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Evidence for coherent quantum phase slips across a Josephson junction array
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Superconducting order in a sufficiently narrow and infinitely long wire is destroyed at zero temperature by
quantum fluctuations, which induce 2π slips of the phase of the order parameter. However, in a finite-length
wire, coherent quantum phase slips would manifest themselves simply as shifts of energy levels in the excitation
spectrum of an electrical circuit incorporating this wire. The higher the phase slips’ probability amplitude, the
larger are the shifts. Phase slips occurring at different locations along the wire interfere with each other. Due to
the Aharonov-Casher effect, the resulting full amplitude of a phase slip depends on the offset charges surrounding
the wire. Slow temporal fluctuations of the offset charges make the phase-slip amplitudes random functions of
time, and therefore turn energy level shifts into linewidths. We experimentally observed this effect on a long
Josephson junction array acting as a “slippery” wire. The slip-induced linewidths, despite being only of order
100 kHz, were resolved from the flux-dependent dephasing of the fluxonium qubit.
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I. INTRODUCTION

The basic notion of superconductivity as a cooperative
phenomenon is the superconducting order parameter. It is a
continuous and complex single-valued function of coordinates,
commonly referred to as the macroscopic wave function.1

The electronic condensate of a superconductor can move
without friction, manifesting itself as a current without
Joule dissipation. The density of a nondissipative current
(supercurrent) is proportional to the phase gradient of the
macroscopic wave function; its amplitude is constant along
the wire. At fixed gradient, phase is a linear function of
the coordinate along the wire. For a long wire, the phase
difference between the wire’s ends may exceed, by many
orders of magnitude, the basic period 2π . This behavior is
inconsistent with the thermodynamics of a superconductor, as
its free energy is a 2π -periodic function of the phase difference.
Thus, the equilibrium current reaches a maximum at a phase
difference of π and then oscillates with a further increase of
phase difference.

In a narrow wire (thinner than the coherence length), the
adjustment of the supercurrent to the equilibrium value is
achieved by the transient processes of 2π phase slips (PS)
of the macroscopic wave function.2 As the wire becomes
thinner, the phase slips occur more frequently. Furthermore,
at low temperature and for sufficiently small wire diameters,
quantum phase slips (QPS) take over the thermally activated
ones, leading to an activationless relaxation of supercurrent.3

It is important to notice that the conditions of the continuity
and single valuedness of the macroscopic wave function allow
a 2πmi discontinuity of its phase at any point xi along the
wire (here, mi are integers). At fixed phase difference between
the ends of the wire, an observable quantity, such as current,
depends on m = ∑

i mi , but is independent of the specific
locations xi . This is why m can be used to label different
quantum states of the condensate. A ±2π phase slip, occurring
at some point along the wire, changes the value of m by ±1.
Because the state of the wire is characterized by m = ∑

i mi

rather than by each mi separately, any of these ±2π QPS

results in the transition m → m ± 1. The QPS processes a
priori do not have to be dissipative.4,5 In the absence of
dissipation, QPS happening at different points along the wire
interfere with each other.6,7 The resulting superpositions of
QPS depend on the distribution of the electric charge along
the wire due to the Aharonov-Casher effect.8 We refer to
these spatially interfering QPS as coherent quantum phase
slips (CQPS).

The thinner the wire, the larger are the amplitude of CQPS
and quantum uncertainty of m. Proliferation of CQPS destroys
superconductivity in ultrathin long wires in the following
sense: the equilibrium maximum supercurrent (prescribed by
the periodic phase dependence of the free energy) decreases
exponentially with the increasing length of the wire6 rather
than being inversely proportional to it. In general, CQPS are
considered to be the precursors of the superconductor-insulator
quantum phase transition.9 Moreover, in Josephson networks
with special symmetries, CQPS were predicted to give rise
to the topologically nontrivial quantum collective order.10,11

On a practical side, challenging, but ultimately achievable
control of external dissipation promises realization of a
fundamental current standard by Bloch oscillations induced
by CQPS.4,5,12,13

In spite of their conceptual and practical importance, the
CQPS processes have remained so far rather elusive. Several
experiments have focused on the resistance of a current-biased
superconducting wire, which therefore dissipates an energy
I�0 per phase-slip event (I being the bias current, �0 = h/2e

the flux quantum).14–16 Such experiments, while providing
evidence for quantum mechanical effects, can not reveal the
coherent aspects of quantum phase slips and are likely to
suffer from uncontrolled dissipation in the electromagnetic
environment of the biasing circuitry. Phase-biased chains of
a few Josephson junctions exhibit suppression of maximum
supercurrent consistent with the CQPS theory,17,18 but have so
far not displayed the expected spectrum of excitations associ-
ated with the quantum dynamics of phase slips. Proposals for
nondissipative experiments with nanowires undergoing CQPS
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in the flux-qubit setup19,20 require a narrow range of quantum
phase-slip amplitudes corresponding to transition frequencies
of the order of a few gigahertz. Such experimental strategy
appears feasible, but it may be complicated by the fact that
phase-slip amplitudes of realistic wires vary by many orders
of magnitude in view of their predicted exponential sensitivity
to the wire transverse dimensions.3

In this paper, we describe an evidence for the coherent
quantum phase slips in a long array of N = 43 Josephson
junctions, which emulate a nanowire. Our experiment on
CQPS features two important distinctions. First, for a faithful
emulation of a nanowire, two parameters of the array are
crucial: it must be long (comprising many junctions) and the
probability amplitude of a phase slip in a single junction must
be small. These conditions minimize the effect of the discrete
nature of the lumped circuit, and make the dynamics of a
condensate phase in the array similar to its counterpart in a
wire. Second, to detect the presence of CQPS in our array,
we take advantage of the sensitivity of the fluxonium qubit21

transitions to the phase slips in its array inductance, which we
treat as a slippery superconducting wire.

This paper is organized as follows. In Sec. II, we describe,
both qualitatively and quantitatively, how the spectrum of flux-
onium qubit is modified by the presence of CQPS in the qubit
inductance. In Sec. III, we describe the experimental evidence
of CQPS in the qubit inductance by comparing to the theory
both frequency-domain and time-domain measurements of the
fluxonium transitions. Appendix A provides details of our
experimental techniques, and Appendix B supports our theory
and data analysis.

II. DISPERSIVE EFFECT OF QUANTUM PHASE SLIPS ON
A SUPERCONDUCTING ARTIFICIAL ATOM

Fluxonium qubit [Figs. 1(a) and 5] may be viewed as one
junction shunted by the kinetic inductance of a series array
of N � 1 larger junctions.21 Alternatively, we may view it
as a loop of N + 1 junctions connected in series, with one
“black-sheep” weaker junction [Fig. 1(b)]. The quantum state
of the device is monitored by coupling the weak junction
capacitively to an electromagnetic resonator, which provides
a nondissipative microwave readout.22,23

The loop array can first be understood qualitatively by the
following semiclassical approach. Quantum fluctuations of the
phase across a selected j th Josephson junction are controlled
by the ratio of its Josephson energy [EJj

= (�0/2π )2/Lj ,
Lj being junction inductance] and charging energy (ECj

=
e2/2Cj , Cj being junction capacitance). We neglect the
capacitances of the array islands to ground (any large-size
metal object in the vicinity of the device). This is made possible
by a tight packing of array junctions [Fig. 1(a) inset] as justified
in our previous work.21

For large EJj
/ECj

, phase fluctuations are small. Corre-
spondingly, quantum phase slips crossing a ring made of
such junctions occur rarely. This allows one to reduce the
many-body Hamiltonian describing the quantum dynamics of
phases in the ring to a simplified, low-energy Hamiltonian.6 In
the basis of states labeled by the number m of phase slips that

crossed the ring, the Hamiltonian is given by (model A)

H = 1

2
E�

L (2π )2
∑
m

|m〉(m − mext)
2〈m|

+
∑
m

[
1

2
E�

S |m〉〈m + 1| + h.c.

