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CHAPTER 1

Introduction

1.1 Thesis overview

In this thesis I will present the results of my effort to implement quantum feed-

back control of superconducting qubits. The first goal of the thesis work was to

build a control system capable of running feedback experiments. There has been

tremendous progress in both coherence and high fidelity single shot readout of su-

perconducting qubits. Latency in measurement can now be reduced to just a small

percentage of a qubit coherence time. All these improvements in system parame-

ters paved the way for measurement-based feedback control of quantum systems

and error correction protocols. But feedback control experiments were still chal-

lenging to perform because we were still missing a capable controller to complete

the feedback loop. The operations of the controller need to be fast and determin-

istic in terms of timing and flexible. To meet those demands, we implemented an

all-in-one system that contains a digitizer, a demodulator, a state estimator and an

AWG on a commercial field-programmable-gate-array (FPGA) board. The FPGA

system shows superior performance in terms of throughput, timing stability and

on-the-fly programmability compared to traditional technology.

The FPGA controller development has been a continuing effort. As the con-
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troller’s capabilities became more sophisticated, the second goal of the thesis came

into action: to use the control system to implement feedback experiments. As a

proof of principle, we first successfully demonstrated reset of a single qubit in high

entropy state to the ground state of very high purity, using an active feedback pro-

tocol implemented on the FPGA system. We then tested our feedback platform

on a system consisting of two superconducting qubits coupled to a cavity. Us-

ing the same experimental setup, we stabilized entanglement of the two qubits by

two nominally distinct schemes: a “passive” reservoir engineering method and an

“active” correction based on conditional parity measurements. Furthermore, the

flexibility of our feedback controller enabled us to implement a “nested” feedback

protocol that combined both schemes to get the best of both worlds.

This thesis is organized as following:

In Chapter 1, we introduce measurement-based feedback and driven-dissipative

feedback. We shed light on their connection to entropy evacuation, which lead us

to study the paradox of Maxwell’s demon and a desire to create a more “power-

ful” demon. This chapter is concluded with a highlight of key experiment results.

In Chapter 2, we start with a primer on current FPGA technology and digital

design principles which are important to implementing a working control system.

We then describe the architecture of the FPGA-based AWG. The chapter also pro-

vides a chronicle of the early stages of FPGA development that paved the way for

the FPGA-based full controller later.

In Chapter 3, we give a detailed look of the architecture and the principles of

operations of the FPGA-based all-in-one controller.

In Chapter 4, we demonstrate the proof of principle experiment to purify the

ground state of a single qubit.

And lastly in Chapter 5, we present the experiment to compare and combine

measurement-based feedback and driven-dissipative entanglement stabilization.
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1.2 Two paradigms of feedback

There are two main kinds of feedback: measurement-based feedback and au-

tonomous feedback.

1.2.1 Measurement-based feedback

Measurement-based (MB) feedback is more intuitively well understood for its

ubiquity in our everyday life. There are many instances in which human beings

want to control a system which has some its degrees of freedom coupled to an ex-

ternal “environment” that causes unwanted fluctuations. In many such instances,

we find MB feedback come to rescue. The thermostat in a house uses MB feedback

to control the temperature inside the house to our liking whether it is a scorching

hot summer or a frigid winter outside. An airplane also uses MB feedback to

maintain its altitude reasonably well, despite constant turbulences in the air. The

central bank of a country uses MB feedback to try to keep prices and the economy

stable for its people, against many unruly macroeconomic forces.

The feedback loop can be broken down in four main components (Fig. 1.1).

The ”system”1 is the system of interest that we want to control. The “sensor” is

the measurement device that captures an output signal from the system, which

should reflect the state of the system. The sensor transmits the detected signal

to the ”estimator” which does some calculation to estimate the state of the sys-

tem based on the captured signal. A common goal of feedback is to stabilize the

system towards a predetermined target state or value. The state estimator and

an “actuator”, the final components in the loop, constitute the controller for the

feedback loop. The controller compares the measured state or value to the desired

target value. Depending on the difference, the controller applies an action on the

1also commonly referred to as “plant” in control theory literature, which will be used inter-
changeably here
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target through an “actuator” to steer it.

(a)

 

System Sensor

Actuator Estimator

(b) (c)

Figure 1.1: Overview of measurement-based feedback and examples. (a) The
canonical flow of MB feedback loop. (b) Continuous MB feedback to stabilize
a Fock state in a microwave cavity using Rydberg atoms, the first experimental
demonstration real time quantum MB feedback[Sayrin et al., 2011]. (c) Determin-
istic entanglement generation of superconducting qubits by MB feedback[Riste
et al., 2013].

Owing to the existing foundation in classical control and feedback in engi-

neering, measurement-based feedback has been readily adopted in quantum con-

trol[Doherty et al., 2000; Wiseman and Milburn, 2009].

Two unique challenges exist for quantum feedback. Quantum systems are

much more fragile than classical systems in terms of susceptibility to environ-

mental noise. Without error correction or stabilization, a quantum state tends to

have very limited lifetime. Therefore the controller in the feedback loop needs to

process the measurement result and react within the relevant coherence time. This

calls for very low-latency classical control electronics.

The second challenge is that measurement in quantum feedback is not a pas-

sive process. The act of measurement can change the state of the system be-

4



ing measured, a perturbation known as measurement back-action. The goal is

to achieve quantum non-demolition (QND) measurement in which the quantum

state is preserved after even repeated measurements. One strategy is have an an-

cilla system such that measuring the ancilla system gives us information about

the primary system but does not disturb it. Another strategy, in the event that

we know the target state we want to stabilize, is to devise the measurement in a

way such as that the target state is effectively an eigenstate of the measurement

process.

Continuous measurement-based quantum feedback was first demonstrated

with Rydberg atomic qubits[Sayrin et al., 2011]. Sayrin et al stabilized on demand

Fock states in a superconducting cavity by a continuous feedback loop. They used

Rydberg atoms to measure the photon number in the cavity and fed the measure-

ment result to a controller that adjusted in real time the microwave field injected

into the cavity.

In recent years, superconducting qubits have been a flourishing ground for

MB feedback. Several groups have applied MB feedback for experiments ranging

from singe-qubit state purification, stabilization, deterministic teleportation to en-

tanglement generation[Ristè et al., 2012a; Vijay et al., 2012; Campagne-Ibarcq et al.,

2013; Riste et al., 2013; Steffen et al., 2013; Ristè et al., 2014; Córcoles et al., 2015].

Superconducting qubits have joined quantum optics as leaders in quantum feed-

back thanks to signifiant improvements of both the system and controller parts

of the feedback loop. Common to all these MB experiments in superconducting

qubits are relatively long lived qubits and parametric amplifiers for high fidelity

real time readout.
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1.2.2 Autonomous feedback

Autonomous feedback, despite not being as intuitive as measurement-based feed-

back, has been around since the industrial revolution. Autonomous feedback got

its name due to the fact that there is no external controller that does active mea-

surement and processing to reach a decision. The famous centrifugal Watt gover-

nor was based on feedback that that involves no measurement (Fig. 1.2).

Figure 1.2: Stabilization of steam engine by autonomous feedback. The Watt
governor was used to stabilize the speed of an steam engine. The steam engine
is connected to the governor which functions as a regulator of the “fuel” to the
engine, i.e., controlling the amount of steam flowing to the engine. The speed of
the engine is positively correlated to the amount of steam input. The governor
consists of a rotating main shaft with two arms, each of which has a metal ball
attached at the end. When steam engine spins too fast, the shaft of the governor
also rotates faster, causing the arms to rise which presses down a valve, reducing
steam flow. The opposite happens and steam flow is increased when the steam
engine spins too slow. The stability of feedback is actually ensured by dissipa-
tion[Maxwell, 1867]. The friction acting on the main shaft, which prevents it from
moving up or down too fast, inhibits big run-away speed oscillations. Not sur-
prisingly, dissipation plays a crucial role in autonomous feedback in general as
we shall see in the rest of this thesis.

In MB feedback, the controller and the plant (see the definition in the Glos-

sary) are typically physically separate entities; there is no Hamiltonian that describes

the entire operation of the joint system. As illustrated by the example of the Watt

governor, autonomous feedback is feedback by physical coupling, whether me-
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chanical or electrical. The plant is connected with another system, the controller,

which shares some of its degrees of freedom with the plant, such that the joint sys-

tem can be described by an interaction Hamiltonian. The evolution of the joint system

according to the coupled equations of motion autonomously sustains the feedback

loop.

In quantum control, two seemingly distinct but closely related descriptions of

autonomous feedback arise (Fig. 1.3). One description is called coherent feedback

[Wiseman and Milburn, 1994; Lloyd, 2000; Nurdin et al., 2009], which parallels the

structure of MB feedback more closely. Output from the plant leaks into another

quantum system which acts as a controller. The quantum controller processes the

output from the plant coherently (without any classical measurement) according

to its Hamiltonian and feeds a new filtered/processed signal back to the plant,

that controls the dynamics of the plant. This description is popular in the quan-

tum optics community since signal paths from plant to controller and vice versa

can be clearly delineated, through directional coupling by either optical fibers or

waveguides.

The other description is called reservoir/bath engineering, or driven-dissipative

(DD) feedback[Poyatos et al., 1996]. In DD feedback, the plant is coupled to an-

other quantum system with specifically engineered dissipation, e.g., a quantum

reservoir or bath. Unlike coherent feedback, DD feedback tends not to have a de-

fined directional coupling between the plant and the controller; instead, the cou-

pling between the two originates from a significant interactive term in the joint

system Hamiltonian. Nevertheless, as we shall see with some example DD exper-

iments, we can consider the reservoir as an effective “quantum controller” that,

with the help of externally applied drives, removes entropy from the plant and

steers it towards the desired state. The dissipation of the reservoir is key since

it allows the “controller” to decay to its ground state, i.e., to reset, and thus the

7



C
 

System

Qantum
controller

System

Quantum circuit 
w/ engineered 

dissipation

Coherent feedback

Driven dissipative feedback

(a) (b) (c)

(d) (e)

(f)

Figure 1.3: Overview of autonomous feedback and examples. (a) Control flow of
coherent feedback. Lines through the components represent external drives ap-
plied to them, which provide the signal in the feedback loop. (b) An all-optical
feedback loop to stabilize laser signal disturbance. The plant and controller of
the feedback loop comprise two optical ring resonators; the feedback signals com-
prise laser beams[Mabuchi, 2008]. (c) A coherent-feedback network implemented
with modular superconducting devices. A JPA (Josephson Parametric Ampli-
fier)[Castellanos-Beltran et al., 2008] acts as the controller and a mechanical oscil-
lator as the plant. The feedback loop achieves tunable coupling to the mechanical
oscillator.[Kerckhoff et al., 2013] (d) Control of driven dissipative feedback. (e) DD
stabilization of a single qubit’s ground state by coupling between the qubit and a
cavity with an engineered lifetime[Geerlings et al., 2013] (f) DD stabilization of an
entangled state of two qubits by their interaction with a cavity with engineered
dissipation [Shankar et al., 2013].
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feedback loop to repeat indefinitely.

This approach has been demonstrated on a variety of physical systems in-

cluding atomic ensembles[Krauter et al., 2011], trapped ions[Lin et al., 2013], me-

chanical resonators[Kienzler et al., 2015] and superconducting qubits[Murch et al.,

2012; Geerlings et al., 2013; Leghtas et al., 2013; Shankar et al., 2013; Leghtas et al.,

2015; Holland et al., 2015]. In many all of these implementations, the resonators,

whether mechanical or superconducting, are designed with specific dissipation

and serve as the reservoir.

DD feedback does not require any sophisticated low-latency electronics for

fast real time processing. The feedback mechanism is built in the joint system

Hamiltonian. As a result, feedback latency for DD is typically less than MB. Since

parameters in Hamiltonian are often fixed during hardware design, adjusting the

feedback by changing the “quantum controller”, however, can be more challeng-

ing than re-programming a classical controller.

1.2.3 MB and DD feedback in quantum error correction

Random fluctuations in the environment inevitably cause decoherence of quan-

tum systems that are coupled to it. In quantum computing, the limited coherence

times of physical qubits pose a major obstacle to large scale quantum information

processing. Protecting quantum information from decoherence-induced errors by

active quantum error correction (QEC) thus is a necessary and crucial step to-

wards building a practical quantum computer[Nielsen and Chuang, 2004; Terhal,

2015]. There is significant ongoing effort in the community to find the best strat-

egy for this goal[Kerckhoff et al., 2010; Fowler et al., 2012; Fujii et al., 2014]. So far,

many of the proposed or demonstrated strategies fall into either the MB or the DD

camps.

To illustrate how the MB and DD schemes approach QEC respectively, let
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us consider the quantum repetition code[Nielsen and Chuang, 2004] that cor-

rects for a bit flip or phase flip error. Chiaverini et al[Chiaverini et al., 2004]

first demonstrated the MB approach to the three-qubit repetition code on trapped

ions2. Schindler et al[Schindler et al., 2011] and Reed et al[Reed et al., 2012] later

have also shown an autonomous version of the repetition code, with trapped ions

and superconducting qubits, respectively.

The repetition QEC code has three stages. In the first stage, we map the qubit

we want to protect onto the logical state of three entangled qubits. In the second

stage, after an error may have occurred, we reverse the operations performed in

the first stage to decode the logical qubit back to three disentangled qubits. After

the second stage, the primary qubit has either erroneously flipped or not. The

error syndrome is now represented by the states of the two ancilla qubits. In the

final stage, we apply rotations on the qubits conditioned on the error syndromes

to undo the error.

The difference between the MB and DD approach is what happens in the final

stage. In the MB approach, a classical controller performs projective measure-

ments of the ancilla qubits, the results of which correspond to the eigenvalues of a

set of two-qubit parity operators and give the error syndrome. Conditioned on the

measurements, the controller applies correction gates, if necessary, to the qubits

to undo the error and reset the ancilla. In the DD approach, there is no projective

measurement or need for a low-latency classical controller for real time process-

ing. Instead, a coherent multi-qubit gate, specifically, a controlled-controlled not

gate (a Toffoli gate) is applied. It autonomously flips the primary qubit if and only

if the two ancilla qubits are excited. Afterwards, some unconditional dissipation-

based scheme is then used to reset the ancilla qubits.

During the QEC protocol, the random errors caused by noise in the environ-

2Cory et al were actually the first to demonstrate the quantum repetition code[Cory et al., 1998].
They implemented it in NMR. However, they did not present a method to reset the ancilla qubits.
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ment induce uncertainty in the states of the ancilla qubits, corresponding to an

increase of their entropy. We will look more closely at the connection between

information and entropy in sec. 1.3. For now, we see that both the MB and DD

strategies rely on transferring entropy out of the ancilla qubits in the final stage.

In both approaches, the removal of entropy in the final stage is accomplished by

a non-unitary action. In MB, this is the projective measurements of the ancilla

qubits. In DD, this is done by the unconditional reset of the ancillas by a dissipa-

tive channel. It is important to note that the action applied on the ancillas must

be non-unitary since an unitary operation on a system conserves its entropy (from

the second law of thermodynamics, we know that entropy cannot decrease from

a reversible process; nor can entropy increase in such case since inverting this

reversible process would then cause a violation of the law).

1.3 Entropy and Maxwell’s demon

We mentioned the concept of entropy in previous sections and suggested a con-

nection between entropy evacuation and QEC. We shall examine it more closely

in this section. In thermal and statistical physics, entropy quantifies the amount

of disorder in a system. Consider the classic example, identical particles in a box

with a partition: the configuration in which equal number of particles reside in

each side of the partition has a higher entropy than the configuration in which all

the particles reside in just one side of the partition. This is because there are many

more ways to fulfill the former configuration than the latter. If we find the system

in the first configuration, we do not know a priori which particles are in the right

partition and which are in the left. Put in another way, without measurement,

we have less certainty about the first configuration than the second configuration.

This example seems to show that higher entropy implies more uncertainty about

measurement outcomes.
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There is indeed a quantitative definition of entropy for uncertainty in infor-

mation, called Shannon entropy[Nielsen and Chuang, 2004]. It is defined as the

following,

S = −
∑
i

Pi log2 Pi (1.1)

where Pi is the probability of being in state i.

For a random variable X which we wish to measure, the Shannon entropy

tells us how much uncertainty we have about our answer before we measure the

variable. Another equivalent interpretation is: the Shannon entropy tell us how

much information we gain after we make the measurement. The unit of Shannon

entropy is “bits”, as the log in the definition is base 2. This definition of informa-

tion uncertainty is also intimately connected to quantifying the optimal physical

resources required (i.e., number of bits) to store information. A pure state that

stays pure forever has zero entropy since we always know its state and there is no

need to store the information. On the other hand, a quantum system, of which the

only thing we are certain is its equal likelihood of being in the ground state and

the excited state, requires 1 bit of storage3

Ideally, when we prepare a quantum system, say a single qubit or a set of

entangled qubits in some initial state, we may wish for it to stay in that state for

as long as we want. Unfortunately, errors due to decoherence occur and cause it

to leave the target state and jump to other states. The increased probability for the

qubits to be in non-target states correspond to an increase in the Shannon entropy,

i.e., we are now more uncertain about the system before a measurement. Total

entropy cannot be decreased. But as we have seen with the example of quantum

3We need to emphasize here that entropy is a measurement of the information uncertainty,
not information itself. A pure state still requires many bits of information to specify its location
on the Bloch sphere whereas a totally mixed state (just the center of Bloch sphere) contains no
information.
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repetition code, a crucial step in QEC is to transfer entropy from a subsystem

about which we care about to somewhere we do not.

1.3.1 Maxwell’s demon

In 19th century, James Maxwell conjectured a thought experiment. He famously

wrote,

“... if we conceive of a being whose faculties are so sharpened that he can follow every

molecule in its course, such a being, whose attributes are as essentially finite as our own,

would be able to do what is impossible to us. For we have seen that the molecules in a vessel

full of air at uniform temperature are moving with velocities by no means uniform, though

the mean velocity of any great number of them, arbitrarily selected, is almost exactly

uniform. Now let us suppose that such a vessel is divided into two portions, A and B,

by a division in which there is a small hole, and that a being, who can see the individual

molecules, opens and closes this hole, so as to allow only the swifter molecules to pass

from A to B, and only the slower molecules to pass from B to A. He will thus, without

expenditure of work, raise the temperature of B and lower that of A, in contradiction to

the second law of thermodynamics.”

This “being” became known as Maxwell’s demon. The paradox raised by

Maxwell’s demon perplexed physicists for many decades. Instead of heat and

work, we can also examine Maxwell’s demon in terms of entropy. By separating

the hot molecules from the cold molecules, the demon lowers the disorder of the

system, thus the entropy of the system. However, this clearly violates the second

law of thermodynamics, which states that entropy of the universe as a whole, or

an isolated system, cannot be decreased. If the demon removes the entropy from

part of a system, then entropy cannot just disappear and must be accounted for

somewhere. The answer to the mystery finally came to light thanks to Rolf Lan-

dauer of IBM, who looked into irreversibility and energy consumption of compu-
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Figure 1.4: The paradox of Maxwell’s demon. The demon watches air molecules
in the box. It lets fast molecules travel to the right partition and slow molecules
the left partition but otherwise prohibits passage between the partitions. In doing
so, Maxwell’s demon seemingly lowers the entropy of this isolated system and
breaks the second law of thermodynamics.

tation[Landauer, 1961; Bennett, 1987].

Maxwell’s demon’s operations can be viewed as a cyclic process: every action

applied on a single molecule is one cycle. We can further assume that almost every

step in a cycle, from “seeing”, to opening and closing the passage, can be designed

to be reversible. For the cyclic process to be repeated however, the demon needs

to be initialized in a pre-determined state at the beginning of each cycle regardless

of what state it ends up in when the previous cycle concludes. It turns out that it

is the resetting that is necessarily irreversible and is accompanied by an increase

in entropy. Resetting, as an unconditional replacement of past record with a pre-

determined value, can also be understood as erasure of information or memory.

Now we show why erasure of information is an irreversible process by fol-

lowing the model presented in Landauer’s work (Fig. 1.5). We shall simplify the

discussion by treating the demon’s action as binary. There are two possible states

for the demon, “opening” vs. “closing” of the partition. It registers its state as

a bit on a binary storage device. Resetting or erasing this bit of information is

equivalent to setting this bit to 1 regardless of its original value.

Treating the binary storage device as a double potential well, we label a particle
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Figure 1.5: Resetting one bit of information. (a) Modeling a binary storage device
as a double potential well. (b) Resetting a bit to “1” when it is initially “0”. (c)
Resetting a bit to “1” when it is initially “1”.
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sitting in the left (right) well as “0” (“1”). One naive approach to resetting is: if

the particle is in the right well, we do nothing. If the particle is in the left well, we

first apply a force to push it slightly past the peak of the potential barrier and then

apply a retarding force in the opposite direction on the particle’s way down so it

would stop at the bottom of the right well without oscillating back to the left well.

This approach requires two different applications of forces for setting the register

value to 1 depending on its initial state. Resetting in computing, however, must

be an unconditional operation: the circuitry’s mechanism for erasing information

must be agnostic to the content of the information.

Here is a different approach: we apply a force on the particle to the right re-

gardless of its initial location. If the particle is in the right well, it will not only

stay in this well but go further right. If the particle is in the left well, the force will

push it over the barrier to the right well. Furthermore, we add a frictional force in

the well to act in the opposite direction of the particle’s motion. As a result, once

the active force is removed, the particle’s motion will be damped and eventually

settle at the bottom of the right well. This approach give us a true unconditional

reset operation which does not depend on the initial state. By introducing fric-

tion, we add a dissipative channel from the storage system to the environment.

Dissipation is the key that makes the reset unconditional. Moreover, the frictional

force allows the excess kinetic energy of the particle to be dissipated as heat to

the environment, which necessarily accompanies an increase of entropy in the en-

vironment. Thus we have shown where the entropy evacuated from the system

by Maxwell’s demon ends up: information erasure is an irreversible process and

requires entropy transfer to the environment.
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1.3.2 Maxwell’s demon and quantum feedback for QEC

The MB strategy for QEC removes entropy from the quantum system by project-

ing its ancilla system to a particular error syndrome through projective measure-

ments and applying appropriate correction accordingly in the final stage. Since

entropy cannot be destroyed, the question that remained from our previous dis-

cussion in sec. 1.2.3 is where error-induced entropy from the quantum system is

removed to? After investigating the paradox of Maxwell’s demon, we have the

answer.

In the MB protocol, the classical controller that records the measurement result

of one correction cycle needs to be reset for the next cycle. The erasure of the

record and the resetting require energy dissipation through resistive elements,

such as resistors. This is where the entropy removed from the quantum system

ends up.

