and charge-parity state. The full model is solved numerically and
fit to measured values of all eight permutations of ρ̃(j, pp′|i)(τ) and all four per-
mutations of ⟨PP ′⟩ij(τ), to extract Γpp̄

00 , Γpp̄
11 , Γpp̄

10 , Γpp̄
01 , Γpp

10 , and Γpp
01 : all possible

transition rates of the OCS transmon restricted to the qubit-manifold of plasmon
states i = 0, 1.

The measured values of ρ̃(j, pp′|i)(τ) and ⟨PP ′⟩ij(τ) are susceptible to vari-
ous measurement imperfections that are not included in the model above, and
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we must modify our fit functions to include these infidelities. Single state-
discrimination errors will on average decrease ⟨PP ′⟩ij(τ), and T1 errors during
the parity mapping will impart an infidelity that depends on both the charge-
parity and the qubit state at the start of the parity mapping. This is because, at
short τ , parity-switching events are rare, and single state-discrimination errors
will necessarily give a false reading of the charge-parity. Other measurement
inefficiencies are approximately independent of qubit state and charge parity,
which contribute to a global fidelity Fg of the parity-mapping sequence. For ex-
ample, because ng varies uncontrollably in time, each sequence of pulse calibra-
tions and parity-autocorrelation measurement must be completed on a timescale
faster than a few minutes. Any variation of ng between the tuning of pulses and
the completion of the experiment will introduce qubit-pulse errors, which along
with qubit dephasing during τ(ng), contribute to Fg . In practice, Fg is occasion-
ally very low, which we aĴribute to spontaneous jumps of ng between the the
time when δf01(ng) is determined and the charge-parity autocorrelation mea-
surement. 2 Since we do not know Fg a priori, we include it in the model as an
additional fit parameter, and exclude independent batches of 20000 measurement
sequences which fall below a threshold Fg . We choose this threshold to be 0.5 at
low temperatures, where the vast majority of measurements meet this criteria.
This threshold must be relaxed at higher fridge temperatures due to increased
transmon decoherence.

State-discrimination errors can be sufficiently reduced by ignoring measure-
ment sequences in which any of the four measurement shots do not meet a strin-
gent state-assignment threshold. We histogram all qubit measurement shots, fit
to a sum of two Gaussian distributions, and exclude measurement sequences
where any of the four measurements fall near the half-way point between dis-
tributions. In practice, this thresholding removes between 10% and 50% of mea-
surement sequences, depending on the amplitude and integration time of the
readout signal, in order to achieve state-discrimination fidelity of greater than
0.9999. The readout amplitude was limited to an average photon number n̄ ≈ 3

to avoid measurement induced qubit transitions [Slichter et al. 2012; Sank et al.
2016].

Each charge-parity-mapping sequence consists of an initial qubit measure-
ment, the Ramsey pulses for parity-mapping, and a final qubit measurement.

2This time is limited by reloading the arbitrary waveform generator with a new measurement
sequence, which takes about 20 s.
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Figure 6.6 | Charge-parity mapping pulse sequence (not to scale). The charge-
parity is defined as P = (2M1 − 1)(2M2 − 1). The first π/2-pulse brings both
charge-parity Bloch vectors to the equator. After a precise delay τ = 1/4δf01(ng),
the Bloch vectors are anti-parallel. A second π/2-pulse completes the operation,
enacting an effective π-pulse conditioned on being in the even charge-parity state,
regardless of the outcome m1. We can change the conditioning of the mapping
by changing the phase of the first π/2-pulse by 180◦.

Because of stringent thresholding, we assume state-assignment with perfect fi-
delity that is determined at the midpoint of the readout pulse. There is thus a
time τ1 between the midpoint of M1 and the beginning of the Ramsey pulses,
and time τ2 between the end of the Ramsey pulses and the midpoint of M2, dur-
ing which T1 errors can occur [Fig. 6.6].3 Errors during τ1 and τ2 from T1 events
are included explicitly in the model, and errors between the π/2-pulses are in-
cluded implicitly via a global mapping fidelity Fg .

Qubit-state dependent T1 events affect the fidelity with which we determine
the charge-parity. For example, let’s say the parity-mapping sequence is cho-
sen such that it enacts a π-pulse conditioned on being in the even charge-parity
state (this will vary in the following discussion). If the system is in state |0, o⟩,
one would expect to measure m1 = 0 → m2 = 0, but T1 errors will appear as
0 → 1 with a probability Γ01(τ1 + τ2). If the system state is |0, e⟩, one would
expect to measure 0 → 1, but T1 errors will appear as 0 → 0 with a probability
(Γ01τ1+Γ10τ2). Similar expressions can be found for the system starting in |1, p⟩.
Since there is no physical preference for even or odd parity, we average over par-
ity dependence in the error rates and only consider the probability of starting in
an initial state. However, parity-dependent errors will introduce artificial corre-
lations between P and P ′. To remedy this, we vary whether each parity-mapping
sequence performs an effective π-pulse on the even- or odd-charge-parity state.

3The time τ1 is longer than τ2 to leave enough time for photons from M1 or M3 to leak out of the
readout cavity.
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Assuming near-perfect state discrimination fidelity and equal probability to mea-
sure odd or even charge parity (with balanced pulse conditioning), these errors
will only depend on the qubit state at the beginning of the mapping. For the first
charge-parity-mapping sequence P , we define an error probability

ζijP = (1−Fg) +
1

2

[
Pij
0 (τ1Γ01 + τ2Γ10) + Pij

1 (τ1 + τ2)Γ10

]
(6.5)

Above, Pij
a is the probability that m1 = a at the beginning of P in measurement

sequences with qubit-conditioning m2 = i and m3 = j. Similarly, for the second
parity mapping sequence P ′ we define

ζjP ′ = (1−Fg) +
1

2

[
(τ1 + τ2)Γjj + (τ1Γjj + τ2Γjj)

]
(6.6)

This error probability is independent of i, and does not have additional qubit-
state weighting because we assume near-perfect conditioning of outcome j.

Without accounting for any errors, ρ̃(j, pp′|i)(τ) = ρpi (0)ρ
p′

j (τ). Errors in the
determination of ρpi (0) shuffle the initial probability from the conditioned parity
ρpi (0) to the other parity ρpi (0) with a rate ζijP . We evolve the master equation
with these errors accounted for in the initial conditions, in that the conditioned
probability ρpi (0) is no longer unity. Then, applying errors in the second parity
mapping explicitly, we find:

ρ̃(j, pp′|i)(τ) = (1− ζjP ′)ρ
p′

j (τ) + ζjP ′ρ
p′

j (τ). (6.7)

We calculate ⟨PP ′⟩ij(τ) directly from these conditional probabilities

⟨PP ′⟩ij(τ) =
ρ̃(j,+1|i)(τ)− ρ̃(j,−1|i)(τ)
ρ̃(j,+1|i)(τ) + ρ̃(j,−1|i)(τ)

. (6.8)

To extract the rates quoted in the next sections, we fit to all eight permutations
of ρ̃(j, pp′|i)(τ) and all four permutations of ⟨PP ′⟩ij(τ) simultaneously. The
slight disagreement at short τ may be due to measurement-induced qubit transi-
tions that could be present even at low readout power [Slichter et al. 2012; Sank
et al. 2016].
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Figure 6.7 | Transition rates extracted from the master equation, in units of
µs−1. Note that rates are invariant under exchange of even and odd charge-parity
states.

6.1.5 Extracted rates

From our model with measurement errors taken into account, we extract
1/Γeo

00 = 110 ± 1 µs, 1/Γeo
11 = 77 ± 1 µs, 1/Γeo

10 = 447 ± 7 µs, 1/Γeo
01 = 400 ± 5 µs,

1/Γee
10 = 182 ± 1 µs, and 1/Γee

01 = 6500 ± 900 µs [Fig. 6.7]. Quoted parameter
standard deviations reflect the uncertainty in the data, calculated using standard
statistical techniques, and do not aĴempt to account for any systematic error. As
a check of consistency, we calculate

T1 = (Γeo
10 + Γee

10 + Γeo
01 + Γee

01)
−1, Peq

0 = (Γeo
10 + Γee

10)T1 (6.9)

which were measured independently using standard measurement protocols,
and

TP ≈ 2/(Γeo
00 + Γeo

11 + Γeo
10 + Γeo

01), (6.10)

as obtained from the measurement and data in Fig. 6.4.4. We find that they agree
with these values as quoted above, and other devices were found to have similar
rates.5

These rates have implications for our understanding of nonequilibrium QPs
in our transmon qubits. First, the limit on T1 of this device imposed by QP-related
processes is no greater than (Γeo

10 + Γeo
01)

−1 = 211 ± 3 µs, compared to a limit of

4This approximate relation forTP is due to the fact that in the aforementioned charge-parity jump
experiment (Fig. 3) the qubit is taken out of equilibrium by the pulse sequence. The extracted TP

approximately averages the conditional parity-switching rates corresponding to the plasmon states
|0⟩ and |1⟩.

5As we will discuss in the next section and the next chapter, a few key system parameters can
influence these rates.
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(Γee
10 + Γee

01)
−1 = 177 ± 2 µs imposed by all other loss mechanisms. This puts

QP-induced dissipation on par with the sum of all other dissipation channels,
contributing significantly to qubit relaxation Γeo

10/Γ10 = 0.29 ± 0.01. Second, the
ratio Γeo

01/Γ01 = 0.94± 0.02 indicates that QP-induced excitation accounts for the
vast majority of the residual transmon excited-state population [Fig. 4(a)]. Previ-
ous works [Wenner et al. 2013; Jin et al. 2015] had suspected something like this,
but not in the way that we describe here. Finally, Γeo

01/Γ
eo
10 = 1.12±0.02, which in-

dicates that, if these rates are due to QP-tunneling processes, the energy distribu-
tion of QPs f(ε) is strongly-athermal. Naïvely applying Fermi-Dirac statistics and
detailed balance yields Γeo

01/Γ
eo
10 = exp(−hf01/kBT

QP
eff ), which would a negative

effective QP temperature TQP
eff ≈ −2 K in our device. This would mean that the

QP energy distribution is not localized near the gap edge, and has a characteristic
energy greater than ∆ + hf01. This is highly unlikely, as we will discuss below.
In contrast to the above ratio, Γee

01/Γ
ee
10 = 0.03 ± 0.01, indicating that the non-QP

dissipative baths coupled to the transmon are relatively “cold” [Fig. 4(b)], with
an effective temperature ∼ 60 mK. The observation that Γeo

11 > Γeo
00 is not yet ex-

plained by theoretical predictions [Catelani 2014]. We stress that the dependence
of QP dynamics on EJ/EC is very weak, and that these results on a device in the
OCS regime apply directly to traditional transmon devices with EJ/EC ≫ 1.

Our analysis relies on the aforementioned model to accurately extract qubit-
state-conditioned QP tunneling rates, and we claim that the ratio Γeo

01/Γ
eo
10 is well-

captured by the model. To illustrate this, we plot our data along with predicted
curves ⟨PP ′⟩ij(τ) for various fixed Γeo

01/Γ
eo
10 [Fig. 6.8]. This model is constructed

by first fixing Γeo
00 and Γeo

11 to the values extracted from the fit to the data. These
rates approximately fix TP to the value extracted in the main text. Then, we adjust
Γeo
10, Γeo

01, Γee
10, and Γee

01 under the constraint that T1, TP , and Peq
0 are fixed to their

independently measured values for all chosen values of Γeo
01/Γ

eo
10. As displayed

in Fig. S3, the model qualitatively deviates from the data when Γeo
01/Γ

eo
10 is less

than ≈ 1.

6.1.6 Temperature dependence

We repeated the correlation measurement [Fig. 4] at various mixing-chamber
temperatures T [Fig. 5]. We find that all parity-switching rates Γeo

ij increase
for T ≳ 140 mK, at which point T1, TP , and Γeo

01/Γ
eo
10 all begin to decrease. Model-

ing the temperature dependence of these rates requires some ansaĵ about the QP
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Figure 6.8 | Charge-parity-autocorrelation data [Fig. 6.5] overlaid with the mas-
ter equation model of ⟨PP ′⟩ij(τ) for varying Γeo

01/Γ
eo
10. Deviation from the data

when seĴing Γeo
01/Γ

eo
10 < 1 shows that the model is sensitive to small fluctuations

in fit parameters. Fixing the effective QP temperature to account for the apparent
density of nonequilibrium QPs (TQP

eff = 150 mK for xqp ≈ 10−7) clearly does not
accurately describe their energy distribution.
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Figure 6.9 | Left: 1/Γeo
10 normalized by its base-temperature value 1/Γeo

10
0, as a

function of temperature. The solid black line is a fit to the thermal dependence
of x0QP/xQP, which gives x0QP ≈ 1× 10−7. Right: Γeo

01/Γ
eo
10 compared to predictions

from detailed balance, assuming QPs are thermalized with the cryostat. Grey
dashed line indicates the value above which T qp

eff ≤ 0.

energy distribution, which is typically assumed to be a Fermi-Dirac distribution
localized near the gap edge [Martinis, Ansmann, and Aumentado 2009; Catelani
et al. 2011]. Without claiming its validity, we use it to compare our results with
other reports of QP density x0QP in superconducting circuits. If we further assume
that the populations of nonequilibrium QPs and equilibrium QPs [Catelani et al.
2011] are independent, the total xQP is the sum:

xQP = x0QP +
√

2πkBT/∆e
−∆/kBT . (6.11)

Here ∆ = 205 µeV, consistent with DC measurements of similar films (∆
increases with reduction of Al thickness) [Chubov, Eremenko, and Pilipenko
1969]. The QP-induced relaxation rate Γeo

10 should scale linearly with xQP [Mar-
tinis, Ansmann, and Aumentado 2009; Catelani et al. 2011]. We see this
approximate scaling in our data [Fig. 6.9] with a slight decrease in Γeo

10 with
increasing temperature that is not predicted by our simple model, but has been
previously observed [Martinis, Ansmann, and Aumentado 2009]. This model
yields x0QP ≈ 1× 10−7, which agrees with other recent experiments [Aumentado
et al. 2004; Vool et al. 2014; Nsanzineza and Plourde 2014; Pop et al. 2014; Wang
et al. 2014; Gustavsson et al. 2016].

Another verification of our measurement technique is to consider the ra-
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Figure 6.10 | Temperature dependence of qubit-state-conditioned parity-
switching rates. Above ∼ 140 mK, all rates begin to increase, and Γeo

01/Γ
eo
10 ≤ 1

suggests that thermally generated QPs begin to outnumber nonequilibrium
QPs. Simulation assumes monochromatic pair breaking radiation at a fre-
quency ων/2π = 3.4∆/h, with average occupation n̄ν = 9× 10−3.

tio Γeo
01/Γ

eo
10 as a function of fridge temperature. As evident in Fig. 6.9, the

surprising result Γeo
01/Γ

eo
10 ≈ 1 persists up to 150 mK: the temperature where

thermally generated QPs begin to dominate the charge-parity dynamics. As the
temperature is increased above this threshold, Γeo

01/Γ
eo
10 approaches the expected

thermal value. This is extremely comforting to see, that in a regime where we
think we should understand what’s going on, we actually do.

6.1.7 Comparison with PAT theory

Our recent work in Houzet et al. 2019 has alerted us to another interpretation
of the aforementioned results. The charge-parity switches observed at low tem-
perature may not have been from QP-tunneling processes, as we had originally
concluded, but from photon-assisted QP generation and tunneling (PAT) pro-
cesses. These PAT processes generate a pair of QPs at the JJ, and cause charge
parity switches. The distinguishing feature of this process is that it can be
equally likely to excite the transmon as to relax it. We can compare our mea-
sured charge-parity transition rates to the theory developed in Chapter 5 [Houzet



104 Chapter 6 | Probing QP Dynamics in OCS Transmons

et al. 2019]. Fig. 6.10 shows the temperature dependence of the measured
charge-parity transition rates with theoretical predictions overlaid. The theory
represents a thermal distribution of QPs, contributing a transition rate (due to
thermal QP-tunneling) as discussed in Chapter 5 as a function of temperature,
with a fixed PAT contribution that dominates below ≈ 150 mK. The Cooper
pair-breaking radiation responsible for PAT is modelled to be monochromatic
at a frequency ων/2π = 3.4∆/h ≈ 170 GHz, with an average mode occupa-
tion n̄ν = 9×10−3. We note that this fit could be improved by varying∆, however
we prefer to keep it fixed at ≈ h×50 GHz, in accordance with DC measurements
of [Chapter 7].

Though the agreement between the experimental data and our PAT theory is
not perfect, we feel that, while there may be more to this story, PAT processes are a
plausible explanation for some of the observed phenomena. At the very least, it is
more likely that PAT processes are responsible for the ratio Γeo

01/Γ
eo
10 ≈ 1 than the

other option, that QPs have some extremely athermal energy distribution. We
are encouraged that as we understand more about the processes that generate
QPs in our devices we may understand these results and beĴer engineer devices
to prevent against QP-induced dissipation. Further experiments are needed to
fully assess the validity of these hypotheses. We will describe these experiments
(that are currently underway) in the final chapter of this dissertation. One sig-
nificant question still goes unaddressed, which is why Γeo

11/Γ
eo
00 > 1. Because the

charge dispersion of the two lowest plasmon levels δϵ0, δϵ1 ≪ kBT ≪ ∆, this
ratio should be given primarily by the ratio of single-charge-tunneling matrix el-
ements, but apparently there are some other factors in play. This is something
that we have seen consistently in our data, as well as in Ref. Ristè et al. 2013,
which may be a clue toward fully understanding nonequilibrium QP dynamics
in superconducting devices.

6.1.8 Summary and discussion

At the time of Ref. Serniak et al. 2018, we had performed these charge-parity
correlation experiments in two nominally identical devices with the same
experimental setup [Tables 6.1 and 6.2]. Aside from having EJ/EC ≈ 20,
operating in the OCS regime, the devices were nominally identical to typical
3D transmons. It’s important to note that similar charge-parity transition
rates were measured in both devices with a few differences that we will
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Table 6.1 | Charge-parity-correlation device parameters.

