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This dissertation has addressed the problem of developing the Josephson Parametric Converter

(JPC) as a practical phase-preserving microwave parametric amplifier operating at the quantum

limit of added noise. The device consists of two superconducting resonators coupled through the

Josephson Ring Modulator (JRM), which in essence consists of a loop of four identical Josephson

tunnel junctions, threaded by an applied magnetic flux. The nonlinearity of the JRM is of the

tri-linear form XY Z without spurious nonlinear terms and involving only the minimal number of

modes, thus placing the JPC close to the ideal non-degenerate parametric amplifier. This pure

form of the nonlinearity is confirmed here by the observation of coherent attenuation (CA), the

time-reversed process of three-wave parametric amplification, with signal, idler, and pump modes

in the fully nonlinear regime. The design developed in this dissertation allows fabrication of the

amplifier in a single lithography step, greatly simplifying parameter adjustments from one device to

the next. Measured device characteristics and amplifier performances are presented, and limitations

linked to the junction energy EJ and the circuit parameters discussed. The use of these JPCs in

the readout of superconducting qubits is shown to lead to almost ideal quantum measurements, as

the measurement efficiency can approach the ideal value of 1.
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Chapter 1

Introduction

In this thesis I will present the results of my effort to build and operate a practical, noise quantum-

limited, phase-preserving Josephson parametric amplifier, called the Josephson Parametric Con-

verter (JPC). The main goals of this thesis work were first, to develop a new JPC microwave circuit,

making the amplifier design and fabrication simple, predictable, and reproducible. And second, to

fabricate JPCs with properties making them immediately useful for the readout of superconducting

quantum bits (qubits), while confirming that the JPC comes close to the ideal quantum-limited

phase-preserving amplifier.

A practical amplifier needs to first and foremost bring some real improvement to an experimental

setup when inserted into the measurement chain, and not merely be a proof-of-concept device.

Superconducting microwave parametric amplifiers (paramps) are attractive due to their ability to

reach the quantum limit of noise and it is desirable to exploit this to effectively reduce the overall

measurement system noise. Several more requirements have to be met to make paramps like the

JPC useful. In the case of qubit measurements relevant to this work, these requirements are: they

must operate in the frequency range of 5 to 10 GHz, the typical qubit readout resonator frequency

range. They need to have sufficiently large gain to overcome the noise of the following stage high

electron mobility transistor (HEMT) amplifiers, i.e. about 20 dB, bandwidths larger than those of

the readout cavities, i.e. 1-10 MHz, and be able to handle powers corresponding to a few photons

in the readout cavities. And given the fact that paramps have rather narrow bandwidths, one of

the most important practical requirements is for the amplifiers to be frequency tunable, to assure

that the amplifier frequency can be easily tuned to the readout resonator frequency.
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Apart from the operational aspects, the amplifier characteristics should ideally be calculable,

making it possible to reliably design and predict its properties. The sample design needs to be

flexible enough to allow for changes in relevant amplifier parameters, such as center frequency and

amplification bandwidth, from one device to the next. It is desirable for the sample fabrication

to be simple but at the same time robust enough to make the device parameters predictable and

reproducible.

As will be shown in this chapter, the JPC amplifiers developed in this dissertation work fulfill all

these requirements, and are currently used in several qubit experiments. In the following sections

a brief overview of the field of paramps is given and examples of a few different implementations

of paramps developed in the past 60 or so years are presented. The difference between degenerate

and non-degenerate type paramps is explained, as well as the difference between phase-sensitive

and phase-preserving amplification. The Hamiltonian of an ideal phase-preserving amplifier and

its resulting scattering is described. The nonlinear element allowing to realize this Hamiltonian,

the Josephson Ring Modulator (JRM), is presented next, and the implementation of the JPC with

microstrip transmission lines explained. Lastly, the main experimental results of this thesis work are

presented, describing typical properties of devices measured throughout this work. In particular, it

is shown how the presence of the JPC significantly improves the measurement efficiency in a qubit

measurement, and further, by operating the JPC in the fully nonlinear regime, the tri-linear form

of the JPC Hamiltonian is confirmed.

Subsequent chapters present in more detail the theoretical basis of the JPC and experimental

results obtained: Chapter 2 explains in detail how the JRM leads to a pure form of the three-wave

mixing nonlinearity required for non-degenerate phase-preserving amplification. In particular it

is shown how, by adding additional shunt inductors, the device frequency becomes tunable over

more than 100MHz. Chapter 3 explains how the JPC, under the stiff pump approximation, can be

described by a two-port scattering matrix. The link between the scattering matrices of (quantum-

limited) phase-sensitive and phase-preserving amplifiers is established and their relationship to the

squeezing operator explained. Chapter 4 gives an overview of devices measured and describes

important JPC characteristics. Chapter 5 presents the operation with three coherent tones beyond

the stiff pump approximation and scattering matrix formalism, confirming the predicted interaction

form of the full three-wave mixing Hamiltonian. Chapter 6 describes the sample fabrication and the

setup used. Finally, Chapter 7 gives concluding remarks and discusses possible future directions.
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1.1 Parametric Amplifiers - A Brief Overview

1.1.1 Previous Work on Parametric Amplification

Nowadays the context in which physics students are most likely to encounter the concepts of para-

metric amplification is in courses on quantum and nonlinear optics, in particular when studying the

generation of squeezed coherent states of light [1]. These minimum-uncertainty states of electromag-

netic radiation obey the Heisenberg uncertainty relation σIσQ = 1/4 for the standard deviations

of the field’s in-phase component I and quadrature component Q, as formally defined later in Sec.

