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Tracking photon jumps with repeated quantum
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Quantum error correction is required for a practical quantum com-
puter because of the fragile nature of quantum information. In quan-
tum error correction, information is redundantly stored in a large
quantum state space and one or more observables must be moni-
tored to reveal the occurrence of an error, without disturbing the in-
formation encoded in an unknown quantum state. Such observables,
typically multi-quantum-bit parities, must correspond to a special
symmetry property inherent in the encoding scheme. Measurements
of these observables, or error syndromes, must also be performed in
a quantum non-demolition way (projecting without further perturb-
ing the state) and more quickly than errors occur. Previously, quantum
non-demolition measurements of quantum jumps between states of
well-defined energy have been performed in systems such as trapped
ions1–3, electrons4, cavity quantum electrodynamics5,6, nitrogen–vacancy
centres7–9 and superconducting quantum bits10,11. So far, however, no
fast and repeated monitoring of an error syndrome has been achieved.
Here we track the quantum jumps of a possible error syndrome, namely
the photon number parity of a microwave cavity, by mapping this pro-
perty onto an ancilla quantum bit, whose only role is to facilitate quan-
tum state manipulation and measurement. This quantity is just the
error syndrome required in a recently proposed scheme for a hardware-
efficient protected quantum memory using Schrödinger cat states
(quantum superpositions of different coherent states of light) in a
harmonic oscillator12. We demonstrate the projective nature of this
measurement onto a region of state space with well-defined parity by
observing the collapse of a coherent state onto even or odd cat states.
The measurement is fast compared with the cavity lifetime, has a high
single-shot fidelity and has a 99.8 per cent probability per single mea-
surement of leaving the parity unchanged. In combination with the
deterministic encoding of quantum information in cat states realized
earlier13,14, the quantum non-demolition parity tracking that we dem-
onstrate represents an important step towards implementing an active
system that extends the lifetime of a quantum bit.

As well as being necessary in quantum error correction (QEC) and
quantum information, quantum non-demolition (QND) measurements
have a central role in quantum mechanics. The application of an ideal
projective QND measurement yields a result corresponding to an eigen-
value of the measured operator, and projects the system onto the eigen-
state associated with that eigenvalue. Moreover, the measurement must
leave the system in that state, so that subsequent measurements always
return the same result. The hallmark of a continuously repeated high-
fidelity QND measurement is that it demonstrates a canonical thought
experiment: individual quantum jumps between eigenstates are resolved
in time on a single quantum system. This ideal measurement capability
has been experimentally realized only in the past few decades. The jumps
of a two-level system (quantum bit, or qubit) between its energy eigen-
states were first observed for single trapped ions1–3, and later in single
nitrogen–vacancy centres in diamond7–9. The jumps of an oscillator between

eigenstates with different numbers of excitations (Fock states), were
first observed for the motion of an electron in a Penning trap4. More
recently, the observation of quantum jumps of light in cavity quantum
electrodynamics5,6 (QED), where the number of microwave photons in
a cavity is probed with Rydberg atoms, has enabled a range of new experi-
ments in quantum feedback and control15,16.

An analogous system to cavity QED is the combination of microwave
photons in a superconducting resonator with superconducting qubits,
known as circuit QED17. The strong dispersive interaction of a qubit
and a photon, as in Rydberg-atom cavity QED, allows either the qubit
or the cavity to act as a QND probe of the other component. With the
advent of quantum-limited parametric amplifiers18,19, measurement tech-
niques for superconducting devices have rapidly advanced. For instance,
the frequency shift of a cavity has recently been used to observe the quan-
tum jumps of a qubit between energy eigenstates10,11. So far, however,
there have been no observations of jumps for the cavity field in circuit
QED. A recent paper measured a different quantity, the parity of two
qubits, in a step towards the conventional approach of QEC20. However,
that work did not present real-time tracking of the jumps due to the
natural error rate of that quantity.

In this work, we use the dispersive qubit–cavity interaction of circuit
QED to observe the jumps of photon number parity. Importantly, these
jumps reveal the loss of individual photons without projecting the system
onto a state of definite number or energy, but rather into an eigenspace of
even or odd photon number. This characteristic is a crucial requirement
for future applications in quantum information, where the parity measure-
ment serves as the error syndrome for correcting a quantum memory.
Even in the presence of rapidly repeated measurements, the smooth decay
of the ensemble-averaged parity is largely unperturbed. However, when
individual time records of the measurement are examined, the parity is
observed to take on only the extremal values,61, indicating the projective
nature of each individual measurement. On examining the statistics of the
jumps recorded over many trajectories, we find excellent agreement with
a numerical simulation, suggesting that 85% of the jumps for states with
an average photon number �n~4 are faithfully detected (see Methods
section on photon jump statistics). When selecting on the outcome of a
single parity measurement, we observe, by Wigner tomography21, the
creation of cat states with �n up to 4.

In our experiment, we use a three-dimensional circuitQED architecture22

with a single ‘vertical’ superconducting transmon qubit (the qualifier
‘vertical’ indicates that the dominant electric field is perpendicular to
the film plane) coupled to two waveguide cavities14,23, as shown in Fig. 1a.
Our qubit has a transition frequency of vq/2p5 5.938 GHz, an energy
relaxation time of T1 5 8ms and a Ramsey time of T�2 ~5 ms. The high-
frequency cavity, with a resonant frequency of vm/2p5 8.174 GHz and
a lifetime of 30 ns, serves only as a fast readout of the qubit state. To per-
form a high-fidelity single-shot dispersive readout of the qubit, we use a
Josephson bifurcation amplifier (JBA) operating in a double-pumped

1Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA. 2INRIA Paris-Rocquencourt, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France. {Present
addresses: Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China (L.S.); Institut für Experimentalphysik, Universität Innsbruck,
Technikerstraße 25, A-6020 Innsbruck, Austria and Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
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mode24,25 as the first stage of amplification. The low-frequency cavity, with
a resonant frequency of vs/2p5 7.216 GHz and a lifetime of t0 5 55ms,
stores the photon states which are measured and manipulated. Exploiting
the nonlinearities induced in both resonators, we use the transmon qubit
to track the parity of the storage cavity state. For simplicity, we will refer
to the storage cavity as the ‘cavity’ henceforth.

The qubit and cavity are in the regime of strong dispersive coupling,
which can be described by the Hamiltonian

H=B~vq ej i eh jz vs{xqs ej i eh j
� �

a{a

where a and a{ are the annihilation and creation operators, respect-
ively, jeæ is the excited state of the qubit and xqs/2p5 1.789 MHz is the
qubit-state-dependent frequency shift of the cavity. The readout cavity
has been neglected because it remains in the ground state while the system
evolves. The interaction between the qubit and the cavity entangles qubit
and photon. In the rotating frame of the cavity, Fock states associated with
the qubit in the excited state acquire a phase W 5 a{axqst proportional
to their photon number26. By waiting for t 5p/xqs, one can realize a
controlled-phase gate Cp~I6 gj i gh jzeipa{a

6 ej i eh j, where gj i is the
ground state of the qubit, adding a phase shift of p per photon to the
cavity state conditioned on the qubit state14,27. Therefore, Cpcan be inserted
between twop/2-pulses on the qubit in a Ramsey-type measurement to
map the photon parity of any cavity state onto the qubit (black enclos-
ure labelled ‘P’ in Fig. 1b). The result of a qubit measurement after the
secondp/2-pulse, together with prior knowledge of the initial qubit state,
indicates whether the number of photons in the cavity is even or odd, but
reveals nothing about the actual value of the photon number.

