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Stabilizing a Bell state of two superconducting qubits by dissipation engineering
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We propose a dissipation-engineering scheme that prepares and protects a maximally entangled state of a
pair of superconducting qubits. This is done by off-resonantly coupling the two qubits to a low-Q cavity mode
playing the role of a dissipative reservoir. We engineer this coupling by applying six continuous-wave microwave
drives with appropriate frequencies. The two qubits need not be identical. We show that our approach does
not require any fine-tuning of the parameters and requires only that certain ratios between them be large. With
currently achievable coherence times, simulations indicate that a Bell state can be maintained over arbitrary
long times with fidelities above 94%. Such performance leads to a significant violation of Bell’s inequality
(Clauser-Horne-Shimony-Holt correlation larger than 2.6) for arbitrary long times.
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I. INTRODUCTION

Entanglement is a fundamental, yet counterintuitive, con-
cept in quantum mechanics. Maximally entangled two-qubit
states, often called Bell states, violate classical correlation
properties [1–4] and are an essential building block for quan-
tum communication and quantum information. Unfortunately,
these states are also difficult to generate and sustain as
interaction with the environment typically leads to rapid loss
of their unique quantum properties. Therefore, stabilizing a
Bell state is a sought after goal.

Quantum-state stabilization can be achieved by an active
feedback loop in which the system is measured, and condi-
tioned on the measurement of an error, a gate restores the
system to the desired state [5,6]. This approach suffers from
the latency of data acquisition and analysis that must take
place during the lifetime of the quantum system, a particularly
acute problem for relatively short-lived quantum systems
such as superconducting qubits. An alternative approach to
stabilization is quantum dissipation (reservoir) engineering
[7]. In this approach, autonomous feedback is achieved by
drive-generated couplings between the quantum system and a
dissipative reservoir [8–18]. Thus, this type of autonomous
feedback corrects errors without any need for real-time
processing of the measured record.

In the field of quantum Josephson circuits, autonomous
stabilization of single-qubit states has recently been imple-
mented by using a low-Q cavity mode as a dissipative reser-
voir [19,20]. While schemes for autonomous stabilization of
entangled states exist in atomic physics contexts [8,11,13,16],
the required symmetry in the physical system would appear
to be an obstacle to implementing these with superconducting
qubits. Indeed, while qubits in atomic physics experiments
naturally possess identical frequencies and coupling strengths
to an engineered environment, such symmetry is difficult to
achieve with superconducting artificial atoms. On the other
hand, since these systems are engineered, they benefit from a
large design versatility. In circuits, a large set of Hamiltonians
can be designed for dissipation engineering schemes. More-
over, coupling strengths can be tuned by simple modifications
of circuit elements and hence are not fixed by fundamental
constants, as in the case of atomic physics systems.

In this paper, we propose to stabilize a maximally entangled
state of a pair of superconducting qubits. Since we require
no strong built-in symmetry in the physical setup, the pro-
posed method is readily implementable with superconducting
qubits and should lead to breakthrough performance with
currently achievable experimental parameters. The scheme
exploits the strong dispersive interaction [21] between two
superconducting qubits and a single low-Q cavity mode and
only requires continuous-wave (cw) microwave drives with
well-chosen fixed frequencies, amplitudes, and phases (see
Fig. 1). Moreover, our scheme is robust against small variations
of the latter control parameters and requires only some basic
calibration. By avoiding resonant interactions between the
qubits and the cavity mode the qubits remain protected against
the Purcell effect, which would reduce their coherence times.

II. THOUGHT EXPERIMENTAL SETUP

Here, the low-Q cavity mode acts as an engineered
reservoir which evacuates entropy from the qubits when a
perturbation occurs: by driving the qubits and cavity with
cw drives, we induce an autonomous feedback loop which
corrects the state of the qubits every time it decays out of
the desired Bell state. In order to show the robustness of
our scheme and its ability to prepare and protect a state
significantly violating Bell’s inequality, we have performed
simulations with experimentally achievable parameters and
realistic decoherence values.

Consider two nonidentical qubits coupled to a low-Q cavity
mode (see Fig. 1). The Hamiltonian of the three-body system
(two qubits and one cavity mode) in the Jaynes-Cummings
approximation reads [22]

H = ωA

σA
z

2
+ ωB

σB
z

2
+ ωca†a

+ gA(σA
+a + σA

−a†) + gB(σB
+a + σB

−a†),

where σA
z , σB

z are the Pauli σ z operators for the Alice and
Bob qubits, respectively, and a† (a) is the cavity creation
(annihilation) operator. Here, ωA, ωB , and ωc are the resonance
frequencies for Alice, Bob, and the cavity mode, respectively,
and gA, gB are the coupling constants of the cavity to Alice
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FIG. 1. (Color online) Possible setup for the proposed
experiment: two superconducting qubits (Alice and Bob) interact
with a mode of a three-dimensional cavity. cw tones are applied on
the input port of the cavity. These tones drive the qubits and the
cavity and stabilize a Bell state of the two qubits. This stabilization
is autonomous: no analysis of the output signal is needed.