3.2.5, while at the same time one of the quadratures’ standard deviation will be below 1/2 (the

other one necessarily above). Parametric processes can generate these states with intriguing purely

quantum aspects, and one can easily overlook the fact that parametric amplification has been ex-

tensively studied for decades before the birth of quantum or even nonlinear optics (one of the first

nonlinear optics experiments, second harmonic generation, has been performed by Franken et al. in

1961 [2]). In particular there has been extensive research on parametric amplifiers in the microwave

domain in the 1950’s and 60’s. Parametric amplifiers had at that time already been successfully

operated decades earlier, but were then replaced with vacuum tubes. The realization that they

have much better noise properties than vacuum tubes then revived interest in the field1. The noise

properties of parametric amplifiers, intricately related to their ability to generate squeezed electro-

magnetic radiation, later lead to increasing research interest in optics as well as in superconducting

microwave circuits. In fact, a quantum limit exists for the amount of noise added by a linear

phase-preserving amplifier [4, 5, 6], while a linear phase-sensitive amplifier can no noise at all. The

interest in paramps in both optics and superconducting microwave circuits is very much owed to

the fact that they can be operated close to (in case of a phase-preserving paramp) or below (in case

of a phase-sensitive paramp) this quantum limit.

In optics, many different types of parametric amplifiers have been developed over time. Some

examples include pulsed operation using the nonlinear properties of crystals (e.g. KTP crystals

[7, 8]), or continuous wave (CW) operation in fiber optic parametric amplifiers (FOPAs) [9] or

(optical) ridge waveguides [10, 11]. The first experimental realization of vacuum noise squeezing

in optics, using the nonlinearity of a Na atomic beam, was reported by Slusher et al. in 1985

[12]. It was only three years later that squeezing of vacuum noise of microwave radiation using the
1See [3] for a brief history on parametric amplifiers before 1960.
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nonlinearity of Josephson junctions was reported by Yurke2 and co-workers [13, 14, 15]. Parametric

amplifiers based on Josephson junctions had already been developed for quite some time before

that [16, 17, 18, 14], but were difficult to operate and far from being practical. Further, even

though the paramps eventually approached the quantum limit of noise [14], the total system noise

temperature remained well above the quantum limit. After these first pioneering experiments on

superconducting Josephson parametric amplifiers, the field had gone into hibernation for about

a decade, until the push for low-noise amplifiers for the readout of superconducting qubits3 has

created renewed interest.

Degenerate superconducting Josephson paramps have now been realized with arrays of junctions

[20, 21], junctions in a superconducting quantum interference device (SQUID) configuration for

flux-pumping at two times the signal frequency [22] or pumped through the signal port at the

signal frequency [23]. The JPC, which is the subject of this thesis work, has been developed first

at Yale [24, 25, 26, 27] and later at ENS Paris [28], and is a non-degenerate Josephson paramp.

Superconducting paramps with nonlinearities provided by the kinetic inductance of a transmission

line have also been developed [29, 30]. The device presented in [30] is a traveling wave paramp, which

has a distributed nonlinearity and does not require resonators as the other superconducting devices

mentioned before. This has the advantage of leading to much larger amplification bandwidths (GHz

rather than MHz) and to an increased dynamic range. It has yet to be seen though if these type

of amplifiers are practical enough to be used as first amplifier stage in actual measurements. They

for instance require pump powers several orders of magnitude larger than used for standing wave

paramps, which could be a real concern for qubit measurements, as avoiding pump leakage would

become increasingly difficult.

Another type of superconducting amplifier are microwave SQUID amplifiers, which typically

are operated below 1 GHz [31], but ones operating in the 5-10 GHz range have also been recently

developed [32, 33, 34]. Although the energy for the amplification process in those amplifiers is

provided by a DC current, it has been suggested that they can be described by parametric processes,

where the pump is provided by Josephson harmonics [35].

The research has matured to the point where superconducting microwave paramps can be used

as first amplification stage in the measurement chain of actual experiments, as was first done in

the detection of the state of mechanical oscillators [36]. Also by now, several experiments with
2Notably, B. Yurke was also one of the authors of [12].
3For a recent overview and outlook on the field of superconducting qubits, see [19].
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superconducting qubits read out dispersively and using Josephson paramps as first amplification

stage have been performed, observing quantum jumps, back-action of variable strength (quantum)

measurements, and performing feedback [37, 38, 39, 40, 41, 42].

