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The quantum back-action of the measurement apparatus arising from the Heisenberg uncer-

tainty principle is both a fascinating phenomenon and a powerful way to apply operations

on quantum systems. Unfortunately, there are other effects which may overwhelm the

Heisenberg back-action. This thesis focuses on two effects arising in the dispersive mea-

surement of superconducting qubits made with two ultra-low-noise parametric amplifiers,

the Josephson bifurcation amplifier (JBA) and the Josephson parametric converter (JPC).

The first effect is qubit dephasing due to excess photons in the cavity coming from rogue

radiation emitted by the first amplifier stage toward the system under study. This problem

arises primarily in measurements made with the JBA, where a strong resonant pump tone

is traditionally used to provide the energy for amplification. Replacing the single strong

pump tone with two detuned pump tones minimized this dephasing to the point where the

Heisenberg back-action of measurements made with the JBA could be observed.

The second effect is reduced measurement efficiency arising from losses between the

qubit and the parametric amplifier. Most commonly used parametric amplifiers operate

in reflection, requiring additional lossy, magnetic elements known as circulators both to

separate input from output, and to protect the qubits from dephasing due to the amplified

reflected signal. This work presents two alternative directional elements, the Josephson

circulator, which is both theoretically loss-less and does not rely upon the strong magnetic

fields needed for traditional circulators, and the Josephson directional amplifier which does

not send any amplified signal back toward the qubit. Both of these elements achieve di-

rectionality by interfering multiple parametric processes inside a single JPC, allowing for

in-situ switching between the two modes of operation. This brings valuable experimental

flexibility, and also makes these devices strong candidates for ‘on-chip’ integration, which



would in turn eliminate loss between the qubit and parametric amplifier as a dominant

source of reduced measurement efficiency.
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Glossary

Coherent frequency conversion: Parametric process in which signal photons are coher-

ently converted into idler photons (and vice versa) through an interaction which is mediated

by a pump whose frequency is the difference between that of the signal and the idler photons.

In full conversion (C = 1) signal and idler photons are exchanged one for one.

Degenerate parametric amplifier: Parametric amplifier in which the signal and idler

tones excite the same normal modes of the circuit.

Directional amplifier: Two or more port amplifier which functions like a valve. Signals

are amplified from input to output and attenuated from output to input.

Heisenberg back-action: Update of the expectation value and uncertainty of a new

measurement outcome of an observable as a result of the outcome of a measurement made

on a second observable which does not commute with the first.

Idler: One of the three tones associated with parametric processes. It is the tone that

arises due to conservation of phase-space in a multi-mode mixing process. Its frequency is

noted by ωi. In a three-wave mixing process, ωi = ωp − ωs for parametric amplification

or ωi = ωs − ωp for coherent conversion, while in a four-wave mixing amplification process

ωi = 2ωp − ωs.

Incoming/outgoing electromagnetic field operators: Operators associated with the

incoming and outgoing amplitudes of the electromagnetic waves applied to a port of a

circuit.

Matched amplifier: Amplifier in which all ports are matched.

Matched Port: Port at which no incident signals are reflected.

Measurement efficiency: If measurements of an ensemble of systems prepared with
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the same initial state yield a distribution with standard deviation σI , and if an ideal set of

measurements on the ensemble would yield a distribution with the standard deviation σHeis,

set by the Heisenberg uncertainty principle, then the efficiency of the un-ideal measurement

is the ratio σ2
Heis/σ

2
I .

Meter: Apparatus used to make a measurement.

Non-degenerate parametric amplifier: Parametric amplifier in which the signal and

idler tones excite different normal modes of the circuit.

Normal mode: Vector of the basis that simultaneously diagonalizes the matrices of the

quadratic forms associated with the kinetic and potential energy terms of the Hamiltonian

of a linear system.

Parametric amplification: Amplification process in which pump photons are converted

into pairs of signal and idler photons leading to an increase in the amplitude of both the

signal and the idler.

Phase-preserving amplification: Mode of operation for a parametric amplifier in which

both quadratures of the signal are amplified by the same factor. Necessarily adds half a

photon of noise to the signal.

Phase-sensitive amplification: Mode of operation for a parametric amplifier in which

one quadrature of the signal is amplified while the other is de-amplified by the same factor.

No extra noise needs to be added in this type of amplification process.

Port: Interface between a part of a circuit and a transmission line. Allows for incoming

and outgoing waves to be exchanged between the circuit and the environment.

Pump: One of the three tones associated with parametric amplification. This tone pro-

vides the energy needed for parametric amplification or coherent frequency conversion. Its

frequency is noted by ωp.

Quadrature operators: Analogs of the position and momentum operators for a temporal

mode of an electromagnetic signal: I in,out = (a in,out + a†in,out)/2 and Q in,out = (a in,out −

a†in,out)/(2i) where a in,out are the incoming and outgoing electromagnetic field operators.

Can also be defined for standing waves: I = (a + a†)/2 and Q = (a − a†)/(2i) where a

(a†) is the photon creation (annihilation) operator for the mode.

Reflection amplifier: Parametric amplifier in which signals incident on the input port

xxi



are reflected with gain.

Signal: One of the three tones associated with parametric processes. The tone which

originates from the system we would like to amplify or convert. Its frequency is noted by

ωs.

Tone: A monochromatic (single frequency) electromagnetic wave traveling along a trans-

mission line and applied to a circuit.

Through amplifier: Two or more port parametric amplifier in which signals are amplified

from the input to the output. Signals may also be amplified from the output to the input,

but unlike a reflection amplifier, no signals incident on the input are reflected with gain.
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Chapter 1

Introduction

1.1 Back-Action in Quantum and Classical Systems

One of the most fundamental relations in quantum mechanics is the Heisenberg uncertainty

principle. It states that if we have a system with two non-commuting observables, A and

B, and if measurements of A or B on an ensemble of systems prepared with the same

initial state yield two distributions of outcomes characterized by the standard deviations

σA and σB, then there is a minimum uncertainty in the product of the standard deviations

given by σAσB ≥ 1
2 |〈[A,B]〉| [1]. This can be thought of as a limit on how precisely we

can know the full set of observables which are possible to measure in our system. More

interestingly the principle also enforces a dynamic interaction between the state of a system

and the result of a measurement. For example, suppose that B is measured and yields some

outcome b. If |〈[A,B]〉| = ~ and A is then measured to a particular precision σA, then the

outcome of a subsequent measurement of B will deviate from b by a random amount with

standard deviation ~/(2σA), as if a ‘kick’ had been given to the variable B. This kick can

be described as the Heisenberg back-action of the measurement.

This Heisenberg, or unavoidable, back-action has some rich and unexpected conse-

quences. To put it in context, suppose we were to make a sequence of perfect classical

measurements of a set of observables (that can be repeated), such as the sequence Lz, Lx,

Lz, where Lx, Ly, and Lz are the angular momentum components of a top. Then we would

find perfect correlations between the outcomes for the first and second measurements of
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Lz (see Fig. 1.1). Furthermore, we will find the same outcome for repeated measurements

of any observable regardless of what other observables are measured in between them. If,

instead, we were to make a sequence of perfect quantum measurement on a set of non-

commuting observables, for example the sequence of spin components Z, X, Z for a spin

1/2 system, then the situation would be very different. The outcome of the second mea-

surement of Z will not have any correlation with the outcome of the first measurement of Z.

The Heisenberg back-action from the measurement of X effectively erased all information

about the previous measurement of Z, even if the measurement is made perfectly.

Regrettably, there are other ways to lose track of the previous measurement of Z that are

not due to erasure by Heisenberg back-action. The signal-to-noise ratio of the measurement

of Z may not be high enough, leading to a measurement result which is not sufficiently

meaningful. There may be classical forms of back-action which would change the outcome of

a measurement of Z: the apparatus used to make the measurement, known as the “meter”,

may send a continuous stream of noise back toward the system, which may perturb the

state of the system. Or, the act of coupling the system and the meter may directly change

the state of the system. For example, if one tries to measure the voltage across a small

capacitor with a multi-meter, the coupling between capacitor and the multi-meter will

cause the capacitor to discharge. There may also be other quantum, but non-Heisenberg

ways to lose track of the previous measurement of Z. Information about the state of the

system may be lost due to measurements made by other observers, or by the environment

itself, if the results of such measurements are not reported to us [2].

Sufficiently uncorrupted Heisenberg back-action can provide a powerful way to apply

operations on quantum systems. One such application is remotely entangling two quantum

systems via measurement (see Fig. 1.2). Recall that if we have two such quantum systems,

and measure the Y component of each one individually, and then measure the ZZ axis of

the joint system, the resulting Heisenberg back-action erases the Y information of both

single qubits, and entangles the two systems. When a measurement is then made on one

of the individual quantum systems, the outcomes will then either be perfectly correlated

or anti-correlated depending on the outcome of the measurement of ZZ. Remarkably, this

entanglement by measurement can be carried out even if the two qubits cannot be directly
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jointly measured. It suffices then to measure two ancillas that have each been determin-

istically entangled with the qubits [3–9]. In this case no direct interaction between the

two remote qubits is ever needed. Entangling operations are both a fascinating feature of

quantum mechanics, and also an essential component if one wants to store and manipulate

information in quantum systems [1]. The application of such operations using the Heisen-

berg back-action of measurement requires control over the other effects in our system which

cause us to lose track of previous measurement results.

Some detrimental effects, such as the addition of large amounts of classical noise to our

delicate quantum signals, can be minimized with improved measurement instruments and

protocols. Amplifiers, particularly ultra-low-noise amplifiers, are one of the main tools in

fighting these undesired effects. They are essential in raising the level of a quantum signal

above the noise level of the classical measurement apparatus, and have already allowed for

the observation of purely quantum effects, such as the jumping of a system between eigen-

states [10, 11]. Unfortunately, either the amplifiers themselves, or the additional hardware

needed to integrate them into an experiment, can cause additional effects which limit our

ability to control quantum systems via Heisenberg back-action.

This thesis will present three improvements to our measurement systems which min-

imize two such deleterious effects: the dephasing of the quantum system due to tones

reflected from the amplifier, and energy loss between the quantum system and the ampli-

fier. This chapter will serve to introduce the quantum system we will be measuring, the

superconducting qubit, the main effects limiting the manipulation of our qubits by Heisen-

berg back-action, and the two ultra-low noise parametric amplifiers that form the basis for

our measurement apparatuses. The three improvements we have realized are also succinctly

described: replacing the single pump tone of one type of amplifier with two spectrally sep-

arated pump tones in order to reduce qubit dephasing, replacing the microwave circulators,

which are the main source of the loss between the qubit and amplifier, with a theoretically

loss-less Josephson circulator, and replacing our current ultra-low-noise amplifiers with a

directional version which only operates in transmission. These improvements have key roles

in the observation and utilization of Heisenberg measurement back-action.

.
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Figure 1.1: Different Types of Measurement Back-Action. A) Ideal classical measurement
without any measurement back-action. A classical object such as a top can have a well
defined set of observables such as the components of the angular momentum vector ~L.
Measurements can be made on any individual component of ~L while leaving ~L unchanged.
B) Non-ideal classical measurement with possible back-action induced by the apparatus. In
a non-ideal measurement the coupling between the measurement apparatus and the system
may induce some unwanted classical back-action. In this case, repeated measurements of
the same component of ~L may not give the same result. C) Ideal projective quantum
measurement with only Heisenberg back-action. If we instead have a quantum object like
a spin 1/2 with a Bloch vector ~S the situation is fundamentally different. Measurement
results only take one of two values instead of a continuum, with the value of a component
of ~S giving the relative probabilities of the result of a measurement to be ±1. As a result of
the Heisenberg uncertainty principle, different components of ~S cannot be simultaneously
known. This gives rise to an entirely different type of measurement back-action, Heisenberg
back-action, where the value of a component, for example z, can be erased by interleaving
measurements of a non-commuting component.
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Figure 1.2: Entanglement by Heisenberg back-action. One useful consequence of the erasure
nature of measurement due to the Heisenberg uncertainty principle is it that measurement
back-action can create desirable correlations. For example, the back-action resulting from
measuring the ZZ component of the joint system of two spins starting with well-defined
single-spin Y components will lead to entanglement between them (represented by the
dashed green paths). The back-action of the measurement erases all information about the
single qubit spin operators, and instead enforces correlations between the outcomes of the
single qubit measurements.
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1.2 Superconducting Qubits

We would like to investigate and manipulate, using Heisenberg back-action, a special kind

of quantum system known as a qubit. A qubit is a two-level quantum system that can be

used to store and manipulate information, that serves as the quantum analog of a classical

computer bit, i.e. a two-state classical system that is also used to store and manipulate

information. The two levels of a qubit are typically labeled as |g〉 and |e〉, but unlike a

classical bit, our qubit can be in an arbitrary superposition of these two states given by

Ψ = cg |g〉+ ce |e〉 with the condition that |cg|2 + |ce|2 = 1. Many different physical systems,

from real atoms, to certain crystalline structures, to electronic circuits can function as

qubits [1], but we chose to focus on qubits made from superconducting electronic circuits.

The simplest such circuits are electromagnetic oscillators composed of capacitors and

inductors. In such a system the two main variables are the flux through the inductor Φ = LI,

leading to an effective potential energy Φ2/(2L), and the charge Q on the capacitor leading

to an effective kinetic energy Q2/(2C). Like the mechanical analog, the energy levels are

discrete and equally spaced. When such an oscillator is well separated from its environment,

and cooled to a very low temperature, it will settle into its ground state which will serve as

the first level of our qubit |g〉. The first excite state will serve as the second level, |e〉, but

the degeneracy in level spacing prevents us from using these two states exclusively. We can

remove the degeneracy in energy level spacing by replacing the inductor, which has a linear

current-flux relationship, with a special superconducting circuit element called a Josephson

junction, which has a non-linear current-flux relationship given by I = I0 sin( Φ
ϕ0

) = I0 sin(ϕ),

where I0 is the critical current of the junction and ϕ0 is the reduced flux quantum. This

creates an anharmoic oscillator with individually addressable energy levels. If we restrict

ourselves to the first two levels of the anharmonic oscillator, then our system can now

function as a qubit

We then place our qubits in microwave cavities, which both serve to protect the qubit

from broadband noise, and as a convenient way to probe the state of the qubit. The study

of atoms interacting with light in a cavity is known as cavity quantum electrodynamics

(cavity QED) [12,13] and has been an active area of research since the 1980s. Many of the
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techniques are directly applicable to the study of electronic circuits in microwave cavities, an

extension of cavity QED known as circuit quantum electrodynamics (cQED) [14,15]. In the

dispersive limit, where the qubit is strongly detuned from the cavity [14], the Hamiltonian

of a qubit in a cavity is given by HcQED/~ = ωca
†a +ωqb

†b +χa†ab†b. It depends on the

energy of the cavity alone ~ωca†a , the energy of the qubit alone ~ωqb†b and the coupling

between the cavity and the qubit which is parameterized by the so-called dispersive shift

χ. The cavity is then coupled to the outside world which allows manipulation of both the

cavity and the qubit states, as well as measurements. This coupling sets the decay rate, κ,

of the cavity. As can be seen from the Hamiltonian, a change in the state of the qubit shifts

the resonant frequency of the cavity by χ. If we probe the resonator with a coherent state

|α〉, we can detect the change in frequency by looking for a change in either amplitude or

phase of the coherent state after leaving the cavity.

Coherent states are most easily visualized in phase-space parameterized by the in-phase,

I, and quadrature, Q, components of the state. In this space, a coherent state is represented

by a Gaussian distribution with standard deviation σI = σQ = 1/2 whose center is located

at the end of of a vector originating at the origin of length given by the square root of the

average number of photons in the state
√
n̄, where n̄ = |α|2. This shape is nicknamed the

Fresnel lollipop. As seen in Fig. 1.3, before the cavity the coherent state is given by a single

disk in the I,Q plane. After the cavity the Fresnel lollipop is split in two, with one disk

corresponding to the state when the qubit is in |g〉 and the other corresponding to qubit

being in |e〉, and the angle between them given by ±θ/2 = arctan(χ/κ). The result of an

individual measurement of the qubit is a single pair of numbers (Im,Qm). If this point lies

in the disk corresponding to |g〉 (|e〉), the qubit has been measured to be in the ground

(excited) state. If all of our quantum measurements were perfect, all of the measurement

results corresponding to |g〉 would recreate the expected Fresnel lollipop for the qubit in

the ground states.

Actual measurements of this quantum system are not perfect, and these imperfections

may limit our ability to control our qubits via the Heisenberg back-action of measurement.

First, our meter may send photons back toward our cavity. These photons can cause

fluctuations in the number of photons in the cavity, which in turn causes fluctuations in
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Figure 1.3: Cavity QED Schematic with Fresnell lollipops. A) Cavity QED consists of a
two-level quantum system placed in a cavity, both of which can be individually addressed
by microwave pulses applied to a weakly coupled port of the cavity. The quantum system
and cavity are coupled such that changes in the state of the quantum system, labeled as
|g〉 and |e〉, shift the frequency of the cavity. This shift can be measured via a phase shift
of a coherent state that leaks out of the cavity at rate 1/κ via the strongly coupled port
of the cavity. B) The coherent state cavity drive is represented as a Gaussian disk in I,Q
space with standard deviation σI = σQ = 1/2 and a displacement from the origin given by
the square root of average number of photons in the pulse

√
n̄. After traversing the cavity

the pulse can be represented as two disks in I,Q space representing the two possible cavity
states (red, blue) depending on the state of the qubit |g〉 , |e〉. The states after the cavity
have the same displacement from the origin and same standard deviation as the coherent
state input on the cavity.

the frequency of the qubit [16, 17]. This causes our quantum state to lose phase coherence

at a rate γφ = 2n̄totκ sin2(θ/2), where n̄tot is the average number of photons in the cavity

from all sources. Photons in the cavity can also also enhance the relaxation rate between

the excited state and the ground state of the qubit. We can quantify this effect by directly

measuring the coherence times of the qubit while connected to the active measurement

apparatus. Second, our signal may experience losses between the cavity and the meter.

This is analogous to the environment learning about the state of the qubit rather than the

meter, and takes our qubit out of the space where |cg|2 + |ce|2 = 1. Third, our meter may

add a large amount of noise to the signal, making discrimination of the state difficult on a

shot by shot basis.

We can quantify the second and third imperfections by looking at how the measurement
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affect the standard deviation of the Fresnel lollipop, σI and σQ. The standard deviation of a

perfectly measured coherent state σI = σQ = σHeis = 1/2 arise from the non-commutativity

of the variables I and Q and thus are representative of Heisenberg back-action. In gen-

eral, the variance of the Fresnel lollipop along either the I or Q quadrature, σ2
I,Q, has a

contribution from the Heisenberg back-action given by σHeis, and a contribution from non-

Heisenberg added noise, σadd, such that σ2
I,Q = σ2

Heis + σ2
add. We can define a quantity

η = σ2
Heis/σ

2
I,Q, known as the measurement efficiency, which gives us a measure of these

relative back-actions. For η = 1 our measurement does not add any additional noise and

thus we can easily see quantum effects. For η << 1 added noise will dominate, and will

complete obscure the Heisenberg back-action effects we want to explore.

1.2.1 Amplification of Quantum Signals

If we were to make our measurement with the hot, classical meter alone, σadd would domi-

nate to the point that determining the state of the qubit would be impossible. We need an

amplifier to boost the signal to the point where we can ‘lay our grubby classical hands’ [18]

on the quantum signal. The first amplifiers used in cQED experiments were high electron

mobility transistor (HEMT) amplifiers. They typically provide around 40 dB of gain, but

also add around 20 photons of noise. Although this is high enough gain and low enough noise

to determine the state of a qubit (Fig. 1.4), it is much higher than the Heisenberg contribu-

tion alone. The measurement efficiency of such measurement setups is a few percent, which

is not nearly high enough to directly explore the Heisenberg effects of the measurement

process.
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Figure 1.4: Cavity QED Measurement with a HEMT. These amplifiers increase typically
provided enough power gain, G, to overcome the enormous amount of noise of room tem-
perature meter, but they also add a large amount of classical noise σadd of their own. This
leads to a significant overlap of the two states in I,Q space. A) shows the propagation of
signals through such an experimental setup (with the coherent state after the cavity now
shown in purple to indicate a superposition of |αg〉 and |αg〉), while B) shows the effects of
each stage on the input coherent state to the cavity.

The next great development came with quantum-limited parametric amplifiers (paramps).

A parametric amplifier is a device in which pump photons are converted into pairs of signal

photons and idler photons, via an interaction with a non-linearity of the system. A quantum-

limited parametric amplifier is one which only adds additional Heisenberg noise [18]. Our

paramps typically achieve gains of 20+ dB, which is insufficient to make them the only

amplifier used in an experiment and they are typically backed by HEMTs. Fortunately, in a

system of cascaded amplifiers, the noise of subsequent amplifiers, parametrized by the sys-

tem noise temperature Tsys, is reduced by a factor of the power gain, G of the first amplifier.

If Tamp is the noise temperature of the paramp, then the total noise of the measurement

chain is given by Tamp + Tsys/G. Thus, 20 dB of gain from a quantum limited paramp

is enough to ensure the amplified Heisenberg noise from the paramp is the dominant noise

contribution. Although quantum limited paramps themselves do not necessarily reduce

our measurement efficiency, they may require additional components in the measurement

chain which do. The primary example is the microwave circulator, a device which directs
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signals between its ports in only one direction, which is essential if the paramp operates

in reflection (see. Fig. 1.5). Measurement setups with parametric amplifiers typically have

efficiencies around 50% [11,19–22]. This is high enough to begin to explore the Heisenberg

back-action of certain amplification schemes [11], as well as enabling the observation of

quantum jumps [10,11], quantum trajectories [19,21,23,24], and allowing for measurement

based feedback [20,25–27]. It is unfortunately not quite high enough to exploit Heisenberg

back-action to perform high fidelity unitary operations such as remote entanglement [28].
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Figure 1.5: Cavity QED Measurement with a Paramp. Quantum-limited paramps are
widely used pre-amplifiers to HEMT. The most commonly used paramps operate in reflec-
tion, necessitating at least one circulator be included to separate incoming from outgoing
signals. Paramps also amplify the signal from a cavity by an factor proportional to their
amplitude gain

√
G. They may add a half-photon of noise to the signal, although this noise

also arises from the Heisenberg uncertainty principle and is much lower than that added by
the HEMT. A HEMT is included, boosting the amplitude gain of the chain to

√
Gtot. The

HEMT still adds some additional noise, σadd resulting in σ2 = σ2
Heis + 1/Gσ2

add, but if the
gain, of the paramp is sufficiently large, the added noise from the HEMT is small, and the
two cavity states are still distinguishable.

The first paramp we will focus on the the Josephson Parametric Converter (JPC). The

JPC was originally developed at Yale [29, 30] and further refined at ENS Paris [31, 32] and

Yale [33–35]. It is used as a parametric amplifier in superconducting qubit experiments

[11,20,24,27,34,36–42]. The JPC is composed of the Josephson Ring Modulator (JRM), a
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ring of four Josephson junctions shunted by four linear inductors, embedded at the central

current antinodes of two crossed λ/2-resonators (see Fig. 1.6). The circuit has three modes,

a and b which are excitations of each resonator individually, and c, which is a common-

mode excitation of both. Each resonator is coupled to a transmission line via a gap couping

capacitor, which sets the linear bandwidth of the modes. The non-linearity of the JRM

allows for amplification via a three-wave mixing process, where a single pump photon applied

to one mode at ωp = ωs + ωi is converted into a signal photon at frequency ωs and an idler

photon at frequency ωi. Any of the three modes, a , b or c can support the signal, pump

or idler. The JPC amplifies in reflection, necessitating circulators be included in the setup

to separate incoming from outgoing signals (see Fig. 1.7).

A B

Φext

Figure 1.6: Schematic and optical image of the JPC A) The JPC consists of a ring of four
Josesphon junctions shunted by four larger more linear inductors. This ring is placed at the
common current antinode of two intersecting λ/2 resonators. The resonators are terminated
by gap coupling capacitors which set the linear bandwidth of the modes. B) Photograph of
the complete amplifier. It shows the JPC chip (dark gray) with the two resonators visible
in light gray. Also visible is the PC board (square, white) whose role is to provide the
interface between the chip and the SMA connectors (not visible) located on the back of the
gold housing.
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Figure 1.7: Cavity QED measurement with the JPC. The JPC has three spatially and
spectrally separated ports: one for the pump, one for the idler which is often terminated in
a cold 50Ω load, and one for the signal which is typically matched in frequency to the cavity.
The JPC operates in reflection, necessitating at least one circulator to separate input from
output, with an additional circulator is typically used in order to avoid dephasing from the
finite isolation of the reflected gain. The amplified signal is again directed toward higher
stages of amplification from a HEMT before the result is recorded at room temperature.

The second amplifier we will focus on is the Josephson Bifurcation Amplifier (JBA).

The JBA was originally developed at Yale [43], and is also used as a parametric amplifier

in superconducting qubit experiments (see for example [9, 10, 19, 21, 23, 25, 44–50]), nano-

mechanical motion sensor [51,52] and a dispersive magnetometer [53–55]. It is a single port,

single mode device composed of a SQUID, i.e. a pair of Josephson junctions connected in a

loop, shunted by a large external capacitor (see Fig. 1.8). The non-linearity of the SQUID

allows the JBA to achieve amplification via four-wave mixing, a process where two pump

photons at frequency 2ωp = ωs +ωi are converted into a signal photon and an idler photon.