Sample f01(GHz) 2δf01(MHz) T1(µs) TP (µs)
A 4.400 3.18 95 ± 5 77 ± 1
B 4.255 4.96 44 ± 2 96 ± 1

Table 6.2 | Transition rates from charge-parity-correlation experiments

Sample 1/Γeo
00(µs) 1/Γeo

11(µs) 1/Γeo
10(µs) 1/Γeo

01(µs) 1/Γee
10(µs) 1/Γee

01(µs)
A 110 ± 1 77 ± 1 447 ± 7 400 ± 5 182 ± 1 6500 ± 900
B 135 ± 2 92 ± 2 920 ± 80 400 ± 10 61 ± 1 10000 ± 4000

now describe. Sample A is the device reported in the previous sections, and
Sample B was measured in a separate cooldown under nominally identical
conditions, though we did not study the temperature dependence of its con-
ditional transition rates. The limit on T1 of sample A (sample B) imposed
by QPs is (Γeo

10 + Γeo
01)

−1 = 211 ± 3 µs (278 ± 8 µs), while all non-QP loss
mechanisms limit T1 to (Γee

10 + Γee
01)

−1 = 177 ± 2 µs (61 ± 1 µs). QP-induced
transitions account for Γeo

10/Γ10 = 0.29±0.01 (0.06±0.01) of all relaxation events,
and Γeo

01/Γ01 = 0.94 ± 0.02 (0.96 ± 0.03) of all excitation events. The ratio of
QP-induced excitation and relaxation rates Γeo

01/Γ
eo
10 = 1.12 ± 0.02 (2.3 ± 0.2),

indicating that the source of charge-parity switches is “hot.” Further experiments
are necessary to understand this observation of sample B, as it does not agree
with any current theory. Conversely, we find that other the combination of all
other dissipative baths are “cold”: Γee

01/Γ
ee
10 = 0.03± 0.01 (0.006± 0.002).

We thus have shown either that QPs are more energetic than a Fermi-Dirac
distribution accounting for their apparent density xQP would suggest, or that
some other process, such as PAT, is responsible for charge-parity switches in
transmon qubits. One should note that the authors of Ref. Ristè et al. 2013
reported TP one order of magnitude greater than what we have presented in
Ref. Serniak et al. 2018. We know that proper filtering of RF lines, light-tight
shielding [Barends et al. 2011; Córcoles et al. 2011], and well-thermalized
components are now standard ingredients for reducing the QP density which
were already included in our measurement setup. Our most recent work in
Ref. Serniak et al. 2019 demonstrated that additional high-frequency filtering is
required to further reduce xQP, the results of which will be presented in the next
section as well as the next chapter. It’s not obvious that this additional filtering
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would be necessary, and our ongoing work is aimed to understand the exact
mechanism by which QP-generating radiation is infiltrating our measurement
apparatus such that the community can adopt effective preventative measures.

In conclusion, the correlations between charge-parity switches and qubit
transitions in an offset-charge-sensitive transmon indicate that QP-induced loss
can be responsible for a significant fraction of dissipation in state-of-the-art
superconducting qubits. Additionally, we confirm that charge-parity switching
processes are responsible for the residual excited-state population at low temper-
ature in our samples. The techniques described above, building upon Ref. [Ristè
et al. 2013], provide a tool to distinguish the influences of various experimental
factors on QP generation and assess QP-reduction techniques, such as induced
Abrikosov vortices [Wang et al. 2014; Nsanzineza and Plourde 2014; Vool et al.
2014; Taupin et al. 2016] or galvanically connected QP traps [Booth et al. 1993;
Court et al. 2008; Peltonen et al. 2011; Rajauria et al. 2012; van Woerkom, Geresdi,
and Kouwenhoven 2015; Riwar et al. 2016; Hosseinkhani et al. 2017; Patel et al.
2017]. Our efforts in this arena will be discussed in the next chapter.

6.2 Dispersive readout of the joint plasmon and

charge-parity state

This section covers our recent work in Ref. Serniak et al. 2019, where we
describe an efficient technique for detecting the charge-parity of an OCS trans-
mon. Instead of relying on coherent pulses to map the charge-parity onto the
transmon’s plasmon state, we take advantage of charge-parity dependent hy-
bridization of the OCS transmon and an ancillary readout mode. This produces
a charge-parity-dependent dispersive shift that agrees well with the predictions
of quantum circuit theory.

The basic building blocks of quantum circuits—e.g. capacitors, inductors,
and nonlinear elements such as Josephson junctions [Josephson 1962] and
electromechanical transducers [Teufel et al. 2011]—can be combined and ar-
ranged to realize device Hamiltonians engineered for specific tasks [Vool and
Devoret 2017]. This includes a wide variety of superconducting qubits for
quantum computation [Bouchiat et al. 1998; Mooij et al. 1999; Chiorescu et al.
2003; Koch et al. 2007; Manucharyan et al. 2009], quantum-limited microwave
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amplifiers [Castellanos-Beltran et al. 2009; Bergeal et al. 2010; Macklin et al.
2015], and frequency converters for quantum signal routing [Andrews et al.
2014]. These circuits can be probed using standard microwave measurement
techniques and understood within the theoretical framework of circuit quantum
electrodynamics (cQED) [Blais et al. 2004], which has been used to accurately
predict energy levels and intermode coupling strengths in novel and complex
circuits [Janvier et al. 2015; Smith et al. 2016; Kou et al. 2017]. Arguably the
most well-studied quantum circuit is the capacitively shunted Josephson junc-
tion [Bouchiat et al. 1998; Koch et al. 2007], which is parameterized by the ratio
of the Josephson coupling energy EJ to the charging energy EC . This circuit is
typically operated in either the Cooper-pair box (EJ/EC ≈ 1) [Bouchiat et al.
1998] or transmon (EJ/EC ≳ 50) [Koch et al. 2007] extremes of offset-charge
sensitivity. We will focus on circuits that fall in the range between these two
extremes. There, the characteristic plasmonic eigenstates (which we will refer to
as plasmon states) of the circuit can be superpositions of many charge states, like
a usual transmon, but with measurable offset-charge dispersion of the transition
frequencies between eigenstates, like a Cooper-pair box. This defines what we
refer to as the offset-charge-sensitive (OCS) transmon regime.

Devices fabricated in the OCS regime are particularly useful for investiga-
tions of interesting mesoscopic phenomena. For example, these devices can be
used to probe deviations from the typical sinusoidal Josephson current-phase
relation, which will change the offset-charge dependence of circuit eigenen-
ergies and transition matrix elements [Ginossar and Grosfeld 2014; Yavilberg,
Ginossar, and Grosfeld 2015]. Additionally, this offset-charge dependence in
devices with standard Al/AlOx/Al junctions can facilitate sensitive measure-
ments of environmental charge noise and quasiparticle dynamics [Schreier
et al. 2008; Ristè et al. 2013; Serniak et al. 2018]. This is important because the
performance of superconducting devices, especially qubits, can be limited by
dissipation due to nonequilibrium quasiparticles (QPs) [Lutchyn, Glazman,
and Larkin 2005; Martinis, Ansmann, and Aumentado 2009; Catelani et al.
2011]. The fact that the observed ratio of these nonequilibrium QPs to Cooper
pairs (xQP ≈ 10−8 to 10−5 [Aumentado et al. 2004; Segall et al. 2004; Shaw et al.
2008; Martinis, Ansmann, and Aumentado 2009; Vool et al. 2014; Nsanzineza
and Plourde 2014; Wang et al. 2014; Visser et al. 2014a; Gustavsson et al. 2016;
Taupin et al. 2016; Serniak et al. 2018]) is many orders of magnitude greater
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than would be expected in low-temperature experiments (∼ 20 mK) remains an
unsolved mystery. Nonetheless, given this observed phenomenological range
of xQP, the natural combination of cQED and BCS theory [Bardeen, Cooper, and
Schrieffer 1957] leads to quantitative modeling of QP-induced dissipation that
has shown good agreement with experiments [Lutchyn, Glazman, and Larkin
2005; Martinis, Ansmann, and Aumentado 2009; Catelani et al. 2011; Lenander
et al. 2011; Wang et al. 2014]. Recent work has demonstrated that the effects
of QPs can even be distinguished from other sources of dissipation in OCS
transmons [Ristè et al. 2013; Serniak et al. 2018]. These experiments were able
to correlate qubit transitions with changes in the charge-parity of the circuit: a
signature of QPs interacting with the qubit [Catelani 2014]. This development
has provided a foundation for experiments aiming to mitigate QP-induced
dissipation and identify the generation mechanisms of nonequilibrium QPs [Be-
spalov et al. 2016; Catelani and Basko 2019; Houzet et al. 2019].

Here, we present a new, efficient method to monitor the charge parity of
an OCS transmon. This method takes advantage of significant hybridization
between the higher-excited plasmon states in an OCS transmon and an ancillary
readout mode, resulting in a charge-parity-dependent shift of that readout-mode
frequency, even when the transmon is in its ground plasmon state. We leverage
this effect to perform direct, high-fidelity dispersive readout of the joint plasmon
and charge-parity state of an OCS transmon over a wide range of offset-charge
configurations. This is in contrast to the experiments described in the previous
section that monitored the charge parity of OCS transmons by relying on state
transitions induced by coherent pulses [Fig. 6.3] [Ristè et al. 2013; Serniak et al.
2018]. The measured charge-parity-dependent dispersive shifts agree with the
predictions of quantum circuit theory [Manucharyan 2012; Zhu et al. 2013; Smith
et al. 2016], and we show that this readout scheme provides a straightforward
probe of charge-parity switching rates in OCS transmons. This idea of a para-
metric susceptibility can be extended to study other sources of decoherence,
such as charge and flux noise, in cQED systems.

Finally, we apply this technique to quantify the effect of high-frequency
filtering on quasiparticle dynamics in transmons. Measuring the exact same
device as in Ref. Serniak et al. 2018 presented in the previous section, we find
that improved filtering of radiation with frequency of order 2∆/h (where ∆ is
the superconducting energy gap) increases the timescale between QP-tunneling



6.2 | Dispersive readout of the joint plasmon and charge-parity state 109

events by almost two orders of magnitude to ≈ 6 ms. We observe an equilib-
rium excited-state population Peq

1 ≈ 1.5% and an average energy relaxation
time T1 ≈ 210 µs, which agrees with the predictions of Ref. Serniak et al. 2018
in this regime of reduced xQP wherein QPs are not a dominant dissipation
mechanism.

6.2.1 Experimental setup

Our experimental setup has already been described in Section 4.3.2, and focuses
on an OCS transmon with EJ/EC ≈ 17. In fact, the experiments presented here
were performed on the exact same device as in Ref. Serniak et al. 2018 presented
in the last section. To recapitulate, an OCS transmon is coupled to a Al 3D waveg-
uide cavity [Paik et al. 2011] and the transmon state is read out through a standard
microwave input/output chain by detecting the amplitude and phase of a signal
reflected from the input of the cavity. During the six months since the experi-
ments reported in Ref. Serniak et al. 2018, the device was stored in air at room tem-
perature. In this time, the Al-AlOx-Al Josephson junction “aged” [Pop et al. 2012],
decreasingEJ such thatEJ/EC = 23 → 17 and f01 = 4.4004GHz → 3.7837GHz.
Here, f01 = |fee01 (ng)+foo01 (ng)|/2 for any value of ng , and is also the time-average
of both fee01 and foo01 assuming ergodic fluctuations of ng . This shift produced a
corresponding change of the maximum charge dispersion of the 0-1 transition
δf01(0) = 1.6 MHz → 6.3 MHz. Crucially for our experiment, the charge disper-
sion of higher-excited states (i ≥ 2) is greatly increased such that there is signifi-
cant variation of the OCS transmon-resonator mode dispersive shift with ng . The
microwave lines and filters [Fig. 4.8] are similar to those shown in the Supple-
mental Material of Ref. [Serniak et al. 2018]. There are a few differences, namely
an additional Al shield surrounding the sample and improved microwave low-
pass filtering on the input/output line inside of this shield. We aĴribute an ob-
served reduction of xQP to the laĴer, which will be discussed later.

6.2.2 Charge-parity dependent dispersive shifts

Our experiment utilizes a charge-parity dependent dispersive shift χi,p (also
called the Lamb shift) of an ancillary readout mode due to the OCS transmon
occupying state |i, p⟩, where i denotes the plasmon level and p, the charge parity.
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As presented in Section 4.2 and Ref. Manucharyan 2012, χi,p can be wriĴen as

χi,p = g2
∑
j ̸=i

2ωpp
ij

∣∣∣⟨j, p|n̂|i, p⟩∣∣∣2
(ωpp

ij )
2 − ω2

r

. (6.12)

Here
⟨
j, p|n̂|i, p

⟩
are transition matrix elements of the charge operator in the en-

ergy eigenbasis, and ωpp
ij are charge parity conserving transition frequencies. We

calculate these quantities by numerical diagonalization in the charge (n̂) basis, as
shown in Fig. 6.11. It is worth noting that the dominant matrix elements are rel-
atively insensitive to ng . It is only necessary to consider transitions out of the two
lowest-energy transmon eigenstates because the steady-state thermal population
of higher levels can be neglected in the regime where hf01 ≫ kBT . For visual
clarity, we plot only the transitions belonging to the “odd” charge-parity mani-
fold; the “even” transition frequencies and matrix elements are mirror symmetric
about the degeneracy point ng = 0.25.

The parameters chosen for Fig. 6.11 reflect the experimental device that will
be discussed in the next sections: EJ/h = 6.14GHz,EC/h = 356MHz, and read-
out mode frequency fr = ωr/2π ≈ 9.202 GHz. Notice that, in this parame-
ter regime, foo03 (ng) comes close to the bare readout frequency at ng = 0, and
that foo14 (ng) crosses the resonator mode frequency near ng = 0.1. These lead to
substantial changes of the dispersive shifts of the readout resonator as a function
of ng . Given a readout mode frequency fr in the typical range of cQED systems,
only modest tuning of EJ and EC is required to observe the dispersive effects
discussed above, as long as the ratio EJ/EC is sufficiently low. Fig. 6.12 shows
the magnitude of these dispersive shifts as a function of ng calculated with the
above parameters with the addition of the vacuum-Rabi spliĴing g/2π = 40MHz,
which we estimate from our data.

6.2.3 Frequency-dependent phase response

We performed microwave reflectometry of the single-port readout resonator in
the overcoupled regime, in which energy loss through the input/output port is
stronger than loss to internal degrees of freedom. In this regime, the reflection
coefficient is characterized by a full 2π phase roll as a function of frequency with
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(a) (b)

(d)(c)

Figure 6.11 | Theoretically calculated OCS transmon-resonator spectrum as a
function of ng . Plasmon transition frequencies out of the ground state (a) and
first-excited state (b) of an OCS transmon with EJ/EC = 17 with odd charge
parity. In this parameter regime, the detuning between foo03 and the resonator
frequency fr varies by a factor of ≈ 8 as a function of the parameter ng . Addi-
tionally, foo14 crosses fr near ng = 0.1. Matrix elements of the transmon charge
operator for transitions out of the ground (c) and first excited (d) states with
“odd” charge parity. These matrix elements are finite and relevant for calcu-
lating the transmon-resonator dispersive shifts in our devices. In the transmon
limit of large EJ/EC , matrix elements between non-nearest-neighbor states will
be suppressed.
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Figure 6.12 | Theoretically calculated charge-parity-dependent dispersive shifts
of the readout mode frequency due to the OCS transmon occupying state |i, p⟩.
Parameters chosen for this simulation are those described in the text.

no amplitude response:

Si,p
11 (ω) =

ω −
[
ωr + χi,p(ng)

]
+ iκ/2

ω −
[
ωr + χi,p(ng)

]
− iκ/2

. (6.13)

Here, Si,p
11 (ω) is the frequency-dependent reflection coefficient, and the measured

phase is given by Arg[Si,p
11 (ωro)]. The bare resonator mode, without coupling to

the transmon, is characterized by frequency ωr/2π and linewidth κ We resolve
this in Fig. 6.13, where we plot histograms of the measured reflected phase as a
function of readout probe frequency, with and without a pulse preceeding each
measurement to scramble the plasmon state between 0 and 1. We observe the ex-
pected 2π phase roll for each joint qubit and charge-parity state, which allows for
the straightforward extraction of χi,p(ng). The quoted values of ng in each row
are obtained by comparison to the data in Fig. 6.14(c). Though there is good
agreement with the frequency dependent predictions of Eq. 6.13, impedance
mismatches within our room-temperature RF-interferometry setup skew these
curves. This contributes a weak background electrical delay to the measured
curves. Operating with a single frequency (as we did for the measurements
presented in the main text) avoids this complication. This technique is partic-
ularly convenient for directly observing the charge-parity-dependent dispersive
shifts χi,p(ng)/2π of the readout mode frequency due to the transmon occupying
state |i, p⟩ [Fig. 6.12].
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(a)

(b)

(c)

(d)

Figure 6.13 | OCS transmon plasmon- and charge-parity-state dependent read-
out resonator response. (a-d) Histograms of phase of the signal reflected by the
readout resonator as a function of probe frequency at different instances of ng .
The right (left) column is the response with (without) a state-scrambling pulse.

6.2.4 Measurement protocol

Figs. 6.14, 6.15, and 6.16 describe the main experimental result of this section:
the direct-dispersive measurement of the joint plasmon and charge-parity state
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(a) (b)

(c)

Figure 6.14 | Direct dispersive readout of the joint plasmon and charge-parity
state of an OCS transmon. (a) Histogram in the complex plane of 2 × 104 se-
quential shots separated by 200 µs and integrated for 4.16 µs, normalized by σ,
the standard deviation of the measurement distributions obtained by projecting
onto the Im axis and fiĴing to a sum of two Gaussian functions [Fig. 4(a)]. Mea-
surements circled in red (blue) are assigned to denote the state |0, e⟩ (|0, o⟩). (b)
Histogram obtained under the same conditions as in (a), but with a pulse applied
before each measurement to scramble the qubit state. Measurements circled in
yellow (green) are assigned to denote the state |1, e⟩ (|1, o⟩). (c) Histograms of the
phase of the readout signal sorted byng . The histograms in (a) and (b) correspond
to the data marked by the black arrow at ng = 0.11.
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of an OCS transmon. Due to the charge dispersion of the OCS transmon energy
levels, the dispersive shift of the readout mode will vary in time as ng drifts. At
values of ng away from the degeneracy point ng(mod 1/2) = 1/4, the disper-
sive shifts corresponding to even- and odd-charge-parity will be distinguishable.
With the aid of a quantum-limited Josephson parametric converter [Bergeal et
al. 2010], the microwave readout signal was amplified such that the state of the
OCS transmon could be detected with high fidelity in a single shot. For the mea-
surements presented in the next few sections, we probed the readout resonator
at fro = 9.20178 GHz with an integration time per shot of 4.16 µs. The average
number of photons occupying the readout mode during measurement was ≈ 10.
We characterized this readout scheme as a function of time and measured the
timescales associated with ng drifts and charge-parity fluctuations. This simple
experiment was composed of three steps:

1. A Ramsey interference experiment was performed to determine the instan-
taneous ng . Specifically, we measured δf01(ng) = δf01(0) cos(2πng), the
detuning of fee01 from f01 [Fig. 6.2].