1.1.2 Parametric Amplification and Nonlinear Media

Parametric amplification is a multiple-wave mixing effect, which depends on the presence of a

nonlinear medium. Typically, a strong tone, called the pump, is converted in frequency to amplify

an incident small amplitude signal tone. For instance in three-wave mixing, this happens through

the coherent conversion of one pump photon at frequency ωp into one signal photon at ωS and one

idler photon at ωI, with ωp = ωS + ωI. In the case of four-wave mixing, two pump photons are

converted into one signal and one idler photon, with 2ωp = ωS + ωI.

For the mixing process to be efficient and useful for near quantum-limited parametric amplifica-

tion, the nonlinearity has to be lossless and provide a sufficiently strong wave coupling. In optics,

nonlinear media have to be physically long compared to the wavelengths λ involved, as the frequency

mixing is otherwise too weak. This however adds the additional complication of phase-matching

of the signal, idler, and pump waves, which in the case of three-wave mixing requires fulfilling the

momentum relationship

~kp = ~kS + ~kI + ∆~k (1.1)

with
∣∣∣∆~k∣∣∣ � ∣∣∣~kp∣∣∣ , (1.2)

where ~kp,S,I are the wave vectors of pump, signal, and idler waves. This further leads to limitations

of the amplification bandwidth, as explained below. In superconducting microwave circuits on the

other hand, the Josephson junction provides a dispersive nonlinearity which allows to achieve strong

wave-mixing over distances short compared to the wavelengths involved. Strong nonlinearities can

be engineered with desired coupling properties while at the same time being point-like compared

to the wavelengths, eliminating the need for phase-matching.

Nonlinearities in Optics

In optics, parametric processes are typically described by nonlinear terms in the electric suscepti-

bility, which links the electric field ~E and the electric polarization ~P :
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Pi = ε0

∑
j

χ
(1)
ij Ek +

∑
jk

χ
(2)
ijkEjEk +

∑
jkl

χ
(3)
ijklEjEkEl + ...

 , (1.3)

where i, j, k etc. correspond to the different relevant polarizations of the field.

Consider the case of a χ(2)-type nonlinearity where the nonlinear electrical polarization term

is of the form P = ε0χ
(2)E2, and ~E and ~P are collinear. Then three electric field modes E =

EX + EY + EZ , each mode defined by a frequency (and bandwidth in case it describes a standing

wave), wave vector, polarization etc. lead to an interaction energy density

W int
e =

tˆ

−∞

E
∂P

∂t′
dt′ (1.4)

∝ ε0χ
(2) (EX + EY + EZ)

3 (1.5)

= ε0χ
(2)
(
E3
X + E3

Y + E3
Z + 6EXEY EZ

+3EXE
2
Y + 3EXE

2
Z + 3E2

XEY

+3E2
XEZ + 3EY E

2
Z + 3E2

Y EZ
)
.

The terms of the form XY Z and X2Z represent three-wave-mixing interactions: photons at ωZ

are converted into two photons, one at ωX and one at ωY , or into two photons at ωX . Which of

these parametric processes actually takes place in an optical χ(2) medium depends very much on the

experimental details, e.g. whether the medium is embedded into a resonator, which phase-matching

conditions are met, what polarizations the incoming fields have etc., and the above considerations

are only meant to sketch the basic principle.

To give two concrete examples of χ(2) media used for parametric amplification: In a KTP

crystal [8], three (non-resonant) waves X, Y , Z couple to each other, and the polarization of the

incident waves becomes important in achieving the phase-matching condition of Eq. 1.1. The s

polarized (perpendicular polarization w.r.t. the plane of incidence) wave X represents the small

amplitude signal at frequency ωS = ω0, the p polarized (parallel polarization w.r.t. the plane of

incidence) small amplitude wave Y represents the idler, also at frequency ωI = ω0, and finally

the large s polarized Z wave is the pump at frequency ωp = ωS + ωI = 2ω0. So signal and idler

beams are frequency degenerate and distinguishable only through their polarizations (polarization

non-degenerate). The absence of a resonant cavity and magnitude of the nonlinearity require pulsed

operation (e.g a Q-switched laser) to obtain sufficiently large powers for the amplification process.
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Further, signal, idler, and pump pulses are all obtained from the same laser through a first nonlinear

process that provides frequency doubling. This stands in contrast to experiments in the microwave

domain, where phase-locked generators can provide tones that are octaves apart with phase stability

over several minutes. Parametric amplification in this system occurs over a finite bandwidth. Not

all signal and idler frequencies ωS = ω0 + δω and ωI = ω0 − δω will mix with the pump frequency,

even though ωp = ωS +ωI = 2ω0 is satisfied, as the process is limited by phase-matching (here type

II phase matching, which determines the polarization scheme).