The JBA also amplifies in reflection (see Fig. 1.9), and requires circulators both to separate

input from output and to decrease the amplitude of the strong reflected pump tone. The

pump tones used are orders of magnitude larger than that of the signal from the cavity, and

it is difficult to provide enough isolation to protect the qubit from dephasing.
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Φext

Figure 1.8: Schematic and SEM image of the JBA A) The JBA is a one port device composed
of a SQUID shunted by two external capacitors in series. B) SEM image of the JBA SQUID
loop. The edges of the two top plates of the shunting capacitors (purple) as well as the
shared bottom plate of the capacitor (olive green) can also be seen.

circulator
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Z

circulator

pump

JBA

ωp

-20dB directional 
coupler

Figure 1.9: CQED Measurement with a JBA. The pump at frequency ω is applied to the
JBA via the weakly coupled port of a directional coupler, where it combines with a signal
from the cavity and together they enter the signal port of the amplifier. The finite reverse
isolation of the circulators reduce the magnitude of the reflected pump, but does not reduce
it entirely.
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1.3 Double-Pumping the JBA

Removing this large pump tone and minimizing the associated qubit dephasing is the first

main contribution of this work. One method for reducing the magnitude of the tone is

to add extra circulators, but these circulators also come with additional loss which will

further degrade the measurement efficiency. A better solution, which is supported by the

four-wave mixing interaction found in the JBA, is to spectrally separate the pump tone

from the cavity. The single large pump tone at ωp can be replaced by two pump tones

located at ωpump1 = ωp + ∆ and ωpump2 = ωp −∆ (see Fig. 1.10). These pumps act as an

effective pump at the so-called ghost frequency, ωg = (ωpump1 +ωpump2)/2, with an effective

pump power which depends equally on the magnitude of both drives [56]. This pumping

configuration gives the same amplifier gain, but without the a large reflected pump tone at

the center of the gain curve. (see. Fig. 1.11).

If we use a double-pumped JBA as the parametric amplifier for a qubit measurement,

the strong reflected pump tones now at ωpump1 and ωpump2 still propagate back toward the

cavity and qubit, but the increased spectral separation means many fewer pump photons

enter and contribute to unwanted and uncontrolled qubit dephasing. This can be seen by

measuring the Ramsey coherence time of the qubit (See Fig. 1.12 and 1.13). The decrease

in amplitude as a function of time is caused by the gradual loss of phase coherence due

primarily to excess photons in the cavity. Comparing the decay times when the single-

pump JBA is on and off indicates the pump adds 28 additional photons to the cavity

population. In contrast, comparing the decay times for the double-pump JBA we find an

increase of only 1 additional photon.
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Figure 1.10: Frequency landscape of a single and double-pumped JBA. A) Frequency
Schematic of a Single-Pumped JBA. The Lorentzian gain response of the JBA (black)
is overlaid on the frequency location of the pump (orange) signal (maroon) and idler (blue)
tones. The frequency of the pump, ωp, corresponds to the frequency of maximum gain. If a
small signal (maroon) is applied at the frequency ωs, it will be amplified in reflection at that
frequency (the bandwidth due to the modulation of that signal is represented by the thick
maroon response curve) and an additional amplified copy (blue) will be produced at the
idler frequency given by ωi = 2ωp − ωs. B) Frequency schematic of a double-pumped JBA.
The same Lorentzian gain curve can be produced by two pumps at ωpump1 and ωpump2. If
these two pumps are uniformly detuned from the center of the desired gain curve by an
amount ∆, we can think of them as one effective ghost pump (dotted orange arrow) at the
center frequency ωg. If a small signal (maroon) is applied at the frequency ωs, it will be
amplified in reflection at that frequency and an additional amplified copy (blue) will be
produced at the idler frequency given by ωi = ωpump1 + ωpump2 − ωs.
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Figure 1.11: Measured 20 dB gain curves from a single-pump (red) and double-pump (blue)
JBA. The single pump trace shows the large reflected pump tone at 5.565 GHz, correspond-
ing to the point of maximum gain. The secondary spike (gray) is a mixer artifact from the
VNA resulting from the large magnitude of the pump tone. The pumps for the blue trace
were at 4.55 GHz and 6.55 GHz, well removed from maximum gain frequency.Amp on
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Figure 1.12: Measured Ramsey dephasing time of a qubit when amplified with a single-
pumped JBA. The dephasing time without any amplification was 8 µs. This decreased to
290 ns when the amplifier is turned on, corresponding to an average of 28 photons in the
cavity due to the large reflected pump tone. Amp on
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Figure 1.13: Measured Ramsey dephasing time of a qubit when amplified with a double-
pumped JBA. The dephasing time without any amplification was 6.8 µs, which only de-
creased to 5.2 µs when the amplifier was turned on, corresponding to only 1 additional
photon in the cavity.
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1.4 Quantum Operations

Removing the strong pump tone and associated qubit dephasing has allowed us to investigate

Heisenberg back-action of the JBA. In general, the measurement process can be thought of

as a series of unitary operations, together with projective measurements [1] (see Fig. 1.14).

First, the cQED unitary entangles the state of the qubit Ψ with the coherent state entering

the cavity |α〉. Then |α〉 traverses the cavity and enters the amplifier where it is subject to

another unitary operation Uamp. The exact action of Uamp depends on the type of quantum

limited parametric amplifier, the details of the operation such as the value of the pump phase

of the amplifier relative to that of the signal, and the strength of the interaction. It may also

take an additional input, here taken to be vacuum |0〉, depending on the exact details of the

amplification. After the amplifier, the coherent state is measured, giving the result (Im, Qm)

and any other output from the amplifier is typically thrown away into a cold 50 Ω load.

Since the qubit and the coherent state are entangled, all of the measurement operations

made on the coherent state act-back on the final state of the qubit, here represented as a

density matrix ρf . Moreover, different types of back-action can be imposed depending on

the choice of the applied unitary operations.

UcQED
Ψ>|

α>|

0>|

Uamp
(φp)

(Im,Qm)

ρf = Mµ ρi Mµ

Operation

Figure 1.14: Logical Schematic of a Quantum Operation on a Qubit (top line) in Initial State
Ψ. The qubit, coupled to a microwave cavity, undergoes a unitary dispersive interaction,
UcQED, with the incoming microwave pulse (second line) with initial state |α〉, entangling
qubit and microwave pulse. Subsequently, the microwave pulse enters a quantum-limited
amplifier, where it undergoes a unitary operation Uamp. Depending on the details of the
amplifier used, Uamp may depend on the pump phase of the amplifier φp, or some other
mode of the amplifier which is taken to initially be in vacuum and later discarded. Losses
after the amplifier project the output onto an outcome (Im, Qm), which is used to calculate
the final state of the qubit, ρf .

The DP-JBA is a particularly interesting amplifier for Heisenberg back-action experi-
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ments. This amplifier squeezes one quadratures of the incident coherent state while ampli-

fying the other, and by changing which quadrature is squeezed and which is amplified we

can apply different Uamp. These different unitary operations also result in different types

of back-action experienced by the qubit. If the I quadrature is amplified, the effect of the

Heisenberg back-action is a stochastic walk toward the poles of the Bloch sphere. If instead

the Q quadratures is amplified, the effect of the Heisenberg back-action is a stochastic ro-

tation around the equator (see. Fig. 1.15). In either case, the magnitude of the stochastic

kick depends on the strength of the measurement.

The back-action was measured by first setting the DP-JBA to give a particular Uamp

and initializing the Bloch vector of the qubit to point along the +y direction. Then a

variable strength measurement is made of the coherent state, resulting in the outcome

(Im, Qm). Lastly, tomography is performed to measure the resulting qubit state 〈X〉c, 〈Y 〉c,

and 〈Z〉c. This was repeated 106 times for each Uamp, the histograms of the coherent state

measurements as all of the final qubit state information correlated to the corresponding

coherent state measurement outcome are shown in Fig. 1.16. Both the character of Uamp,

and the strength of the measurement were varied. The strength of the measurement is

controlled by changing n̄, but parametrized by the average center of the measured histogram

Īm normalized by the width of the measured histogram along the I direction σI when the

I quadrature is amplified. Since Īm increases linearly with increasing |α| while the width

does not change, Īm/σI is an easily measurable stand in for n̄.

For weak interactions when the I quadrature is amplified (Fig. 1.16 A.), the qubit

remains pointed along the +y direction, and as the interaction strength increases the qubit

moves toward the poles as indicated by the decay of deep red in the 〈Y 〉c tomograom and the

development of blue and red sections in the 〈Z〉c tomogoram. This becomes the most evident

for the strongest interaction strengths where the final qubit state is given by z = ±1, with

the sign given by the final Im value. If instead the Q quadrature is amplified (Fig. 1.16 B.),

we see colored fringes develop in the 〈X〉c and 〈Y 〉c tomograms representing the stochastic

rotation around the equator. 〈Z〉c does not develop a definite color for any measurement

strength, indicating that the Heisenberg back-action is fundamentally different for this Uamp.

For a perfectly efficient measurement, as the measurement strength increases the frequency
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of the fringe should increase but the amplitude should stay at 1. The amplitude of the

measured fringes, particularly for the strongest measurement strengths is much smaller,

indicating we have η < 1. One of the main limitations on η are losses between the cavity

and the amplifier, which the second and third main contribution to this thesis will address.
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I Im

Qm

2σI

Qm

-Im  Im

x
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z
Q
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Qm

Qm
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Figure 1.15: Heisenberg back-action of the double-pumped JBA. Due to the nature of Uamp

applied by the double-pumped JBA the cavity state after the amplifier goes from circles
to ellipses. The quadrature along which the noise is decreased depends on phase of the
pump relative to that of the cavity. On the right is the Bloch sphere representation of
the measurement back-action for these two different kinds of measurements. If the noise
is amplified along the I quadrature (A) the qubit experiences a stochastic kick along lines
of longitude, with the projection of the kick along z encoded in Im. If instead the noise is
amplified along the Q quadrature (B), The qubit experiences a stochastic kick along lines
of latitude, with the angle of the kick encoded in Qm. This is representative of the non-
trivial types of Heisenberg back-action that can be observed after other unwanted types of
back-action are well controlled and minimized.
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Figure 1.16: Measured Heisenberg back-action of the DP-JBA A) Experimental outcomes
for amplification along the I-quadrature. The left column shows (Im, Qm) histograms, with
the color plotted on a log scale for visibility, for three different measurement strengths(
Īm/σI

)
. The right three columns are tomograms showing, for the same measurement

strengths, conditional maps of 〈X〉c, 〈Y 〉c, 〈Z〉c versus (Im, Qm). The static value of the
〈X〉c measurement tomograms, as well as the decay in the 〈Y 〉c tomograms and the color
gradient that develops in the 〈Z〉c tomograms is consistent with qubit evolution along lines
of longitude. B) Experimental outcomes for amplification along the Q-quadrature. The
stochastic Ramsey fringes in the 〈X〉c and 〈Y 〉c tomograms, along with no evidence of
projection in the 〈Z〉c tomograms for even the highest measurement strengths, indicate
an operation is being performed that is fundamentally not a measurement. These results
are consistent with the qubit evolving along lines of latitude. Due to finite measurement
efficiency, the contrast of the fringes is reduced, leading to the lack of visible fringes at
Īm/σI = 1.75.
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1.5 The Josephson Circulator

A large source of loss between the cavity and the parametric amplifier is a microwave ele-

ment known as the circulator. Circulators are non-reciprocal devices which transfer signals

from from port 1 to port 2 to port 3, while blocking anything from transferring in the other

direction. They must be included in any measurement protocol involving a parametric am-

plifier which operates in reflection, both to separate the input and the output and to prevent

qubit dephasing back-action due to the reflected signal tone. Commercial circulators rely

upon Faraday rotation, or the non-reciprocal interaction between electromagnetic signals

and magnetic fields. Not only are the circulators themselves lossy, but the strong magnetic

fields needed to provide this Faraday rotation can also lead to qubit decoherence, requiring

the circulators to be physically isolated from the qubit and cavity. This in turn requires

extra cables and connectors, all of which also include some losses and thus also reduce our

measurement efficiency. The second main contribution of this work is the realization of a

Josephson microwave circulator. This device, based upon the JPC, is theoretically loss-less

and does not require large magnetic fields to achieve non-reciprocity.

Figure 1.17: Photograph of a Pamtech commercial 4-8 GHz circulator. Commercial mi-
crowave circulators are large (a quarter has been included for scale), lossy, and rely on a
strong and permanent magnetic field, making them challenging to integrate into experiments
with superconducting qubits.

The Josephson circulator relies on a second type of three-wave parametric process sup-

ported by the JPC known as unity-gain photon conversion [29,35]. This mode of operation,

realized by applying a pump to one mode, say c, at the frequency difference of the other

two (ωp = ωa −ωb), results in an interaction in which photons from mode a are coherently

converted into photons of mode b and vice versa. The process is characterized by the photon
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conversion coefficient at zero detuning C, which ranges from 0 (no-conversion), where no

photons are converted and the JPC acts as a perfect reflector, to 1 (full-conversion) where

signal and idler photons are exchanged one for one.
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Figure 1.18: Unity Photon Gain Conversion in the JPC. Here, modes a and b are coupled by
a pump applied to mode c at frequency ωa−ωb . The graph representation of the scattering
matrix is shown at the top, and the measured sbb is plotted versus probe frequency below.
sbb shows a −18 dB dip at ωb where photons have been converted from ωb to ωa with
conversion efficiency C = 0.98.

Typically, the JPC is used exclusively as a parametric amplifier or as a coherent photon

converter. These functionalities are realized by coupling only one pair of modes at a time,

via only one parametric process at a time. But the JPC is not limited to this. Following

a method proposed by Ranzani et al. [57], we can calculate the effects of coupling multiple

pairs of modes simultaneously via different types of coupling. If we couple all three pairs of

modes via full coherent conversion processes (see Fig. 1.19), and properly set all of the pump

phases to realize a total pump phase of φcirctot = π/2 we arrive at the following scattering

matrix

|Scirc| =


0 1 0

0 0 1

1 0 0


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which is identical to that of a ideal circulator [58].

Figure 1.20 shows the measured scattering parameters of an experimental realization

of such a device, with individual conversion coefficients of 0.97, 0.98, and 0.99, and the

calculated scattering coefficients for those values of individual conversion coefficient super-

imposed. This implementation of a microwave circulator removes the large magnetic field

of a traditional circulator, and is fabricated via methods compatible with those of super-

conducting qubits. This means it could be physically located much closer to the qubit and

cavity, and the three could even be fabricated on the same chip. This would also remove

the loss from the cables and connectors which are currently needed to connect the cavity

to the isolated traditional microwave circulator. Furthermore, the direction of circulation

is in-situ reversible simply by changing the total pump phase, making it a more versatile

device.
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Figure 1.19: Pump Configuration (A) and Graphical Scattering Matrix (B) for the Joseph-
son Circulator. Linking all pairs of modes via conversion processes realizes a clockwise
circulator when the total pump phase φcirctotal = π/2.
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Figure 1.20: Measured circulator scattering parameters versus frequency for φcirctot = π/2
(red) along with superimposed theory (dashed yellow) for the Josephson circulator. The
device has 1 dB insertion loss and −10.5 dB isolation over an 11 MHz bandwidth.

1.6 The Josephson Directional Amplifier

We could eliminate the circulators entirely if our parametric amplifiers were directional.

An ideal directional amplifier would maintain all of the desirable quantities of a quantum

limited parametric amplifier: adding no non-Heisenberg noise, having sufficient gain to

minimize the non-Heisenberg noise of the HEMT, while additionally amplifying in one

direction and attenuating in the other. This would minimize the back-action both from the

amplifier itself, and from any other signals propagating backward from the measurement

apparatus. As with the circulator, if we could fabricate a directional amplifier on-chip with

our cQED system we could even further increase the measurement efficiency of our systems

by removing the cables and connectors between the two, while minimizing the physical size

of the experiment (see Fig. 1.21).

The third main contribution of this thesis is such a directional amplifier. The Joseph-

son directional amplifier (JDA) is realized by coupling two pairs of modes of a JPC via

parametric gain processes, and coupling the third pair of modes via a coherent conversion
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This needs new set of stuff--caps, curving, bigger, etc.

Figure 1.21: Schematic of the use of an on-chip directional amplifier. The goal is to be able
to create qubits, cavities, and a directional amplifier on the same chip using the same fabri-
cation methods. This will serve to both reduce losses before the first stage of amplification,
leading to a reduction in qubit dephasing, and to greatly reduce the size of experiments.
Currently, directional amplifiers such as HEMTs, and directional signal routing devices
such as circulators use technologies that can not be directly implemented ‘on-chip’ with
superconducting qubits.

process [57, 58]. Calculating the response of the device on resonance for two equal single

pump gains G, full conversion C = 1, and an appropriate choice of the total pump phase

φd-a
tot = π/2 we find

|Sda| =


0

√
G

√
G− 1

1 0 0

0
√
G− 1

√
G


We can label the ports as the Signal (S) input, Idler (I) input, and Vacuum (V) input

based upon the role each one plays. Signals incident on S correspond to the directional

amplifier input, while signals exiting I form its output. The S port is matched (no power

reflects), and incident power is instead transmitted with gain to the I and V ports. Signals

incident on the V port are noiselessly and directionally transmitted through the device to

the S port with unity photon gain. Any device must necessarily reflect, at a minimum,

vacuum fluctuations back to the upstream signal source. In our implementation the source

of these fluctuations would be provided by the cold 50 Ω load terminating the V port.

Furthermore, the unity-gain transmission of signals from the V to the S port follows from

the combined requirements of quantum-limited amplification (sending it to I would degrade

the noise performance of the device) and the information conserving nature of the device
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(no entropy is produced since we assume the there is no dynamical coupling between the

amplitude of the signal and the amplitude of the pump, i.e. the pump is perfectly stiff [33]).

Changing φd-a
tot by π flips which physical port plays the role of S and V, with I remaining

unchanged. The roles can be further re-mapped by changing which pair of modes is linked

via conversion and thus, in general, each of the three physical ports can play each role. We

note that combining two gain processes with gain G yields a directional amplifier with gain

G, not G2. The combined operation should be thought of as rerouting the outputs of one

port of a non-directional amplifier (from S to V) rather than as two independent stages of

amplification.

Figure 1.23 shows the measured scattering parameters of an experimental realization of

this device, with individual pairwise gain processes G = 12 dB and G = 13 dB, and with

an individual pairwise conversion process of C = 0.998. Here a plays the role of the signal,

b plays the role of the idler and c plays the role of the vacuum. The device show 14 dB of

gain over an 11 MHz bandwidth.

This is not the only Josephson junction based directional amplifier. Other implementa-

tions include voltage-biased DC-SQUIDs [59–63], non-linear superconducting transmission

lines [22,64–68], and coupled JPCs [33,69], but these proposals generally rely upon careful

matching of parameters, phase-matching conditions, or do not have the same noise perfor-

mance.

The Josephson directional amplifier has good prospects for on-chip integration due to the

compatibility of the operation and fabrication process with those used for superconducting

qubits. This could improve the measurement efficiency of our experiments, and correspond-

ingly our ability to investigate and control the Heisenberg back-action, due to the removal of

lossy connectors, cables, and traditional microwave circulators from the setup. Furthermore,

since the only difference between the directional amplifier and the Josephson circulator are

the frequency and power of the microwave pumps applied at room temperature, we envi-

sion a future where a network of connected JPCs could form an incredibly versatile gain

and circulation medium which could be invaluable in designing and controlling the types of

Heisenberg mediated operations we would like to be able to implement.

27



A. S

I

V

1

G -1

G -1

GGG G

C

c

a b

φt
d
o
-
t
a= +π/2

B.

Figure 1.22: Schematic of pump configuration and graphical scattering matrix for the
Josephson directional amplifier A) Schematic of pump configuration for the directional
amplifier: two pairs of modes are coupled pairwise via gain processes and the third via
unity-gain photon conversion. B) Graphical representation of the scattering matrix for a
total pump phase φd-a

tot = π/2: the three ports are named for the roles they perform in the
amplification process. The signal (S) port serves as the directional amplifier input and is
combined with the idler (I) port, which corresponds to the directional amplifier output.
The vacuum (V) port does not participate in amplification but instead is transmitted with
unity gain back to the signal port. For clarity, all zero amplitude scattering parameters
are omitted. The unfilled arrows denote transmission of signals with phase conjugation.
Flipping φd-a

tot to −π/2 or switching which pair of modes are connected via gain and conver-
sion processes, changes which physical mode of the JPC plays which role in the directional
amplifier.
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1.7 Perspectives

This thesis presents three improvements to superconducting qubit measurement apparatuses

in order to minimize effects which limit our ability to manipulate qubits by the Heisenberg

back-action of measurement. Some of these improvements, such as double-pumping the

JBA, have already been implemented within a superconducting qubit experiment and used

to measure new effects. Others, such as replacing traditional microwave circulators with

Josephson circulators or by replacing reflection-based parametric amplifiers with Josephson

directional amplifiers have not, and improvements to the measurement efficiency have not

been demonstrated. Improvements such as these will help enable new levels of qubit control

and manipulation via Heisenberg back-action.

This work also paves the way for more complicated and efficient signal routing architec-

tures. The Josephson circulator and the Josephson directional amplifiers are both realized

with the same circuit, and the role that circuit plays can be changed in-situ just by chang-

ing the microwave pumping conditions. Several such tessellated circuits could form a truly

quantum, in-situ re-routable, switch matrix/gain medium for superconducting qubits.
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Chapter 2

Coherent Amplification and

Conversion with Josephson

Parametric Devices

Coherent amplification and frequency conversion are the two fundamental parametric pro-

cesses which underlie every device which will be discussed in this thesis. They are both

multi-wave mixing processes involving a pump tone, a signal tone, and an idler tone 1. In

parametric amplification, pump photons are converted into pairs of signal and idler pho-

tons, and in parametric conversion signal photons are converted into idler photons (and

vice versa) through an interaction which is mediated by the pump. Although we will focus

on those parametric processes arising in Josephson junctions, these phenomena are quite

general and can be generated in a variety of physical systems ranging from the cochlea in

the inner ear of mammals [70,71] to optical fibers [72]. Even within the class of parametric

devices based on Josephson junctions there exists a substantial diversity. Some devices are

based around the non-linearity of a single junction [73], while others involve two, three or

even four junctions in a loop [30,74,75], and even larger arrays of junctions [22,76].

1. More correctly, the signal and idler are wave packets and are not strictly speaking monochromatic. The
signal and the idler have typically finite bandwidths which are on the order of MHz and which are set by the
readout speed of the qubit. Even the pump tone as produced by a generator is not truly monochromatic,
although the bandwidth of the pump is typically nine orders of magnitude smaller that that of the signal
and the idler.
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We can bring order to the variety of different implementations by classifying parametric

devices by several basic characteristics. One axis of classification is based on physical

characteristics of the device: how many modes or physical ports the device has, or what

degree of non-linearity gives rise to amplification. Another axis is based on how they are

operated: how they handle the two quadratures of the input signal, or whether they operate

in reflection or not. This chapter explains some of the common classifications of parametric

amplifiers, and presents the two parametric amplifiers that are a focus of this thesis, the

Josephson bifurcation amplifier (JBA) and the Josephson parametric converter (JPC).

2.1 Classification of Parametric Devices

2.1.1 Non-Degenerate vs Degenerate

The first axis of classification depends on the device hardware. The eigenvectors which

result from the diagonalization of the quadratic form associated with the Hamiltonian of

the circuit define set of normal modes. If the signal tone and idler tone both excite different

normal modes of the circuit, the device is known as non-degenerate. If the two excite the

same normal mode, then the device is degenerate (see. Fig. 2.1). We can further break the

degenerate amplifiers down into two sub-classes, singly-degenerate and doubly-degenerate.

Singly-degenerate devices are circuits in which only the signal and the idler excite a single

normal mode of the circuit, while while doubly-degenerate devices have the signal, idler, and

pump tones all excite the same normal circuit mode 2. Thus, higher levels of degeneracy

correspond to fewer normal modes of the circuit. Each circuit is also interfaced with a set of

physical ports which allow for incoming and outgoing tones. If multiple tones use the same

physical port the circuit is known as spatially degenerate. There is often a link between the

number of physical ports and the number of normal modes, but this is not always the case.

2. Singly-degenerate paramps are less common than either non-degenerate or doubly-degenerate devices.
The flux driven JPA [74, 77–79] is an example of such a device. This amplifier is composed of a SQUID
shunted by a capacitor exactly like a JBA or JPA, but instead of being pumped with a microwave tone
applied to the same input port as the signal (as will be described later in this chapter), the device is pumped
by modulating the flux through SQUID.
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Figure 2.1: Non-degenerate and degenerate parametric amplifiers. A) Non-degenerate de-
vice. The circuit has at least three well-separated modes, whose response is represented by
the Lorentzian curves, one of which is excited by the signal, and one of which is excited by
the idler. (The third is excited by the pump). The circuit is also spatially non-degenerate,
as all tones also enter and exit on a different physical ports represented by the different
sets of axis. B) Degenerate device. The signal and idler are both associated with the same
normal mode of the circuit, given by the single black Lorentzian curve. This example is
actually doubly-degenerate since the pump also excites the same mode as the other two
tones. The device is also spatially degenerate since tones also enter and exit on a single
physical port represented by the single axis.

2.1.2 Phase-sensitive vs Phase-preserving

Another manner to classify parametric amplifiers is based on how one typically operates

them to process the incoming quadratures of a signal. Incoming and outgoing signals will

correspond to incoming and outgoing wave packets propagating along a transmission line.

Definition of the Field Operators and Photon Amplitude Operators

Care must be taken to properly define these types of signals quantum mechanically in

both the time and the frequency domain. Following [75] we can start from the classical
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propagating incoming and outgoing wave amplitudes along a transmission line

Ain,out =
1

2

((
1/
√
Zc

)
V (x, t)±

√
ZcI(x, t)

)
(2.1)

where Zc is the characteristic impedance of the transmission line, V (x, t) is the voltage across

the line and I(x, t) is the current along the line. In a segment of transmission line, the time

and spatial indices of the wave amplitude are not independent (see for example Appendix

1 of [33]), so we will only list the time index. The wave can also be described quantum

mechanically, by making the transformation to the wave amplitude operator Ain,out(t) →

Ain,out(t). The wave amplitude operator has the Fourier transform

Ain,out[ω] =
1√
2π

∫ ∞
−∞
Ain,out(t)eiωtdt (2.2)

which lets us define the field ladder operators

a in,out[ω] =
1

~|ω|/2
Ain,out[ω] (2.3)

where a in,out[ω]† = a in,out[−ω]. These field operators satisfy the commutation relations

[a in,out[ω1],a in,out[ω2]] = sgn(ω1 − ω2)δ(ω1 + ω2)δin,out (2.4)

and the anti-commutator relation

〈{a in[ω1]a in[ω2]}〉 = 2N a
in(
ω1 − ω2

2
)δ(ω1 + ω2) (2.5)

where N a
in[ω] = sgn[ω]

2 coth( ~ω
2kBT

) is the photon spectral density of the incoming field. We

can now define the quadrature operators for the incoming and outgoing field by I in,out =

(a in,out + a†in,out)/2 and Q in,out = (a in,out − a†in,out)/(2i).