]
. (1)

Here, E�
L = (�0/2π )2/L� corresponds to the inductive en-

ergy of the current in the loop of total inductance L� = ∑
Lj ;

the hybridization matrix element E�
S is proportional to the

CQPS probability amplitude in the loop, and we assume
|E�

S | � E�
L , so that one can neglect non-nearest-neighbor

terms (such as m ↔ m + 2); an externally applied magnetic
field offsets the total flux in the loop by an amount �ext =
mext�0.

In the absence of CQPS, i.e., E�
S = 0, the energy levels of

the ring depend quadratically on mext for a given m [Fig. 1(c)],
and present twofold degeneracy at half-integer mext. The
energy difference between the ground g and first excited e

states varies in a zigzag manner as a function of mext. CQPS
removes the degeneracy, which leads to the rounding of the
zigzag corners at half-integer mext. Moreover, the presence
of CQPS allows e ↔ g coherent transitions under external
radiation at any mext.

Interestingly, the collective nature of the strongly coupled
junctions in this model hides in the specific form of the matrix
element E�

S . Namely,

E�
S {Q} =

N∑
j=0

ESj
ei2πQj /2e, (2)

where ESj
is the “microscopic” contribution of an individual

quantum phase slip along the j th junction24 and Qj is the
total charge on the islands between the 0th and j th junctions,
i.e., Qj = ∑j

i=0 qi , with qj being the charge on the j th island
[Fig. 1(b)]. As long as N � 1, one can view each quantum
phase-slip event as tunneling of a fictitious particle carrying
flux �0 from the inside of the loop to the outside (and
vice versa). Tunneling occurs via a superposition of multiple
paths crossing different junctions and therefore encircles
island charges. Tunneling through each individual junction
j then contributes to the total CQPS amplitude (2) with
the corresponding Aharonov-Casher geometric phase6–8,25,26

2πQj/2e.
In real superconducting circuits, however, nonequilibrium

charged impurities and quasiparticles cause the offset charges
to fluctuate in time with an amplitude comparable to e, often
on sub-ms time scales,27 much shorter than the averaging time
of a typical qubit experiment. In the case of a homogeneous
array (ESi

� ESj
∀i,j ), fluctuations of E�

S and, as a result,
fluctuations of the transition matrix element 〈g|m|e〉, which
couples the qubit to the external radiation, are comparable to
their respective means (see Appendix B 1). This makes slow
spectroscopic measurement at mext = 1/2 and time-domain
coherence measurements at any mext technically challenging.
We circumvent this obstacle by introducing an inhomogeneity
in the array in the form of one (j = 0, for definiteness) weak
“black-sheep” junction. Since the phase across the weaker
junction fluctuates more strongly, the corresponding phase-slip
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FIG. 1. (Color) (a) Optical image of the fluxonium device: bright color for Al, dark color for Si substrate. Two finger capacitors couple
the small junction of the loop to the dispersive microwave reflectometry setup. Inset: Scanning electron micrograph of an array section. (b)
Effective electrical circuit of the device with minimal elements for quantum phase-slip description. Each junction consists of a nonlinear
Josephson inductance Lj , a capacitance Cj , and an effective frequency-dependent resistance Rj representing possible intrinsic losses; every
island carries offset charge qj induced by charged impurities in the oxide or unpaired quasiparticles. Pink arrows indicate possible semiclassical
phase-slip trajectories. Charge-dependent energy shifts of artificial atom levels correspond to closed trajectories crossing several junctions (not
represented on the figure). (c) Low-energy spectrum of the Josephson ring. Dashed parabolas represent energy of loop Josephson inductance
threaded by an integer number m of flux quanta and tuned with external flux mext. (d) Two lowest transitions from the ground state. (e) Sketch
of spatial distribution of superconducting phases of array islands, corresponding to the states with m = 0 (no phase slips) and m = 1 (one phase
slip) across the entire loop at mext = 0. Phase of each island is represented by the angle between the corresponding arrow and the vertical. The
value of m coincides with the total phase winding along the loop devided by 2π . (f) Schematic broadening of the ground- to first-excited-state
transition g → e due to a spread of CQPS amplitude across the array. Origin of the spread is the combination of Aharonov-Casher effect and
time dependence of offset charges qj of array islands. Average transition frequency at mext = 1/2 is dominated by the phase slip across the
weak junction.

amplitude ES0 at j = 0 largely exceeds that for all other
(array) junctions, ES0 � ESA ≡ ESj �=0 , where the averaging
is taken over the junction index. Now, the Aharonov-Casher
interference contrast is reduced from unity to a much smaller
value of order

√
N/2ESA/ES0 , where the

√
N factor comes

from averaging over random charges. Effectively, we split the
roles of phase slips in different junctions: While phase slips
across the black sheep mix states of the loop with different m

and therefore shape the qubit transition spectrum [Figs. 1(b)
and 1(c)], the CQPS in the array junctions, combined with
the fluctuating island charges, induce an inhomogeneous
broadening δνeg to the qubitg ↔ e transition. This linewidth
is maximal at |mext| = 1/2, where it is given by δνeg(1/2) =√

N/2ESA/h, and diminishes away from that spot according
to the following expression:

δνeg(mext) = δνeg(1/2)
νeg(1/2)

νeg(mext)
(3)

[Fig. 1(f)]. The factor
√

N/2 comes from averaging |E�
S | over

the random charges, assuming ES0 � ESA.

CQPS thus remarkably turn the flux-noise sweet spot into
charge-noise antisweet spot. We have now arrived at the main
idea behind our experiment: By measuring the variation of the
dephasing time T ∗

2 of the g ↔ e transition of the fluxonium
circuit as a function of external flux mext, we resolve the effect
of CQPS in the Josephson junction array, provided that the
transition intrinsic linewidth is smaller than the characteristic
frequency

√
N/2ESA/h of the CQPS. Evidence for CQPS

consists of (i) the presence of the dephasing antisweet spot
at |mext| = 1/2, (ii) excellent quantitative agreement of the
observed dephasing time as a function of mext with the
described below parameter-free prediction Eq. (6), and (iii)
confirmation of the inhomogeneous nature of the dephasing in
echo measurements. The latter also allow us to extract limits
for the time scale of charge rearrangements.

We introduce now a quantitative model of quantum phase
slips in the fluxonium circuit (model B). Unlike Eq. (1),
now we need to allow strong phase fluctuations in one of
the junctions, while phase slips in all others are still rare.
Therefore, we use a mixed representation: the black-sheep
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junction is described by a continuous fluctuating phase ϕ; the
dynamics of the remaining array of large junctions is treated
by the same tight-binding-type model as Eq. (1) in the space
of the number m̃ of CQPS across the array of large junctions
only. The variables ϕ and m̃ are coupled because phase slips
in the array of large junctions create a phase bias on the black
sheep. Thus, the Hamiltonian of model B is

H = HF (ϕ,mext − m̃) +
∑
m̃

[
1

2
ES |m̃〉 〈m̃ + 1| + H.c.

]
,

(4)

where

HF (ϕ,mext) = −4EC

∂2

∂ϕ2
− EJ cos ϕ

+ 1

2
EL(2π )2(ϕ/2π − mext)

2 , (5)

EJ = EJ0 , and EC = EC0 . The CQPS amplitude ES{Q} =
E�

S {Q} − ES0 is different from that in Eq. (2) and accounts for
phase slips through every junction except the black-sheep one
(we have set Q0 = 0 without the loss of generality). Similarly,
the new inductive energy EL excludes the contribution of
the black-sheep junction inductance from the total induc-
tive energy of the loop; 1/EL = 1/E�

L − 1/EJ0 . For ES =
0, expressions (4) and (5) define the Hamiltonian of the
fluxonium qubit.21 The second term in Eq. (4) incorporates the
CQPS in the fluxonium inductance, and m̃ now counts their
number. We are now in a position to evaluate accurately the flux
dependence of the Aharonov-Casher linewidth of any α ↔ β

fluxonium transition. First-order perturbation theory in |ES |
results in a remarkably simple expression (see Appendix B 1
for details of derivation):

δναβ (mext) = ESA

√
N/2

h
|Fαβ(mext)|, (6)

where

Fαβ(mext) =
∫ ∞

−∞
dϕ �α(ϕ)�α(ϕ − 2π )

−
∫ ∞

−∞
dϕ �β(ϕ)�β(ϕ − 2π ) (7)

with �α(ϕ) being the eigenfunction of the αth energy state
of the fluxonium Hamiltonian (5); it can be readily computed
numerically.