A second example of an optical paramp using a χ(2) nonlinear element is a PPLN (periodically

poled LiNbO3) ridge waveguide [11]. Again, a first nonlinear process creates the pump wave through

second harmonic generation (SHG), so that the pump is at twice the signal frequency ωP = 2ωS,

this time both waves are CW. Signal and idler fall within the same bandwidth centered around ωP/2

and have the same polarization as the pump. Phase-matching determines the possible bandwidth

of the process (about 60nm at center wavelength of about 1.5µm) also in this case.

While both examples make use of three-wave mixing processes, χ(3) media exhibit four-wave

mixing, with nonlinear electric polarization of the form P = ε0χ
(3)E3. Similarly to Eq. 1.4 this

leads to interaction terms of the form X4, X2Z2, and XY Z2. An example of such a paramp based

on this type of interaction is the FOPA as used in [9]. In those experiments, signal and pump stem

from different sources, but the idler is created through a first nonlinear process (a first FOPA).

All waves are CW and have the same polarization. In contrast to the previous examples, all three

waves coexist in the same bandwidth, given again by phase-matching (tens of nm centered around

1.5µm) and their frequencies are related by ωS + ωI = 2ωP.

All three examples above have in common that no resonating mode exists and the amplification

bandwidths are determined by phase-matching condition. Since signal and idler coexist in this

bandwidth they can be considered degenerate paramps, independent from the fact that one of them

is described by four-wave mixing and the other two by three-wave mixing. Further, signal, idler,

and pump waves are usually derived from the same source.

Nonlinearities in Superconducting Circuits

The relevant modes in (standing wave) paramps based on superconducting circuits correspond

to (distributed or lumped) resonators defining a mode frequency and bandwidth.4 In Josephson
4Traveling wave type microwave paramps using the kinetic inductance of superconducting transmission lines have

also been developed recently [30].
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Figure 1.1: Parametric amplifiers in frequency space. a) Spatially and temporally non-degenerate
parametric amplifier (three wave mixing). This paramp has two resonant modes (signal and idler)
represented by their Lorentzian gain response functions. A strong pump tone at the sum frequency
of signal and idler (purple arrow) provides the energy for the amplification process and determines
the device gain. An injected signal tone (blue arrow) at ω1 will be amplified at that frequency
and also amplified and converted into the idler band at ωc − ω1 (dashed red arrow). The three
different axes represent different spatial ports. b) A spatially and temporally degenerate parametric
amplifier (four wave mixing). Signal, idler and pump tones co-exist in the same resonant mode and
are injected in the same spatial port.
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circuits the nonlinearities are point-like (small compared to the wavelengths involved), so that phase

matching is not an issue. Whether the device is considered frequency degenerate or non-degenerate

depends on whether signal and idler modes coincide (or at least have overlapping bandwidths). A

further distinguishing attribute is spatial degeneracy vs. non-degeneracy, i.e. whether or not signal

and idler modes are excited through the same spatial port and travel on the same transmission

line. These properties are schematically shown in Fig. 1.1, where the clear distinction between the

signal mode at frequency ωa and bandwidth γa and the applied tone at frequency ω1 is made. It

should be noted that in optics the term “non-degenerate” is often used to describe an experimental

situation where applied signal and idler waves are not at the same frequency, even though signal

and idler modes do have overlapping bandwidths, and thus the term does not refer to a property

of the paramp itself as in microwave circuits.

Josephson devices allow for the nonlinearities to be engineered to have the desired energy mixing

terms, without complications arising from spurious nonlinearities as in the case of χ(2) and χ(3)

media. Higher order nonlinear terms exist, but are usually negligible. Josephson paramps can be

grouped into three-wave mixing and four-wave mixing devices.

a) Four-Wave Mixing

Degenerate paramps based on Duffing type oscillators have been successfully built and operated

using Josephson junction arrays as nonlinear metamaterial in a coplanar waveguide (CPW) res-

onator [43, 20], or using two Josephson junctions in a direct current (DC)-SQUID configuration

(for magnetic flux tunability) as nonlinear inductance in a quasi-lumped LC-circuit [44, 45, 46, 23].

These devices have nonlinear energy mixing terms of the form X4, where X denotes the gener-

alized flux across the nonlinear inductance term of the resonant mode at ωa and bandwidth γa.