2. We acquired 2× 104 high-fidelity dispersive-measurement shots which de-
termine the state of the transmon at a repetition rate of 5 kHz.

3. We repeated step 2, but with each shot preceded by a pulse with carrier fre-
quency f01 to “scramble” the transmon state, transferring some population
from |0, p⟩ to |1, p⟩.

This protocol was repeated 500 times, once every 40 s. Pulses addressing the
transmon had a Gaussian envelope with a carrier frequency f01, which was
equally detuned from foo01 and fee01 at all values of ng so as to be charge-parity
insensitive. The width of this Gaussian envelope was chosen to be 20 ns to
avoid driving the 1-2 transition. We refer to these as “scrambling” pulses be-
cause they produced inefficient rotation of the qubit due to the large charge
dispersion δf01(ng). We note that due to symmetry of the transition spectrum
about ng = 0 and the degeneracy point ng = 0.25, the Ramsey measurement
maps all values of ng into the “half-Brillouin zone” [0, 1/4] ⊂ R. Thus, we will
restrict our discussion of ng to that range. Below we will describe the outcome of
this three-step experiment, emphasizing separate but related results.
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6.2.5 Single-shot readout of charge-parity

Fig. 6.14(a) shows an example histogram of 2 × 104 measurement shots (step 2
of the experiment), where two equally weighted distributions are visible (a his-
togram of the data projected onto the Im-axis is ploĴed in Fig. 6.15(b)). The shots
in the histogram of Fig. 6.14(b) were obtained after applying a scrambling pulse
to the qubit (step 3), resulting in four visible distributions. Prior to acquiring
these two histograms, a Ramsey measurement (step 1) was performed to deter-
mine that ng = 0.11. Each instance of this protocol gave us the readout signal in
equilibrium and with scrambled qubit population as a function of ng as it varied
in time. Fig. 6.14(c) shows histograms of the phase of the readout signal (step 3)
sorted by ng as determined from step 1. The solid lines denote the expected phase
for each χi,p, according to the theory presented earlier and assuming a perfectly
reflected signal from an overcoupled resonator [Eq. 6.13] For our calculation, we
fixed ωr/2π = 9.1979 GHz to match the cavity frequency measured at high probe
power (≈ 1 nW at the input of the cavity), beyond the point at which the trans-
mon and readout modes have decoupled [Reed et al. 2010; Verney et al. 2019].
In our device, the readout mode linewidth κ/2π = 2.5 MHz. The dispersive
shifts χi,p(ng) are computed from Eq. 3, where g/2π = 40 MHz was chosen to
match the data. The charge matrix elements and transition frequencies ωpp

ij were
obtained from numerical simulation [Fig. 6.11]. This analysis allows us to confi-
dently assign a joint plasmon and charge-parity state to each distribution in the
measurement histogram when |ng| ≲ 0.22 (∼ 90% of the range). The calculated
values of χi,p(ng) are shown in in Fig. 6.12.

Our use of second-order perturbation theory [Eq. 6.12] is justified by numer-
ical simulations, which show that the perturbation of the OCS-transmon eigen-
states due to the coupling to the readout mode is small over the majority of
the n̂ range when the number of photons in the readout mode is ≲ 10. The
wavefunction overlap between the coupled and uncoupled transmon is > 95%,
except in the range 0.125 ≤ ng ≤ 0.126 for the ground state, and when
0.032 ≤ ng ≤ 0.034 or 0.091 ≤ ng ≤ 0.109 for the excited state. For example,
this approximation breaks down when foo14 crosses the bare readout frequency
and a more sophisticated theory would need to be employed [Zhu et al. 2013].
We can thus use simple dispersive readout to probe charge-parity correlations
over the majority of ng configurations, and in the next section we will consider
the equilibrium case [Fig. 6.14(a)] where transitions between |0, e⟩ and |0, o⟩ di-
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rectly measure charge-parity switches.

6.2.6 Charge-parity dynamics

In contrast to previous works studying QP dynamics that required coherent op-
erations to map the charge parity of an OCS transmon onto its plasmon eigen-
state [Ristè et al. 2013; Serniak et al. 2018], here we use our direct readout scheme
to track the charge-parity as a function of time. In Step 2 of the experiment de-
scribed above, we measured the OCS transmon state as a function of time with
readout parameters that discriminated between the states |0, e⟩ and |0, o⟩ (a por-
tion of which is shown in Fig. 4(a)) and applied a single-threshold (black dashed
line) state assignment (red and blue denote |0, e⟩ and |0, o⟩, respectively) of the
charge parity. This threshold was determined by fiĴing the distribution of mea-
surement outcomes projected onto the Im-axis to a sum of two Gaussian distri-
butions and taking the midpoint [Fig. 3(b)]. Here we ignore the residual excited-
state population Peq

1 = 0.014± 0.002, corresponding to an effective temperature
of ∼ 40 mK, which is close to the base temperature of our cryostat (≈ 20 mK).

Having measured the charge parityP (t) of the transmon as a function of time
and assuming stationarity and ergodicity, we can compute by a sliding average
the charge-parity autocorrelation function

⟨P (0)P (τ)⟩ = F2e−2τ/TP . (6.14)

For consistency with previous literature, we have defined the charge-parity life-
time TP as the characteristic time between charge-parity switches. This is a fac-
tor of two larger than the timescale for the decay of charge-parity correlations,
which is due to equal even-odd and odd-even switching rates. In this instance
where ng = 0.11, the fidelity of the charge-parity measurement F ≈ 0.99, though
this varies with ng as the two measurement distributions become indistinguish-
able when ng approaches the degeneracy point ng = 0.25. An exponential fit
of ⟨P (0)P (τ)⟩ [Fig. 6.15(c)] yields TP ≈ 6 ms, almost an order of magnitude
greater than previously reported in Ref. Ristè et al. 2013 and almost two orders
of magnitude greater than in our previous report Ref. Serniak et al. 2018.

We aĴribute this improvement of TP to additional high-frequency filtering on
the input/output line connected to our OCS transmon-cavity system. The added
filter is a 1 cm-long coaxial line filled with Eccosorb CR-110 high-frequency ab-
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(a)

(b) (c)
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Figure 6.15 | Charge-parity jumps in an OCS transmon. (a) Snapshot of a ∼ 4 s
time trace from the same data as in Fig. 3(a) projected onto the Im axis (grey).
Charge-parity assignments (red and blue) within the ground-state manifold are
obtained with a single threshold at the black-dashed line. (b) Histogram of all of
the measurements from Fig. 6.14(a) fit to a sum of two Gaussian distributions,
where the colors denote charge-parity assignment. (c) Charge-parity autocorre-
lation function ⟨P (0)P (τ)⟩ computed from the time trace partially shown in (a)
with an exponential fit.
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sorber [Halpern et al. 1986], designed to present an impedance of 50Ω in the range
2 − 10 GHz [Pop et al. 2014]. Empirically, placing the filter inside of the sample
shielding [Chapter 7] is crucial to reducing QP-generating radiation at energies
greater than 2∆, the pair-breaking energy. Further studies to understand this ef-
fect and the source of high-frequency, QP-generating radiation are ongoing. This
observation suggests that high-frequency photons are somehow infiltrating the
RF lines of our setup. The improvement of the filtering when placed within the
sample shielding could imply one of two things. First: microwave connectors are
leaky at > 100 GHz, and these photons are entering the lines near the sample, or
second: the Eccosorb absorber performs beĴer in smaller ambient magnetic field.

6.2.7 Time dependence of TP

The three step experiment was repeated 500 times, the results of which are sum-
marized in Fig. 6.16. Ramsey experiments (step 1) [Fig. 6.16(a)] determined ng

as a function of time. Fig. 6.16(b) shows histograms of the phase of the read-
out signal as a function of time, where the overlaid doĴed state assignments
come from our previous analysis of χi,p(ng) using the measured values of ng in
Fig. 5(a). We compute ⟨P (0)P (τ)⟩ at each of these times [Fig. 6.16(c)], except in
the range 0.22 ≲ ng ≤ 0.25 where the readout distributions corresponding to
states |0, e⟩ and |0, o⟩ are indistinguishable. We find an average TP = 5.6 ms with
standard deviation 0.8 ms.

Nonequilibrium QP tunneling will result in a TP proportional to 1/xQP. Com-
paring to the results in Ref. [Ristè et al. 2013] and [Serniak et al. 2018] (in which
both TP and xQP are reported), we estimate that the effective residual QP den-
sity xQP ∼ 10−9 in this device 6, which to the best of our knowledge is the lowest
reported value for similar devices. We find no discernible correlation in TP as a
function of time, though in this experiment we are only sensitive on the minute
timescale. This sampling rate is limited by the interleaved Ramsey experiment

6Although it is not critical for the analysis presented here, it is worth noting that the definition of
TP , chosen for clarity and convenience, varies slightly from that in the previous sections and refer-
ences Ristè et al. 2013 and Serniak et al. 2018. This stems from the fact that the rate of charge-parity
switches depends on the plasmon state of the OCS transmon. The timescale reported here is domi-
nated by the rate of transitions between |0, o⟩ and |0, e⟩ (equivalent to Γeo

00), whereas the previously
reported 1/TP is effectively the average of this and the rate between |1, o⟩ and |1, e⟩. Conveniently,
if one assumes that the branching ratio of charge-parity transitions is kept fixed, this produces only
a small deviation in the assumed xQP.
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(a)
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Figure 6.16 | Simultaneous detection of slow and fast charge dynamics. (a) Slow
drift of ng probed via a Ramsey experiment [Fig. 6.2]. The frequency of Ram-
sey oscillations δf01 is the shift of the qubit transition frequency from its average
value f01. The right axis converts δf01 to ng . (b) Histograms of the phase of re-
peated dispersive measurements after a state-scrambling pulse [Fig. 6.14(b)] as a
function of time. Each instance contains 2×104 measurement shots acquired im-
mediately after the Ramsey experiment described in (a). Colored dots correspond
to the predicted phases of each joint plasmon and charge-parity state (labeled on
the right) using the theory from the main text, assuming an overcoupled readout
resonator. (c) Charge-parity lifetime TP obtained from the decay of ⟨P (0)P (τ)⟩
as a function of time.
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(step 1) and could trivially be increased to ≈ 1 Hz, at which point more informa-
tion could be extracted about the spectrum of QP density fluctuations [Grünhaupt
et al. 2018]. There is also no dependence of TP on ng , which is not surprising since
δϵ0/kB ≪ 20 mK, the base temperature of our dilution refrigerator.

6.2.8 Qubit relaxation and excitation

As a further characterization of the sample, we performed standard T1 measure-
ments by applying a scrambling pulse to the qubit and measuring the time it takes
for the qubit to thermalize to its equilibrium population distribution in free de-
cay [Fig. 6.17]. We find that the average T1 ≈ 207 µs, but fluctuates in time with
a standard deviation of 42 µs. At all times, the population decay is well described
by a single exponential [Fig. 6.17(c)].

These results support those in Ref. [Serniak et al. 2018], which claim that the T1
of this exact device was previously limited to a significant extent by QP processes

(a) (b)

(c)

Figure 6.17 | Fluctuations of OCS transmon energy relaxation time. (a) Re-
laxation time T1 of the OCS transmon device sampled every ∼ 40 s. (b) His-
togram of all T1 measurements (including others not shown in (a)), where the
average T1 = 207 µs. (c) Data and fits from the two extremal T1 measurements in
(a), marked with green and orange boxes.
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that change the charge parity. In that report, we predicted that if this type of dis-
sipation were to be reduced to a negligible level then the transmon would have
a residual dielectric quality factor of ∼ 4.9 × 106 and the equilibrium thermal
population of the qubit would be drastically decreased. Here, with improved
RF filtering to reduce QP generation, the measured T1 and f01 correspond to a
total qubit quality factor of 5.0× 106, extremely close to the predicted “non-QP”
limit. Suprisingly, we found in Ref. Serniak et al. 2018 that QP-induced excitation
events were the dominant source of residual excited-state population of our OCS
transmon. We see now that with lower QP density the qubit effective tempera-
ture is ∼ 40 mK, compared to ∼ 160 mK previously. These observations indicate
that the device was limited in this experiment by dielectric loss.7 The large fluctu-
ations observed in the measured T1 as a function of time are therefore not due to a
fluctuating QP density, but instead to a time dependent coupling to lossy dielec-
tric channels. Although the source of QP-generating radiation is still unknown,
the efficacy of increased filtering at these high frequencies (≳ 100 GHz for our
Al-based devices) to reduce QP-induced dissipation is clear.

6.2.9 Discussion and conclusions

We have demonstrated a powerful application of OCS-transmon devices through
dispersive monitoring of the dynamics of nonequilibrium QPs, which can impair
the performance of superconducting quantum circuits. This technique can be
used to extract the rates of all QP-induced qubit transitions as in Refs. Ristè et
al. 2013 and Serniak et al. 2018. Additionally, by implementing hidden Markov
analysis [Vool et al. 2014; Hays et al. 2018], this can be done with good precision
even when the readout SNR is < 1. Again, we stress that the QP-tunneling rates
observed in OCS transmons will be similar to those in traditional high EJ/EC

transmons by factors of order unity [See Chapter 5].
The observed charge-parity-dependent dispersive shifts of our readout res-

onator agree well with our simple application of quantum circuit theory [Vool
and Devoret 2017] with the Cooper-pair-box Hamiltonian. This strong agree-
ment further supports the idea that the Cooper-pair-box circuit can be used as
a testbed for the physics of novel quantum circuit elements. Of particular in-

7This was later confirmed by qubit-state-conditioned charge-parity autocorrelation measure-
ments similar in theory to those described in the previous sections, but performed with the direct
dispersive technique presented here.
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terest are Josephson junctions made from proximity-coupled semiconductors
with large spin-orbit coupling and Landé g-factor, which may play host to Ma-
jorana fermions when tuned with applied magnetic field into the topological
regime [Lutchyn, Sau, and Das Sarma 2010; Oreg, Refael, and Oppen 2010]. Pro-
posals suggest embedding these junctions into magnetic-field compatible OCS
transmon circuits to look for signatures of this phase transition in spectroscopy
experiments [Ginossar and Grosfeld 2014; Yavilberg, Ginossar, and Grosfeld
2015]. These can be observed as changes in transition frequencies or the bright-
ness of certain transitions as a function of ng . In light of our experiments, these
features can also be observed in ng-dependent dispersive shifts which are influ-
enced by both the transition frequencies and charge-matrix elements.

Additionally, since there is a one-to-one correspondence between the reflected
phase indicating |0, o⟩ and ng , one could use an OCS transmon and the techniques
described above as a fast charge sensor with the charge-parity lifetime acting as
an upper bound on integration time. We find the unoptimized charge sensitivity
of our OCS-transmon device near ng = 0.11 to be ≈ 4.4 × 10−4 e/

√
Hz, which

does not change appreciably over the majority of the ng range. While the RF-SET
has beĴer sensitivity to charge fluctuations [Aassime et al. 2001], the OCS trans-
mon may prove useful for wireless charge sensing with minimal measurement
backaction. Furthermore, our work frames the idea of the “quantum-capacitance
detector” [Shaw et al. 2009; Bueno et al. 2010; Stone et al. 2012; Echternach et al.
2018] in the language of cQED and OCS transmons with symmetric supercon-
ducting islands, which may have applications for astronomical detectors.

In conclusion, we have achieved direct, dispersive readout of the joint plas-
mon and charge-parity states of an OCS transmon, i.e. without performing any
coherent operations on the qubit. We have demonstrated that, with improved
RF filtering, the charge-parity lifetime of typical 3D transmons can be extended
to many milliseconds. This has also extended the T1 of our OCS transmon
to ≈ 210 µs. Having reduced the effect of nonequilibrium QPs on qubit per-
formance to a negligible level, this provides a clear experimental foundation for
further aĴempts to mitigate other mechanisms of dissipation in superconducting
qubits, such as surface dielectric loss [Wang et al. 2015; Dunsworth et al. 2017;
Calusine et al. 2018]. This will be discussed further in the next chapter.
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Reducing QP Density
Nonequilibrium QPs [Aumentado et al. 2004] are a detriment to a variety of
superconducting devices, including high-quality-factor superconducting res-
onators [Barends et al. 2011; Nsanzineza and Plourde 2014; Visser et al. 2014b], JJ
based superconducting qubits [Lutchyn, Glazman, and Larkin 2005; Shaw et al.
2008; Martinis, Ansmann, and Aumentado 2009; Lenander et al. 2011; Catelani et
al. 2011; Córcoles et al. 2011; Sun et al. 2012; Wenner et al. 2013; Ristè et al. 2013;
Pop et al. 2014; Vool et al. 2014; Bal et al. 2015; Riwar et al. 2016; Grünhaupt et al.
2018; Serniak et al. 2018; Serniak et al. 2019], kinetic-inductance [Day et al. 2003;
Monfardini et al. 2012; Grünhaupt et al. 2018] and quantum-capacitance [Shaw
et al. 2009; Bueno et al. 2010; Stone et al. 2012; Echternach et al. 2018] detectors,
devices for current metrology [Pekola et al. 2008], Andreev qubits [Olivares et al.
2014; Janvier et al. 2015; Hays et al. 2018], and proposed Majorana qubits [Hig-
ginbotham et al. 2015; Albrecht et al. 2017]. It is therefore a worthwhile endeavor
to understand them, and an important technical challenge to rid our supercon-
ducting devices of them.

Though the precise source of nonequilibrium QPs in galvanically isolated su-
perconducting devices at dilution refrigerator temperatures (T ∼ 20mK) is not
well known, it is understood that they can be generated by radiation at frequen-
cies > 2∆/h, where ∆ is the superconducting energy gap. This radiation could
be from nonequilibrium photons or phonons in the environment that couple to
the superconducting condensate. When this occurs, a pair of QPs are produced
in order to preserve fermion parity. As discussed in Chapter 5, QPs couple to
the dynamical phase of superconducting circuits, making them most dangerous
when they reside in high-impedance regions of a device.

Various techniques have been implemented to reduce the effects of QPs on
superconducting devices, and they can be sorted into two main categories: tech-
niques that reduce the number of QPs that are generated, and techniques that
make devices less sensitive to QPs that are already present. The former takes
advantage of cryogenic expertise in order to properly thermalize the noise inher-
ent to the measurement apparatus to the base experimental temperature, which
should be ≪ 2∆/kB . In principle this can be done, but it is difficult, if not
impossible, to completely isolate the measurement setup from the rest of the
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world. For example, we do our best to protect our superconducting qubits from
any and all unintended radiation, however, stray photons at the readout fre-
quency (∼ 5 GHz) are often the leading mechanism of dephasing [Sears et al.
2012; Wang et al. 2019], and high frequency radiation of some sort can leak in,
generating QPs [Córcoles et al. 2011; Barends et al. 2011; Houzet et al. 2019]. Both
Córcoles et al. 2011 and Barends et al. 2011 demonstrated improved performance
of devices when shielded from external radiation, and instituted a standard of in-
cluding light-tight1 radiation shields and infrared absorbing coatings around our
samples. Along this direction, we have demonstrated that further high-frequency
filtering of our RF lines can greatly reduce QP-induced dissipation [Serniak et al.
2019]. In the next section, we will describe in more detail our experimental re-
sults.