The creation of cat states is a natural consequence of a parity measure-
ment on a coherent state jaæ (a is a complex amplitude) because the phase

cat states defined byN+ aj i+ {aj ið Þ, withN+~1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1+e{2 aj j2
� �q

,
are eigenstates of the parity operator eipa{a (refs 28, 29). After applying
a microwave pulse at frequency vs to the cavity, initially in vacuum,

to create a coherent state jaæ with the qubit initially in jgæ, we use the
parity protocol to take aj i gj iz ej ið Þ

� ffiffiffi
2
p

after the first p/2-pulse to
N{ aj i{ {aj ið Þ gj izNz aj iz {aj ið Þ ej i½ �

� ffiffiffi
2
p

after the second pulse,
at which point the parity of the cavity state is entangled with the state of
the qubit. Detection of the qubit state using the readout cavity then pro-
jects the storage cavity onto one of the two cat states. To confirm the
non-classical properties of these states, we perform Wigner tomography
of the cavity after a single parity measurement for an initial coherent
state of displacement jaj5 2 (�n~4). Post-selecting on the ground or
excited qubit states to obtain the odd or even cats (Fig. 2a, b), respectively,
we see the interference patterns that are the signature of quantum beha-
viour. The overlap between the measured Wigner function and that of
an ideal cat state gives a fidelity of F 5 83% for the odd cat state. Figure 2c
shows the Wigner function without post-selection (tracing over qubit
states). Fringes in the Wigner function almost completely disappear, as
expected, and we obtain the statistical mixture of even and odd states.
The weak visibility of the fringes comes from the slightly lower fidelity
of the even cat state, wherein the qubit ends up in the jeæ state, which is
more susceptible to qubit relaxation. Figure 2d shows the normalized
difference between the two cat states to emphasize the interference fringes.
The high contrast between even and odd cat states is a central require-
ment in implementing a recently proposed QEC scheme12, where these
form the code and error spaces, respectively.

Because the loss of a single photon changes the parity of a cat state,
monitoring parity repeatedly in real time allows us to track photon jumps
of our cavity. Here we note that to interpret the result of a single parity
measurement we must know the state of the qubit before the first p/2-
pulse. In other words, it is the correlation of the qubit states before and
after the parity measurement (a pattern of oscillation between jgæ and
jeæ versus a constant pattern remaining in either jgæ or jeæ) that reveals
the photon state parity. For the following data we have chosen Rŷ,{p=2

as the second qubit pulse, instead of Rŷ,p=2, to maintain a constant pattern
when the cavity is in the even parity state. Apart from reversing which
pattern we assign to be even and which we assign to be odd, this change
makes no difference. Figure 3a shows the measurement protocol and
Fig. 3b–e shows typical 400ms single-shot traces. The initial displace-
ment is jaj5 1.0 and the repetition interval of the parity measurements
is 1ms, which is much smaller than the average photon lifetime, t0 5 55ms,

t = 0 0 < t < 

Storage

|e〉 |e〉|e〉

|g〉

D(α)

χqs

π
t = 

Cπ

Ry, π/2ˆ Ry, π/2ˆ

P

χqs

π
|g〉|g〉

Qubit

Readout

a

b

Figure 1 | Experimental device and parity measurement protocol of a
photon state. a, Bottom half of the device containing a ‘vertical’ transmon
qubit located in a trench and coupled to two waveguide cavities. The low-
frequency cavity, with vs/2p5 7.216 GHz and a lifetime of t0 5 55ms, is used
to store and manipulate quantum states. The high-frequency cavity, with
vm/2p5 8.174 GHz and a lifetime of 30 ns, allows for fast readout of the qubit.
b, Protocol (P) for measuring the parity of the storage cavity field. After an
initial displacement of cavity vacuum D(a) 0j i~ aj i to create a coherent state
with a complex amplitude a, a Ramsey-type measurement is performed. It
consists of two p/2-pulses separated by t 5p/xqs (during which a controlled-
phase gate Cp~I6 gj i gh jzeipa{a

6 ej i eh j is realized), followed by a projective
measurement of the qubit, where xqs is the dispersive interaction between the
qubit and the storage cavity. In this schematic, with the qubit initially in the
ground state, | gæ, the Ramsey-type measurement maps the even and odd
photon states onto the | eæ and | gæ states of the qubit, respectively. A subsequent
projective measurement indicates the cavity state parity. The second p/2-pulse
can be either Rŷ,{p=2 or Rŷ,p=2, simply switching the interpretation of the
result of the qubit measurement.
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Figure 2 | Ensemble-averaged Wigner functions of cat states in the cavity
created by single-shot parity measurements of an initial coherent state in the
cavity. The Wigner functions are mapped out with varying displacements b
and a measurement of the mean photon parity Ph i (ref. 21). Here we follow the
protocol depicted in Fig. 1b, using Rŷ,p=2 as the second pulse. The qubit is always
initialized to the | gæ state through post-selection on an initial measurement.
a, Odd cat state by post-selection on the | gæ state as the result of the parity
measurements. b. Even cat state by post-selection on the | eæ state. c, No post-
selection of the parity measurement, thus tracing over the qubit state. Fringes
almost disappear, indicating a mixture of two coherent states. d, The
normalized difference (data in a minus data in b, all divided by two), or the
expectation of the parity weighted by Æszæ of the ancilla, emphasizing the
interference fringes.

LETTER RESEARCH

2 4 J U L Y 2 0 1 4 | V O L 5 1 1 | N A T U R E | 4 4 5

Macmillan Publishers Limited. All rights reserved©2014



obtained from a free time evolution measurement of the parity of a coher-
ent state (see Methods section on experimental set-up). We observe a range
of photon jump statistics, from quiet traces that last for hundreds of micro-
seconds with no apparent changes in parity, to those that have as many
as five jumps. The clear dichotomy between the patterns in our traces indi-
cates that, although the measurements are susceptible to qubit decoherence,
as evidenced by intermittent, brief changes in measurement correlations
and excitations to higher qubit states, they nonetheless exhibit a strong
sensitivity to single-photon jump events.

When analysing these single-shot traces, to mitigate the effects due
to qubit decoherence, excitation to qubit states higher than jeæ (denoted
as jfæ) and other imperfections in the qubit readout in extracting the
parity, we have applied a quantum filter that best estimates the photon
state parity (see Methods section on the quantum filter). We note that
the output of the quantum filter depends on the entire previous parity
trajectory. Figure 3b–e shows traces with the parity estimator calculated
from the quantum filter, in red. The parity estimator is clearly much less
sensitive to qubit decoherence and jfæ states. Although our single parity
readout fidelity is 80%, owing to the smoothing effect of the quantum
filter we actually can achieve nearly unity detection sensitivity of single-
photon jumps. However, given one jump, the probability of there being
a second jump within the response time of the filter (,2ms) is 4% for
�n~1 (or 15% for �n~4), which limits our overall detection sensitivity
over an entire trajectory (see Methods section on photon jump statistics).

The repeated parity measurements shown above constitute just a sin-
gle point, the origin, in the Wigner functions of the even and odd cat states
(Fig. 2a, b). Thus, crucially, a parity measurement acquires no information
about the phase of the cat states. Consequently, one could encode quantum
information onto the computational bases 0j iL~Nz aj iz {aj ið Þ and
1j iL~Nz iaj iz {iaj ið Þ, and any subsequent parity measurements

would make no distinction between the two. The loss of a single photon
will change the code space spanned by j0æL and j1æ L into the error space
spanned by �0j iL~N{ aj i{ {aj ið Þ and �1j iL~N{ iaj i{ {iaj ið Þwith
a different parity. This error syndrome can thus be extracted by the parity
measurement demonstrated here, but without gaining any knowledge of
the information encoded in the cat states, as required by QEC.

The degree to which the measurements are QND can be determined
by examining the decay rate for the parity of a coherent state with differ-
ent measurement cadences. We extract the total decay rate of the parity
(ttot), from the ensemble-averaged parity dynamics obtained with the
quantum filter (Fig. 4). This total decay rate is well modelled by the
parallel combination of the free decay time (t0 5 55ms) plus a constant
demolition probability PD 5 0.002 per measurement interval ti, as shown
by the fit in the inset of Fig. 4. In other words, a single parity measurement
is 99.8% QND, leaving the parity of the cavity state largely unperturbed.