and Bob, respectively. In the dispersive regime, |�A| = |ωA −
ωc| � gA and |�B | = |ωB − ωc| � gB , and in the rotating
frame for both qubits and the cavity, we obtain the following
effective Hamiltonian:

Heff =
(

χA

σA
z

2
+ χB

σB
z

2

)
a†a, (1)

where χA = 2gA
2/�A and χB = 2gB

2/�B are the dispersive
coupling strengths between the qubits and the cavity mode. We
neglect the direct qubit-qubit interaction, which has no effect
on our stabilization protocol. The same effective Hamiltonian
would be obtained by more realistic quantum-circuit models
[23]. Here, we consider the coupling to be in the strong
dispersive regime [21], where χA and χB are assumed to
be larger than the cavity and qubit line-widths χA,χB >

κ � 1/T A
2 ,1/T B

2 . In this regime, the resonance frequency
of each qubit depends on the number of photons in the
cavity, and conversely, the cavity frequency depends on the
states of the qubits [see Figs. 2(a) and 2(c)]. We can hence
drive the qubits (cavity mode) conditionally on the state of
the cavity mode (qubits). The stabilization drives lead to a
measurement-induced dephasing at a rate κm which increases
with the difference of the dispersive shifts |χA − χB |. Thus,
the only symmetry requirement for our dissipation engineering
scheme is that χA,χB are sufficiently close to each other to
ensure κm � κ since κ is the time scale associated with the
autonomous feedback loop. Using [24], we show that this
condition is satisfied when

|χA − χB | � χAχB/κ
√

n̄ . (2)

Note that such symmetry is easily achieved with supercon-
ducting qubits by tuning the frequency of one of the qubits so
that 2gA

2/�A and 2gB
2/�B become close enough.

We denote as ω
gg
c ,ω

ge
c ,ω

eg
c , and ωee

c the cavity frequencies
when the qubits are, respectively, in the states |gg〉,|ge〉,|eg〉,
and |ee〉. We have used the notation |ge〉 = |g〉 ⊗ |e〉, where
the first (second) element refers to the state of the Alice (Bob)
qubit. Similarly, we denote ωn

A (ωn
B) as the frequency of Alice

(Bob) when there are n photons in the cavity.

III. BELL STATE PROTECTION SCHEME

We now detail, step by step, the dissipation engineering
procedure by explaining the task performed by each cw drive
(see Fig. 2).

Parity selection. Applying two cw drives on the res-
onator at frequencies ω

gg
c and ωee

c with equal amplitudes

|g, g, 0

|g, g, 2

|e, e, 0

|e, e, 2

| 2  -, 
| 2  +, 

|  -, 0
| 0  +, 

ω
c
gg

χ
A

χ
A

χ
B

κ κ

ω
c
eg ω

c
ge ω

c
ee

ω
A

0

χ
A

χ
A

1/T
2
A

ω
A

1 ω
A

2

(b)

(a)

(c)

φ
φ

φ
φ

FIG. 2. (Color online) (a) and (c) Spectra of qubit Alice and
the cavity, respectively. The peaks are resolved since χA,χB > κ,

1/T A
2 ,1/T B

2 . (b) Coupling diagram of two qubits interacting off-
resonantly with a cavity mode. In the frame rotating at the qubit
and cavity frequencies, |gg,0〉,|ee,0〉,|φ−,0〉,|φ+,0〉 have the same
energy but are separated on this diagram for better clarity. This
diagram should not be seen as an energy-level diagram, but rather
a graph showing the various couplings between states. Straight-line
arrows indicate couplings between energy levels which are induced
by cw drives. The wavy arrow indicates energy decay from the
cavity mode. These drives couple the two qubits to the cavity,
here used as a quantum reservoir, in such a way that the Bell state
|φ−〉 = (|ge〉 − |eg〉)/√2 is the only stable state.

εc = κ
2

√
n̄, we generate a coherent state with mean pho-

ton number n̄ in the cavity when the qubits are in
|gg〉 or |ee〉. Hence, an initial state |gg,0〉 (|ee,0〉)
will converge to a state |gg,αei

χA+χB
2 t 〉 (|ee,αe−i

χA+χB
2 t 〉),

where |αeiφ〉 is a coherent state with |α|2 = n̄.
On the other hand, states of the form ceg|eg,0〉 + cge|ge,0〉
are left invariant. Indeed, we assume |ωeg,ge

c − ω
ee,gg
c | =

χA,χB � εc = κ
2

√
n̄, and hence, the drives are off-resonant

with the cavity when the qubits are in an odd-parity state,
leaving the cavity in vacuum. Note that for finite ratios χA,B/εc,
the cavity will populate slightly when the qubits are in an
odd-parity state, inducing a dephasing κm, which will be much
smaller than the correction rate κ as long as condition (2) is
satisfied. At this stage, if we measure the photons leaking out
of the cavity, we can determine if the state of the qubits is
|gg〉,|ee〉 or in the odd-parity manifold span {|ge〉,|eg〉}.