There are a handful of techniques used to reduce the effects of QPs already
occupying the device. Recently, an active approach was taken by Gustavsson et
al. 2016, in which they were able to “pump” QPs out of the small islands of a flux
qubit. This relied on preparing the qubit in its excited state, which allows the
qubit to impart some energy to the QPs during QP-induced relaxation events,
which speed-up QP diffusion away from the JJs.2 This technique is useful for
devices with small superconducting islands, but not particularly helpful for tra-
ditional transmon qubits that have large JJ electrodes where fast QP diffusion
ensures that the QP density is relatively homogeneous. Another elegant way to
reduce the effects of nonequilibrium QPs is to engineer the qubit circuit such that
there is an intrinsic protection against QP-induced dissipation. The most com-
mon example of this is the fluxonium qubit [Manucharyan et al. 2009], which has
intrinsic protection against QP-induced dissipation when flux-biased toΦ0/2due
to coherent destructive interference of electron-like and hole-like QP tunneling
trajectories [Pop et al. 2014]. Similar suppression can occur in flux qubits [Cate-
lani et al. 2011].

The most common approach to negating the effects of preexisting QPs is by
aĴempting to locally suppress the QP density near the JJs of a circuit using gap-
engineered QP traps. This is possible by engineering regions of lower supercon-
ducting gap in the device, such that when QPs diffuse to the trap region they may
relax by phonon emission and be unable to diffuse back toward the JJs. This a

1or at least, approximately light tight at all frequencies up to some cutoff
2As discussed in Chapter 5, QPs are most detrimental when located near JJs in a qubit.
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technique that been used extensively in superconducting photon detectors, elec-
tronic cryocoolers, and electrometers3 to trap QPs in a particular region of the
device. These traps could be Abrikosov vortices4 induced in thin superconduct-
ing films, normal metal regions, or lower gap superconductors. Superconduct-
ing qubits and other coherent devices put limitations on these sort materials and
techniques that can be used to trap QPs [Vion et al. 2002; Lang et al. 2003; Shaw
et al. 2008; Sun et al. 2012; Wang et al. 2014; Nsanzineza and Plourde 2014; Vool
et al. 2014; Riwar et al. 2016; Hosseinkhani et al. 2017]. For instance, too many
vortices can lead to dissipation [Wang et al. 2014], and normal metal traps can
support dissipative currents which can introduce unwanted loss if not carefully
implemented [Riwar et al. 2016; Hosseinkhani et al. 2017; Riwar, Glazman, and
Catelani 2018].

In an aĴempt to engineer QP traps compatible with high-coherence JJ-based
qubits, we created regions of suppressed superconducting gap in transmon
qubits via the proximity effect of a lower gap superconductor. This technique
has the opportunity to achieve higher trapping efficiency by reducing the gap in
the JJ electrode itself, as opposed to the trap only being accessible to QPs through
a tunnel barrier. In short, we were able to proximitize our Al JJ electrodes with Ti
(which has a critical temperature T Ti

c ≈ 400 mK) that was selectively deposited
away from the JJ using angled-evaporation technique. We saw mixed success,
and our efforts will be described in Section 7.2.

7.1 Attenuating Cooper-pair-breaking radiation

Our experimental setups typically include coaxial cavity filters on RF lines lead-
ing to our qubits, which are poĴed with commercially available Eccosorb CR-
110. This is a castable, magnetically loaded resin that acts as an absorber of high-
frequency photons. At frequencies relevant for the readout and control of our
qubits (lets say ≈ 8 GHz), its absorption coefficient is only about 2 dB/cm of filter

3of which there are many examples [Booth 1987; Kraus et al. 1989; Goldie et al. 1990; Booth et al.
1993; Mears, Labov, and BarĤnecht 1993; Golubov et al. 1994; Irwin et al. 1995; Pekola et al. 2000;
Segall et al. 2004; Court et al. 2008; MacLeod, Kafanov, and Pekola 2009; Peltonen et al. 2011; Rajau-
ria et al. 2012; Saira et al. 2012; Nguyen et al. 2013; Maisi et al. 2013; van Woerkom, Geresdi, and
Kouwenhoven 2015], and surely more that I’ve missed.

4Vortices support Caroli-de Gennes-Matricon states: subgap bound states [Caroli, de Gennes,
and Matricon 1964] that can trap QPs [Wang et al. 2014; Taupin et al. 2016; Nsanzineza and Plourde
2014]. In high-carrier-density superconductors, these states appear as a quasi-continuum, hence why
it’s often said that vortices have a “normal core.”
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length. Conveniently, at frequencies greater than 2∆Al/h ≈ 100 GHz this in-
creases to ≳ 20 dB/cm [Halpern et al. 1986], which should significantly aĴenuate
Cooper-pair-breaking radiation. It’s exactly for this reason that we include these
filters on every RF input and output line connected to our samples.

After the experiments in Ref. Serniak et al. 2018, we were perplexed by two
main observations. First, that the charge-parity lifetime TP of our devices was
measured to be an order of magnitude lower than measured in similar devices
at Delft [Ristè et al. 2013], and second, that the excited state population of our
OCS transmon was due to QP related events, and was very high, > 20%! There
had been some folklore in the lab about our Eccosorb filters, with some people
claiming that puĴing them near the device was responsible for a lower excited
state population (I certainly remember Zaki Leghtas and Steven Touzard report-
ing this around 2015). So we figured we would give this a try, to see if the re-
ported effect had anything to do with QPs. Additionally, we mounted a new
OCS transmon in a Cu 3D cavity instead of Al, to make our experiments closer in
implementation to those in Delft. Over several cooldowns we studied the effect
that the position of an additional Eccosorb filter had on TP and P0, the equilibrium
ground state population.

Fig.7.1 shows the cryogenic microwave setup at the base-stage of our dilution
refrigerator. Visible at the top of the figure are Eccosorb filters on each RF line,
which were always present in our experiments and will remain fixed throughout
the following discussion. The first cooldown was to characterize the new trans-
mon with nearly the same experimental setup as in Ref. Serniak et al. 2018, the
difference being that we replaced our Cryoperm magnetic shield with one that
housed an accompanying Al shield inside. Also present was an unused input line
that was 50-ohm terminated outside of this shield, and thermalized to the mixing
chamber. This was here historically in case we found that we could not drive the
qubit through the circulators out-of-band, but was ultimately unnecessary. For
the sake of brevity in the following discussion, mostly qualitative changes in TP
will be quoted, however Fig. 7.2 displays TP , P0, T1, and f01 of the device on each
independent cooldown. The initial cooldown was unsurprising: the addition of
an Al shield within the cryoperm and the fact that we mounted our sample in a
Cu cavity had no effect on TP , and in fact it was slightly lower than previously
measured.

For the second cooldown, we included additional Eccosorb filters on both
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sition, which are denoted with red labeled boxes. BoĴom: Charge-parity lifetime
TP over many cooldowns varying the position of an additional Eccosorb filter.
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lines leading to the cavity, in positions “a” and “b” in Fig. 7.1. Note that po-
sition “a” is what we’ll later call the “optimum” position of a single filter: its
location being within our Cryoperm shield. On this cooldown we observed a
factor of ∼ 3 improvement in TP , which was still significantly less than mea-
sured in Ref. Ristè et al. 2013. We suspected our K & L brand low pass filters
may be poorly thermalized, as they are made from stainless steel and no strong
precautions (such as a direct OFHC copper link) were taken to ensure they were
in good thermal contact with the mixing chamber. On the next cooldown we re-
moved them to see if maybe they were part of the issue, as well as removing the
superfluous, unused input line. In doing so, we saw a significant improvement
of TP , up to the values reported at Delft. At this point we were both excited and
terrified, as it suggested that either the K & L filters and/or the unnecessary extra
input line were a significant contributor of QP-generating radiation. Luckily for
us and for K & L, the next cooldown confirmed that their filters were not the cul-
prit.5 After reintroducing the K & L filters we found a similarly high TP .

To check whether or not the superfluous input line was the source of high-
frequency radiation, in cooldown 5 we chose not to put it back into our setup,
but to remove the Eccosorb filter in position “a.” Doing so reduced the TP to
what is, in hindsight, a very suspicious value that was approximately twice that
of cooldown 1, in which both lines connected to the cavity with no additional Ec-
cosorb filters. At this point we assumed that something in our setup wasn’t ther-
malizing well, and so we placed an additional Eccosorb filter below the K & L fil-
ters on both the input and output lines (positions “d”). Here we saw no improve-
ment of TP . We then thought, well, what if it’s the JPC or the microwave hybrid
that accompanies it? Removing the filters from position “d” and inserting one
at position “e” showed that this wasn’t the issue. That left the circulators, which
were firmly mounted to an OFHC Cu bracket which should be well-thermalized
to the mixing chamber. To test these, the Eccosorb was moved from position “e”
to position “c” in cooldown 8, which showed some modest improvement of TP ,
at a value very close to that of cooldown 2. On the final cooldown we moved the
filter back to the “optimum position” (“a”) inside the Cryoperm shield and found
a TP of a few milliseconds, the highest we had measured up to that point in time.

That story is a lot to unpack, however it can be easily summarized by a few key
observations, and assuming that TP is proportional to the power incident on the

5At least not at this level of radiation.
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qubit cavity system at frequencies > 2∆/h. First, it would appear that each RF
line connected to the qubit/cavity system without an additional Eccosorb filter
contributed the same incident pair-breaking power, since TP of cooldown 5 was
suspiciously about twice that of cooldown 1. Furthermore, we find that it is cru-
cial that we place the additional Eccosorb filter inside of our Cryoperm shield,
as evidenced by the fact that cooldowns 3, 4, and 9 produced the highest TP ,
while cooldown 2 and cooldown 8 showed similarly low TP (when the filter was
outside the shield). Even though cooldown 2 had an Eccosorb filter placed in the
optimum position “a,” we believe that the incident power was dominated by the
superfluous line with a filter occupying position ”b.”

Turning to Fig. 7.2, we see that there is clear correlation between TP and P0,
in support of the claims of all of the manuscripts wriĴen during this disserta-
tion [Serniak et al. 2018; Serniak et al. 2019; Houzet et al. 2019]. In words, we
showed that a QP-related process was the source of the residual excited state
population in our devices, and by aĴenuating QP generating radiation with this
filter we have improved both of these metrics. We also see that T1 is also cor-
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Figure 7.2 | Correlating charge-parity lifetime with other qubit metrics as a
function of filter position. Data points connected as a guide for the eye to em-
phasize the correlation between curves. Top panel shows the charge-parity life-
time TP and equilibrium ground state population P0. Lower panel shows the
energy relaxation time T1 and the offset-charge-averaged transmon transition fre-
quency f01 [See Fig. 4.9].
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related with TP , indicating that our qubits are limited to a T1 ≈ 2TP [Serniak
et al. 2018].6 When TP is long, the T1 is limited by other mechanisms such as
dielectric loss, as was shown in charge-parity correlation measurements on each
of these cooldowns that are not presented here. It is also worth noting that the
offset-charge-averaged transmon frequency f01 = f01(ng = 1/4) did not change
appreciably over these cooldowns, which spanned approximately one-and-a-half
months.

So what can we take away from this? At the time of this writing, more experi-
ments are unfortunately needed to understand need for a shielded Eccosorb filter.
Until we do so, however, it’s not a bad idea to put an Eccosorb filter7 within an
approximately light-tight magnetic shield. Our observations could be explained
by some combination of three effects:

1. Maybe, trivially, the Eccosorb filter is beĴer thermalized to the mixing
chamber when it is mounted within the Cryoperm shield. In position “a,”
the filter is bolted to a Cu bracket that contacts the mixing chamber plate
(in actuality it is bolted to a gold-plated mezzanine that is itself bolted to
the mixing chamber plate), whereas in position “c” it is thermalized to the
mezzanine with an OFHC Cu braid.

2. It could be that the Eccosorb filter performs beĴer in the lower ambient
magnetic field afforded by the Cryoperm/Al shield combination. Eccosorb
is a resin of suspended Fe particles, which could lead to magnetic-field-
dependent absorption properties. Initial experiments suggest that this is
indeed the case.

3. The pair-breaking radiation may be entering the lines somewhere between
the filter in position “c,” and the filter in position “a.” The Cryoperm shield
is approximately light-tight, as all the seams are sealed with Cu tape that
has a conductive adhesive. If this is the case, it would suggest that the pair
breaking radiation is infiltrating the superconducting RF line linking the
filter at position “c” to the qubit/cavity. If this is the conclusion, the weak-
est link of this coaxial line is certainly the SMA connector aĴached to the
sample-side of the filter.

6This is a scaling that we have observed in our experiments, however it depends crucially on the
mechanism of charge-parity switching events, be it QP tunneling, PAT, or something else.

7or any filter proven to aĴenuate pair-breaking radiation
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Experiments are currently underway the assess which, if any, of these proposi-
tions are the root cause of the observed effects.

7.2 Proximitized-superconducting QP traps

Prior to our work on OCS transmons, we began developing Ti-proximitized-Al
QP traps with the goal of implementing them in the fluxonium qubit, which we
suspected to be paritally limited by nonequilibrium QPs in its JJ-array superin-
ductance [Vool et al. 2014]. Eventually, we seĴled on transmon qubits as the opti-
mal testbed for these QP traps, due primarily to the simplicity of the circuit. The
idea is simple, to reduce the superconducting gap of the Al JJ electrodes, and to do
so selectively away from the JJ itself [Figs. 7.3 and 7.4]. We would do so using the
proximity effect of a lower-gap superconductor, in our case Ti (T Ti

c ≈ 400 mK).
This sort of proximitized-superconducting QP trap would offer two advantages over
tunnel-coupled normal-metal QP traps: increased trapping efficiency and less
dissipation. By using the proximity effect one would create the QP traps within
the JJ electrodes themselves, without relying on QP tunneling through an opaque
barrier to become trapped. Importantly, the use of a lower-gap superconductor
should ensure that there are no QP states below that lower gap. In the case of
a normal metal, the proximity effect produces a nonzero density of states at the
Fermi energy, which could result in excess thermal QPs in the trap, and could lead
to additional dissipation.8

We fabricated our devices in a single step of electron-beam lithography. Se-
lective deposition of Ti away from the JJ was achieved using simple angled-
evaporation techniques, similar to those used in the “bridge-free technique” of JJ
fabrication [Lecocq et al. 2011]. This relies on narrow constrictions in the electron-
beam lithography paĴern such that evaporations at high angle do not deposit
metal on the substrate, but on the sidewalls of the resist in regions of the device
where you do not want to deposit material. Ti was chosen as the lower-gap su-
perconductor primarily out of convenience: we already had the crucible loaded
in our evaporator, and it has a sort of Goldilocks T Ti

c ≈ 400 mK that is much
greater than the temperature of our experiments and significantly less than that
of Al (TAl

c ≈ 1.3 K).

8Although, this can be made very small by ensuring that the thickness of the normal metal layer
is much less than the effective coherence length of the superconductor and the thickness of the super-
conducting layer [Gueron 1997].
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Table 7.1 | Summary of Ti-proximitized-Al bilayers. Estimated imprecision on
values of T ′

c is ±0.01 K for Al samples and proximitized bilayers. Estimated im-
precision on values of T ′

c for Ti layers is ±0.03.

Sample dAl (nm) dTi (nm) T ′
c (K)

I 15 - 1.44
II 20 - 1.37
III 35 - 1.32
IV 50 - 1.28
V - 20 0.47
VI - 40 0.58
VII 15 20 0.93
VIII 20 20 0.94
IX 35 20 1.03
X 50 20 1.03
XI 15 40 0.72
XII 20 40 0.85
XIII 35 40 0.88
XIV 50 40 0.94

The Ti-Al bilayer region can be characterized by a single proximitized super-
conducting gap ∆′ in the limit that the interface transparency between the two
films is near unity and each layer is much thinner than their effective coherence
lengths. We accomplish this by depositing both layers without breaking vacuum.
This can be modelled quantitatively using the Usadel theory as described in [Gol-
ubov et al. 1994; Gueron 1997; Martinis et al. 2000; Fominov and Feigel’man 2001;
Brammerĵ et al. 2001; Brammerĵ et al. 2002; Zhao et al. 2018]. The proximi-
tized gap depends on the relative carrier densities of the two films, the relative
thickness compared to the effective coherence lengths in the two films, and the
interface transparency. Qualitatively, the proximity effect can be thought of as
arising from the Cooper-paired electrons “feeling” the superconducting pair po-
tential of the neighboring layer. Another way of saying this is that the electronic
pair correlations extend beyond the region with a given pair potential due to the
delocalized nature of the electrons. We characterized the proximitized gap via
the proximitized critical temperature T ′

c of a variety of Al-Ti bilayers with vary-
ing thickness, as reported in Table 7.1, and ploĴed in Fig. 7.3(c).

These measurements were performed in a dilution refrigerator (with temper-
ature control of the mixing-chamber stage) using standard lock-in techniques.
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Figure 7.3 | (a) Schematic of a transmon qubit with Ti-proximitized-Al QP traps.
The JJ would be formed by an Al-AlOx-Al junction like in traditional qubits, but
Ti would be selectively deposited away from the JJ in nearly perfect ohmic con-
tact with the Al. This would have the effect of reducing the superconducting gap
in the Al regions below the Ti. (b) Superconducting gap and DOS in the exci-
tation picture. The proximitized gap ∆′ would fall somewhere in between the
bare gaps of Al (∆Al) and Ti (∆Ti). Ideally, if QPs were generated near the JJ they
would quickly diffuse to the trap region and cool to the proximitized gap edge
via phonon emission. (c) Proximitized critical temperature T ′

c of Al-Ti bilayers,
as a function of the ratio of Ti thickness to Al thickness dTi/dAl, and normalized
by TAl

c . Filled points represent bilayers with varied dAl and fixed dTi = 20 nm,
open points have fixed dTi = 40 nm. The solid line is derived from Usadel theory
for an S-S’ bilayer assuming an interface transmission coefficient of 0.02.