Assuming a signal tone is applied at ωa + δω, δω � γa, then in this four-wave mixing interaction,

two pump photons at ωa are coherently converted into one signal photon at ωa + δω and one idler

photon at ωa − δω, as schematically shown in Fig. 1.1 b). These devices can be considered to

be doubly-degenerate in frequency, since signal, idler, and pump modes coincide. More recently,

doubly pumped operation has been achieved at Yale, with pump tones symmetrically detuned in

frequency above and below ωa [47], making the four-wave mixing nature of these devices more

obvious.
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b) Three-Wave Mixing

An example of a singly frequency degenerate Josephson paramp is given in [22], where two Joseph-

son junctions in a DC-SQUID configuration are embedded at the voltage node of a λ/4 CPW

transmission line resonator, with resonance frequency ωa. The pump is provided by the modula-

tion at 2ωa of the flux through the SQUID loop. This degenerate three-wave mixing interaction is

described by the nonlinear mixing term X2Z, where X again is proportional to the generalized flux

across the nonlinear inductance, and Z describes the pump mode. In frequency space this amplifier

is similar to Fig. 1.1 b), with the difference that the pump is now at 2ωa.

The three above examples cover both three-wave mixing and four-wave mixing interactions, but

are all degenerate in both frequency and space, as signal and idler tones are injected through the

same ports and travel on the same transmission lines.

The JPC, on the other hand, is non-degenerate in frequency and space. It is described by a

pure three-wave mixing energy interaction term of the form XY Z, where X, Y , and Z stand for

the signal, idler, and pump modes respectively. Signal, idler, and pump modes are described by

frequencies ωa, ωb, ωc and bandwidths γa, γb, γc, with the three-wave mixing frequency relation

ωc = ωa+ωb. As schematically depicted in Fig. 1.1 a), signal tones injected withing the signal mode

bandwidth at frequency ω1 are amplified at that frequency and also converted and amplified into

idler photons at ωc − ω1, so that the three-wave mixing frequency relation still holds. In practice,

the pump is applied non-resonantly and ωc represents the pump tone frequency. This assures that

the pump is stiff, i.e. that its amplitude is much larger than signal and idler amplitudes and its

dynamics thus not affected by the signal and idler dynamics. The gain of the JPC then remains

constant over a large range of signal input powers.

1.1.3 Phase-Sensitive and Phase-Preserving Amplification

For experiments in dilution refrigerators at frequencies of several GHz, kBT � ~ω and consequently,

all Johnson noise of matched loads is replaced by zero-point fluctuations. Superconducting circuits

as well as Josephson junctions are dissipation-free and full control of all modes can be achieved

while avoiding unwanted dissipation. This makes it possible for superconducting paramps to achieve

quantum-limited operation [5] and is the reason for the increasing interest the field has seen in the

past few years.

Parametric amplifiers are usually not only classified into degenerate and non-degenerate types,
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Figure 1.2: Fresnel vector representation of quantum-limited amplifiers. a) Phase-preserving oper-
ation of a paramp such as the JPC. A coherent tone of |α|2 photons is amplified by an amplitude
gain

√
G and its phase is unaltered in the process. Half a photon of noise is added to the original

noise (referring the noise back to the input). b) Phase-sensitive operation, e.g. of a JBA-paramp.
One quadrature (here I) is amplified by an amplitude gain 2

√
G, while the other (Q) is deamplified

by the inverse (2
√
G)−1. The noise in the two quadratures is amplified by the same factor, so that

the signal-to-noise ratio (SNR) in each quadratures stays constant. For coherent states, σ2
I,Q = 1/4.

which depends on their physical implementation, but also by whether they are operated in phase-

preserving or phase-sensitive mode. All paramps, whether optical or made of superconducting

microwave circuits, can be operated in both modes, phase-preserving and phase-sensitive. This

essentially depends on whether or not the signal to be processed is distributed over both signal and

idler. Consider for instance the case of a doubly-degenerate paramp as schematically shown in Fig.

1.1 b): applying a signal tone exactly at the center of the resonant mode at frequency ωa (or more

generally a pulse with carrier frequency ωa and frequency components symmetric about the carrier

frequency) will lead to phase sensitive amplification. In that case one can not distinguish between

signal and idler, as the signal information is distributed over and mixed into both. In case the

signal to be processed is contained on one side of ωa, the amplification process is phase-preserving

and a copy of the amplified signal will appear on the opposite side of ωa as idler.

The non-degenerate JPC is usually operated in the phase-preserving mode, as the signal to be

amplified is injected on the signal port. However it can also be operated in the phase-sensitive

mode, which is discussed detail in Chapter 5.

Figure 1.2 a) shows the operation of a phase-preserving amplifier, such as the JPC at large

11



power gains G. A signal with amplitude α is amplified with amplitude gain
√
G, and its phase is

the same before and after the amplification. The noise (standard deviation), represented as a disc,

grows by slightly more than
√
G: an energy corresponding to half a photon is added so that the

power signal-to-noise ratio (SNR) deteriorates by a factor 1 + 1/(2σ2), where for quantum-limited

signals (coherent states) σ2 = σ2
I + σ2

Q = 1/2, so that the SNR is lowered by a factor of 2 in the

amplification process. Figure 1.2 b) shows the operation of a phase-sensitive amplifier, such as

the Josephson Bifurcation Amplifier (JBA)-paramp at large gains. One quadrature is amplified

by an amplitude gain 2
√
G, where G is the power gain in the phase-preserving operation of the

same device at the same working point, while the other quadrature is deamplified by the inverse

factor 1/(2
√
G). Since the noise in each quadrature is amplified/deamplified by the same respective

factors, schematically represented by the conversion of the noise disc into a noise ellipse, the overall

SNRs in each quadrature stays constant for any gain. This feature is very attractive in experiments

where the signal phase is known a priori, or where two digital outcomes, differing in phase, are of

interest, and where an offset phase is known/adjustable a priori (see e.g. [37]).