Several improvements and further investigations will be required to
realize a truly robust error-corrected quantum memory. The probabil-
ity of missing a photon jump, as a result of the finite measurement rate
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Figure 3 | Typical repeated single-shot parity measurement traces revealing
photon jumps in real time. Horizontal dashed orange lines delineate the
thresholds to distinguish | gæ, | eæ and higher excited states of the qubit, denoted
as | fæ. The red traces show the quantum filter that best estimates the parity at
every point. The filter has a finite response time and thus does not trust that
a brief change in the measurement pattern corresponds to an actual parity
jump. a, In this protocol we switch the sign of the second pulse, using Rŷ,{p=2
instead of Rŷ,p=2. The repetition time of the parity measurement is 1ms, and the
traces in b–e all have an initial displacement of | a | 5 1. b, For the most part,
the correlation between neighbouring measurements is positive, indicating

an even-parity state for the whole 400ms. The changes in the qubit state
between 120ms and 320ms are probably due to qubit decoherence during the
parity measurement. c, One parity jump is observed by the change in the
measurement pattern (oscillating versus constant) at about 130ms. d, Two
parity jumps are recorded at about 10ms and then again at 260ms. The change
of pattern at about 200ms is a result of the qubit leaving the computational space
for higher excited states, a feature that disables the parity measurement until
the qubit returns to either | gæ or | eæ. e, A trace with all features described
above included. In this particular trajectory, the filter can clearly resolve five
photon jump events.
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per cavity lifetime, would be greatly reduced if longer-lived cavities were
used30. It is a necessary, but not sufficient, condition that the measure-
ment itself, as shown here, is highly QND and unlikely to induce photon
jumps. An additional requirement is that the measurement does not des-
troy the actual quantum information stored in the cat states. Dephasing
of the cavity state will be non-negligible because the current realization
is not yet robust against qubit decay or excitation (see Methods section
on quantifying the parity-tracking performance). Increasing qubit and
cavity lifetimes, and further characterizing these types of error processes,
are important next steps. Nonetheless, we estimate that when combined
with an optimized measurement strategy, the current level of perform-
ance could already allow extension of the average lifetime of an encoded
cat state (ttot=�n) by a factor of two (see Methods section on parity-tracking
performance). There are several other theoretical architectures for QEC,
some of which have already been implemented experimentally. However,
these experiments have not yet reached the level where they can suppress
the naturally occurring errors. Understanding the role of the measurement
process and its imperfections in all of these approaches remains an
important topic for current and future work.

We have demonstrated the real-time tracking of jumps in the photon
number parity in circuit QED. Significantly, this quantity differs from
previous observations of quantum jumps between energy levels. Rather,
it projects the system into a degenerate subspace, and can therefore serve
as an error syndrome for QEC. We show that the parity measurement is
highly QND and that it has a high fidelity and cadence compared with
the cavity lifetime. These advances in the measurement capabilities should
enable further progress in quantum information.

METHODS SUMMARY
Measurements are performed in a cryogen-free dilution refrigerator with a base tem-
perature of about 10 mK. The ‘vertical’ transmon qubit is fabricated on a c-plane
sapphire (Al2O3) substrate with a double-angle evaporation of aluminium after a
single electron-beam lithography step. The state-dependent frequency shift between
the qubit and the readout cavity is xqr/2p5 0.930 MHz, which is not optimized for
the best signal-to-noise ratio. The background photon number nth 5 0.02 and the
displacement a are calibrated on the basis of the Poisson distribution of photon
numbers in the storage cavity (Extended Data Fig. 2). The qubit readout fidelity is
about 90%, mainly limited by the short coherence times of the qubit. The quantum
filter used as the best-parity estimator consists of two steps: a time evolution of the
density matrix taking into account the cavity decoherence, and a modification of the
density matrix based on the current measurement result. The effectiveness of this
filter is confirmed by the good agreement between extracted numbers of jumps from
the parity estimator during 500ms repeated parity measurements and a numerical
simulation (Extended Data Fig. 9). The Wigner tomography fidelity is limited by
qubit T1, Tw, photon jumps and detection inaccuracy. Among these factors, only
qubit T1 and missing of fast photon jumps can lead to the decay of the cat states. The
high-QND nature of the parity measurement allows the incorrect parity measure-
ment result due to qubit Tw and detection inaccuracy to be removed by performing
repeated parity measurements and taking a majority voting. Slow photon jumps can
be tracked as demonstrated in the manuscript, and the resulting phase errors of the
cat states can also be completely corrected. Repeated parity tracking can thus
enhance the lifetime of the information encoded in cat states (Methods section
on parity-tracking performance).

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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15. Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots
of their decoherence. Nature 455, 510–514 (2008).

16. Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon
number states. Nature 477, 73–77 (2011).

17. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum
information: an outlook. Science 339, 1169–1174 (2013).

18. Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W.
Amplification and squeezing of quantum noise with a tunable Josephson
metamaterial. Nature Phys. 4, 929–931 (2008).

19. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a
Josephson ring modulator. Nature 465, 64–68 (2010).
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METHODS
Experiment set-up, device parameters and qubit readout properties. Our mea-
surements are performed in a cryogen-free dilution refrigerator with a base temper-
ature of about 10 mK. Extended Data Fig. 1 shows the schematic of the measurement
set-up. A Josephson bifurcation amplifier31,32 (JBA) operating in a double-pumped
mode24,25 is used as the first stage of amplification between the readout cavity output
and the high-electron-mobility transistor (HEMT), allowing for a high-fidelity single-
shot dispersive readout of the qubit state. We typically operate the JBA in the saturated
regime with about 20 readout photons for a better signal-to-noise ratio.

The ‘vertical’ transmon qubit is fabricated on a c-plane sapphire (Al2O3) substrate
with a double-angle evaporation of aluminium after a single electron-beam lithography
step. We use the word ‘vertical’ to specify that the dominant electric field is perpen-
dicular to the film plane. The qubit has a transition frequency vq/2p5 5.938 GHz
with an anharmonicity of aq/2p5 (vge 2 vef)/2p5 240 MHz, an energy relaxation
time of T1 5 8ms and a Ramsey time of T�2 ~5 ms. These coherence times are short
compared with those in a regular three-dimensional cavity22, but are comparable to
those reported in refs 14, 23. Exploring the exact sources of limitation is an on-going
research subject. Even at the lowest base temperature, the qubit steady state is
measured to be a thermal mixture of about 86% ground state jgæ, 11% excited state
jeæ and 3% states higher than jeæ, denoted as jfæ. These excitations of the qubit could
come from stray infrared photons leaking into the cavity, although the exact source
remains unknown.

The qubit serves as an ancilla and provides the necessary nonlinearity for the
manipulation of coherent states in the storage cavity. Both the storage and readout
cavities are made of aluminium alloy 6061. The state-dependent frequency shifts
between the qubit and the storage and readout cavities are xqs/2p5 1.789 MHz
and xqr/2p5 0.930 MHz, respectively. For simplicity, we will refer to the storage
cavity as the ‘cavity’ henceforth. The inset of Extended Data Fig. 2 shows the ‘number
splitting peaks’ of the qubit due to different photon numbers in the cavity, which is
displaced with a 10 ns square pulse right before the spectroscopy measurement. A
second-order polynomial fit x nð Þ~{xqsnzx0qsn2, where n is the peak number,
gives a nonlinear correction to the dispersive shift14 x0qs

.
2p~1:9+0:1 kHz which

is small enough to be neglected in the cavity dynamics. Extended Data Fig. 2 shows
that the probabilities of the first eight Fock states n 5 0, 1, 2, …, 7 as functions of
displacement amplitude jaj are in excellent agreement with a Poisson distribution,
indicating good control of the coherent state in the cavity. We scale the x axis from
the voltage amplitude of the displacement pulse applied from an arbitrary wave-
form generator and use this scaling as a calibration. There is a small residual
amplitude for the n 5 1 peak even with no displacement (point near origin), allow-
ing us to infer that there is a background photon population nth 5 0.02 in the cavity.
The lifetime of the cavity is characterized by measuring a free parity evolution of a
coherent state, as shown in Extended Data Fig. 3, which is nearly identical to Fig. 4.
A global fit gives a time constant t0 5 55ms. We also perform another experiment
by introducing a small average photon number (�n<0:1) in the cavity and monitor-
ing the exponential decay of the n 5 1 qubit peak. This experiment gives an identical
t0. However, the free parity evolution of a coherent state can have much better signal-
to-noise ratio because large �n (as large as 4) can be introduced in the cavity.