We can now make a close connection between QEC by quantum feedback and

the task performed by Maxwell’s demon. In quantum feedback, the controller

plays the role of Maxwell’s demon, responsible for evacuating entropy from the

quantum system. We can view MB and DD feedback schemes as two ways which

Maxwell’s demon processes input information. MB feedback is like a demon op-

erating by voluntary action: the demon (the classical controller) makes a delib-

erate/calculated decision based on its observation. DD feedback is like a demon

operating by reflex action: the demon (the quantum controller) reacts to “stimuli”,

i.e., input from the target system without deliberate calculation.

Essentially, in MB feedback, a measurement outcome is recorded in a classical

register. The resetting of this classical register completes the entropy transfer from

the plant to the environment. In DD feedback, since there is no measurement, in-

formation is not stored in a classical device. The quantum controller, however,

whether implemented as a set of ancilla qubits or as a reservoir, has its state de-
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pendent on the plant through pre-engineered coupling and external drives and

hence acts as a register. The “quantum register” also needs to be reset for every

new feedback/correction cycle. It resets passively by relaxing back to its initial

state, mediated by dissipation. We should note now that despite the different

names given to the two schemes, dissipation actually plays an important role in

both. In both schemes, resetting the controller enables entropy transfer from the

plant to the environment and the resetting depends on dissipation.

A question that arises from making the analogy between quantum feedback

and Maxwell’s demon is the following: if MB and DD feedback strategies are

two choices that Maxwell’s demon employs to control a quantum system, can we

implement a Maxwell’s demon that has both capabilities, voluntary action and

reflex action? We can draw inspiration from ourselves, sentient beings who are

capable of both types of responses to external stimuli. There are many scenarios

when we actually combine both. The simple act of walking is one example. The

stabilization of our body in motion by small corrections of the steps is feedback by

reflex action; the choice of walking in a particular direction is a result of voluntary

action. At least our every day experiences tell us that these two types of feedback

can coexist and complement each other.

We therefore came up with the idea of “nested feedback”. This new strat-

egy, consisting of multiple continuously operating feedback loops, demonstrates a

more powerful version of a Maxwell’s demon. It adds a new “voluntary” decision-

making capability to a pre-existing Maxwell’s demon and in particular, for the DD

case in which the original demon acts solely on “reflex action”, the enhanced de-

mon has now two complementary decision capabilities. The nested feedback ap-

proach can be applicable to many quantum information platforms in which pre-

cise Hamiltonian control, efficient quantum measurement and fast classical con-

trol are available, such as trapped ions, Rydberg atoms, superconducting qubits,
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where simpler forms of Maxwell’s demon have been shown.

In the following sections, we highlight the efforts undertaken to implement

both the simple and advanced forms of Maxwell’s demon.

1.4 The all-in-one feedback controller

The challenges of implementing quantum feedback are manifold. The inherent

requirement for low latency calls for fast measurement and processing. Further-

more, if a quantum system incurs errors too often during a feedback cycle, such

that new error occurs in the middle of signal processing or pulse generation, any

feedback scheme for error correction would fare poorly. Thus a successful feed-

back protocol also requires long coherence times.

The work in this thesis uses superconducting qubits and the circuit QED (cQED)

architecture[Blais et al., 2004] as the quantum information processing platform.

Over the last decade or so, the field of superconducting qubits has seen rapid

progress. Many of these developments tackled the challenges of quantum con-

trol and feedback. The two key achievements have been significant improve-

ment of qubit coherence times and fast high fidelity measurement. Superconduct-

ing qubits are now the only solid state implementation that has demonstrated

the capability of QND measurement for error correction and control[Devoret and

Schoelkopf, 2013].

Coherence times

One of the popular early superconducting qubit design, the Cooper Pair Box

(CPB) suffered from high sensitivity to charge noise which shifts the qubit tran-

sition frequency and causes dephasing. A new design, the transmon qubit[Koch

et al., 2007], benefitted from the addition of a large shunting capacitor that sup-
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pressed the qubit energy level’s sensitivity to charge fluctuation and as a result

reduced dephasing due to charge noise.

Another breakthrough was the introduction of 3-dimensional cavity resonator[Paik

et al., 2011]. In the traditional planar resonator design, electromagnetic energy

dissipation through lossy materials such as surface dielectric spoils the quality

factor of the resonator and limits the qubit’s lifetime. The 3D cavity concentrates

most of the EM field in vacuum where there is no loss and eliminates participa-

tion of the lossy surfaces. The latest generation of 3D cavities has a lifetime on the

order of milliseconds and has pushed the qubit relaxation time to hundreds of mi-

croseconds[Reagor et al., 2013, 2015]. The simple geometry of the 3D cavity also

provides a pristine microwave environment that has minimum spurious modes

and is characterized by parameters that are easy to simulate.

Single-shot readout

Despite improvements to coherence times, quantum feedback would still not

be possible without good measurement performance. Real time MB feedback re-

quires single-shot readout. To resolve quantum state in a single feedback cycle,

the detected quantum signal must dominate classical noise. To simply amplify

the weak quantum signal by classical means, however, would not achieve the goal

since amplification adds noise. Even the best cryogenic amplifier adds noise that

is on the order of 100 times the quantum noise from the superconducting circuit.

The invention of superconducting parametric amplifiers, such as the Josephson

Parametric Converter (JPC) realized amplification that adds the minimum amount

of noise allowed by quantum mechanics and achieves significant gain such that

quantum noise accounts for approximately ∼90% overall system noise.

Real time control
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Progress in the cQED architecture for quantum computing demands compe-

tence in both quantum engineering and classical electrical engineering. As exem-

plified by the developments of superconducting qubits, resonators and paramps,

understanding of both quantum mechanics and microwave engineering are es-

sential. Similarly, to close the loop of quantum feedback, especially MB feedback,

requires sophisticated classical computer engineering, i.e., the development of a

low-latency classical controller.

The two requirements for the controller are fast reaction and deterministic tim-

ing. The evolution of a quantum system is measured in nanoseconds. From sam-

pling the signal from a measurement chain to sending a signal back to the quan-

tum system, the controller also needs to respond on a time scale of nanoseconds.

And to guarantee coherent control from cycle to cycle, the controller needs to en-

sure that the timing of each operation stays consistent and any deviation is much

less than a nanosecond (on the order of picoseconds). This is not possible with a

normal computer in which the execution of processes take indeterminate amount

of time and is measured in milliseconds. Microcontrollers, such as Arduinos, have

similar problems.

The only viable candidate that can fulfill these requirements is a real time elec-

tronic system. The defining characteristic of a real time system is that every oper-

ation is synchronized with a digital clock cycle. For example, a real time system’s

operations can be timed in exact integral number of 4 ns periods if it is synchro-

nized with a 250 MHz digital clock. The most popular choice of real time elec-

tronic system is the field programmable gate array (FPGA).

An FPGA is an integrated circuit consisting of millions of digital logic gates,

which are organized into many logic blocks. The interconnects between the blocks

are configurable to serve different applications. All of the logic blocks have ac-

cess to an extensive distribution net of clock signals that allow the logic circuitry
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to operate synchronously. An FPGA chip is often integrated with other periph-

eral components on a circuit board, such as a phase-locked loop (PLL), analog-to-

digital converters (ADC) or digital-to-analog converters (DAC), which provides

an interface for the FPGA to the outside world.

Before this thesis work, the use of an FPGA in superconducting qubit quantum

feedback experiments had been relatively simple. The FPGA-based controllers

in these experiments (Fig. 1.6) have an analog input interface implemented by

ADCs which receive the signals from a measurement apparatus[Ristè et al., 2012a;

Campagne-Ibarcq et al., 2013]. The FPGA samples digitized signal, processes the

input and conditionally outputs a digital marker whose level depends on the real

time processing result. The digital marker controls a separate RF instrument, such

as an arbitrary waveform generator (AWG). For example, when the marker level

is high, the AWG plays a pre-determined pulse to manipulate a qubit in some

way, otherwise it does not play anything. Essentially, the controllers act as a dig-

ital switch. The complexity of many quantum feedback experiments goes much

beyond the requirement of switching on and off a pulse. Unfortunately, the im-

plementations of the FPGA platforms demonstrated by the various groups are

not flexible enough to meet more advanced demands. In particular, solely using

a binary trigger to control an external generator as a way to exert the controller’s

influence severely handicaps the complexity of pulse sequences and consequently

of possible manipulations of the quantum system.

Based on experiences of building FPGA-based AWGs in the early stage of this

thesis work, we ultimately implemented a controller on a platform that has an

FPGA, analog input/ouput and digital input/output. The platform we chose is

the x6-1000M board (or also commonly referred to as the “card”) from Innovative

Integration. It includes two 1GS/s ADCs, two 1GS/s DACs, multiple digital I/O

ports, all of which are controlled by a Xilinx Virtex-6 FPGA. We developed custom
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Group Berkeley Delft ENS Yale

Feedback type Analog Digital Digital Digital

Paramp Phase-sensitive Phase-sensitive Phase-preserving Phase-preserving

Implementation Analog PLL
ADwin real time 
processor  + AWGs

FPGA w/ ADCs + 
AWGs

FPGA w/ ADCs 
and DACs

Conditional type Analog error Binary switch Binary switch Multiple choice

Latency 160 n 2.8 500 ns 1 250 ns~ ~ ~ ~ ~

Figure 1.6: The quantum feedback landscape. Care needs to be taken when com-
paring the latency among the different implementations. Latency quoted by Delft
is total latency defined as the time between when cavity tone arrives to read the
cavity and when the qubit pulse reaches the cavity after real time analysis. The
first latency figure for Yale is using this definition. Another definition for latency is
the time between the last sample to arrive at the FPGA board and the first sample
to leave. The second latency figure for Yale and ENS’s figure use this definition.

logic on the FPGA to realize the functionality of a digitizer, a digital signal proces-

sor and an arbitrary waveform generator on a single unit. Having all the compo-

nents implemented on a single FPGA board gives flexibility, real time adaptability

that is not achievable with previous FPGA setups. The X6-1000M controller can

adjust all three components deterministically on a time scale of nanoseconds. This

affords us to be generous with the complexity of our feedback experiments, such

as required by the nested feedback protocol.

What gives our controller much greater flexibility compared to previous FPGA-

based controllers in cQED experiments is that the logic design shares a similar

architecture with a general-purpose computer. Modern computers can perform

many different tasks without requiring us to reconfigure the circuitry of the CPU.

We do not have to completely rebuild a computer just so that we can switch from

browsing the internet to using a word processor. Different tasks are specified by

different sets of instructions, e.g., “software”, that tell the hardware what oper-
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ations to execute and what data to operate on. We simply load different sets of

instructions into memory to carry out different tasks.

In FPGA programing speak, reconfiguring the interconnects of the logic blocks

is also called “loading a logic”, or “burning a logic”. Every “burning” defines a

new hardware configuration. In principle, we can design a simple logic for every

different experiment. When we want to run a particular experiment, we can burn

the corresponding logic. This is highly inefficient since each “version” of the hard-

ware can then handle only a very limited range of tasks, restricting the complexity

of possible experiments. Not to mention that having to compile a new logic for

a new experiment every time is not sustainable in terms of time investment. Al-

ternatively, we design the logic in a computer architecture, with its instruction

memory, data memory and registers such that the FPGA operates like a real time

computer. We write a set of instructions (on a normal computer) to prescribe the

operations we want to perform in an experiment, just like computer program-

mers write softwares for computers. After compiling the instructions to machine

code, e.g., many series of 0’s and 1’s, we stream them into the FPGA’s instruction

memory, which orchestrate the on-board components to interact with the quan-

tum system in the way we want. Through many iterations of logic development,

the X6-1000M controller has now played an important part in many projects at

Yale.

1.5 Purifying a single qubit

One of Divincenzo’s criteria for building a quantum computer is qubit initializa-

tion[DiVincenzo, 2000], also known as qubit resetting. Initialization can mean

preparing a qubit in any known initial state but a common choice is the ground

state |g〉. As we have discussed in sec. 1.2.3, resetting a qubit is also necessary for

QEC.
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Unless the qubit is in perfect contact with a zero temperature bath, there will

be population in the excited states. Assuming a Boltzmann distribution, the ratio

between the populations in |e〉 ad |g〉 is given by the following equation, where fge

is the qubit transition frequency between |e〉 ad |g〉.

Pe
Pg

= exp
(
−hfge
kBT

)
(1.2)

We can typically measure the population ratio from experiment and use the above

equation to find out T, the effective qubit temperature.

For superconducting qubits which have achieved long coherence times in ex-

cess of 100 µs, passive resetting by thermal equilibration with a cold bath takes

too long which limits experiment repetition rate. Furthermore, the “cold bath”

the qubit is contact with in cQED experiments is often not cold enough, resulting

in finite thermal population in the excited state. Thus, active reset is necessary.

Active reset can be considered a form of Maxwell’s demon in action. Both the

DD[Geerlings et al., 2013] and MB schemes[Ristè et al., 2012a] have been demon-

strated previously. To show X6-1000M’s efficiency in a quantum feedback experi-

ment, we also implemented a MB ground state purification protocol.

We first put the qubit in a maximally entropic state, an equal mixture of |g〉
and |e〉 for the purpose of testing the prowess of Maxwell’s demon in purifying

the qubit to |g〉. A projective measurement is then applied to the qubit. If the

qubit is in |g〉, we do nothing. Otherwise we apply a π pulse to flip the qubit.

Following this conditional step, we apply another measurement to check the re-

sult. We dubbed this protocol the “baby Maxwell’s demon”. It lowers the entropy

of the qubit by purifying its ground state probability from 46.2% to 88.7% . Re-

peating this feedback step one more time can purify the ground state to a higher

percentage.

We found that the ground and excited populations did not add up to 100% be-

25



O
cc

u
p

at
io

n
 (

%
)

Measurement stages

 |𝑔 : 99.3%
 |𝑒 : 0.2%

 |𝑓 ,… : 0.5%

 |𝒈

 |𝒆

 |𝒇 ,…

Entropy

1.2

0.9

0.6

0.3

0

1.5

En
tro

p
y

(a) (b)

Figure 1.7: Mature Maxwell’s demon purifying a single qubit. (a). Histogram
at the final stage. Only ground state population visible. (b) Occupation of each
state and the entropy of the system as Maxwell’s demon progressively purifies the
system to ground state. .

cause there was also population remaining in higher states, such as |f〉 and |h〉. It

appears that repeating this simple feedback stage once does not affect the higher

states’ population. In principle, we can deplete the higher states by repeating the

step many more times; each time we move the population in the first excited state

which are then mostly contributed by the natural relaxation from the higher states.

Taking advantage of the flexible FPGA controller, we, however, chose to actively

deplete the higher excited states by applying pulses addressing the higher transi-

tions. This more advanced protocol was dubbed the “mature Maxwell demon”.

In one run of the protocol, it progressively purified the ground state to 99.3% and

lowered the entropy from a maximum value of 1.2 to 0.007.

1.6 Stabilizing two-qubit entanglement

Entanglement of multiple qubits, such as the Bell state of two qubits, is a valu-

able resource in many quantum algorithms and communication protocols, such

as quantum teleportation. We expanded the single qubit feedback platform by
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adding an identical FPGA controller to control two qubits. The task of the plat-

form was to stabilize a Bell state of two transmons.

A scheme to autonomously stabilize a Bell state in superconducting qubits

has recently been proposed by Leghtas[Leghtas et al., 2013] and experimentally

implemented by Shankar[Shankar et al., 2013] at Yale. This particular task of

stabilizing a single state is a proxy for more general QEC experiments where a

manifold of states is protected. We realize, for the first time, an MB stabilization

of a Bell state by repeated active correction through conditional parity measure-

ments[Lalumière et al., 2010; Tornberg and Johansson, 2010; Riste et al., 2013]. We

compare this scheme to the DD entanglement stabilization scheme in which the

conditional parity switch is autonomous. By performing both schemes on the

same hardware setup and cQED system, we shed light on their close connection

and compare them on a level playing field.

Previous theoretical works have compared DD and MB for linear quantum

control problems[Yamamoto, 2014], such as for minimizing the time required for

qubit state purification[Jacobs et al., 2014] or for cooling a quantum oscillator[Hamerly

and Mabuchi, 2012]. These comparisons showed DD to be significantly superior.

Here we experimentally compare DD and MB on identical hardware and study

two performance metrics, the state fidelity and success probability. In our par-

ticular setup, we find that distinguishing the superior approach among DD and

MB is a more subtle task. The subtlety is two-fold. First, the performance differ-

ence depends on which process can be better optimized: the design of the cQED

Hamiltonian or the efficiency of quantum measurement and classical control. In

the current experiment, we show that DD has better steady-state performance

as the cQED Hamiltonian parameters are engineered such that DD has a shorter

feedback latency (Fig. 1.8). But DD’s advantage over MB is not immutable. As

certain experimental parameters are improved, such as coherence times and mea-
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Figure 1.8: Fidelity of Bell state stabilization as a function of stabilization dura-
tion. (a) DD stabilization. (2) MB stabilization.

surement efficiency, MB’s performance can catch up with DD.

Secondly, in the current situation in which neither the cQED Hamiltonian pa-

rameters nor the measurement and control parameters are ideal, we can obtain a

boosted performance by combining DD and MB to get the best of both worlds.

We explored this by devising a heralding method to improve the performance of

both stabilization approaches. This protocol exploits the high-fidelity measure-

ment capability and the programmability of the feedback platform. The protocol

is termed “nested feedback” since it has an inner feedback loop based on either the

DD or MB scheme, and an outer loop that heralds the presence of a high-fidelity

entangled state in real-time. As alluded to earlier in the discussion of Maxwell’s

demon, this new protocol brings the more powerful version of Maxwell’s demon.

It adds a new “voluntary” decision-making capability to a pre-existing Maxwell’s

demon and in particular, for the DD case in which the original demon acts solely

on “reflex action”, the enhanced demon has now two complementary decision

capabilities. The nested feedback protocol significantly improves entanglement

fidelity for both the DD and MB schemes without sacrificing success rate (Fig. 1.9).
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CHAPTER 2

Building the controller

Controlling a quantum system requires the controller to operate with precise tim-

ing and low latency. One possible answer to this challenge might be to employ

commercial micro-controllers, such as Raspberry Pi’s, Arduinos which are popu-

lar choices for many classical feedback experiments and are relatively easy to use.

However, these controllers do not meet the requirements of quantum control, es-

pecially of superconducting qubits. The timing of processes running on them is

indeterministic and long compared to the quantum system’s coherence time. An-

other practical problem is that micro-controllers have limited number of available

I/O (input/out) ports, which prevent them from interfacing with many other es-

sential devices such as ADCs, DACs, high speed data interface with a computer

and etc. On the other hand, a field programmable gate array, or FPGA, is excellent

at all those areas.
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2.1 A primer on FPGA

2.1.1 Architecture of an FPGA

The fundamental work horses inside a modern FPGA are LUTs (look-up tables1,

they are very small ROMs, typically 32 bit or 64 bit), multiplexers and flip-flops.

They are organized into identical blocks and each is called a configurable logic block

(CLB), the basic unit of an FPGA (Fig. 2.1). A high-end FPGA, such as Virtex 6

from Xilinx (the biggest FPGA maker) has around 40,000 CLBs. Each CLB can be

configured by specifying the contents2 of the LUTs and the connects between the

LUTs, multiplexers and flip-flops. One CLB can already implement an arbitrary

boolean function equivalent to a dozen logic gates. The programmability of an

FPGA is achieved by configuring these CLBs and the interconnects between them.

1The word, “look-up tables” is used to mean slightly different things in different contexts in
the FPGA community, which can be confusing. It is used later to denote a memory table imple-
mented by block RAMs that store data used for custom processing on an FPGA. Here, however, it
specifically refers to these small ROMs in CLBs

2The contents are truth tables for boolean functions. An example and explanation of a truth
table is shown in Chapter 3.2.2.
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Figure 2.1: Schematic of a FPGA. (a) An FPGA is made up of a fabric of pro-
grammable logic blocks and switches between them (b) Inside each configurable
logic block is several logic cells comprised of a look-up table and a flip-flop (reg-
ister).
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Besides the CLBs, modern Xilinx FPGAs also have many special hardware fea-

tures[Xilinx]. Each Xilinx FPGA has clock management titles which filter the jit-

ter of incoming clock signals and can generate new internal clocks by digital fre-

quency synthesis. There is a built-in network of clock lines that distribute clock

signals to every logic block with very short propagation delay and extremely low

skew3. As we will discuss in Chapter 3.2.1, there are many clocks running on an

FPGA. Different regions may use different clocks for different purposes. Nonethe-

less, there is usually one clock, called the system clock that synchronizes the ma-

jority of the logic processes on an FPGA; its frequency is typically limited to ∼300

MHz.

Xilinx Virtex FPGAs have dedicated memory components, called block RAMs.

A Virtex-6 FPGA contains up to a thousand block RAMs, each with a capacity of

36 Kbits. The block RAMs can be initialized with memory contents during config-

uration or written during live operation. They can be grouped into memory tables

of various sizes. All read/write operations on the block RAMs are synchronized

to a clock. Since these block RAMs are embedded in the logic fabric as opposed to

existing as external RAMs outside the FPGA IC chip, the read/write access can be

completed within just a few clock cycles (on a clock with frequency ∼300 MHz).

They are utilized exhaustively by all the custom look-up tables we implement in

our logic design.

Virtex 6 FPGAs also have digital signal processing components, known as DSP

slices, which are dedicated multipliers and accumulators. Instead of implement-

ing these arithmetic operations on the CLBs ourselves, we use these embedded

components which are designed and optimized especially for binary multiplica-

tion and addition in signal processing applications, such as demodulation.

In the next two sections, we talk about two important paradigms in digital

3Clock skew is the difference in timing that different components connected to the same clock
signal see a clock transition
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circuit design that are adopted extensively in our FPGA logic development.

2.1.2 Synchronization

There are two types of logic circuits, namely combinational logic and sequential

logic[Harris and Harris, 2012]. An FPGA can implement both of them. The output

of a combinational logic circuit depends only on the current input. It is memoryless.

The output of a sequential logic depends on both the current input and the pre-

vious input. It has memory. The most common type of sequential logic is called

synchronous sequential logic. A flip-flop, also known as an 1-bit register, is the

simplest synchronous sequential logic circuit(Fig. 2.2) and is the building block

for all synchronous circuits. The output of a register only gets updated on the ris-

ing edge of an input clock and all the registers in one synchronous circuit receive

the same clock. As a result, the state of a synchronous circuit are stored by the

registers and the transition into a different state can only occur at specific times

marked by clock transitions. Almost all the logic designs covered in this thesis are

based on synchronous logic circuits.
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Figure 2.2: Register is the basic element of a synchronous FPGA logic circuit. (a)
Schematic symbol of a register. (b) Timing diagram of a register. The input, D, is
sampled and the output, Q, is updated on the rising edge of the clock exclusively.
The output maintains its state at all other times.
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By using synchronous logic, we guarantee that parallel processes can propa-

gate and finish at the same time, by virtue of accessing the same clock. The timing

is also deterministic since all operations are measured in exact number of clock

cycles.