The relationship a in,out[ω]† = a in,out[−ω] leads to a surprise when returning to the time
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domain. The Fourier transform of a in,out[ω] given by

a in,out(t) =
1√
2π

∫ ∞
−∞

a in,out[ω]e−iωtdω (2.6)

is a hermitian operator. It is tempting to treat the two sides of the frequency axis separately,

a
′
in,out(t) =

1√
2π

∫ ∞
0

a in,out[ω]e−iωtdω

(a
′
in,out(t))

† =
1√
2π

∫ 0

−∞
a in,out[ω]e−iωtdω

(2.7)

and think of a
′
in,out(t) and (a

′
in,out(t))

† as the amplitude of the traveling photon flux in the

wave packet, but then the commutation relationship in the time domain is given by

[a
′
in,out(t1),a

′
in,out(t2)†] =

(
1

2
δ(t1 − t2) +

i

2π
p.p.(

1

t1 − t2
)

)
δin,out 6= δ(t1 − t2)δin,out (2.8)

To remedy the above commutation relationship and properly define the photons of the

traveling signals we can define the photon amplitude operators by using a wavelet basis.

Wavelets are functions which form a basis for realistic signals (signals with finite energy),

where each individual wavelet wmpin,out(t) such that wmpin,out(t)
∗ = w−mpin,out(t) is characterized

by two indices, (|m|, p) which correspond to the center of the function in frequency-time

space. They obey the following orthogonality relations:

∫ +∞

−∞
dt wm1p1

in,out (t)wm2p2
in,out (t)∗ = δm1,m2δp1,p2δin,out (2.9)

+∞∑
m=−∞

+∞∑
p=−∞

wmpin,out (t1)w−mpin,out (t2) = δ (t1 − t2) (2.10)

Shannon wavelets are typically used, but other bases also exist [80]. We can now define the
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photon ladder operator, ψmpin,out, by

ψmpin,out =

∫ +∞

−∞
dτwmpin,out (τ)a in,out (τ) (2.11)

ψ−mpin,out = (ψmpin,out)
† (2.12)

It should be noted that this transformation is typically (see for example [34,81]) only taken

over a restricted frequency range under the assumptions of the rotating wave approximation,

but this is not strictly necessary [75].

These photon ladder operators satisfy the commutation relation

[
ψm1p1
in,out, (ψ

m2p2
in,out)

†
]

=

∫ +∞

−∞

∫ +∞

−∞
dt1dt2w

m1p1
in,out (t1)wm2p2

in,out (t2)∗ [ain,out (t1) ,ain,out (t2)]

= δ(m1 −m2)δ(p1 − p2)δin,out (2.13)

as desired. The photon-number operator for the wave packet is given by (ψmpin,out)
†ψmpin,out.

Phase-sensitive and Phase-preserving Amplification

An ideal amplifier would treat both quadratures of the incoming signal equally, and would

add no noise of its own. Unfortunately, as we will see, this situation is not allowed by

quantum mechanics. Quantum mechanics mandates that the commutation relationship

given in Eqn. 2.4 must be maintained for both the incoming and outgoing field operators.

If both quadratures are amplified identically by the amplifier and no noise is added then

Iout = 〈I out〉 =
√
G 〈I in〉 and Qout = 〈Qout〉 =

√
G 〈Q in〉 or equivalently aout =

√
Ga in

and a†out =
√
Ga†in. But, if we take [a in[ω1],a in[ω2]†] = sgn(ω1 − ω2)δ(ω1 + ω2) then we

find [aout[ω1],aout[ω2]†] = G sgn(ω1 − ω2)δ(ω1 + ω2) 6= sgn(ω1 − ω2)δ(ω1 + ω2).

There are two ways to restore the output commutation relation, and they correspond

to performing different types of amplification [18]. The first is to treat the quadratures

unequally. If one quadrature, say I is amplified by a factor
√
G and the other is reduced by

a factor of 1/(
√
G) then we can rewrite the output operators as aout = (

√
GI in+i/(

√
G)Q in)

and a†out = (
√
GI in − i/(

√
GQ in)), then [aout[ω1],aout[ω2]†] = sgn(ω1 − ω2)δ(ω1 + ω2) as

desired. This unequal treatment of quadratures, known as phase-sensitive amplification, is
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Figure 2.2: Fresnel plane before and after ideal phase-sensitive amplification. The input
Fresnel lollipop has a center

(
Īin, Q̄in

)
and a noise disk with standard deviation σI =

σQ. The effect of the amplifier is to amplify Fresnel lollipop along one quadrature, here
I, and de-amplifying it along the other. This results in an output lollipop with center(√

GĪin, Q̄in/(
√
G
)

and a noise disk with standard deviations
√
GσI and σQ/(

√
G).

shown graphically in fig. 2.2. Both the magnitude and the noise of the Fresnel lollipop are

amplified along one quadrature, here I, and de-amplified along the other. This causes the

disk to transform into an ellipse, but the signal to noise ratio of each quadrature individually

remains constant. This type of amplification can be preferable if, for example, the signal is

contained is contained entirely in one quadrature.

Another way to maintain the commutation relations after the amplifier is to maintain

the equal treatment of the quadratures so 〈I out〉 =
√
G 〈I in〉 and 〈Qout〉 =

√
G 〈Q in〉, and

to include a second mode b. If we take aout =
√
Ga in +

√
G− 1b†in and a†out =

√
Ga†in +

√
G− 1bin, where

√
G− 1bin corresponds to amplified vacuum fluctuations coming from

mode b such that [b[ω1]in,out, b[ω2]†in,out] = sgn(ω1−ω2)δ(ω1+ω2), then [a [ω1]out,a [ω2]†out] =

sgn(ω1−ω2)δ(ω1+ω2)δin,out as desired. In a parametric amplifier this other mode b typically

corresponds to the mode of the device excited by the idler. This type of amplification,

called phase-preserving amplification, is shown graphically in fig. 2.3. It is called phase-

preserving amplification because the phase of the Fresnel lollipop relative to the I,Q axis

is maintained. Although this type of amplification does add an additional half photon of

noise from the vacuum fluctuations in mode b, this noise still comes from the Heisenberg

uncertainty principle, and does not lead to unwanted classical back-action [11]. Phase-

preserving amplification is preferable if the signal is contained in both quadratures of the

microwave field, or in an unknown quadrature of the microwave field. Even for a single-
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quadrature signal, phase-preserving amplification may be preferable. In practice the signal

quadrature and the amplified quadrature may drift relative to one another, and great care

needs to be taken to minimize this effect.
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Figure 2.3: Fresnel plane before and after ideal phase-preserving amplification. The input
Fresnel lollipop has center

(
Īin, Q̄in

)
and a Gaussian noise disk with standard deviation

σI = σQ. The amplifier treats the quadratures equally. This results in an output Fresnel

lollipop with center
(
Īin
√
G, Q̄in

√
G
)

, and standard deviation
√
G(σ2

I,Q + 1/4). The extra

factor of 1/4 in the standard deviation of each output quadrature corresponds to the ad-
ditional Heisenberg noise added by the amplifier in order to restore the input and output
commutation relations.

2.1.3 Reflection vs Through Amplifier

The next manner of classifying parametric amplifiers is based upon the path of signals

through the device. An amplifier is classified as a reflection amplifier if any of the amplified

signal exits the device from the same physical port it entered on. Amplifiers with a single

physical port are necessarily reflection amplifiers, but multi port amplifiers may be reflection

amplifiers as well. In contrast, an amplifier is classified as a through amplifier if the amplified

signal exits the device through an entirely different physical port from the one it entered on.

This does not necessarily mean that there is no amplified output exiting on any particular

port, it just restricts the origin of those signals. For example, a two-port amplifier may have

signals incident on port 1 exit through port 2 and vice versa. Port 1 still has an amplified

output, but since the origin of that output is port 2 it is still a through amplifier. An
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amplifier can be classified as a directional amplifier if the device amplifies signals from port

1 to port 2, and attenuations signals traveling in the reverse direction.

2.2 Four-Wave vs Three-Wave Mixing

The last major classification of parametric devices is based upon what type of non-linear

mixing process gives rise to parametric amplification or conversion. Fourth order non-

linearities in a system Hamiltonian give rise to a phenomena known as four-wave mixing.

In this case parametric interactions manifest themselves in the mixing of two pump photons

with one signal and one idler photon. Third order non-linearities will give rise to a similar

phenomena known as three-wave mixing. Here parametric interactions correspond to mixing

one pump, one signal, and one idler photon.

We can investigate the response of a circuit with a given Hamiltonian, H, using the

framework of input/output theory (see for example [82], or the appendix to [33]) and the

quantum Langevin equation. In this framework the circuit is treated as a black box coupled

to a transmission line which allows for incoming and outgoing waves. For each mode,

the operators of the internal circuit mode are related to the incoming and outgoing field

operators via

√
κaa(t) = a in(t) + aout(t) (2.14)

where κa is the bandwidth the mode inherits from its coupling to the transmission line.

The equation of motion for the internal mode of such a system can be calculated via the

quantum Langevin equation

da(t)

dt
=
i

~
[H,a(t)]− κa

2
a(t) +

√
κaa in(t) (2.15)

2.2.1 Four-Wave Mixing

Parametric devices based on four-wave mixing have fourth order non-linearities in their

Hamiltonian. In a doubly-degenerate system this will correspond to the term (a+a†)4, while

in a non-degenerate system this will correspond to terms such as (a +a†)(b +b†)(c +c†)2.

In this section, following [43, 83], we will see how this type of term leads to amplification.
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As an example, if we imagine the simplest single-mode resonant system with a fourth order

nonlinearity, the Hamiltonian will take the form

H4wave = ~ω′aa†a + ~
g4

6
(a + a†)4 (2.16)

where g4 represents the strength of the fourth-order nonlinearity. Expanding and incorpo-

rating the effect of zero point motion into ωa we get

H4wave = ~ωaa
†a + ~

g4

6
(aaaa + 4a†aaa + 6a†a†aa + 4a†a†a†a + a†a†a†a†) (2.17)

The Langevin equation of motion for such a system is then given by

da(t)

dt
=− iωaa(t)− 2ig4

3
a(t)a(t)a(t)− 2ig4a

†(t)a(t)a(t)− 2ig4a(t)†a(t)†a(t)

− 2ig4

3
a(t)†a(t)†a(t)† − κa

2
a(t) +

√
κaa in(t)

(2.18)

In a four-wave mixing system, parametric amplification occurs when the system is

pumped with a strong tone at the frequency 2ωp = ωs +ωi. In a doubly-degenerate system

such as this, the pump, signal and idler are all associated with the same mode, leading to

ωs ∼ ωi ∼ ωp. The incoming tone to mode a will contain a contribution both from the

pump and from the signal that will be amplified, which we can explicitly separate by letting

αp represent the pump and d representing the small incoming signal. This results in

a in(t) = αpin(t)e−i(ωpt+φp) + d in(t)

aout(t) = αpout(t)e
−i(ωpt+φp) + dout(t)

a(t) = αp(t)e−i(ωpt+φp) + d(t)

(2.19)

Further, we are going to assume the pump is stiff, that is the quantum amplitude of

the pump can be treated as a classical drive and no changes in the pump amplitude due to

quantum fluctuations in the mode or due to the dynamics of the circuit can be detected.

Substituting these in to 2.18, taking the rotating wave approximation (RWA) to only keep
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terms rotating at ωp, and only terms linear in the signal we find

−iωpαp(t)e−i(ωpt+φp) +
dd(t)

dt
=

−iωaα
p(t)e−i(ωpt+φp) − iωad(t)− 2ig4α

p(t)3e−i(ωpt+φp)

−2ig4d(t)†αp(t)2e−i(ωpt+2φp) − 4ig4α
p(t)2d(t)− κa

2
αp(t)e−i(ωpt+φp)

−κa
2
d(t) +

√
κaα

p(t)e−i(ωpt+φp) +
√
κad in(t)

(2.20)

The terms that only depend on αp(t) correspond to the classical solution for the pump

alone. Omitting the pump solution, the solution for the signal in the presence of the pump

becomes

dd(t)

dt
= [−iωa −

κa
2

]d(t)− 4ig4|αp(t)|2d(t)− 2ig4α
p(t)2e−2iφpd(t)† +

√
κad in(t) (2.21)

This is most easily solved by transforming to the frequency domain, yielding

√
κad in[ω] = [i(ωa − ω) +

κa
2

]d [ω] + 4ig4(αp)2d [ω] + 2ig4(αp)2e−2iφpd [−ωi]† (2.22)

where ωi = 2ωp − ω. Here we first see the importance of the four-wave mixing term in the

Hamiltonian. It is that term which gives rise to the 2ig4α
p(t)2e−2iφpd [−ωi]† term in the

equation of motion, which corresponds to the creation of an idler at −ωi. This is a hallmark

of parametric amplification resulting from the pairwise creation of signal and idler photons.

Using the input/output relation given in Eqn. 2.14 allows us to eliminate the internal

mode and write the relationship between the incoming and outgoing fields for both the

signal and the idler

[i(ωa − ω) +
κa
2

+ 4ig4(αp)2]dout[ω] + 2ig4(αp)2e−2iφpdout[−ωi]† =

[−i(ωa − ω) +
κa
2
− 4ig4(αp)2]d in[ω]− 2ig4(αp)2e−2iφpd in][−ωi]†

[−i(ωa − ω) +
κa
2
− 4ig4(αp)2]dout[−ωi]† − 2ig4(αp)2e2iφpdout[ω] =

[i(ωa − ω) +
κa
2

+ 4ig4(αp)2]d in[−ωi]† + 2ig4(αp)2e2iφpd in[ω]

(2.23)

This coupled set of equations can easily be transformed into the scattering matrix
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 dout[ω]

dout[−ωi]†

 =

 s11 s21e
−2iφp

s†21e
2iφp s22


 d in[ω]

d in[−ωi]†

 (2.24)

where we find reflected signal power gain G = |s11|2 = |s22|2 given by

G = 1 +
64κ2

ag
2
4(αp)4

(κ2
a − 16g2

4(αp)4 + 4(ωa + 4g4(αp)2 − ω)2)2
(2.25)

and trans-gain GT = |s21|2 = G− 1 is given by

GT =
64κ2

ag
2
4(αp)4

(κ2
a − 16g2

4(αp)4 + 4(ωa + 4g4(αp)2 − ω)2)2
(2.26)

2.2.2 Three-Wave Mixing

The other type of non-linear interaction that can give rise to parametric processes is three-

wave mixing. This kind of interaction comes from third order non-linearities in the Hamil-

tonian. Although one could consider a third order non-linearity in a degenerate system,

which would realize only amplification, here we will describe how to achieve both paramet-

ric gain and coherent frequency conversion within a non-degenerate system. Following [33],

we posit the Hamiltonian of such a system to be

H3wave =~ωaa
†a + ~ωbb

†b + ~ωcc
†c + ~g3(a + a†)(b + b†)(c + c†)

=~ωaa
†a + ~ωbb

†b + ~ωcc
†c+

~g3(abc + a†bc + ab†c + a†b†c + abc† + a†bc† + ab†c† + a†b†c†)

(2.27)

This system is non-degenerate so we will let the signal excite mode a , the idler excite

mode b, and the pump excite mode c. Writing out the Langevin equations for the signal

and the idler modes we find

da(t)

dt
= −iωaa(t)− ig3(b(t)c(t) + b†(t)c(t) + b(t)c(t)† + b(t)†c(t)†)− κa

2
a(t) +

√
κaa in(t)

db(t)

dt
= −iωbb(t)− ig3(a(t)†c(t) + a(t)c(t) + a(t)c†(t) + a(t)†c†(t))− κb

2
b(t) +

√
κbbin(t)

(2.28)
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Parametric Gain

Parametric amplification in this system occurs when a pump applied to mode c is at the

frequency ωp = ωs+ωi = ωa +ωb . If we again assume the pump is stiff, then we can replace

c(t) by

c(t)→ αpe−iωpt+φp (2.29)

Substituting these in and taking the rotating wave approximation (RWA) at ωa and ωb

respectively the equations of motion reduce to

da(t)

dt
= −iωaa(t)− ig3b(t)†αpe−iφp − κa

2
a(t) +

√
κaa in(t)

db(t)

dt
= −iωbb(t)− ig3a(t)†αpe−iφp − κb

2
b(t) +

√
κbbin(t)

(2.30)

Much like in the four-wave mixing case, here we explicitly see the creation of an idler in

the equation of motion for the signal (and vice versa) coming from the third order mixing

term. These coupled equations are again more easily solved in the frequency domain. Taking

a Fourier transform of both sides, with ω1 serving as the general frequency variable for the

mode a and ω2 for b, and substituting in the boundary conditions from the input/output

relations gives

(iω1 − iωa −
κa
2

)aout[ω1]− ig3α
p

√
κa
κb
αpe−iφpbout[−ω2]† =

(iωa − iω1 −
κa
2

)a in[ω1] + ig3α
p

√
κa
κb
e−iφpbin[−ω2]†

(−iω2 + iωb −
κb
2

)bout[−ω2]† + ig3α
p

√
κb
κa
αpeiφpaout[ω1] =

(−iωb + iω2 −
κb
2

)bin[−ω2]† − ig3α
p

√
κb
κa
eiφpa in[ω1]

(2.31)

where ω2 = ωp − ω1.
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This coupled set of equations also gives rise to a parametric scattering matrix

 aout[ω1]

bout[−ω2]†

 =

 s11 s21e
−iφp

s†21e
iφp s22


 a in[ω1]

bin[−ω2]†

 (2.32)

where

s11 =
(1 + 2i(ωa − ω1)/κa)(1 + 2i(ω2 − ωb)/κb) + ρ2

(1− 2i(ωa − ω1)(1 + 2i(ω2 − ωb)/κb)− ρ2
(2.33)

s21 =
−2iρ

(1− 2i(ωa − ω1)(1 + 2i(ω2 − ωb)/κb)− ρ2
(2.34)

s22 =
(1− 2i(ωa − ω1)/κa)(1− 2i(ω2 − ωb)/κb) + ρ2

(1− 2i(ωa − ω1)(1 + 2i(ω2 − ωb)/κb)− ρ2
(2.35)

and we have defined the normalized pump power ρ by

ρ =
g3α

p

√
κaκb

(2.36)

On resonance, ω1 = ωa and ω2 = ωb , the scattering matrix reduces to

 aout[ωa ]

bout[−ωb ]†

 =

 √
G −i

√
GT e

−iφp

i
√
GT e

iφp
√
G


 a in[ωa ]

bin[−ωb ]†

 (2.37)

where the reflected signal power gain is

G =
1 + ρ2

1− ρ2
(2.38)

and the trans-gain

GT =
2

1− ρ2
(2.39)

where again GT = G− 1.

43



Parametric Conversion

The three-wave mixing non-linearity also supports another parametric process, coherent

frequency conversion [29, 35]. To realize this process we pump one of the modes, say mode

c, at the frequency difference of the other two: ωa −ωb . Returning to Eqn. 2.28, and again

following [33] the equations of motion for the signal and idler under the RWA now become

da(t)

dt
= −iωaa(t)− ig3b(t)αpeiφp − κa

2
a(t) +

√
κaa in(t)

db(t)

dt
= −iωbb(t)− ig3a(t)αpeiφp − κb

2
b(t) +

√
κbbin(t)

(2.40)

Substituting in the input/output relation and writing the coupled equations in matrix

form yields

aout[ω1]

bout[ω2]

 =

 s11 s21e
−iφp

s†21e
iφp s22


a in[ω1]

bin[ω2]

 (2.41)

where

s11 =
(1 + 2i(ωa − ω1)/κa)(1− 2i(ω2 − ωb)/κb)− ρ2

(1− 2i(ωa − ω1)(1 + 2i(ω2 − ωb)/κb) + ρ2
(2.42)

s21 =
2iρ

(1− 2i(ωa − ω1)(1 + 2i(ω2 − ωb)/κb) + ρ2
(2.43)

s22 =
(1− 2i(ωa − ω1)/κa)(1 + 2i(ω2 − ωb)/κb)− ρ2

(1− 2i(ωa − ω1)(1 + 2i(ω2 − ωb)/κb) + ρ2
(2.44)

and again

ρ =
g3α

p

√
κaκb

(2.45)

On resonance this reduces to

aout[ω1]

bout[ω2]

 =

 √1− C i
√
Ce−iφp

−i
√
Ceiφp

√
1− C


a in[ω1]

bin[ω2]

 (2.46)
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Where the conversion coefficient C =
4g2

3(αp)2/(κaκb)
(1+|g3|2(αp)2/(κaκb))2 . This process corresponds to

coherent conversion of signals incident on one mode into signals exiting from the other. This

process is realized in full for the extremal value C = 1, where all signal and idler photons

are converted into each other on a one for one basis (with a phase shift given by the phase of

the pump). For 0 < C < 1, only part of the incoming signal is coherently converted to the

other mode with the rest reflected this just corresponds to partial conversion and partial

reflection of an incoming signal, where the amount reflected and the amount converted is

controlled by the value of C.

2.3 Parametric Amplification with the JBA

The first specific parametric device we will look at is the JBA [43, 83], which is a doubly-

degenerate, four-wave mixing, reflection amplifier which is typically used to implement

phase-sensitive amplification. As can be seen in Fig. 2.4, it is composed of two Josephson

junctions connected in a loop to from a SQUID, which is then shunted by a split parallel

plate capacitor. We can simplify the circuit by treating it as a single junction shunted by a

single capacitor as follows. By Kirchhoff’s current law, and assuming the linear inductance

of the loop is small, the current going into the SQUID, Is, is given by Is = I0 sin(Φ1
ϕ0

) +

I0 sin(Φ2
ϕ0

) = I0 sin(ϕ1) + I0 sin(ϕ2). The total magnetic flux through a loop is quantized,

so if an external magnetic flux, Φext, is applied to the loop of the SQUID, the relation

ϕ2 − ϕ1 = Φext/ϕ0 + 2πn, where n is an integer, must hold. Using this, we can rewrite the

current through the SQUID as Is = 2I0 cos(Φext
2ϕ0

+ nπ) sin(ϕ) where ϕ = (ϕ1 + ϕ2)/2 is the

phase across the SQUID. This looks like one effective junction whose critical current changes

with the external applied magnetic flux. Moving to the capacitor, the physical structure is

two identical capacitors which share a common voltage on one plate. This is equivalent to

a single parallel plate capacitor with double the distance between the plate, yielding a total

capacitance C whose values is half the capacitance of either physical capacitor alone. This

circuit has only one normal mode, so the JBA must be a degenerate parametric amplifier.

It also only has one physical port coupled to that one normal mode, meaning it must be a

reflection amplifier.
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φa

Φ1 Φ2

φ3φ4

φd

φb
φc

A B C

Is
Is 2C

2C

CC Is

Φext Φext

Figure 2.4: Schematic of the JBA. A) The JBA consists of a SQUID loop shunted by a large
split capacitor. For some fixed value of an externally applied magnetic field given by Φext,
the SQUID can be treated of as a single effective junction with critical current Is and the
split capacitor can be treated as a single effective capacitor with capacitance C. The device
here is drawn with two ports (black circles) since it will be differentially driven with an
in-box hybrid. B) If the SQUID had identical junctions, meaning ϕ1 = ϕ2, then it can be
treated as a single effective junction with critical current Is. C) The two physical capacitors
having capacitance 2C can be represented as a single capacitor having capacitance C.

To show that it is a four-wave mixing amplifier, we need to write out the Hamiltonian

and check the order of the non-linearity. For the reduced circuit composed of a single

effective capacitor and a single effective junction the Hamiltonian is

HJBA =
Q2

2C
− EJ cos(ϕ) (2.47)

where Q
2

2C is the energy corresponding to the effective capacitance, and −EJ cos(ϕ) is the

energy of the effective junction, with EJ = ϕ0Is. Expanding the cosine

HJBA =
Q2

2C
− EJ +

EJϕ
2

2!
− EJϕ

4

4!
+ ... (2.48)

Writing the Hamiltonian in terms of the creation and annihilation operators for the

normal mode of the circuit given by Q =
√

~
2Za

a−a†
i and ϕ =

√
~Za

2ϕ2
0
(a + a†) where Za =√

ϕ2
0

EJC
, and incorporating the zero point motion into ωa we find

HJBA =
~ωa

2
a†a− ~2

96ϕ2
0C

(a + a†)4 + .... (2.49)

This is equivalent to the four-wave mixing Hamiltonian given in Eqn. 2.17 with g4 = ~2

96ϕ2
0C

,

making the JBA a four-wave mixing amplifier. When the JBA is excited with a strong
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pump tone we can see the expected parametric gain (see Fig. 2.5).

Frequency (GHz)
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Figure 2.5: Measured 20 dB reflection gain from the JBA. The strong reflected pump tone,
as well as a pump artifact (colored in gray), can be seen at shown at the center of the
Lorentzian gain curve.

The JBA can be operated as either a phase-sensitive or phase-preserving amplifier de-

pending on how the input signal is presented to the device. As can be seen from the

four-wave mixing scattering matrix (Eqn. 2.24), the JBA will sum the incoming signal and

idler tones. If a signal is presented slightly detuned from resonance such that ωs = ωp + δω,

and if the incoming idler at ωi = ωp − δω is left in vacuum, then the JBA will perform

phase-preserving amplification, where the half-photon of added noise comes from quantum

fluctuations in the vacuum presented to the idler.

If instead the incoming signal has a bandwidth straddling the pump, then the amplifier

matrix mixes the incoming signal with itself and the output becomes

a [ω]out =
√
Ga [ω]in +

√
GT e

−2iφpa [ωi]
†
in

a [−ωi]†out =
√
GT e

2iφpa [ω]in +
√
Ga [−ωi]†in

(2.50)

Converting to quadrature variables, this is equivalent to

Iout = (
√
G+

√
GT e

−2iφp)Iin

Qout = (
√
G−

√
GT e

−2iφp)Qin

(2.51)

For some pump phases such as φp = 0, Iout = (
√
G +

√
GT )Iin = (

√
G +

√
G− 1)Iin and
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Qout = (
√
G−

√
GT )Qin = (

√
G−

√
G− 1)Qin which in the high gain limit simplifies to

Iout = 2
√
GIin

Qout = 1/(2
√
G)Qin

(2.52)

This corresponds to phase-sensitive amplification where the I quadrature is amplified and

the Q quadrature is de-amplified. For other pump phases such as φp = π/2, the Q quadra-

ture is amplified and the I quadrature is de-amplified.