Table 1.1 classifies Josephson amplifiers developed in various research groups. Paramps are

powered by external microwave tones, while microwave SQUID amplifiers are powered with a DC

bias. The circuit properties of paramps determine whether they are of the degenerate or non-

degenerate type. Even though either can be operated in phase-sensitive or phase-preserving mode,

degenerate paramps are more easily operated in the phase-sensitive mode, while non-degenerate

paramps such as the JPC are more easily operated in the phase-preserving mode. Microwave

SQUID amplifiers on the other hand are always phase-preserving.

1.1.4 XY Z Nonlinearity and JPC Scattering Matrix

What makes the JPC stand apart from other paramps is that its Hamiltonian contains the pure

tri-linear mixing term XY Z. No other nonlinear mixing term of this order exists. When neglecting

drive and dissipation, its Hamiltonian consists of three harmonic oscillators coupled by this pure

three-wave mixing term:
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RF Powered

DC Powered

Degenerate Non-Degenerate

Phase-

Sensitive

Boulder (“JPA”), 
Yale (“JBA”), 

Berkeley (“JBA”), 
NEC, etc.

Phase-

Preserving
Yale (“JPC”), 
ENS-Paris 

(“JPC”)

Berkeley, LLNL, 
NIST, etc.

Amplifier Type

O
p

e
ra

ti
o

n
 o

f 
A

m
p

li
fi

e
r

Table 1.1: Classification of Josephson amplifiers developed in various research groups. Microwave
SQUID amplifiers are DC powered and always phase-preserving. Paramps are either of the de-
generate or non-degenerate type, depending on the specific circuit, and can be operated in both
the phase-sensitive and phase-preserving mode. Non-degenerate paramps such as the JPC are usu-
ally operated in the phase-preserving mode, while degenerate paramps are usually operated in the
phase-sensitive mode.
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H0 =
Φ2
X

2La
+

Φ2
Y

2Lb
+

Φ2
Z

2Lc
(1.6)

+
Q2
X

2Ca
+
Q2
Y

2Cb
+
Q2
Z

2Cc

+KΦXΦY ΦZ ,

where ΦX,Y,Z are the generalized flux variables and QX,Y,Z their conjugate charge variables. The

three harmonic oscillators have frequencies ωa,b,c = 1/
√
La,b,cCa,b,c and characteristic impedances

Za,b,c0 =
√
La,b,c/Ca,b,c and are coupled to each other through the three-wave mixing coefficient K.

As explained in Chapter 3, under the rotating wave approximation (RWA) and for ωc = ωa + ωb

the Hamiltonian becomes

HRWA
0 = ~ωaa†a+ ~ωbb†b+ ~ωcc†c+ ~g3

(
a†b†c+ abc†

)
, (1.7)

where the three-wave mixing interaction is now described by the coupling energy ~g3 = KΦ0
XΦ0

Y Φ0
Z ,

where Φ0
X,Y,Z :=

√〈
0
∣∣∣Φ2
X,Y,Z

∣∣∣ 0〉 are the zero-point fluctuation of the flux variables. The first three

terms are simply those of three harmonic oscillators with annihilation operators a, b, c, whereas the

coupling term of the form a†b†c+ abc† can be interpreted in the following way: a†b†c describes the

annihilation of one pump photon at ωc and the creation of a pair of signal and idler photons at

ωa and ωb, respectively. This is predicted by the Manley-Rowe relations [48], which state that the

change in photon flux of signal and idler modes are equal to each other and opposite to the change

in pump photon flux: ṅouta − ṅina = ṅoutb − ṅinb = ṅinc − ṅoutc . It is the term a†b†c in the Hamilitonian

which gives rise to parametric amplification. The hermitian conjugate term abc† describes the

reverse process: a pair of signal and idler photons are annihilated to create one pump photon.

For balanced signal and idler inputs and with the correct phase relation between signal, idler, and

pump, this other process leads to Coherent Attenuation (CA), which is discussed in Chapter 5.