2.1.3 Parallelization

We already recognized the FPGA for its high speed processing capability. Now

we will be more precise by what we mean by speed and how it is achieved. Speed

of a processor is measured by latency and throughput[Harris and Harris, 2012].

First, we will make the following definitions to streamline the discussion:

Token: a token is a batch of data that propagates through a circuit from the

input to the output.

Latency: the time it takes for the token to travel from the input to the output is

called latency.

Throughput: the number of tokens the circuit produces per unit time is called

throughput.

There are two ways an FPGA achieves superior processing speed: they are

spatial parallelism which is usually simply called parallelization, and temporal

parallelism which is called pipelining.

Parallelization boosts throughput and this is very intuitive. We duplicate the

hardwares such that multiple tasks can be done simultaneously. The architecture

of an FPGA, which consists of large array of identical resources, from CLBs, block

RAMs, to DSP slices, naturally supports parallelization. Multiple instances of a

component can be implemented on an FPGA. This will become very clear later in

this chapter and the next chapter where we demonstrate specific functionalities

implemented on FPGAs.

In pipelining, a task is broken up into multiple stages. The same hardware can
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Figure 2.3: Circuit diagram of a pipeline. A pipeline is a series of combinational
circuits punctured by registers. It increases data throughput.

process multiple tokens at once through a pipeline. The tokens go through the

pipeline one stage at a time like an assembly line. In digital logic, pipelining is

done by inserting registers in the combinational logic chain that does the process-

ing (Fig. 2.3). Here is an example: in a Xilinx Virtex 6 FPGA, with a system clock of

frequency 250 MHz, multiplication of two 18-bit numbers by a DSP slice can take

at least three clock cycles, i.e., naively, one multiplication process has a latency of

12 ns and a throughput of 1
12

per 1 ns. Fortunately, the multiplier has a built-in

pipeline where three registers break up the multiplication process in four stages.

As a token moves from the first stage to the second stage, a new token enters the

first stage. The pipelined multiplier’s latency increases to 16 ns (4 clock cycles)

but the throughput improves by three fold to 1
4

per 1 ns! Pipelining improves

throughput using the same hardware resources at the expense of latency.

For signal processing applications, a particular throughput is demanded, which

is determined by the sampling rate of the input, such as the rate at which ADCs

transmit data to the FPGA. Typically a combination of both parallelization and

pipelining of the processing logic circuits is required to maintain the throughput.
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There is another important benefit of using pipelines, that makes them ubiq-

uitous in the FPGA projects we developed. For a large logic design that uses

extensive amount of resources, a large physical area of the logic array is used.

Significant routing delay can occur for a signal traveling from one part of the ar-

ray to another part. However, there is the requirement that a signal’s logic level

transition must occur a certain time before the rising edge of the clock.4 This can

be challenging for large and high speed logic designs where clock frequencies

are more than 250 MHz. With the help of pipelining, we break up the route into

smaller stages by inserting one or more registers. Instead of needing to cover a

significant journey within a clock cycle, a signal only has to travel between two

relatively closely positioned registers within a clock cycle. That said, each addi-

tional stage of pipeline introduces one extra clock cycle of latency and indeed a

significant amount of latency for the feedback controllers we implemented came

from the necessary pipelining required to meet timing constraints.

2.1.4 Logic development process

4In a synchronous circuit, there are what are called “setup” and “hold” time constraints. A
signal to be sampled must remain stable for at least setup time, tsetup before the rising edge of
the clock and must remain stable for at least hold time, thold after the rising edge of the clock.
Otherwise, the sampled result might be “metastable” and can resolve to either logic state
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Configure FPGA

Place and Route

Hardware testing

Figure 2.4: FPGA logic development flow. The flow chart describes the typical
process of developing a FPGA logic circuit. Green blocks are actual design steps
and yellow blocks are verification steps that are often necessary as well.
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Before introducing the process for FPGA logic development in this section, we

are overdue for a recommendation of some helpful literature for becoming ac-

quainted with the subject. Two excellent texts are [Harris and Harris, 2012] and

[Chu, 2011]. The former teaches fundamental concepts and principles in digital

circuit design, which form the basis of hardware programming. The latter pro-

vides a practical approach to FPGA programming by serving as a “recipe” book

for implementing many common applications. Both provide many illustrative

examples in HDL.

Writing HDL code

Developing a functional logic on an FPGA for eventual hardware deployment

follows a standard design flow (Fig. 2.4). The entire design process typically oc-

curs inside an integrated development software provided by the FPGA maker,

i.e., Xilinx. The first step is designing the hardware model using hardware de-

scriptive language (HDL). HDL is a high-level language that describes the behav-

ior of logic circuits using conditional statements, such as if-then-else statements,

and arithmetic operators. It provides a textual description of a device in a hierar-

chical fashion. The main file, also called the top level, describes the entire device

with all its external-interfacing ports, its constituent modules and the internal sig-

nal connections between them. The constituent modules form the sub-level and

are each specified by their own HDL files. This hierarchical layering can con-

tinue for many levels for a complex logic design. There are several choices for

HDL. The language used in all of our projects is VHDL. The unique part of hard-

ware programming with HDL is in the first two letters of the acronym. Unlike a

software programming language which can describe a very abstract object with

custom-defined structures, the HDL code must describe a synthesizable device us-

ing standard digital circuit building blocks, such as multiplexers, registers, finite

state machines and etc. Laying out the architecture of the target logic circuit and
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Figure 2.5: An example of a behavioral simulation of FPGA design in action.
The digital waveforms are the responses of a FPGA circuit to test stimuli. Logic
verification is done by examining the states and timing of the waveforms.

applying principles of digital design, e.g., synchronous discipline, pipelining, all

within the hardware limitations of a particular FPGA device, are the most impor-

tant processes in HDL programming.

Simulation

The next step is to simulate the HDL model. This is especially necessary after

writing extensive HDL codes for a new complex design since logic errors, such

as boolean algebra mistakes or signal misconnections, can easily occur. For simu-

lation, we use HDL to construct another module, referred to as a test bench that

generates test signals (clock, reset, trigger, and etc...) and applies them to the target

HDL model5. We obtain the target model’s responses comprised of both internal

signals and external outputs. A simulation software executes the simulation code

and displays the responses as digital waveforms (Fig. 2.5), which are monitored

to verify that the HDL model behaves as expected.

5This is also known as behavioral simulation
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Logic synthesis, mapping, place and route

These next several steps are largely automated by the development software.

Synthesis: the software translates the HDL code to a netlist of generic FPGA circuit

components, e.g., gates, flip-flops, memory blocks....while applying simplification

and optimization of hardware resources usage when possible. Mapping, placing

and routing: The mapping process maps the synthesized netlist to CLBs and ded-

icated resources of a specific FPGA. The placing and routing process determines

final layout of the logic circuit – it picks the physical locations of CLBs to be used

and routes the signals. These two processes form what is called the implementa-

tion stage. This is also the stage that timing constraints are verified. The software

checks that maximum propagation delay between a source and the destination

does not exceed the clock cycle that the signal is synchronized to.

Configuring and testing

In the final step of programming an FPGA, the software converts the fully

placed and routed circuit layout into a binary file (also known as a configuration

file) that is then downloaded to the FPGA and configures its logical blocks accord-

ing to the design.

The most important test is the hardware testing of the final configured FPGA.

Unfortunately, this is the least transparent and most frustrating part of developing

a working FPGA design. In traditional software programming, a good debugging

tool helps locate the source of the problem by providing access to the states of all

the variables we want to check. Hypothetically speaking, in hardware program-

ming, if we can probe any signal we want inside an FPGA circuit, we can also

in principle diagnose any problem in a similar manner. Unfortunately in reality,

only a very limited number of signals can be ported to outside the FPGA for ex-

ternal probing. This lack of transparency makes diagnosis of hardware bugs very
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difficult. This also explains why behavioral simulation before the implementation

stage is extremely important since it can rule out obvious logic errors.

However, the complication to hardware troubleshooting is that the hardware

realization of a logic design could still fail to work without showing any behav-

ioral simulation error. Failing to meet timing constraints or abide by hardware

specifications of an FPGA device is usually the cause. To manually place and route

critical modules to mitigate signal propagation delays is one solution (Fig. 2.6)6

6In practice, the development software also lets us generate different circuit layouts using dif-
ferent placing and routing algorithm options. Tweaking these options can often make a difference
between a working FPGA and an useless one. Each layout results in a different binary file. Finding
the working configurations is largely done by trial and error: we test each of the files by loading it
to the FPGA and verify that all the features are performing as intended.
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(a)

(b)

Figure 2.6: Constraining a FPGA circuit layout. Xilinx provides a design tool
called PlanAhead which gives guidance to manual placement and routing of logic
components. The tool shows the circuit layout of a logic design in an array of logic
cells. Each figure here shows a portion of the FPGA circuit (approximately half of
the FPGA chip). The cells that are ”lit up” in the tool’s visualization (blue and
yellow here) are cells that are used in the design. (a) The highlighted elements in
yellow are the memory blocks used. The white traces shown in the right panel are
signal connections between the memory blocks. Without constraining, they are
sprawling over a large area that causes timing difficulties. (b) Constraining them
to a smaller area reduces routing delay.

44



2.2 FPGA-based AWG

To complete a feedback loop, an essential component is the actuator. For quan-

tum feedback with superconducting qubits, the manifestation of the actuator has

typically been the arbitrary waveform generator (AWG). AWGs are used in both

open-loop and close-loop experiments. In the usual open-loop qubit experiments,

an AWG outputs two analog pulses, on the two quadratures, I and Q, which mod-

ulate a LO (local oscillator) tone generated by a microwave generator through an

IQ mixer. The RF output of the IQ mixer is the signal that controls a qubit. In

addition to the analog outputs, an AWG also generates several digital pulses, for

either controlling switches on the output of the IQ mixer to prevent signal leakage

or for modulating cavity drives.

2.2.1 The traditional way

The commercial solutions for AWGs are convenient but are expensive and more

importantly not very flexible7. To generate analog and digital sequences on one

of these AWGs, the experimenter needs to hardcode the entire waveform of each

sequence on a computer and transfer the waveform data from the computer to the

AWG.

There are several problems with this approach. First, for hardcoding a pulse

sequence, one needs to generate the value (2 bytes per point) at every waveform

point, even if it is a pulse of constant amplitude or simple delay of zero amplitude.

This requires transferring a lot of data to the AWG. Data transfer through GPIB

communication is slow and usually takes about a minute. Second, AWG memory

is limited. The common Tektronix AWG in the lab can play approximately 100

sequences of 8000 ns long waveforms (2×8000 wave points for the two analog

7the latter drawback has been improved in the latest models of AWGs
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Figure 2.7: Pulse sequences for a T2 experiment, as required by a commer-
cial AWG. The red waveforms are the qubit pulses and the blue waveforms are
the digital marker pulses for modulating measurement drives. Every waveform
point, including the parts with constant amplitudes, needs to be stored. This ap-
plies to both the analog and digital channels

channels of a 1GSPS AWG). A significant amount of memory is wasted on storing

the values of constant pulses, such as the delays. Playing longer waveforms then

requires reducing the number of sequences.

Third, using commercial AWGs to play waveforms limits the potential of feed-

back experiments. As several groups have demonstrated[Campagne-Ibarcq et al.,

2013; Riste et al., 2013], it is possible to use a real-time controller to conditionally

trigger an AWG to play a particular pulse, which otherwise plays nothing. This,

however, restricts the complexity of feedback experiments that may demand more

flexible waveform generation, beyond a simple decision of pulse or no pulse8.

8In newer generations of Tektronix AWGs, the waveform generation method is similar to the
FPGA method shown next, thus conditional branching is possible. But the latency between receiv-
ing an external marker and the time the AWG decides on a branch is still much more significant
than the latency of similar process on the FPGA controller
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2.2.2 The new way

Commercial AWGs are designed for many applications in vastly differently fields.

Therefore it is no surprise that they are not perfectly suitable for quantum infor-

mation processing experiments. Since they make no assumption about how we

compose the sequences, Tektronix AWGs provides the “arbitrary-ness” in wave-

form generation at the expense of efficiency and flexibility. In practice, the pulses

that we send to the quantum system in an experiment, such as the qubits, are far

from arbitrary.

Since FPGAs became more widely known in the science research community,

they have been recognized for their usefulness for quantum control and feed-

back[Stockton et al., 2002]. Building an FPGA-based AWG is a first step towards a

full FPGA controller in quantum feedback. John Martinis from UCSB built the first

FPGA-based AWG for control of superconducting qubits[Electronics]. The work

started by the author in this thesis also coincided with a similar effort by BBN

to build FPGA-based AWGs. The architecture of our FPGA-based AWG borrows

from the organization of a basic microprocessor. This architecture, compared with

the traditional AWG, no longer wastes precious memory space on storing val-

ues of constant-amplitude pulses and thus allows playing waveforms of greater

number and/or length. The architecture has three key components: instruction

memory, pulse memory and the control unit (Fig. 2.8).

Instruction memory

The instruction memory is a look-up table stored in block RAMs that contain

a sequence of instructions specifying the pulses to be played in a particular order.

Each entry or “word”9 in the table is an instruction that provides the type of a

9A memory block’s capacity is defined by its width and depth. A memory block is nothing but a
table of bits: the width tells how many bits there are in a row, also called a word. Depth gives how
many rows or how many words there are. All look-up tables implemented from block RAMs on
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pulse lengthpulse addresspulse type instr. address

Figure 2.8: Architecture of a FPGA-based AWG. The three main components are
the instruction memory, pulse memory and sequence control. Sequence control
coordinates reading of both memories by specifying the locations to read from,
i.e. memory addresses. The instruction memory is a table consisting of rows of
instruction “words”, as shown inside the dashed box. Each word has four fields:
three of them store values parametrizing a pulse and the fourth stores the location
of the next instruction.
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pulse to be played, its length, the address of the pulse in the pulse memory, and

the memory address of the next instruction. Figure 2.9b gives an example of an

instruction memory. If we think of sequences of pulses to be played as a program,

then the instruction memory stores the commands of this program. The capability

to update the commands by rewriting the memory in vivo (without reconfiguring

the FPGA) between experiments gives the programmability of the FPGA-based

AWG. The use of instruction memories features extensively in our logic designs

and will be seen more later.

Pulse memory

The idea of a pulse memory is simple. It is a “dictionary” or list of all the

unique non-constant-amplitude pulses (Figure 2.9a). The pulse address in the

instruction memory gives the location of the pulse in the pulse memory. The read

port of the memory accepts an address as an input which specifics the location

to read the waveform. The pulse memory is organized as a table in which each

row is a 64-bit word. Since each waveform point is represented by a 16-bit DAC

number, one word contains four waveform points. Playing a pulse entails reading

several consecutive words by incrementing the address input at the read port.

Control unit

Sequence control is the component that orchestrates the reading of the instruc-

tion memory, the parsing and execution of the instruction and the playback of the

waveforms from the pulse memory. It reads a word from the instruction memory,

determines the type of pulse to be played from the instruction. If the type is a

non-constant pulse, it finds the pulse in the pulse memory according to the pulse

the FPGA have two independent ports, one write port and one read port. Each port expects an
address to read from or write to. In addition, the write port accepts a data word which fills the bits
at the specified address.
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10 PLAY WAVEFORM, A1, 100ns GOTO 20

20 PLAY CONSTANT, A0, 400ns GOTO 30

30 PLAY WAVEFORM, A1, 100ns GOTO 40

40 PLAY CONSTANT, A0, 100us GOTO 50

50 PLAY WAVEFORM, A1, 100ns GOTO 60

60 PLAY CONSTANT, A0, 800ns GOTO 70

70 PLAY WAVEFORM, A2, 100ns GOTO 80

80 PLAY CONSTANT, A0, 100us GOTO 90

.

.

.

2000 PLAY CONSTANT, A0, 100us, GOTO 10

Pulse Memory

A0

A1 A2 A3 A4 A5 A6 A7 A8

Instruction Memory

(a)

(b)

Figure 2.9: Construction of Pulse Memory and Instruction Memory. (a) Pulse
memory is essentially a list of pulses. Each pulse is identified by the address of
its first waveform point in the pulse memory, represented as An in the figure. (b)
An pseudocode interpretation of an instruction memory, in the format specified
in the previous figure.
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address and plays it for duration set by pulse length. If the type is a constant-

amplitude pulse, what is stored in the “pulse address” field of an instruction is

the DAC value of the pulse and the control unit does not need to look up the

pulse in the pulse memory. Once the current instruction is completed, it proceeds

to the next instruction as specified by the “next instruction address” contained in

the instruction. The control unit passes the outputs from the pulse memory to

downstream logic components that interface DACs. The operation of the control

unit is based on finite state machines, which we will describe in details next.

Finite state machine

A finite state machine (FSM) models a sequential system that transits between a

finite set of internal states. At a given moment, the state of the FSM is called the

current state and the input it sees is called the current input. State transition can

depend on current state or/and current input. Applications of FSM are ubiquitous

and are seen in situations that call for a predetermined sequence of responses

conditioned on sequence of events presented: traffic lights, vending machines,

turnstiles in subway stations.

A FSM is implemented in digital logic by two combinational logic blocks,

called next state logic and output logic respectively (Fig. 2.10). The next state

logic computes the next state based on the current state and the current inputs. A

register stores the next state and updates the current state when the clock transi-

tions. The output logic block computes the outputs of the FSM conditioned on the

current state10.

The operation of a FSM is represented by a state transition diagram. There

10For completeness, there are actually two types of FSMs. One is called Mealy FSM in which
outputs depend on both the current state and the current input. The other is called Moore FSM in
which outputs depend only on the current state. One can transform from one implementation to
the other. For clarity of presentation, all FSMs shown in this thesis are Moore FSMs. In practice,
Mealy FSMs are used more often since it involves fewer number of states and therefore has less
latency
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Figure 2.10: Logic circuit schematic of a FSM

are two equally valid ways of drawing such diagram. One is simply known as

the state diagram (Fig. 2.11a). The states are drawn as circular nodes and transi-

tions between states as arcs. The boolean condition for each transition is shown

above each arc. The outputs or the action taken during a state are shown inside

the node. There is no restriction on the total number of arcs entering or leaving

a node since a state can transition to any number of states and vice versa. But

the number of labeled arcs11 leaving a node must be even since for every boolean

condition there exists its complement. A complex FSM with many states can of-

ten be reconstructed as multiple simpler FSMs with fewer states (this is known

as factored design[Harris and Harris, 2012]). A state diagram is the most popular

choice for representing FSM because of its compactness and clarity. We briefly

mention the other representation here, called algorithmic state machine (ASM)

chart which resembles a flow chart (Fig. 2.11b)[Chu, 2011]. This method is very

helpful for building FSMs on an FPGA since the ASM chart can be made more

descriptive than a state diagram and the composition of the chart more closely

matches how an FSM is implemented in HDL.

11An unlabeled arc represents unconditional transition. If there is only one arc leaving a node,
it has to be unlabeled.

52



state name

output: value

boolean
expression

output: value

boolean
expression => F

boolean
expression => T

to other node to other node

state name

T F

to other block to other block

(a) (b)

Figure 2.11: Two conventions of drawing a FSM state transition diagram. (a) a
state diagram. (b) a algorithmic state machine (ASM) chart.

Sequence control by FSM

We can now demonstrate the application of FSM in implementing the control unit

of the FPGA-based AWG. The sequence control consists of two FSMs (Fig. 2.12a).

One FSM serves as the master which reads the instruction memory. The other

one acts as the slave FSM which communicates with the pulse memory. This is

an example where we have factored a more complex FSM into two smaller and

simpler FSMs. Besides the control signals shown in Figure 2.12a, the master FSM

also passes the instruction word it fetched from the instruction memory to the

slave, which is not shown explicitly in the figure.

For the master (Fig. 2.12b), the initial state is “idle” in which the FSM does

nothing. Right after the FPGA is started, a global reset is applied which puts

the master FSM in this state. The master monitors a signal called “dac ready”

which indicates whether a user has a requested to start the AWG and whether the

downstream components in the FPGA circuit are ready to receive the waveform
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DAC data from the sequence control unit.

When “dac ready” transitions to “1”, the FSM enters into the next state, “start”,

in which it asserts12 a signal called “start” to the slave FSM. This allows the slave

to start executing the playback of the first pulse whose instruction it has already

fetched and parsed when it was waiting in the “idle” state.

On the next state transition, there is no label on the arc connecting state “start”

and state “playing”. This means that the FSM transitions unconditionally from

the former to the latter. In the “playing” state, the master waits for the slave FSM

to step through the associated pulse memory addresses of a pulse until it receives

an asserted “load pulse flag” from the slave FSM.

Once the master receives the asserted “load pulse flag”, it transitions to the

state “load instruction”. In this state, it reads the new instruction (which it has

access to already since the current instruction contains the address for the next in-

struction) for the next pulse and passes it to the slave. The master then transitions

unconditionally back state “playing”.

The slave FSM also starts in the “idle” state after the global reset (Fig. 2.12c).

It monitors the “start” signal and transitions into the state “output wave” when

“start” is asserted. In the state “output wave”, the slave fetches the waveform data

from the pulse memory by incrementing the read address of the pulse memory

every clock cycle (starting from the initial pulse address specified in the instruc-

tion). A counter, “length counter”, keeps track of the number of increments and

compares it to the value contained in the “pulse length” field of the instruction13.

When the counter has incremented close to the specified pulse length value14, it

means that the playback of the current pulse is nearly complete; the slave enters

12“Assert” in digital design speak means switching a logic signal from “0” to “1”.
13The “pulse length” of a pulse is not in units of real time but is the number of pulse memory

words that the pulse occupies, which is the total pulse duration in terms of waveform points
divided by four, since each word contains four waveform points

14the value specified by “pulse length” minus two
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the state “load pulse” and alerts the master FSM to load the next instruction by

asserting the “load pulse flag”. The slave also resets the counter in this state and

transitions unconditionally back to the state “output wave”15.

The implementation of the sequence control of the FPGA-based AWG shows

the application of FSM for controlling a data path, i.e., the extraction of infor-

mation from two memories in a prescribed order. In the FPGA-based AWG and

the FPGA-based controller described later, almost every major logic component

has some sort of FSM-based control: the writing/updating of the look-up tables,

e.g., the instruction memory and the pulse memories, so that they contain the de-

sired instructions and pulses at the correct addresses rely on data flow mediated

by FSMs; the transfer of data from the FPGA to a computer is controlled by FSMs.

We will show in Sec. 3.2.2 and Chapter 5.3 that FSM is not only used extensively as

a tool for developing logic circuits but also for designing experimental sequences.

2.2.3 Early prototypes

In this section and the next chapter, we will present the hardware realizations

of many of the principles and designs discussed in previous sections. We give

a chronicle of several generations of FPGA-based pulse or waveform generators

developed during the course of this thesis work which culminated in the FPGA-

based quantum feedback controller .

Early efforts centered around a commercial FPGA development board, the

XEM5010 from Opal Kelly (Fig. 2.13)[Kelly], which features a Virtex 5 FPGA chip.