2.4 Parametric Amplification and Coherent Conversion with

the JPC

The next specific parametric device we will look at is the JPC [29, 30, 34]. As we will see,

the JPC is a non-degenerate, reflection amplifier typically used to perform phase-preserving

amplification. It is also a three-wave mixing amplifier, which allows it to function both as

an amplifier and as a coherent converter. The three-wave mixing interaction in the JPC

originates from the loop of Josephson junctions found at the heart of the device. This loop,

known as the Josephson ring modulator (JRM), was originally composed of four junctions

in a loop and was later extended to include four linear shunt inductors (see Fig. 2.6) or

Josephson junctions playing the role of inductors [31,34].

The energy of the JRM can be found by summing the energy of all the constitutive

elements. Each Josephson junction will have energy −EJ cos(ϕi), where ϕi = Φi/ϕ0, and

each linear shunting inductor will have energy 1/2LI2 where I is the current flowing through

it. If we assume all the outer junctions are identical and all of the inner shunting inductors

are identical we find

EJRM = −EJ(cos(ϕa) + cos(ϕb) + cos(ϕc) + cos(ϕd)) +
1

2L
(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4) (2.53)

The JRM has three normal modes which we can write down in terms of the node fluxes

ΦI,II,III,IV . a corresponds to a top/bottom excitation of the ring given by Φa = ΦI−ΦIII ,

b corresponds to a right/left excitation of the ring given by Φb = ΦIV − ΦII , and c which
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Figure 2.6: Schematic of the JRM. The shunted JRM is composed of four outer Josephson
junctions and four inner shunt inductors which allow for frequency tunability when the
entire ring is threaded with an uniform external flux given by Φext. Also included are the
fluxes Φi and flux directions for each circuit element in the ring as well as the node-fluxes
ΦI,II,III,IV .

is a common mode excitation of the ring given by Φc = (ΦII + ΦIV − ΦI − ΦII)/2 (see

Fig. 2.7).
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Figure 2.7: The three normal modes of the JRM. Mode a corresponds to a left-right exci-
tation of the ring, mode b corresponds to a top-bottom excitation of the ring, and mode c
corresponds to a common excitation of the ring.

We can make a change of variables from the fluxes through the outer junctions into the
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three normal mode fluxes plus an extra mode ΦM



ϕa

ϕb

ϕc

ϕM


=



1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2

1
4 −1

4
1
4 −1

4

1 1 1 1





ϕa

ϕd

ϕc

ϕb


Although ΦM does not couple to the ring, it does represent the effect of an external flux

threading the JRM. This can be seen from looking at the flux quantization condition ϕa +

ϕb + ϕc + ϕd = Φext
ϕ + 2πn = ϕM . Taking the lowest ring energy where n=0, we can write

the flux through the linear inductors as a function of the normal mode fluxes

4Φ1 = 3ΦI − ΦII − ΦIII − ΦIV = 2Φa − 2Φc

4Φ2 = 3ΦII − ΦI − ΦIII − ΦIV = −2Φb + 2Φc

4Φ3 = 3ΦII − ΦI − ΦII − ΦIV = −2Φa − 2Φc

4Φ4 = 3ΦIV − ΦI − ΦII − ΦIII = 2Φb − 2Φc

(2.54)

This allows us to express the energy of the ring as

EJRM =− 4EJ(cos(ϕa/2) cos(ϕb/2) cos(ϕc) cos(φext/4)

− 4EJ sin(ϕa/2) sin(ϕb/2) sin(ϕc) sin(ϕext/4)

+
ϕ2

0

2L

(
ϕ2
a

2
+
ϕ2
b

2
+ ϕ2

c

) (2.55)

Expanding to the third order in ϕa , ϕb , and ϕc this becomes

EJRM =− 4EJ cos(ϕext/4) + (
ϕ2

0

4L
+
EJ
2

cos(ϕext/4))(ϕ2
a + ϕ2

b)

+ (
ϕ2

0

2L
+ 4EJ cos(ϕext/4))ϕ2

c − EJ sin(Φext/4)ϕaϕbϕc

(2.56)

This expression includes a the three-wave mixing term in the form ϕaϕbϕc , but this is

just the energy expression for the JRM, not the JPC as a whole. To complete the circuit

we embed the JRM at the center of two crossed λ/2 resonators (see Fig. 2.8). The resonant
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modes of this structure directly couple to the normal modes of the ring: the excitation

of the signal resonator will couple to the top-bottom excitation of the ring corresponding

to mode a , the excitation of the other resonator will couple to the left-right excitation of

mode b, and the elbow excitation of the two resonators will couple to mode c. Signals

are presented to mode a and mode b via the delta ports of a 180-degree hybrid, and the

pump is presented via the one of the sigma ports which allows the spatial pattern of the

incoming signals to match the spatial pattern of the modes. It should be noted that the

linear resonance of mode c will be (ωa + ωb)/2, which is generally far detuned from the

frequency of the applied pump. The one-to-one correspondence between normal modes

of the circuit and the pump, signal, and idler tones means the JPC is a non-degenerate

amplifier. Taking the ring and the resonators together we can write the Hamiltonian of the

full JPC in terms of the creation and annihilation operators of the modes instead of the

fluxes, we find

180°
hybrid

180°
hybrid

∆ ∆ ΣΣ

JPC

Figure 2.8: Schematic of the complete JPC. The JRM is embedded in two crossed λ/2
resonators, which are then driven with a set of 180-degree hybrids. The differential port of
the hybrid attached to the vertical resonator provides a drive which excites mode a , while
that of the hybrid attached to the horizontal resonator properly excites mode b. Either
could be used as the amplifier input. The sigma port of one of the hybrids is used for the
off resonant pump, while the other sigma port has to be terminated in a cold 50 Ω.
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HJPC = ~ωaaa
† + ~ωbbb

† + ~ωccc
† + g3(a + a†)(b + b†)(c + c†) + ... (2.57)

where the mode frequencies have been slightly renormalized but the square terms in

ERing and g3 = −EJ sin(Φext
4 )
√

~
2Za

√
~

2Zb

√
~

2Zc
with the impedance for mode i is given by

Zi =
√

Li
Ci

. This is equivalent to the three-wave mixing Hamiltonian given in Eqn. 2.27,

making the JPC a three-wave mixing amplifier.

As a three-wave mixing amplifier, the JPC is capable of both parametric gain and

conversion. When one mode, say mode c, is pumped with a strong tone at frequency

ωa + ωb the JPC exhibits parametric gain (see Fig. 2.9). As expected from the three-wave

mixing scattering matrix, the JPC shows both reflection gain and trans-gain making it a

reflection amplifier. Furthermore, since the signal and idler both excite different normal

modes of the circuit it is a non-degenerate amplifier. If the mode c is instead pumped with

a strong tone at frequency ωa − ωb the JPC exhibits conversion (see Fig. 2.10). The dip

seen in the reflected scattering parameter corresponds to the fact that incident photons on

a are not reflected off the input mode, but are instead converted to mode b leading to a

peak in sab .

JPC w/ Res Optical?
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Figure 2.9: Measure JPC response curve. The maximum gain is 20 dB. The device exhibits
both reflection gain (A) where signals both enter and exit with gain on a single port and
trans-gain (B) where signals enter one port and are amplified and frequency converted and
exit on the other. Since the input and output are at separate frequencies, a mixer was used
ωb + ωc to mix the output at frequency ωb back down to the input frequency ωc .
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The JPC can also implement either phase-sensitive or phase preserving amplification

depending on how the signal is presented to the device [34]. Analogously to the JBA, if

the signal is applied to only one mode, and the other is left in vacuum, then the JPC will

perform phase-preserving amplification. If the signal is instead split, and applied to both

modes such that the signal can interfere with itself within the amplifier, then it will perform

phase-sensitive amplification. This is much harder to implement in the JPC than it is in

the JBA, since the JPC is a non-degenerate amplifier where the modes are both at very

different frequencies and addressed via entirely different spatial ports. Thus the JPC is

usually used to implement phase-preserving amplification.

JPC w/ Res Optical?
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Figure 2.10: Measured conversion from the JPC for C = 0.99. The dip in the reflected
scattering parameter (A) indicates photons incident on mode a at 9.17 GHz are not being
reflected. Instead they are being frequency translated over to mode b at 5.25 GHz. These
converted photons appear as a peak (B) whose magnitude approaches 1 as the conversion
coefficient grows. Since the input and output for B are at separate frequencies, a mixer was
used ωa − ωb to mix the output at frequency ωb back down to the input frequency ωa .

Physical Implementation of the JPC

Unlike the JBA, which is implemented exactly as described earlier, there are a few different

physical implementation of the JPC. The shunting inductors in the JRM have been imple-

mented via linear inductors as described above [31], but the length of the wire needed to

provide sufficient linear inductance leads to a very large ring. Other types of inductors have

been used to shunt the outer junctions of the JRM including larger Josephson junctions

(see Fig. 2.11), and the kinetic inductance of thin aluminum wires. Larger junctions [34]
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are typically chosen because they minimize the size of the JRM while being relatively easy

to reproducibly fabricate. The resonant modes are typically defined by λ/2 resonators as

described, but those have also been implemented instead by large external capacitances

shunting the JRM much in the style of the JBA. In this case the mode frequencies are de-

fined by large capacitance shunting a particular mode, and inductance of that mode coming

from the JRM. This implementation, developed both here at Yale and concurrently at ENS-

Paris [32], minimizes the size of the JPC, and can lead to some performance improvements,

but is much more sensitive to asymmetries in the JRM.

10 µm

JPC w/ Res Optical?
Illustrator can't open tiffs

A B

Figure 2.11: SEM image of the JRM and optical image of the full JPC. A) SEM image of the
eight-junction JRM shunted by large Josephson junctions. The small outer junction that
give the three-wave mixing nonlinearity are highlighted in blue while the four inner junctions
shunting the ring are highlighted in purple. B) Photograph of the complete amplifier. It
shows the JPC chip (dark gray) with the two resonators visible in light gray. Also visible is
the PC board (square, white) whose role is to provide the interface between the chip and
the SMA connectors (not visible) located on the back of the gold housing.

54



Chapter 3

Double Pumping the JBA

The JBA, which was presented in the last chapter, is widely used as a parametric amplifier in

superconducting qubit experiments. As a four wave mixing device, it is typically biased with

a single strong pump tone whose frequency, ωp, corresponds to the frequency of maximum

gain, ωg. However, when integrated with a superconducting qubit, the strong pump tone

coincides problematically with the center of the bandwidth of the cavity. Without sufficient

isolation, the reflected pump floods the cavity with photons causing significant dephasing.

As proposed in a theoretical paper by Kamal et al. [56], the single pump at the center of

the amplification band can be replaced with two pumps at the frequencies ωpump1 = ωg + ∆

and ωpump2 = ωg −∆. If ∆ is large enough, both of these pump tones can be well outside

the bandwidth of the cavity, and the amplifier can cause significantly less dephasing. This

chapter presents both the theory and an experimental realization of the double-pumped

mode of operation, and shows that this operating scheme leads to significantly less dephasing

while also increasing the amount of input power the amplifier is capable of handling.

3.1 Derivation of Double-Pumped Gain

The theoretical deviation of gain in the double-pumped JBA was originally derived in [56],

here it will be re-derived, but via a sightly different method. We will use the approach pre-

sented in the last chapter for the single-pumped four wave mixing amplifier, but we will mod-

ify the incoming and internal fields to include two pump fields given by α+(t)e−i(ωpump1t+φp1)
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and α−(t)e−i(ωpump2t+φp2)

a in(t) = α+
in(t)e−i(ωpump1t+φp1) + α−in(t)e−i(ωpump2t+φp2) + d in(t)

aout(t) = α+
out(t)e

−i(ωpump1t+φp1) + α−out(t)e
−i(ωpump2t+φp2) + dout(t)

a(t) = α+(t)e−i(ωpump1t+φp1) + α−(t)e−i(ωpump2t+φp2) + d(t)

(3.1)

where ωpump1 = ωg+∆, ωpump1 = ωg−∆, and c(t) represents a small incoming signal around

ωg. We will take both pumps to be stiff, replacing α(+,−)(t) with α(+,−) and α
(+,−)
in,out(t) with

α
(+,−)
in,out. If we insert these back into the four-wave mixing Langevin equation (Eqn. 2.18),

keep only terms to first order in the signal, and take the RWA we find

−iωpump1α+e−i(ωpump1t+φp1) − iωpump2α−e−i(ωpump2t+φp2) +
dd(t)

dt
=

−iωa(α+e−i(ωpump1t+φp1) + α−e−i(ωpump2t+φp2) + d(t))

−4ig4d(t)(α+)2 − 4ig4d(t)(α−)2 − 4ig4d(t)†α+α−e−i(φp1+φp2)

−κa
2

(α+e−i(ωpump1t+φp1) + α−e−i(ωpump2t+φp2) + d(t))

+
√
κa(α+

ine
−i(ωpump1t+φp1) + α−ine

−i(ωpump2t+φp2) + d in(t))

As before, the terms containing only α+ and α− will correspond to the pump tone,

which we will neglect. This leaves us with the equation of motion for the signal in the

presence of the pumps

dd(t)

dt
= −iωad(t)− 4ig4d(t)(α+)2 − 4ig4d(t)(α−)2

−4ig4d(t)†α+α−e−i(φp1+φp2) − κa
2
d(t) +

√
κad in(t)

Moving to the frequency domain and using Eqn. 2.14 to replace the internal modes with
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the incoming and outgoing modes this becomes

(i(ωa − ω + 4g4(α+)2 + (α−)2)) +
κa
2

)dout[ω] + 4ig4α
+α−e−i(φp1+φp2)dout[−ωi]† =

(−i(ωa − ω + 4g4((α+)2 + (α−)2)) +
κa
2

)d in[ω]− 4ig4α
+α−e−i(φp1+φp2)d in[−ωi]†

(−i(ωa − ω + 4g4(α+)2 + (α−)2)) +
κa
2

)dout[−ωi]† − 4ig4α
+α−ei(φp1+φp2)dout[ω] =

(i(ωa − ω + 4g4((α+)2 + (α−)2)) +
κa
2

)d †in[−ωi] + 4ig4α
+α−ei(φp1+φp2)d in[ω]

(3.2)

where ωi = 2ωg − ω. This looks very similar to the analogous single-pumped four-wave

mixing expressions given in Eqn. 2.23. Both have the form

(i(ωa − ω + Ω) +
κa
2

)dout[ω] + Λe−iφeffdout[−ωi]† =

(−i(ωa − ω + Ω)) +
κa
2

)d in[ω]− Λe−iφeffd in[−ωi]†

(−i(ωa − ω + Ω)) +
κa
2

)dout[−ωi]† − Λeiφeffdout[ω] =

(i(ωa − ω + Ω) +
κa
2

)d in[−ωi]† + Λeiφeffd in[ω]

(3.3)

where Ω = 4g4((α+)2 + (α−)2) in the double-pump case and Ω = 4g4(αp)2 in the single-

pump case represents a power dependent shift in the resonance frequency, Λ = 4ig4α
+α−

in the double-pump case and Λ = 2ig4(αp)2 in the single-pump case represents the pump-

dependent four-wave mixing term and φeffp = 2φp in the single pump case and φeffp =

φp1 + φp2 in the double pump case is the effective pump phase. We can then define the

effective pump amplitude to be ρeff = |Λ|/κa . Calculating the scattering matrix we then

find

 dout[ω]

dout[−ωi]†

 =

 √
G

√
GT e

−iφeffp

√
GT e

iφeffp
√
G


 d in[ω]

d in[−ωi]†

 (3.4)

where the reflected signal power gain is

G = 1 +
16ρ2

eff

(1− 4ρ2
eff + 4

κ2
a
(Ω− ω + ωa)2)2

(3.5)
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and the trans-gain is

GT =
16ρ2

eff

(1− 4ρ2
eff + 4

κ2
a
(Ω− ω + ωa)2)2

(3.6)

Thus the double-pumped JBA both functions as an amplifier, and can be thought of very

analogously to the single-pump JBA. The two pumps act as a single effective pump, but un-

like in the single-pump JBA the physical pump tones are located well outside the bandwidth

of the device (see Fig. 3.1).
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Figure 3.1: Frequency landscape of a single and double-pumped JBA. A) Frequency
Schematic of a Single-Pumped JBA. The Lorentzian gain response of the JBA (black)
is overlaid on the frequency location of the pump (orange) signal (maroon) and idler (blue)
tones. The frequency of the pump, ωp, corresponds to the frequency of maximum gain. If a
small signal (maroon) is applied at the frequency ωs, it will be amplified in reflection at that
frequency (the bandwidth due to the modulation of that signal is represented by the thick
maroon response curve) and an additional amplified copy (blue) will be produced at the
idler frequency given by ωi = 2ωp − ωs. B) Frequency schematic of a double-pumped JBA.
The same Lorentzian gain curve can be produced by two pumps at ωpump1 and ωpump2. If
these two pumps are uniformly detuned from the center of the desired gain curve by an
amount ∆, we can think of them as one effective ghost pump (dotted orange arrow) at the
center frequency ωg. If a small signal (maroon) is applied at the frequency ωs, it will be
amplified in reflection at that frequency and an additional amplified copy (blue) will be
produced at the idler frequency given by ωi = ωpump1 + ωpump2 − ωs. (Reproduced from
Fig. 1.10)
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3.2 Pump Stiffness in the JBA

The above derivation assumed that the pump was stiff, or that the dynamics of the pump

due to the generation of signal and idler photons are too small to have any impact on the per-

formance of the amplifier. As the incoming signal becomes larger, or the gain of the device

becomes higher, more pump photons are destroyed in the amplification process. Eventually

these changes in the internal pump field due to the creation of signal and idler photons will

be large enough to decrease the instantaneous gain of the device. The question of satura-

tion power was also originally addressed in [56], and it was shown that the double-pumped

JBA has a higher saturation power than the single-pumped JBA. Instead of following the

method used in [56], we will compare pump stiffness in the single and double-pumped JBA

by comparing how the fluctuations of the internal pump field compare to fluctuations of the

incoming pump field. This procedure can be found in [33], (and is similar to the procedure

in [84]), although those references directly treat a different amplifier. If either the single

or double pumped JBA exhibit greater fluctuations than the other for the same incoming

pump field, then that device will have a less stiff pump and will be able to process less input

signal power.

3.2.1 Pump Dynamics in the Single-Pumped JBA

We can see these effects on the pump field by solving for the pump dynamics using the

Langevin equation ( Eqn. 2.20). We will keep terms which depend on the pump, and which

are rotating around the pump frequency ωp. This yields

−iωpαp = −iωa(αp + d(t))− 2ig4(2|αp|2d(t) + |αp|2αpe−iφp + 2αpd(t)d(t)†e−iφp

+(αp)†d(t)d(t)eiφp + |αp|2d(t)†e−2iφp) +
κa
2
αp =

√
κaα

p
in

(3.7)

Solving for the average value for the internal pump field this becomes

〈αp〉 =
−2ig4 〈d(t)d(t)〉 (〈αp〉†) +

√
κa 〈αpin〉

i(ωa − ωp) + κa
2 + 2ig4(〈|αp|2〉+ 2 〈d(t)d(t)†〉)

(3.8)

We want to find a self-consistent solution for the dynamics of the average internal pump
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field in terms of both the incoming pump and signal fields. This needs to be done in a

perturbative manner. First we note that the four wave mixing g4 term is small, and that

the incoming pump field is much larger than the signal. This lets us write Eqn. 3.8 as

〈αp〉 =
−2ig4 〈d(t)d(t)〉 (〈αp0〉

†
) +
√
κa(〈αpin〉+ 〈d in(t)〉)

i(ωa − ωp) + κa
2 + 2ig4(〈|αp0|2〉+ 2 〈d(t)d(t)†〉)

(3.9)

where

αp0 =

√
κaα

p
in

i(ωa − ωp) + κa
2

(3.10)

Next we will evaluate how the terms relating to the internal signal field given by the terms

〈d(t)d(t)〉 and
〈
d(t)d(t)†

〉
relate to the incoming fields. It is easiest to evaluate these terms

in the frequency domain, where these terms become

〈d(t)d(t)〉 =

∫ ∞
−∞

∫ ∞
−∞

〈
d [ω]d [ω′]

〉
e−i(ω+ω′)tdwdw′ (3.11)

and 〈
d(t)d(t)†

〉
=

∫ ∞
−∞

∫ ∞
−∞

〈
d [ω]d [−ω′i]†

〉
e−i(ω−ω

′)tdwdw′ (3.12)

and then by using the input/output relations given in Eqn. 2.14 and the scatting matrix

given in Eqn. 3.4 to get

〈d(t)d(t)〉 =
1

κa

∫ ∞
−∞

∫ ∞
−∞

(
(1 +

√
G)2

〈
cin[ω]cin[ω′]

〉
+
√
GT (1 +

√
G)e−iφp

〈
cin[ω]cin[−ω′i]†

〉
+ (1 +

√
G)cine

−iφp
〈
c[−ωi]†cin[ω′]

〉
+GT

〈
c[−ωi]†c[−ω′i]†

〉)
e−i(ω+ω′)tdwdw′

(3.13)

and

〈
d(t)d(t)†

〉
=

1

κa

∫ ∞
−∞

∫ ∞
−∞

(
(1 +

√
G)2

〈
d in[ω]d in[−ω′i]†

〉
+
√
GT (1 +

√
G)e−iφp

〈
d in[ω]d in[ω′]

〉
+ (1 +

√
G)d ine

iφp
〈
d [−ωi]†d in[−ω′i]†

〉
+GT

〈
d [−ωi]†d [ω′]

〉)
e−i(ω−ω

′)tdwdw′

(3.14)

These depend only on the incoming signal power and the gain of the amplifier. This becomes
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even more obvious when we introduce the photon spectral densities N d
in given by

〈
{d in[ω]d in[ω′]}

〉
= 2N d

in

(
ω − ω′

2

)
δ(ω + ω′) (3.15)

Evaluating the mean using the photon spectral densities we get

〈d(t)d(t)〉 =
1

κa

∫ ∞
−∞

2(1 +
√
G)2N d

in(ω) + 2GTN d
in(−ω)dw (3.16)

and

〈
d(t)d(t)†

〉
=

1

κa

∫ ∞
−∞

(
2
√
GT (1 +

√
G)e−iφpN d

in(ω) + 2
√
GT (1 +

√
G)eiφpN d

in(−ω)
)
e−2iωdw

(3.17)

These expressions depend only on the input spectral density to the signal and idler, and

on the gain of the amplifier. When comparing the single and double-pumped modes of

operation we would like to compare the dynamics of the internal pump field for the same

gain and the same input signal powers. Thus we replace these terms with the functions

γdd (G,P d
in) and γdd†(G,P

d
in), which will be taken to be the same in both cases.

Substituting into enq. 3.8 we can now express average pump field as a function of the

incoming average incoming fields by

〈αp〉 =
−2ig4γdd (G,P d

in) 〈αp0〉
†

+
√
κa 〈αpin〉

i(ωa − ωp) + κa
2 + 2ig4(〈|αp0|2〉+ 2γdd†(G,P

d
in))

(3.18)

3.2.2 Pump Dynamics in the Double-Pumped JBA

We can perform the same analysis of the double-pumped JBA by starting from the Langevin

equation for each of the pumps independently, and trying to find an expression relating the

internal pump field in terms of the input fields. Keeping only terms rotating at the pump

frequency ωpump1 and ωpump2 respectively we get

−i(ωg ±∆)α(+,−) + iωaα
(+,−) + 2ig4(|α(+,−)|2α(+,−) + 2|α(−,+)|2α(+,−)+

(α(−,+)†ei(φp1+φp2)d(t)d(t) + 2α(+,−)d(t)d(t)†) +
κa
2
α(+,−) =

√
κaα

(+,−)
in

(3.19)
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where + is taken for α+ and − is taken for α−. Looking at the average of the dynamics

and solving for 〈α+〉 and 〈α−〉 respectively we get

〈
α(+,−)

〉
=

−2ig4 〈d(t)d(t)〉
〈(

α
(−,+)
0

)†〉
+
√
κa

〈
α

(+,−)
in

〉
i(ωa − (ωg ±∆)) + κa

2 + 2ig4

(
2
〈
|α(−,+)

0 |2
〉

+
〈
|α(+,−)

0 |2
〉

+ 2 〈d(t)d(t)†〉
)

(3.20)

where analogously

α
(+,−)
0 =

√
κaα

(+,−)
in

i(ωa − (ωp ±∆)) + κa
2

(3.21)

The terms 〈d(t)d(t)〉 and
〈
d(t)d(t)†

〉
can again be replaced by the functions γdd (G,P d

in)

and γdd†(G,P
d
in), where we will compare single and double pump points with the same

amplifier gain G and the same input signal and idler power. This lets us write the average

value of the internal field as

〈
α(+,−)

〉
=

−2ig4γdd (G,P d
in)

〈(
α

(−,+)
0

)†〉
+
√
κa

〈
α

(+,−)
in

〉
i(ωa − (ωg ±∆)) + κa

2 + 2ig4

(
2
〈
|α(−,+)

0 |2
〉

+
〈
|α(+,−)

0 |2
〉

+ 2γdd†(G,P
d
in)
)

(3.22)

The presence of ∆ in the denominator of this expression compared that of Eqn. 3.18,

as well as the factor of ∆ in the denominator of the definitions of α
(+,−)
0 relative to αp0,

means that the internal pump field for double-pumped mode of operation will experience a

smaller change due to the amplification of incoming signals compared to the internal field

of the single-pumped JBA. It also means that fluctuations of the incoming pump field will

cause smaller fluctuations in the internal pump field for the double-pumped JBA relative

to the single-pumped JBA. This directly translates into the pumps being stiffer in the

double-pumped mode of operation.