As explained in Ch. 3, under the stiff pump approximation and for incoming and outgoing

signal and idler tones at zero detuning, i.e. at ω1 = ωa and ω2 = ωb, Eq. 1.7 leads to the two-port

14



scattering matrix

 aout[ω1]

bout†[ω2]

 ω1=ωa; ω2=ωb
=

 √
G0 −ie−iϕp

√
G0 − 1)

ieiϕp
√
G0 − 1)

√
G0


 ain[ω1]

bin†[ω2]

 , (1.8)

which links incoming and outgoing signal and idler fields ain/out[ω] and bin/out[ω], and where ϕp is

the phase of the applied pump tone. The power gain G0 is given by

√
G0 =

1 + |ρ0|2

1− |ρ0|2
, (1.9)

and goes to infinity as the dimensionless pump amplitude |ρ0| → 1−. As shown in Chapter 3, it

is exactly the scattering matrix of Eq. 1.8, linking input and output operators, which describes

quantum-limited phase-preserving amplification, as schematically shown in Fig. 1.2. In particular,

for large gains
√
G0 − 1 ≈

√
G0 and Eq. 1.8 simply describes the addition (up to a phase) and

subsequent amplification with amplitude gain
√
G0 of signal and idler field amplitudes5. And it

allows to explicitly identify the origin of the added amplifier noise on the signal output: zero-point

fluctuations of the incoming idler field. It also shows that an injected signal tone will be not only

amplified, but its conjugate will also be converted to the idler frequency and amplified by the

amplitude gain
√
G0 − 1.

The gain as a function of frequency around and close to the signal and idler band centers is

described by the Lorentzian:

G0(∆ω) = G0
1

1 +
(

∆ω
B(G0)/2

)2 , (1.10)

where ∆ω = ω1 − ωa = ωb − ω2 and

B(G0) = B0G
−1/2
0 (1.11)

is the JPC amplification bandwidth at gain G0. The constant bandwidth B0 is given by a sort of
5Note that it is the phase conjugated idler amplitude which is added to the signal amplitude.
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average of the signal and idler mode bandwidths γa, γb through

B0 =
2γaγb
γa + γb

. (1.12)

Figure 1.1 a) schematically shows the two Lorentzian gain response functions centered around the

signal and idler mode frequencies ωa, ωb. An applied and amplified signal tone at ω1 is shown as

solid arrow, and the resulting idler tone at ω2 = ωc − ω1 as dashed arrow.

1.2 A Practical Parametric Amplifier Based on the Josephson

Ring Modulator

The goal of this thesis work was to build and operate a practical quantum-limited, non-degenerate

and phase-preserving parametric amplifier at microwave frequencies based on the XY Z nonlin-

earity described above. This means that the amplifier needs to be useful when inserted into the

measurement chain of an experiment, and not simply be a proof-of-concept device. In particular,

the amplifier needs to noticeably reduce the system noise temperature by not only having a lower

noise temperature than the following stage amplifier, but also by having sufficient gain. At the

same time the device needs to have sufficient bandwidth and the capability to operate at large

enough input powers. A practical amplifier should further either have a very large bandwidth, or

be frequency tunable over a sufficiently large range. Paramps are rather high Q devices, making

frequency tunability crucial to match the amplifier center frequency to the measurement frequency.

As explained in this section, the JPC amplifier developed in this work fulfills those requirements and

can be used in the readout of the state of superconducting qubits. The qubit architecture of choice

in our group at Yale is circuit quantum electrodynamics (cQED), where a microwave resonator is

used to manipulate and measure the state of a qubit [49, 50, 51]. Similar to the case of an atom

in a cavity [52, 53], superconducting qubit and resonator exchange energy so that the qubit state

encoded in the resonator microwave field can be dispersively measured by monitoring this field,

leading to a quantum non-demolition (QND) measurement. For a preamplifier such as the JPC to

be useful in such a measurement scheme, several requirements have to be met.
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1.2.1 Paramp Requirements

Commercially available cryogenic HEMT amplifiers [54] have noise temperatures typically corre-

sponding to 10-20 added photons at frequencies of 1-12 GHz. The most obvious requirement for

a paramp preamplifier sitting between qubit readout resonator and HEMT amplifier is for it to

have a significantly lower noise temperature and enough gain at the readout frequency, in order to

reduce the combined system noise temperature. This noise temperature should ideally approach

the standard quantum limit of half a photon of added noise, and allows for instance monitor the

qubit state in real-time through partial (non-projective) measurements [37, 42] and to implement

feedback loops [40, 38, 41].

With a JPC in the measurement chain, the system noise temperature is given by

T sys
N =

1

GJPC
THEMT
N + T JPC

N , (1.13)

where the gain GJPC is the JPC gain including possible losses between qubit and JPC, THEMT
N is

the HEMT noise temperature including possible losses before the HEMT, and T JPC
N is the JPC

noise temperature, including possible losses between qubit and JPC. This expression shows that

it is not sufficient for the JPC to operate at the quantum limit of TQ = ~ω/2kB corresponding to

half a photon of added noise, but that it also needs to exhibit sufficient gain to lead to a significant

improvement of the SNR of the system.