To perform a good parity measurement, the p/2-pulses Rŷ,+p=2 should equally
cover as many number splitting peaks as possible without significantly exciting the
jfæ state. We choose a Gaussian envelope pulse truncated to 4s 5 8 ns (sf 5 80 MHz)
for a good compromise. Extended Data Fig. 4 shows the effectiveness of those Rŷ,+p=2

pulses as a function of �n in the cavity. The curvature for �nw4 is due to the finite
bandwidth of those pulses in the frequency domain.

We have adjusted the phase between the JBA readout signal and the pump such
that jgæ, jeæ and jfæ states can be distinguished with optimal contrast. Extended
Data Fig. 5a shows the histogram of the qubit readout for the parity protocol used
in repeated single-shot traces in Fig. 3. The histogram is clearly trimodal. Thresholds
between jgæ and jeæ, and between jeæ and jfæ states, have been chosen to digitize the
readout signal to 11, 21 and 0 for jgæ, jeæ and jfæ states, respectively. We assign a
zero to the jfæ states to indicate a ‘failed’ measurement with no useful information
about the parity. These jfæ states can be fixed with a field-programmable gate array
applying proper pulses to drive the qubit back to either jgæ or jeæ in real time.
Extended Data Fig. 5e shows the basic qubit readout properties with the cavity left
in vacuum. The jgæ state is prepared through a post-selection of an initial qubit mea-
surement, while jeæ and jfæ are prepared by properly pulsing the selected jgæ state (see
Extended Data Fig. 5b–d for the pulse sequences). The loss of fidelity predominantly
comes from the T1 process during both the waiting time of the initialization measure-
ment (500 ns) and the qubit readout time (300 ns).
Wigner tomography fidelity and parity readout fidelity. We emphasize that it is
the correlation Ct of the qubit states before and after the parity measurement that
reveals the photon state parity. Extended Data Fig. 6a shows the parity readout
properties of our system for the protocol (Rŷ,{p=2 as the second qubit pulse) used
in the single-shot traces in Fig. 3. The loss of fidelity of the parity measurement

mainly comes from qubit decoherence processes during the parity measurement
(discussed later). Conditional probabilities P(z1jeven), P(z1jodd), P({1jeven),
P({1jodd), P(0jeven) and P(0jodd) are time-independent probabilities that have
positive, negative and zero correlations (as indicated) between the digitized qubit
readouts before and after a parity measurement for a given even or odd state. However,
a pure even or odd state cannot be prepared easily in our system owing to the finite
thermal population of the cavity, which is small but can still introduce systematic
errors. We determine P(+1,0 even=oddj ) by post-selecting the cases with five con-
secutive identical parity results, which give the photon state parity with good
confidence, and then performing a histogram on the sixth parity measurement
(Extended Data Fig. 6b).

Extended Data Fig. 6c shows the pulse sequence for producing the cat states and
the Wigner tomography shown in Fig. 2. The protocol starts with a post-selection
of the jgæ state of the qubit after an initial qubit measurement M1. A parity measure-
ment is performed immediately after a storage cavity displacement a, followed by
Wigner tomography with varying displacements b. A 280 ns waiting time after each
measurement has been chosen to ensure that the readout cavity returns to the
vacuum state. The qubit pulses have a Gaussian envelope truncated to 4s 5 8 ns,
and the displacement pulses on the storage cavity are 10 ns square pulses. The dashed
enclosures represent the pulse sequence for a parity measurement.

To remove the cross-Kerr effect between the readout cavity and the storage cavity
which skews the readout signal for large storage cavity displacements, and also to
convert the readout voltage to parity, we followed the procedure in the supple-
mentary material of ref. 14. The idea is to perform two parity measurements of
different protocols (Rŷ,p=2 or Rŷ,{p=2 as the second p/2-pulse) for a vacuum state in
the cavity. The difference between the two measurements corresponds to a parity
value P 5 1. We used this technique earlier in Extended Data Fig. 3 and here in the
Wigner tomography in Extended Data Fig. 6c.

Extended Data Fig. 6d shows the error budgets for the Wigner tomography
fidelity in Fig. 2. The fidelity is defined by the overlap between the measured
Wigner state and that of an ideal cat state. We mainly consider qubit T1, Tw and
photon jump processes. First of all, the qubit T1 and Tw processes and jfæ states
during Wigner tomography have been included in the parity calibration. After
measurement M1, we post-select only the jgæ state of the qubit. Therefore, the
system’s initial state before the first parity measurement P1 (note that Rŷ,p=2 is the
second p/2-pulse) is jyiæ 5 jaæjgæ. The rotating frame has been fixed to be the one
rotating at the cavity frequency vs when the qubit is in the jgæ state. The qubit T1

process between the two p/2-pulses in P1 leads to yfj i~ aeixqst
		 


gj iz ej ið Þ
. ffiffiffi

2
p

,
where t is the time of the T1 jump happening. On average, this process gives 3%
fidelity error. The qubit Tw process between the two p/2-pulses in P1 leads to
yfj i~ Nz aj iz {aj ið Þ gj izN{ aj i{ {aj ið Þ ej i½ �

. ffiffiffi
2
p

right before measure-
ment M2, switching the entanglement relationship between the cat states and

the qubit states and causing a full error. Here N+~1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1+e{2 aj j2
� �q

. Because

in our experiment we mainly consider jaj5 2, for reasons of simplicity, we use

the approximation Nz~N{~1
� ffiffiffi

2
p

in the large-jaj limit in what follows.
The photon jump process between the two p/2-pulses in P1 leads to
yfj i~ aj i{eixqst {aj i

� �
gj iz aj izeixqst {aj i

� �
ej i

� ��
2, where t is the time of

the photon jump event happening. On average, in this case the fidelity to the ideal
even/odd cat states is 50%. If the photon jump process happens during measure-
ment M2 and the following waiting time, it switches between the even and odd cat
states, thus causing a full error. If the photon jump process happens between the
two p/2-pulses during the Wigner tomography, the results in the two parity pro-
tocols cancel out on average, leading to a full error as well. Finally, the qubit
measurement inaccuracy due to the finite overlap between measurement histo-
grams in P1 plus the qubit transition up process during the waiting time right after
the readout is about 1.3%. The sum of all sources of error limits the Wigner
tomography fidelity F 5 84% of the created cat states, consistent with the mea-
surement. To create the even cat state, the measurement M2 projects the qubit onto
the jeæ state. The extra qubit T1 process after the projection lowers its creation
fidelity by 280 ns/8ms 5 3.5%. This difference explains the imperfect cancellation
of the fringes in Fig. 2c.