3.3 Experimental Characterization

3.3.1 Device Description

The JBA used to characterize the double-pumping mode of operation consisted of a SQUID

loop with two 3.5 µA Josephson junctions defined via electron beam lithography and a
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shunting capacitor created from a series combination of two physical 8 pF capacitors com-

posed of a joint niobium bottom plate, a 220 nm dielectric layer of silicon nitride, and two

separate top plates of aluminum. As seen in Fig. 3.2 the JBA is then connected to two mi-

crowave circulators which allow us to separate input to the JBA from amplified output, and

the whole block is attached to the mixing chamber of a dilution refrigerator. A pump tone

sourced from a microwave generator and a probe tone sourced from a VNA are combined

at room temperature, and applied via the same input line. For the double pumping data,

the two pump tones were sourced from physically separate generators locked to the same

10 MHz rubidium clock whose outputs were combined at room temperature before being

further combined with the probe tone. A superconducting wire wound magnet is placed

below the sample and biased with a DC current to thread an external flux through the

SQUID and allow the linear resonance of the circuit to tune in frequency.
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Figure 3.2: Experimental setup for initial characterization of the DP-JBA. Pump tones for
the single and double-pumping modes of operation are sourced from generators at room
temperature here represented by the single generator at fdrive. Pump tones are combined
with probe tones sourced from a VNA which then travel down one input line of the fridge
to base where they are directed toward the JBA via a two circualtors. The reflected output
from the amplifier is then directed back up to room temperature where it is measured at
the second port of the VNA.
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3.3.2 Biasing Protocol

Next we need to develop a protocol for biasing the DP-JBA to achieve a particular amount

of gain at a particular frequency. First we need to determine the relative detuning between

the frequency of maximum gain, ωg, and the linear frequency of the circuit, ωa . We see

from Eqn. 3.3 that the linear resonance of the JBA shifts with applied power. Looking

back at the expression for the gain (Eqn. 3.5), we can see that the maximum gain of the

device will be limited if the detuning between ωg and ωa does not compensate for this shift

in resonance frequency. Thus, we choose our relative detuning such that the amplifier is

capable of achieving high (30+ dB) gains.

Next we need to decide on ∆. A large pump detuning is desirable since it will both

minimize the overlap of the pump with the cavity, and increase the pump stiffness of the

amplifier. But, as ∆ increases the amount of pump power needed to achieve a particular

amplifier gain will increase, and may lead to unwanted heating of the refrigerator which will

itself cause unwanted back-action in the form of lower qubit coherence times. Additional,

if the detuning is too large then the two pumps may see significantly different attenuations

in the lines of the dilution refrigerator, leading to dramatic differences in the amount of

power that needs to be sourced at room temperature. We verified that pump detunings

from 250 MHz to 1 GHz all resulted in high gains, and chose ∆/2π = 1 GHz as a standard

value since it resulted in pump tones that were far outside of both the amplifier and cavity

bandwidths, but close enough in frequency to not see significantly different line attenuations

and to avoid heating the refrigerator.

Next we need an easy way to find the physical pump powers needed to achieve a desired

amount of gain. Fig. 3.3 shows the gain of the device as a function of the two pump powers.

The gain profile is characterized by a point of highest gain surrounded by concentric contours

of different gain points. The contours come from different combinations of individual pump

powers that result in the same effective pump power ρeff . A simple and effective way to

navigate this landscape is to find the unique point of maximum gain and equally reduce the

individual pump powers until the desired device gain is reached. This methodology easily

yields one effective pump power variable. Fig. 3.4 shows a set of gain profiles, from 5 dB
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all the way up to 30 dB, taken with the pump powers stepped in this way. The small blip

that can be seen at the center frequency of some of the lower gain curves is not some kind

of reflected pump like it was in the single pump case, but is instead a hallmark of phase-

sensitive amplification. The VNA used to to measure these curves has a finite bandwidth,

and around the center of the gain curve you have the coherent mixing of signal components

with gain G and idler components with gain GT e
−iφeffp . All of these curves have the same

ωg because the frequency of the two pumps is kept fixed.
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Figure 3.3: Measured double-pumped gain (color) as a function of both pump powers for
∆ = 1 GHz. Pump 1 was applied at 4.55 GHz and swept from 10 to 19 dBm (at the output
of the generator). Pump 2 was applied at 6.55 GHz and swept from 6 to 14.5 dBm (at
the output of the generator). With this pump configuration, depending on the exact values
of the single pump powers we can see anywhere from 0 to 30 dB of amplifier gain. The
superimposed 45◦ red line represents the cut through the gain landscape that is taken if the
pumps are equally decreased in power from the point of maximum gain.
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Figure 3.4: Measured DP-JBA gain curves for multiple effective pump powers. Starting
from the point of maximum gain as a function of both pumps, we turn down the effective
pump power by reducing the power of each individual pump by an equal amount (∆ Effective
Pump) while keeping the frequencies and magnetic flux fixed. This allows us to vary the
gain of the DP-JBA from the maximum value, here 30 dB, down to whatever value is
desired. The small peak or dip that can be seen in the center of the gain curves is not
related to the pumps, but is a characteristic feature of phase-sensitive amplification.

3.4 Comparison Between Single and Double-Pumping Am-

plifier Characteristics

3.4.1 Gain

After confirming that we can achieve amplification with a double-pump JBA, we can com-

pare the properties of the single-pumping and double-pumping modes of operation. As

expected from Eqn. 3.5, both are capable of achieving Lorentzian gain of greater than

20 dB of gain with very similar bandwidths. Fig. 3.5 compares the 20 dB gain points from

both modes of operation. The single-pumped gain point (red) was taken at with a pump

frequency of 5.565 GHz, and the double-pumped gain point (blue) was taken with pumps

at 4.55 GHz and 6.55 GHz. The frequency offset arises from the slightly different biasing

procedure for the two modes of operation. The single-pump JBA is typically biased by

finding the maximum gain as a function of pump power for a given detuning between ωp

and ωa . A larger detuning between ωg and ωa is needed in the double-pumped case to

reach high gain, leading to a difference in the central frequency of the two gain profiles.

The bandwidth, defined as the full-width of the Lorentzian at a gain 3 dB lower than the
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maximum value, is 31 MHz for the single-pump curve and 28 MHz for the double-pumped

curve. The most notable difference between these two curves is the absence of the large

reflected pump tone at the center of the double-pump gain profile. The double-pump curve

does also exhibit reflected pump tones, but they are well outside the frequency range of the

figure.
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Figure 3.5: Measured 20 dB gain curves from a single-pump (red) and double-pump (blue)
JBA. The single pump trace shows the large reflected pump tone at 5.565 GHz, correspond-
ing to the point of maximum gain. It also shows an artificial secondary spike (due to the
pump overwhelming mixers in the VNA) to the left of the main gain peak colored in gray.
The pumps for the blue trace were located at 4.55 GHz and 6.55 GHz, well removed from
maximum gain frequency and outside of the window of the graph.

3.4.2 Added Noise

The JBA is theoretically quantum-limited in both the single and double-pumped modes of

operation [56]. The simplest way to characterize the added noise of an amplifier is to look

at the noise visibility ratio (NVR), which is defined as the ratio of the noise power received

in a spectrum analyzer at room temperature when the amplifier is turned on relative to

when the amplifier is turned off. When the JBA is off, noise seen at the output of the fridge

is set predominantly by the HEMT, and is relatively flat over a large frequency range. This

background is taken to be a NVR of 0 dB. When the amplifier is turned on, a peak in the

noise is seen corresponding to the extra narrow band amplification of the JBA along with

any extra noise added by the JBA. Fig. 3.6 shows the NVR for the 20 dB single-pump and
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double-pump gain curves shown in Fig. 3.5. Although the exact value of the NVR for the

single-pumped device is a bit difficult to determine because of the large peak arising from

the pump, if we fit single-pump noise profile we can extract a 0.8 dB difference between

the single-pump NVR and the double-pump NVR. If we compare the signal to noise ratio

given by G/NV R = 1/(2Tamp/Tsys + 1/G) for the two modes of operation, where Tamp

is the noise temperature of the amplifier and Tsys is the system noise temperature given

by the components after the amplifier. If we take Tsys to be the same for both the single

and double-pumped JBA, we find TDPamp/T
SP
amp = 1.2. Thus the double-pumped mode of

operation does not add significantly more noise than the single-pumped mode of operation.

A better measure of the added noise of the double-pumped JBA will be presented in the

next chapter, where we will use a qubit as a calibrated noise source to find the measurement

efficiency of a measurement chain based around the DP-JBA.
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Figure 3.6: Noise Visibility Ratio for a 20 dB single-pump (red) and double-pump (blue)
gain curve. The large peak in the single-pump NVR curve arises from the pump.

3.4.3 Saturation Power

As shown in section 3.2, we expect the pumps for the double-pumped mode of operation

to be stiffer than the pump for the single-pumped mode of operation. We can verify this

experimentally by comparing the saturation power for the two devices, that is how much

input power each mode of operation can process for a given amount of gain before pump

depletion causes the observed gain to fall. The insert of Fig. 3.7 shows the measured
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amplifier gain as a function of input power for several unsaturated amplifier gains. If we

examine just one of those curves, we find a range of input powers over which the effects

of pump depletion are small and the measured gain of the amplifier is constant. Once the

input power reaches some critical level the effects of pump depletion start to be significant

and the gain starts to fall. We then extract the input power at which the gain has fallen by

1 dB, known as the P−1dB power. The value of the gain taken for the double-pumped JBA

is taken at ωg, while the value of the gain for the single-pumped JBA is taken slightly off

resonance to avoid contamination by the large reflected pump tone. Fig. 3.7 then compares

the P−1dB powers, the single and double-pumped modes of operation for several different

unsaturated amplifier gains. For all gain points,the double-pumped JBA shows a higher

P−1dB power, and thus a stiffer pump, as expected from section 3.2.
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Figure 3.7: Saturation power for the single vs double-pumped JBA. We compare the P−1dB

powers for both the single pumped (red) and double pumped (blue) mode of operation. This
input power is given both at the plane of the VNA (warm) and at the plane of the amplifier,
as estimated from the measured input line attenuation, (cold) for a variety of unsaturated
amplifier gains. For all amplifier gains, the amplifier can tolerate a higher input power before
saturating while being double-pumped compared to being single-pumped. Insert: Individual
gain versus input power traces for several amplifier gains. While in the unsaturated regime
the gain is independent of pump power and the curve remains flat. Then once a certain
threshold is reached the gain begins to drop as the amplifier saturates. The P−1dB power
is defined as the warm input power at which the gain of the amplifier falls 1 dB below the
constant value it starts with at low input powers.
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3.5 Comparison of Qubit Dephasing with the Single and Double-

Pumped JBA

We expect less qubit dephasing when measuring with a DP-JBA because the two pump

tones are spectrally separated from the cavity. We measured the Ramsey decoherence

times of a transmon qubit [85] in a copper cavity [86] with frequency ωq/(2π) = 4.419 GHz

and longitudinal decay and Ramsey decoherence times T1 = 21 µs and T2R = 6.6 µs,

respectively. The qubit, with antenna length 1.1 mm and width 250 µm, is placed in a

3D copper cavity with resonance frequency ωgc/(2π) = 7.428 GHz when the qubit is in the

ground state, resulting in a dispersive shift (ωgc − ωec)/(2π) = χ/2π = 4.27 MHz. It is

asymmetrically coupled to input and output transmission lines (Qcin = 90000, Qcout = 1700)

resulting in a decay rate of the readout mode of κ/2π = 4.3 MHz. We used a different

JBA from the one in the previous section. This JBA was composed of two 4µA Josephson

junctions which formed the SQUID loop and had a total shunting capacitance of 4.25 pF.

A detailed diagram of the setup for qubit measurements with the single and double-

pumped JBA is shown in Fig. 3.8. The cavity and the JBA are connected via two circulators

and a directional coupler, which are all then mounted at the base of a dilution refrigerator.

The circulator directly connected to the JBA was used to separate input from amplified

output, with the third port leading to higher stages of amplification and our demodulation

setup. The directional coupler was used to apply pumps to the JBA, and the circulator

closest to the cavity served as a way to probe the amplifier through the diagnostic port for

tuning. For the single-pump mode of operation, the cavity drive is sourced from a generator

at fdrive that is then shaped by an Arbitrary Waveform Generator (AWG). The pump for

the JBA is sourced from a physically separate generator and applied to the weakly coupled

port of the directional coupler.

We will be using the JBA to perform phase-sensitive amplification. As shown in the

previous chapter, it is the relative phase between the pump and the signal which determines

which quadrature is amplified. When we sourced the two pump tones and the cavity tone

via three separate generators locked to a common 50 MHz rubidium clock, as discussed

previously, we saw significant drifts in the relative phase, and the amplifier required frequent
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retuning to avoid drifts in which quadrature was being amplified. We addressed this issue

by generating the cavity drive and pump tones from a single set of generators as seen in

Fig. 3.9. The two pumps for the JBA are generated by mixing two tones, one at fdrive

which also corresponds to both the readout frequency for the cavity and the frequency

of maximal gain for the DP-JBA, and the other at the desired pump detuning frequency

f∆. This results in one pump at fdrive + f∆ and the other at fdrive − f∆. The use of an

IQ mixer along with a variable attenuator and phase shifter on one arm of the IQ input

allows us to have independent amplitude control over the two final pump tones. A second

variable attenuator is included after the mixer to allow us to change the power of both

pumps simultaneously and easily change the total gain of the amplifier. The pumps are

then applied to the JBA via a directional coupler as before. The cavity drive is created

from another branch of fdrive which is then passed through a variable phase shifter and is

then shaped with an AWG as before. Drifts in the phase of fdrive now equally affect both

JBA pump phase, and the relative phase between the drive and the pumps is now set by

the physical variable phase shifter on the cavity drive arm. With this configuration the

relative phase only needs to be re-tuned only every day or so, allowing for more involved

experiments.
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Figure 3.8: Experimental setup for the single-pump JBA: A generator at fdrive which is
shaped by an AWG creates the readout pulse for the cavity. A microwave switch is included
to ensure no leakage power is transmitted to the cavity when the readout is off. The readout
pulse exits the cavity where it passes through two circulators and a directional coupler before
being amplified with a JBA and finally is directed toward higher stages of amplification and
demodulation. The pump for the JBA is sourced from a generator at fp and combined with
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To quantify the dephasing induced by the two modes of pumping we looked at the

Ramsey decoherence time (T2R) of the qubit while amplifying along the I quadrature.

It is measured by first applying a detuned Rx(π/2) pulse to the qubit, then waiting a

variable amount of time for the qubit state to evolve, and then applying a second detuned

Rx(π/2) pulse followed by a measurement pulse. This results in an oscillating signal with

a frequency that corresponds to the detuning of the Rx(π/2) pulses, and an exponentially

decaying envelope whose decay constant is the Ramsey decoherence time. This decoherence

time is a combination of the pure dephasing time given by twice the characteristic decay

time of the excited state of the qubit, and an added dephasing time. In the case of the

single-pump JBA, the primary contribution to the added dephasing time is the presence of

excess photons in the cavity, which happens at a rate γφ = 2n̄κ sin2(θ/2) [16]. At a 20 dB

single pump gain point the Ramsey dephasing curves for the amplifier on and the amplifier

off are shown in Fig. 3.10. The decrease in phase coherence from 8 µs to 290 ns indicates the

single-pump mode of operation is adding an addition 28 average photons to the cavity. For

the double-pump mode of operation (Fig. 3.11) the phase coherence only decreased from

6.8 µs to 5.2 µs, putting a limit on the added average photon number of only 1.Amp on
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Figure 3.10: Measured Ramsey dephasing time of a qubit when amplified with a single-
pumped JBA. The dephasing time without any amplification was 8 µs. This decreased to
290 ns when the amplifier is turned on, corresponding to an average of 28 photons in the
cavity due to the large reflected pump tone. (Reproduced from Fig. 1.12)
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Figure 3.11: Measured Ramsey dephasing time of a qubit when amplified with a double-
pumped JBA. The dephasing time without any amplification was 6.8 µs, which only de-
creased to 5.2 µs when the amplifier was turned on, corresponding to only 1 additional
photon in the cavity. (Reproduced from Fig. 1.13)

We conclude that double-pumping the JBA is a stable, reliable method of minimizing

the dephasing typically seen with the single-pump mode of operation, and increases the

saturation power of the amplifier. As we will see in the next chapter, using this mode of

operation allows us to begin to investigate the Heisenberg back-action of phase-sensitive

amplification using the DP-JBA.
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Chapter 4

Quantum Operations with

Parametric Amplifiers

In addition to being an essential component to the measurement chain used to readout

superconducting qubits, parametric amplification can be used to manipulate them as well.

For instance, the Heisenberg back-action associated with parametric amplification can per-

form essential function such as the remote entanglement of distant qubits [9,23,28,87]. But

Heisenberg back-action is a delicate phenomena. The JPC in its standard mode of oper-

ation already allows us to observe the Heisenberg back-action of phase-preserving amplifi-

cation [11], but the qubit dephasing arising from the strong reflected pump tone prevented

a similar measurement with the JBA. Double-pumping the JBA, as described in the last

chapter, minimizes this effect enough to allow us to observe the Heisenberg back-action of

phase-sensitive amplification as well.

As will be explained in this chapter, the fragility of Heisenberg back-action can be an

advantage. It can be used for an accurate, self-calibrating determination of our measurement

efficiency. These types of measurements will be vital in identifying and eliminating the

remaining effects which limit our ability to manipulate quantum systems by the Heisenberg

back-action of measurement.
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4.1 Heisenberg Back-Action of Phase-Sensitive Amplifica-

tion Along the I Quadrature

Understanding the Heisenberg back-action of a parametric amplification process is easier

if we break the measurement process down into a series of steps [1, 11]. Following the

procedure explicitly calculated in [11], but done here for phase-sensitive amplification as

opposed to phase-preserving amplification, we first entangle the state of the qubit, Ψ =

cg |g〉+ce |e〉 with the coherent state used to probe the cavity |α〉, resulting in the joint state

cg |g〉⊗|αg〉+ce |e〉⊗|αe〉. This joint state then propagates to the input of a degenerate phase-

sensitive amplifier such as the JBA, where the amplifier will perform a unitary operation on

the quadratures of the input state. A measurement is then made on the state leaving the

amplifier, resulting in the outcome Im and a collapse of the output mode into the eigenstate

|ΨIm〉 where I |ΨIm〉 = Im |ΨIm〉. The new joint, but no longer entangled, state of the

system is then given by (cg 〈ΨIm | αg〉 |g〉+ ce 〈ΨIm | αe〉 |e〉)⊗ |ΨIm〉.

Calculating the back-action of the measurement on the qubit state is thus equivalent to

calculating the Kraus operator [2] for phase-sensitive amplification given by [88]

MIm =

 〈ΨIm | αg〉 0

0 〈ΨIm | αe〉

 =
e
−Q̄2

m
4σ2
I

(2π)1/4 σ
1/2
I

 e
− (Im−(−Īm+iQ̄m))2

4σ2
I 0

0 e
− (Im−(Īm+iQ̄m))2

4σ2
I



(4.1)

where Im is a particular measurement outcome, the probability distribution of which is

centered around Īm with standard deviation

σ2
I = σ2

Heis = 1/4 (4.2)

If we represent the initial qubit state by its density matrix ρi, then the effect of the mea-
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surement is to transform the density matrix via

ρi
msmt−→ ρf (Im) =

MImρiM
†
Im

Tr(MImρiM
†
Im

)
(4.3)

where
∑

Im
M †ImMIM = 1. If we take the qubit to originally be pointing along the y-axis

so (xi, yi, zi) = (0, 1, 0), and take the Q quadrature to be perfectly squeezed, then we can

explicitly calculate the final Bloch vector to be

xIf = 0

yIf = sech

(
ImĪm
σ2
I

)
(4.4)

zIf = tanh

(
ImĪm
σ2
I

)

This result corresponds to motion in the y − z plane, with the extent of the motion

varying with the strength of the measurement, here parametrized by Īm/σI . For small

Īm/σI the back-action looks like a stochastic hyperbolic rotation in the y−z plane with the

degree of rotation encoded in Im. All outcomes are possible, and the measurement strength

determines their relative probabilities. As the measurement strength increases, yf → 0 and

zf → ±1 with +1 corresponding negative Im results and −1 corresponding to positive Im

results. This is exactly what we expect from a text-book strong projective measurement

as presented in chapter 2. The final qubit state will be one of the two poles of the Bloch

sphere, with |g〉 corresponding to Im < 0 results and |e〉 corresponding to Im > 0 results.

In practice, we are still not able to remove all of the sources of added noise from our

measurement. We can include these effects on the final state of the qubit Bloch vector by

taking

σ2
I = σ2

Heis + σ2
add (4.5)

where the measurement efficiency is given by η = σ2
Heis/σ

2
I , and then taking the weighted

sum of all of the perfect measurement results I which, under the effects of the additional

back-action, could have resulted in the imperfect measurement result Im. This yields the
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final Bloch vector components (x, y, z)If given by

xIf (Im) =

∫
P(I|Im)xf (I) dI

yIf (Im) =

∫
P(I|Im)yf (I) dI

zIf (Im) =

∫
P(I|Im)zf (I) dI

(4.6)

where the weighting factor P(I|Im) is the conditional probability that a perfect measurement

would have given the outcome I given that our imperfect measurement gave the result Im.

We can calculate this conditional probability via the quantum Bayes rule

P(I|Im) =
P(Im|I)P (I)∫
dIP(Im|I)P (I)

(4.7)

where

P (I) = Tr(MImρiM
†
Im

) =
1√

8πσ2
Heis

(
e
− (I−Īm)2

2σ2
Heis + e

− (I+Īm)2

2σ2
Heis

)
(4.8)

is the probability of obtaining outcome I for a perfect measurement and

P(Im|I) =
1√

2πσ2
I (1− η)

e
− (Im−I)2

2(1−η)σ2
I (4.9)

is the probability the perfect measurement result I corresponds to the imperfect measure-

ment result Im. This yields

∫
dIP(Im|I)P (I) =

1√
8πσ2

I

(
e
− (Im−Īm)2

2σ2
I + e

− (Im+Īm)2

2σ2
I

)
(4.10)

and thus
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P(I|Im) =
e
− (Im−I)2

2(1−η)σ2
I√

2πη(1− η)σ2
I

(
e
− (I−Īm)2

2σ2
Heis + e

− (I+Īm)2

2σ2
Heis

)
(
e
− (Im−Īm)2

2σ2
I + e

− (Im+Īm)2

2σ2
I

) (4.11)

Now we can calculate the effect of an imperfect measurement chain on the final Bloch vector,

again assuming we start in the state (0,1,0), and find

xIf = 0

yIf = sech

(
ImĪm
σ2
I

)
e
− Ī2m

2σ2
I

(
1−η
η

)
(4.12)

zIf = tanh

(
ImĪm
σ2
I

)

Finite measurement efficiency has two effects. The first is to decrease the apparent mea-

surement strength Īm/σI since σI is now larger due to the added contribution from the

added non-Heisenberg noise, and the second is to induce reduction in the y-component of

the final qubit state, and thus the magnitude of the Bloch vector, due to information losses.

This information loss can be interpreted as dephasing of the qubit.

4.2 Heisenberg Back-Action of Phase-Sensitive Amplifica-

tion Along the Q Quadrature

The case of phase-sensitive amplification along the Q quadrature starts off with the same

entangled state cg |g〉 ⊗ |αg〉+ ce |e〉 ⊗ |αe〉 which will again propagate toward the amplifier.

In this case, the amplifier will apply a different unitary, and a measurement will result in an

eigenstate of the output mode |ΨQm〉 where Q |ΨQm〉 = Qm |ΨQm〉. The new joint, but no

longer entangled, state of the system is then given by (cg 〈ΨQm | αg〉 |g〉+ ce 〈ΨQm | αe〉 |e〉)⊗

|ΨQm〉 where we have assumed perfect de-amplification of the I quadrature.

We will keep the same convention used in the previous section, where the measurement

strength is parameterized by the value Īm/σI . This is possible if we take our plane of
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reference to be the input of the amplifier, where σ2
I = σ2

Q = 1/4. We can again find the new

state of the qubit by calculating the Kraus map for phase-sensitive amplification along the

Q quadrature, given by [88]

MQm =

 〈ΨQm | αg〉 0

0 〈ΨQm | αe〉

 =
e
−Ī2m
4σ2
I

(2π)1/4 σ
1/2
I

 e
− (Qm−i(−Īm+iQ̄m))2

4σ2
I 0

0 e
− (Qm−i(Īm+iQ̄m))2

4σ2
I


(4.13)

Starting from the same initial state ρi = (0, 1, 0), we can calculate the final qubit Bloch

vector

xQf = sin

(
QmĪm
σ2
I

)
yQf = cos

(
QmĪm
σ2
I

)
(4.14)

zQf = 0

The back-action for amplification along this quadrature is fundamentally different. The

operation kicks the qubit to a new position on the equator of the Bloch sphere, with the

resulting azimuthal angle encoded in the outcome Qm. This process is stochastic because the

measurement outcome is a-priori unknown. As before, all angles are accessible, with their

relative likelihoods determined by measurement strength still given by Īm/σI . Furthermore,

if we view this process as a stochastic Ramsey rotation, then the frequency of the oscillation

in xQf and yQf is determined by the measurement strength. We emphasize that this back-

action is not the result of variation of the cavity-qubit interaction, but instead is determined

by the choice of amplified quadrature which can be made on the fly after the coherent state

has left the cavity.