The XEM5010 board connects to a computer through a USB port, through which

15The FSM shown here is a Moore machine where the action at each state depends only on what
state it is. As mentioned previously, this is for the sake of clarity of presentation and consistency
with more general FSMs shown in the rest of the thesis. In actual implementation, the sequence
control FSMs used are Mealy machines in which the actions at each state depend not only on the
state but also on the input. This reduces the number of states. For example, in the master FSM, the
“start” state can be merged with the “idle” state. “Start” signal is then asserted when “dac ready”
switches to “1”.
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Figure 2.12: Implementation of the sequence control component of the FPGA-
based AWG as a FSM. (a) A circuit schematic of the sequence control FSM imple-
mented as two FSMs. (b) State diagram for the instruction memory control FSM
which acts as the master. (c) State diagram for the pulse memory control FSM
which is the slave.
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Figure 2.13: XEM5010 prototype board from Opal Kelly. The center piece of the
first several generations of FPGA-enabled pulse generators developed. The large
black meta looking piece is the heat sink underneath which sits the FPGA chip.

data communication for FPGA configuration and logic control take place. With

the exception of the USB interface Intellectual Property (IP) core 16 provided by

Opal Kelly, which is an essential component of any logic design on XEM5010, the

board gives us much freedom to program the FPGA and customize the function-

alities of most of its I/O pins. Access to the FPGA I/O pins are provided by two

high speed board-to-board connectors. To connect the FPGA board with other

clocking, digital and analog instruments in the lab, we had to build a daughter-

board as an interface.

16Intellectual Property (IP) cores are pre-synthesized logic blocks that provide a variety of func-
tionalities. They are provided by Xilinx and third party FPGA development board vendors to
customers so that they do not have to implement the complex logic circuits in HDL code them-
selves.
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Figure 2.14 shows the first three generations of daughterboards. The two black

long connectors seen on all three boards are two high speed male Samtec board-

to-board connectors. They connect to the corresponding female connectors on the

XEM5010 board and provide signal access to the FPGA. The part number for each

generation refers to the complete unit of the XEM5010 board connected with the

daughterboard expansion.

FPGA-PS1, PS2: “PS” stands for pulse shaper. They are named so because

they can only generate digital pulses which serve as square wave envelopes to

modulate analog pulses generated by other sources. These early prototypes were

a first attempt by the author to apply FPGA technology to built useful instru-

ments for experiments. The logic architecture of the pulse shaper is actually quite

different from what is described in Sec. 2.2.2. There is no instruction or pulse

memory. Instead, a particular waveform playback program is hard coded into

the logic. Once the FPGA is configured by a logic design, the pulse shaper can

play exclusively one type of sequences. One logic allows the pulse shaper to play

“T2” sequences in which there are two square pulses and a varying delay between

them. If an experimenter wants to play “T2 echo” sequences, they would have

to reconfigure the FPGA by a different logic that plays these sequences. Indeed,

this is not a great way of utilizing the capability and flexibility of an FPGA and

the lessons learned in programming the pulse shapers lead to the more powerful

logic architecture. Nevertheless, FPGA-PS1 and PS2 already demonstrated fea-

tures that commercial AWGs do no have. The parameters of a sequence are stored

by registers in the logic whose values can be updated through the USB interface.

In the example of the ‘T2” sequences, the parameters are the width of each of the

square pulses and the delay between them. Through a Labview interface, one can

adjust these parameters on the fly while the sequences are being played and see

the change take effect immediately.
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Figure 2.14: Early generations of FPGA-based pulse generators. The daughter-
or expansion- boards were designed for the XEM5010 FPGA board.

FPGA-AWG3: this was the first FPGA-based AWG developed here at Yale. It

supports both digital and analog output. Through two ribbon cables (one shown

in Figure 2.14), the daughterboard connects to a DAC evaluation board that fea-

tures a 14-bit DAC with output sampling rate up to 300 MSPS from Analog De-

vices (AD9755-EB). The DAC accepts two input channels (each with 14 bits). A

built-in multiplexer in the DAC interleaves the data from the two channels and

generates an output at a rate twice that of the input. This allows the FPGA to

supply the input digital signal at just half of the DAC’s output rate. Reducing

the data rate between the FPGA and the DAC makes electric requirements for

the daughterboard design less stringent, such that ribbon cables as a means of

data transfer are tolerable. FPGA-AWG3 utilizes the logic architecture described

in Sec. 2.2.2 and was successful in hardware testing. But the setup was too cum-

bersome because of the use of the bulky DAC evaluation board and the unwieldy

ribbon cables. Since it has only one analog output channel, one would need to in-

tegrate two such setups to have two analog channels for IQ modulation required

for qubit control.
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Figure 2.15: The 4th generation of FPGA-based AWG developed at Yale: 500MHz-
AWG.

The last generation of FPGA-based AWG using the XEM5010 development

board was unsurprisingly the most sophisticated yet. The 500MHz-AWG was de-

veloped as a significant improvement to FPGA-AWG3 in terms of capabilities and

compactness (Fig. 2.15). It is named so because the AWG can output analog wave-

form up to 500 MHz. A DAC and several other IC components were integrated

on the daughterboard. The key features include:

Dual channel DAC:

The DAC (AD9781) built-in on the 500MHz-AWG daughterboard is more ad-

vanced than the one in FPGA-AWG3. The operation of AD9781 is also different
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from AD9755, consistent with the difference between very high speed DACs and

mid-to-high speed DACs. The AD9781 chip actually contains two 14-bit DACs,

each of which has an output sampling rate up to 500 MSPS. AD9781 samples the

input digital data at one input port at a rate twice that of the output of each individ-

ual DAC. The input signal contains data targeted for both DACs in an interleaved

fashion. A “deinterleaving” logic in the AD9781 IC splits the data and sends them

to their respective destinations. Since the DAC expects input digital signal coming

in at a very high rate, i.e., 1 GSPS, it uses the Low-voltage differential signaling

(LVDS) standards. Differential signaling protocols are the preferred choices over

single-ended transmissions for very high speed digital transfer ( > 500 MSPS).

LVDS is a very popular choice for digital signal communication between an FPGA

and peripheral digital devices. The X6-1000M board, introduced in the next chap-

ter, also uses it. The differential signal travels over a pair of matched traces from

the source to the destination. The voltage difference between the traces carries

the information and has a swing of 350 mV. Compared to single-ended signaling

standards, LVDS is less susceptible to noise, generates less noise itself and con-

sumes low power[Tex]. Because of the two analog output channels of AD9755,

one 500MHz-AWG can handle IQ modulation.

Clock generation and distribution:

AD9781 requires a 500 MHz clock as the input sampling clock (input data is

sampled at both the rising and falling edge of this clock, thus achieving a sam-

pling rate of 1GSPS). For synchronization, it also outputs a copy of this clock to

the FPGA which uses it for streaming data into the DAC input port. The 500

MHz clock is generated by the following scheme (Fig. 2.16): a 10 MHz sine-wave

clock from an atomic source is first converted to a square wave clock by a 74AC04

CMOS inverter. This square wave clock then goes through a CMOS fanout buffer

(NB3L553) and is distributed to Si5325 and the FPGA board. Si5325 is a low-jitter
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precision clock multiplier IC and it outputs a 500MHz clock (in LVDS standard)

from the 10 MHz clock input. This 500MHz clock is then sent to a LVDS fanout

buffer (CDCLVD1204). The CDCLVD1204 clock buffer distributes one of two se-

lectable clock inputs, clock output from Si5325, or CLK EXT directly from an ex-

ternal source, to 4 pairs of LVDS clock outputs. The 4 clock outputs are directed

to the DAC, the FPGA and two flip-flops (MC100LVEL29, used to generate differ-

ential jitter-reduced marker outputs) respectively.

The abundance of clock sources on 500MHz-AWG, from CLK EXT, CLK CMOS EXT

(external CMOS standard clock, a square-wave clock input) to CLK SINE was

motivated by a desire to have a fail-safe system in case a botched circuit element

on the board prevents one of them from working properly. Stable and working

clocks are crucial to digital circuits’ operation. Having a clocking system with

redundancy gives us a peace of mind when post-production hardware/circuit de-

bugging can be extremely challenging.

SPI control:

The FPGA controls the two major IC components on the daughterboard, AD9781

and Si5325 through Serial Peripheral Interface (SPI), a communication protocol

used between a controller and its peripheral devices. This feature is essential

for advanced IC components, such as the two above-mentioned, which require

calibration and have many programmable options (the AD9755 DAC in FPGA-

AWG3, on the hand, was simple enough that there was no control interface). Two

SPI controllers were implemented as FSMs in the FPGA logic to send commands

to and read status from the two components, respectively.

Multi-layered PCB layout:

Due to the high speed nature of the signal transmissions on the daughter-

board, we paid careful attention to the board layout to ensure signal integrity. To
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Figure 2.16: Signal routing of the 500MHz-AWG daughterboard

avoid signal reflections, all critical single-ended signal traces (clocks and data) are

matched to 50 Ω impedance. Each pair of differential signal traces are laid out such

that their lengths match within 0.2 mm and their separation distance stays uni-

form. Furthermore, they are matched to 100 Ω differential impedance. Impedance

control is achieved by routing the traces as microstrip lines. This requires adding

PCB layers as ground planes. The board has a total of six layers to accommodate

all the components and signals. Two of them serve as primary and secondary

signal routing layers (Fig. 2.16). Two of them are ground planes. Ground planes

are further partitioned into analog, digital and clock ground sections. This avoids

noise cross-contaminations between the different types of signals. See the ap-

pendix for more details on the schematic and layout of the 500MHz-AWG daugh-

terboard .

The 500MHz-AWG daughterboard was fabricated and assembled by a profes-

sional PCB manufacturing company in China, chosen for its extremely competi-
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tive pricing. Much to our relief, the first and only batch was a success. We were

able to verify all the key functionalities, including synchronization, digital and

independent analog waveform generation on both channels. During operation,

contents for the instruction memory and pulse memory were generated in Math-

ematica. They were uploaded to the FPGA through the USB port in a Labview

environment. At the time of testing 500MHz-AWG, BBN also demonstrated to us

their version of an FPGA-based AWG which had comparable features and utilized

a very similar logic architecture. Their AWG design has a higher analog output

sampling rate of 1 GSPS while using an FPGA (made by Lattice instead of Xilinx)

from an older generation with smaller block RAM capacity.

64



CHAPTER 3

All-in-one controller for quantum feedback

The 500MHz-AWG and the similar AWG developed at BBN improved upon the

capability of a commercial AWG. But an improved AWG alone cannot execute a

feedback experiment so long as a conventional computer is still used for demod-

ulation and state estimation.

In the traditional experimental setup (Fig. 3.1), signal from a quantum system

is sampled and digitized by a data acquisition card such the Acqiris or Alazar dig-

itizer, which transfers the raw data to a computer. The Alazar card (ATS9870) has

two analog input channels: each ADC converts an input sample to a 8-bit num-

ber (1 byte) every 1 ns, amounting to a total input rate of 2 GB/s. The maximum

throughput between the card and a computer’s RAM by the PCIE connection,

however, is 1.4 GB/s, much less than the raw data input rate. A further compli-

cation arises since RAM space is limited, data transfer from the RAM to a hard

drive is necessary, which takes place at a much slower rate of 140 MB/s. All

this means that the duty-cycle (i.e., on-off ratio) of measurements must be much

less than 100% and highly optimized software is required to process the raw data

from the RAM to reduce the data flow from RAM to hard drive and to avoid

overflow[Brecht, 2012]. The challenge of managing the throughput limits tells us

that transferring raw data from a digitizer to a computer is not an efficient way
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of transmitting information. More importantly, processing the raw data still takes

time on the order of milliseconds on a computer and the timing is not determin-

istic. For quantum feedback, the digitization, demodulation and state estimation

need to occur on the same dedicated hardware system such that the transfer of raw

data can be avoided and timing is deterministic.
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Figure 3.1: Traditional experimental setup for qubits control and measurement
consists of three separate units. An AWG generates the control pulses to the quan-
tum system. An analog-to-digital data acquisition card, such as an Alazar card,
records the quantum system’s responses. A computer is responsible for both gen-
erating the pulse sequences played on the AWG and for processing the record
obtained by an Alazar.
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Figure 3.2: The X6-1000M FPGA board from Innovative Integration.

Despite their promising features, 500MHz-AWG and BBN’s AWG were unfor-

tunately never adopted in any experiment. The incentive to use them is low since

the TEK AWGs can still handle non-feedback experiments well. The advantage of

an FPGA’s capability truly shines through in feedback experiments. After devel-

oping 500MHz-AWG, we were confident about meeting the new goal of uniting

the “traditional setup” on one unit. In the spring of 2012, after searching the in-

ternet for the best candidate, we came across the X6-1000 board from Innovative

Integration (II), an FPGA board on which we can implement both an actuator and

a measurement system.
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3.1 Innovative Integration’s X6-1000M

The X6-1000M board is one of the most advanced and fastest FPGA boards on

the market. Complete details of the board can be found in the hardware man-

ual[Integration, 2015b]. It has a Xilinx Virtex 6 SX475T FPGA1. At the time of

finding the X6-1000M system (early 2012), Virtex 6 was considered a mid-to-high

end family in the Xilinx FPGA product line. And the SX475T FPGA especially

targets high performance signal processing due to its large number of DSP cells

and block RAMs in addition to high-performance CLBs. The FPGA board features

two 12-bit 1 GSPS ADCs and two 1 GSPS 16-bit DACs (mechanism of operation

very similar to the DAC used in 500MHz-AWG). Each of the two 1 GSPS DACs

can also be configured as two 500 MSPS DACs. X6-1000M accepts a clock input

for synchronization with external instruments and a trigger input that is used to

synchronize all the analog channels. The board connects to a computer through

Gen2 x8 PCIE interface that can provide up to 2 GB/s of transfer rate. Similar to

an Alazar card[Alazar], on-board RAMs provide buffering for data transfer with a

computer. However, since raw data can be processed and significantly reduced in

size in real time on the FPGA, as explained in the following sections, the through-

put limit rarely poses a constraint for the X6-1000M board, compared to an Alazar

card. In additional to the analog channels, there are 36 digital I/O ports that are

controllable by the FPGA for customized purposes.

3.1.1 Framework logic

In Chapter 2.2.3, we discussed that for the XEM5010 board, we built an almost

entirely customized logic on the FPGA, save for the required USB interface. We

1X6-1000M can be customized with several configuration options. Early orders of X6-1000M
chose the SX315 FPGA, a smaller option in the Virtex 6 family in terms of logic resources. They
were all eventually replaced by the boards with SX475

69



implemented control interfaces in the logic ourselves for the peripheral compo-

nents.

Due to the complexity of the X6-1000M board, Innovative Integration ships

the FPGA with a default logic, named the Framework Logic. It is considered a

skeleton logic on which an user adds custom functionalities. The logic comes with

control interfaces which interact with the various hardware components, such as

the ADCs, DACs, RAMs on the board.

Integrating our custom components into the Framework logic requires under-

standing the signal and data flow of the existing components provided by II2.

In addition to the control interfaces for peripheral devices, two important fea-

tures of the Framework logic are the “data plane” and “control plane”. Both are

essential for communication between the FPGA and a computer. The “data plane”

is a network of logic components and connections for high throughput data trans-

fer between the FPGA and the computer.

The “data plane” is an unsung hero. Although it is not directly involved in

measurement or waveform generation, it is responsible for transferring data from

the computer into all the look-up tables that make these operations for feedback

possible: this task entails routing data into different destinations. It is also respon-

sible for transferring data from various stages of the signal processing chain to the

computer for analysis; this task entails routing data from different sources. To dis-

tinguish the destinations and sources, each of them has its own unique identifica-

tion, an ID number. The outgoing data are assembled into packets with metadata

which specifies the packet size and source IDs. For incoming data, the reverse

process happens: the packets are disassembled before arriving at respective des-

tinations. The assembly, disassembly, routing, and buffering3 are handled by the

2The Framework logic manual[Integration, 2015a] provides a road map for the skeleton logic.
Adding new components or modifying existing logic also entails digging through the VHDL codes
of the skeleton logic

3Buffering refers to the queueing of data in structures like FIFOs which release data when the
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“data plane”.

The “control plane” maps every component in the Framework logic, whether

default or custom-added, to an address, i.e., a memory address as if each compo-

nent were a memory block in a shared memory. The addresses refer to specific

registers associated with each component. These registers provide the computer

with low-speed but on-demand control of the components. The registers that are

written to, set commands or parameters for the components; the registers that are

read, report statuses of the components4. Unlike the “data plane” which is used

for large data stream sustained for at least hundreds of clock cycles, , the “control

plane ” is used for read and write of individual registers that occur intermittently.

Both the “data plane” and ”control plane” are modified and expanded to ac-

commodate the complex custom logic that we add.

3.2 Yngwie logic

Yngwie is the custom logic we developed on top of the Framework logic. The

name Yngwie is coined by one of its creators Nissim Ofek. It stands for “Yehan

Nissim waveform generator”5. Since its inception, Yngwie logic has gone through

many iterations, expanding its features and functionalities each time. We examine

one representative version, a006x, which is used for the experiment in Chapter 5.

All the features, operating principles and the overarching architecture shown in

this chapter also apply to later versions.

The Yngwie logic architecture for quantum feedback(Fig. 3.3) consists of four

main components, the sampler, the demodulator, the state estimator and the se-

quencer.

destination is ready to receive them
4The registers share an address bus and a data bus. Writing and reading of the address and

data bus are done through the PCIE interface and taken care of by an IP core provided by II.
5The inspiration for the name comes from the Swedish heavy metal guitarist, Yngwie who is

known for his superior acoustic waveform generation skills.
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Figure 3.3: Architecture of the Yngwie logic for quantum feedback control.
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3.2.1 Measurement

The sampler

The inputs to the X6-1000M board come from a heterodyne interferometric mea-

surement setup which produces two outputs. One of them has passed through

the quantum system and is called the signal; the other one, which has not inter-

fered with the quantum system, is called the reference. The inputs from the signal

and the reference channels arrive at the two ADCs, respectively and are sampled

at a rate of 1 GSPS. The ADCs send the digitized data to the FPGA at the same

rate. However, the 1 GHz sampling clock at the FPGA input exceeds the maxi-

mum clock frequency allowed in internal FPGA logic blocks. A serial to parallel

converter right after the input comes to rescue and converts the input stream from

1 sample every 1 ns to 4 samples at once every 4 ns (synchronized to a 250 MHz

clock).

An important question to answer is how sampling windows are decided on

the FPGA since measurements in an experiment occur intermittently. One possi-

bility is to turn on and off the ADCs or the FPGA inputs as dictated by the mea-

surement sequences. However, this is not plausible because ADC calibration and

synchronization with the FPGA take a long time after each restart and the time

is not deterministic (typically on the order of several seconds) whereas quantum

feedback experiments require the switching of sampling/measurement window

to be deterministic and as often as every hundreds of nanoseconds. The solution

implemented, as is often done in hardware programming in general, is to not shut

down the stream source but to “label” portions of the stream as desirable or un-

desirable. The sampled data are paired with a 1-bit meta signal, called data valid,

which is 1 when a sample is wanted and 0 otherwise. Downstream modules, such

as the state estimator processes the sample only when it is labeled as valid and
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ignores it otherwise. The 1-bit meta signal received by the sampler, is a digital

sequence. Programming this sequence lets us control the sampling windows. The

sequence is generated by a sequencer which will be discussed in more details in

Sec. 3.2.2).

The sampled raw data are directed to the demodulator. They can also be sent

to the computer if this streaming option is selected. However streaming raw data

to a computer causes similar problems for the X6-1000M as for the Alazar card.

Therefore it is usually only done for pre-experiment calibration or debugging pur-

poses.

The demodulator

The demodulator is the first of several custom built signal processing components

that the sampled raw data go through. The readout signal and the reference sig-

nal arrive at the ADCs with 50 MHz modulation due to their mixing with a LO

set at 50MHz away in the interferometer setup. To extract the in-phase (I) and

quadrature (Q) components of both signals, the demodulator multiplies each of

the signals with an ideal sine and cosine wave, respectively, at 50MHz. Because of

the sampling rate of 1GSPS of the ADCs, one period of 50MHz contains 20 sam-

ples. As a result, the demodulator extracts the I and Q components of one period

of signal by the following:

Isig,ref =
20∑
k=1

fk cos

(
2π

20
k

)
, Qsig,ref =

20∑
k=1

fk sin

(
2π

20
k

)
(3.1)

where fk is the sampled raw data. On the FPGA, the values of the ideal cosine and

sine waves are taken from two lookup tables that store the 20 amplitude values at

those particular phase points for cosine and sine, respectively. This simple calcu-

lation may seem trivial but demonstrates the significant advantage of signal pro-

cessing done on the FPGA. For traditional experiment setup that feeds raw data
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directly to a computer, the demodulation is done on the computer CPU where

the 20 multiplications, required for either one I or Q value, are computed sequen-

tially. On the Yngwie logic, the demodulator utilizes multiple multipliers from

DSP slices to perform as many multiplications concurrently as possible. Since 4

samples (per channel) enter the demodulator at once every 4 ns, the demodulator

performs 4×2×2 = 16 (number of samples × number of channels × number of

quadrature components) multiplications simultaneously every 4 ns!

State estimator

In a nutshell, the state estimator further processes the sampled input and produces

a measurement result that influences the sequencer. In the feedback loop, the state

estimator is what connects the “detector” and the “actuator”, and in the case of

the X6-1000M board, the ADCs and the DACs. Before we go into the details of

the state estimator, however, we need to make a small digression to address some

complication.

Digression on multiple clock domains on the FPGA:

Yngwie logic can be divided into three regions (Fig. 3.4a): (1) the analog input

region, consisting of the ADC interface and the demodulator. (2) the signal pro-

cessing and waveforms generation region (also referred to as the middle region

below), where most of the Yngwie logic is located, consisting of the state estima-

tor and the sequencer. (3) the output region, consisting of the DAC and digital

I/O interfaces. If all three regions are synchronized by exactly the same clock, this

will be a perfectly functioning pipeline.

But in reality, using one clock throughout the all the regions is not possible.

The input region is synchronized with the down-converted ADCs’ sampling clock

at 250 MHz. The output region is synchronized with the down-converted DACs’

sampling clock also at 250 MHz. The ADC and DAC sampling clocks, though
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nominally at the same frequency, are slightly different. The on-board PLL (phased

locked loop) on the X6-1000M board generates the two clocks independently from

the clock reference source to compensate for hardware and location differences

between the ADC ICs and DAC ICs.