Similarly, the error budgets for the parity readout fidelity with Rŷ,{p=2 as the
second qubit pulse (Extended Data Fig. 6a) can also be estimated, as shown in
Extended Data Fig. 6e. We again mainly consider qubit T1, Tw, jfæ state and photon
jump processes. We examine the case with the system initially in the state
yij i~ aj iz {aj ið Þ gj i

� ffiffiffi
2
p

(post-selected by the first five parity measurements),
and consider the probability of not measuring the jgæ state in the sixth parity
measurement. In this case, the qubit T1 process between the two p/2-pulses has
a 50% chance of causing an error. The photon jump process between the two p/2-
pulses leads to yfj i~ aj i{ {aj ið Þ 1{eixqst

� �
gj i{ 1zeixqst

� �
ej i

� �.
2
ffiffiffi
2
p

, where t
is the time of the photon jump event happening, on average also giving a 50% chance
of a wrong answer. The qubit Tw process between the two p/2-pulses flips the qubit
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state on the equator of the Bloch sphere and leads to yfj i~ aj iz {aj ið Þ ej i
. ffiffiffi

2
p

,
giving a full error in the final readout. Finally, the qubit measurement inaccuracy in
the fifth parity measurement plus the qubit transition up process during the waiting
time is 1.3%, as in the case of the Wigner tomography. There is an extra error coming
from the jfæ state between the two p/2-pulses in the sixth parity measurement,
contributing about 0.5%. All the above sources of error add up to 7.7%, in good
agreement with the 91.3% probability of faithfully measuring a positive correlation
for an even cat state in Extended Data Fig. 6a. The lower fidelity for an odd cat state is
because of the extra qubit T1 process for the jeæ state due to the negative correlation
under the same parity readout protocol.
Quantum filter and correlated data. To mitigate the effects due to qubit deco-
herence, jfæ states of the qubit (undesirable states that obscure the parity measure-
ment) and other imperfections in the qubit readout in extracting the parity, we
have applied a quantum filter33,34 that best estimates the photon state parity. We
note that the quantum filter is an integration of the quantum stochastic master
equation and depends on the measured trajectory. Extended Data Fig. 7 shows the
schematic of the quantum filter. This quantum filter at each point in time is
realized in two steps: first, a new density matrix ~r Ctzdtð Þ is calculated from the
best estimation r(Ct) at the previous point, based only on the decoherence of the
cavity; second, the density matrix ~r Ctzdtð Þ gets updated as the best estimation
r(Ct1dt) according to Bayes’ law, based on the newly acquired knowledge from the
current parity measurement. This best estimated density matrix r(Ct1dt) is then
used as the input for the next iteration. We have truncated the dimension of the
density matrix to N~5�n, which is large enough to cover all relevant number states.
To initialize the density matrix after a displacement D(a), we have set r(t 5 0) 5

(1 2 nth)D(a)j0æÆ0jD{(a) 1 nthD(a)j1æÆ1jD{(a), taking into account the back-
ground photon population in the limit nth=1.

At time t, the density matrix of the photon state is r(Ct), which depends on all
previous correlations. At t 1 dt, considering only the decoherence of the cavity, the
expected density matrix from free evolution becomes ~r Ctzdtð Þ~Mdownr Ctð ÞM{

downz

Mupr Ctð ÞM{
upzMnor Ctð ÞM{

no, where Mdown~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdowndt
p

a, Mup~
ffiffiffiffiffiffiffiffiffiffiffi
kupdt

p
a{ and

Mno~I{ M{
downMdownzM{

upMup

� �.
2 are the Kraus operators for photon loss,

absorption of thermal photons and no jump events, respectively. We have kdown 5

(nth 1 1)k and kup 5 nthk, and k 5 1/ttot is the energy decay rate in the cavity
under repeated parity measurements. The additional information Ct1dt acquired
from the parity measurement at t 1 dt changes the quantum state according to

r Ctzdtð Þ~

P evenjCtzdtð Þ P̂even~r Ctzdtð ÞP̂even

Tr P̂even~r Ctzdtð ÞP̂even
� �

zP oddjCtzdtð Þ P̂odd~r Ctzdtð ÞP̂odd

Tr P̂odd~r Ctzdtð ÞP̂odd
� � if Ctzdt=0

~r Ctzdtð Þ if Ctzdt~0

8>>>>>>><
>>>>>>>:

ð1Þ

where P̂even and P̂odd are the projectors onto the even and odd manifolds,

P̂~P̂even{P̂odd~eipa{a is the parity operator, and P(even Ctzdtj ) and P(odd Ctzdtj )
are the respective probabilities of being in the even- and odd-parity manifolds for a
measured Ctzdt . To simplify the quantum filter, we assume that the event of the
qubit jumping to the fj i states is independent of the cavity parity being even or odd.
Hence, if the measured correlation is zero, the density matrix of the photon state is
assigned to the one expected from free evolution. On the basis of Bayes’ law,
equation (1) becomes

r Ctzdtð Þ~

1
P Ctzdtð Þ P Ctzdt jevenð ÞP̂even~r Ctzdtð ÞP̂even

�

zP Ctzdt joddð ÞP̂odd~r Ctzdtð ÞP̂odd

� if Ctzdt=0

~r Ctzdtð Þ if Ctzdt~0

8>>>>><
>>>>>:

where P Ct z dtð Þ~P Ct z dt jevenð ÞTr P̂even~r Ct z dtð ÞP̂even
� �

zP Ct z dt joddð ÞTr

P̂odd~r Ctzdtð ÞP̂odd
� �

. The best parity estimation of the photon state is then

P tzdtð Þ~Tr r Ctzdtð ÞP̂
� �

This formula has been used extensively in the main text to estimate the parity of the
photon state.

To make a comparison with the best parity estimation on the basis of the above
quantum filter, we also directly correlate the neighbouring parity measurements
without any further processing. For zero correlation cases, because no information
of the photon state parity is acquired, the best knowledge of parity at those points is
just the last measured non-zero correlation. We assume the repeated parity mea-
surement is a Markovian process. The ensemble-averaged parity dynamics
obtained from the correlation under a repeated parity monitoring is then simply

hCcor tð Þi~P z1,tð Þ{P {1,tð Þ

zP 0,tð ÞP z1,tð Þ{P {1,tð Þ
P z1,tð ÞzP {1,tð Þ

ð2Þ

where P z1,tð Þ, P {1,tð Þ and P 0,tð Þ are the probabilities of measuring positive,
negative and zero correlations at time t, respectively. The third term comes from
the fact that the cases with zero correlation are assigned to cases previously mea-
sured to have non-zero correlation 11 or 21, whose probabilities are respectively
P z1,t{dtð Þ and P {1,t{dtð Þ. For small dt, P +1,t{dtð Þ<P +1,tð Þ.

The probabilities P z1,tð Þ, P {1,tð Þ and P 0,tð Þ depend on both the measured
parity readout property P +1,0jeven=oddð Þ and the even and odd parity evolu-
tions, Pe(t) and Po(t), of the photon state:

P z1,tð Þ~P z1jevenð ÞPe tð ÞzP z1joddð ÞPo tð Þ

P {1,tð Þ~P {1jevenð ÞPe tð ÞzP {1joddð ÞPo tð Þ

P 0,tð Þ~P 0jevenð ÞPe tð ÞzP 0joddð ÞPo tð Þ

where Pe tð Þ~ e{2 aj j2e{kt
z1

� �.
2 and Po tð Þ~ 1{e{2 aj j2e{kt

� �.
2.

With all the parameters in equation (2) known, ÆCcor(t)æ can be predicted. The
agreement with the measured data is excellent, as shown in Extended Data Fig. 8a.
This data set is the same as that shown in Fig. 4. Equation (2) even accurately
predicts the offset in the averaged parity at t 5 0, which comes from the asym-
metric parity readout fidelities between the even and odd states. The fact that the
saturated parity value in the long time limit in Extended Data Fig. 8a is much lower
than that in Fig. 4 is mainly a result of the qubit decoherence and the imperfections
in the qubit readout. This large difference is additional proof of the effectiveness of
the quantum filter. Extended Data Fig. 8b shows a direct comparison between the
quantum filtered parity estimation and the direct correlation of qubit states
between neighbouring parity measurements. The filtered data are clearly much
smoother and can reject the brief changes in the correlated data, directly dem-
onstrating the effectiveness of the quantum filter.