We can again add in the effects of an imperfect measurement chain via added classical

noise in the same way as we did for amplification along the I quadrature, finding

P(Qm|Q) =
1√

2πσ2
I (1− η)

e
− (Qm−Q)2

2(1−η)σ2
I
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and

P (Q) =
1√

2πσ2
I

e
− (Q−Q̄m)2

2σ2
I

thus,

P(Q|Qm) =
1√

2π (1− η) ησ2
I

e
− (Q−Q̄m(1−η)−Qmη)2

2(1−η)ησ2
I (4.15)

We then calculate the final Bloch vector for amplification along the Q-quadrature in the

case of an imperfect measurement chain via

xQf (Qm) =

∫
P(Q|Qm)xf (Q) dQ

yQf (Qm) =

∫
P(Q|Qm)yf (Q) dQ

zQf (Qm) =

∫
P(Q|Qm)zf (Q) dQ

(4.16)

and find

xQf = sin

(
QmĪm
σ2
I

+
ĪmQ̄m
σ2
I

(
1− η
η

))
e
− Ī2m

2σ2
I

(
1−η
η

)

yQf = cos

(
QmĪm
σ2
I

+
ĪmQ̄m
σ2
I

(
1− η
η

))
e
− Ī2m

2σ2
I

(
1−η
η

)
(4.17)

zQf = 0

Here the effects of non-Heisenberg noise are much more apparent. The reduced measure-

ment efficiency serves to both give an offset to the stochastic Ramsey fringes, and more

importantly reduces the contrast of the fringes. For very low η, this effect will not be

visible at all. We can thus use the contrast of these fringes as a direct measurement of η.
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Figure 4.1: Heisenberg back-action of phase-sensitive amplification. A) Fresnel lollipop
representation of the joint qubit and signal coherent state before and after phase-sensitive
amplification along the I quadrature. The back-action resulting on the qubit from this
unitary applied to the coherent state is a stochastic kick along lines of longitude, with the
projection of the kick along z encoded in Im. B) Fresnel lollipop representation of the
coherent state before and after phase-sensitive amplification along the Q quadrature. The
resulting Heisenberg back-action is a stochastic kick along lines of latitude, with the the
magnitude of the kick encoded in Qm. This is representative of the non-trivial types of
Heisenberg back-action that can be observed after other unwanted types of back-action are
well controlled and minimized. (Reproduced from Fig. 1.15)

4.3 Heisenberg Back-Action of Phase-Preserving Amplifica-

tion

Phase-preserving amplification treats the two quadratures on the same footing, so we should

expect to see both the stochastic kick along lines of longitude that we saw encoded in the

Im outcome and the stochastic Ramsey rotation along lines of latitude encoded in the

Qm outcome. One potential complication of phase-preserving amplification is the need to

explicitly include the idler. We can do this by writing the input state as cg |g〉 ⊗ |αg, 0〉 +

ce |e〉 ⊗ |αe, 0〉 where the input to the signal comes from the cavity and is represented

by cg |g〉 ⊗ |αg〉 + ce |e〉 ⊗ |αe〉 and the 0 represents the vacuum input to the idler. Phase-

preserving amplification corresponds to an addition of the signal and idler inputs (see section

2.1.2), so the observables in this case are not I and Q , but are instead I pp = I signal +Q idler
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and Qpp = Qsignal + I idler. A measurement will project us into an eigenstate |ΨIm,Qm〉

where I pp |ΨIm,Qm〉 = Im |ΨIm,Qm〉 and Qpp |ΨIm,Qm〉 = Qm |ΨIm,Qm〉. The back-action of

phase-preserving amplification in both the ideal and non-idea case was explicitly calculated

in [11]. The Kraus map for this type of amplification is given by

MIm,Qm =

 〈ΨIm,Qm | αg, 0〉 0

0 〈ΨIm,Qm | αe, 0〉

 (4.18)

=
1√
π
e
− (Qm−Q̄m)2

4σ2
I

e
− (Im+Īm)2

4σ2
I e

iĪmQm
2σ2
I 0

0 e
− (Im−Īm)2

4σ2
I e

− iĪmQm
2σ2
I

 (4.19)

where here σ2
I = σ2

Heis = 1/2. If we start from the same initial qubit Bloch vector

(xi, yi, zi) = (0, 1, 0), and assume our measurement adds no additional non-Heisenberg noise,

we calculate the final qubit Bloch vector to be

xf (Im, Qm) = sech

(
ImĪm
σ2
I

)
sin

(
QmĪm
σ2
I

)
yf (Im, Qm) = sech

(
ImĪm
σ2
I

)
cos

(
QmĪm
σ2
I

)
(4.20)

zf (Im) = tanh

(
ImĪm
σ2
I

)

This shows all the hallmarks of phase-sensitive amplification along both quadratures

simultaneously as expected. For strong measurements, the sech terms in xf and yf will go

to zero and the tanh in yf will again to go ±1 with the sign dependent on the sign of the

measurement result Im. This is exactly what we expect from a textbook strong projective

measurement. For weaker measurements, we see a combination of the stochastic Ramsey

rotation around lines of latitude given by the sin and cos terms in xf and yf , and the

stochastic kick toward the poles given from the tanh term in zf and the sech terms in xf

and yf . Also as with the phase-sensitive case, the magnitude of the stochastic Ramsey

rotation is encoded in Qm while the magnitude of the stochastic kick toward the poles is

encoded in Im. Here we can also see that despite the extra half-photon of noise added by

phase-preserving amplification, the final Bloch vector x2
f + y2

f + z2
f = 1 meaning the qubit
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remains in a pure state.

Calculating the effects of non-Heisenberg noise on the final state of the qubit yields

xf (Im, Qm) = sech

(
ImĪm
σ2
I

)
sin

(
QmĪm
σ2
I

+
Q̄mĪm
σ2
I

(
1− η
η

))
e
− Ī

2
m
σ2
I

(
1−η
η

)

yf (Im, Qm) = sech

(
ImĪm
σ2
I

)
cos

(
QmĪm
σ2
I

+
Q̄mĪm
σ2
I

(
1− η
η

))
e
− Ī

2
m
σ2
I

(
1−η
η

)
(4.21)

zf (Im) = tanh

(
ImĪm
σ2
I

)

The effects of imperfect measurement are also very analogous to the phase-sensitive case.

The measurement becomes less strongly projective, the magnitude of the stochastic Ramsey

fringes decreases, and the final state may no longer be pure.
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Figure 4.2: Heisenberg back-action of phase-preserving amplification. Fresnel lollipop rep-
resentation of the coherent state before and after phase-preserving amplification. The back-
action resulting on the qubit from this unitary applied to the coherent state is in general
the combination of a stochastic kick along lines of longitude and lines of latitude, with the
magnitude of the kick encoded in Im and Qm respectively.

4.4 Measurement of the Heisenberg Back-Action

4.4.1 Experimental Setup

We choose to perform phase-sensitive amplification with a DP-JBA and phase-preserving

amplification with a JPC. The experiment was originally done with the JPC and the data

published in [11], and the experiment with the DP-JBA was conducted later. The setup

is very similar to the one shown in Fig. 3.9, but with the directional coupler and the JBA

switched out for a JPC for the investigation of phase-preserving amplification. The same
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DP-JBA and qubit that were used to characterize the non-Heisenberg back-action were

used to measure the Heisenberg back-action, and the details of the devices can be found in

section 3.5. The JPC used to perform phase-preserving amplification was composed of two

λ/2 transmission line resonators, one at the signal frequency ωa/(2π) = 7.4794 and the other

at the idler frequency ωb/(2π) = 9.161, and a JRM with four outer junctions with I0 = 2µ

critical currents and four inner junctions with I0 = 4µA critical currents. The qubit that

was measured by the JPC was also a transmon qubit with frequency ωq/(2π) = 5.1038 GHz

and longitudinal decay and Ramsey decay times T1 = 60 µs and T2R = 7 µs, respectively.

It is placed in a 3D high purity aluminum cavity with waveguide Purcell filter and resonant

frequency ωgc = 7.4813 GHz when the qubit is in the ground state, and with input quality

factor, Qcin = 540000 resulting in a dispersive shift (ωgc − ωec)/(2π) = χ/2π = 3.8 MHz. It

is asymmetrically coupled to input and output transmission lines resulting in a decay rate

of the readout mode of κ/2π = 4.9 MHz.

The protocol for measuring the Heisenberg back-action is the same regardless of the

type of amplification being performed. First the amplifier is biased to have 20 dB of gain,

and, in the case of phase-sensitive amplification, the appropriate quadrature is chosen. The

pulse sequence for determining the Heisenberg back-action (shown in Fig. 4.3) consists of

three steps: state preparation, variable strength measurement, and qubit state tomography.

During the first step, we perform a Rx(π/2) pulse on the qubit and then read it out with

a strong measurement pulse (Īm/σI = 1.75), which lets us discriminate between the qubit

initially being in the ground or excited state. We post-select based on the results of this

measurement, analyzing only the trials where the qubit is found to be in the ground state.

During the next step, another Rx(π/2) pulse is applied to the qubit preparing it along the

+y direction, (xi, yi, zi) = (0, 1, 0). Then, a measurement pulse is applied with strength

Īm/σI varied from 0 to 1.75 by changing the cavity drive amplitude. In the last step, qubit

state tomography is performed by applying pre-rotation pulses (Ry (π/2) ,−Rx (π/2) , Id)

followed by a strong measurement to determine the final qubit Bloch vector components

(xf , yf , zf ), respectively. The entire protocol is repeated 106 times for each measurement

strength and choice of amplified quadrature.

In the case of phase-sensitive amplification the relative phase between the cavity drive
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and effective pump of the DP-JBA is calibrated via a slight variation of the pulse sequence

that is used for investigating the back-action (Fig. 4.4 A.). The qubit is still prepared via

post selection, but the strength of the middle measurement is fixed at Īm/σI = 1.5 and

the relative phase between the effective pump of the DP-JBA and the cavity drive, φrel is

varied over more than 200 degrees. The distance between the centers of the ground state and

excited state distributions in the resulting histograms are extracted and plotted against the

relative phase angle (Fig. 4.4 B). The phase corresponding to the maximal distance between

the centers (φrel = 7.0◦) is used for amplification along the I quadrature and the phase where

the distance between the centers goes to zero (φrel = 100.5◦) is used for amplification along

the Q quadrature. Two example measured histograms, one corresponding to amplification

along the I quadrature and the other corresponding to amplification along the Q quadrature

are show in Fig. 4.4.1.

State Preparation Variable 
Pulse

Tomography
Ry(π/2)
Rx(-π/2)
or Id

Rx(π/2) Rx(π/2)

Tm = 500 ns

qubit

cavity
Im / σ

Ι 
= 1.75

600 ns

Im / σ
Ι 
= 1.75variable Im / σ

Ι 
, φrel

Figure 4.3: Back-action experimental determination:Pulse sequence: First a strong mea-
surement pulse (Īm/σI = 1.75) is applied and later used to post-select for trials where the
qubit is projected to the ground state. Then a Rx(π/2) pulse is used to rotate the qubit
to the +y axis. A measurement pulse of variable strength (Īm/σI = 0 to Īm/σI = 1.75) is
applied. We are measuring the back-action of this measurement pulse so the type of am-
plification, here represented by φrel is explicitly included in the pulse description. Finally
tomography is performed.

87



A

B

di
st

an
ce

 ( 
  )

 φrel (deg)

3.0

2.0

1.0

0.0 150100500

State 
Preparation

Variable 
Measurement

Rx(π/2) Rx(π/2)

qubit

cavity

 1.5 variable φrel

Figure 4.4: Phase calibration for the phase-sensitive amplification. A) Pulse sequence for
the measurement. The qubit is prepared along the +y axis and then measured with a strong
cavity pulse. B)Measured separation between the center of the ground and excited state
qubit histograms as a function of relative phase angle between the cavity drive generator
and the effective JBA pump. The relative phase is swept over 200 degrees, leading to a
different amount of separation in the resulting qubit histograms (B).The angle of maximum
separation corresponds to amplification along the I-quadrature while the angle of minimum
separation corresponds to amplification along the Q-quadrature.

Im / σΙ=1.75

Q
m
 / 
σ Ι

Im / σΙ

-10

0

10

-10 0 10

0

Max

Im / σΙ

-10 0 10

Q
m
 / 
σ Ι

-10

0

10
A. B.

Figure 4.5: Measured histograms of a qubit prepared along the +y axis and then measured
with a double-pumped JBA amplifying along the I axis (A), and along the Q axis (B).
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4.4.2 Results of Measurement of Phase-Sensitive Back-Action

Fig. 4.6 demonstrates the results of phase-sensitive amplification of the I-quadrature for

three different measurement strengths. The left panels show a histogram of the outcomes,

while the right three panels show the conditional tomograms of the final qubit Bloch vector

(〈X〉c , 〈Y 〉c , 〈Z〉c) which are obtained by plotting the averaged tomography result versus

measurement outcome for each (Im, Qm) of the 201x201 bins in the histogram. The I-

quadrature of the input coherent states is entangled with the z-projection of the qubit,

the back-action corresponds to motion along a line of longitude on the Bloch sphere with

the amplitude of the back-action encoded in the I-component of the measurement outcome.

This is consistent with the conditional tomograms showing progression away from the initial

state (0, 1, 0) toward (0, 0, 1) or (0, 0,−1), and is exactly what is expected from Eqn. 4.12.

〈X〉c remains close to 0 for all measurement strengths, which is consistent with the evolu-

tion occurring in the y-z plane. In the limit of large Īm/σI , the operation is a projective

measurement along the z-axis.

In contrast, Fig. 4.7 demonstrates the results of phase-sensitive amplification of the

Q-quadrature. The input state to the DP-JBA is unchanged, but the I-component is de-

amplified resulting in a single peak in the distribution of outcomes. The Q-quadrature

encodes back-action orthogonal to the qubit z-axis, and that we should expect the back-

action (encoded in the Qm-component of the outcome) to correspond to evolution along

lines of latitude on the Bloch sphere. As expected from Eqn. 4.17, for no measurement the

qubit remains in the initial state (0, 1, 0), and as the measurement strength increases we see

fringes in 〈X〉c and 〈Y 〉c. For high measurement strengths, (Īm/σI = 1.75), the exponential

suppression of the fringe amplitude due to finite measurement efficiency causes all three

conditional tomogorams to appear white.

As the back-action never results in projection toward the poles, and hence never purifies

the qubit state, this operation does not result in a measurement of the qubit despite the

fact that a pulse has been entangled with a qubit state, left the cavity, been amplified and

recorded. Contrasting the results in Fig. 4.6 illustrates that the choice of amplification

mode affects not just the classical outcome but also the quantum back-action. Since the
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choice of amplified quadrature can, in principle, be made on the fly, the type of operation

performed is not determined at the time when the qubit interacts with the cavity, but is

rather determined only after the coherent pulse is measured projectively. In this experiment

this mostly takes place after the DP-JBA, and demonstrates a wonderful fact. Because

the entangled qubit-pulse state is a fully quantum resource, the action of phase-sensitive

amplification on the flying half of this heterogeneous Bell pair can be used to produce novel

evolution on the standing half, of which measurement of the qubit along the z-axis is only

one possibility.

Q
m
 / 
σ Ι

Im / σΙ

-10

0

10

-10 0 10
-10

0

10

-10 0 10

Q
m
 / 
σ Ι

Im / σΙ

<Y>c <Z>c<X>c

0

Max

-1

0

1

Im / σΙ=0

Im / σΙ=1.05

Im / σΙ=1.75

Figure 4.6: Experimental outcomes for amplification along the I quadrature. The left
column shows (Im, Qm) histograms, with the color plotted on a log scale for visibility, for
three different measurement strengths

(
Īm/σI

)
. The right three columns are tomograms

showing, for the same measurement strengths, conditional maps of 〈X〉c, 〈Y 〉c, 〈Z〉c versus
(Im, Qm). The static value of the 〈X〉c measurement tomograms, as well as the decay in the
〈Y 〉c tomograms and the color gradient that develops in the 〈Z〉c tomograms is consistent
with qubit evolution along lines of longitude.
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Figure 4.7: Experimental outcomes for amplification along theQ quadrature. The stochastic
Ramsey fringes in the 〈X〉c and 〈Y 〉c tomograms, along with no evidence of projection in
the 〈Z〉c tomograms for even the highest measurement strengths, indicate an operation is
being performed that is fundamentally not a measurement. These results are consistent
with the qubit evolving along lines of latitude. Due to finite measurement efficiency, the
contrast of the fringes is reduced, leading to the lack of visible fringes at Īm/σI = 1.75.

4.4.3 Results of Measurement of Phase-Preserving Back-Action

Fig. 4.8 shows the results for phase-preserving amplification with the JPC. Since phase-

preserving amplification gives information about both quadratures, we see both types of

back-action. As expected from Eqn. 4.20, motion along longitudes of the Bloch sphere is

still encoded in the Im value and motion along the equator is still encoded in Qm, but

the rate of diffusion is slower compared the phase-sensitive amplification where only one

process is happening at a time. For zero strength measurement the qubit once again starts

pointing along the +y direction, but as the measurement strength is increased we see the

histograms separate and simultaneously see fringes develop in 〈X〉c and 〈Y 〉c whose angle

is dependent on the measurement result Qm along with differentiation in 〈Z〉c depending

on the measurement result Im. Again, all results are possible but their relative probability

is given by the measurement strength. For high measurement strengths the measurement

becomes a standard projective measurement.
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Figure 4.8: A. Experimental outcomes for phase-preserving amplification. The right three
columns are tomograms showing, for the same measurement strengths, conditional maps
of 〈X〉c, 〈Y 〉c, 〈Z〉c versus (Im, Qm). Because phase-preserving amplification treats equally
both quadratures of the coherent pulse, the back-action is a simultaneous finite-strength
measurement (encoded in Im) and stochastic Ramsey evolution (encoded in Qm). As shown
in the last set of tomograms, as the measurement strength increases, we get closer to an
ideal projective measurement.

One can extend these ideas to investigate what happens to the state of a quantum system

during a measurement pulse. The Siddiqi group has performed a similar measurement [19]

where instead of making a phase-sensitive measurement with one long pulse and obtaining a

single result (Im, Qm) as described above, they treat their measurement pulse as a string of

much shorter measurements, each of which provided a result (Im, Qm) from which they could

calculate the state of their system. This let them reconstruct the trajectory along the Bloch

sphere that their quantum system had taken during the measurement. The Huard group

has made similar measurements of quantum trajectories of a quantum system undergoing

phase-preserving amplification [24]. These types of measurements allow for much greater

control of quantum systems, both because they hint at ways to use measurement to steer

quantum systems around the Bloch sphere, and because decoherence is lessened due to the

continuous monitoring of the fluctuations of the environment.

92



4.5 Characterizing Measurement Efficiency by the Measure-

ment of Heisenberg Back-Action

As seen in Eqns. 4.21 and 4.17, the amplitude of the stochastic Ramsey oscillations is expo-

nentially suppressed for η < 1. Thus, the ability to see such oscillations in an experiment

is a direct indication of an efficient measurement chain. The fringes shown in Fig. 4.9

were extracted from the 〈X〉c and 〈Y 〉c tomograms for Īm/σI = 1 for phase-preserving and

Īm/σI = 1.05 for phase-sensitive amplification along the Q quadrature. We collapse the re-

sults down to a single fringe amplitude for each value of Qm by 〈X〉c =
∑

Im
P (Im, Qm)(x)f

and 〈Y 〉c =
∑

Im
P (Im, Qm)(y)f where P (Im, Qm) is the probability of measuring that par-

ticular result as extracted from the measured histogram. For phase-sensitive amplification

along the Q quadrature, all values of Im are summed over. For phase-preserving amplifi-

cation, only outcomes around Im = 0 are used as others are projected towards the poles,

reducing the fringe contrast. By fitting the amplitude of the fringes for both phase-sensitive

amplification along the Q quadrature and phase-preserving amplification we can very accu-

rately extract our measurement efficiency, yielding η = 0.32 for the experimental setup with

the DP-JBA and η = 0.54 for the setup with the JPC (Fig. 4.9). Because this procedure

does not require any additional calibration experiments or hardware, it serves as a robust

self-calibrated procedure to extract η.

The length of the Bloch vector as a function of measurement strength both serves

as an illustrative summary of the measurement process and gives us a separate way to

extract η. Fig. 4.10 plots the measured length of the Bloch vector conditioned on the result

of the measurement outcome defined by 〈R〉c =
√
〈X〉2c + 〈Y 〉2c + 〈Z〉2c , the length of the

unconditional Bloch vector (i.e. averaged over the result of the measurement) defined by

〈R〉 =
√
〈X〉2 + 〈Y 〉2 + 〈Z〉2, and the conditional length of the z-Bloch vector 〈|Zc|〉. In an

ideal measurement, 〈R〉c would start at 1 and stay at one for all measurement strengths

and for all amplification processes. What we see instead is that 〈R〉c starts at slightly below

1 due primarily to the effects of finite T1 and T2R and finite readout fidelity, and then

begins to dip for both amplification processes. This is due to a direct loss of information

linked to reduced measurement efficiency. Then in the case of phase-preserving and phase-
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Figure 4.9: Qubit state x and y Bloch vector components for Im/σI = 1.0(1.05) ver-
sus Qm/σI for phase-preserving amplification (left) and phase-sensitive amplification along
φAmp = π/2 (right). For phase-preserving amplification, only outcomes around Im = 0 are
included as others are projected towards the poles, reducing the fringe contrast. The data
(filled circles in green and orange for 〈X〉c and 〈Y 〉c, respectively) are fit to an unconstrained
sine wave (fit lines shown as solid lines). From the amplitude of the fringes, we extract the
measurement efficiencies of η = 0.54(0.32) for phase-preserving (sensitive) amplification.

sensitive amplification along the I axis, we see 〈R〉c start to recover due to the projective

nature of the measurement. This can be seen from the fact that in these two cases for

high measurement strengths 〈R〉c tracks with 〈|Zc|〉, and from the fact that in the case of

phase-sensitive amplification along the Q axis, which is not projective for any measurement

strength, 〈R〉c continues to fall. Superimposed for all 〈R〉c lines are the calculated values

of the conditional purity expected from theory. The unconditioned Bloch vector lengths

can be thought of as representing measurement induced dephasing which would occur if

the final measurement result (Im, Qm) were not known. Fitting to Ae−(Īm/σI)21/η also can

be used to extract η, giving η = 0.33 for the DP-JBA and η = 0.54 for the JPC, in good

agreement with the Ramsey fringe data.

This method of determining η has certain advantages to other commonly used alterna-

tives. For example, one such method replaces the cavity with a calibrated noise source to

determine the noise temperature of the measurement chain from which the efficiency of the

detector can be calculated. However, this calibration must be performed on a separate oc-

casion or with a switch between the two whose impedances are identical and losses are well

known. In either case there is potential for differences in losses between the calibration and

the experiment leading to an unfaithful extraction of η. Another method consists of mea-
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Figure 4.10: Summary of the measurement process for phase-preserving (left) and phase-
sensitive (right) amplification. First, consider the purity of the final state vs. pulse strength
(closed black circles) when the outcome of the middle measurement is ignored, which we
term the unconditional purity (〈R〉). This serves as a calibration of the total information
content in the coherent pulse. Fits to theory, from which we extract a separate estimate
of η = 0.54(0.33) are shown as gray curves. For phase-sensitive amplification the total
information lost does not depend on the choice of amplified quadrature, for clarity only
φAmp = π/2 is shown. Next, we calculate the average of the absolute value of 〈Z〉c when
the operation outcome when is used to condition our estimate of the final qubit state (data
as open black circles), which we term the Z-purity (〈|Z|〉c). This represents the average
effective projectiveness of the measurement for a given coherent pulse amplitude, and as
such is only plotted for phase-sensitive amplification (φAmp = 0). Finally, we calculate the
weighted average of the full Bloch vector length (lavender circles), termed the conditional
purity (〈R〉c). This demonstrates the competition between measurement-induced dephasing
due to lost information in our finite-efficiency quantum operations and purification due to
projection towards z = ±1. Theory curves for the measurement operations are shown
as purple lines, using η = 0.54(0.33) and matching the non-unity initial length which we
attribute to decay during the operation and finite readout fidelity.

suring the ratio of the separation between the ground and excited state histograms to their

standard deviations (2Īm/σI) and calculating η from Īm/σI =
√

2n̄ηκTm sin (θ/2) where

Tm is the length of the recorded measurement pulse and θ = 2 arctan (χ/κ). This method

is vulnerable to errors in the required separate calibrations of the system bandwidth, cavity

drive in photon units, and measurement duration and pulse shape. Our present method

avoids both the need for additional hardware and separate calibration experiments, and

is therefore more robust. This protocol will be valuable in tracking down the remaining

sources of inefficiencies in our experimental protocols.

The ability to achieve an efficiency greater than 50 % in the case of phase-preserving

amplification provides direct confirmation of the essential quantum nature of efficient am-
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plification. The data cannot be explained by the idler contributing uncorrelated classical

fluctuations to the amplifier output, instead the signal and idler are squeezed into a two-

mode state. Another experiment [89] has shown evidence of such correlations in a pair of

back-to-back amplifiers. The data shown here extend that result by using an external qubit

as a quantum witness to the action of the JPC. While phase-sensitive amplification did not

achieve this goal in this experiment, largely due to the greater difficulty in extremely stable

bias of the amplifier, we are confident that with improved performance of next generation

amplifiers [90] they will also achieve extremely high quantum efficiencies. More recent ex-

periments using phase-sensitive amplification with a DP-JBA are approaching this 50 %

threshold [19].
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Chapter 5

Josephson Circulator

Measurement efficiencies from 0.40 to 0.67 are among the highest reported values for disper-

sive qubit readout schemes based on a variety of different parametric amplifiers [11,19–22].

One of the largest contributions to the reduction of measurement efficiency are losses be-

tween the cavity and the parametric amplifier. Experiments typically include about 1.5

dB of loss between the cavity and the parametric amplifier [19, 22], which directly limits

the measurement efficiency to η ∼ 0.7. This chapter will focus on the microwave circulator,

which is the main source of the loss between the cavity and the amplifier, and will present an

alternative based upon a new method of pumping the JPC [58] to achieve better efficiency.

5.1 Microwave Circulators

Microwave circulators are the main non-reciprocal element in superconducting qubit exper-

iments. They are essential both for minimizing the back-action from excess photons in the

cavity arising from higher temperature stages or reflected tones off parametric amplifiers,

and for allowing the routing of signals in more complicated experimental protocols (as an

example see [23]). They are three port devices, which pass signals from port 1 to port 2

to port 3 while blocking anything traveling in the reverse direction [91]. This behavior is
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encapsulated by the scattering matrix for the ideal circulator

s =


0 0 1

1 0 0

0 1 0

 (5.1)

Commercial microwave circulators are based on the Faraday effect, i.e. the non-reciprocal

interaction between magnetic fields and light. They typically provide around 18 dB of re-

verse isolation over a 4 GHz bandwidth, and around 0.4 dB of insertion loss [92]. In practice,

the effective insertion loss of the devices is much higher since the strong magnetic field of

the circulator mandates that it be physically separated from the qubit and cavity, and this

in turn means that additional cables and connectors, all with their own losses, must be

included.