The dependence of δναβ on the external flux mext comes
from the presence of mext in Eq. (5) determining the wave
functions �α,β(ϕ), which enter Eq. (7). For small amplitude
of CQPS and for |mext| close to 1/2, one recovers the relation
(3) from Eq. (6). The overlap function Fαβ also appears in a
previous work28 and can be understood from the fact that a
phase slip through the array inductance must shift the center
of gravity of �α(ϕ) by 2π . The external flux dependence of
the Aharonov-Casher linewidth thus encodes the overlap of
the 2π -shifted fluxonium wave functions (Fig. 10). The flux
dependence of the linewidth (6) of our model B generalizes
Eq. (3) of the intuitive model A to the case of arbitrary black-
sheep junction parameters.

Finally, since the finite lifetime of fluxonium excited states
limit our experiment, and given the large number N of array

junctions, a natural question arises: does the dissipation in the
array scale up with N? Every junction of the array suffers
from intrinsic, generally unknown dissipation sources, all
lumped into a frequency-dependent resistance Rj shunting the
j th junction [Fig. 1(b)]. Fortunately (and counterintuitively),
the dissipation in the black-sheep junction solely dominates
the intrinsic relaxation of the phase slips’ spectrum with
contributions from array junctions being suppressed as 1/N .
Indeed, the dominant phase-slip process generates a voltage
pulse across the black sheep; each array junction receives
only a 1/N portion of that voltage, and the total energy
dissipated in the array resistors is only 1/N of that dissipated
in the black-sheep junction. We thus conclude that, remark-
ably, the apparent multijunction complexity of the fluxonium
circuit does not a priori penalize it with enhanced energy
relaxation.

III. EXPERIMENTS

In this section, we present measurements of the transi-
tion frequencies of a fluxonium qubit obtained using both
frequency-domain and time-domain techniques, and analyze
our data using the theory developed in Sec. II. We read out
the qubit state with the help of a microwave resonator, the
technique known as circuit QED.22,23 Details of this technique
are described in the Appendix (Secs. A 2, A 3, and A 4).
Capacitive coupling of the fluxonium circuit to the readout
resonator results in the shift of the frequency of this resonator
depending on the quantum state of fluxonium according to
Eq. (A5). Essentially, the qubit state is mapped onto a particular
value of the shift of the resonance frequency of the readout
resonator. This frequency shift is in turn detected by measuring
the phase [Eq. (A2)] of the reflection amplitude [Eq. (A1)] for
a microwave signal, scattered off the resonator.

Spectroscopy of fluxonium. Spectroscopy data in the range
of qubit transition frequencies from 300 MHz to 12 GHz
and for the full span of external flux bias reveal the spec-
trum of the transitions between the three lowest energy
levels (Fig. 2). The phase-slip frequency of the black-sheep
junction νeg(mext = 1/2) = |ES0 |/h = 369 MHz corresponds
to the center frequency of the line observed at mext = 1/2
[Fig. 2(a), left]. By varying mext around that point and plotting
spectroscopy traces on a two-dimensional (2D) color plot
[Fig. 2(a), right], we observe the anticrossing of the states
of the loop with the phase-slip number m differing by a unity.
Apart from the neighborhood of mext = 1/2 and mext = 0, the
transition frequency depends linearly on the applied flux with a
slope given by EL, up to corrections of order EL/EJ0 � 0.06
[Fig. 2(b)]. In the mext-ν plane [Fig. 2(c)], one recognizes
the anticipated zigzag shape [Fig. 1(d)] of the lowest g ↔ e

transition [Fig. 2(c)].
The anticrossing at mext = 0 between transitions g ↔ f

and g ↔ e [Fig. 2(c)] is associated with the hybridization
between states m ↔ m + 2. The size of this anticrossing
according to model A would be orders of magnitude smaller
than νeg(mext = 1/2), the latter being associated with the
hybridization m ↔ m + 1. However, we find that the two
frequencies are of the same order because of the proximity
of transitions g ↔ f and g ↔ e at mext = 0 to the plasma
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FIG. 2. (Color) (a) Left: Transition between g ↔ e fluxonium ground and first excited states at |mext| = 1/2 measured by sweeping
spectroscopy (y axis) frequency and measuring phase response of the 8.2-GHz microwave cavity coupled to the qubit (x axis). Right: Raw
spectroscopy data consisting of traces like that on the left but with y color coded, as a function of external flux, in the vicinity of |mext| = 1/2.
(b) Large-scale spectroscopy data as a function of flux and frequency. (c) Extracted resonance locations vs spectroscopy frequency and applied
flux. The solid line represents the fit to the numerically diagonalized Hamiltonian neglecting quantum phase slips in the array but taking into
account interaction with readout cavity mode. The horizontal line represents the cavity mode. Inset shows strong, 160-MHz anticrossing of the
cavity-assisted blue sideband of the qubit lowest transition with the second lowest qubit transition on which the readout mechanism is based.

resonance in the black-sheep junction, which model B properly
takes into account.

The g ↔ f transition anticrosses the cavity-assisted blue
sideband of the g ↔ e transition, which appears as a copy of
the g ↔ e transition [Fig. 2(c) and inset]. This anticrossing
is an unusual vacuum Rabi resonance between the readout
cavity and the e ↔ f transition of the qubit, as indicated by
the pole in the dispersive shift expression (A5) at νef = ν0.
The magnitude of this anticrossing [Fig. 2(c) inset], which
exceeds 100 MHz, demonstrates the strong coupling of the
qubit to the readout and accounts for the good qubit visibility
in the remarkable five-octave transition frequency range. The
frequencies of all transitions are in perfect agreement with
a numerical diagonalization of the Hamiltonian of model B
(neglecting ES). This allows us to extract accurately the circuit
parameters’ values from spectroscopy data see Table I.

Measurement of decoherence times of fluxonium. We now
turn to the time-domain experiments. The coherence of the
g ↔ e transition [Fig. 2(a)] is analyzed using standard time-
domain techniques in the full range of flux and frequency
(−0.5 � mext � 0; 0.369 GHz � νeg � 9.1 GHz). First, the
contribution of the energy relaxation is measured by the
standard π -pulse techniques and yields the exponential decay
times T1 of the excited state. Theoretical expression for T1

is given by Eqs. (B6), (B7), (B8), and (B9). In the narrow
300-MHz vicinity of the cavity frequency, T1 is limited by
relaxation into the cavity (Purcell effect). Subtracting that
effect, the overall shape of the T1(mext) data is matched well
(within a factor of 2) by dissipation across the black-sheep
junction through effective shunting resistance of the form

R0(ω) = A/ω. Note that this agreement takes place for T1

varying by two orders of magnitude and over a 4-octave
frequency span. The only adjustable parameter is the value of
A = 190 ± 60 M
 × GHz, the extreme values corresponding
to top and bottom dashed lines [Fig. 3(a)]. Such 1/ω frequency-
dependent resistance usually arises from the coupling to a
large ensemble of discrete energy absorbers,29 the microscopic
origin of which is presently unclear.30 Dissipation across the
black sheep may likely come from dielectric losses in the
coupling finger capacitors [Fig. 1(a)]. Alternatively, our energy
relaxation data could be explained by a lossless black sheep
and dissipation in the larger area junctions of the array, but
with the A factor N = 43 stronger.