For a coherent state in a thermal bath, its parity dynamics is simply21

P~
1

1z2nth
e{2 aj j2e{kt= 1z2nthð Þ

which has been used to fit the curves in Fig. 4.
Statistics of photon jumps. To test how faithfully our repeated parity measure-
ment can track photon losses, we simply count the number of jumps extracted
from the parity estimator during 500ms repeated parity measurements. We have
applied a Schmitt trigger to digitize the parity estimator to reject the unavoidable
noise (spikes in the estimator) coming from qubit decoherence and erroneous
parity readout. The two thresholds for the Schmitt trigger are chosen to be 60.9 for
a large discrimination. Then the number of parity jumps is inferred from the
number of transitions in the digital data after the Schmitt trigger.

Although our single parity readout fidelity is about 80% (Extended Data Fig. 6a),
owing to the averaging effect of the quantum filter we actually can achieve nearly
unity detection sensitivity of single-photon jump events. However, because of the
finite bandwidth of the filter, if two photon jumps occur within the response time
of the filter tf (defined as the time to make a transition between the two thresholds
for the Schmitt trigger), our Schmitt trigger will not catch both jumps. Extended
Data Fig. 8c shows the time response of the quantum filter applied to typical photon
jump events. Green and cyan curves are fits of the parity estimator at the transition
based on a hyperbolic tangent function, giving a transition time constant of less than
1ms. We also find the response time of the filter to make a transition between 6 0.9
to be tf < 2ms. The probability of having a second photon jump within tf after the

first jump is simply Pjump~
�n

ttot

ðtf

0
e{t�n=ttot dt~1{e{tf �n=ttot . For �n~1 and ttot 5

49ms, the above probability is Pjump~4%, and Pjump~15% for �n~4, which is the
probability of missing both jumps.

Extended Data Fig. 9 shows the histograms of the extracted number of jumps for
an initial even or odd cat state obtained by post-selection. We note that the almost
non-mixing distribution of even and odd numbers is trivial for the following
reason. At the end of 500ms repeated parity measurements, the cavity is already
in a steady state with nth 5 0.02 photons, that is, 98% probability at vacuum (even
parity) and 2% probability with one photon (odd parity). When the initial parity of
the cat state, for example an even parity, is determined by post-selection, the
number of jumps should have 98% probability of being even and only 2% prob-
ability of being odd, closely tied with the distribution of the final parity at
t 5 500ms. A similar argument applies for an initially odd-parity cat state. The
even–odd distributions in Extended Data Fig. 9 indeed show a 98-to-2% mixing,
providing another way of determining nth.
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In reality, we have no way of knowing the true number of photon jumps for each
parity measurement trajectory. The only way to test how faithfully our repeated
parity measurement can track photon jumps is to see whether the distribution of
jumps agrees with what we expect. Owing to the complication of background
thermal excitation and the finite response time of the filter, to get an analytic
solution is difficult. Instead, we perform a numerical Monte Carlo simulation to
compare with the experiment. In the simulation, we use a coherent state as the
initial state without distinguishing the parity. Each simulation trajectory is 500ms
long, and includes a transition probability of having a photon enter the cavity to
change the photon number from n to n 1 1 as a result of the background thermal
excitation. In the simulation, we also neglect those who have neighbouring jumps
within the response time tf of the quantum filter. Then for each trajectory we count
the number of jumps and finally construct a histogram (black solid lines in
Extended Data Fig. 9) of those numbers based on 100,000 trajectories. The good
agreement between simulation and data demonstrates that the repeated parity
measurement can track the error syndromes faithfully.
Quantifying parity-tracking performance. Our demonstrated parity-tracking
protocol has several sources of infidelity that lead to a loss of the encoded informa-
tion in the cat states, ultimately putting a bound on the improvement we would be
able to achieve in an actual QEC protocol. This infidelity (Extended Data Fig. 6d)
can be broken down into three categories: missed fast photon jumps (due to the
limited bandwidth of the measurement), misinterpreted photon jumps (due to
qubit Tw and readout inaccuracy), and dephasing of the cat states due to the
relaxation of the ancilla qubit during a parity measurement protocol (qubit T1

process only, as explained later). Missing jumps certainly amounts to a complete
loss of phase information. A distinction has to be made between the last two effects
because misinterpreting photon jumps need not fully degrade our knowledge of
the cavity state’s parity at a given point in its trajectory and can be minimized by
multiple repeated measurements (discussed more later). Recalling the Wigner
tomogram in Fig. 2 aids in appreciating this point. Despite the 80% fidelity of a
single parity measurement, after just three of them we can be very confident of the
parity of our cavity state, because the probability of having three errant measure-
ments is (0.2)3 5 0.8%. This is evident when inspecting the behaviour of the
quantum filter in the single-shot traces; given three consecutive measurements
that are the same, the filter converges to 61 with nearly 100% confidence. In the
Wigner tomography, this would amount to knowing the value at the origin very
well, but, given the cat state dephasing due to qubit T1, not knowing the full
contrast of the fringes and coherent state populations.

To realize the cat states as a quantum memory, the entire state must be pre-
served in order that an eventual decoding procedure14 faithfully maps the informa-
tion back onto some other component (for example a physical qubit). Given the
long lifetime of our cavity, an 80% fidelity indicates that a large contribution to an
incorrect parity measurement arises from two sources of qubit decoherence: T1 and
Tw. The detrimental effects of T1 decay are apparent when recalling the entanglement
between the cavity and the ancilla qubit, where the cat state begins to acquire a phase
at a rate qxqs that depends on the qubit state (jgæ (q 5 0), jeæ (q 5 1), jfæ (q 5 2)).
Again, the rotating frame has been fixed to be the one rotating at the cavity frequency
vs when the qubit is in the jgæ state. Concretely, if qubit T1 relaxation happens at t
during the parity protocol waiting time p/xqs, the ideal cat state aj i+ {aj ið Þ

� ffiffiffi
2
p

before the parity measurement will become aeixqst
		 


+ {aeixqst
		 
� �� ffiffiffi

2
p

. Again, for
reasons of simplicity, we have used the approximation Nz~N{~1

� ffiffiffi
2
p

in the
large-jaj limit for the rest of Methods. Similarly, during the time between parity
measurements, the ideal cat state aj i+ {aj ið Þ

� ffiffiffi
2
p

associated with different qubit
states will rotate deterministically at a rate qxqs. Should the qubit state change at a
random time without our knowledge, the cat state will change its rotation rate
accordingly, and the phase of the cat state will thus become completely random. In
the Wigner tomography, this would manifest itself as a washing out of the cat state’s
features, where, unlike at the origin, successive measurements can only further
reduce the fidelity. Thus, in a given single-shot record, qubit T1 decay (and, indeed,
excitations to higher qubit states) imparts an arbitrary phase on the cat states that
would be impossible to recover from without some auxiliary correction protocol.

The contribution of qubit dephasing Tw enters in a subtle, different way. Without
loss of generality, let us assume the system is initially in state aj iz {aj ið Þ gj i

� ffiffiffi
2
p

.
The firstp/2-pulse in the parity measurement brings the system to [(jaæ 1 j2aæ)jgæ 1

(jaæ 1 j2aæ)jeæ]/2. The above state evolves to aj iz {aj ið Þ gj iz aeixqs t
		 


z
��

{aeixqst
		 


Þ ej i�
�

2, where at time t a random phase flip happens. Consequently,
the system becomes aj iz {aj ið Þ gj i{ aeixqs t

		 

z {aeixqst
		 
� �

ej i
� ��

2 and then
keeps evolving in the same way, regardless of the sign change of the term associated
with jeæ. At the end of the p/xqs evolution, the system becomes a product state again,
(jaæ 1 j2aæ)(jgæ 2 jeæ)/2. The second p/2-pulse just takes the qubit to the other pole
on the Bloch sphere, opposite to the case without the phase flip, indicating a ‘fake’
change in parity. Another way to understand the difference between qubit T1 and Tw

errors is to recall the dispersive interaction between qubit and cavity as formulated in

the Hamiltonian in the main text: (vs 2 xqsjeæÆej)a{a. Any change of the qubit energy
results in a change of the cavity frequency, thereby dephasing the cavity state. A phase
flip by contrast does not change the qubit energy, and the cavity phase therefore
remains unaffected. Any extra phase acquired by the cavity state contingent on the
final qubit state post-measurement would be completely deterministic (to within our
ability to discriminate between jeæ and jgæ). We note that the slow drift of the qubit
frequency over time can also contribute to cat state dephasing. The cavity frequency
change is of the order of xqsdf/D, where df is the qubit frequency change and D is the
qubit and cavity detuning. With a xqs/D of roughly 1/1,000, and a drift of qubit
frequency of the order of 7ms, we estimate this cavity dephasing to occur on time-
scales of the order of 10 ms, much longer than any other timescale in our system.
Therefore, this source of dephasing can be neglected. To summarize, qubit dephasing
thus results in an incorrect parity measurement, but does not impart any erroneous
phase onto the cavity state. Instead, by contributing to the 80% fidelity, the effect of Tw

necessitates more measurements to achieve a high degree of confidence in the estima-
tion of the cavity state’s parity. As increasing the number of measurements increases
the likelihood of T1 decay, qubit dephasing still facilitates an overall degradation of cat
state fidelity.