We would like a microwave circulator that is loss-less, noiseless, and completely com-

patible with superconducting qubit fabrication and operation. This last requirement would

allow for the ‘on-chip’ integration of qubits, cavities, and circulators which would mini-

mize the loss from the connecting elements. Moreover it also points toward a device based

upon a completely different source of non-reciprocity. It should also be minimal in terms

of implementation and hardware, meaning it should be a strictly three-port device.

5.2 Non-Reciprocity with the JPC

To create a more efficient microwave circulator we must first identifying a source of non-

reciprocity that is not based on strong magnetic fields. We have already met another

source of non-reciprocity which is highly compatible with superconducting qubits, the non-

reciprocal phase shift that arises in parametric processes. For example, if we examine at

the scattering matrix for the single non-degenerate three-wave mixing gain process

 aout[ω1]

b†out[−ω2]

 =

 √
G

√
GT e

−iφp

√
GT e

iφp
√
G


 ain[ω1]

b†in[−ω2]

 (5.2)

98



or the conversion process

aout[ω1]

bout[ω2]

 =

√1− C
√
Ce−iφp

√
Ceiφp

√
1− C


ain[ω1]

bin[ω2]

 (5.3)

then we find that both the trans-gain and the trans-conversion exhibit a non-reciprocal

phase shift which depends on the phase of the pump. Regrettably this feature alone is

not enough. The scattering matrices are symmetric in magnitude, meaning that several

parametric processes need to be interfered in order to generate interactions that are non-

reciprocal in magnitude.

One way to achieve this is to create a device with two symmetric interfering paths, and

then insert the non-reciprocal parametric device into one of the paths [93]. For example, if

two JPCs are physically coupled together at the resonators with resonant frequency b, and

a conversion processes is implemented on each between modes a and b, then the resulting

device is a frequency preserving block that implements a non-reciprocal phase shift whose

value depends on the phases of the two applied pumps [94] (see Fig. 5.1). This type of device

is known as a gyrator. If the gyrator is then placed between two microwave hybrids, four-

port devices which equally split an incoming signal in power but may impart an unequal

phase shift [91], one can build a four-port microwave circulator. For example, in Fig. 5.1

B there are two paths that signals can take from port 1 to port 2, and each path imparts

a π/2 phase shift. Thus, the net effect is signal transmission from port 1 to port 2. There

are also two paths signals can take from port 2 back to port 1, but one of these paths has a

π/2 phase shift and the other has a 3π/2 phase shift leading to destructive interference and

thus no transmission from port 2 to port 1. This was the first approach taken at Yale to

realize a non-Faraday circulator. Although this configuration does result in directionality,

it relies on interference spread over multiple microwave elements, meaning that it achieves

directionality at the expense of minimality. The device not only involves four separate

elements, but also has an extra port. Additionally, optimal device performance relies upon

the ability to fabricate and match two JPCs and two different types of on-chip microwave

hybrids which was challenging in practice.
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Figure 5.1: Schematic of a microwave gyrator and four-port circulator. A) A gyrator would
be composed of two physical JPCs coupled at the port for mode b. Both JPCs are pumped
to couple modes a and b via a conversion process, which we supposed to be C = 1. This
results in a matched frequency preserving block which gives a non-reciprocal phase shift
given by φp2 − φp1 + π. The desired phase shift is acquired for φp2 − φp1 = ±π/2. B)
The four port circulator consists of a gyrator, with a 90 deg hybrid on both sides. A
90 deg hybrid takes signals incident on one port, say 1, and produces two outputs which
have equal magnitudes but different phase shifts represented by the different labels on the
different arms of the device. This configuration sets up two interfering paths such that
signals are transfered from port 1 to port 2, from port 2 to port 3, from port 3 to port 4,
and from port 4 to port 1 with signals blocked from transferring in the opposite direction.

It is also possible achieve directionality via interfering multiple parametric processes

within a single parametric device [57, 95, 96]. We were particularly inspired by the work

in [57], which theoretically treats coupled parametric processes in three mode three port

a system which is very similar to the JPC. Although traditionally the JPC has coupled

modes a and b via off-resonant pumping of mode c, any pair of modes can be coupled

via either type of parametric process. In fact, as shown in Fig. 5.2, the three modes of

the JPC can be connected with up to six simultaneous gain and conversion processes.

As an additional complication, gain and conversion processes do not treat off-resonant

signals in the same way. This can be seen directly from the scattering matrices, since gain

processes translate between positive and negative frequencies while conversion processes

translate between two positive frequencies. If two modes are connected via a gain process,

and an incident signal is slightly positively detuned from resonance, then the resulting

trans-gain will be slightly negatively detuned from that mode frequency. This can also be
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directly seen from conservation of energy. If we have an incident slightly off-resonant tone at

frequency ωs + δω, then the frequency of the created idler tone is given by ωp− (ωs + δω) =

ωs + ωi − (ωs + δω) = ωi − δω. In contrast, if two modes are connected via parametric

conversion processes both incident signal and created idler tones will maintain the same

sense of detuning. This can be seen either from the fact that the scattering matrix directly

connects positive frequency components or from conservation of energy. The frequency

of the converted tone will be (ωs + δω) − ωp = (ωs + δω) − (ωs − ωi) = ωi + δω. Since

the goal is to build devices which achieve non-reciprocity via interference between multiple

simultaneous parametric processes, it is perhaps easier to start by picking combinations of

processes which return off-resonant tones to the same starting frequency (see Fig. 5.2). We

will also start by restricting ourselves to coupling each pair of modes via only one type of

parametric process at a time. These restrictions yield two different sets of mode couplings,

one which connects all three pairs of modes via conversion processes which will be analyzed

in this chapter, and another which connects two pairs of mode via gain processes and the

third via a conversion processes which will be analyzed in the next chapter.

We next need a way to analyze the response of the JPC to multiple simultaneous cou-

plings. This requires simultaneously solving multiple coupled Langevin equations. We do

this following the method introduced in Ranzani et al in [57] which demonstrates that solv-

ing this set of coupled equations is equivalent to simply calculating i 1
γM
KM−1K − 1 where

where γM = (κaκbκc)
1
3 , K is the environmental coupling matrix defined by

K =


√
κa 0 0

0
√
κb 0

0 0
√
κc

 (5.4)

and M is the mode coupling matrix, which for three simultaneous conversion processes is

given by

M =


δaa βab βac

β†ab δbb βbc

β†ac β†bc δcc

 (5.5)
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Figure 5.2: Schematic of mode coupling options in the JPC. A) Each pair of modes in the
JPC can be connected by either a parametric gain or a parametric conversion process. Both
of these processes couple signals on resonance, but they do not treat off resonant signals
in the same way. Parametric gain processes take tones that are negatively detuned from
resonance to frequencies that are positively detuned. In contrast, parametric conversion
processes preserve the sign of the detuning. Therefore, when interfering groups of parametric
processes there are combinations, such as shown in (B), with three pairs of conversion
processes, which start and stop at the same frequency. In this case the process is phase-
preserving. There are also combinations of processes, such as shown in (C), with two
conversion processes and one gain process, which do not return to the same frequency upon
completion of a cycle. These lead to phase-sensitive processes.

δii = κi
γM

( (ω−ωi)
2πκi

+ i) where ωi is the resonant frequency of mode i, κi is the decay rate of

mode i, and βij =
|gij |
2γM

eiφ
ij
p where gij is the pump dependent coupling between modes i and

j. Recall C = (4|gij |2/κiκj)/(1 + |gij |2/κiκj)2, where C ranges from 0 (no-conversion) to 1

(full-conversion when |gij | =
√
κiκj . To simplify the notation we let |gij | = µij

√
κiκj where

µij runs from 0 to 1 and serves as a stand-in for the more complicated full expression for

C. Making this substitution, and looking at the behavior for each mode on resonance, we

get diagonal terms of the form:

|si,i|2 =
(−1 + µ2

ij + µ2
ik − µ2

jk)
2 + 4µ2

ijµ
2
jkµ

2
ik cos(φabp − φacp + φbcp )

(1 + µ2
ij + µ2

jk + µ2
ik)

2 + 4µ2
ijµ

2
jkµ

2
ik cos(φabp − φacp + φbcp )2

(5.6)

and off-diagonal terms of the form

|si,j |2 =
4(µ2

ij + µ2
ikµ

2
jk ± 2µijµjkµik sin(φabp − φacp + φbcp ))

(1 + µ2
ij + µ2

jk + µik2)2 + 4 cos(φabp − φacp + φbcp )2
(5.7)

with − is in terms sac , sba , and scb and the + is in terms sca , sab , and sbc . There are a
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few important things to note about these expressions. Despite the somewhat complicated

dependence on pump phase, they only depend on the total pump phase φcirctot = φabp −φacp +

φbcp . Notice also that the + terms all correspond to traveling between the modes in one

particular direction, from c to a to b and the − terms correspond to traveling between the

modes in the opposite direction. This difference in sign for the two different directions in

travel is what will result in non-reciprocal circulation in the device. These expressions get

even simpler for φcirctot = nπ/2 where n is an odd integer. Looking for example at φcirctot = π/2

the scattering matrix reduces to

|s| =


−1 +

2(1+µ2
bc)

1+µ2
ab+µ2

bc+µ2
ac

2(µab+µbcµac)
1+µ2

ab+µ2
bc+µ2

ac

2(µac−µabµbc)
1+µ2

ab+µ2
bc+µ2

ab

2(µab−µacµbc)
1+µ2

ab+µ2
bc+µ2

ac
−1 + 2(1+µ2

ac)
1+µ2

ab+µ2
bc+µ2

ac

2(µbc+µabµac)
1+µ2

ab+µ2
bc+µ2

ac

2(µac+µabµbc)
1+µ2

ab+µ2
bc+µ2

ac

2(µbc−µabµac)
1+µ2

ab+µ2
bc+µ2

ac
−1 +

2(1+µ2
ab)

1+µ2
ab+µ2

bc+µ2
ac

 (5.8)

For all µij = 1, which is equivalent to taking all of our conversion coefficients being 1, the

scattering matrix further reduces to

|s| =


0 1 0

0 0 1

1 0 0

 (5.9)

which is equivalent to an ideal circulator. Keeping all of our conversion coefficients as 1 and

flipping our total pump phase by π to φcirctot = −π/2 we find

|s| =


0 0 1

1 0 0

0 1 0

 (5.10)

which is just a circulator circulating in the other direction.

We can also look at the effect of mismatched conversion coefficients on the performance

of the device. For the sake of simplicity we will take two of the µij terms to be one, and let

one vary continuously from 0 to 1. Returning to Eqn. 5.8, it is easy to see that provided only

one µij is varied, every element of the scattering matrix is insensitive to which µij is chosen.
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Figure 5.3: Schematic of the Josephson circulator A) Pump configuration for the circulator.
All three pairs of modes are connected via conversion processes. B) and C) Graphical
scattering matrix for the resulting device. A total pump phase of φcirctotal = π/2 yields a
clockwise circulator while a total phase of φcirctotal = −π/2 yields a counterclockwise circulator.

Also, if we identify the diagonal elements as representing the input matches of the ports, the

off-diagonal terms with a + in the numerator as representing the insertion losses, and the

off-diagonal terms with a − in the numerator as representing the reverse isolation then each

role responds to single term mismatches in exactly the same way. Fig. 5.4 therefore plots

a representative input match, insertion loss, and reverse isolation term as a function of a

single mismatched µij here taken to be µab . Device performance degrades as the mismatch

in effective conversion coefficient increases, but the function of each port remains the same.

This proposal is simpler than the original, as it only requires one JPC and does not

require the additional microwave hybrids. It also is a three port device like the original

circulator proposal.

There have been other Josephson circulator proposals that do not rely upon the Fara-

day effect. One such proposal [97] uses passive DC electric and magnetic fields to bias

a ring of three Josephson Junctions to realize non-reciprocal behavior, but such a system

is very susceptible to additional noise from offset charges. Another proposal [96] based

around modulating the inductance of several SQUIDs also can yield a four-port microwave

circulator.
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Figure 5.4: Effect of mode mismatch on the Josephson circulator (theory). On resonance re-
sponse of the input match, insertion loss, and reverse isolation calculated for two conversion
coefficients being 1, and the third, here µab swept from 0 to 1. Although the performance
of the device degrades for mismatches in conversion coefficient, the function of each port
remains the same.

5.3 Experimental implementation

The JPC used for this experiment was composed of an eight-junction ring fabricated on

300 µm silicon using the conventional Dolan bridge technique [98] defined using electron

beam lithography followed by double-angle aluminum deposition. It consists of two perpen-

dicular 300 µm wide λ/2 microstrip resonators of lengths 4.68 mm and 9 mm, each termi-

nated by microstrip gap coupling capacitors (28 fF for mode a and 32 fF for mode b). These

coupling capacitors resulted in energy decay rates κa/2π = 44 MHz, κb/2π = 19 MHz, and

κc/2π = 50 MHz. An external flux was applied by applying a current to a wound su-

perconducting magnet, and set such that the modes had frequencies ωa/2π = 9.167 GHz,

ωb/2π = 5.241 GHz, and ωc/2π = 7.174 GHz.

To realize a true microwave circulator, where incident signals are directionally transfered

between physical ports of the device, we need a way to couple each of the three modes of the

JPC to a different physical port. Recall that the three normal modes of the JPC correspond

to a differential excitation of the signal resonator alone, a differential excitation of the idler

resonator alone, and a common mode excitation of both resonators. All three modes can

be individually addressed if we connect the JPC to a cascade of 180◦ hybrids as seen in
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Fig. 5.5. The delta port of the lower left hybrid will apply a differential drive b, and the

delta port of the lower right hybrid will apply a differential drive to a . The delta port of

the top hybrid will produce a differential drive at the output of the top hybrid. One of

those outputs is directed into the sigma port of the the lower left hybrid which will produce

a common mode drive on the idler resonator, while the other out of phase output from the

top hybrid is directed toward the sigma port on the lower right hybrid creating a common

mode drive on the signal resonator which is out of phase with the common drive on the

idler. This is exactly the spatial mode pattern of c as desired.

Now that we have determined our three spatial ports, we need a way to apply pump

and probe signals to each mode and a way to separate incoming signals from outgoing

signals. Both of these roles are achieved with a directional coupler connected to the delta

port of each of the hybrids. Incoming pump and probe tones are generated and combined

at room temperature before traveling down a line in our dilution refrigerator and entering

the weakly coupled port of the appropriate directional coupler. All pumps were generated

by physically separate generators at room temperature, which were all locked to a common

10 MHz rubidium frequency standard. The probe tone was generated via one port of a

VNA and directed toward one one mode at a time via a self-terminating microwave switch.

Output signals reflected signals off the JPC are directed to the strongly coupled port of

the directional coupler and then to an output line of the fridge and then back to the other

port of the VNA where they are measured. Since we will be looking at both diagonal

and off-diagonal scattering matrix components the input and output signals may not be

commensurate. In these cases the output is directed toward and additional mixer which

simply translates the output frequency back to that of the input.
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Figure 5.5: Experimental setup for characterizing the Josephson circulator and directional
amplifier. The Josephson Parametric Converter (JPC) is connected to a cascade of 180◦

hybrids, the lower two of which address modes a and b, and the upper which addresses mode
c. Each hybrid is connected to a directional coupler which separates input from output. A
directional coupler was chosen for this purpose instead of a circulator due its large operating
frequency bandwidth (4-20 GHz). At room temperature, pumps are applied to each input
port via separate generators locked to the same 10 MHz rubidium atomic clock. The probe
tone is sourced from a VNA, and a switch is used to pick which input port is addressed.
After the switch, the probe is combined with the appropriate pump tone and travels down
the fridge through filters and attenuators to the weakly coupled port of the appropriate
directional coupler. The output of each port of the JPC travels out of the fridge through
a standard set of filters, isolators, and higher stages of amplification. The choice of which
output is measured is controlled by a switch at room temperature. If the VNA probe tone
and the measured output tone are at different frequencies, the output is directed to a mixer
where the output frequency is mixed back to that of the input. If the input and output
tones are at the same frequency, the mixer is bypassed. We note all the switches used are
specially chosen to terminate the unconnected ports to 50 Ω.
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We bias the Josephson circulator by first looking at the individual pairwise conversion

processes, and looking for sets of parameters where the conversion coefficients of the var-

ious pair-wise modes were both large and well-matched in frequency. Once the circulator

was fully biased, the individual pump powers were fine-tuned by finding the values that

minimized the input match and the reverse isolation of each port. This resulted in the

final experimental pump frequencies and powers (as measured at the ouput of the indi-

vidual generators) of ωpab/2π = 3.928 GHz, P pab = −29.92 dBm, ωpbc/2π = 1.9291 GHz,

P pbc = −7.42 dBm, and ωpac/2π = 1.9989 GHz, P pac = 1.9 dBm, corresponding to conversion

coefficients C of 0.97, 0.98, and 0.99, respectively. These pairwise conversion processes are

shown in Fig. 6.3. The response for signals entering the mode c is smaller than expected.

This can be understood by going back to the experimental setup. These signals must go

through all three hybrids, as well as all the nominally matched cable pairs at the output of

each hybrid. Although care was taken to match the amplitude and phase response at room

temperature, some residual mismatches remain. This could be due to the phase lengths of

individual components changing as they cool.
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Figure 5.6: The measured pairwise conversion curves for all three processes used in the
circulator. The symbol Cij indicates a conversion process linking modes i and j. For each
port (a b c), the pump parameters are chosen to match the conversion coefficient and
center frequency for both processes involving that mode. We attribute the smaller than
expected response of scc for both pumps to mismatches in the cascaded hybrid structure.

Once all three pumps are simultaneously turned on, the next step is to identify the offset

in the total pump phase and find the point where φcirctot = ±π/2. We tune the total pump

phase by tuning the physical phase of the generator addressing mode c, and finding the

points where sbb is minimized. Following the convention in the theory section, we assign

φcirctot = π/2 to clockwise circulation.
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Figure 5.7 shows the complete set of measured scattering parameters (sij , i, j = a , b, c)

for the circulator as a function of probe frequency as taken with a vector network analyzer

(VNA). The probe power at the VNA output was −55 dBm, corresponding to the power

right before saturation effects began to appear. On resonance we have a matched device

(with reflection better than −10 dB) exhibiting more than 18.5 dB reverse isolation, and less

than 0.5 dB of insertion loss. The insertion loss is calibrated relative to the three individual

conversion processes, which have been previously demonstrated to be efficient to within

0.1 dB [35]. Off resonance, the bandwidth of the individual conversion processes which

comprise the circulator combine to give an 11 MHz bandwidth over which the input match

of all ports is better than −10 dB and the insertion loss is better than 1 dB. Superimposed

are the theoretical scattering parameters (from Eqn. 5.8), calculated using the measured

single-mode conversion coefficients and the measured mode bandwidths.

Simply flipping the pump phase by π to φcirctot = −π/2, without any other variation of

pump parameters, switches the direction of circulation, as shown. We see no degradation

in overall device performance compared to φcirctot = π/2. We have good agreement with

theoretical calculations for the scattering parameters in both directions, given that theory

assumes only three-wave mixing (no higher order terms), and that the calculation uses only

the three measured mode bandwidths and the conversion coefficients of the three individual

conversion processes. We note that most deviations are associated with signals input to

mode c. We attribute these to the degradation in the spatial mode matching due to phase

mismatches in the three cascaded hybrids versus a and b which each pass through a single

hybrid. The mode matching could easily be improved by substituting in cables or hybrids

which have a better amplitude and phase match when cold. This may involve some more

iterations of the experiment, but is simple to implement. Other asymmetries seen in the

data, particular in the reverse isolation scattering parameters, are attributed to drifts in

the total pump phase. Stabilizing the total pump phase through the use of interferometric

techniques and the ability to achieve higher single-mode conversion coefficients would yield

better device performance. An explicit example of such a setup is given in the next chapter

for a similar device.

Returning to the theoretical scattering parameters, although the device only functions
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Figure 5.7: Measured scattering parameters for the Josephson circulator. Scattering pa-
rameters are plotted versus frequency for the clockwise (red) and counter-clockwise (black)
circulator. The device displays 1 dB insertion loss and −10.5 dB isolation over an 11 MHz
bandwidth. Theory curves for the clockwise (dashed yellow) and counter-clockwise (dashed
violet) circulator are superimposed.

as a circulator at particular values of the total pump phase, it should display a smooth tran-

sition between those points. We experimentally verify this by measuring two representative

scattering parameters, sbb and scb , as a continuous function of pump phase (Fig. 5.8) and

compare it with theory. The two are in excellent agreement, showing three working points

with alternating circulation directions at points separated by π in phase (−3π/2,−π/2, π/2),

with smooth transitions in the scattering parameters versus frequencies in between. Fur-

ther experimental and theoretical work are required to predict and characterize the effect of

higher order nonlinearities on the fine details of the device performance. This is especially

vital for determining how many probe photons the device can process without degradation

of performance.

We can also experimentally characterize the effect of mismatched conversion coefficients

by looking at a set of representative scattering parameters and intentionally changing only

one of the conversion coefficients. Returning to Fig. 6.2, we expect the performance of the

device to degrade, but for the function of each port to remain the same. Fig. 5.9 shows
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the measured set of scattering parameters for signals entering mode b when Cbc and Cac

were held constant, and Cac was set to 0.91, 0.61, and 0.25. Even for the lowest value of

Cac , the input still shows an on-resonance match of 9 dB, a reverse isolation 6.5 dB, and

an insertion loss of only 1.4 dB. A mismatch in conversion coefficients does degrade device

performance, but does not change the function of each port, as expected. This robustness

to conversion mismatches means is very advantageous as a practical device.
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Figure 5.9: Effect of mode mismatch on signals entering mode b. Cbc and Cac were held at
0.98 and 0.99 as before, and Cab was taken to be 0.91 (red), 0.61 (blue), and 0.25 (purple).
We see that as the conversion coefficients are mismatched the device performance does
degrade, but the function of each port remains the same.

Although the measured device parameters are comparable with those of a traditional

Faraday-based microwave circulator on resonance, performance could be improved by achiev-

ing higher single mode conversion and by improving the impedance match between mode c

and the cascaded hybrid structure. Achieving higher conversion coefficients was challenging

due to the effect of higher order terms in the JPC. These terms are not currently accounted
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for in the theory, but they could be included in the future. It may also be possible to change

the parameters of the JRM in order to further minimize the effect of these terms. Another

limitation in the performance of the device is drifts in the relative phases of the three inde-

pendent generators used to source the three pumps. These drifts lead to drifts in the total

pump phase, and thus in the bias point for the circulator. This could be improved by more

cleverly sourcing the pumps from a shared set of generators in a way that cancels pump

drifts similar to what was done with the double-pump JBA. Even with comparable device

performance the Josephson circulator could result in higher measurement efficiencies simply

because it needs less isolation from the cavity and qubit. To first order, simply moving the

two closer removes some cable and connector loss. In order to achieve on-chip integration

between the two, the magnetic flux threading the JPC would also need to be provided via an

on-chip flux line as opposed to the physically separate coil based superconducting magnet

currently used.
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Chapter 6

Josephson Directional Amplifier

The last chapter presented a Josephson circulator, a directional device which could replace

the lossy commercial microwave circulators which are required in our current measurement

architectures. Another approach to eliminating these circulators is to use a directional para-

metric amplifier. This is a device which performs quantum-limited amplification between

an input port and an output port, and does not transmit any amplified signals from the

input port back toward the qubit. Further, if this amplifier could be fabricated using the

same materials and processes used for superconducting qubits and cavities, and all three

could be fabricated on the same chip, we would further increase our measurement efficiency,

η, by removing unnecessary cable and connector loss.

6.1 Overview of Low-Noise Directional Parametric Ampli-

fiers

Low-noise directional parametric amplification has been an active area of research in the

superconducting qubit community. Microwave SQUID amplifiers such as the microstrip

SQUID amplifier (MSA) [59–61] and the superconducting low-inductance undalatory gal-

vanometer microwave amplifier (SLUG) [62, 63] are directional amplifiers based upon DC-

biasing a SQUID into the voltage regime such that a small change in flux in the SQUID

will result in a large change in the output voltage [60]. One can think about the evolution

of the phase across the junction in such as system as an effective pump composed of sev-
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eral Josephson harmonics. The interference of the mixing processes generated by different

harmonics gives rise to directionality [99]. Microwave SQUID amplifiers can achieve high

gains, and have been used to measure superconducting qubits [100, 101], although they

are not quite quantum-limited for high gain points at high frequencies [99] and may have

out-of-band back-action, which might still require circulators to be included [100] .

Another class of directional amplifiers, known as traveling wave parametric amplifiers

(TWPAs), achieve directional gain by chaining several parametric gain stages together.

These amplifiers are different from traditional Josephson parametric amplifiers because

they are not based on resonant structures. This means they can achieve higher bandwidths

than traditional paramps, but they can suffer from limited gain unless great care is taken to

match the phase of the signal and the pump over the length of the device [67,68]. TWPAs

based on the non-linearity of optical fiber have been widely used in the optical domain

[102]. TWPAs based upon the non-linearity thin superconducting wire [65], and chains of

Josephson junctions [22,64,68] have been realized in the microwave domain, although until

recently either phase-matching issues or heating due to large pump tone were limiting. A

Josephson junction based TWPA has also been recently used to measure a superconducting

qubit [22], although this experiment still included a circulator.

Directional amplification can also be achieved through interfering multiple parametric

processes in resonant devices. This interference can take place spatially between different

signal paths spread over multiple elements, or between multiple processes coupled within

a single device. In a scheme very similar to the four port circulator discussed in the last

chapter, a four port directional amplifier can be realized by coupling two JPCs, operated as

parametric amplifiers, via microwave hybrids [33,103]. This was the first approach we took

at Yale to realize directional amplification. The corresponding device was used to measure a

qubit without any circulators between the cavity and the amplifier [69], but displayed limited

gain due to the difficulty of fabricating and biasing identical JPCs and integrating several

components together. It also added slightly more noise than the quantum limit. Some of

these difficulties can be alleviated if the interference occurs within a single device instead

of spread between multiple physical devices. There have been several theoretical proposals

for achieving directional gain through coupling multiple types of parametric processes in a
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single device [57, 95, 104]. This chapter implements the scheme proposed in [57], resulting

in a Josephson directional amplifier (JDA) based on parametrically coupling of all three

modes of the JPC [58].