Due to the difference between the input and output clocks, the clock for the

middle region needs to be faster than the other two to avoid data underflow and

overflow. This clock is called the system clock and is set at 260 MHz. Under-

flow occurs when a read request is made when there is no more valid data to

read6. Overflow occurs when there is valid data to read but it is ignored and con-

sequently lost7. Data transfer across regions synchronized to different clocks is

known as clock domain crossing and occurs very often in FPGA logic designs. It

is typically mediated by first-in-first-out buffers (FIFOs). A sample that arrives

at a FIFO first leaves first, hence the name. On the Virtex 6 FPGA, a FIFO is im-

plemented essentially by a memory block (comprised of one or multiple block

RAMs) with the write port synchronized to one clock domain and the read port

synchronized to another clock domain, along with a few status outputs. In the

Yngwie logic, the input region writes to a FIFO (the left FIFO in Fig. 3.4a) at a

rate of 250 MHz. The signal processing and waveforms generation region reads

data from the FIFO at a rate of 260 MHz. Since the read speed is higher than the

write speed, overflow will never occur. Furthermore, the middle region checks

the empty alert of the FIFO and stops the reading request if the FIFO becomes

empty. Similarly, the middle region writes to the following FIFO (the right FIFO

in Fig. 3.4a) at a rate of 260 MHz. The output region then reads data from the FIFO

at rate of 250 MHz. Since now the write speed is higher than the read speed, un-

derflow will never occur. Moreover, the middle region checks the full alert of the

FIFO and stops writing if the FIFO becomes full. In actual implementation, there

6This happens when reading is faster than writing.
7This happens when reading is slower than writing.
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are multiple FIFOs at each of the clock domain crossings, mediating data transfer

from multiple components across two regions. For example at the clock bound-

ary between the middle region and the output region, there are separate FIFOs

responsible for data flow between the analog sequencer and the DAC interface,

and between the digital sequencer and the digital I/O interface.

Realizing the proper management of data flow across the three regions was

a significant milestone in the early stage of the Yngwie logic development. The

effect of using a higher clock frequency for the signal processing and waveforms

generation region as well as using FIFOs for clock domain crossing vs. the conse-

quence of not doing so are demonstrated in Figure 3.4b,c.
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Figure 3.4: Clock domain crossing with FIFOs. (a) Yngwie logic is divided
into three clock regions. (b) Both analog outputs jitter due to sample over-
flow/underflow when the middle region is not synchronized to a higher clock
frequency and FIFOs for clock domain crossing are not used. (c) Jitter goes away
when the proper changes introduced in the text are made.

78



The first part of the state estimator is a component that subtracts the global

phase from the I and Q values. Due to phase drift of the generators, there can

be a trivial phase rotation of the demodulation results in the I-Q space during an

experiment over time. What we really care about are the relative I and Q values

with respect to the reference input channel. The global phase subtractor produces

Irel and Qrel by projecting the signal I-Q values to the reference I-Q values (the

component is hence called iq dot product).

Irel = [Isig, Qsig] · [Iref , Qref ] , Qrel = [Isig, Qsig] · [−Qref , Iref ] (3.2)

Irel and Qrel are not normalized since division incurs significant latency on an

FPGA8. The iq dot product is where the clock domain crossing occurs between

the input region and the signal processing region: before entering the multipliers

used for calculating the dot products shown above, the demodulated I-Q samples

and the associated meta signal data valid signals are first buffered through FIFOs.

As a result, the final outputs of the dot product calculations, Irel and Qrel, are

synchronized to the system clock of 260 MHz.

After the removal of global phase, the rest of the state estimator is responsible

for summing up the stream of Irel and Qrel to obtain Isum and Qsum, which are

the measurement outcomes. In a typical dispersive readout experiment, repeated

measurements produce a histogram of these measurement outcomes in the I-Q

space. Measurement outcomes corresponding to a particular quantum state fall

into one of several Gaussian distributions, i.e., “blobs”, in the histogram (Fig. 3.5).

To “estimate” the state represented by a measurement outcome in real time,

thresholds are used to discriminate the measurement outcome by the region in I-

Q space it belongs to. The optimal boundaries between the distributions, the ones

8In digital logic, there are, however, “tricks” to divide a number without actually “doing” divi-
sion. Division of a number by powers of 2 can be achieved by right-shifting the number by n bits,
where n is the power.
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[1, 0]

Figure 3.5: State estimation along two arbitrary directions and thresholds.

that result in minimal assignment infidelity, are pre-chosen to be the thresholds.

There are two thresholds available for state estimation. They can be chosen with

respect to the original I-Q axis. The result of state estimation is encoded in two

bits, S0 and S1, based on the comparison between the measurement outcome and

the thresholds. S0 (S1) is assigned 1 if Isum (Qsum) is greater than the I-threshold

(Q-threshold) and 0 otherwise.

However, thresholds with respect to the original I-Q axis are not necessarily the

best choice. The optimal discrimination boundaries do not have to be orthogonal

to the the original I-Q axis. In such case, we can apply a linear transformation on

the measurement outcomes.

 Ĩsum

Q̃sum

 =

cosα0 sinα0

cosα1 sinα1

 ·
 Isum

Qsum

 (3.3)

Transforming the measurement outcomes is equivalent to changing the axis of the

original I-Q space. Since the new axis in the transformed space do not have to

orthogonal to each other, the mapping does not have to be restricted to a rotation
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(if it were, then α1 in above equation can be set equal to α0 + π
2
). Similar to before,

thresholds with respect to the axis in the new space can then be chosen for state

discrimination.

The logic component for executing the state estimation procedure described

above is shown in Fig. 3.6. The component consists of two parts, a main module

that does the calculation and an instruction memory that supplies the parameters.

The main module takes the outputs of the iq dot product and a signal speci-

fying an address for the state estimation instruction memory. This signal comes

from the master sequencer, which we will describe later. The main module se-

lects the appropriate instruction word from the instruction memory by reading

the content at the location selected by the instruction address.

Every measurement pulse of certain duration (i.e., every sampling window)

starts a new round of calculation in the main module of the state estimator. The

main module accumulates the inputs Irel andQrel, respectively, whenever they are

accompanied by an asserted data valid signal. The sums are then transformed to

Ĩsum and Q̃sum according to equation 3.3, where the matrix elements of the trans-

formation are contained in the instruction word (the matrix can be identity in the

case of no transformation). The instruction word also provides the the values for

the two thresholds for state discrimination. The field “est. length” in the instruc-

tion gives the estimation length, which dictates how many demodulation periods

the main module needs to sum over. This is typically set at its maximum possible

value, (measurement duration)/(20ns). The state estimator outputs three signals,

Ĩsum, Q̃sum, and a two-bit signal encoding S0 and S1. They are directed to the

next component, the sequencer. They can also be streamed to the computer for

post-analysis.

81



State 
estimation

State 
estimation
instruction
memory

Irel

Qrel

valid

S.E. instruct. addr.

Isum [s0, s1]Qsum

cos(α1)sin(α0)cos(α0) sin(α1) est. length threshold_0 threshold_1

Figure 3.6: Architecture of the state estimator.

3.2.2 Sequencer

The results of the state estimator go into the Sequencer9 (Fig. 3.7), a complex com-

ponent responsible for generating analog and digital sequences conditioned on

the results. Within the Sequencer, there are several constituent sequencer compo-

nents: analog, digital and master. A sequencer is named so because it executes

a sequence of instructions in some prescribed order. Its principle of operation is

outlined in Chapter. 2.2.2: it consists of at least a FSM-based control unit that or-

chestrates the reading of the instruction and an instruction memory storing the

sequence of instructions.

9From now on, to avoid confusion, we use Sequencer to mean the entire sequencing component
and sequencer to mean an constituent sequencer within the Sequencer component.
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Figure 3.7: Top level architecture of the Yngwie Sequencer consisting of the mas-
ter sequencer, analog sequencer and the digital sequencer.

83



branch type meaning
(11) Goto go to addr0
(00) Branch if internal result = True go to addr0, else go to

addr1
(01) Goto subroutine go to addr0 and push addr1 onto a stack
(10) Conditional return if internal result = True pop the top address

from the stack, else go to addr0

Table 3.1:

The behavior shared by all the sequencers relates to the flow of instructions.

There is a common mechanism on how a sequencer continues from one instruc-

tion to the next. Each instruction has its unique address in the instruction memory

and contains at least the following fields: two instruction-address fields, addr0

and addr1 and a field which we call branch type. When we finish executing

an instruction, we will move to the next depending on this branch type, the

two addresses specified in the instruction and a global state of the FPGA which we

call internal result. At any moment, internal result is either true or

false and may change along the execution of an instruction (we will go in details

about this in Sec. ??). There are four kinds of instruction-to-instruction transitions

specified by four different values of branch type:

The branch type Goto is the most basic one, used for non-conditional se-

quences and is also implicitly how instruction transitions in the FPGA-based AWG

described in Chapter 2.2.2. branch type Branch is self-explanatory. branch

type Goto subroutine and Conditional return work in tandem. Later in Sec. 3.2.2,

we will discuss them in more details.

The analog sequencer generates analog waveform data to the DAC interface.

Besides the more sophisticated branching options, the analog sequencer is still

based on the architecture described in Chapter 2.2.2. The digital sequencer gen-

erates digital waveforms data to the digital I/O interface, which are outputted

as digital pulses used for controlling external instruments or devices. Last but
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not least, the master sequencer is responsible for generating the digital sequence

that determines sampling windows introduced in Sec. 3.2.1. However, the master

sequencer does much more than just outputting a digital sequence and is, as its

name suggests, the master of all the sequencers. It is in charge of deciding the

global state that dictates how the other sequencers transition between instructions.

Moreover, the digital sequencer is a simplified version of the master sequencer.

We shall therefore focus on the master sequencer in the rest of this chapter.

Master sequencer

Typical of the hierarchical nature of FPGA hardware programming, the master se-

quencer itself is a complex component comprised of several submodules (Fig. 3.8).

The component “sequence control” coordinates the reading of the master sequence

instruction memory and extracts one instruction at a time. The master sequencer

updates the global state, internal result, according to this instruction.
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Figure 3.8: Architecture of the master sequencer.
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Figure 3.9: The global state, internal result is a boolean function of the states
of eight 1-bit registers updated by the signals/processes shown in the boxes.

Recall that at any moment, internal result encodes a boolean state mon-

itored by all the sequencers in the FPGA. At the critical moment, when the exe-

cution of an instruction is near completion, the choice of the next instruction, i.e.,

which instruction to branch to, depends on this boolean state. Before this critical

moment, the master sequencer can update internal result. Manipulating the

way it is updated is how we control the flow of instructions, which determines an

experimental protocol.

There are several registers10 in the master sequencer whose values affect how

internal result is updated (Fig. 3.9). They are the following, identified in

bold:

We have two counters which can be initialized to certain values we choose.

There are two boolean registers corresponding to these two counters, C0 and C1.

Each of theirs value is true when the corresponding counter has been decremented

to 0, and false otherwsie. As shown later in Sec. 3.2.2, we can use the counters to

implement loops.

There are two registers that hold the two boolean outputs from the state esti-

10Not to be confused with the registers of the “control plane” discussed in Sec. 3.1.1
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mator, S0 and S1, which we have described earlier.

There are two boolean inputs that come from external sources, X0 and X1.

Their origin may be another FPGA or some other instrument.

Last, we have four general-purpose 16-bit registers with which we can per-

form various basic arithmetic manipulations11. There are two boolean registers,

R0 and R1, that correspond to comparison results between the values of two reg-

isters selected. We can manipulate these general-purpose registers to store values

shared between instructions, like variables in a computer program.

The boolean states stored in these eight registers are called the bare states. These

bare states can change during the execution of an instruction as their respective

sources update them. For example, S0 and S1 change after a new measurement

outcome is calculated and discriminated by the thresholds in the state estimator;

X0 changes when the external source, e.g., another FPGA switches its value.

The global state,internal result is a boolean function of the bare states. A

boolean function is often represented by a truth table (Fig. 3.10). In a truth table,

the right-most column gives the result of a boolean algebraic expression as a func-

tion of the columns of inputs on the left. The size of the function, as determined

by as the number of bits in the right-most column, is 2(number of inputs). The boolean

function for computing internal result is called internal function in

the master sequencer. Implementing a boolean function is achieved by storing all

the bits of the right-most column of its truth table in a register. For a given set

of inputs, we find the result of the function simply by looking up the bit at the

location specified by their (the inputs) value (converted to decimal). This imple-

mentation allows the boolean function to be as simple or as complex as we desire

without adding demand on the FPGA logic resources. Figure 3.10 gives an exam-

ple of a truth table of an internal function that sets internal result true

11the complexity of the arithmetic manipulations available has been significantly expanded
since the logic version described in the thesis

88



S0 S1 S0 • S1 

0      1
1      0
1      1

0      0 0
0
1
0

Figure 3.10: An example of implementing a boolean function by a truth table to
identify a qubit state.

when a qubit is in the excited state.

In Appendix A, we give details on how the master sequencer parses and im-

plements an instruction from the its instruction memory.

Building sequences

The logic infrastructure that supports a range of branching options for a sequence

of instructions plus the flexibility and programability of the branching condi-

tions is what distinguishes the X6-1000M feedback controller from the commercial

AWGs and controller systems used by other groups. They allow us to use control

flow structures commonly seen in software programming to design sophisticated

sequences that can meet the demands of complicated experiments. The imple-

mentation of control flow structures in the Yngwie sequences parallels how it is

done in computer software programming at the very low level, i.e., in assem-

bly language. This is not surprising since the Yngwie sequencers’ architecture is

based on microprocessor architecture which computer CPU is also based on. In

this section, we attempt to put several features introduced in the last section into

practice.

Loop
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A very common control flow structure in programming is a loop. The branch

type Branch together with the counters in the master sequencer allow us to im-

plement loops in a sequence. Figure 3.11 gives a pseudocode description of the

instructions for such an implementation. As an example of application, an exper-

imental protocol may require repeating a set of tasks a certain number of times

before continuing to the next step.

An initial instruction initializes one of the counters (represented by M in the

Figure) to a particular custom value, which is stored in a field in the instruction

(see Appendix A). This is the value that the counter counts down from. The in-

struction also sets internal function to be dependent solely on the zero sta-

tus of the counter. The instructions that follow can be any tasks that need to be exe-

cuted and repeated. After those instructions, the following instruction decrements

the counter. It also monitors the output of internal function, internal

result which is 1 when the counter has reached zero and 0 otherwise. Based on

internal result, the sequence either reverts back to the starting instruction of

the tasks (note: not the very initial instruction) and thus repeats them or continue

to a new instruction.

Loop is used very often by the FPGA controller. The tasks iterated inside a

loop can be as simple as a few sequential instructions or complex such that they

involve conditional branching themselves. The MB stabilization experiment in

Chapter 5 uses this feature to keep track of number of correction steps.

It is worth mentioning that both counters provided by the master sequencer

can be used at the same time to implement a nested double loop.

Subroutine

In software programming, if a task is called very often, a function or subroutine

is written for that task to avoid code duplication. Every time the task needs to

be performed, the subroutine is called. The branch type Goto subroutine and
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INSTRUCTION 1: M = 15 

INSTRUCTION 2: DO XXXX, GOTO INSTRUCTION 3 

INSTRUCTION 3: DO XXXX, GOTO INSTRUCTION 4 

... 

INSTRUCTION 7: Decrement M, 

If M = 0 GOTO INSTRUCTION 8 

Else GOTO INSTRUCTION 2 

INSTRUCTION 8: DO XXX, GOTO INSTRUCTION k 

Figure 3.11: Implementing a loop using counters.

Conditional return achieve the same goal for the sequencer. Figure 3.12 gives a

pseudocode description of the instructions for such an implementation.

In a cQED experiment, there are often sequences of pulses that need to played

many times for just one iteration of the experiment. An example is the qubit state

tomography pulses. For two-qubit state tomography, there are 16 sets of two-

qubit pulses[Filipp et al., 2009]. Each of them needs to be repeated many times

since the experimental sequences that precede them are typically alternated by

some parameters. For example, in the MB stabilization experiment described in

Chapter 5, we vary the number of correction steps before tomography. That num-

ber changes from 1 to 20, totaling 20 variations12. Taking into account both the

stabilization and state tomography sequences, we have 20 × 16 = 320 variations

of qubit pulse sequences for the complete protocol. Storing all of them in the se-

quence instruction memories is not efficient since many of the instructions would

be duplicate.

Alternatively, we can treat each of the 16 state tomography pulse sequences

and each of the 20 stabilization sequences as a unique subroutine. We only en-

code the instructions for the subroutine once in the sequence memory. Instead

12Each of the variations, i.e., a stabilization sequence with n correction steps is implemented as
a loop with a counter initialized to n
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of storing instructions for 320 different qubit pulse sequences, we now only have

to store the instructions for 16 + 20 = 36 subroutines. Whenever the experiment

sequence needs to invoke a subroutine, the branch type Goto subroutine allows

the sequence to jump to the address for the first instruction of that subroutine

and execute its instructions. Meanwhile, it stores the address of the instruction

that we should return to in a stack, which is a first-in-last-out data structure (bot-

tom of Figure 3.12). The branch type Conditional return lets the sequence to re-

turn to the main thread only when certain conditions are met. We use internal

function in the master sequencer to set the boolean conditions for the compe-

tition of the subroutine. When the execution of the subroutine is complete as in-

dicated by internal result being true, we go to the instruction pointed to by

the address stored on the top of the stack and remove the address from the stack

(known as “pop”). The stack enables nested subroutines: we can go to another

subroutine within a subroutine.

Implementing FSM on the sequencer

In MB quantum feedback, typically there are a finite number of states that we

expect the target quantum system to be in. Consequently, the FPGA that controls

the quantum system also needs to be in a finite number of states that correspond

to the quantum states. As the FPGA monitors and steers the quantum system, it

needs to be able to transition among these states, while the transitions are condi-

tioned on input from the quantum system. This process calls for realization of a

FSM. The sequencers of the Yngwie logic equip us with the capability to imple-

ment a FSM sequence. The MB feedback protocols discussed in Chapter 5 demon-

strate a couple of advanced FSM sequences in action.

Here, using a common experiment, cavity spectroscopy, as an example, we

give a tutorial of implementing of a FSM sequence that utilizes several features

discussed so far (Fig. 3.13). During the spectroscopy experiment, a microwave
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INSTRUCTION 1: DO XXXX, GOTOSUB INSTRUCTION 8, 

RETURNTO INSTRUCTION 2

INSTRUCTION 2: DO XXXX, GOTO INSTRUCTION 5

...

INSTRUCTION 8: DO XXXX, GOTO INSTRUCTION 9

INSTRUCTION 9: DO XXXX,

If condition

GOTO RETURNTO 

Else 

GOTO 9

Instruction 2

empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

“Push” “Pop”

Figure 3.12: Implementing a subroutine call

generator sweeps the frequency of the tone to the cavity over a range by incre-

mental steps. At each frequency step, the FPGA takes thousands of measurements

of the cavity output and streams the results (Ĩsum and Q̃sum) to a computer. The

FSM sequence constructed for this experiment consists of three states:

State “initialize”: this state is made of just the very first instruction of the se-

quence, during which a counter (represented by N in the figure) is initialized to

a value that is set to the desired number of averages for the measurements (i.e.,

number of repetitions per frequency step).

State “measure”: the sequence transitions from state “initialize” uncondition-

ally into this state (by branch type Goto). First, the counter is decremented by

one. Then, a digital pulse to modulate the cavity drive is generated by one of the

digital sequencer (A qubit π pulse may also be applied prior to the digital pulse,

such as shown in Figure. 3.13, if we are interested in χ measurements) and the
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N : 3000 

N = 0 

N > 0 

N <= N-1 

X0 = 0 

X0 = 1

Initialize Measure Wait

Figure 3.13: Constructing a FSM sequence for a spectroscopy experiment.

returning cavity response is demodulated and processed by the state estimator.

The resulting Ĩsum and Q̃sum are streamed to the computer. In the final instruc-

tion of this state, internal function is programmed to depend solely on the

counter. Its output, internal result, instructs the sequencer to branch to the

beginning instruction of the current state again if the counter has not reached zero.

Otherwise, it branches into the final state.

State “wait”: In this state, the FPGA does nothing13. It waits for a trigger

from an external function generator that is controlled by the computer. When

the computer has received all N pairs of Ĩsum and Q̃sum for one frequency step,

it commands the microwave generator to step up the frequency and the func-

tion generator to release the trigger. This trigger enters the logic, as X0, one of

the external inputs accepted by internal function. In the final instruction of

this state, internal result depends solely on X0. When it is asserted, the se-

quencer branches back to state “initialize” , otherwise it branches to the beginning

instruction of the current state and continues to wait for the trigger.

13Doing nothing means that all the sequencers, analog and digital, are outputting constant zero
amplitude pulse.
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CHAPTER 4

Qubit cooling

4.1 Introduction

The ability to prepare a qubit in a predetermined state, also known as qubit reset

or qubit initialization, is one of Divincenzo’s five criteria [DiVincenzo, 2000] for

building a quantum computer. Its importantance is intuitive: many algorithms,

quantum (or even classical), require knowing the initiate state of inputs. Knowing

the initial state, such as the initial state of the qubits, allows one to track the tra-

jectory of a protocol. If a qubit or a set of qubits can be initialized or “cooled” to

their ground states, deterministically applying arbitrary gates on them can then

prepare them in an arbitrary initial state. This is also the reason why qubit reset

has typically been approached as a cooling problem.

For superconducting qubits in a cQED setup, the simplest approach is just

passive waiting for qubits to reach thermal equilibrium with a cold bath. This

approach is problematic because waiting can take a long time as qubit coherence

time now can exceed a hundred microsecond and the “cold” bath that the qubit is

in is actually not cold enough.

In cQED experiments, we have often observed qubit thermal population in

excess of 10%. For ensemble experiments where results of interest are averaged
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over all repetition runs, the qubits that are in the “wrong” states in the beginning

will report a different readout value (e.g., a different voltage reading) and bias

the final result. This results in reduction of contrast. This problem may not be a

serious issue for system parameter characterization experiments, such as finding

T1 and T2 of the qubits. But for experiments such as state tomography, readout

voltage calibration are required to account for the thermal population. For many

cQED experiments, however, such as single-shot experiments, the non-negligible

thermal population produce undesirable results that are harder to mitigate.

To combat this, post-selection has been the most common method to purify

the initial state of a qubit to ground state. A high fidelity measurement chain

enabled by a nearly quantum limited amplifier can distinguish the state of a qubit

on a single measurement. An initial stage of measurement is therefore inserted

before an experiment protocol to herald experiment runs in which the qubit starts

in ground state, by post selection. This method can purify ground state with very

high fidelity[Johnson et al., 2012; Ristè et al., 2012b]. A drawback of this method

is that experimental success probability is sacrificed since a significant percentage

of data are thrown away.