Though these results have not been published, similar values were reported re-
cently in Ref. Zhao et al. 2018. Interestingly, we found that the critical tempera-
ture of Ti is increased in thin films compared to its bulk value, and that we can
achieve T ′

c/T
Al
c ∼ 0.7. However, the ideal case for QP traps would be to have

T ′
c < TAl

c /3, such that phonons emiĴed by QP-pair recombination at the prox-
imitized gap edge (with energy ≈ 2∆′) would not be energetic enough to excite
other QPs out of the trap,9 though this is a weak effect in the limit of few QPs.

7.2.1 Wireless QP-injection

These next two sections outline experiments performed on 3D transmon qubits
with Ti-proximitized-Al QP traps as depicted in Fig. 7.4. The traps in these de-
vices were capped with a thin Al layer to prevent oxidation of the Ti. We estimate
that the ∆′ ≈ 0.75∆Al in these layers. Following Wang et al. 2014 and Riwar et al.

9provided those QPs were also residing at proximitized gap edge
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2 µm

Ti with Al cap
tilt = +/- 60°
rotation= 45°

Al JJ electrodes
tilt = +/- 20°
rotation= 0°

Ti-proximitized-Al
QP traps

Figure 7.4 | Scanning electron micrograph of a transmon qubit with Ti-
proximitized-Al quasiparticle traps false-colored in purple. Sample was coated
with a thin Ir anti-charging layer for imaging. Blue arrows indicate the direction
of evaporation of the Al JJ electrodes, and red arrows denote the direction of Ti
deposition to form the proximitized trap. An Al capping layer is deposited to
protect the Ti from oxidation.

2016, we set out to characterize the performance of the QP traps by the recovery
time of the transmon T1 after a QP injection pulse. We will not go into all of the
details of this measurement here [see Wang et al. 2014], but we will offer an intu-
itive picture to understand the data. The brevity is partially due to the fact that
not all of our data fit the models proposed in the above references, which led us
to pursue the charge-parity correlation experiments.

The experiment is performed by first applying a high-power microwave
pulse at the bare readout-mode frequency [Fig. 7.5(a, inset)]. This power pro-
duces an oscillating voltage across the JJ that instantaneously biases the junction
at a voltage> 2∆/e, allowing for single-charge transport across the JJ, producing
many QPs. This we call a wireless QP injection pulse.10 This produces an elevated
QP density xQP immediately after the pulse, which proportionally decreases T1.
We then measure T1 as a function of time after the injection, and characterize the
recovery by a timescale τss. The functional form of τss in various regimes is de-
scribed in Refs. Wang et al. 2014 and Riwar et al. 2016. We will not go into detail

10“Wireless” in contrast to experiments that apply a DC voltage bias across the JJ with a galvani-
cally connected lead [Lenander et al. 2011; Wenner et al. 2013; Patel et al. 2017].
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Figure 7.5 | (a) Wireless QP injection experiment. Inset: Experimental pulse se-
quence, in which a QP generating injection pulse is applied, followed by a delay
τinj, after which a T1 measurement is performed. Main: 1/e decay time of the T1
measurement as a function of τinj. Purple data is from devices with Al-Ti prox-
imitized QP traps, and black data is from standard transmon devices. Different
markers denote different devices. Qualitatively, the recovery of T1 is faster in de-
vices with QP traps. (b) Power spectral density of charge-parity fluctuations SPP

in a device with and without QP traps [See Fig. 6.4 and associated discussion].
Here, QP traps seem to have liĴle to no effect on the equilibrium charge-parity
dynamics.
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here because the devices with QP traps did not fit well to the theory. Instead, fits
shown in Fig. 7.5 are to biexponential functions. Here we only make the qualita-
tive argument that the recovery of T1 after the QP injection is significantly faster
in devices with QP traps than without, indicating that the xQP local to the JJ de-
creases faster in these devices, which one would interpret as effective trapping of
the generated QPs.

7.2.2 Charge-parity correlation experiments

While QP-injection experiments are a nice probe of QP dynamics out of equi-
librium11, the most important behavior is that of the steady-state nonequilib-
rium QPs present in our quantum-information-processing experiments. As a
more direct study of this phenomena, we chose to characterize our proximitized-
superconducting QP traps using the charge-parity correlation measurements de-
veloped at Delft [Ristè et al. 2013], described extensively in Chapter 6 and in
Ref. Serniak et al. 2018. If the QP traps were working effectively, there would
be an improvement in the charge-parity lifetime. Some of our results are shown
in Fig. 7.5(b), in which we found no improvement of the charge-parity lifetime,
indicating that the traps were not effective at reducing QP tunneling events.

7.2.3 Summary of Ti-proximitized-Al QP traps

Our experiments on Ti-proximitized-Al QP traps were performed prior to our
implementation of additional Eccosorb filtering [Serniak et al. 2019], and prior
to our understanding of QP-related qubit heating [Serniak et al. 2018] and possi-
ble PAT processes [Houzet et al. 2019]. In light of this, one would not expect the
QP traps to result in any significant reduction of QP-induced dissipation if this
dissipation is arising from PAT processes at the JJ. In this case, QPs would be gen-
erated at the junction and cause qubit transitions before ever diffusing to the trap
region of the device. Even if PAT processes are not the dominant charge-parity
switching mechanism, if QPs are unable to cool to the gap edge12 the trapping
effect would be at least suppressed, if not improbable. If PAT processes were in-
deed responsible for our observed charge-parity switches at the ∼ 10 kHz level,
it may be worth measuring these devices again now that the parity lifetime has

11or really, further out of nonequilibrium
12as would be evidenced by the fact that they are just as likely to excite or relax our transmons



138 Chapter 7 | Reducing QP Density

been improved. If QP-tunneling processes dominate the charge-parity dynamics
after implementing improved high-frequency filtering, it could be that these QP
traps would extend the charge-parity lifetime even further. One technical chal-
lenge that needs to be overcome is that the introduction of Ti into our fabrication
processes consistently produced lower T1 in devices with Al-Ti QP traps. While
the exact mechanism is unknown, one possibility is that the electron-beam resist
was degraded under the high temperature required for Ti deposition,13 which
could have contaminated the deposited superconductors. Fabricating these de-
vices using inorganic stencil masks could be a way to reduce this effect and im-
prove device performance. 14

13Ti is a refractory metal.
14These types of masks are currently being developed for qubit fabrication in our group by Ioannis

Tsioutsios.
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Conclusions

and future directions
This dissertation has focused on our recent work probing nonequilibrium QP
excitations in superconducting qubits. We found that QP-related processes can
be responsible for the vast majority of excitation events in our transmon qubits,
and can be a non-negligible contributor to T1 in these devices [Serniak et al.
2018]. Furthermore, we found that charge-parity switching events were just as
likely to excite as to relax our transmons, indicating that either the energy distri-
bution of nonequilibrium QPs is far from the assumed quasithermal distribution
or there is another charge-parity switching mechanism in play. Our recent
theoretical work identified a potential culprit, in the form of photon-assisted
QP generation and tunneling processes [Houzet et al. 2019]. In light of this
work, one important question remains: are PAT processes or “hot” nonequi-
libium QPs the cause of our charge-parity dynamics and QP induced dissipation?

8.1 Future experiments

The following two experiments build from the work presented in this thesis.
They are both currently in progress, and serve as tests of whether the detected
charge-parity switches are due to nonequilibrium QP-tunneling processes or PAT
processes in 3D transmons.

8.1.1 Probing PATs in an OCS SQUID

As shown in Fig. 5.5, QP-tunneling- and PAT- induced charge-parity transition
rates depend on the transmon frequency f01 (or EJ/EC , if you prefer). One way
to tune this in situ is with with by replacing the JJ of the OCS transmon with
a superconducting quantum interference device (SQUID). A SQUID is two JJs in
parallel connected by superconducting wires. By threading an externally applied
magnetic flux Φext, the supercurrent through this element can be tuned, and even
destructively interfere. The JJs may have different Josephson energies EJ1 and

139
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(a)

(c) (d)

(b)

Figure 8.1 | (a) Circuit diagram of an OCS SQUID device. Compared to the OCS
transmon [Fig. 4.1] the only difference is that the single JJ is replaced by a SQUID.
In principle, the SQUID can be asymmetric, with EJ1 ̸= EJ2. (b) Ground to first
excited state transition frequency for even (fee01 ) and odd (foo01 ) charge-parity states
at ng = 0, with EJ1/h = 4.03 GHz, EJ2/h = 6.05 GHz, and EC/h = 356 MHz.
This transition frequency is finite at Φext/Φ0 = 0.5 due to the junction asymme-
try. (c) QP-tunneling induced charge-parity transition rates Γ̃QP

ij , relative to their
value at Φext = 0, as a function of the externally applied flux through the SQUID
loop Φext normalized by the flux quantum Φ0. Simulation assumes a thermally
generated xQP = 10−7 (d) Relative rates ploĴed in (b) but for PAT induced charge-
parity transitions Γ̃PAT

ij , assuming monochromatic pair-breaking radiation with
frequency ων = 3.4 ∆/ℏ.
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EJ2, in which case the critical current is never fully suppressed, producing the
dependence of f01 on Φext depicted in Fig. 8.1(b).

Using the numerical techniques discussed in Section 5.4.1, we simulate the
eigenspectrum and charge-parity transition rates for an OCS SQUID device. It is
particularly interesting how these rates change as a function of the flux through
the SQUID loop, so we plot these rates relative to their Φext = 0 values for QP tun-
neling [Fig. 8.1(c)] and for PAT processes [Fig. 8.1(d)]. OCS SQUID parameters
chosen for this simulation are ng = 0, EJ1/h = 4.03 GHz, EJ2/h = 6.05 GHz,
and EC/h = 356 MHz. For the QP-tunneling-induced transition rates Γ̃QP

ij , we
choose a thermally generated xQP = 10−7, though this does not strongly effect
the simulation. For PAT-induced transition rates Γ̃PAT

ij , we assume a monochro-
matic high-frequency photon source with frequency ων = 3.4∆/ℏ and a frequency
dependent coupling rate g [Houzet et al. 2019].

Clearly the expected transition rates for the two types of processes have very
different functional dependence on Φext, which could be used to distinguish
PAT-induced transitions from QP-tunneling induced transitions. For example,
at Φext/Φ0 = 0.25, Γ̃QP

00 ≈ 24 whereas Γ̃PAT
00 ≈ 1. By measuring these rates as a

function of flux, one would almost certainly be able to distinguish between PAT
and QP-tunneling processes, or expose a gap in our understanding.

8.1.2 Probing PATs with a Nb-blocked OCS transmon

Another way to distinguish between QP-induced charge-parity switches and
those induced by PAT processes relies on monitoring the branching ratio be-
tween charge-parity-transition rates Γeo

ij [see Fig. 5.6]. Again, the branching ratio
just a name for the relation between those rates (various ratios, such as Γeo

11/Γ
eo
10,

Γeo
01/Γ

eo
10, etc.). In particular, we discussed that the branching ratios should be dif-

ferent between QP-tunneling processes and PAT processes. To distinguish these
effects, this proposed experiment relies on various experimental parameters and
timescales to be aligned in a convenient way.

The rate of QP tunneling through a JJ is approximately proportional
to xQP [Fig. 5.6]. In our typical transmon devices, this corresponds to tens, hun-
dreds, or thousands of QPs occupying each JJ electrode, which tunnel back and
forth symmetrically such that there is no preferred charge-parity of the JJ.1 How-

1As a reminder, we define the charge parity as the parity of the total number of single QPs that
have tunneled through the JJ.
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Figure 8.2 | Optical micrograph of an OCS transmon fabricated with a single Nb
QP blocker in close proximity to the JJ. Inset: energy band diagram in the excita-
tion picture showing the superconducting gap as a function of position along the
device. See text for more details.

ever, if one of the JJ electrodes is made to be very small, such that the total number
of QPs on that islandN i

QP < 1 on average, there will indeed be a preferred charge
parity of the JJ. A CPB or OCS transmon device fabricated with this asymmetry
would show a preferred charge parity, but what does this mean for the statistics of
charge-parity transitions? A preferred charge-parity would break the degeneracy
between even and odd transition rates such thatΓeo

ij ̸= Γoe
ij , even if δϵi, δϵj ≪ kBT .

The signature of this effect in an OCS transmon device would be charge-parity
switches that are pair-correlated in time. This can be understood simply as an effect
of the instantaneous xiQP on the small island: as soon as one QP tunnels onto the
island xiQP will be greater than the xQP on the large island, causing it to quickly
escape the small island back through the JJ. This may be visible provided that
the volume of the small island v < 1/xQPnQP, where nQP = 4 × 106 µm−3 is the
Cooper-pair density in Al. This constrains v ≲ 1 µm3 for Al-based JJ electrodes
for xQP = 10−7, and v ≲ 100 µm3 for xQP = 10−9.

An optical micrograph of a proposed device is shown in Fig. 8.2, overlaid
with arrows representing relevant processes, along with the superconducting gap
spectrum that is crucial for the experiment. Here, both device electrodes are large,



8.1 | Future experiments 143

like those in Fig. 4.7, but the right electrode is interrupted by a patch of supercon-
ducting Nb, which has a much larger superconducting gap ∆Nb/h ≈ 330 GHz
compared to that of Al ∆Al/h ≈ 50 GHz. This has the effect of blocking the
diffusion of QPs near the gap of Al into the larger pad on the right,2 effectively
confining the QPs in the volume v of the small Al island. This effect could also be
achieved just with a small island without a Nb blocker or additional Al electrode,
however this would constrain the minimum EC aĴainable in a coplanar device
geometry.

With this picture in mind, how can we distinguish between nonequilibrium
QP tunneling and PAT processes? There are many rates that maĴer in this sce-
nario: the measurement rate at which we can determine the charge-parity and
plasmon state of the OCS transmon Γm, the rates of PAT-induced transitions
ΓPAT
ij , the rate at which QPs generated by PAT processes cool to the gap edge

by phonon emission Γcool, the rate of transitions due to nonequilibrium QPs tun-
neling onto the small island ΓQP

ij , and the rates of single QP escape from the small
island back through the JJ onto the large island, Γesc

ij . The goal is to engineer a
situation where ΓQP

ij ,Γ
PAT
ij < Γesc

ij < Γcool < Γm, which is realistic given recent
experimental results [Ristè et al. 2013; Serniak et al. 2018; Serniak et al. 2019].3

In this regime, one just needs to compare the branching ratio of the first and
second charge-parity transitions in pair-correlated events. In a situation where
ΓQP
ij ≪ ΓPAT

ij , the branching ratios will be different: the first of the pair correlated
events will have a branching ratio corresponding to that of PAT events, and the
second will have that corresponding to QP-tunneling. This would be confirma-
tion that PAT events, which generate QPs at the JJ, are responsible for the ma-
jority of the observed charge-parity switches, and put to rest the notion of “hot”
nonequilibrium QPs with a highly athermal energy distribution. Of course, this
experiment relies on proper understanding of QP scaĴering and careful device
design, making it more challenging than the aforementioned experiment with
OCS SQUIDs.

2A sort of QP trap, but not in the way one would typically want for a superconducting qubit. This
is, however, very similar to the QP traps implemented for STJ detectors [Segall et al. 2004]

3Assuming, of course, that the charge-parity dynamics arise from some combination of the mech-
anisms we’ve discussed.
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8.2 Perspectives

Nonequilibrium QPs are a bit unique in the forest of loss mechanisms that can
limit superconducting qubits. By coupling the BCS theory of superconductivity
with the theory of quantum circuits, one can not only write a Hamiltonian that
includes both qubit and QP degrees of freedom, but also calculate, based on mi-
croscopic details of the circuit, the expected QP-induced relaxation and dephas-
ing rates of the qubit. For this reason, some may say that studying QP-induced
loss is a bit like “searching for your lost keys under a streetlamp,” in the sense
that we have a relatively complete set of tools with which to begin tackling the
problem. Viewed from the opposite angle, however, this affords us the oppor-
tunity to leverage the technological developments within the field of supercon-
ducting qubits for the purpose of studying mesoscopic superconductivity. For
instance, this is partly why it is important that we determine the mechanism for
QP-induced excitation of our transmons, be it PAT processes or something else
that will expand our understanding. Another prime example of this notion is
recent work utilizing circuit QED techniques to study Andreev bound states in
various types of Josephson junctions [Janvier et al. 2015; Hays et al. 2018; Tosi
et al. 2019]. Similar studies could be performed with OCS transmons to probe
the current phase relation of these junctions [Ginossar and Grosfeld 2014; Yavil-
berg, Ginossar, and Grosfeld 2015; Li et al. 2018; Keselman et al. 2019], using the
techniques outlined in this dissertation.

From a technological standpoint, if QP-generating radiation is reduced uni-
versally to the the level we reported in Ref. Serniak et al. 2019, QP induced dis-
sipation would not be a concern for the T1 of transmon qubits until significant
improvements are made toward the mitigation of dielectric loss (when we reach
T1 of several milliseconds). This is an extreme challenge in and of itself that for-
tunately can be aided by the work presented here. I would argue that it is abso-
lutely crucial for any experiment seeking to probe or improve dielectric quality
factors to first perform these sort of charge-parity autocorrelation measurements
to confirm that they are indeed limited by dielectric loss, especially because of the
apparent dependence on specific details of the measurement setup, such as high-
frequency filtering. This is a check that one might think isn’t necessary: just like
we thought before performing the experiments in Ref. Serniak et al. 2018, which
were quite illuminating for this exact reason.
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Qubit Fabrication
The devices presented in this thesis were fabricated with the same procedure as
most devices in our group, which starts out with a c-plane sapphire wafer ac-
quired from a company called CrysTec. The dielectric constant in sapphire is
anisotropic, and “c-plane” means that the crystalline axis with lower permiĴiv-
ity is normal to the surface of the wafer. The wafer is initially cleaned by sequen-
tial sonication in 1-methyl-2-pyrrolidone (NMP), acetone, and then methanol, for
three minutes each. This sequence is chosen to minimize residue and is ordered
by decreasing solvent “strength.” NMP is a strong organic resist stripper that
will also remove some oils, acetone is a weaker resist stripper that is also very
polar, and methanol is a less polar solvent that reacts less with things in the air
so as to leave minimal residue. Quickly after the last step, the wafer is blown dry
with dry nitrogen or argon, also to avoid residue.

Once the wafer is clean, we spin coat a bilayer of electron-beam-sensitive re-
sists. First, we spin Microchem MMA1 (8.5) MAA2 EL13 for 100 s at 2000 RPM,
which is then baked at ∼ 180 ◦C for five minutes. The top layer is 950 PMMA3 A4,
also spun for 100 s at 2000 RPM and baked at ∼ 180 ◦C for five minutes. These
are spun at relatively low speed to achieve thicker resist layers (about 800 nm and
250 nm, respectively). This was originally chosen for convenience when tuning
doses for bridge-free junction fabrication [Lecocq et al. 2011], however this is not
strictly necessary, and it would be wiser to use a less dilute resist to get the similar
thickness at higher spin speeds.