Dephasing times T ∗
2 of the g ↔ e transition, measured from

the decay of Ramsey fringes, display pronounced minimum
of about 250 ns at the flux sweet spot and spectacularly
rise by almost an order of magnitude [Figs. 3(a) and 3(b)],
exceeding 2 μs at |mext| � 0.2 (νge = 5.5 GHz). Around
|mext| = 1/2, the decay of Ramsey fringes is well fitted
[Fig. 3(b)] with a Gaussian. This confirms the irrelevance of
the energy relaxation for |mext| > 0.2, while it dominates at
mext close to zero. Coherence times T2 obtained with echo
experiments are drastically larger than T ∗

2 , particularly around
|mext| = 1/2, and, for the most part, turn out to be limited
by energy relaxation, i.e., T2 ≈ 2T1 [Fig. 3(a)]. Therefore, the
noise that causes Ramsey fringes to decay is slow on the time
scale of order T2 (about 10 μs) but fast on the time scale
of the typical Ramsey fringe acquisition time, of order one
minute, typical of e-jump rates seen with superconducting
single electron transistors and charge qubits.27,31
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TABLE I. Device parameters.

Readout resonator strips width (measured) 15 μm
Readout resonator strips separation (measured) 4 μm
Readout resonator wave impedance Z∞ (inferred) 80 


Readout resonator resonance frequency ν0 (fit) 8.175 GHz
Readout resonator external quality factor Qext (measured) 400
Readout resonator internal quality factor Qint (measured) 2000–5000
Black-sheep junction dimensions (nominal) 0.35 μm × 0.2 μm
Array junction dimensions (nominal) 2 μm × 0.2 μm
Array inductive energy EL = (h̄/2e)2/L (fit) 0.525 GHz
Array inductance L (inferred) 300 nH
Black-sheep junction Josephson energy EJj=0 ≡ EJ (fit) 8.9 GHz
Black-sheep junction Coulomb energy ECj=0 ≡ EC = e2/2CJ (fit) 2.5 GHz
Number of array junctions N (nominal) 43
Array junction Josephson energy Ej �=0 = NEL (inferred) 22.5 GHz
Array junction Coulomb energy ECj �=0 (inferred) 0.85–1 GHz
Qubit-cavity coupling constant g (fit) 181 MHz
Qubit-cavity coupling capacitance Cc (inferred from g and Z∞) 0.8 fF
Black-sheep junction phase-slip energy |ESB | (measured, inferred) 369 MHz
Array junction phase-slip energy ESA (inferred from L, EJj �=0 , ECj �=0 ) 50–250 kHz
Array junction phase-slip energy ESA [inferred from T ∗

2 (mext = 1/2)] 130 kHz

Experimental evidence for the CQPS. Analyzing our time-
domain data, we find that the measured flux dependence of
the decoherence times T ∗

2 (mext) of the g ↔ e transition is in
excellent agreement with the expressions (6) and (7). More-
over, our data are inconsistent with conventional decoherence
mechanisms, which include low-frequency noise in the flux
mext, the Josephson energy EJ (due to critical current noise of
the black-sheep junction), and in the inductive energy EL (due
to critical current noise in array junctions).

For the flux-noise mechanism, according to Eq. (B11) and
Fig. 2, we expect T ∗

2 (mext) to be maximal at |mext| = 1/2
(flux sweet spot). This is obviously inconsistent with our data,
which show a clear minimum of T ∗

2 (mext) at |mext| = 1/2
[see Fig. 3(a)]. Dephasing due to fluctuations in the array
inductance, given by Eq. (B13), is also ruled out because
the corresponding T ∗

2 (mext) would also peak at |mext| = 1/2.
(Qualitatively, this is because at |mext| = 1/2, the transition
frequency νeg is given by |E�

S |/h, which is a property of

FIG. 3. (Color) (a) Summary of the coherence time measurements of the g ↔ e transition. Blue open circles denote energy decay times
(T1), red open triangles denote decay time of the Ramsey fringes (T ∗

2 ), and closed green triangles denote the decay of the π -pulse echo
experiment (T2). Black squares are the T1 data measured simultaneously with the echo data. The dashed-dotted line represents the calculated
relaxation time into the readout cavity (Purcell effect), which clearly is irrelevant for the most of the data. The two dotted lines are theoretical
predictions of relaxation for the two absolute values of effective resistance discussed in the text. Relaxation times T1’s present temporal
variations that are not repeatable (differences between blue open and solid circles), while the overall dependence with applied flux is. The
dashed line corresponds to the theory of the Aharonov-Casher effect induced dephasing, with the overlap function calculated numerically using
circuit parameters extracted by spectroscopy. (b) Actual Ramsey fringes for several values of flux bias, with matched scale of the y axes for
clarity. (c) Coherence time of the g ↔ f transition. Notations match those of (a), except that all relaxation times were multiplied by 2 for easy
comparison with dephasing times. Theory lines obtained using same parameters as those for g ↔ e transition.
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the black-sheep junction, and is independent of the array
inductance.24) The numerically evaluated sensitivity of the
transition frequency νeg to EL is presented in Fig. 13(b). The-
oretical analysis of the sensitivity of νeg to the critical current
noise in the black-sheep junction [Eq. (B12), Fig. 13(a)] shows
that the sensitivity must turn zero at some device-specific flux
bias. Such nonmonotonic dependence is inconsistent with the
observed monotonic T ∗

2 (mext).
Our key result is that the highly unusual flux-dependence

of the dephasing time T ∗
2 (mext) [Fig. 3(a)] is well explained

with the Aharonov-Casher effect of phase-slip interference.
Upon adding the measured small contribution 1/2T1 to the
expression (B5) obtained from our theory of CQPS-induced
dephasing [see Eqs. (4)–(7) and Appendix B 1], we find
excellent agreement with the data [Fig. 3(a)]. The only
adjustable parameter we use is the theoretical value of T ∗

2
at |mext| = 1/2. Furthermore, this adjustable parameter agrees
well with a WKB calculation of ESA ≈ h × 150 kHz based on
our estimates of the array junction parameters.

Control experiments. To verify our interpretation of the
dephasing data in terms of the CQPS-induced broadening, we
performed two main control experiments. In the first control
experiment, we check if phase-slip interference can explain
the dephasing of some other fluxonium transition. For such
experiments, it is necessary to select a transition other than
the lowest g ↔ e, but with sufficiently long T1, so that the
decoherence is dominated by dephasing and not by energy
relaxation. A good candidate for this control experiment turns
out the transition to the second excited state g ↔ f in a narrow
vicinity of mext = 0 [Fig. 2(c)]. Interestingly, for this transition,
the flux bias mext = 0 turns out to be a sweet spot for T1 [see
Fig. 3(c)]. The sharp increase of T1 of the g ↔ f transition at
mext = 0 is well explained [see Eq. (B10)] by exactly the same
model of dissipation R0(ω) = A/ω used to explain energy
relaxation of the g ↔ e transition, with A = 190 M
 × GHz.
The origin of the peak in T1 at mext = 0 comes from the fact
that the f state can decay either directly to g or first to e and
then to g; at mext = 0, due to parity conservation, the direct
f → g decay is forbidden.21 Thus, the bottleneck at mext = 0
is a 280-MHz f ↔ e transition resulting in the lifetimes of the
g ↔ f transition of up to 3 μs.