6.2 Derivation of Gain in the JDA

As originally proposed in [57], in a three mode system directional gain can arise from

coupling two pairs of modes via gain processes and the third via a conversion process. This

is the other set of non-frequency translating mode couplings alluded to in the last chapter.

Reproduced here is a more detailed derivation of the gain of such a directional amplifier,

which was originally done in [57]. Using the formalism as in the last chapter to compute

the scatting matrix, where we now couple modes a and c, and b and c, by gain processes

and modes a and b via a conversion process. The coupling matrix for such a configuration

is given by

M =


δaa β†ab −β†ac

βab δbb −β†bc
βac βbc −δ†cc

 (6.1)

where βc,a = −β†a ,c , βc,b = −β†b,c , and δcc is negative and conjugated because paramet-

ric amplification processes effectively couple positive and negative frequency components as

seen in chapter 2. Recall that for conversion processes C = (4|gi,j |2/κiκj)/(1+ |gij |2/κiκj)2,

ranging from 0 (no-conversion) to 1 (full-conversion when |gij | =
√
κiκj). For parametric

gain processes
√
G = (1 + |gij |2/κiκj)/(1 − |gij |2/κiκj), ranging from no amplification

(
√
G = 1) for |gij |2 = 0 and arbitrarily large gain for |gij |2 → κiκj . Thus as in the last

section we take |gij | = µij
√
κiκj for both the gain and the conversion coupling coefficients

where µij goes from 0 to 1. We can then explicitly calculate some representative scattering

parameters on resonance and find terms of the form

|sc,b |2 =
4(µ2

bc + µ2
abµ

2
ac + µabµbcµac sin(φabp − φacp + φbcp ))

(−1− µ2
ab + µ2

ac + µ2
bc)2 + 4µ2

abµ
2
bcµ

2
ac cos(φabp − φacp + φbcp )2

(6.2)
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|sb,c |2 =
4(µ2

bc + µ2
abµ

2
ac − µabµbcµac sin(φabp − φacp + φbcp ))

(−1− µ2
ab + µ2

ac + µ2
bc)2 + 4µ2

abµ
2
bcµ

2
ac cos(φabp − φacp + φbcp )2

(6.3)

|sb,b |2 =
(−1 + µ2

ab + µ2
ac − µ2

bc)2 + 4µ2
abµ

2
acµ

2
bc cos(φabp − φacp + φbcp )

(−1− µ2
ab + µ2

ac + µ2
bc)2 + 4µ2

abµ
2
bcµ

2
ac cos(φabp − φacp + φbcp )2

(6.4)

These terms look very similar to what we found for the circulator except, the denom-

inator is not necessarily greater than 1. We can then take φd-a
tot = φabp − φacp + φbcp , and

explicitly calculate the entire scattering matrix for two special values, φd-a
tot = ±π/2. For

φd-a
tot = π/2 we get the following

|sda| =


−1 +

2(µ2
bc−1)

−1−µ2
ab+µ2

ac+µ2
bc

2µab+2µacµbc
−1−µ2

ab+µ2
ac+µ2

bc

2µac+2µabµbc
−1−µ2

ab+µ2
ac+µ2

bc

2µab−2µacµbc
−1−µ2

ab+µ2
ac+µ2

bc
−1 + 2(µ2

ac−1)
−1−µ2

ab+µ2
ac+µ2

bc

2µbc−2µabµac
−1−µ2

ab+µ2
ac+µ2

bc

2µac−2µabµbc
−1−µ2

ab+µ2
ac+µ2

bc

2µbc+2µabµac
−1−µ2

ab+µ2
ac+µ2

bc
−1 +

2(µ2
ab−1)

−1−µ2
ab+µ2

ac+µ2
bc

 (6.5)

Unlike with the circulator, we cannot take all of our µij → 1 since that will lead to

nulling of the denominators due to diverging gains. Instead for the two gain processes we

take µ2
bc = (

√
Gbc − 1)/(

√
Gbc + 1) and µ2

ac = (
√
Gac − 1)/(

√
Gac + 1) where Gbc is the

power gain originating from the pump on mode a and Gac is the power gain from the pump

on mode b. Furthermore, in we assume the ideal case where the gain from the two processes

are the same Gbc = Gac = G. We once again assume perfect conversion and take µab = 1.

This simplifies the scattering matrix to

|sda| =


0

√
G

√
G− 1

1 0 0

0
√
G− 1

√
G

 (6.6)

This looks a lot like a parametric amplifier, in that there are gain terms given by G and

trans gain terms GT =
√
G− 1, but with an asymmetric flow of signals through the device

and an extra port. Changing the total pump phase φd-a
tot = −π/2 changes the locations of
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the different scattering parameters and thus the direction of signal flow flow.

|sda| =


0 1 0
√
G 0

√
G− 1

√
G− 1 0

√
G

 (6.7)

Looking deeper into the asymmetry of the scattering matrix, we find ports in this device

each play a unique role which we label as the Signal (S) input, Idler (I) input, and Vacuum

(V) input. Signals incident on S correspond to the directional amplifier input, while signals

exiting I form its output. The S port is matched (no power reflects), and incident power is

instead transmitted with gain to the I and V ports. Vacuum fluctuations incident on I are

responsible for the additional half-photon of added quantum noise necessarily associated

with quantum-limited phase-preserving amplification. Signals incident on the V port are

noiselessly and directionally transmitted through the device to the S port with unity photon

gain. When φd-a
tot = π/2, a is mapped to V, b is mapped to S, and c is mapped to I. When

the total pump phase is changed to φd-a
tot = −π/2 the roles of a and b are flipped (see

Fig. 6.1). The roles can also be remapped by changing with modes are connected by the

conversion process. c always plays the role of the idler since in this implementation it is

only connected to other modes by gain processes.

This device serves as a minimal implementation of exactly the type of directional am-

plifier we wanted. It contains an input port (S) and an output port (I), where there signals

incident on the input port are amplified at the output port, but signals incident on the

output port are attenuated at the input port. A device must necessarily reflect, at a mini-

mum, vacuum fluctuations back to the upstream signal source. In our implementation the

source of these fluctuations would be provided by the cold 50 Ω load terminating the V

port. Furthermore, the unity-gain transmission of signals from the V to the S port follows

from the combined requirements of quantum-limited amplification.
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Figure 6.1: Pumping schematic and graphical scattering matrix for the Josephson direc-
tional amplifier. A) Pump configuration for the JDA: two pairs of modes are coupled
pairwise via gain processes and the third via unity-gain photon conversion. B) Graphical
representation of the scattering matrix: the three ports are named for the roles they per-
form in the amplification process. The signal (S) port serves as the directional amplifier
input and is combined via phase-preserving amplification with the idler (I) port, which
corresponds to the directional amplifier output. The vacuum (V) port does not participate
in amplification but instead is transmitted with unity gain back to the signal port. For
clarity, all zero amplitude scattering parameters are omitted. The unfilled arrows denote
transmission of signals with phase conjugation. C) Map between physical ports and their
roles. The pump phase and the choice of which modes are coupled via gain/conversion pro-
cesses, controls how the physical ports of the JPC are mapped onto the conceptual ports of
the directional amplifier. The explicit mapping for the gain and conversion couplings used
in the experiment for φd-a

tot = π/2 and φd-a
tot = −π/2 are shown.

6.2.1 Effects of Mismatched Parametric Processes

The above analysis assumed perfectly matched gain processes and a perfect conversion

process. We can easily examine the effects of mismatches by relaxing our assumptions and

looking at some representative scattering parameters. If the two individual gain processes

have different magnitudes but the conversion is still complete then the input match will go

as

|sbb | =
√
Gac −

√
Gbc

2 +
√
Gac +

√
Gbc

(6.8)

Gain is an intrinsically positive quantity, so combination of Gac and Gbc will result in some

degree of input match although the match will degrade as the difference between the two

gains grows.

The reverse isolation will go as

|sbc | =
√
Gac − 1(1 +

√
Gbc)−

√
Gbc − 1(1 +

√
Gac)

2 +
√
Gac +

√
Gbc

(6.9)
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which, given the symmetry will still tend toward zero for Gij >> 1.

The forward gain will have a similar form to the reverse isolation, except with addition

instead of subtraction,

|scb | =
√
Gac − 1(1 +

√
Gbc) +

√
Gbc − 1(1 +

√
Gac)

2 +
√
Gac +

√
Gbc

(6.10)

Thus the forward gain will stay positive for all Gij > 1 despite the mismatch. Thus,

mismatches in the two parametric gain processes will degrade performance, but will not

fundamentally change the directional nature of the device.

The more interesting non-ideality arises from matching gains but imperfect conversion.

If we take our two gains to be equal Gac = Gbc = G, and allow our conversion to vary then

the input match will go as

|sbb | = −1 +
4

3 + µ2
ab +

√
G(µ2

ab − 1)
(6.11)

If |sbb | > 1, not only will the device not be matched, but it will exhibit reflection gain and

the amplifier will fundamentally become non-directional. The requirement that |sbb | < 1

means that µab >
√
−1+

√
G

1+
√
G

. Translating from µab back to the conversion coefficient C,

this requires that 1− C < 1/G.

As with all parametric amplifiers, we need high gain in order to minimize the noise

of the following HEMT. This necessitates that we have a very high conversion coefficient

to maintain directionality. This is demonstrated in Fig. 6.2 where the two single-mode

gains have been set to a modest value of 12 dB, and the forward gain and input match

are calculated as a function of conversion coefficient. For perfect conversion C = 1 the

directional gain matches that of the two single mode gains and the input shows a high degree

of match. As the conversion coefficient begins to fall, the forward gain slowly increase and

the input match rapidly degrades. Once C < 0.95 the input match vanishes entirely and

device exhibits both forward and reflection gain. Experimentally it is relatively easy to get

similar single-pump gains, but much more difficult to reach full conversion.
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Figure 6.2: Effect of mismatched conversion in the Josephson directional amplifier (theory).
Calculated scattering parameters for the forward gain scb and one of the absorptive input
ports sbb are plotted as a function of conversion with the two single-pump gains Gbc =
12 dB and Gac = 13 dB. For high conversion we see the desired directional gain and input
match. As the conversion falls, the match degrades, crossing a threshold at C = 0.95 past
which there is gain on the reflected port. This degradation of directionality (despite the
corresponding increase in the forward gain) demonstrates the necessity of high conversion.

6.3 Experimental Implementation and Characterization

The JPC and experimental setup are identical to the one presented for the Josephson

circulator (see Fig 5.5). The only difference is in the frequency and powers of the pumps

addressing the three modes. We decided to couple modes modes a and b via conversion,

modes a and c via a gain process, and modes b and c via gain processes. Changing which

modes are coupled via which type of process will just change how the physical ports map onto

the conceptual ports of the directional amplifier. The biasing procedure is also very similar

to that of the circulator in that we first tune up the individual single pump processes, and

then fine tune the values to optimize device performance. Unlike the circulator, a particular

premium is placed on approaching perfect conversion while still minimizing frequency offsets

in the single pump mode responses because that ultimately sets how much directional gain

we will be able to achieve. The final pump values were ωpc/2π = 3.927 GHz with a power of

P pc = −28.95 dBm at the generator output resulting in C = 0.998, ωpb/2π = 16.339 GHz with

P pb = −11.77 dBm resulting inG = 13 dB, and ωpa/2π = 12.412 GHz with P pa = −18.53 dBm

resulting in G = 12 dB. These individual parametric processes are shown superimposed in

Fig. 6.3. The slight double-dip seen in saa illustrates the effect of higher order terms that
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get excited via our attempts to convert as strongly as possible, and the value of the pairwise

gain processes are only around 12 dB as to not overwhelm Cab .
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Figure 6.3: The measured pairwise conversion curves for all three processes used in the
directional amplifier. The symbol Gij indicates a gain process linking modes i and j, while
the symbol Cij indicates a conversion process linking modes i and j. For each port (a b c),
the pump parameters are chosen to match the conversion coefficient and center frequency
for both processes involving that mode.

As with the circulator the total pump phase φd-a
tot can be swept by fixing the generator

phase of two of the pump, and only sweeping the phase of the third. We calibrate the φd-a
tot

to the physical generator phases by finding a point where scc is minimized. We then verify

the choice of phase by adding π to the physical generator phase and verifying the frequency

of maximum response for scc remains fixed. We again define φd-a
tot = ±π/2 based on the

observed direction of amplification.

A measured set of scattering parameters are shown in Fig. 6.4. The probe power at the

VNA output was −75 dBm, which was found to be just outside of the saturation regime.

Given our pump frequency configuration, when we set φd-a
tot = −π/2, mode a is the signal

port S, mode b the vacuum port V, and mode c the idler port I. The measured scattering

parameters show all the hallmarks of directional amplification. First, the input port and the

vacuum port both show a reflection coefficient of −16 dB or greater, indicating the device is

matched. The output port I also shows the expected reflection gain. Next, signals input at

S are amplified and transmitted to I and V (gain of 14 dB). Third, signals incident on I are

isolated from S (with isolation of 8 dB), and are instead reflected from I and transmitted to

V with gain. Finally, signals incident on V are transmitted with near unity photon gain to

S (sab = 0.2 dB). In normal operation, port V will be terminated in a cold 50 Ω load and

can be seen as providing the necessary vacuum fluctuations which must be emitted from S.
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The directional gain falls off with probe frequency as a Lorentzian line shape with a 3-dB

bandwidth of 11 MHz, although other bandwidths can be defined based on the required

input match or reverse isolation.

Changing the total pump phase to φd-a
tot = π/2 switches the roles of mode a and mode

b. This is most directly seen by comparing sab and sba , in which the direction of the

gain reverses. As with the circulator, the offset between the generator phase and the total

pump phase was not re-calculated between these two bias points, a phase shift of π was just

added to one generator and the scattering parameters re-measured. Superimposed are the

theoretical scattering parameters calculated from Eqn. 6.7 with the measured single-mode

gains and conversion coefficients, as well as the measured bandwidths of the three modes

taken as inputs. In general, the agreement is not as good as for the circulator which we

attribute to the fact that there is now gain in the system and therefore misalignments of the

pairwise processes and phase drifts can more drastically affect the amplifier performance.

As with the circulator, some of the disagreement comes from imperfect mode matching in

the hybrid stack. The theory also does not currently account for higher order terms. This

omission is particularly important for the directional amplifier, as some effects of higher

order terms can already be seen in the single-mode conversion processes. Some of the

disagreement, particularly in asymmetries seen in the off-resonance scattering parameters,

comes from drifts in the total pump phase. In practical implementations, interferometric

techniques would be needed to stabilize φd-a
tot . This can be relatively easily implemented in

future iterations, if the pump tones are generated via mixing from generators set at the

frequencies of modes a , b, and c. Then the pump frequency relationship of the various

processes (ωpb/2π = ωpc/2π + ωpa/2π) naturally leads to the cancellation of drifts in the

phase of individual generators.
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6.3.1 Added Noise

To characterize the added noise of the Josephson directional amplifier we use the Noise

Visibility Ratio measurement as introduced in section (DP-JBA). Fig. 6.5 shows the NVR

for output of the two coupled modes of the JPC when biased with the two individual single-

pump gain processes, as well as the NVR for all three modes when biased as a directional

amplifier. If the JPC is biased with only one gain process, say between modes b and c

then the NVR for both modes band cshow a peak corresponding to amplified quantum

fluctuations from both the reflection and the trans gain. The NVR for the directional

amplifier is a little more complicated. The NVR for the mode corresponding to port V

should show a peak coming from the amplification between ports S and V as well as the

amplification between ports I and V. Similarly, the NVR for I should also show a peak

arising from both the reflected gain off port I and the forward gain between ports S and I.

There are no amplification processes between V and S or between I and S, so the NVR for

S should not show a peak. When φd-a
tot = π/2 mode a acts as V, b acts as S and c acts as I
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and, as expected, we see peaks in the NVR of modes a and c and no peak in the NVR or

mode b. When φd-a
tot = −π/2 the roles of a and b are exchanged, and the peak in the NVR

also appears in the response of mode b as expected.

The relative heights NVR for the single-pump gain processes and the directional ampli-

fier also puts a bound on the added noise of the directional amplifier. The JPC has been

shown to be nearly-quantum limited [11], and the heights of the NVR for the directional

amplifier agree to within 1 dB with the associated single pairwise coupling with the same

gain. This indicates that the noise performance of the directional amplifier is essentially

as quantum-limited as the conventional non-directional phase-preserving amplifier mode of

the JPC. A better measure of the added noise, could be made by integrating the Joseph-

son directional amplifier with a qubit. Unfortunately in the current implementation the

instability of the total pump phase has prevented this measurement.
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ratios for the three ports of the directional amplifier are plotted for both φd-a

tot = π/2 (red)
and φd-a

tot = −π/2 (black). They are compared to the noise seen from the individual gain
processes between modes a and c (light blue) and modes b and c (violet). The noise
visibility ratios agree for all ports to within 1 dB.

6.3.2 Performance vs Conversion Coefficient

Finally, we examine the measured behavior of the device as a function of the conversion

coefficient. As detailed in the theory section, the conversion process must dominate for the

amplifier to be directional. The dependence of two representative scattering parameters

sbb and sab corresponding to input match and directional gain, respectively, are plotted in
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Fig. 6.6 for selected conversion coefficients. As expected, the magnitude of all scattering

parameters rises as the conversion coefficient decreases, with complete loss of input match

and even reflection gain being observed once C falls below a certain threshold (here C =

0.95, matching the expected value described in the theory section). This threshold rises with

the amplifier gain; we have chosen a directional gain of 14 dB in order to retain sufficient

input match. In general, to achieve a single-stage directional amplifier with high forward

gain while retaining a matched input, one requires, surprisingly, a nearly perfect converter

as the key element. Although achieving higher a higher conversion coefficient was difficult

due to the influence of higher order terms in the JRM, several matched, low-gain stages

could also be cascaded to achieve high net gain without requiring extreme pump precision.

By extending the theory to include these higher order terms, or by engineering a device

in which the contributions of these terms is smaller we may also be able to realize higher

directional gain.
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Figure 6.6: Measured scattering parameters at C = 0.21, 0.95, and 0.989. As expected, for
high values of the conversion coefficient the device is directional as indicated by the dip in
sbb . The forward gain and input match are also plotted for the threshold of directionality
C = 0.95, and for a point where the device exhibits both forward and reflection gain
C = 0.21.
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Chapter 7

Conclusions and Perspectives

This thesis has focused on reducing two of the primary effects limiting the manipula-

tion of superconducting qubits by the Heisenberg back-action of measurements made with

quantum-limited parametric amplifiers. Chapter 3 focused on the first effect, qubit dephas-

ing due excess photons in the cavity. This effect was particularly detrimental in measure-

ments were made with a Josephson bifurcation amplifier (JBA), where a large resonant

pump tone is typically used to provide the energy for amplification. This chapter presented

an alternative method of pumping the amplifier, which replaced the strong pump tone lo-

cated at the frequency of maximum response with two pump tones which are spectrally

well separated from that frequency. This greatly reduced the dephasing of the qubit due

to excess photons in the cavity, and also increased the dynamic range of the amplifier.

This improvement directly allowed for the observation of the Heisenberg back-action of

phase-sensitive amplification using a JBA, as presented in chapter 4, and has become a

standard mode of operation for experiments where this type of parametric amplifier is used

to measure superconducting qubits [19,48,50,105]. Chapter 4 also presented a self-calibrated

method of quantifying the second effect limiting control via Heisenberg back-action, reduced

measurement efficiency.

Chapters 5 and 6 focused on ways to increase our measurement efficiency by reduc-

ing the microwaves losses between the cavity and the parametric amplifier. Much of this

loss is contributed by the microwave circulators, which are needed both to separate input

from output in experiments using reflection parametric amplifiers, and to provide suffi-
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cient reverse isolation between the reflected gain of the parametric amplifier and the cavity.

Commercial circulators themselves are lossy, and they rely upon the Faraday effect in a

medium under strong magnetic fields to achieve non-reciprocity. This means they must be

physically isolated from the qubit and cavity, and extra cables and connectors, each with

their own losses, will all further decrease the measurement efficiency. Chapter 5 presented

a potentially loss-less Josephson circulator based on the Josephson parametric converter

(JPC), where non-reciprocity is achieve through the interference of parametric processes

instead of through the Faraday effect. Circulators could be omitted entirely if we replaced

our reflection parametric amplifiers with a directional parametric amplifier. Chapter 6 pre-

sented such a amplifier, which is based on the interference of a different set of parametric

processes in the same JPC. Although the gain of this device was limited by how large a

conversion coefficient we were able to achieve, higher gains could easily be achieved by

cascading multiple stages of amplification.

Both the Josephson circulator and directional amplifier were realized using different

pumping schemes of a single standard JPC. The JPC is composed of the same materials, and

fabricated using the same methods as superconducting qubits, making them fundamentally

much more compatible with qubits than traditional microwave circulator and amplifiers.

The JPC still does use a small magnetic field, Φext to bias the JRM, but this could be

achieved using on-chip flux bias lines, which are compatible with superconducting qubits.

One extension of this work would be the integration of the qubit, cavity, and amplifier onto

the same chip, which would eliminate the losses from the extra cables and connectors. There

are other sources of loss which this thesis has not addressed. Other microwave components

such as the normal metal hybrids used to excite the normal modes of the JPC will ultimately

need to be eliminated as well.

Another important consequence of the dual nature of the Josephson circulator and

directional amplifier is that the role a JPC is playing can be changed in-situ simply by

changing the magnitude and frequency of the pumps applied at room temperature. This

results in a flexible device, which can be used to build more complicated signal routing

schemes. As an example, we believe these in-situ switchable directional elements could be

the basis of a truly quantum switch matrix and gain medium, as pursued in some quantum
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information architectures [106]

Although loss is the main source of measurement inefficiency, there are other sources

which will ultimately need to be addressed as well. Some of our measurement inefficiency

comes from temporal mismatches between the pulse leaving the cavity and the amplifier

[26, 107]. Clever cavity pulse shaping will be needed to eliminate this source of inefficiency

[28]. The finite internal quality factor of the resonators of these amplifiers may also become a

limiting factor (as found for the silicon nitride dielectric used in the JBA [107,108]), and may

be improved from investigating new materials and fabrication procedures. By addressing all

these inefficiencies, we may improve our systems enough to allow the Heisenberg back-action

of measurement to be the essential tool in the manipulation of quantum information.
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[9] D. Ristè, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggelman, Ya. M. Blanter,

K. W. Lehnert, R. N. Schouten, and L. DiCarlo, Deterministic entanglement of su-

perconducting qubits by parity measurement and feedback, Nature 502 (2013), 350354.

[10] R. Vijay, D. H. Slichter, and I. Siddiqi, Observation of quantum jumps in a supercon-

ducting artificial atom, Phys. Rev. Lett. 106 (2011), 110502.

[11] M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M.

Sliwa, B. Abdo, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret,

Quantum back-action of an individual variable-strength measurement, Science 339

(2013), 178.

[12] M. Brune, E. Hagley, X. Maltre, G. Nogues, C. Wunderlich, J.M. Raimond, and

S. Haroche, Manipulating entanglement with atoms and photons in a cavity, Quan-

tum Electronics Conference, 1998. IQEC 98. Technical Digest. Summaries of papers

presented at the International, 1998.

[13] H. Mabuchi and A. C. Doherty, Cavity quantum electrodynamics: Coherence in con-

text, Science 298 (2002), 1372–1377.

[14] A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum

electrodynamics for superconducting electrical circuits: An architecture for quantum

computation, Phys. Rev. A 69 (2004), 62320.

[15] A Wallraff, D I Schuster, A Blais, L Frunzio, R.-S. Huang, J Majer, S Kumar, S M

Girvin, and R J Schoelkopf, Strong coupling of a single photon to a superconducting

qubit using circuit quantum electrodynamics, Nature 431 (2004), 162–167.

[16] J. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. H. De-

voret, S. M. Girvin, and R. J. Schoelkopf, Qubit-photon interactions in a cavity:

Measurement-induced dephasing and number splitting, Phys. Rev. A 74 (2006), 42318.

[17] A.˜P. Sears, A Petrenko, G Catelani, L Sun, H Paik, G Kirchmair, L Frunzio, L.˜I.

Glazman, S.˜M. Girvin, and R.˜J. Schoelkopf, Photon Shot Noise Dephasing in the

Strong-Dispersive Limit of Circuit QED, arXiv:1206.1265 (2012).

130



[18] Carlton M Caves, Quantum limits on noise in linear amplifiers, Phys. Rev. D 26

(1982), 1817–1839.

[19] K.W. Murch, S. J. Weber, C Macklin, and I Siddiqi, Observing single quantum tra-

jectories of a superconducting quantum bit, Nature 502 (2013), 211–214.

[20] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M. H.

Devoret, F. Mallet, and B. Huard, Persistent control of a superconducting qubit by

stroboscopic measurement feedback, Phys. Rev. X 3 (2013), 021008.

[21] S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K. W. Murch, and I. Siddiqi,

Mapping the optimal route between two quantum states, Nature 511 (2014), 570–573.

[22] C. Macklin, K. OBrien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D.

Oliver, and I. Siddiqi, A near-quantum-limited Josephson traveling-wave parametric

amplifier, Science 350 (2015), 307–310.

[23] N. Roch, M. E. Schwartz, F. Motzoi, C. Macklin, R. Vijay, A. W. Eddins, A. N. Ko-

rotkov, K. B. Whaley, M. Sarovar, and I. Siddiqi, Observation of measurement-induced

entanglement and quantum trajectories of remote superconducting qubits, Phys. Rev.

Lett. 112 (2014), 170501.

[24] P. Campagne-Ibarcq, P. Six, L. Bretheau, M. Sarlette, M. Mirrahimi, P. Rouchan, and

B Huard, Observing quantum state diffusion by heterodyne detection of fluorescence,

arXiv:1511.01415 (2015).

[25] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch, R Naik, A. N. Ko-

rotkov, and I. Siddiqi, Quantum feedback control of a superconducting qubit: Persistent

Rabi oscillations, arXiv:1205.5591 (2012).
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