One slight difficulty that one has to deal with when doing electron-beam
lithography on sapphire substrates is charge buildup. Because sapphire (crys-
talline Al2O3) is a good insulator, a focused electron beam can produce a trail
of trapped charges that can deflect the beam, leading to poor resolution and in-
consistent dosing. To avoid this, an “anticharging layer” of conducting material
(such as a metal or conductive polymer) can be deposited on top of the e-beam
resist to help disperse the charge. For this, we typically use a thin layer of Au, de-
posited in a Cressington 108 spuĴer coater. Au is convenient as it is a good metal,

1methyl methacrylate
2methacrylic acid
3polymethyl methacrylate
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it doesn’t oxidize, and is preĴy ductile. The electron beam tends to heat the re-
sist locally while writing, and the anticharging layer needs to be able to stretch
and deform to accommodate thermal expansion of the resist. We’ve also tried Al
and Ag for the anticharging layer, however they often bubble and crack, poten-
tially leading to defects in the paĴern. Anecdotally, this rarely (if ever) causes
issues near small features like Josephson junctions, but can be a problem on large
features that see a stronger integrated dose. In the Cressington 108, Au (99.99%
purity) is spuĴered by an Ar plasma with 30 mA emission current for 45 s, which
results in a layer ∼10-15nm thick. Other targets can be installed in this machine,
such as Ag, however it requires a different e-beam dose because it emits fewer
secondary electrons.

We write the paĴerns using a 100-kV Raith-Vistec EBPG-5000, with beam cur-
rents as high as 100 nA for large features, and typically 10 to 50 nA for small
features such as JJs4. The particular bilayer described above requires a dose of
∼ 600 µC/cm2 for large features and ∼ 1100 µC/cm2 to properly expose a long,
1 µm wide line. One thing to look out for:

• It is crucial to check the ability of the EBPG to autofocus on colloidal Au
nanoparticles supplied by YINQE. The machine does this procedure by
measuring the height of the wafer with a laser, and sets the focus based
on a value from a look-up table, assuming that there is no beam deflection
from charging effects. IF THERE IS AN ISSUE WITH THE ANTICHARG-
ING LAYER, IT WILL BE VISIBLE ON THE SEM. Sometimes you will find
that the autofocus procedure actually defocuses the image of the Au particles,
which can be indicative that the beam is being deflected by charge buildup.

After the write, one needs to remove the anticharging layer. One can wet-
etch the Au (or Ag, or Al) with an aqueous KI/I solution, which can be bought
from Transene and is called Au etchant5. The Au etch rate for undiluted etchant
is approximately 10 nm/s. The etchant does not aĴack the resist stack6, therefore
it’s safe to leave the wafer submerged for many seconds.

• The etchant will stain both skin and clothing, so try not to spill (also, use it
in a hood with proper protective equipment).

4EBPG stands for electron-beam paĴern generator
5This etchant is slightly basic
6At least not very quickly
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• After etching, quickly rinse the wafer with deionized water, and immedi-
ately blow-dry with dry nitrogen or argon.

• Before continuing, inspect the wafer for any leftover Au, especially near
the edges, as we don’t want to contaminate our evaporation tools with Au.
Any oils transferred from the EBPG wafer holder or from handing with
gloves can act as an etch stop and protect the Au. Au and Al don’t mix well,
sometimes creating an intermetallic layer referred to as the Purple Plague.

After etching away the Au, the paĴern is developed with a mixture of 3:1 iso-
propanol to deionized water at 6 ◦C [Rooks et al. 2002]. For the lithographic
process described above, the development consists of submerging the wafer and
agitating lightly for two minutes, then quickly blow-dry with dry nitrogen or
argon. If you inspect the wafer after development with an optical microscope
you can see if the lithography turned out properly. The edges of features should
be relatively smooth, not jagged (which would indicate underdosing). One can
also get a sense for the health of the JJs (for bridge-free, Dolan, or any other pro-
cess that utilizes controlled undercuts). It takes some experience, but the relative
brightness of the undercut region is a solid indicator of proper junction dosing.

Most of our devices rely on a Plassys UMS-300 electron-beam-evaporation
system for Al deposition. Prior to deposition of Al, an in situ Ar/O2 (30 sccm and
10 sccm flow rates, respectively) ion-beam cleaning is performed in the loadlock
of the Plassys. This step conveniently limits the amount of aging (decrease of
critical current) that the JJ experiences [Pop et al. 2012]. After a 4 min Ti evapora-
tion (without deposition) to improve the vacuum to ≲ 5× 10−9 Torr, Al junction
electrodes (in our case, these layers were 20 and 30 nm thick7) were deposited
at angles of ±20◦ in a dedicated evaporation chamber. Between the Al evapora-
tions, the sample was transferred to a third chamber for thermal oxidation of the
first electrode to form the junction barrier. This was performed at ambient tem-
perature in a 17:3 Ar:O2 mixture at a pressure of 30 Torr for 10 min. These oxida-
tion parameters yield a junction critical-current density of ∼ 50 A/cm2, though
this can be varied to taste8. To passivate the surface before exposure to air, an-
other thermal oxidation step is performed following the second Al evaporation

7The important thing is to make the counterelectrode thicker than the first electrode to ensure
that it climbs the sidewall

8Reasonable oxidation parameters typically put the critical-current density somewhere in a range
of 10-100 A/cm2.
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at 50 Torr for 5 min. Now that the JJs are formed, be careful to avoid electrostatic
discharge around the wafer. Oftentimes people will fabricate a “shorting strap”
that can be scratched away before sample mounting for a low-impedance path
around the JJ. Typically this is not necessary unless working with extremely large
JJ electrodes as long as you take precautions such as avoiding static-building foot
covers and using a wrist-grounding strap.

Following the deposition process, the remaining resist and extra Al can be re-
moved by a hot NMP (∼ 75 ◦C) liftoff process for one hour with a 30 s sonication
step at the end. This could also be done with acetone. While there are many vari-
ations on this technique that can be used, we found the following to consistently
result in clean liftoff (when the doses were correct).

• Submerge the wafer face-up in hot NMP (75◦ C for ∼1 hour). This will
remove any remaining resist and the superfluous Al that is coating it.

• Sonicate the entire beaker for ∼30 seconds.

• Quickly rinse the wafer with acetone and then methanol upon removal from
the NMP bath, taking care that the wafer does not dry with any Al flakes
on the surface, otherwise Van der Waals forces will stick them to the wafer.

Now one can check the resistance of the JJs. One can be safe and use a dedi-
cated source-meter or lock-in amplifier for this purpose, but a digital multimeter
can also be used as long as you limit the current output (set it to the highest tol-
erable resistance range, don’t let it “auto-range”).

To protect the devices during dicing we typically spin a thick layer of photore-
sist S1827 at 1500 RPM (∼ 5 µm) for 2 minutes, then bake at 90◦ C for 9 minutes.
After dicing, rinse each chip individually in NMP, then acetone, then methanol,
and blow-dry. Before mounting a sample, sonicate in each for a few seconds and
blow-dry.



References
Aassime, A., G. Johansson, G. Wendin, R. J. Schoelkopf, and P. Delsing, “Radio-

Frequency Single-Electron Transistor as Readout Device for Qubits: Charge
Sensitivity and Backaction”, Physical Review LeĴers 86, 3376–3379 (2001).

Albrecht, S. M., E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen,
J. Nygård, P. Krogstrup, J. Danon, K. Flensberg, and C. M. Marcus, “Transport
Signatures of Quasiparticle Poisoning in a Majorana Island”, Physical Review
LeĴers 118, 137701 (2017).

Andrews, R. W., R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A.
Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between mi-
crowave and optical light”, Nature Physics 10, 321–326 (2014).

Aumentado, J., M. W. Keller, J. M. Martinis, and M. H. Devoret, “Nonequilibrium
Quasiparticles and 2 e Periodicity in Single-Cooper-Pair Transistors”, Physical
Review LeĴers 92, 066802 (2004).

Bal, M., M. H. Ansari, J.-L. Orgiazzi, R. M. Lutchyn, and A. Lupascu, “Dynamics
of parametric fluctuations induced by quasiparticle tunneling in supercon-
ducting flux qubits”, Physical Review B 91, 195434 (2015).

Bardeen, J., L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity”,
Physical Review 108, 1175–1204 (1957).

Barends, R., J. Wenner, M. Lenander, Y. Chen, R. C. Bialczak, J. Kelly, E. Lucero,
P. O’Malley, M. Mariantoni, D. Sank, H. Wang, T. C. White, Y. Yin, J. Zhao,
A. N. Cleland, J. M. Martinis, and J. J. A. Baselmans, “Minimizing quasiparti-
cle generation from stray infrared light in superconducting quantum circuits”,
Applied Physics LeĴers 99, 113507 (2011).

Bergeal, N., R. Vijay, V. E. Manucharyan, I. Siddiqi, R. J. Schoelkopf, S. M. Girvin,
and M. H. Devoret, “Analog information processing at the quantum limit with
a Josephson ring modulator”, Nature Physics 6, 296–302 (2010).

Bespalov, A., M. Houzet, J. S. Meyer, and Y. V. Nazarov, “Theoretical Model to
Explain Excess of Quasiparticles in Superconductors”, Physical Review Let-
ters 117, 117002 (2016).

Blais, A., R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity
quantum electrodynamics for superconducting electrical circuits: An archi-
tecture for quantum computation”, Physical Review A 69, 062320 (2004).

149

http://dx.doi.org/10.1103/PhysRevLett.86.3376
http://dx.doi.org/10.1103/PhysRevLett.118.137701
http://dx.doi.org/10.1103/PhysRevLett.118.137701
http://dx.doi.org/10.1038/nphys2911
http://dx.doi.org/10.1103/PhysRevLett.92.066802
http://dx.doi.org/10.1103/PhysRevLett.92.066802
http://dx.doi.org/10.1103/PhysRevB.91.195434
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1063/1.3638063
http://dx.doi.org/10.1038/nphys1516
http://dx.doi.org/10.1103/PhysRevLett.117.117002
http://dx.doi.org/10.1103/PhysRevLett.117.117002
http://dx.doi.org/10.1103/PhysRevA.69.062320


150 REFERENCES

Booth, N. E., “Quasiparticle trapping and the quasiparticle multiplier”, Applied
Physics LeĴers 50, 293–295 (1987).

Booth, N. E., P. L. Brink, R. J. Gaitskell, D. J. Goldie, A. D. Hahn, G. L. Salmon, and
A. M. Swift, “Superconducting tunnel junctions and quasiparticle trapping”,
Journal of Low Temperature Physics 93, 521–532 (1993).

Bouchiat, V., D. Vion, P. Joyez, D. Esteve, and M. H. Devoret, “Quantum Coher-
ence with a Single Cooper Pair”, Physica Scripta T76, 165 (1998).

Brammerĵ, G., A. A. Golubov, P. Verhoeve, R. den Hartog, A. Peacock, and H.
Rogalla, “Critical temperature of superconducting bilayers: Theory and ex-
periment”, Applied Physics LeĴers 80, 2955–2957 (2002).

Brammerĵ, G., A. Poelaert, A. A. Golubov, P. Verhoeve, A. Peacock, and H. Ro-
galla, “Generalized proximity effect model in superconducting bi- and trilayer
films”, Journal of Applied Physics 90, 355–364 (2001).

Bretheau, L., Ç. Ö. Girit, H. Pothier, D. Esteve, and C. Urbina, “Exciting Andreev
pairs in a superconducting atomic contact.”, Nature 499, 312–5 (2013).

Bretheau, L., “Localized Excitations in Superconducting Atomic Contacts: PROB-
ING THE ANDREEV DOUBLET”, PhD thesis (Ecole Polytechnique X, Feb.
2013).

Bueno, J., M. D. Shaw, P. K. Day, and P. M. Echternach, “Proof of concept of the
quantum capacitance detector”, Applied Physics LeĴers 96, 103503 (2010).

Bylander, J., S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory,
Y. Nakamura, J.-S. Tsai, and W. D. Oliver, “Noise spectroscopy through dy-
namical decoupling with a superconducting flux qubit”, Nature Physics 7,
565–570 (2011).

Calusine, G., A. Melville, W. Woods, R. Das, C. Stull, V. Bolkhovsky, D. Braje, D.
Hover, D. K. Kim, X. Miloshi, D. Rosenberg, A. Sevi, J. L. Yoder, E. Dauler,
and W. D. Oliver, “Analysis and mitigation of interface losses in trenched su-
perconducting coplanar waveguide resonators”, Applied Physics LeĴers 112,
062601 (2018).

Caroli, C., P. de Gennes, and J. Matricon, “Bound Fermion states on a vortex line
in a type II superconductor”, Physics LeĴers 9, 307–309 (1964).

http://dx.doi.org/10.1063/1.98229
http://dx.doi.org/10.1063/1.98229
http://dx.doi.org/10.1007/BF00693471
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1063/1.1470712
http://dx.doi.org/10.1063/1.1376411
http://dx.doi.org/10.1038/nature12315
http://dx.doi.org/10.1063/1.3339163
http://dx.doi.org/10.1038/nphys1994
http://dx.doi.org/10.1038/nphys1994
http://dx.doi.org/10.1063/1.5006888
http://dx.doi.org/10.1063/1.5006888
http://dx.doi.org/10.1016/0031-9163(64)90375-0


REFERENCES 151

Castellanos-Beltran, M., K. Irwin, L. Vale, G. Hilton, and K. Lehnert, “Bandwidth
and Dynamic Range of a Widely Tunable Josephson Parametric Amplifier”,
IEEE Transactions on Applied Superconductivity 19, 944–947 (2009).

Catelani, G., “Parity switching and decoherence by quasiparticles in single-
junction transmons”, Physical Review B 89, 094522 (2014).

Catelani, G., L. I. Glazman, and K. E. Nagaev, “Effect of quasiparticles injection
on the ac response of a superconductor”, Physical Review B 82, 134502 (2010).

Catelani, G., R. J. Schoelkopf, M. H. Devoret, and L. I. Glazman, “Relaxation and
frequency shifts induced by quasiparticles in superconducting qubits”, Phys-
ical Review B 84, 064517 (2011).

Catelani, G. and D. Basko, “Non-equilibrium quasiparticles in superconducting
circuits: photons vs. phonons”, SciPost Physics 6, 013 (2019).

Chang, J.-J. and D. J. Scalapino, “Kinetic-equation approach to nonequilibrium
superconductivity”, Physical Review B 15, 2651–2670 (1977).

Chiorescu, I., Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, “Coherent quan-
tum dynamics of a superconducting flux qubit.”, Science 299, 1869–71 (2003).

Chow, J. M., L. DiCarlo, J. M. GambeĴa, F. Moĵoi, L. Frunzio, S. M. Girvin, and
R. J. Schoelkopf, “Optimized driving of superconducting artificial atoms for
improved single-qubit gates”, Physical Review A 82, 040305 (2010).

Chubov, P. N., V. V. Eremenko, and Y. A. Pilipenko, “Dependence of the Criti-
cal Temperature and Energy Gap on the Thickness of Superconducting Alu-
minum Films”, Soviet Physics JETP 28 (1969).

Clerk, A. A., M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf,
“Introduction to quantum noise, measurement, and amplification”, Reviews
of Modern Physics 82, 1155–1208 (2010).

Córcoles, A. D., J. M. Chow, J. M. GambeĴa, C. RigeĴi, J. R. Rozen, G. A. Keefe,
M. Beth Rothwell, M. B. Ketchen, and M. Steffen, “Protecting superconducting
qubits from radiation”, Applied Physics LeĴers 99, 181906 (2011).

Court, N. A., A. J. Ferguson, R. Lutchyn, and R. G. Clark, “Quantitative study of
quasiparticle traps using the single-Cooper-pair transistor”, Physical Review
B 77, 100501 (2008).

http://dx.doi.org/10.1109/TASC.2009.2018119
http://dx.doi.org/10.1103/PhysRevB.89.094522
http://dx.doi.org/10.1103/PhysRevB.82.134502
http://dx.doi.org/10.1103/PhysRevB.84.064517
http://dx.doi.org/10.1103/PhysRevB.84.064517
http://dx.doi.org/10.21468/SciPostPhys.6.1.013
http://dx.doi.org/10.1103/PhysRevB.15.2651
http://dx.doi.org/10.1126/science.1081045
http://dx.doi.org/10.1103/PhysRevA.82.040305
http://adsabs.harvard.edu/abs/1969JETP...28..389C
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1063/1.3658630
http://dx.doi.org/10.1103/PhysRevB.77.100501
http://dx.doi.org/10.1103/PhysRevB.77.100501


152 REFERENCES

Day, P. K., H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broad-
band superconducting detector suitable for use in large arrays”, Nature 425,
817–821 (2003).

de Gennes, P.-G., Superconductivity ofMetals and Alloys (Advanced Book Program,
Perseus Books, 1999).

Devoret, M. H. and R. J. Schoelkopf, “Superconducting circuits for quantum in-
formation: an outlook.”, Science 339, 1169–74 (2013).

DiCarlo, L., J. M. Chow, J. M. GambeĴa, L. S. Bishop, B. R. Johnson, D. I. Schuster,
J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Demonstra-
tion of two-qubit algorithms with a superconducting quantum processor”,
Nature 460, 240–244 (2009).

Dunsworth, A., A. Megrant, C. Quintana, Z. Chen, R. Barends, B. BurkeĴ, B.
Foxen, Y. Chen, B. Chiaro, A. Fowler, R. Graff, E. Jeffrey, J. Kelly, E. Lucero,
J. Y. Mutus, M. Neeley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wen-
ner, T. C. White, and J. M. Martinis, “Characterization and reduction of ca-
pacitive loss induced by sub-micron Josephson junction fabrication in super-
conducting qubits”, Applied Physics LeĴers 111, 022601 (2017).

Echternach, P. M., B. J. Pepper, T. Reck, and C. M. Bradford, “Single photon de-
tection of 1.5 THz radiation with the quantum capacitance detector”, Nature
Astronomy 2, 90–97 (2018).

Feynman, R. P., “Simulating physics with computers”, International Journal of
Theoretical Physics 21, 467–488 (1982).

Fominov, Y. V. and M. V. Feigel’man, “Superconductive properties of thin dirty
superconductor–normal-metal bilayers”, Physical Review B 63, 094518 (2001).

Fowler, A. G., M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes:
Towards practical large-scale quantum computation”, Physical Review A 86,
032324 (2012).