The Ramsey fringe measurement on the g ↔ f transition
at mext = 0 yields T ∗

2 � 2.5 μs, a significantly smaller value
than 2T1 � 6 μs. Echo measurement at mext = 0 yields a value
of T2 almost matching 2T1 [see Fig. 3(c)]. Thus, there is
a noticeable amount of inhomogeneous broadening of the
g ↔ f transition at mext = 0. We find that this broadening
is indeed precisely accounted for by expressions (6), (7),
and (B5). In other words, the ratio of T ∗

2 = 250 ns of the
g ↔ e transition at |mext| = 1/2 and T ∗

2 = 2.5 μs of the
g ↔ f transition at mext = 0 coincides with the theoretical
prediction Fgf (0)/Fge(1/2), where the overlap integrals are
computed without any adjustable parameters. The reduction
of T ∗

2 with the departure from the sweet spot mext = 0
is also correctly reproduced without adjustable parameters
[Fig. 3(c)].

The second control experiment is even more telling, and
is performed on another fluxonium device, according to the
following logic. Our theory of dephasing by the interfering
quantum phase slips predicts that increasing the Josephson

energy EJj �=0 of the array junctions, while leaving their charg-
ing energy ECj �=0 the same, would suppress exponentially24

the phase-slip matrix element ESA. (Let us remind that we
assume all the junctions of the fluxonium array to be nearly
identical, i.e., EJi

� EJj
and ECi

� EJj
for any i,j > 0, so

that |ESi
| � |ESj

| = ESA.) Thus, we shall be able to practically
switch off the decoherence of fluxoium transitions due to
CQPS in its array inductance by a small adjustment of the
array junctions’ parameters.

Parameters of the fluxonium device for the second
control experiment were extracted from spectroscopy data
(not shown) to be EJj=0 ≡ EJ = 12.0 GHz, ECj=0 ≡ EC =
2.46 GHz, EL = 0.89 GHz, very similar to the parameters of
the main device (see Table I). Since we kept the geometry
of the array junctions and their number identical to the
previous device, we infer that the charging energy of the
array junctions ECj �=0 did not change significantly, while the
Josephson energy EJj �=0 = N × EL = 43 × 0.89 = 38 GHz
increased by a factor of 1.7. For such device parameters, the
spectrum of this fluxonium is similar to that of the main one.
However, in sharp contrast to the main device, we find that
T ∗

2 (mext) for the g ↔ e transition is now sharply peaked at
|mext| = 1/2 and is nearly independent on mext away from
this spot (Fig. 4). The reduction of T ∗

2 away from the sweet
spot follows the prediction of the first-order flux-noise effect
[Eq. (B11)], assuming the flux-noise amplitude δmext ≈ 10−5.
The dependence T ∗

2 (mext) away from the spot |mext| = 1/2 is
now clearly inconsistent with the CQPS. (They still may be
responsible for the dephasing at |mext| = 1/2.) The measured
value of T ∗

2 = 4 μs exactly at |mext| = 1/2 is too small to be
explained by the second-order flux noise, but matches, within
the factor of 2, the prediction of Eq. (6) for the CQPS-induced
dephasing. Thus, a second fluxonium device with nearly
similar parameters, apart from an increase in EJj �=0 by a factor
of 1.7, resulted in a 16-fold enhancement of the coherence

FIG. 4. (Color online) Measurement of the dephasing times T ∗
2 of

a new fluxonium device with suppressed CQPS rate (magenta inverted
triangles) and theoretical prediction (magenta dotted line). Data from
Fig. 3(a) of the main text (red triangles) on T ∗

2 of the main device
are shown for easy comparison. For |mext| < 0.25, energy relaxation
dominates the decoherence.
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time at |mext| = 1/2, indicating the expected24 exponential
suppression of the phase-slip interference.

IV. SUMMARY

Coherent quantum phase slips hybridize states of a
superconductor with different configurations of the order
parameter. The corresponding hybridization energy is
exponentially small for “good” superconductors. In our
experiment, this energy |ES | corresponds to only a few
hundred kHz, three orders of magnitude lower than the 15-mK
sample temperature, and five orders of magnitude lower than
the main qubit energy scales, i.e., plasma frequency and the
inductive energy (both of order 10 GHz). Detection of the tiny
energy scale |ES | has been made possible by two ingredients
specific to our experiment. First, the Aharonov-Casher
modulation of CQPS amplitude broadens the qubit transitions.
Second, the immunity of the fluxonium circuit to dissipation
(Q = νegT1 � 105) allows us the high-precision measurement
of this broadening, thus revealing CQPS. By replacing the
junction array of the present experiment with an amorphous
superconducting nanowire, but keeping the black-sheep
junction, one may attempt seeing CQPS in nominally
continuous wires with poorly controlled CQPS amplitudes.

Our experiment also shows that the fluxonium artificial
atom may find applications in various quantum-information
processing schemes: it provides a three-level system display-
ing a combination of larger frequency range and anharmonicity
than most other qubits; it can operate away from flux sweet
spots without losing too much coherence; its coupling to a
microwave cavity can be varied from weak to strong for
exchange of quantum information without the side effect of
spontaneous emission. In the event that critical current noise
would end up dominating superconducting qubit coherence,
one may expect a 1/

√
N suppression of this effect using an N

junction array. Finally, demonstrated coherence quality factor
Q exceeding 105 in a circuit containing as many as 44 junctions
encourages the design of large quantum Josephson networks,
especially those offering topologically protected ground states.
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APPENDIX A: EXPERIMENTAL TECHNIQUES

1. Sample description

The qubit and the readout circuits [Fig. 5(a)] are fabricated
on a Si chip using Al double-angle evaporation through
a suspended electron-beam resist mask. The readout part
consists of a resonator, implemented with a λ/4 coplanar-
strips (CPS) transmission line. Resonator is coupled to 50-

measurement leads (microstrips) using a pair of interdigitated
capacitors [Fig. 5(b)]. The two leads of the black-sheep
junction are connected to the resonator strips with another
pair of smaller interdigitated capacitors [Fig. 5(c)]. A number
of resistance and dose test structures are placed outside the
resonator.

The fabrication procedure is outlined in the previous
work,21 with relevant device parameters collected into Table I.
We emphasize that the entire fluxonium device, including the

FIG. 5. (Color) (a) Optical image of the sample (color filters applied for better contrast): bright indicates Al, dark indicates Si substrate.
Sample contains the CPS resonator, the qubit, measurement leads, and test structures. (b) Zoom-in on the voltage antinode region of the
resonator. (c) Further zoom on the fluxonium qubit loop.
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Josephson array, the black-sheep junction, the resonator, and
the test structures, is fabricated in a single step of e-beam
lithography and double-angle evaporation. Such simplification
in the fabrication of a superconducting qubit has been made
possible because (i) the dimensions of both the black-sheep
junction and the array junctions are chosen to be sufficiently
close for patterning both types of junction in a single resist
mask, and (ii) the strips of the CPS resonator are sufficiently
narrow so that the e-beam and lift-off process used for the small
junction fabrication could be readily applied to the resonator;
in addition, space remains to accommodate test junctions and
arrays fabricated simultaneously with the qubit.