Using feedback to cool a qubit is the alternative approach. Both reservoir-

engineering based DD feedback and MB active feedback approaches have been

developed. Kurtis demonstrated the double drive reset of population (DDROP)

protocol, a DD method for qubit reset[Geerlings et al., 2013]. Riste et al showed

the first active purification of a qubit to ground state using MB feedback based

on a FPGA[Ristè et al., 2012a]. At Yale, we implemented two similar MB feed-

back protocols to cool a qubit, dubbed the “baby Maxwell’s Demon” and “mature

Maxwell’s Demon” with the all-in-one FPGA controller.
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4.2 Qubit cooling by MB feedback

4.2.1 Baby Maxwell’s demon

The “baby Maxwell’s Demon” is the first feedback protocol implemented on the

FPGA controller. It removes entropy from a qubit by purifying it to the ground

state and is named such for its simplicity. It consists of several steps (Fig. 4.1).

The first step is for erasing history. We applies a projective measurement (M0)

on the qubit which result in either the ground or excited state according to some

thermal distribution. A π
2

pulse rotates the qubit to the equator of the Bloch sphere

where it is in an equal superposition of the ground and excite state. At this point,

information about qubit’s final state in the previous round is completely erased.

This step prepares the qubit in a maximum entropic state, a good test for the “baby

demon”. In the second step, another projective measurement (M1) projects the

qubit to either |g〉 or |e〉 with equal probability. The state estimator in the FPGA

determines qubit state by applying thresholds on the measurement outcome. In

the third step, a feedback decision is applied. If the qubit was determined to be |g〉,
we do nothing otherwise we apply a π pulse. In the final step, a strong projective

measurement (M2) is applied again to record the state. This sequence of steps is

then repeated many times. In Figure 4.2, we show the measurement outcomes of

the sequence in terms of IQ histograms.

For one experiment of the “baby Maxwell’s demon”, at the end of M1, |g〉
and |e〉 populations are estimated to be 46.2% and 47.2% (Fig. 4.3). The “baby

Maxwell’s demon” lowers the entropy by purifying the ground state from 46.2%

to 88.7%. The third and fourth step (M1 followed by the conditional π pulse) in the

protocol comprise the feedback stage (Fig. 4.4). Due to imperfection in the pulse

and measurement infidelity, there is still quite a significant remainder population

in the excited state.
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𝑅𝑥 𝜋/2
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Figure 4.1: Pulse sequence of the baby Maxwell’s demon.
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𝑴𝟏:

𝑴𝟐:

All results Estimated as |𝑔⟩ Estimated as |𝑒⟩

 𝐼𝑚 𝜎

 
𝑄
𝑚

𝜎

Figure 4.2: Measurement outcomes of the “baby Maxwell’s demon” protocol.
The top (bottom) row shows the measurement outcomes of M1 (M2). After M1, as
we expect, we have an even distribution of ground and excited states (top left).
In addition, we separately show the histograms of measurement outcomes that
were estimated to be ground states (middle) and excited states (right) in M1. Then
after M2, which is after the conditional pulse based on the estimation decision, we
have a histogram that shows most of the population in the ground state (bottom
left). In the bottom middle histogram we see that all the qubits estimated to be
in the ground state after M1 are still in the ground state. And in the bottom right
histogram, we see that almost all of the qubits estimated to be in the excited states
get flipped to ground states.
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 |𝑔 : 46.2%
 |𝑒 : 47.2%

 |𝑔 : 88.7%
 |𝑒 : 3.3%

 |𝑔 : 91.1%
 |𝑒 : 0.9%

 |𝑓 ,… : 8.0%

Figure 4.3: Measurement outcomes of repeating a stage of the baby Maxwell’s
demon.

Repeating the feedback stage one more time (Fig. 4.4) can purify the ground

state further to 91.1%. However, we note that throughout the steps of the se-

quence, the populations estimated in |g〉 and |e〉 from the I-Q histograms do not

add to 100%. This is due to the population present in the higher excited states,

such as as |f〉 and |h〉, evidenced by the distribution of measurement outcomes

below the |e〉 outcomes in the histogram. It appears that repeating the simple

feedback stage once does not affect the higher states population. In principle, we

can deplete the higher states by repeating the step many more times; in each time

we move the population in the excited state which are then mostly contributed by

the natural relaxation from the higher states. This is a slow process. Fortunately,

taking advantage of the flexibility of the FPGA controller, we can enhance the ca-

pability of the “baby Maxwell’s demon” and actively deplete population in the

higher excited states.

4.2.2 Mature Maxwell’s demon

We dub this more advanced protocol, which actively removes population from |f〉
and |h〉, the “mature Maxwell’s demon”. Figure 4.5 shows the pulse sequence for
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𝑅𝑥 𝜋/2

𝑅𝑥 𝜋 ,

𝐼𝑑or

𝑀1 𝑀2

Repeat

1

Figure 4.4: Repeating a stage of the baby Maxwell’s demon

the mature Maxwell’s demon and Figure 4.6 shows the corresponding effect on

the qubit state population distribution for one repetition of the sequence.

The mature Maxwell’s demon sequence begins with the first three steps of the

baby Maxwell’s demon. At the end of the baby demon sequence (with the feed-

back stage repeated twice), most of the population are in the ground state, very

little in the excited state and a sizable remaining in the higher states, i.e., |f〉 and

|h〉. Following these steps of baby Maxwell’s demon, a projective measurement

(Mk) is then applied to identify the qubit state. If the qubit is in |g〉, we do nothing;

otherwise we apply a train of π pulses. The first π pulse is on the |e〉 → |g〉 transi-

tion that moves population from |e〉 to |g〉; the second π pulse is on the |f〉 → |e〉
transition that moves population from |f〉 to |e〉; the last π pulse is on the |h〉 → |f〉
transition that moves population from |h〉 to |f〉. Then we measure again (Mk+1);

we do nothing if the qubit is in the ground state otherwise we apply a π pulse

on the on the |e〉 → |g〉 transition to empty the population in |e〉 . This sequence

of steps to shuttle population from higher states to the ground state comprise a

stage in the mature Maxwell’s demon and can be repeated however many times

as needed by the experiment.

Now we can show the mature Maxwell’s demon in its full glory as the feed-
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Figure 4.5: Sequence of the mature Maxwell’s demon.

|  𝑔
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|  𝑓
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Figure 4.6: Qubit state population during mature Maxwell’s demon.
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back stage is repeated. In Fig 4.7, we present select histograms of measurement

outcomes from M0 through M18 as the purification progresses1

M0: the qubit is at its initial state, with the population thermally distributed.

M1: after the history erasure by the π
2

pulse, the qubit is in a very high-

entropy/mixed state.

M2: Most of the |e〉 population is depleted.

M3: Very little |e〉 population left after repeating the conditional e→ g π pulse.

M4: |f〉 state is starting to be depleted.

M5: |h〉 state population is transferred to |e〉 .

M6: |e〉 state is emptied again.

M8...M18: Repeat the last two steps over and over again.

In Figure 4.8, we plot the qubit population of each state as a function of the

feedback stage. Furthermore, we also show the corresponding Shannon’s infor-

mational entropy (defined in Sec. 1.3) as a function of the feedback stage. After the

final stage, we have a ground state purity of 99.3% and lowered the entropy from

1.2 to 0.007. Most of the entropy depletion occurs within the first 10 stages. The

rest of the stages are mainly passively depleting states even higher than |h〉. In

principle, if we want to, we can also actively deplete state |i〉. and achieve similar

result with few stages.

The purity of the ground state attained in Maxwell’s demon cooling experi-

ment is limited mainly by measurement errors, T1 of the qubit and latency of the

feedback. The measurement errors can be mitigated by a technique which we

1The actual order of π pulses applied and the resulted population shuffling between the first
four energy states are slightly different from what is presented in Fig. 4.5 and Fig. 4.6. In the
experiment that produced the histograms in Fig 4.7, f → e π pulse is the first qubit pulse applied
after the baby demon protocol to swap the population in |e〉 (very little left) with |f〉 followed by
e → g π pulse. Following these two pulses is a projective measurement. If the qubit is not in |g〉,
then h → f , f → e and e → g π pulses are applied in the specified order to move the remaining
population from |h〉 to |g〉. The order in Fig. 4.5 and Fig. 4.6 is shown, however, for clarity and
simplicity of presentation. The slight variations of the π pulse ordering work as well and achieve
the same result at the end.
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call “dynamic thresholding”. During the Mature Maxwell’s demon protocol, the

threshold used to distinguish the ground state from the other states are adjusted

as the feedback stages progress. Right after the qubit is put in the maximumly en-

tropic state, where there is very similar likelihood of being |g〉 and |ḡ〉, the thresh-

old is chosen such that ε|g〉||ḡ〉, defined as the error of measuring |g〉when the qubit

is in |ḡ〉, is comparable to ε|ḡ〉||g〉, the error of measuring |ḡ〉 when the qubit is in

|g〉2. As the ground state population increases, the threshold is moved further

away from the center of the |g〉 distribution and towards the center of the |ḡ〉 dis-

tribution3. Moving the threshold in such way makes it a more stringent discrimi-

nation for |ḡ〉. “Dynamic thresholding“ ensures that ε|ḡ〉||g〉 becomes exponentially

suppressed while the probability of ε|g〉||ḡ〉 occurring decreases.

Consequently, the predominant errors are caused by T1 of the qubit and latency

of the feedback. Given that the T1 of the qubit is about 60 µs and that the thermal

populations of |g〉 and |e〉 are at 79.4% and 14.3% , respectively, we can calculate

Tup by the simple relations that NeΓdown = NgΓup and 1/T1 = Γup+Γdown = 1/Tup+

1/Tdown. Each feedback stage has a length of Tlatency, 1 µs. Given these parameters,

the maximum ground state purity is exp(−Tup/Tlatency) = 99.7%. Note that this

upper bound excludes population in higher excited states, such as |f〉 , |h〉...which

further reduce the ground state purity.

2This means that if the probability for being in |g〉 and |ḡ〉 is identical, then the threshold would
be chosen such that the two errors are the same.

3This is consistent with a method in statistical learning called linear discrimination analysis or
LDA[Hastie et al., 2005]. In LDA, the decision boundaries (i.e., threshold in our case) for classifying
an event or outcome into different classes depend on the expected proportion (prior probability)
and distributions (means and standard deviations) of each class.
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Figure 4.7: Histograms of the mature Maxwell’s demon.
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CHAPTER 5

Stabilizing entanglement

5.1 Introduction

Here we report an experiment in which we built a feedback platform utilizing a

nearly quantum-limited measurement chain and a customized field-programmable

gate array (FPGA) system to perform MB and DD schemes within the same setup.

The task of this platform was to stabilize an entangled Bell state of two supercon-

ducting transmon qubits[Schreier et al., 2008]. This particular task of stabilizing

a single state is a proxy for more general QEC experiments where a manifold of

states is protected. We realize, for the first time, an MB stabilization of a Bell state by

repeated active correction through conditional parity measurements[Lalumière

et al., 2010; Tornberg and Johansson, 2010; Riste et al., 2013]. We compare this

scheme to a DD entanglement stabilization scheme[Shankar et al., 2013] in which

the conditional parity switch is autonomous. By performing both schemes on the

same hardware setup and circuit QED (cQED) system[Blais et al., 2004], we shed

light on their close connection and compare them on a level playing field.

Theoretical works in the past have compared DD (under the name of “coher-

ent feedback”) and MB for linear quantum control problems[Yamamoto, 2014],

such as for minimizing the time required for qubit state purification[Jacobs et al.,
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2014] or for cooling a quantum oscillator[Hamerly and Mabuchi, 2012]. These

comparisons showed coherent feedback to be significantly superior. Here we ex-

perimentally compare DD and MB on identical hardware and study two perfor-

mance metrics, the state fidelity and success probability. In our particular setup,

we find that distinguishing the superior approach among DD and MB is a more

subtle task. The subtlety is two-fold. First, the performance difference depends

on which process can be better optimized: the design of the cQED Hamiltonian

or the efficiency of quantum measurement and classical control. In the current

experiment, we show that DD has better steady-state performance as the cQED

Hamiltonian parameters are engineered such that DD has a shorter feedback la-

tency. But DD’s advantage over MB is not immutable. As certain experimental

parameters are improved, such as coherence times and measurement efficiency,

MB’s performance can catch up with DD.

Secondly, in the current experimental regime in which neither the cQED Hamil-

tonian parameters nor the measurement and control parameters are ideal, we

can obtain a boosted performance by combining DD and MB to get the best of

both worlds. We explored this by devising a heralding method to improve the

performance of both stabilization approaches. This protocol exploits the high-

fidelity measurement capability and the programmability of the feedback plat-

form. The protocol is termed “nested feedback” since it has an inner feedback loop

based on either the DD or MB scheme, and an outer loop that heralds the pres-

ence of a high-fidelity entangled state in real-time. Previously, heralding schemes

have been demonstrated for state preparation to combat photon loss or decoher-

ence[Moehring et al., 2007; Wagenknecht et al., 2010; Hofmann et al., 2012; John-

son et al., 2012; Ristè et al., 2012b,a; Riste et al., 2013; Bernien et al., 2013]. Ex-

tending such heralding capability to state stabilization will be a valuable addition

to the QEC toolbox. Furthermore, the ability to herald in real time as opposed
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to post-selection is important for on-demand and deterministic quantum infor-

mation processing since only successful events lead to subsequent processing.

Real-time heralding for entanglement stabilization is particularly challenging for

superconducting qubits due to their shorter coherence times compared to other

systems. In this article, we implement this real-time heralding capability on a

time scale faster than the few microsecond coherence time of our qubit-cavity sys-

tem. By extending the feedback platform developed primary for the MB approach

to the DD approach, our results bring to light a new application of MB. Adding a

level of MB feedback can significantly improve performance beyond what a single

layer of feedback, whether DD or MB, can achieve.

We emphasize here the interest in state stabilization by DD/MB methods over

more traditional state preparation by a unitary gate. In many algorithms one may

simply prepare a new state when it is needed[Nielsen and Chuang, 2004]. Nev-

ertheless, it is preferable to have a stabilized state ready to be consumed so that

the algorithm can avoid going through the process of state preparation and suffer

from the associated latency. There is also a more fundamental interest in the task

of stabilizing a state since these feedback experiments (see previous references)

can be understood as a form of Maxwell’s demon in action[Bennett, 1987]. The

nested feedback approach is applicable to other quantum information platforms

with precise Hamiltonian control, efficient quantum measurement and fast clas-

sical control such as trapped ions and Rydberg atoms, where simpler forms of

feedback have been shown. Moreover it can be applied not just to the stabiliza-

tion of a single state but also to other quantum information processing tasks such

as full quantum error correction of a logical qubit.

In the following, we first describe our experiment setup (Sec. 5.2) and in Sec. 5.3,

explain and compare the DD and MB schemes for entanglement stabilization.

Then in Sec. 5.4 we introduce experiments where a second layer of feedback is
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added to form a nested feedback scheme and discuss its advantages. We end the

article by a concluding summary and a short discussion of further work.

5.2 Experiment setup

The simplified schematic of our experimental setup is shown in Fig. 5.1a, while

Figure. 5.2 describes the detailed wiring diagram of the system housed in an Ox-

ford Triton 200 dilution refrigerator, at a base temperature below 20 mK. Two

transmon qubits[Schreier et al., 2008], Alice and Bob, are dispersively coupled

to a three-dimensional aluminum cavity [Paik et al., 2011], with frequency fgg =

7.5 GHz when both qubits are in the ground state and linewidth κ/2π = 2 MHz.

The photon-number resolved qubit transition frequencies[Schuster et al., 2007]

with no photons in the cavity are ω0
Alice/2π = 4.87 GHz and ω0

Bob/2π = 6.18 GHz,

for Alice and Bob respectively. The anharmonicity for the two qubits are αAlice/2π =

212 MHz, αBob/2π = 209 MHz. Alice (Bob) has a T1 of 60 µs (18 µs), T2,Ramsey of 9 µs

(10 µs) and excited state population in |eg〉 and |ge〉 of 5% each. The dispersive

shifts of each qubit to the cavity mode were designed to be nearly equal and in

the strong dispersive regime (χAlice/2π = 5 MHz, χBob/2π = 4.5 MHz).
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(a)

(b)

fee fgg
feg fge

FPGA b FPGA a

frequency

Transmission

Figure 5.1: (a) Schematic of the experimental set-up. Two independently ad-
dressable transmon qubits, Alice and Bob, are dispersively coupled to a three-
dimensional microwave cavity. The cavity output is directed to a nearly quantum-
limited measurement chain consisting of a Josephson amplifier (JPC) followed by
a semiconductor amplifier (HEMT). A pair of custom Field-Programmable Gate
Array boards (FPGA a, b) monitor the amplified output and generate real-time
modulated microwave drives to control the cavity-qubit system. (b) Transmis-
sion spectra of the cavity. Cavity outputs at fgg and fee are fed to FPGA a and b,
respectively.
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Figure 5.2: See caption on the next page.
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Figure 5.2: Setup of the experiment. The qubit-cavity system was placed at the
base stage of a dilution refrigerator (Oxford Triton200) below 20 mK. On the in-
put side: Two FPGAs (Innovative Integration X6-1000M) generated the pulse en-
velopes in I and Q quadratures to modulate the qubit drives at fAlice and fBob

frequencies (Vaunix Labbrick LMS-802) for Alice and Bob, respectively. The I/Q
modulations were output by the FPGAs with one and two single-sideband mod-
ulations in MB and DD (so that both zero-photon and n-photon qubit frequencies
were addressed), respectively. The microwave frequency drives and I/Q modu-
lation were mixed by IQ mixers. Two Agilent N5183 microwave generators pro-
duced the cavity drives at fee and fgg respectively. The cavity drives were also
pulsed by the FPGAs. On the output side: the transmitted signal through the cav-
ity was directed by two circulators to the JPC for nearly quantum-limited ampli-
fication. It was further amplified at the 3 K stage by a cryogenic HEMT amplifier.
After additional room temperature amplification, the signal was split into two in-
terferometric setups for readouts at the fgg and fee frequencies, respectively. In
each of the interferometers, the signal arriving from the fridge was mixed with
a local oscillator set +50 MHz away to produce a down-converted signal at 50
MHz. A copy of the cavity drive that did not go through the fridge was also
down-converted in the same manner to produce a reference. Finally, the two sig-
nals with their respective references were sent to the analog-to-digital-converters
on the FPGA boards for digitization and further demodulated inside the FPGAs.
The two FPGAs jointly estimate the qubits’ state by communicating their results
with each other. Along the input and output lines, attenuators, low pass filters
and homemade Eccosorb filters were placed at various stages to protect the qubits
from thermal noise and undesired microwave and optical frequency radiation.
Moreover, the cavity and JPC were shielded from stray magnetic fields by alu-
minum and cryogenic µ-metal (Amumetal A4K) shields.

113



The cavity output is amplified by a Josephson Parametric Converter (JPC) op-

erated as a nearly quantum-limited phase-preserving amplifier [Bergeal et al.,

2010] enabling rapid, single-shot readout[Hatridge et al., 2013] and thus real-

time feedback. The JPC was operated with a gain of 20 dB and bandwidth of

6.2 MHz, with the frequency for maximum gain centered between the two read-

out frequencies, fgg and fee. The gain and noise visibility ratio at both fgg and fee

were about 17 dB and 6 dB, respectively. We estimate the quantum efficiency η

of the combined measurement chain to be 0.3. The amplified output is directed

to a room-temperature classical controller realized with two FPGA boards. These

FPGA boards are the all-in-one controllers configured with the Yngwie logic de-

scribed in Chapter 3, responsible for data acquisition, as well as active control of

the cavity-qubit system by arbitrary waveform/digital marker generation.

An essential operation for our experiment is a two-qubit joint quasi-parity

measurement using the common readout cavity [Tornberg and Johansson, 2010;

Lalumière et al., 2010; Riste et al., 2013]. As shown in Fig. 5.1b, the cavity is driven

at fgg (both qubits in ground state) and at fee (both in the excited state) at the same

time. The output at fgg and fee together distinguishes the even parity manifold

{|gg〉 , |ee〉} from the odd parity manifold {|ge〉 , |eg〉}. When the two cavity out-

put responses both have an amplitude below a certain threshold, the qubits are

declared to be in odd parity; when either one has amplitude above the threshold,

the qubits are declared to be in even parity. We note that, unlike a true parity mea-

surement, this readout actually distinguishes the two even parity states |gg〉 and

|ee〉, hence we refer to it as a “quasi” parity measurement. However, the feedback

schemes described below apply the same operation on both even states, and thus

we need only record the parity of the measured state. The choice of driving at the

“even” cavity resonances rather than between the “odd” resonances (feg and fge)

mitigates the effect of the χ mismatch, reducing associated measurement-induced
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dephasing of the odd manifold[Tornberg and Johansson, 2010]. The controller

FPGA a (b) modulates the fgg (fee) drive to the cavity and also demodulates the

response. The two FPGAs share their measurements of the cavity response to

jointly determine the parity. In addition, FPGA a and b generate the qubit pulses

to Alice and Bob, respectively, which are conditioned on the joint state estimation

during real-time feedback.

5.3 DD and MB stabilization – fixed time protocol

5.3.1 Principle of experiment

We first briefly outline the DD stabilization of entanglement, described in detail

in Ref. [Leghtas et al., 2013] and [Shankar et al., 2013]. This stabilization targets

the two-qubit Bell state |φ−〉 = 1√
2
(|ge〉 − |eg〉). Figure 5.4a displays the states

coupled by the autonomous feedback loop. Two Rabi drives on Alice and Bob at

their zero-photon qubit frequencies (ω0
Alice and ω0

Bob) couple the wrong Bell state

|φ+〉 to the even states, |gg〉, |ee〉, in the energy manifold with zero cavity photons.

A second pair of Rabi drives at the n-photon qubit frequencies (ω0
Alice − nχ̄ and

ω0
Bob − nχ̄, χ̄ = (χAlice + χBob) /2), with their relative phase opposite to the first

pair, couple |gg, n〉, |ee, n〉 to the Bell state |φ−, n〉. The two cavity drives, at fgg and

fee connect the two manifolds and hence the combined action of the six drives

transfers the population from |gg〉, |ee〉 and |φ+〉 to |φ−, n〉. Finally, cavity photon

decay brings |φ−, n〉 back to |φ−, 0〉. In effect, the cavity drives separate qubit states

based on their parity, allowing one pair of Rabi drives to move the erroneous

odd population to the even states while the other pair transfers the even states

population to |φ−〉.
Counterparts to these elements of the DD feedback loop can be found in the

corresponding MB feedback scheme. The action of our MB algorithm is shown as
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Figure 5.3: Comparison between the driven-dissipative (DD) and the
measurement-based (MB) entanglement stabilization Part I: DD. (a) Diagram of
qubit/cavity state evolution in the DD feedback loop. Two-qubit state manifolds
are laddered for different photon numbers in the cavity (labeled by |n〉). The green
and pink sinusoidal double arrows represent cavity drives, while the straight dou-
ble red/blue and cyan/yellow arrows are Rabi drives on the qubits. These six
drives and the cavity dissipation (black decaying arrow) couple the different states
of the system such that the target state |φ−〉 is stabilized. (b) Functional pulse se-
quence for DD. The duration needed to empty the cavity of residual photons (see
text) before tomography is indicated by Tw. (c) Fidelity to the target as a function
of stabilization duration (Ts). Dashed line at 0.5 denotes the threshold for entan-
glement. The time given in the white box, τ , is the characteristic time constant of
the exponential rise of fidelity.