Bell state selection. We now apply two Rabi drives
separating the two Bell states |φ−〉 = (|ge〉 − |eg〉)/√2 and
|φ+〉 = (|ge〉 + |eg〉)/√2 in the odd-parity manifold. Since the
cavity mode remains in the vacuum state within this manifold,
we apply two qubit drives at frequencies ω0

A and ω0
B , and

furthermore, the corresponding Rabi amplitudes are chosen
to be the same and are given by 	0. Assuming, with no
loss of generality, that these drives are around the X axis,
this adds the term 	0(σA

x + σB
x ) to the Hamiltonian in the

rotating frame of the qubits. The latter term leaves invariant
the state |φ−〉 and couples the state |φ+〉 to (|gg〉 + |ee〉)/√2
[25,26]. These two qubit drives, added to the two cavity drives,
pump the population from |φ+,0〉 to a mixture of the states
|gg,αei

χA+χB
2 t 〉 and |ee,αe−i

χA+χB
2 t 〉, while keeping the state
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|φ−,0〉 invariant. Hence, by looking at the photons leaking out
of the cavity, we can determine if the qubits are in the desired
target state |φ−〉 or if they have been projected to |gg〉 or |ee〉.

Irreversible pumping to the target Bell state. To complete
the dissipation engineering scheme which stabilizes |φ−〉,
we need to pump the population from |gg,αei

χA+χB
2 t 〉 and

|ee,αe−i
χA+χB

2 t 〉 back to |φ−〉. To this end, we apply two more
drives at frequencies ω0

A + n̄
χA+χB

2 and ω0
B + n̄

χA+χB

2 , with
the same Rabi frequency 	n̄. Adjusting the phase difference
of these drives appropriately, we obtain the following term
in the Hamiltonian (in the rotating frame of the qubits):
	n̄[e−in̄

χA+χB
2 t (σA

+ − σB
+) + c.c.] (c.c. stands for complex con-

jugate). For integer n ≈ n̄, these drives couple the states |gg,n〉
and |ee,n〉 to |φ−,n〉. The latter state is unaffected by the cavity
drives and so decays down to |φ−,0〉, as indicated by Fig. 2(b).

In summary, turning on the above six cw drives simulta-
neously pumps the population from any of the states |gg〉,
|ee〉, and |φ+〉 to the state |φ−〉. This pumping happens at
a rate of order κ: the states |gg,0〉 and |ee,0〉 converge to
the states |gg,αei

χA+χB
2 t 〉 and |ee,αe−i

χA+χB
2 t 〉 at rate κ; the

state |φ−,n〉 decays towards |φ−,0〉 at rate κ , and we can
choose the oscillation rates 	0 and 	n at will. Provided
that this pumping rate of order κ is much larger than the
decoherence rates of the qubits that destroy entanglement,
the dissipation engineering efficiently prepares and protects
the desired Bell state. Note, furthermore, that any imperfection
in the experimental parameters, such as nonideal tuning of the
drives and a difference between χA and χB , can also lead to
loss of coherence for both qubits: however, as long as the
induced dephasing rate is smaller than the pumping rate, the
protocol remains efficient.

IV. FIDELITY IMPROVEMENT
BY PASSIVE MONITORING

Assume the two qubits have reached their Bell steady state.
If one of the qubits loses a photon, this causes a jump to
|gg,0〉. The cavity suddenly becomes resonant with the drive
at ω

gg
c and gets populated with photons. Since the cavity is

lossy, these photons leak out at a rate κ . Similarly, a jump to
|ee,0〉 would cause the cavity to get populated with photons
of frequency ωee

c . Finally, a phase jump to |φ+,0〉 would
populate the cavity with photons at ωee

c or ω
gg
c . Assuming

the cavity photons mainly decay to an output transmission
line, we are free to demodulate and analyze the output signal.
Hence, monitoring the photons leaking out of the cavity
reveals qubit jumps out of the target Bell state. If we were
to only perform a two-qubit tomography when there are no
photons leaking out of the cavity at ω

gg
c and ωee

c , this could
significantly increase the fidelity to the target Bell state. An
efficient measurement of the cavity output would most likely
require a near-quantum-limited amplifier [27].