2. Microwave reflectometry readout

We use the lowest differential mode of our resonator,
which corresponds to the frequency ω0 at which the physical
length of the CPS transmission line matches a quarter of
the wavelength. The next order resonance lies at 3ω0. The
qubit can be viewed as a high-impedance termination Z|α〉(ω)
placed at the open end of the transmission line, and depends
both on the frequency ω and the qubit state α [Fig. 6(a)].
It provides a small contribution χα , termed the dispersive
shift, to the resonance frequency ω0 when the qubit is in
state |α〉. The shift in the resonance frequency is detected
by monitoring the complex-valued reflection amplitude �

for the scattering of a microwave signal off the resonator.
Approximating the single-mode resonance with an effective
LC oscillator [Fig. 6(b)], the reflection amplitude is given by

�(ω,ω0) =
2i

(
ω−ω0

ω0

) − Q−1
ext + Q−1

int

2i
(

ω−ω0
ω0

) + Q−1
ext + Q−1

int

, (A1)

where Qext is the quality factor due to the energy loss in the
matched 50-
 measurement leads, while Qint is the quality
factor due to the energy loss inside the resonator (electrically
represented by a resistor shunting the LC circuit). In our CPS
resonator, Qext � 400 � Qint ≈ 4000 making |�(ω,ω0)| to
be very close to unity [Fig. 6(c)]. The phase θ = Arg(�)
of the reflected signal is a rapid function of frequency:
θ = 2 arctan 2Qext

ω−ω0
ω0

[Fig. 6(d)]. Finally, the difference in
phase of the reflection coefficient θeg = θe − θg between the
qubit excited state e and the ground state g is given by

θeg = 2 arctan

(
2Qext

χg

ν0

)
− 2 arctan

(
2Qext

χe

ν0

)
, (A2)

where ν0 = ω0/2π is the resonator frequency in Hz. The
quantity θeg is plotted on the y axes of Fig. 2(a), left, and
plotted as the color scale in Fig. 2(a), right, and in Fig. 2(c).

Note that since θeg saturates quickly once 2Qext
χe−χg

ω0
> 1,

increasing Qext above the value ω0/|χe − χg| will not improve
the sensitivity. In our experiment, |χe,f − χg| lie between 1
and 10 MHz, while ν0 = 8.175 GHz, so Qext = 400 is a
convenient choice with a measurement bandwidth of 20 MHz.
We discuss the origin of the dispersive shifts as well as the
effect of finite Qext on the qubit lifetimes (Purcell effect) in
the text below [see Eqs. (B6), (B7), and (B8)].

3. Measurement schematic

Low-temperature setup [Fig. 7(a)]. The incoming signal’s
line is attenuated with cryogenic high-frequency resistive film
attenuators (XMA), with total attenuation exceeding 50 dB.
The readout line is shielded by the two 4–12 GHz isolators
(Pamtech) and a low-pass filter (K&L) with rejection band

FIG. 6. (Color online) (a) Electrical model of a qubit interacting with the CPS transmission line resonator. Thick solid line represents the
distributed transmission line. (b) Simplified circuit model of the dispersive effect of qubit on resonator. (c) Modulus of the reflection amplitude
in model of panel (b) vs signal frequency for Qint = 10Qext. Blue and red traces correspond to qubit states g and e respectively. (d) Phase of
the reflection amplitude, same conditions as in panel (c).
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FIG. 7. (a) Dilution refrigerator part of the microwave reflectometry setup. HEMT: high electron mobility cryogenic amplifier; ISO:
cryogenic broadband isolator; LP: low pass filter; DRC: directional coupler; HBC: 180◦ hybrid coupler; see text for more details. (b)
Room-temperature signal generation and demodulation setup. LO: continuous microwave source; RF: pulsed (Mk.1 controlled) wave source;
IQ is a vector signal generator for driving the qubit transitions; AWG: arbitrary waveform generator; A2D: two-channel fast digitizer; + :
matched signal combiner/splitter; × : microwave mixer; BP: and pass filter; 10 MHz: Rb reference; RF AMP: a room-temperature microwave
amplifier.

10–40 GHz. Outgoing signals are amplified using a 5-K noise
temperature cryogenic HEMT amplifier (Caltech). Incoming
and outgoing waves are separated from each other using
a directional coupler (Krytar). Differential excitation of the
resonator is implemented using a 180◦ hybrid coupler (Krytar).
The chip rests at the bottom of the fully enclosing Cu sample
holder, the microwaves are guided to it by means of two printed
circuit board microstrips wirebonded to their on-chip contin-
uation, and perpendicular coaxial-to-microstrip transition im-
plemented using Anritsu K connectors (Fig. 8). The transition
provides less than 15-dB return loss up to 20 GHz. Flux bias is
provided by driving a handmade superconducting coil (glued
to the sample holder) with dc currents of order 1–10 mA.

Room-temperature setup [Fig. 7(b)]. The readout signal is
provided with Agilent E8257D generator (RF), the qubit pulses
are generated using Agilent E8267D vector signal generator
(IQ) combined with Tektronix 520 arbitrary waveform gener-
ator (AWG). Both readout and qubit signals are combined at
room temperature and sent into the IN line of the refrigerator.
The reflected ∼8-GHz readout signal from the refrigerator
OUT line is amplified at room temperature with a Miteq
amplifier (1–12 GHz, 30 dB gain), mixed down with a local
oscillator signal (LO), provided by HP 8672A, to a 50-MHz

IF signal, then filtered and amplified with the IF amplifier
(SRS SR445A), and finally digitized using one channel of
the 1GS/s Agilent Acqiris digitizer. A reference IF signal is
created by mixing a copy of RF and LO and digitized using
the second channel. A software procedure then subtracts the
phases of the two IF signals, resulting in a good long-term
stability of the phase measurement. The short-term stability
is implemented by phase locking every instrument to a Rb
10-MHz reference (SRS FS725). The marker signals of the
AWG are used as triggers to other instruments. Typical time
to acquire Ramsey fringes of 5 μs long [Fig. 3(b)] ranges
from 10 s to 1 min, without noticeable change in the fringe
decay time. The magnetic coil is biased with Yokogawa 7751
voltage source in series with a 1 : 10 voltage divider and a
1-k
 resistor at room temperature.

4. Dispersive shifts of a resonator by fluxonium artificial atom

Here, we evaluate χα used in Eq. (A2) for the reflectometry
signal [Fig. 6(d)]. The interaction of the qubit with the
resonator is given by

V̂ = hg(â + â†)n̂ , (A3)
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FIG. 8. (Color online) Photographs of the chip holder carrying the actual fluxonium device. Anritsu K connector guides microwaves from
coaxial cables to Cu microstrip lines (300-μm wide) on the printed circuit board. The center conductor of the K connector is soldered to the
beginning of the microstrip. Microstrip lines continue to the chip by means of five to six short wirebonds.

where n̂ is the charge on black-sheep junction capacitor in
units of 2e, and â is the annihilation operator for the microwave
photons in the equivalent LC oscillator [Figs. 6(a) and 6(b)].
The coupling constant g, given by

g = Cc

CJ + Cc

√
1

2
Z0/RQν0, (A4)

is expressed via the characteristic impedance of the oscillator
Z0 = 4Z∞/π (Z∞ = 70–80 
 is the wave impedance of the
CPS transmission line), and the superconducting impedance
quantum RQ = h̄/(2e)2 � 1 k
. Treating V̂ as a perturbation
to second order in g yields the following expression for the
dispersive shift χa of the resonator frequency for the qubit in
state |α〉:

χα = 2g2
∑
β �=α

|nαβ |2ναβ

ν2
αβ − ν2

0

, (A5)

where nαβ are the matrix elements of the charge operator
n̂ connecting states α and β and ναβ is the qubit transition
frequency (in Hz) between these states. In formula A5, ναβ

is taken negative if the state α is higher in energy than the
state β and positive otherwise; in the rest of the text, for
simplicity, we treat ναβ as a positive number. Perturbation
theory breaks down whenever the denominator goes to zero,
a situation that corresponds to a resonance between various
qubit transitions and the resonator frequency. The inset of

Fig. 2(c) shows an uncommon instance of such vacuum Rabi
resonance with the qubit transition e ↔ f . A conventional
vacuum Rabi resonance, involving the lowest g ↔ e qubit
transition, takes place at |mext| � 0.05 and νeg � 8.2 GHz; it
is shown as an anticrossing of the theory lines (actual data are
available elsewhere21).