116



(a)

N (number of correction steps)  

�d
el

ity

(b)

(c)
 5 10 15 20

  7.5  15   22.5 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ts (µs)

p = -1

a

b

a

b pp

τ = 1440 ns

measurement-based

. . .
k=2 k=3k=1 k=N

state
tomography

p = +1

Ts

Uo Ue

~

~
p = +1

~
p =

 -1

~
~ ~
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chine representation of the MB feedback loop. The quasi-parity measurement re-
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parity, two π

2
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Bob, respectively. (b) Sequence of correction steps conditioned by the quasi-parity
measurement and leading into tomography. Counter k limits the number of steps
to N . (c) Fidelity to the target Bell state as a function of stabilization duration (TS)
or number of correction steps (N ).
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a state machine in Fig. 5.4. We describe the quasi-parity measurement P̃ by the

projectors Podd = |ge〉 〈ge| + |eg〉 〈eg|, Pgg = |gg〉 〈gg| and Pee = |ee〉 〈ee|. We assign

the outcomes p̃ = +1 to the even projectors, Pgg and Pee and p̃ = −1 to Podd. The

MB algorithm is built with a sequence of correction steps, each of which consists of

a conditional unitary and a quasi-parity measurement. The two possible states of

the state machine correspond to whether we apply the unitary UE or UO, followed

by the quasi-parity measurement. Specifically, UE = Ra
x(π

2
) ⊗ Rb

−x(π
2
) where a

(b) denotes Alice (Bob), and UO = Ra
x(π

2
) ⊗ Rb

x(π
2
). In a correction step k, the

qubits are initially in either |gg〉, |ee〉 or in the odd manifold, due to the projective

quasi-parity measurement in step k − 1; the controller then applies UE (UO) if p̃ in

previous step reported +1 (−1).

The effect of the state machine on the two-qubit states is shown in Tab. 5.1,

where the action of the controller during one correction step is described in terms

of the four basis states, |φ−〉, |φ+〉, |gg〉 and |ee〉 (the latter two are grouped in the

“even” column). The quasi-parity measurement infidelity, labeled by εE|O (εO|E),

gives the error probability of obtaining an even (odd) parity outcome after gen-

erating an odd (even) state. Because these measurement infidelities are small, the

dominant events are those that occur without measurement errors. At each step,

UE on either |gg〉 or |ee〉 followed by the quasi-parity measurement P̃ transfers the

states to |φ−〉 with 50% probability. Since |φ−〉 is an eigenstate of UO and P̃ (mod-

ulo a deterministic phase shift that can be undone, see later discussion), these

operations leave it unaffected. On the other hand, UO and P̃ transform |φ+〉 into

{|gg〉 , |ee〉}; more generally, they take population in any other odd state (i.e., a

superposition of |φ−〉 and |φ+〉 ) into |φ−〉 and the even states.

By repeating a sufficient number of these correction steps in sequence, the con-

troller stabilizes the target Bell state irrespective of the initial two-qubit state. The

similarity between this active feedback and DD is that MB also transfers popula-
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Previous state |φ−〉 |φ+〉 even
p̃k−1 +1 −1 +1 −1 +1 −1
Outcome probability εE|O 1− εE|O εE|O 1− εE|O 1− εO|E εO|E
Unitary UE UO UE UO UE UO
Next state even |φ−〉 |φ+〉 even even/|φ−〉 even/|φ+〉

Table 5.1: Effects of the MB finite state machine of Fig. 2 on two-qubit system in
the k-th step of feedback, for different starting cases (columns). Row 2 through 4
describe the result of the previous quasi-parity measurement and the correspond-
ing unitary that will be applied in the k-th step. The symbols, εE|O and εO|E , denote
parity measurement errors (see text). The last row describes the possible system
states attained by the applied unitary. The two alternative states for a previous
“even” occur with 50% probability.

tion between different parity states by conditional Rabi drives. However, while

the Rabi drives in DD are conditioned autonomously by the photon number in

the cavity, the unitary Rabi pulses in MB are conditioned by real-time parity mea-

surement performed by active monitoring of cavity outputs.

The pulse sequences for DD and MB are shown in Fig. 5.4b and e. In DD,

a set of continuous-wave drives are applied for a fixed time Ts and after some

delay Tw to allow remaining cavity photons to decay, a two-qubit state tomog-

raphy is performed [Filipp et al., 2009; Chow et al., 2010]. The cavity and Rabi

drive amplitudes and phases were tuned for maximum entanglement fidelity, fol-

lowing the procedure described in Ref. [Shankar et al., 2013]. In particular, the

optimal cavity drive amplitudes were found to be n̄ = 4.0. For MB, the continu-

ous drives are replaced by a pre-defined number of correction steps N , resulting

in a stabilization duration of Ts = NTstep where Tstep = 1.5 µs. There is no extra

delay before tomography since each correction step already contains a delay after

the quasi-parity measurement due to feedback decision latency. The strength and

duration of the quasi-parity measurement P̃ were optimized as discussed in Ap-

pendix 6.1. The optimization achieved low parity measurement infidelities εE|O

and εO|E while keeping the measurement-induced dephasing arising from the χ
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mismatch[Tornberg and Johansson, 2010; Lalumière et al., 2010] small compared

to the natural decoherence in the same duration (the measurement induced de-

phasing rate was Γm/2π = 22 kHz, while the intrinsic decoherence rate of the

Bell-state was ΓBell/2π = 30 kHz). We experimentally determined the infidelity

of the quasi-parity measurement to be εE|O and εO|E of 0.04 and 0.05, respectively

(see Appendix 6.3). The quasi-parity measurement also causes a deterministic

qubit rotation about the respective Z axis due to an AC Stark shift [Tornberg and

Johansson, 2010]; this rotation was corrected within the unitary gate UO as dis-

cussed in Appendix 6.6.

5.3.2 Results

Fig. 5.4c,f show the fidelity to the target Bell state |φ−〉 as a function of stabiliza-

tion time for DD and MB, respectively. The fidelity rises exponentially with a

characteristic time constant of 0.78 µs (1.4 µs) and asymptotically converges to

a steady-state fidelity, Fss, of 76% (57%) for DD (MB). Both fidelity values agree

with numerical modeling based on master equation simulation, which gives 76%

and 58% for DD and MB, respectively (see the following section). The experimen-

tally determined time constants are in reasonable agreement with their simulated

values of 1.0 µs (1.4 µs) for DD (MB). In MB, this loop time is related to the step

length (1.5 µs), which is given by the sum of the quasi-parity measurement dura-

tion (0.66 µs), the cable, instrument and FPGA latencies (0.69 µs), and the duration

of unitary pulses (0.15 µs). On the other hand for DD, the measured loop time is

close to 10 cavity lifetimes, the expected time as shown in Ref. [Leghtas et al.,

2013].

It is tempting to compare the fidelities achieved by these stabilization protocols

to that achieved by the application of a unitary entangling gate [DiCarlo et al.,

2009; Chow et al., 2012; Barends et al., 2014]. However, these fidelities cannot be
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compared on the same footing. For state preparation, the fidelity is meaningful

only immediately after the gate and decays due to decoherence. On the other

hand in stabilization, the state fidelity is maintained for an arbitrarily long time as

shown in Fig. 5.4c,f.

5.3.3 Steady state model of DD and MB

The steady state behavior of both DD and MB is simulated by a Lindblad master

equation, given by

dρ(t)

dt
= − i

~
[H(t), ρ(t)]+κD[a]ρ(t)+

∑
j=A,B

(
1

T j↓
D[σj−]ρ(t) +

1

T j↑
D[σj+]ρ(t) +

1

2T jφ
D[σjz]ρ(t)

)
(5.1)

D is the Lindblad super-operator, defined for an operator O as D[O]ρ = OρO† −
(1/2)O†Oρ− (1/2)ρO†O. The pure dephasing rate for Alice and Bob, respectively,

is given by 1/TA,Bφ = 1/TA,B2 − 1/2TA,B1 , where 1/TA,B1 = 1/TA,B↓ + 1/TA,B↑ .

The HamiltonianH(t) is treated differently in DD and MB. For DD, the Hamil-

tonian is described in detail in the theory proposal [Leghtas et al., 2013] and pa-

rameters in the Hamiltonian, such as the cavity and qubit drive amplitudes, are

swept in simulation to find the optimal values. The optimal value for the cavity

drive amplitude is found to be κ
√
n̄/2 with n̄ = 4.0, and κ/2 for the qubit drive

amplitudes at both zero-photon and n-photon qubit frequencies. The DD sim-

ulation predicts a characteristic time constant of 1 µs and a steady state fidelity

of 76% (accounting for the delay between stabilization and state tomography to

allow remaining cavity photons to decay).

For MB, a correction step is broken into four segments for effectively piecewise

master equation simulation. The first part contains the conditional Rabi pulses

which are simulated as perfect instantaneous unitary operations on the qubits.

The second part is the decay during the pulses (154 ns total). The Hamiltonian
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during this part is just the the dispersive interaction between the qubits and the

cavity, H(t) = Hdisp =
(
χAσ

A
z /2 + χBσ

B
z /2

)
a†a, in the rotating frame of the two

qubits (ω0
A, ω0

B) and the cavity mode ((ωggc + ωeec )/2). The third part is the quasi-

parity measurement during which the cavity drives at the fgg and fee resonances

are on and the Hamiltonian is given by H(t) = Hdisp + 2εccos ((χA + χB)t/2) (a +

a†), where εc is the amplitude of the cavity drive (660 ns total). The last part is the

remainder of the correction step, incurred by the latency of the feedback during

which all drives are off and the qubit-cavity system is in free-decay. The dynamics

in this part is again simulated by the dispersive interaction, H(t) = Hdisp (686 ns

total). For the piecewise master equation simulation of a complete correction step

as four segments, the density matrix at the end of a segment is used as the initial

density matrix for the next segment.

Since in MB, the state at the end of a correction step depends only on the initial

state at the beginning of the step, we can model the MB scheme as a Markov

chain. In the Appendix 6.4, we show how we derive the transition matrix that

describes this Markov chain. The model predicts a steady state fidelity of 58% to

|φ−〉, agreeing very well with experimental results.

5.3.4 Perspectives on fixed time protocol

The superior performance of DD over MB for the steady-state fidelity is due to the

difference in correction loop time, which needs to be shorter than the coherence

times of the two qubits for high fidelity entanglement. For the current experi-

mental setup, the latency of the controller and quantum efficiency of the measure-

ment chain, which affects the fidelity of the single-shot readout, result in a longer

loop time in MB. A source of the longer feedback loop time is the quasi-parity

measurement duration. This measurement duration, which was optimized as dis-

cussed in the Appendix 6.1, is limited by dephasing induced by the mismatch in
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χ (∼ 10%) and the measurement efficiency of the output chain (∼ 30%), which can

both be improved in future experiments. Our simulations (Appendix 6.4) suggest

that with current state-of-the-art measurement efficiency value and optimization

of the FPGA/cable latency, the MB steady state fidelity can be improved to 66%.

The limited measurement efficiency does not affect the performance of DD be-

cause the parity measurement and correction take place autonomously within the

qubit-cavity system, indicative of its robustness against this hardware limitation.

On the other hand, both DD and MB schemes benefit from longer intrinsic co-

herence times and reduction of the χ mismatch. For example, simulations show

(Tab. 6.1 in Appendix 6.4) that if the coherence times are improved to one hun-

dred microseconds (achieved in other state-of-the-art cQED setups), both DD and

MB fidelities can increase to above 85%. For the rest of the article, however, we

consider boosting the fidelity in a different manner, without making any physical

changes to the qubit-cavity system.

Before we continue, a discussion on the effect of the cavity linewidth κ is due.

Increasing κ while keeping χ the same would harm the performance of DD since

the selective Rabi drives would not be as selective[Leghtas et al., 2013; Shankar

et al., 2013]. While for some MB experiments, such as initializing a qubit to the

ground state, increasing κ is beneficial as this reduces measurement time [Gam-

betta et al., 2007], this is not necessarily true in the MB scheme of stabilizing

entanglement where the qubit T2 is the dominant error process. In our system,

the T2’s of the qubits are limited by thermal photons in the cavity resulting in

T2 ≈ 1/(nthκ), where nth is the average thermal photon number[Sears et al., 2012].

Thus increasing κ would reduce T2. While the MB feedback loop would become

faster by the bigger κ, the reduced coherence time eliminates any gain in fidelity.
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5.3.5 Motivation for an improved protocol

The DD and MB schemes described so far are synchronous in the sense that the

stabilization always ends after a pre-determined duration and the tomography

follows. Decoherence and measurement errors cause the qubits to have a finite

probability (1 − Fss =24% and 43% for DD and MB, respectively) of not being

in the target state when the stabilization terminates. A more optimum protocol

would rather utilize all available information to determine when to end the stabi-

lization. For both DD and MB, information is available in the cavity output, that

we can measure at the end of the stabilization period. The outcomes of these mea-

surements, Igg and Iee, give real-time information on the state of the two qubits,

and thus can herald a successful stabilization sequence.

In Fig. 5.5, we describe how monitoring the cavity outputs improves target

state fidelity. We introduce two thresholds {Iheraldgg , Iheraldee } (see Appendix for de-

tails) to post-select the measurement outcomes of Igg and Iee respectively, and

identify successful stabilization runs [Riste et al., 2013; Shankar et al., 2013]. The

results of varying {Iheraldgg , Iheraldee } are shown in Fig. 5.5b,d for DD and MB, respec-

tively. The color plots show fidelity improving as the thresholds become more

stringent. The success probability defined as the percentage of stabilization runs

kept for tomography given a set of thresholds, is also plotted as contours for both

DD and MB. There is a clear trade-off between success probability and fidelity. To

reach the maximum fidelity in DD of 82%, at least 75% of experiment runs need to

be discarded. The trade-off is less severe in MB, where only 50% of runs need to

be discarded to reach the maximum fidelity of 75%. However we aim to eliminate

this trade-off all together, i.e., to improve the fidelity while maintaining a high

success probability.
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Figure 5.5: Trade-off between success probability and fidelity for both DD and
MB schemes obtained by experiment. (a) Pulse sequence for heralding DD stabi-
lization by post-selection. At the end of the stabilization period, the cavity out-
puts, Igg and Iee are measured at their respective frequencies. (b) Color plot of
fidelity to the target state for DD as a function of thresholds chosen for Igg and
Iee (see Appendix for details of the thresholds). Also plotted as white dashes are
contour lines of the success probability associated with each choice. Solid black
square indicates the thresholds chosen for the condition C in the nested feedback
protocol described in Fig. 4. (c) and (d) same as above for MB, including the cor-
responding thresholds for C. Gray circle indicates the thresholds chosen for the
quasi-parity measurement p̃ used to condition MB correction steps.
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5.4 DD and MB stabilization - nested feedback pro-

tocol

This goal is achieved by introducing a nested feedback protocol (NFP), in which

the stabilization feedback loop enters into a higher layer of feedback for “fidelity

boosting” instead of proceeding to state tomography directly. In contrast to the

“fixed time” protocol, NFP conditions the termination of stabilization on the qual-

ity of the entanglement, i.e., it heralds a successful stabilization run in real-time,

as illustrated by the state machine diagram in Fig. 5.6a. The control variable C is

given by C = (Igg < Iheraldgg ) AND (Iee < Iheraldee ), where {Iheraldgg , Iheraldwe } are de-

termined by the same post-selection experiment discussed previously to optimize

the fidelity (black square in Fig. 3b and d). If the controller determines that the

entanglement quality is not sufficient (C = 0), a boost phase is attempted which

comprises exactly one correction step for MB or a stabilization period of similar

duration for DD (1.4 µs). During the boost phase, the cavity outputs are integrated

to give {Igg, Iee}which enables the next real-time assessment of C. In DD, the par-

ity measurement and first layer of feedback is accomplished autonomously, there-

fore the FPGA only needs to check C. However in the MB scheme both layers of

feedback are performed solely by the FPGA. It therefore checks if C = 1 to herald

that the entanglement meets the desired quality. If not, it uses the quasi-parity

thresholds (grey circles in Fig. 3d) to decide whether the qubits are in even or

odd state in order to continue stabilization. This asynchronous pulse sequencing

and conditioning by multiple thresholds exploit the programmable nature of the

FPGA-based platform.

The asynchronous behavior of NFP is displayed in Fig. 5.6b(d) for DD (MB),

which demonstrates 200 single-shot runs. The DD (MB) fidelity boosting sequence

continues until either success or a maximum limit on boost attempts (set to 11 in
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the experiment) is reached. For the MB protocol, the trajectory of the qubits’ parity

can be tracked by the conditioning outcomes of the inner-loop control variable p̃

and the outer-loop control variable C, which are independent. Through repeated

boost attempts until success, NFP significantly improves the overall success prob-

ability. Within 11 attempts, 95% (99.8%) of DD (MB) runs satisfy the success condi-

tion compared to just 25% (50%) with simple post-selection. This is assessed by the

cumulative probability, the integral of the probability of having completed a cer-

tain number of boost attempts before tomography, as plotted in Fig. 5.7c,f. Since

MB requires a less stringent threshold than DD to gain fidelity improvement, the

MB success probability converges to unity much faster than that of DD. Finally,

we show that the high success probability does not come at the cost of reduced

fidelity. The fidelity to |φ−〉 for DD improves from an unconditioned value of

76% to 82% (averaged over all successful attempts). For MB, the improvement is

more pronounced: fidelity rises from an unconditioned value of 57% to 74%. Thus

for both DD and MB, NFP attain close to the fidelity achieved via stringent post-

selection. This improvement can be simulated through a Markov chain model,

extended from that introduced in Sec. 5.3.3 and the results given here agree well

with the simulation(see Appendix 6.5).

One will note, however, a continuous downward trend of the fidelity in both

DD and MB schemes as the number of attempts increases. This is due to the

non-negligible population in the |f〉 states of the two qubits in the experiment,

which escape correction by the stabilization feedback loops. After each further

boost attempt of stabilization, the probability of the population escaping outside

the correction space thus increases, diminishing the fidelity (see Appendix 6.7).

Also note that the error bars on the fidelity of MB are bigger than those in DD for

large attempt numbers simply because the probability of needing many attempts

is lower in MB than in DD.
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Figure 5.6: Nested feedback protocol for boosting fidelity and heralding success-
ful stabilization run in real-time. (a) State machine representation. The control
variable C (see main text and Fig. 3) determines the repetition of a boost cycle
or the heralding of a successful run. The maximum number of boost attempts al-
lowed is set to 11 in the experiment. (b), (c) 200 single-shot sequence trajectories of
nested feedback for DD and MB, respectively. The trajectories are colored yellow
during boost attempts and black after C is satisfied. Trajectories that are entirely
black satisfied the success criterion without the need for boost. The inset in (e)
shows an example of an MB trajectory consisting of both p̃ and C outcomes.
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While real-time heralding by NFP removes the trade-off between fidelity and

success probability, it does so by introducing a different trade-off – high fidelity

and success probability are achieved but the protocol length now varies from run

to run. If NFP is a module within a larger quantum information processing (QIP)

algorithm, then this asynchronous nature must be accommodated by the con-

troller. For our FPGA-based control, NFP is easily accommodated because it is

a natural extension to “fixed-time” or synchronous operation. In “fixed time”

operation, the controller conditions its state by the protocol length which is pre-

determined and stored in an internal counter by the experimenter. On the other

hand in NFP, the controller conditions its state on a pre-determined logical func-

tion of its real-time inputs.

5.5 Conclusion

In conclusion, we have implemented a new measurement-based stabilization of

an entangled state of two qubits, which parallels a previous driven-dissipative

stabilization scheme. Instead of coherent feedback by reservoir engineering, MB

relies on actively controlled feedback by classical high-speed electronics external

to the quantum system. When comparing both schemes in the “fixed-time” pro-

tocol, we observe that DD gives a higher fidelity to the target state due to lower

feedback latency. Furthermore, we have improved the fidelity of both schemes

by a nested feedback protocol which heralds stabilization runs with high-quality

entanglement in real time. The real time heralding brings about the fidelity im-

provement without a common trade-off in QIP: it does not sacrifice the experiment

success probability. It eliminates this trade-off by allowing asynchronicity in the

experiment.

Our experiment shows some of the key advantages of MB platforms that have

not been previously explored. Typically, the performance of MB feedback in terms
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of state fidelity has not been at par with methods based on post-selection, due to

the latency of the controller. However, post-selection methods improve state fi-

delity at the expense of low success probability, and hence existing digital feed-

back experiments have focussed on achieving deterministic state preparation, i.e.

with perfect success probability[Campagne-Ibarcq et al., 2013; Ristè et al., 2012a;

Riste et al., 2013; Steffen et al., 2013]. Here, we are exploring another direction of

feedback which achieves high fidelity with high success probability. Our nested

feedback strategy maximizes the use of the information coming out of the qubit-

cavity system in order to make the correction process as efficient as possible. We

find that our feedback platform, comprised of a nearly-quantum-limited measure-

ment chain and a real-time classical controller, provides the necessary tool-set to

implement such a strategy. We show that this technology can be extended to im-

prove the performance of DD approaches as well as single-layer MB approaches

themselves. This strategy could be carried out further in the future. For exam-

ple, the FPGA state estimator could perform a more sophisticated quantum filter

of the microwave output of the DD stabilization to herald successful events with

better accuracy, significantly improving the success probability convergence rate.

We also note that tools from optimal stopping, a well studied subfield of applied

mathematics[Chow et al., 1971], could be used to improve our current implemen-

tation of nested feedback.