GambeĴa, J., A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, “Qubit-photon interactions in a
cavity: Measurement-induced dephasing and number spliĴing”, Physical Re-
view A 74, 042318 (2006).

http://dx.doi.org/10.1038/nature02037
http://dx.doi.org/10.1038/nature02037
http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1063/1.4993577
http://dx.doi.org/10.1038/s41550-017-0294-y
http://dx.doi.org/10.1038/s41550-017-0294-y
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1103/PhysRevB.63.094518
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1103/PhysRevA.74.042318


REFERENCES 153

Ginossar, E. and E. Grosfeld, “Microwave transitions as a signature of coherent
parity mixing effects in the Majorana-transmon qubit”, Nature Communica-
tions 5, 4772 (2014).

Girvin, S. M., “Circuit QED: superconducting qubits coupled to microwave pho-
tons”, in Quantum machines: measurement and control of engineered quantum sys-
tems (Oxford University Press, June 2014), pp. 113–256.

Goldie, D. J. and S. Withington, “Non-equilibrium superconductivity in
quantum-sensing superconducting resonators”, Superconductor Science and
Technology 26, 015004 (2013).

Goldie, D., N. Booth, C. Patel, and G. Salmon, “Quasiparticle trapping from a
single-crystal superconductor into a normal-metal film via the proximity ef-
fect”, Physical Review LeĴers 64, 954–957 (1990).

Golubov, A. A., E. P. Houwman, J. G. Gijsbertsen, J. Flokstra, H. Rogalla, J. B.
le Grand, and P. A. J. de Korte, “Quasiparticle lifetimes and tunneling times
in a superconductor-insulator-superconductor tunnel junction with spatially
inhomogeneous electrodes”, Physical Review B 49, 12953–12968 (1994).

GoĴesman, D., A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator”, Phys-
ical Review A 64, 012310 (2001).

Grünhaupt, L., N. Maleeva, S. T. Skacel, M. Calvo, F. Levy-Bertrand, A. V. Usti-
nov, H. Roĵinger, A. Monfardini, G. Catelani, and I. M. Pop, “Loss Mech-
anisms and Quasiparticle Dynamics in Superconducting Microwave Res-
onators Made of Thin-Film Granular Aluminum”, Physical Review LeĴers
121, 117001 (2018).

Gueron, S., “Quasiparticles in a diffusive conductor: Interaction and pairing”,
PhD thesis (CEA Saclay, 1997).

Gustavsson, S., F. Yan, G. Catelani, J. Bylander, A. Kamal, J. Birenbaum, D. Hover,
D. Rosenberg, G. Samach, A. P. Sears, S. J. Weber, J. L. Yoder, J. Clarke, A. J.
Kerman, F. Yoshihara, Y. Nakamura, T. P. Orlando, and W. D. Oliver, “Sup-
pressing relaxation in superconducting qubits by quasiparticle pumping.”,
Science 354, 1573–1577 (2016).

Halpern, M., H. P. Gush, E. Wishnow, and V. De Cosmo, “Far infrared trans-
mission of dielectrics at cryogenic and room temperatures: glass, Fluorogold,
Eccosorb, Stycast, and various plastics”, Applied Optics 25, 565 (1986).

http://dx.doi.org/10.1038/ncomms5772
http://dx.doi.org/10.1038/ncomms5772
http://dx.doi.org/10.1093/acprof:oso/9780199681181.003.0003
http://dx.doi.org/10.1093/acprof:oso/9780199681181.003.0003
http://dx.doi.org/10.1088/0953-2048/26/1/015004
http://dx.doi.org/10.1088/0953-2048/26/1/015004
http://dx.doi.org/10.1103/PhysRevLett.64.954
http://dx.doi.org/10.1103/PhysRevB.49.12953
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevLett.121.117001
http://dx.doi.org/10.1103/PhysRevLett.121.117001
http://dx.doi.org/10.1126/science.aah5844
http://dx.doi.org/10.1364/AO.25.000565


154 REFERENCES

Hays, M., G. de Lange, K. Serniak, D. J. van Woerkom, D. Bouman, P. Krogstrup,
J. Nygård, A. Geresdi, and M. H. Devoret, “Direct Microwave Measurement
of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson
Junction”, Physical Review LeĴers 121, 047001 (2018).

Hazard, T. M., A. Gyenis, A. Di Paolo, A. T. Asfaw, S. A. Lyon, A. Blais, and A. A.
Houck, “Nanowire Superinductance Fluxonium Qubit”, Physical Review Let-
ters 122, 010504 (2019).

Higginbotham, A. P., S. M. Albrecht, G. Kiršanskas, W. Chang, F. Kuemmeth, P.
Krogstrup, T. S. Jespersen, J. Nygård, K. Flensberg, and C. M. Marcus, “Parity
lifetime of bound states in a proximitized semiconductor nanowire”, Nature
Physics 11, 1017–1021 (2015).

Hosseinkhani, A., R.-P. Riwar, R. J. Schoelkopf, L. I. Glazman, and G. Cate-
lani, “Optimal Configurations for Normal-Metal Traps in Transmon Qubits”,
Physical Review Applied 8, 064028 (2017).

Houck, A. A., J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch, J. M. Gam-
beĴa, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, “Controlling the Spontaneous Emission of a Superconducting
Transmon Qubit”, Physical Review LeĴers 101, 080502 (2008).

Houzet, M., K. Serniak, G. Catelani, M. H. Devoret, and L. I. Glazman, “Photon-
assisted charge-parity jumps in a superconducting qubit”, Physical Review
LeĴers 123, 107704 (2019).

Irwin, K. D., S. W. Nam, B. Cabrera, B. Chugg, and B. A. Young, “A quasiparti-
cle-trap-assisted transition-edge sensor for phonon-mediated particle detec-
tion”, Review of Scientific Instruments 66, 5322–5326 (1995).

Ithier, G., E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A.
Shnirman, Y. Makhlin, J. Schriefl, and G. Schön, “Decoherence in a supercon-
ducting quantum bit circuit”, Physical Review B 72, 134519 (2005).

Janvier, C., L. Tosi, L. Bretheau, Ç. Ö. Girit, M. Stern, P. Bertet, P. Joyez, D. Vion,
D. Esteve, M. F. Goffman, H. Pothier, and C. Urbina, “Coherent manipulation
of Andreev states in superconducting atomic contacts.”, Science 349, 1199–202
(2015).

http://dx.doi.org/10.1103/PhysRevLett.121.047001
http://dx.doi.org/10.1103/PhysRevLett.122.010504
http://dx.doi.org/10.1103/PhysRevLett.122.010504
http://dx.doi.org/10.1038/nphys3461
http://dx.doi.org/10.1038/nphys3461
http://dx.doi.org/10.1103/PhysRevApplied.8.064028
http://dx.doi.org/10.1103/PhysRevLett.101.080502
http://dx.doi.org/10.1103/PhysRevLett.123.107704
http://dx.doi.org/10.1103/PhysRevLett.123.107704
http://dx.doi.org/10.1063/1.1146105
http://dx.doi.org/10.1103/PhysRevB.72.134519
http://dx.doi.org/10.1126/science.aab2179
http://dx.doi.org/10.1126/science.aab2179


REFERENCES 155

Jin, X. Y., A. Kamal, A. P. Sears, T. Gudmundsen, D. Hover, J. Miloshi, R. SlaĴery,
F. Yan, J. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “Thermal and
Residual Excited-State Population in a 3D Transmon Qubit”, Physical Review
LeĴers 114, 240501 (2015).

Josephson, B., “Possible new effects in superconductive tunnelling”, Physics Let-
ters 1, 251–253 (1962).

Kaplan, S. B., C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J.
Scalapino, “Quasiparticle and phonon lifetimes in superconductors”, Phys-
ical Review B 14, 4854–4873 (1976).

Keselman, A., C. Murthy, B. van Heck, and B. Bauer, “Spectral response of Joseph-
son junctions with low-energy quasiparticles”, ArXiv:1905.03275 (2019).

Koch, J., T. M. Yu, J. GambeĴa, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design
derived from the Cooper pair box”, Physical Review A 76, 042319 (2007).

Kou, A., W. C. Smith, U. Vool, R. T. Brierley, H. Meier, L. Frunzio, S. M. Girvin,
L. I. Glazman, and M. H. Devoret, “Fluxonium-Based Artificial Molecule with
a Tunable Magnetic Moment”, Physical Review X 7, 031037 (2017).

Kranĵ, P., M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A Quantum Engineer’s Guide to Superconducting Qubits”,
ArXiv:1904.06560 (2019).

Kraus, H., F. von Feiliĵsch, J. Jochum, R. Mössbauer, T. Peterreins, and F. Pröbst,
“Quasiparticle trapping in a superconductive detector system exhibiting high
energy and position resolution”, Physics LeĴers B 231, 195–202 (1989).

Kubo, R., “The fluctuation-dissipation theorem”, Reports on Progress in Physics
29, 306 (1966).

Lang, K., S. Nam, J. Aumentado, C. Urbina, and J. Martinis, “Banishing quasipar-
ticles from Josephson-junction qubits: Why and how to do it”, IEEE Transac-
tions on Appiled Superconductivity 13, 989–993 (2003).

Lecocq, F., I. M. Pop, Z. Peng, I. Matei, T. Crozes, T. Fournier, C. Naud, W.
Guichard, and O. Buisson, “Junction fabrication by shadow evaporation with-
out a suspended bridge.”, Nanotechnology 22, 315302 (2011).

http://dx.doi.org/10.1103/PhysRevLett.114.240501
http://dx.doi.org/10.1103/PhysRevLett.114.240501
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1103/PhysRevB.14.4854
http://dx.doi.org/10.1103/PhysRevB.14.4854
http://arxiv.org/abs/1905.03275
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevX.7.031037
http://arxiv.org/abs/1904.06560
http://dx.doi.org/10.1016/0370-2693(89)90139-1
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1109/TASC.2003.814121
http://dx.doi.org/10.1109/TASC.2003.814121
http://dx.doi.org/10.1088/0957-4484/22/31/315302


156 REFERENCES

Lenander, M., H. Wang, R. C. Bialczak, E. Lucero, M. Mariantoni, M. Neeley, A. D.
O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, A. N.
Cleland, and J. M. Martinis, “Measurement of energy decay in superconduct-
ing qubits from nonequilibrium quasiparticles”, Physical Review B 84, 024501
(2011).

Li, T., W. A. Coish, M. Hell, K. Flensberg, and M. Leijnse, “Four-Majorana qubit
with charge readout: Dynamics and decoherence”, Physical Review B 98,
205403 (2018).

Lutchyn, R. M., J. D. Sau, and S. Das Sarma, “Majorana fermions and a topo-
logical phase transition in semiconductor-superconductor heterostructures”,
Physical Review LeĴers 105, 077001 (2010).

Lutchyn, R., L. Glazman, and A. Larkin, “Quasiparticle decay rate of Josephson
charge qubit oscillations”, Physical Review B 72, 014517 (2005).

Machlup, S., “Noise in Semiconductors: Spectrum of a Two-Parameter Random
Signal”, Journal of Applied Physics 25, 341–343 (1954).

Macklin, C., K. O’Brien, D. Hover, M. E. Schwarĵ, V. Bolkhovsky, X. Zhang,
W. D. Oliver, and I. Siddiqi, “A near-quantum-limited Josephson traveling-
wave parametric amplifier.”, Science 350, 307–10 (2015).

MacLeod, S. J., S. Kafanov, and J. P. Pekola, “Periodicity in Al/Ti superconducting
single electron transistors”, Applied Physics LeĴers 95, 052503 (2009).

Maisi, V. F., S. V. Lotkhov, A. Kemppinen, A. Heimes, J. T. Muhonen, and J. P.
Pekola, “Excitation of Single Quasiparticles in a Small Superconducting Al
Island Connected to Normal-Metal Leads by Tunnel Junctions”, Physical Re-
view LeĴers 111, 147001 (2013).

Manucharyan, V. E., “Superinductance”, PhD thesis (Yale University, 2012).

Manucharyan, V. E., J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: sin-
gle cooper-pair circuit free of charge offsets.”, Science 326, 113–6 (2009).

Martinis, J. M., M. Ansmann, and J. Aumentado, “Energy Decay in Supercon-
ducting Josephson-Junction Qubits from Nonequilibrium Quasiparticle Exci-
tations”, Physical Review LeĴers 103, 097002 (2009).

http://dx.doi.org/10.1103/PhysRevB.84.024501
http://dx.doi.org/10.1103/PhysRevB.84.024501
http://dx.doi.org/10.1103/PhysRevB.98.205403
http://dx.doi.org/10.1103/PhysRevB.98.205403
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevB.72.014517
http://dx.doi.org/10.1063/1.1721637
http://dx.doi.org/10.1126/science.aaa8525
http://dx.doi.org/10.1063/1.3194777
http://dx.doi.org/10.1103/PhysRevLett.111.147001
http://dx.doi.org/10.1103/PhysRevLett.111.147001
http://dx.doi.org/10.1126/science.1175552
http://dx.doi.org/10.1103/PhysRevLett.103.097002


REFERENCES 157

Martinis, J. M., G. Hilton, K. Irwin, and D. Wollman, “Calculation of TC in a
normal-superconductor bilayer using the microscopic-based Usadel theory”,
Nuclear Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment 444, 23–27 (2000).

Masluk, N. A., I. M. Pop, A. Kamal, Z. K. Minev, and M. H. Devoret, “Microwave
characterization of josephson junction arrays: Implementing a low loss su-
perinductance”, Physical Review LeĴers 109, 137002 (2012).

Mears, C. A., S. E. Labov, and A. T. BarĤnecht, “High-resolution superconduct-
ing x-ray detectors with two aluminum trapping layers”, Journal of Low Tem-
perature Physics 93, 561–566 (1993).

Minev, Z. K., I. M. Pop, and M. H. Devoret, “Planar superconducting whispering
gallery mode resonators”, Applied Physics LeĴers 103, 142604 (2013).

Mirrahimi, M., Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang,
and M. H. Devoret, “Dynamically protected cat-qubits: a new paradigm for
universal quantum computation”, New Journal of Physics 16, 045014 (2014).

Monfardini, A., A. Benoit, A. Bideaud, N. Boudou, M. Calvo, P. Camus, C. Hoff-
mann, F.-X. Désert, S. Leclercq, M. Roesch, K. Schuster, P. Ade, S. Doyle, P.
Mauskopf, E. Pascale, C. Tucker, A. Bourrion, J. Macias-Perez, C. Vescovi, A.
Barishev, J. Baselmans, L. Ferrari, S. J. C. Yates, A. Cruciani, P. De Bernardis,
S. Masi, C. Giordano, B. Marghesin, H. G. Leduc, and L. Swenson, “The Néel
IRAM KID Arrays (NIKA)”, Journal of Low Temperature Physics 167, 834–
839 (2012).

Mooij, J. E., T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd,
“Josephson persistent-current qubit”, Science 285, 1036–9 (1999).

Naaman, O. and J. Aumentado, “Time-domain measurements of quasiparticle
tunneling rates in a single-Cooper-pair transistor”, Physical Review B 73,
172504 (2006).

Nguyen, H. Q., T. Aref, V. J. Kauppila, M. Meschke, C. B. Winkelmann, H. Cour-
tois, and J. P. Pekola, “Trapping hot quasi-particles in a high-power supercon-
ducting electronic cooler”, New Journal of Physics 15, 085013 (2013).

Nsanzineza, I. and B. L. T. Plourde, “Trapping a Single Vortex and Reducing
Quasiparticles in a Superconducting Resonator”, Physical Review LeĴers 113,
117002 (2014).

http://dx.doi.org/10.1016/S0168-9002(99)01320-0
http://dx.doi.org/10.1016/S0168-9002(99)01320-0
http://dx.doi.org/10.1103/PhysRevLett.109.137002
http://dx.doi.org/10.1007/BF00693476
http://dx.doi.org/10.1007/BF00693476
http://dx.doi.org/10.1063/1.4824201
http://dx.doi.org/10.1088/1367-2630/16/4/045014
http://dx.doi.org/10.1007/s10909-011-0451-0
http://dx.doi.org/10.1007/s10909-011-0451-0
http://dx.doi.org/10.1126/SCIENCE.285.5430.1036
http://dx.doi.org/10.1103/PhysRevB.73.172504
http://dx.doi.org/10.1103/PhysRevB.73.172504
http://dx.doi.org/10.1088/1367-2630/15/8/085013
http://dx.doi.org/10.1103/PhysRevLett.113.117002
http://dx.doi.org/10.1103/PhysRevLett.113.117002


158 REFERENCES

Nyquist, H., “Thermal Agitation of Electric Charge in Conductors”, Physical Re-
view 32, 110–113 (1928).

Olivares, D. G., A. L. Yeyati, L. Bretheau, Ç. Ö. Girit, H. Pothier, and C. Urbina,
“Dynamics of quasiparticle trapping in Andreev levels”, Physical Review B
89, 104504 (2014).

Oreg, Y., G. Refael, and F. von Oppen, “Helical Liquids and Majorana Bound
States in Quantum Wires”, Physical Review LeĴers 105, 177002 (2010).

Paik, H., D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R.
Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret,
and R. J. Schoelkopf, “Observation of high coherence in Josephson junction
qubits measured in a three-dimensional circuit QED architecture.”, Physical
Review LeĴers 107, 240501 (2011).

Patel, U., I. V. Pechenezhskiy, B. L. T. Plourde, M. G. Vavilov, and R. McDermoĴ,
“Phonon-mediated quasiparticle poisoning of superconducting microwave
resonators”, Physical Review B 96, 220501 (2017).

Pekola, J. P., D. V. Anghel, T. I. Suppula, J. K. Suoknuuti, A. J. Manninen, and M.
Manninen, “Trapping of quasiparticles of a nonequilibrium superconductor”,
Applied Physics LeĴers 76, 2782–2784 (2000).

Pekola, J. P., J. J. Vartiainen, M. MöĴönen, O.-P. Saira, M. Meschke, and D. V.
Averin, “Hybrid single-electron transistor as a source of quantized electric
current”, Nature Physics 4, 120–124 (2008).

Peltonen, J. T., J. T. Muhonen, M. Meschke, N. B. Kopnin, and J. P. Pekola,
“Magnetic-field-induced stabilization of nonequilibrium superconductivity
in a normal-metal/insulator/superconductor junction”, Physical Review B 84,
220502 (2011).

Pop, I. M., T. Fournier, T. Crozes, F. Lecocq, I. Matei, B. Pannetier, O. Buisson,
and W. Guichard, “Fabrication of stable and reproducible submicron tunnel
junctions”, Journal of Vacuum Science & Technology B 30, 010607 (2012).