Interestingly, for the case of the present fluxonium artificial
atom, the dominant contribution to the dispersive shift of the
lowest transition (g ↔ e) comes from the transitions g ↔ f

and e ↔ f and not from the g ↔ e transition itself. This
happens because the transitions to the f state involve large
charge motion and the νef frequency remains in a window
1–2 GHz away from the cavity frequency ν0 for all flux values.
This behavior is due to a large participation of the black-sheep
plasma mode in the f state for the present device parameters.
By contrast, the g ↔ e transition involves little charge motion
(Fig. 9) because it connects states with different phase-slip
number m and, in addition, detunes quickly from the cavity
with the external flux. The large splitting between the transition
e ↔ f and the resonator shown in the inset of Fig. 2(c) of the
main text illustrates this point.

APPENDIX B: DECOHERENCE OF FLUXONIUM

1. Aharonov-Casher line broadening

Here, we derive and discuss Eq. (6). The Hamiltonian
of model B, defined by Eqs. (4) and (5), is invariant under

FIG. 9. (Color online) (a) Matrix elements of charge operator N (in units of Cooper-pair charge 2e) for transitions g ↔ e, g ↔ f , and
e ↔ f . (b) Matrix elements of phase operator (in radians) for same transitions.
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FIG. 10. (Color online) Top row: Effective potential for the “black-sheep” junction phase and a sketch of the three lowest levels for three
values of mext. Bottom rows: Overlap between 2π -shifted fluxonium wave functions in states g, e, and f for the three values of mext. Note that
for states g and e, the overlap is clearly maximal when |mext| = 1/2.

the transformation (ϕ,m̃) → (ϕ − 2π,m̃ + 1). This symmetry
represents the fact that by looking only at the initial and final
states of the junction loop, we can not distinguish which
part of the loop (black-sheep junction or the array) actually
underwent a phase slip. This point can also be illustrated by
representing graphically the phase distribution of array islands
before and after a phase slip by 2π [Fig. 1(e)]. The unperturbed
eigenstates |α〉(0) of the Hamiltonian (4) then take the following
form:

|α〉(0) = lim
M→∞

1√
2M + 1

M∑
m̃=−M

�a(ϕ − 2πm̃) |m̃〉 . (B1)

Here, �α(ϕ) is the wave function of the αth (nondegenerate)
eigenstate of the fluxonium Hamiltonian equation (5), the
states |m̃〉 are the eigenstates of the integer m̃ operator, and
the normalization is chosen to satisfy 〈α|β〉(0) = δαβ . Now,
treating the quantum phase-slip perturbation [second term
of Eq. (4)] to the first order in |ES |, we find the correction
to the qubit transition frequency ν

{1}
αβ between the states α

and β:

ν
{1}
αβ = 1

2h
lim

M ′,M ′′→∞
1√

2M ′ + 1
√

2M ′′ + 1

×
+∞∑

m̃=−∞

M ′∑
m̃′=−M ′

M ′′∑
m̃′′=−M ′′

∫ ∞

−∞
dϕ

×[�α(ϕ − 2πm̃′)�α(ϕ − 2πm̃′′)
−�β(ϕ − 2πm̃′)�β(ϕ − 2πm̃′′)]
× (ES〈m̃′|m̃〉〈m̃ + 1|m̃′′〉 + E∗

S〈m̃′|m̃ + 1〉〈m̃|m̃′′〉).

Because states with m̃ �= m̃′ are orthogonal, the sum reduces
to a compact expression

ν
{1}
αβ = Re[ES]

h
Fαβ(mext), (B2)

where the overlap function Fαβ(mext) is defined by Eq. (7). The
flux dependence of ν

{1}
αβ comes from the flux dependence of the

qubit-state wave function; several examples are illustrated in
Figs. 10 and 11.

FIG. 11. (Color online) Flux-dependent part of the inverse
linewidth due to coherent quantum phase slips and the Aharonov-
Casher effect in the array. Black line corresponds to the model A
prediction for the g ↔ e transition, and purple and yellow lines
present results of model B for the g ↔ e and g ↔ f transitions,
respectively. Note that close to |mext| = 1/2, the two models provide
the same result for the lowest transition.
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FIG. 12. (Color online) Sketch of the lowest three energy levels
of fluxonium qubit and structure of the corresponding relaxation rates
in close proximity to mext = 0. Vanishing of the phase matrix element
ϕfg at mext = 0 combined with the particular frequency dependence
of Rintrinsic(ω) explains the sweet spot in T

fg

1 at zero flux bias.

In order to convert the shift ν{1}
αβ [Eq. (B2)] into the linewidth

δναβ [Eq. (6)], let us recall that

ES =
N∑

j=1

ESj
exp(i2πQj/2e), (B3)

with Qj being random variables with a spread of values
comparable to e, and the sum running over all array junctions.
According to the central-limit theorem, in the limit of large N ,
the quantity Re[ES] obeys the Gaussian distribution with zero

mean and standard deviation σ =
√

(Re[ES])2:

P {0 < Re[ES] < x} = 1√
2πσ

exp(−x2/2σ 2). (B4)

Assuming the array junctions to be approximately identical
ESj

� ESA, we get (Re[ES])2 = 1
2E2

SA × N , and then readily

compute the linewidth δναβ (defined as
√

(ν{1}
αβ )2) due to

inhomogeneous broadening to be given by Eq. (6). If charges
Qj vary slowly compared to the duration of a single Ramsey
fringe experiment (of order 10 μs), the decaying envelope of

the of Ramsey fringes is given by the absolute value of the
characteristic function of the distribution (B4). We therefore
find that the Ramsey fringe envelope is given by a Gaussian
exp[−(t/T

CQPS
φ )2], with the flux-dependent dephasing time

T
CQPS
φ of the α → β transition due to the coherent quantum

phase slips given by

1/T
CQPS
φ (mext) =

√
2πδναβ (mext). (B5)

We used the expression (B5) to produce theory plots in Fig. 3.

2. Energy relaxation of fluxonium transitions (T1 processes)

Transitions e → g (g → e). Energy relaxation of the qubit,
taking into account the finite temperature of the sample, an
important effect around mext = 1/2, takes place at the rate
�1 = �g→e + �e→g , where �α→β is the rate at which the qubit
makes a transition from states α to β. The relaxation time is
defined as T

eg

1 = 1/�1 and is given in terms of the black-sheep
junction phase matrix element ϕeg [Fig. 9(b)] and effective
frequency-dependent parallel resistance Reff(ω) shunting the
black-sheep junction. We may decompose this resistance into
the components Rintrinsic(ω) and RPurcell(ω), originating from
the spontaneous emission into the dissipative bath associated
with the qubit circuit, and into the measurement apparatus,
respectively:

R−1
eff = R−1

intrinsic + R−1
Purcell. (B6)

The latter dissipation mechanism comes from the resonator-
filtered 50-
 environment of the measurement circuit
[Figs. 7(a) and 7(b)] and is called Purcell effect. The resulting
formula for T

eg

1 is obtained from Fermi’s golden rule

1/T
eg

1 = 4π
RQ

Reff(2πνeg)
|ϕeg|2νeg coth

hνeg

2kBT
. (B7)

Here,

R−1
Purcell(ω) = Z−1

∞
(ωZ∞Cc)2

Qext

π

4

(ω/ω0)2

cot2
(

π
2 ω/ω0

) (B8)

is the real part of the admittance of the electrical circuit
connected to the black-sheep junction. In Fig. 6(a), this is
a circuit connected to the two terminals of the element Z|α〉(ω)
with a pair of coupling capacitances 2Cc [the capacitances

FIG. 13. (Color online) Sensitivity of the fluxonium spectrum to EJ and EL computed numerically for the g ↔ e and g ↔ f transitions
and present device parameters.
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2Cc are also shown as the interdigitated capacitances in
Figs. 1(a) and 5(c)]. The above expressions work as long
as |1 − ν/ν0| � Q−1

ext . Note that RPurcell ∼ 1/C2
c , and that the

value of Cc in our circuit is of order 1 fF, making the Purcell
contribution smaller than in transmon qubits (Cc ≈ 20 fF) by
more than two orders of magnitude. For the parameters of
our sample, the Purcell contribution becomes negligible as
soon as ν0 − νeg > 300 MHz. Therefore, energy relaxation
in our qubit is mostly intrinsic. Using the reasoning in the
main text, we express Rintrinsic through the effective (and also
frequency-dependent) shunting resistances Rj of the junctions
[Fig. 1(b)]:

R−1
intrinsic = R−1

0 +
⎛
⎝ N∑

j=1

Rj

⎞
⎠

−1

. (B9)

Since the area of the black-sheep junction is only a factor of
6–7 smaller than that of the array junctions, and assuming that
R−1

j is proportional to the area, it is likely that for large N , only
the black-sheep junction (j = 0) contributes Rintrinsic ≈ R0.