Similar ideas can be applied in the future towards other forms of stabilization,

such as for stabilizing Schrödinger cat states of a cavity mode[Mirrahimi et al.,

2014], a proposed logical qubit. Initial experiments on such logical qubits with

high fidelity-measurement[Sun et al., 2014] or dissipation engineering[Leghtas

et al., 2015] have been performed and could now be combined. Likewise, future

logical qubits based on the surface code[Fowler et al., 2012] could also be stabi-

lized by either active stabilizer measurements[Barends et al., 2014; Chow et al.,
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2014; Ristè et al., 2014] or as recently proposed by dissipation engineering[Kapit

et al., 2015; Fujii et al., 2014]. The idea of combining elements of measurement-

based and driven-dissipative feedback into a nested protocol is also agnostic to

the particular physical quantum system being controlled and thus could for ex-

ample be applied to feedback experiments with trapped-ion[Lin et al., 2013; Nigg

et al., 2014] and Rydberg atom systems[Sayrin et al., 2011] as well. Our experi-

ment demonstrates that measurement-based and driven-dissipative approaches,

far from being antagonistic, can be merged to perform better than either approach

on its own.
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CHAPTER 6

Calibration experiments and simulation for
entanglement stabilization

6.1 Measurement strength and duration calibration

for MB

The quasi-parity measurement strength and duration were optimized in order to

maximize the fidelity of MB. This optimization was done by maximizing the fi-

delity of the Bell state created in a calibration experiment, similar to Ref. [Riste

et al., 2013]. The qubits are prepared in ground states (by post-selection) and

then two π/2 pulses, are applied to Alice and Bob, producing the state |ψ〉 =

1
2
(|gg〉 + |ee〉 + |ge〉 + |eg〉). The quasi-parity measurement, consisting of the two

cavity drives on fee and fgg respectively, projects the qubits into one of the two

even states or entangles the qubits into a Bell state with odd parity. We varied

the duration of this parity measurement and its strength in terms of photon num-

ber (set to be identical) for each readout frequency to find the parameters that

maximize the fidelity of the entangled state to the closest Bell state (Fig. 6.1). The

Bell state fidelity would ideally increase and asymptotically approach one with

increasing measurement time as the parity measurement better distinguishes the

odd Bell state from the even states. On the other hand, at long measurement
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Figure 6.1: Experimental calibration of measurement strength and duration for
MB. Fidelity to the state |φ+〉 = 1√

2
(|ge〉 + |eg〉) after preparing the qubits in a

maximally superposed state followed by a quasi-parity measurement with post-
selection. The fidelity is plotted as a function of measurement duration and shown
for a set of measurement strengths. The optimal values chosen for the experiment
are 660 ns and n̄ = 4.5.

duration, the coherence of the entangled state decreases due to both natural and

measurement-induced dephasing, the latter of which is caused by the χ mismatch

between the qubits and is proportional to the average number of photons used for

the measurement [Tornberg and Johansson, 2010]. Therefore, there is an optimal

measurement strength and duration. For our experiment, n̄ = 4.5 for each read-

out frequency and a measurement duration of 660 ns are found to be close to the

optimal values and are chosen to attain a Bell state fidelity of 80%.

The value of 80% sets the upper bound on the fidelity that we should expect for

heralding MB. In the actual MB experiment, an extra 310 ns delay was introduced

after the quasi-parity measurement in a correction step, which does not occur in

the sequence described in this section for optimizing the parity measurement pa-

rameters. This extra delay was required to accommodate the feedback latency in
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MB. The conditioned fidelity we obtained for heralded MB is about 6% lower.

6.2 Measurement outcomes distribution for DD and

MB

The cavity outputs at fgg and fee for both DD and MB can be used to monitor the

state of the qubits during stabilization (Fig. 6.2a). Histograms of the measurement

outcomes Igg and Iee, recorded by integrating the cavity output at fgg and fee, re-

spectively, are shown in Fig. 6.2b,c,d,e for DD and MB respectively. In DD, the

cavity output signals are captured while all the CW drives are still on, i.e., the

qubits are being driven while their states are being monitored, whereas in MB the

outputs are a result of the quasi-parity measurements which occur after the qubit

pulses and thus when the qubits are not driven. We observe that the measurement

outcome distribution of DD lacks the separation seen in MB which has a clear par-

ity separatrix {Iparitygg , Iparityee }. This feature also appears in numerical simulations

of DD by the stochastic master equation 1. The state estimation used in both DD

and MB uses the “box car” filtering [Gambetta et al., 2007] which simply sums up

the recorded cavity output signals over time to obtain the measurement outcomes.

This method, while appropriate for MB, is not suited for DD since in the latter, the

qubits are undergoing actively-driven dynamics when the measurement is taking

place. A more advanced filter, such as a non-linear quantum filter can be designed

from either first-principles or machine learning [Magesan et al., 2015] in the future

to improve the state discrimination accuracy in DD.

The measurement outcomes to the left of both the Iheraldgg (shown in figure) and

Iheraldee thresholds are much less likely to come from even states than those to the

right. Therefore the experiment runs with these outcomes are selected for state to-

1M. Silveri et al. (in preparation)
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Figure 6.2: (a) The cavity outputs at fgg and fee are integrated to obtain measure-
ment outcomes Igg and Iee, respectively. (b),(c), (d), (e) Histograms of the measure-
ment outcomes Igg and Iee for DD and MB, respectively. The leftmost dashed line
(labeled Iheraldgg and Iheraldee ) indicates a particular choice of threshold for heralding
the measurement outcomes. Counts to the left of both thresholds are declared
success. The right dashed line (Iparitygg and Iparityee ) indicates the threshold for quasi-
parity measurement in MB.

mography, giving the results plotted as a color map in Fig. 3 (main text). Moving

the threshold further to the left increases the stringency of the threshold as fewer

measurement outcomes are included. The success probability for each threshold

choice (plotted as contours in Fig. 3) is calculated by the ratio of included out-

comes to the total number of experiment runs.
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6.3 Determining quasi-parity measurement infideli-

ties

The determination of quasi-parity measurement infidelities consists of two steps,

preparing a state of known parity followed by a quasi-parity measurement. An

example histogram of the quasi-parity measurement is shown in Fig. 6.2c,e. Out-

comes that are simultaneously to the left of the parity separatrix {Iparitygg , Iparityee }
(right-most dashed lines in Fig. 6.2c,e) are determined to be “odd” while out-

comes on the right of either separatrix are determined as “even”. To determine

the even parity measurement error, the qubits are first prepared in |gg〉 with a fi-

delity greater than 99% and the number of “odd” outcomes. Normalizing these

error counts by the total number of outcomes gives εO|E , the error probability of

obtaining an odd parity outcome after generating an even state. Similarly, to de-

termine the odd parity measurement infidelity, the qubits are first prepared in

|eg〉 by preparing in |gg〉 followed by a π pulse on Alice and the number of “even”

outcomes is determined. Normalizing these error count by the total number of

outcomes gives εE|O), the error probability of obtaining an even parity outcome

after generating an odd state. We chose to use the states |gg〉 and |eg〉 due to the

significantly longer T1 of the Alice qubit which provides a more accurate estimate

of the infidelities.

6.4 Steady state model for DD and MB

As discussed in the main text, we can describe the qubits by the density matrix

ρ = π− |φ−〉 〈φ−| + π+ |φ+〉 〈φ+| + πgg |gg〉 〈gg| + πee |ee〉 〈ee|. Therefore, in terms

of probability distributions in the four basis states, the qubits’s state, S̃, can be
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represented by a vector,

S̃ =


π−

π+

πgg

πee


. (6.1)

If the qubits are prepared in |φ−〉, that is S̃(i)
φ− = (1, 0, 0, 0)T, we can calculate S̃(f)

φ−

after a correction step by applying the master equation simulation method de-

scribed above. We need to consider the two possible cases where the conditional

unitary applied is UO or UE , respectively. The S̃(f)
φ− is a weighted average of the

two cases.

S̃
(f)
φ− = (1− εE|O) ∗ S̃(f)

φ−|U=UO
+ εE|O ∗ S̃(f)

φ−|U=UE
(6.2)

εE|O and εO|E are the quasi-parity measurement infidelities due to limited mea-

surement efficiency, introduced in the main text. In a similar manner, we can

obtain S̃
(f)
φ+

. In the case of an even initial state, for example, S̃(i)
gg = (0, 0, 1, 0)T, we

have

S̃(f)
gg = (1− εO|E) ∗ S̃(f)

gg|U=UE
+ εO|E ∗ S̃(f)

gg|U=UO
(6.3)

And similarly for S̃(f)
ee .

Given S̃
(f)
φ− , S̃(f)

φ+
, S̃(f)

gg and S̃
(f)
ee , we can construct the transition matrix T of a

correction step,

T = (S̃
(f)
φ− , S̃

(f)
φ+
, S̃(f)

gg , S̃
(f)
ee ) (6.4)

where the S̃(f)’s are the columns of the 4 by 4 matrix. Now applying this transition

matrix on any arbitrary initial state gives the final state after a correction step,

S̃(f) = T S̃(i) (6.5)

The transition matrix T is also called the stochastic matrix, with the property
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that each column sums to 1. One of T ’s eigenvalues is guaranteed to be 1 and

the corresponding eigenvector, S̃∞, is the steady state of the Markov chain. It can

easily be shown that for any arbitrary initial state, S̃(i)

lim
k→∞
T kS̃(i) = S̃∞ (6.6)

For the given experimental parameters in MB, the T matrix is displayed in Fig. 6.3

and we find the steady state eigenvector to be

S̃∞ =


0.58

0.11

0.18

0.13


(6.7)

Thus, the Markov model predicts a steady state fidelity of 58% to |φ−〉. Taking

into account of the duration of a correction step (1.5 µs), we can also calculate the

characteristic time constant of the MB scheme from the model, which gives 1.4 µs.

Both values agree very well with experimental results.

We can calculate the expected fidelity when some of the experimental param-

eters are improved in the near future. If the measurement efficiency is improved

from 30% to the current state-of-the-art value of 60%, the measurement duration

can be reduced by half while maintaining the quasi-parity measurement infideli-

ties[Hatridge et al., 2013]. The instrument and FPGA latencies incurred in the

experiment can also be reduced by 100 ns, in the latest hardware setup and FPGA

logic design in operation while this article was being prepared. The measurement

duration and control latency reduction can shorten the correction step length to

1 µs, which can improve the steady state fidelity to 66%. Furthermore, if the co-

herence times are also improved to the state-of-the-art values in the hundred of

139



|φ−〉

|φ+〉

|gg〉

|ee〉

0.78

0.13

0.07

0.020.03

0.06

0.48

0.43

0.40

0.10

0.28

0.22

0.40

0.10 0.28

0.22

Figure 6.3: Markov model of a correction step in MB. Transition between any
two nodes is possible and is represented as a directional edge. The 16 possible
transitions make up the 16 matrix elements in the stochastic transition matrix, T ,
corresponding to a correction step in MB. Numbers next to the edges represent
the elements of T calculated for the current experiment parameters by a master
equation simulation.
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Steady state fidelity
DD MB

Experiment current parameters 76% 57%

Simulation η = 0.6, latency = 586 ns 76% 66%
T1,T2 = 100 µs 86% 86%

Table 6.1: Listing of the steady state fidelities of the “fixed time” protocol for DD
and MB schemes for the current experiment (see detailed parameters in Sec. 5.2)
and simulation with improved parameters, assuming χ values as in the current
experiment. The prospective values in the last row also take into account the pa-
rameter changes in the second row. Note that measurement efficiency and control
latency change do not affect DD.

microseconds for superconducting qubits, both DD and MB fidelities in the “fixed

time” protocol can be above 85%, limited by the χ mismatch (assumed to be 10%,

as in the current experiment). The prospects of both DD and MB schemes are

summarized in Tab. 6.1

6.5 Simulation of real-time heralding by nested feed-

back protocol for DD and MB

The Markov chain model introduced in Sec. 6.4 can be extended to simulate NFP

(nested feedback protocol). We can construct a “nested” Markov chain (Fig. 6.4)

for each boost attempt of NFP. At the outer-most level, there are two nodes. One

node denotes the trajectories that have just been heralded as successful; the other

node denotes the trajectories that require at least another boost attempt. Building

on the vector description established in the previous section, we represent the

heralding of trajectories before a boost attempt by a diagonal matrix c̃,
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boosting

heralded
c̃

1− c̃

Figure 6.4: Markov model of the NFP (nested feedback protocol) for real-time
heralding. This model is an extension of the model introduced for MB. During a
boost attempt, transitions occur inside the “boosting” node for further stabiliza-
tion. The edge leading from the “boosting” to the “heralded” node represents
the real-time heralding that selects some fraction of trajectories by the threshold-
dependent matrix c̃ (see text) at the end of a boost attempt. Those that are not
selected (1− c̃) enter into another boost attempt.

c̃ =


cφ−

cφ+

cgg

cee


(6.8)

After stabilization of some pre-determined duration, if the qubits are (on av-

erage) in state S̃(0), then the average state of the qubits that are heralded is then

given by,

S̃
(0)
herald =

c̃S̃(0)

||c̃S̃(0)||1
, (6.9)

where || · ||1 is the L1 norm of the vector (the sum of the entries in the vector). The

normalization is required since heralding selects only a subset of the trajectories,

i.e., the matrix, c̃, does not preserve the norm of S̃.
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Each entry on the diagonal of c̃ gives the fraction of trajectories that get her-

alded (selected) from a particular state. Their values depend on the particular

heralding thresholds used, Iheraldgg and Iheraldee (Appendix 6.2). This matrix can be

determined phenomenologically by the post-selection experiment shown in Fig. 3

(main text). From the experiment, we can find the average state without any con-

ditioning (no heralding), S̃(0) = (π
(0)
− , π

(0)
+ , π

(0)
gg , π

(0)
ee )T and the average state of the

heralded trajectories, S̃(0)
herald = (π′−, π

′
+, π

′
gg, π

′
ee)

T. Given the success probability Ps

of using the thresholds (the white dashed contour line of Fig. 3b,d in the main

text), the diagonal elements can be calculated as,

cφ− =
π′−Ps

π
(0)
−

, cφ+ =
π′+Ps

π
(0)
+

, cgg =
π′ggPs

π
(0)
gg

, cee =
π′eePs

π
(0)
ee

(6.10)

For the specific heralding thresholds used in the experiment (represented by

the black squares in Fig. 3b,d in the main text), c̃DD and c̃MB are explicitly given by,

c̃DD =


0.26

0.20

0.19

0.18


, c̃MB =


0.68

0.69

0.19

0.10


(6.11)

Ideally for c̃, only cφ− should be non-zero. But in practice, since we cannot

distinguish |φ−〉 and |φ+〉, cφ+ is comparable to cφ− . Furthermore, for both DD and

MB, cgg and cee are also non-neglibile. In DD, this is predominantly due to the lack

of separation between the even and odd measurement outcomes as discussed in

Appendix 6.2. In MB, the qubits can jump during the delay between the comple-

tion of the quasi-parity measurement and the end of a correction step due to T1

events. Thus for MB, trajectories that are heralded by very stringent thresholds

still have a non-zero probability of being in the even parity states.
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Given the heralding matrices c̃DD and c̃MB, we can now calculate the average

state of the trajectories that are not heralded and thus require a boost attempt as

s̃
(0)
boost = (I − c̃)S̃(0) , S̃

(0)
boost =

s̃
(0)
boost

|| · ||1
(6.12)

where we introduce the lowercase s̃(0)
boost as the unnormalized population distribu-

tion vector. || · ||1 denotes the L1 norm of the numerator.

After this boost attempt, the qubits are in state S̃(1),

S̃(1) =
T s̃(0)

boost

|| · ||1
=
T (I − c̃)S̃(0)

|| · ||1
(6.13)

where T is the stochastic transition matrix that models the stabilization during a

boosting attempt. In Appendix 6.4, we have already found T for MB. By the same

method, we can also derive the effective transition matrix of a boost attempt for

DD. The calculation of T for DD is an approximation: due to the continuous cavity

drives, the state of the qubits at the beginning of a boost attempt is entangled

with a qubit-state dependent cavity state, which we approximate unconditionally

by the average steady-state cavity state in DD. Nonetheless, as we shall show,

the model still produces a quantitative behavior that agrees very well with the

experimental results. From the above equations, it is easy to show that the average

qubits state of the heralded trajectories after k boost attempts is given by

S̃
(k)
herald =

c̃ (T (I − c̃))k S̃(0)

|| · ||1
(6.14)

In the case of a pre-stabilization of sufficient number of correction steps (or

duration), S̃(0) is given by the steady-state, S̃∞, introduced in Appendix 6.4.

For each of the k boost attempts, the first entry in the vector S̃(k)
herald, i.e., π′−,

gives the fidelity to |φ−〉. The L1 norm of the numerator in the expression for

S̃
(k)
herald gives the percentage of trajectories that have completed k boost attempts.
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Summing the percentages over all values of k from 0 to the maximum limit gives

the overall success probability. In Fig. 6.5, we show the results of the simulation

using the model described here and compare them to the experimental results

presented in Fig. 4 of the main text. Furthermore, from the simulation, we find that

with the realistic system parameter improvement as specified in Appendix 6.4, the

fidelity of heralded trajectories can be 90% and 95% for DD and MB, respectively,

with order unity success probability.

6.6 Measurement-induced AC stark shift and cor-

rection for MB

The quasi-parity measurement induces a deterministic phase shift between the

two qubits due to measurement-induced AC Stark shift [Tornberg and Johansson,

2010]. This is evidenced by examining the phase of the Bell state created in the

measurement optimization experiment described in Appendix 6.1, in which we

varied the measurement duration. As the measurement duration is increased, the

Bell angle of the final Bell state changes linearly (Fig. 6.6a). In order for MB to

work, we need to account for the deterministic phase shift induced by the mea-

surement. This correction is accomplished by a “Z” rotation on Bob before the

unitary UO. Fig. 6.6b gives one example of a sequence trajectory to illustrate how

the correction works. With no loss of generality (and the reason will become clear

soon in the discussion that follows), we construct UE = Ra
x(π/2) ⊗ Rb

−φo(π/2)

and UO = Ra
x(π/2) ⊗ Rb

φo
(π/2) (where φo = 0 corresponds to the X axis) such

that |φo〉 = |ge〉 + eiφo |eg〉 is the eigenstate of UO and applying UE on the even

states results in |φo〉 with 50% probability after the quasi-parity measurement.

Suppose that the qubits are in the ground states, UE is applied and the subse-

quent quasi-parity measurement gives p̃ = −1. During the quasi-parity mea-
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Figure 6.5: Simulation of real-time heralding by NFP. The left (right) panel
presents the results for DD (MB). (a), (c) Cumulative success probability of having
completed at most a given number of boost attempts before tomography for DD
and MB, respectively. Green curve shows the experimental result as presented in
the main text. Blue curve is the simulation result using the same experimental pa-
rameters. (b), (d) Fidelity to |φ−〉 for DD and MB, respectively. Cyan dashed line
denotes the unconditioned steady state fidelity obtained in the experiment. Green
squares (blue circles) show the corresponding fidelity as a function of the number
of boost attempts during NFP obtained in the experiment (simulation).
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surement, a deterministic phase shift of φD is added. Since the measurement re-

ports odd, the next conditional unitary is UO. The Z gate before UO undoes the

phase shift and recovers the eigenstate which UO leaves unchanged. After an-

other parity measurement, the qubits are in the state |ge〉 + ei(φo+φD) |eg〉, with

the phase shift added again. Consequently, we can see that the MB sequence ac-

tually stabilizes |ge〉 + ei(φo+φD) |eg〉 state. In practice, for our experiment, the Z

rotation for Bob is constructed from a composite of X and Y rotations, such that

Rb
z(θ) = Rx(

π
2
)Ry(θ)Rx(−π

2
), and the effective correction angle θ is swept (Fig. 6.6c)

to find the optimal value that cancels the deterministic phase shift and thus max-

imizes the fidelity. Furthermore, to make the target state of the stabilization |φ−〉,
the rotation axis of the pulses on Bob in UO and UE is chosen such that φo+φD = π.

This correction for measurement-induced AC Stark shift is also done in the simu-

lation for MB.

6.7 f state measurement during NFP

While we have been treating our two qubits as purely two-level systems, in reality

there are higher energy levels, in particular the second excited level is expected

to play a non-negligible role in the dynamics. We find that the equilibrium qubit

population not in the |gg〉 state was about 15%, and the f state was also populated.

To investigate whether the decrease of the fidelity in NFP as a function of boost

attempts number is due to the role played by the f -state population, we measured

the populations in |fg〉, |fe〉, |gf〉, |ef〉, |ff〉 after a given number of boost attempts

in DD. The population in |fg〉 was measured by applying a π pulse on Alice’s e-f

transition, then a π pulse on its e-g transition, followed by a measurement of the

population in |gg〉. The other f -state populations are similarly obtained. The sum

of these 5 populations gives the total f -state population plotted in Fig. 6.7, which

indeed increases as a function of boost attempt number. It is therefore plausible
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Figure 6.6: Correcting for deterministic measurement-induced AC Stark shift (a)
Deterministic phase shift induced by measurement as a function of measurement
duration. (b) One example of a sequence trajectory illustrating the phase correc-
tion Rb

z(θ) at work. See detailed explanation in accompanying text. (c) Fidelity of
the steady state to the target Bell state as a function of the correction angle of the
effective Z gate on Bob.
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Figure 6.7: Experimental measurement of f state population plotted as a function
of the boost attempts number in NFP for DD.

that the decrease in fidelity with respect to number of boost attempts is due to the

system being trapped in other levels outside the correction space. This problem,

which is common in similar atomic physics experiments, could be addressed by

additional drives.
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APPENDIX A

Master sequence instruction memory table

Each master instruction prescribes the updates for the arbitrary boolean function,

the counters, and more. We shall go through all the major fields of an instruction,

many of which we have covered already.:

address(0), (1): these are the two possible master instruction addresses

that we can branch to.

branch type: see the branch type table (Table 3.1).

est instr add: the master sequencer supplies this state estimation instruc-

tion address to the state estimator to access the instruction at the corresponding

location.

trigger length, trigger level: the master sequencer is responsible

for generating the digital sequence, the 1-bit meta signal data valid that sets the

desired sampling windows, mentioned in Sec. 3.2.1. This digital sequence is named

“trigger” to be consistent with similar naming practice by the Alazar data ac-

quisition card. A trigger pulse is high (low) for duration specified by trigger

length if the 1-bit field trigger level is “1” (“0”).

counter value(0), (1): these fields store the initial values for the two

counters, respectively, from which we decrement.

load counter(0),(1), decrement(0), (1): whenever load counter
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is “1”, the corresponding counter is initialized to the value specified in counter

value. The counter is decremented by 1 during an instruction if decrement is

“1”.

registers instruction: this field specifies operations on the four general-

purpose registers. The formatting of this field is very similar to standard assembly

language. An operation typically involves two operands. These two operands

can be two of the four general-purpose registers. In this case, they are selected by

the 2-bit fields, target register and source register, respectively, e.g., 00

selects register 0, 10 selects register 2 and etc. The result is always assigned back

to the target register. One of the operands can also be a constant. In such case, the

constant number is stored in the field immediate value. We have just given

examples of two types of register operation. The type of operation is specified in

the field operation code.

internal function, variable selection internal, load internal

function: these fields affect the calculation of internal result. In any given

instruction, internal result can depend on up to four of the eight bare states.

The selection of each of the four bare states is determined by the 2-bit selectors

variable 0, 1, 2, 3, respectively from the field var sel int, i.e., 00 se-

lects bare state 0, 11 selects bare state 3 and so on. internal function is a

boolean function of the four selected bare states. Therefore it has 24 = 16 bits. The

calculation for internal result as specified by these fields can persist for any

number of instructions, i.e., several measurements. A new boolean function only

takes into effect when load int func. is set to “1”.

external function(0), (1), variable selection external, load

external function: we have talked about internal result which is the

global state used by the FPGA internally. There are also two external results.

They are generated in exactly the same fashion as internal result but they
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Figure A.1: Instruction memory of the master sequencer.

are exported to outside the FPGA, to be used by either another FPGA (as X0 or

X1 or another instrument.
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