V. NUMERICAL SIMULATIONS

We present simulations of the Lindblad master equation
with practically achievable parameters to address all these
imperfections and demonstrate that our scheme is robust to
them. The system parameters we take for the simulation
are T

A,B
1,2 = 50 μs, κ/2π = 2 MHz, χA/2π = 10 MHz, and

χB/2π = 9.5 MHz. For transmon qubits, a Purcell filter [28]
might be necessary to obtain κT

A,B
1,2 � 1.

We simulate the Lindblad master equation

d

dt
ρ(t) = − i

h̄
[H(t),ρ(t)] + κD[a]ρ(t)

+
∑

j=A,B

(
1

T
j

1

D[σ j
−]ρ(t) + 1

2T
j

φ

D
[
σ j

z

]
ρ(t)

)
,

where

H(t) =
(

χA

σA
z

2
+ χB

σB
z

2

)
a†a

+ 2εc cos

(
χA + χB

2
t

)
(a + a†) + 	0

(
σA

x + σB
x

)
+	n̄[e−in̄

χA+χB
2 t (σA

+ − σB
+) + c.c.],

with σ+ = (σ−)†= |e〉 〈g|. Furthermore, 1/T
A,B
φ = 1/T

A,B
2 −

1/2T
A,B

1 are the pure dephasing rates, and the Lindblad
superoperator is defined for any observable O as

D[O]ρ = OρO† − 1
2 O†Oρ − 1

2ρO†O .

Choosing optimal drive amplitudes, we present the evo-
lution of our system in Fig. 3 by plotting the fidelity
F (t) of the two-qubit state with respect to the pure target
state |φ−〉. The corresponding Clauser-Horne-Shimony-Holt
(CHSH) correlation B(t) can be read on the right-hand axis.
More precisely, we have F (t) = Tr[(|φ−〉 〈φ−| ⊗ Ic)ρ(t)] and
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FIG. 3. (Color online) Simulation of the fidelity with respect to
the target state |φ−〉 as a function of time. The CHSH correlation
associated with each fidelity can be read on the right axis. The system
parameters are T

A,B
1,2 = 50 μs, κ/2π = 2 MHz, χA/2π = 10 MHz,

and χB/2π = 9.5 MHz. The cavity is driven with n̄ = 4, the qubit
drive strengths are 	0 = κ

2 and 	n̄ = κ , and the initial state is the
ground state |gg,0〉. Notice that realistic decoherence mechanisms
and imperfect parameter tuning are included in the simulation.
Despite these imperfections, the desired Bell state is stabilized with
a fidelity of about 94%, resulting in a constant violation of Bell’s
inequality (stable CHSH correlation of 2.64 close to the maximal
violation limit 2

√
2 ≈ 2.83).
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n

n Ω
 /κ

FIG. 4. (Color online) Fidelity (color) of the two-qubit steady
state with respect to the pure target state |φ−〉 as a function of the two
drive strengths. The size of the 90% fidelity contour demonstrates
the robustness of the protocol. The parameter domain where a
Bell violation would occur is even larger (75% contour). Large n̄

contradicts constraint (2), thus leading to a higher induced dephasing
between the two qubits. On the other hand, for small n̄, we are
constrained to a small range of 	n̄ in order to satisfy n̄χA,B � 	n̄,
which is needed to perform conditional qubit operations. Taking the
parameters of the previous simulations, the optimal compromise is
around 3 � n̄ � 5 and 0.5 � 	n̄/κ � 1, leading to a fidelity greater
than 93%.

B(t) = Tr[(OCHSH ⊗ Ic)ρ(t)], where

OCHSH = σA
y

−σB
y − σB

x√
2

+ σA
x

−σB
y − σB

x√
2

+ σA
x

σB
y − σB

x√
2

− σA
y

σB
y − σB

x√
2

and Ic is the identity operator on the cavity. The state violates
Bell’s inequality when the CHSH correlation rises above 2
(dash-dotted green horizontal line) [29].

Fixing the experimental parameters, one can scan the drive
amplitudes to find the maximal violation of the Bell inequality.
This has been performed in Fig. 4, where we scan n̄ and 	n̄. As
can be seen, for a large range of amplitudes, the fidelity remains
larger than 90%, which shows the robustness of our protocol to
these control parameters. A discussion on the optimal values
of the amplitudes is provided in the caption.

VI. CONCLUSION

In conclusion, we have presented a scheme to stabilize a
Bell state without the need for active feedback, but rather
by engineering a coupling to a dissipative reservoir which
performs an autonomous feedback loop. Our protocol is robust
to system and control parameters and does not require the
two qubits to be identical. Numerical simulations taking
into account all relevant experimental imperfections predict
a CHSH correlation above 2.6 (higher than 94% fidelity to
the target Bell state), clearly violating Bell’s inequality for
arbitrarily long times. This Bell state could be further purified
by monitoring the cavity output and selecting the state only
when no photons are leaking out from the cavity. Preliminary
experimental results are in excellent agreement with this theory
and will be published elsewhere.
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