Relaxation f → g. In the vicinity of mext = 0, we have
�e→g � �f →e, �f →g . In the two-step transition f → e → g,
the step f → e is the bottleneck [Figs. 9(b) and 12]. Therefore,
the relaxation time associated with the f → g transition can be
written as 1/T

fg

1 � �f →e + �f →g , and, neglecting the Purcell
contribution, we get

(
T

fg

1

)−1 � 4π
RQ

Rintrinsic(2πνfg)
|ϕfg|2νfg+4π

RQ

Rintrinsic(2πνf e)

× |ϕf e|2νf e

1

1 − exp
( − hνf e

kBT

) . (B10)

We dropped the temperature-dependent factor in the first
term because, in our experiment, in the vicinity of mext =
0, the transition energy is such that hνf e ≈ kBT � hνfg .
Once kBT � hνfg , the relaxation process becomes more
complicated.

3. Common dephasing mechanisms

Noise in mext. We establish a higher bound on its amplitude,
assuming the noise is “1/f” (Smext = δm2

ext/ν, where ν is the

frequency in Hz), from pure dephasing time at mext = 0.2,
where the T ∗

2 is maximal [Fig. 3(a)] but Aharonov-Casher
contribution is suppressed. For a “1/f” flux noise, the pure
dephasing time (Gaussian decay of echo signal) is given by32

1/T
mext
φ ≈ δmext × dνeg(mext)/dmext. (B11)

We estimate the dephasing time by subtracting the decay
constant 1/T2 of the echo signal (which was nearly expo-
nential) from the separately measured 1/2T1: T mext

φ = (1/T2 −
1/2T1)−1 > 35 μs. Given that dνeg(mext)/dmext � 19.2 GHz
[Figs. 2(b) and 2(c)], we thus extract the “1/f” flux noise
amplitude to be δmext < 2 × 10−6.

Noise in EJ ≡ EJ0 . According to a previous study,33 this
noise is believed to be “1/f” with the spectral density SEJ

=
δE2

J /ν, where δEJ ∝ EJ . To first order, the dephasing time T2

due to fluctuating EJ is proportional to [dνeg(mext)/dEJ ]−1.
Remarkably, present fluxonium circuit is supposed to be
insensitive to the noise in EJ for some specific value of
mext � 0.43 [Fig. 13(a)]. Overall, theoretical nonmonotonic
dependence of T2 on flux makes the noise in EJ completely
incompatible with the data. For instance, if the EJ noise limits
dephasing time at mext = 1/2 to the measured value of 250 ns,
then it should also limit it to a similar number at mext � 1/4,
where we measure the dephasing time one order of magnitude
longer. By analogy with the flux-noise relation (B11), we can
estimate δEJ from the similar relation

1/T
EJ

φ = δEJ × dνeg(mext)/dEJ . (B12)

Assuming that at mext = 0.2 the pure dephasing is entirely
due to “1/f” EJ noise, we substitute T

EJ

φ > 35 μs and
h dνeg(mext)/dEJ � 0.1 [Fig. 13(a)], we extract a conservative
estimate δEJ < 3 × 10−5EJ .

Noise in EL. Fluctuations in the Josephson energies EJj �=0

of the array junctions would result in a noisy inductance (noisy
EL) such that SEL

= δE2
L/ν. Already from the considerations

of model A it is clear that dνge(mext)/dEL is minimal at
mext = 1/2 and maximal at mext = 0[see Eq. (3) and Fig. 1(f)].
By calculating this derivative numerically [Fig. 13(b)], we
conclude that the theoretical flux dependence of the EL noise
indeed is completely inconsistent with our dephasing data.

FIG. 14. (Color online) Measurement of T1 (blue trace), T ∗
2 (red trace), and T2 (green trace) as a function of time for the g ↔ e transition

at |mext| = 0.2. A set of the three data points was acquired continuously every 8 s.
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We extract the higher bound on the EL noise, assuming it is
1/f, from the pure dephasing time of the g ↔ f transition
measured at mext = 0, where flux, EJ , and Aharonov-Casher
dephasing effects are minimal [Figs. 2(c), 11, and 13(a)].
Using, as usual, 1/T

EL

φ = 1/T2 − 1/2T
fg

1 , the relation

1/T
EL

φ = δEL × dνfg(mext)/dEL, (B13)

the observed values Tφ > 50 μs, and h dνfg(mext)/dEL � 16
[Fig. 13(b)] at mext = 0, we find δEL < 3 × 10−6EL.

4. Time stability of the decoherence times

Figure 14 shows that the measured values of T1 may show
fluctuations by as much as 50% over time. The data are taken
for the lowest g ↔ e transition for mext = 0.2 and are typical
for any other bias. The origin of these T1 fluctuations is
unknown. Fortunately, the dephasing times T ∗

2 , measured in a
Ramsey fringe experiment, being significantly lower than 2T1,
are almost unaffected by the fluctuations in T1. We also note
that the times T2, measured in an echo experiment, follow the
fluctuations of T1, confirming that the value of T2 is indeed
close to 2T1.

1V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064
(1950) [L. D. Landau, Collected papers (Pergamon Press, 1965)].

2B. I. Halperin, G. Refael, and E. Demler, in Bardeen, Cooper and
Schrieffer: 50 Years, edited by L. Cooper and D. Feldman (World
Scientific, Singapore, 2010).

3A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimanyi,
Phys. Rev. Lett. 78, 1552 (1997).

4H. P. Buchler, V. B. Geshkenbein, and G. Blatter, Phys. Rev. Lett.
92, 067007 (2004).

5J. E. Mooij and Yu. V. Nazarov, Nat. Phys. 2, 169 (2006).
6K. A. Matveev, A. I. Larkin, and L. I. Glazman, Phys. Rev. Lett.
89, 096802 (2002).

7D. A. Ivanov, L. B. Ioffe, V. B. Geshkenbein, and G. Blatter, Phys.
Rev. B 65, 024509 (2001).

8Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).
9R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001).

10B. Doucot and J. Vidal, Phys. Rev. Lett. 88, 227005 (2002).
11L. B. Ioffe and M. V. Feigel’man, Phys. Rev. B 66, 224503 (2002).
12D. V. Averin, A. B. Zorin, and K. K. Likharev, Zh. Eksp. Teor. Phys.

88, 692 (1985) [Sov. Phys. JETP 61, 407 (1985)].
13D. B. Haviland, K. Andersson, and P. Agren, J. Low Temp. Phys.

118, 733 (2000).
14A. Bezryadin, C. N. Lau, and M. Tinkham, Nature (London) 404,

971 (2000).
15K. Yu. Arutyunov, D. S. Golubev, A. D. Zaikin, Phys. Rep. 464, 1

(2008).
16M. Sahu, M. H. Bae, A. Rogachev, D. Pekker, T. C. Wei, N. Shah,

P. M. Goldbart, and A. M. Bezryadin, Nat. Phys. 5, 503 (2009).
17S. Gladchenko, D. Olaya, E. Dupont-Ferrier, B. Douçot, L. B. Ioffe,
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