The effective cavity decay rate, keff, which predicts the gain one would expect to see
in a parity-tracking protocol over the natural cavity photon jump rate �nk, can be
described by the sum of all dominant error rates including the three sources of
infidelity described above plus a fourth to include readout errors. This keff should
also be a function of the number of consecutive parity measurements to make, N, and
a waiting time tW between each one of these N-measurement ‘packets’ (Extended
Data Fig. 10). Quantifying the parity-tracking performance as the foundation for a
QEC protocol comes down to finding the optimal N and tW that give the lowest keff,
given the realistic experimental parameters at hand. Explicitly, we have

keff ~
�nkð Þ2 NtMztWð Þ2

2
zNET1 zO Em

Tw

� �
zO Em

M

� � �
1

NtMztW

where tM is the time it takes to perform one parity measurement, ET1 <tM=T1,

ETw
~p
.

xqsTw and EM are the losses of cat fidelity due to qubit T1, Tw and measure-

ment inaccuracy, respectively (see section on Wigner tomography above), and
m~(Nz1)=2.

Central to this idea is understanding that incorrect knowledge of the number of
parity jumps is the first major contribution to cat state decoherence. Slow photon
jump events can be tracked as demonstrated in the main text, and the correspond-
ing phase errors can therefore be completely corrected. This means that single
jumps can be tolerated. The term that goes like �nkð Þ2 determines the probability of
instead having two or more jumps within the time window NtM 1 tW.
Measurement infidelity in the form of qubit dephasing ETw

and EM contributes
to misleading the observer that a jump has occurred, which is equivalent to losing
track of the number of jumps. These terms contribute to the keff expression
exponentially, and in a ‘majority vote’ fashion (assuming N is odd), which explains
the choice of exponent in ETw

and EM. Therefore, in principle the errors due to ETw

and EM can drop out by either simple majority voting or the more elaborate
quantum filtering. Collectively, these three terms correspond to cat state dephas-
ing in the event of the incorrect tabulation of the number of jumps the cat state has
undergone during its evolution.

The second major contribution to decoherence, ET1 , comes from cat state
dephasing due to T1. It takes only one qubit decay event within a string of N
measurements to completely dephase a cat state, which is why ET1 grows linearly
with N. Therefore, an optimal balance needs to be struck between gaining informa-
tion about photon jumps and dephasing the cavity state by inquiring too fre-
quently. To take an extreme case, we assume for a moment that there is no
qubit decoherence and detection inaccuracy, so that ET1 , ETw

and EM are all zero.
In this case, each parity measurement would be perfect and the optimal parameters
would thus be tW 5 0 and N 5 1. In other words, without the threat of qubit-
induced dephasing, the best approach would be to measure as frequently as pos-
sible. Conversely, with non-zero qubit decoherence, the longer the cavity lifetime,
the more advantageous it would be to have a longer tW. Indeed, if k 5 0 then
tW 5 ‘. Should the parity tracking protocol become tolerant of qubit T1 errors, ET1

would instead grow exponentially like ETw
, because it would amount only to an

overall loss of measurement fidelity.
Recalling the 83% fidelity of our Wigner tomography to an ideal cat state, the

keff derived here indicates that this fidelity does not decrease as 0.83N, with N the
number of parity measurements performed. The latter would be the case only if we
were to encode a state, perform tomography on it with 83% fidelity, decode the
state, whose fidelity to the initial one would then be reduced by 17%, and then
repeat this procedure again and again. Of course this is not what we do. After the
initial projection onto a cat state, we proceed with repeated parity measurements,
and with each subsequent measurement we actually build up our confidence in the
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state. At the same time, however, we pay the price of risking complete dephasing
due to qubit decay. Thus, the number 0.83 reflects the amount of information we
actually acquire when reconstructing the state through tomography rather than
the degree to which the state has been corrupted. The actual corruption is related to
how QND the measurement is regarding inducing extra photon loss and cavity
state dephasing errors. In the main text, we show the former to be very high at
99.8% per measurement. The latter would be 1{ET1 <94%.

Given our system’s parameters, we can quantify what level of improvement we
can achieve with the demonstrated parity-tracking protocol over a photon jump
rate �nk. As seen in Extended Data Fig. 6d, ET1 <6%, ETw

<3% and EM<1% are all of
the same order. Here we attribute a greater contribution of ET1 from that listed in
Extended Data Fig. 6d because the sources of error there assumed that the final
qubit state after each measurement was jgæ. However, without any post-selection
of trajectories, the qubit could just as well end up in jeæ, enhancing the effect of
qubit-induced dephasing. Therefore, the optimal N in our case is actually N 5 1,
notwithstanding the 80% fidelity of a single parity measurement. This can be
understood by noting that for N . 1, the contribution of ET1 quickly begins to
outweigh any qubit dephasing and measurement errors, leading to a suboptimal
choice of parameters. Given that the contributions of these terms together sum to
about a 10% error, we now have

keff ~
�nkð Þ2 tMztWð Þ2

2
z0:1

 �
1

tMztW

The minimum keff is achieved when the decay rates are equal:

tMztWð Þ2~ 2 0:1ð Þ
�nkð Þ2

[ keff ~�nk
ffiffiffiffiffiffi
0:2
p

The improvement over �nk is thus of the order of
ffiffiffiffiffiffi
0:2
p

, which predicts an improve-
ment in the effective cavity decay time by a factor of two over 1=�nk. The corres-
ponding tW value is 4.6ms. Given that tM is dominated in large part by the parity
protocol waiting time p/xqs, a relevant benchmark for the overall performance
becomes the product xqsT1. We emphasize that even for this system’s modest
coherence properties, an improvement by a factor of two would be impressive.

Indeed, if T1 and Tw approach 20ms, the protected lifetime of the information
would exceed 50ms, the lifetime of a single-photon Fock state in the storage cavity.