Pop, I. M., K. Geerlings, G. Catelani, R. J. Schoelkopf, L. I. Glazman, and M. H.
Devoret, “Coherent suppression of electromagnetic dissipation due to super-
conducting quasiparticles.”, Nature 508, 369–72 (2014).

Preskill, J., Lecture notes for physics 229: Quantum information and computation (Cal-
ifornia Institute of Technology, 1998).

http://dx.doi.org/10.1103/PhysRev.32.110
http://dx.doi.org/10.1103/PhysRev.32.110
http://dx.doi.org/10.1103/PhysRevB.89.104504
http://dx.doi.org/10.1103/PhysRevB.89.104504
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevB.96.220501
http://dx.doi.org/10.1063/1.126474
http://dx.doi.org/10.1038/nphys808
http://dx.doi.org/10.1103/PhysRevB.84.220502
http://dx.doi.org/10.1103/PhysRevB.84.220502
http://dx.doi.org/10.1116/1.3673790
http://dx.doi.org/10.1038/nature13017


REFERENCES 159

Rajauria, S., L. M. A. Pascal, P. Gandit, F. W. J. Hekking, B. Pannetier, and
H. Courtois, “Efficiency of quasiparticle evacuation in superconducting de-
vices”, Physical Review B 85, 020505 (2012).

Redfield, A. G., “On the Theory of Relaxation Processes”, IBM Journal of Research
and Development 1, 19–31 (1957).

Reed, M. D., L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J.
Schoelkopf, “High-Fidelity Readout in Circuit Quantum Electrodynamics Us-
ing the Jaynes-Cummings Nonlinearity”, Physical Review LeĴers 105, 173601
(2010).

Ristè, D., C. C. Bultink, M. J. Tiggelman, R. N. Schouten, K. W. Lehnert, and L.
DiCarlo, “Millisecond charge-parity fluctuations and induced decoherence in
a superconducting transmon qubit.”, Nature Communications 4, 1913 (2013).

Riwar, R.-P., L. I. Glazman, and G. Catelani, “Dissipation by normal-metal traps
in transmon qubits”, Physical Review B 98, 024502 (2018).

Riwar, R.-P., A. Hosseinkhani, L. D. Burkhart, Y. Y. Gao, R. J. Schoelkopf, L. I.
Glazman, and G. Catelani, “Normal-metal quasiparticle traps for supercon-
ducting qubits”, Physical Review B 94, 104516 (2016).

Rooks, M. J., E. Kratschmer, R. Viswanathan, J. Katine, R. E. Fontana, and S. A.
MacDonald, “Low stress development of poly(methylmethacrylate) for high
aspect ratio structures”, Journal of Vacuum Science & Technology B: Micro-
electronics and Nanometer Structures 20, 2937 (2002).

Saira, O.-P., A. Kemppinen, V. F. Maisi, and J. P. Pekola, “Vanishing quasiparticle
density in a hybrid Al/Cu/Al single-electron transistor”, Physical Review B 85,
012504 (2012).

Sank, D., Z. Chen, M. Khezri, J. Kelly, R. Barends, B. Campbell, Y. Chen, B. Chiaro,
A. Dunsworth, A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mutus, M. Nee-
ley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, T.
White, J. Wenner, A. N. Korotkov, and J. M. Martinis, “Measurement-Induced
State Transitions in a Superconducting Qubit: Beyond the Rotating Wave Ap-
proximation”, Physical Review LeĴers 117, 190503 (2016).

Schoelkopf, R. J., A. A. Clerk, S. M. Girvin, K. W. Lehnert, and M. H. Devoret,
“Qubits as Spectrometers of Quantum Noise”, in Quantum noise in mesoscopic
physics (Springer Netherlands, Dordrecht, 2003), pp. 175–203.

http://dx.doi.org/10.1103/PhysRevB.85.020505
http://dx.doi.org/10.1147/rd.11.0019
http://dx.doi.org/10.1147/rd.11.0019
http://dx.doi.org/10.1103/PhysRevLett.105.173601
http://dx.doi.org/10.1103/PhysRevLett.105.173601
http://dx.doi.org/10.1038/ncomms2936
http://dx.doi.org/10.1103/PhysRevB.98.024502
http://dx.doi.org/10.1103/PhysRevB.94.104516
http://dx.doi.org/10.1116/1.1524971
http://dx.doi.org/10.1116/1.1524971
http://dx.doi.org/10.1103/PhysRevB.85.012504
http://dx.doi.org/10.1103/PhysRevB.85.012504
http://dx.doi.org/10.1103/PhysRevLett.117.190503
http://dx.doi.org/10.1007/978-94-010-0089-5_9
http://dx.doi.org/10.1007/978-94-010-0089-5_9


160 REFERENCES

Schreier, J. A., A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow,
J. M. GambeĴa, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and
R. J. Schoelkopf, “Suppressing charge noise decoherence in superconducting
charge qubits”, Physical Review B 77, 180502 (2008).

Sears, A. P., A. Petrenko, G. Catelani, L. Sun, H. Paik, G. Kirchmair, L. Frun-
zio, L. I. Glazman, S. M. Girvin, and R. J. Schoelkopf, “Photon shot noise de-
phasing in the strong-dispersive limit of circuit QED”, Physical Review B 86,
180504 (2012).

Segall, K., C. Wilson, L. Li, L. Frunzio, S. Friedrich, M. C. Gaidis, and D. E. Prober,
“Dynamics and energy distribution of nonequilibrium quasiparticles in su-
perconducting tunnel junctions”, Physical Review B 70, 214520 (2004).

Serniak, K., S. Diamond, M. Hays, V. Fatemi, S. Shankar, L. Frunzio, R. J.
Schoelkopf, and M. H. Devoret, “Direct Dispersive Monitoring of Charge
Parity in Offset-Charge-Sensitive Transmons”, Physical Review Applied 12,
014052 (2019).

Serniak, K., M. Hays, G. de Lange, S. Diamond, S. Shankar, L. D. Burkhart, L.
Frunzio, M. Houzet, and M. H. Devoret, “Hot Nonequilibrium Quasiparticles
in Transmon Qubits”, Physical Review LeĴers 121, 157701 (2018).

Shaw, M. D., J. Bueno, P. Day, C. M. Bradford, and P. M. Echternach, “Quantum
capacitance detector: A pair-breaking radiation detector based on the single
Cooper-pair box”, Physical Review B 79, 144511 (2009).

Shaw, M. D., R. M. Lutchyn, P. Delsing, and P. M. Echternach, “Kinetics of
nonequilibrium quasiparticle tunneling in superconducting charge qubits”,
Physical Review B 78, 024503 (2008).

Slichter, D. H., R. Vijay, S. J. Weber, S. Boutin, M. Boissonneault, J. M. GambeĴa,
A. Blais, and I. Siddiqi, “Measurement-Induced Qubit State Mixing in Cir-
cuit QED from Up-Converted Dephasing Noise”, Physical Review LeĴers 109,
153601 (2012).

Smith, W. C., A. Kou, U. Vool, I. M. Pop, L. Frunzio, R. J. Schoelkopf, and
M. H. Devoret, “Quantization of inductively shunted superconducting cir-
cuits”, Physical Review B 94, 144507 (2016).

http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevB.86.180504
http://dx.doi.org/10.1103/PhysRevB.86.180504
http://dx.doi.org/10.1103/PhysRevB.70.214520
http://dx.doi.org/10.1103/PhysRevApplied.12.014052
http://dx.doi.org/10.1103/PhysRevApplied.12.014052
http://dx.doi.org/10.1103/PhysRevLett.121.157701
http://dx.doi.org/10.1103/PhysRevB.79.144511
http://dx.doi.org/10.1103/PhysRevB.78.024503
http://dx.doi.org/10.1103/PhysRevLett.109.153601
http://dx.doi.org/10.1103/PhysRevLett.109.153601
http://dx.doi.org/10.1103/PhysRevB.94.144507


REFERENCES 161

Stone, K. J., K. G. Megerian, P. K. Day, P. M. Echternach, J. Bueno, and N. Llom-
bart, “Real time quasiparticle tunneling measurements on an illuminated
quantum capacitance detector”, Applied Physics LeĴers 100, 263509 (2012).

Sun, L., L. DiCarlo, M. D. Reed, G. Catelani, L. S. Bishop, D. I. Schuster,
B. R. Johnson, G. A. Yang, L. Frunzio, L. Glazman, M. H. Devoret, and
R. J. Schoelkopf, “Measurements of Quasiparticle Tunneling Dynamics in a
Band-Gap-Engineered Transmon Qubit”, Physical Review LeĴers 108, 230509
(2012).

Taupin, M., I. M. Khaymovich, M. Meschke, A. S. Mel’nikov, and J. P. Pekola,
“Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic
superconductors”, Nature Communications 7, 10977 (2016).

Teufel, J. D., T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois,
J. D. WhiĴaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of
micromechanical motion to the quantum ground state”, Nature 475, 359–363
(2011).

Tinkham, M., Introduction to Superconductivity (Dover Publications, 2004).

Tosi, L., C. Meĵger, M. F. Goffman, C. Urbina, H. Pothier, S. Park, A. L. Yeyati, J.
Nygård, and P. Krogstrup, “Spin-Orbit SpliĴing of Andreev States Revealed
by Microwave Spectroscopy”, Physical Review X 9, 011010 (2019).

van Woerkom, D. J., A. Geresdi, and L. P. Kouwenhoven, “One minute parity life-
time of a NbTiN Cooper-pair transistor”, Nature Physics 11, 547–550 (2015).

Verney, L., R. Lescanne, M. H. Devoret, Z. Leghtas, and M. Mirrahimi, “Structural
Instability of Driven Josephson Circuits Prevented by an Inductive Shunt”,
Physical Review Applied 11, 024003 (2019).

Vion, D., A. Aassime, A. CoĴet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and
M. H. Devoret, “Manipulating the quantum state of an electrical circuit”, Sci-
ence 296, 886–9 (2002).

Visser, P. J. de, J. J. A. Baselmans, J. Bueno, N. Llombart, and T. M. Klapwijk,
“Fluctuations in the electron system of a superconductor exposed to a photon
flux.”, en, Nature Communications 5, 3130 (2014).

http://dx.doi.org/10.1063/1.4731880
http://dx.doi.org/10.1103/PhysRevLett.108.230509
http://dx.doi.org/10.1103/PhysRevLett.108.230509
http://dx.doi.org/10.1038/ncomms10977
http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1103/PhysRevX.9.011010
http://dx.doi.org/10.1038/nphys3342
http://dx.doi.org/10.1103/PhysRevApplied.11.024003
http://dx.doi.org/10.1126/science.1069372
http://dx.doi.org/10.1126/science.1069372
http://dx.doi.org/10.1038/ncomms4130


162 REFERENCES

Visser, P. J. de, D. J. Goldie, P. Diener, S. Withington, J. J. A. Baselmans, and T. M.
Klapwijk, “Evidence of a Nonequilibrium Distribution of Quasiparticles in the
Microwave Response of a Superconducting Aluminum Resonator”, Physical
Review LeĴers 112, 047004 (2014).

Vool, U., I. M. Pop, K. Sliwa, B. Abdo, C. Wang, T. Brecht, Y. Y. Gao, S. Shankar,
M. Hatridge, G. Catelani, M. Mirrahimi, L. Frunzio, R. J. Schoelkopf, L. I. Glaz-
man, and M. H. Devoret, “Non-Poissonian Quantum Jumps of a Fluxonium
Qubit due to Quasiparticle Excitations”, Physical Review LeĴers 113, 247001
(2014).

Vool, U. and M. Devoret, “Introduction to quantum electromagnetic circuits”,
International Journal of Circuit Theory and Applications 45, 897–934 (2017).

Wang, C., C. Axline, Y. Y. Gao, T. Brecht, Y. Chu, L. Frunzio, M. H. Devoret, and
R. J. Schoelkopf, “Surface participation and dielectric loss in superconducting
qubits”, Applied Physics LeĴers 107, 162601 (2015).

Wang, C., Y. Y. Gao, I. M. Pop, U. Vool, C. Axline, T. Brecht, R. W. Heeres, L. Frun-
zio, M. H. Devoret, G. Catelani, L. I. Glazman, and R. J. Schoelkopf, “Measure-
ment and control of quasiparticle dynamics in a superconducting qubit.”, en,
Nature Communications 5, 5836 (2014).

Wang, Z., S. Shankar, Z. Minev, P. Campagne-Ibarcq, A. Narla, and M. Devoret,
“Cavity AĴenuators for Superconducting Qubits”, Physical Review Applied
11, 014031 (2019).

Wangsness, R. K. and F. Bloch, “The Dynamical Theory of Nuclear Induction”,
Physical Review 89, 728–739 (1953).

Wenner, J., Y. Yin, E. Lucero, R. Barends, Y. Chen, B. Chiaro, J. Kelly, M. Lenander,
M. Mariantoni, A. Megrant, C. Neill, P. J. J. O’Malley, D. Sank, A. Vainsencher,
H. Wang, T. C. White, A. N. Cleland, and J. M. Martinis, “Excitation of Super-
conducting Qubits from Hot Nonequilibrium Quasiparticles”, Physical Re-
view LeĴers 110, 150502 (2013).

Woods, W., G. Calusine, A. Melville, A. Sevi, E. Golden, D. K. Kim, D. Rosenberg,
J. L. Yoder, and W. D. Oliver, “Determining Interface Dielectric Losses in Su-
perconducting Coplanar-Waveguide Resonators”, Physical Review Applied
12, 014012 (2019).

http://dx.doi.org/10.1103/PhysRevLett.112.047004
http://dx.doi.org/10.1103/PhysRevLett.112.047004
http://dx.doi.org/10.1103/PhysRevLett.113.247001
http://dx.doi.org/10.1103/PhysRevLett.113.247001
http://dx.doi.org/10.1002/cta.2359
http://dx.doi.org/10.1063/1.4934486
http://dx.doi.org/10.1038/ncomms6836
http://dx.doi.org/10.1103/PhysRevApplied.11.014031
http://dx.doi.org/10.1103/PhysRevApplied.11.014031
http://dx.doi.org/10.1103/PhysRev.89.728
http://dx.doi.org/10.1103/PhysRevLett.110.150502
http://dx.doi.org/10.1103/PhysRevLett.110.150502
http://dx.doi.org/10.1103/PhysRevApplied.12.014012
http://dx.doi.org/10.1103/PhysRevApplied.12.014012


REFERENCES 163

Yamamoto, T., Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demon-
stration of conditional gate operation using superconducting charge qubits”,
Nature 425, 941–944 (2003).

Yan, F., S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gud-
mundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J.
Clarke, A. J. Kerman, and W. D. Oliver, “The flux qubit revisited to enhance
coherence and reproducibility”, Nature Communications 7, 12964 (2016).

Yavilberg, K., E. Ginossar, and E. Grosfeld, “Fermion parity measurement and
control in Majorana circuit quantum electrodynamics”, Physical Review B 92,
075143 (2015).

You, J. Q., X. Hu, S. Ashhab, and F. Nori, “Low-decoherence flux qubit”, Physical
Review B 75, 140515 (2007).

Yu, T. and J. H. Eberly, “Qubit disentanglement and decoherence via dephasing”,
Physical Review B 68, 165322 (2003).

Zhao, S., D. J. Goldie, C. N. Thomas, and S. Withington, “Calculation and mea-
surement of critical temperature in thin superconducting multilayers”, Super-
conductor Science and Technology 31, 105004 (2018).

Zhu, G., D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with
fluxonium qubits: Theory of the dispersive regime”, Physical Review B 87,
024510 (2013).

http://dx.doi.org/10.1038/nature02015
http://dx.doi.org/10.1038/ncomms12964
http://dx.doi.org/10.1103/PhysRevB.92.075143
http://dx.doi.org/10.1103/PhysRevB.92.075143
http://dx.doi.org/10.1103/PhysRevB.75.140515
http://dx.doi.org/10.1103/PhysRevB.75.140515
http://dx.doi.org/10.1103/PhysRevB.68.165322
http://dx.doi.org/10.1088/1361-6668/aad788
http://dx.doi.org/10.1088/1361-6668/aad788
http://dx.doi.org/10.1103/PhysRevB.87.024510
http://dx.doi.org/10.1103/PhysRevB.87.024510

	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements
	Introduction
	Motivation
	Results of the dissertation

	Quantum Information with Superconducting Circuits
	Quantum bits
	Qubit decoherence
	Energy relaxation
	Qubit dephasing
	The decoherence time T2

	Requirements for physical qubits
	Superconducting qubits
	Superconducting quantum circuits
	Josephson-junction-based qubits
	Decoherence of superconducting qubits


	Quasiparticle Excitations in BCS Superconductors
	BCS superconductivity
	The BCS Hamiltonian
	Single-particle density of states

	QP excitations out of the BCS ground state
	Thermal QPs
	Nonequilibrium QPs
	Kinetics of nonequilibrium QPs
	Josephson effects

	From the Cooper-Pair Box to the Transmon
	Properties of the circuit
	Offset charge and charge parity
	Charge dispersion
	Anharmonicity
	Eigenvectors

	Transmon-cavity coupling
	OCS transmon
	Physical device
	Experimental setup
	Two-tone spectroscopy


	QP-Qubit Coupling
	Full electronic Hamiltonian
	QP tunneling
	Photon-assisted tunneling
	Single-charge-tunneling matrix elements
	Numerical computation in the single-charge basis
	Transmon limit

	QP-induced transition rates
	Ultimate limit on transmon coherence?
	Other superconducting qubits

	Probing QP Dynamics in OCS Transmons
	Mapping charge-parity onto the plasmon state
	Charge-parity-independent Ramsey interferometry
	Charge-parity-mapping pulse sequence
	Correlating charge-parity switches and plasmon transitions
	Master equation model
	Extracted rates
	Temperature dependence
	Comparison with PAT theory
	Summary and discussion

	Dispersive readout of the joint plasmon and charge-parity state
	Experimental setup
	Charge-parity dependent dispersive shifts
	Frequency-dependent phase response
	Measurement protocol
	Single-shot readout of charge-parity
	Charge-parity dynamics
	Time dependence of TP
	Qubit relaxation and excitation
	Discussion and conclusions


	Reducing QP Density
	Attenuating Cooper-pair-breaking radiation
	Proximitized-superconducting QP traps
	Wireless QP-injection
	Charge-parity correlation experiments
	Summary of Ti-proximitized-Al QP traps


	Conclusions and future directions
	Future experiments
	Probing PATs in an OCS SQUID
	Probing PATs with a Nb-blocked OCS transmon

	Perspectives

	Appendices
	Qubit Fabrication
	References