The highly QND nature of the parity measurements at 99.8%, expanded on in
the main text, was omitted from the analysis above owing to its minor contribution
relative to all other sources of error. We consider this number to be one of the two
figures of merit for the success of the parity-tracking protocol. If the very act of
measuring parity were to induce photon jumps without our knowledge, the parity-
tracking protocol itself would be flawed. This success, however, belies the degree to
which we perturb the information stored in the cat states. Referring once more the
Wigner tomograms, although we can confidently claim that we are QND as far as
the point at the origin is concerned, given low qubit T1 the same cannot be said of
the rest of the information present in the Wigner tomogram at other points in I–Q
space. In other words, the parity monitoring does not change photon number
probabilities, but could change the relative phases between constituent Fock states.
This second figure of merit, which can again be quantified as the contribution to
cavity state dephasing due to qubit decay (1{ET1 <94% per measurement) still
clearly leaves much room for improvement. Nonetheless, although certainly pre-
senting challenges, shortcomings arising from qubit performance and other
higher-order mechanisms of dephasing not discussed here (such as self-Kerr of
the cavity and cross-Kerr due to readout) do not seem insurmountable35. Addressing
the issue of cavity state dephasing due to measurement is an important next step in
improving the performance of this QEC scheme. We are confident that we can
address the issue of qubit T1 without substantially altering the parity-tracking pro-
tocol presented here, but we feel that this lies beyond the scope of this work.
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Extended Data Figure 1 | Schematic of the measurement set-up. We use
two separate lines to drive the readout and the storage cavity. Qubit state
manipulations are realized through the readout cavity input line. The readout
cavity output signal is first amplified by a JBA operating in a double-pumped

mode, and the reflected signal then goes through three isolators in series before
being further amplified by a HEMT at 4 K. The amplified signal is finally
down-converted to 50 MHz and then digitized by a fast 1 GS data-acquisition
card.
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Extended Data Figure 2 | Poisson distribution of photon numbers in the
cavity. Dotted colour lines are data for the first eight Fock states n 5 0, 1,
2, …, 7 as functions of displacement amplitude | a | . The measurements are
performed with a selective p-pulse on each number splitting peak, and the
resulting signal amplitude should be proportional to the corresponding
number population. These oscillation amplitudes have been normalized to
probabilities such that the sum of the amplitudes corresponding to n 5 0
and n 5 1 equals unity. Dashed lines are theoretical curves with a Poisson
distribution P aj j,nð Þ~ aj j2ne{ aj j2

.
n!, where the x axis has had a single scale

factor adjusted to fit all these probabilities. The excellent agreement indicates

good control of the coherent state in the cavity and also gives a good calibration
of the cavity displacement amplitude. On the basis of the probability of n 5 1 at
| a | 5 0, we find a background photon population of nth 5 0.02 in the cavity.
Inset bottom panel: spectroscopy (left axis) of the number splitting peaks of
the qubit when populating different photon numbers in the cavity. Inset top
panel: difference between peak positions and a linear fit. The curvature
necessitates a second-order polynomial fit, resulting in a linear dispersive
shift xqs/2p5 1.789 6 0.002 MHz and a nonlinear dispersive shift

x0qs

.
2p~1:9+0:1 kHz.
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Extended Data Figure 3 | Ensemble-averaged free parity evolution of a
coherent state. The measurement protocol is shown in the inset. The single
parity measurement gives a readout voltage that has been converted to parity
through thresholding. All measured evolution curves saturate at the same value

in the long time limit. This saturation level has been forced to 0.96 (because
nth 5 0.02), represented by the dashed horizontal line. The solid lines are global
fits, giving a time constant of t0 5 55ms.
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Extended Data Figure 4 | Effectiveness of the R^̂y,++p==2 pulse. Blue and red
data (bottom axis) are ensemble-averaged qubit readouts after consecutively
(with no wait time) applying (Rŷ,p=2, Rŷ,p=2) and (Rŷ,p=2, Rŷ,{p=2), respectively,
as functions of different �n introduced into the cavity. The curvature for �nw4
comes from the finite bandwidth of the pulses in the frequency domain.
Green curve (top axis) is a time Rabi trace for an amplitude comparison with
no initial cavity displacement.
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Extended Data Figure 5 | Qubit readout properties. a, Histogram of qubit
readout for the parity protocol used in repeated single-shot traces in Fig. 3. The
phase between the JBA readout and the pump has been adjusted such that | gæ,
| eæ and | fæ states can be distinguished with optimal spacings. Thresholds
between | gæ and | eæ, and between | eæ and | fæ, have been chosen to digitize
the readout signal to 11, 21 and 0 for | gæ, | eæ and | fæ, respectively. Note that
we assign a zero to the | fæ states to indicate a ‘failed’ measurement with no

useful information about the parity. b–d, Illustrations of pulse sequences
(not to scale) producing the readout error matrix with the storage cavity left in
vacuum. The | gæ state (b) is prepared through post-selection of an initial
qubit measurement M1, whereas | eæ (c) and | fæ (d) are prepared by properly
pulsing the selected | gæ state. A histogram of the second measurement, M2,
gives the qubit readout properties. e, Qubit readout properties for qubit initially
in | gæ, | eæ and | fæ, respectively.
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Extended Data Figure 6 | Parity readout properties and Wigner
tomography. a, Parity readout property for given even and odd parity states for
the protocol (Rŷ,{p=2 as the second qubit pulse) used in the single-shot traces in
Fig. 3 (�n~1). b, Protocol to measure parity readout fidelity. An initial qubit
measurement allows a post-selection of the | gæ state of the qubit, followed by six
consecutive parity measurements. The pulse sequence of each parity
measurement is shown in P1 in c. P +1,0jeven=oddð Þ are determined by post-
selecting the cases with the first five consecutive identical parity results, which
give the photon state parity with good confidence, and then constructing a
histogram for the sixth parity measurement. c, Illustration of pulse sequence
(not to scale) for producing the cat states and the Wigner tomography shown in

Fig. 2. The protocol starts with a post-selection of the | gæ state of the qubit
through an initial qubit measurement M1. A parity measurement is performed
immediately after a storage cavity displacement a, followed by Wigner
tomography with varying displacements b. A 280 ns waiting time after each
measurement has been chosen to ensure that the readout cavity is in the
vacuum state. The qubit pulses have a Gaussian envelope truncated to
4s 5 8 ns, and the displacement pulses on the storage cavity are 10 ns square
pulses. The dashed enclosures represent the pulse sequences for parity
measurement. d, Error budgets for Wigner tomography fidelity. e, Error
budgets for the parity readout fidelities with Rŷ,{p=2 as the second qubit pulse.
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Extended Data Figure 7 | Schematic of the quantum filter. At time t, the
density matrix of the photon state is r(Ct), which depends on all previous
correlations. At t 1 dt, only considering the decoherence of the cavity, the
expected density matrix from free evolution becomes ~r Ctzdtð Þ. The additional
information Ct1dt acquired from the parity measurement at t 1 dt changes the
knowledge of the parity of the photon state according to equation (1).
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Extended Data Figure 8 | Effectiveness and response time of the quantum
filter. a, Ensemble-averaged parity dynamics obtained directly from the
correlation of qubit states between neighbouring parity measurements. The
data set is the same as that shown in Fig. 4. Solid lines are predictions based on
equation (2), in excellent agreement with the measured data. The offset of
the averaged parity at t 5 0 comes from the asymmetry between the parity
readout fidelities of the even and odd states. The fact that the saturated parity
value in the long time limit is much lower than that in Fig. 4 is additional
proof of the effectiveness of the quantum filter. b, Effectiveness of the quantum
filter. Blue (raw) and red (filtered) curves are the same as those shown in Fig. 3e.

The green curve is the direct correlation of qubit states between neighbouring
parity measurements. The red curve is clearly much smoother and can reject
the brief changes in the green curve. c, Response time of the quantum filter
applied to typical photon jump events. The blue curve is the raw data from a
repeated parity measurement. The red curve is the corresponding parity
estimator based on the quantum filter. Green and cyan curves are fits to tanh
functions of the parity estimator at the transitions down and up, respectively,
giving a transition time constant of less than 1ms. However, the response
time of the filter to make a transition between 20.9 and 10.9 is tf < 2ms.
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Extended Data Figure 9 | Histograms of the number of jumps extracted
from the parity estimator during 500 ms repeated parity measurements for
an initial even or odd cat state by post-selection. a, b, | a | 5 2.0; c, d, | a | 5 1.4;
e, f, | a | 5 1.0. Solid lines are numerical simulations including the background

thermal excitation and finite response time of the quantum filter. In the
simulation, we use a coherent state as the initial state without distinguishing the
parity. The good agreement between data and simulation demonstrates that the
repeated parity measurement can track the error syndromes faithfully.
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Extended Data Figure 10 | An optimized parity-tracking scheme would
involve performing packets of N measurements, each lasting a time
tM, followed by a waiting time of tW.
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