A further requirement is that the JPC has a sufficiently large dynamical 3dB amplification

bandwidth B, in the range B/2π = 1 − 10MHz, and which corresponds to a signal processing

time (or more exactly: cavity rise time) of 160 − 16 ns. The transmon [55, 56, 57] and fluxonium

[58] qubits pioneered at Yale nowadays routinely achieve lifetimes of the order of one hundred

microseconds [59] and have readout cavities with bandwidths in the 1 − 10MHz range [60]. But

even for qubit lifetimes T1 of a few microseconds, a JPC dynamical bandwidth of order 1− 10MHz

allows to extract many bits of information per T1 even when measuring with few photons. The JPC

also needs to be able to handle the powers with which qubits are measured. In QND schemes this

power typically corresponds to a few photons per readout cavity lifetime at the readout frequency.

In terms of ease of operation, the JPC center frequency needs to be tunable over at least 100

MHz, to make it easy to match JPC and qubit readout frequencies. Lastly, a flexible and simple

sample fabrication process is desirable.
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Characteristic Desired Achieved
ωa,b/2π 5− 12 GHz 5− 8.5 GHz

dynamical BW B/2π 1− 10 MHz 3− 10 MHz
Gmax ≥ 20 dB ≥ 20 dB

frequency tunability 100 MHz ≥ 400 MHz
kBTN/~ωa 1

2 . 2− 3
Pmax
Sig /~ωaB ≥ 1 @ 20 dB 1− 10 @ 20 dB

out-of-band backaction negligible none observed

Table 1.2: Desirable preamplifier characteristics and values typically achieved with the JPC in this
work.

Φext

a) b)
1

2

34

1

2

34

Figure 1.3: Schematic of the Josephson Ring Modulator (JRM). a) Unshunted JRM with four
Josephson junctions (red). b) Shunted JRM with four additional shunt junctions (yellow).

Table 1.2 summarizes requirements to a preamplifier for qubit readout and shows typical values

achieved with the JPC in this work. Devices were designed to typically have signal and idler

frequencies around 8 GHz and 5−6 GHz, with linear bandwidths γa,b/2π of up to 100 MHz. Gains

of above 20 dB were routinely achieved (see Table 4.1 in Ch. 4).

1.2.2 The Josephson Ring Modulator

The circuit element used to achieve a pure three-wave mixing nonlinearity of the tri-linear form

XY Z is the JRM, which consists, in its simplest form, of a ring of four nominally identical Josephson

junctions, as shown in Fig. 1.3 a). The JRM is inspired by the diode ring modulator as used in

double balanced microwave mixers [61] and which perform a similar (but lossy) frequency conversion

scheme to that of the JPC.

As explained in Chapter 2, this (unshunted) JRM is well described by the approximate energy

expression
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E4JJ
JRM

ϕX,Y,Z�1
= −EJ sin

(ϕext
4

+ n
π

2

)
ϕXϕY ϕZ + EJ cos

(ϕext
4

+ n
π

2

)(ϕ2
X

2
+
ϕ2
Y

2
+ 2ϕ2

Z − 4

)
,

(1.14)

where EJ is the Josephson energy, ϕext is the reduced applied magnetic flux through the ring,

n = 0, 1, 2, 3, and ϕX,Y,Z are reduced generalized fluxes of modes X,Y, Z. In terms of generalized

node fluxes φi ≡
´ t
−∞ vi(t

′)dt′ at nodes i = 1, 2, 3, 4, where vi is the electric potential at node i,

these modes can be expressed as

ϕX
JRM
= ϕ−1

0 (φ3 − φ4) (1.15)

ϕY
JRM
= ϕ−1

0 (φ1 − φ2) (1.16)

ϕZ
JRM
= ϕ−1

0

(
φ1 + φ2 − φ3 − φ4

2

)
, (1.17)

where ϕ0 ≡ ~/2e is the reduced magnetic flux quantum. Thus X represents a differential

excitation across nodes 3 and 4, Y represents a differential excitation across nodes 1 and 2, and Z

corresponds to a differential excitation with a gradient in flux between nodes 1, 2 and 3, 4.

The first term in Eq. 1.14 is the desired XY Z coupling term, maximized at ϕext = 2π. The

system has four solutions n = 0, 1, 2, 3 for a given applied magnetic flux, leading to different values

of the coupling strength −EJ sin
(
ϕext

4 + nπ2
)
. The state n of the system depends on the history

of the magnetic flux ϕext and jumps between these states can occur, so that in practice the device

is operated at ϕext = π (i.e. Φext = Φ0/2), as explained in more detail in Ch. 2. The second

term in Eq. 1.14 is quadratic in ϕX,Y,Z , only renormalizing the mode frequencies. The prefactor

EJ cos
(
ϕext

4 + nπ2
)
suggests that the mode frequencies can be tuned with the external magnetic flux

ϕext, but in practice this tunability is severely limited by the fact that jumps can occur between

the different states n.

By quartering the ring with four additional larger junctions (Fig. 1.3 b)), which behave like

linear inductors, tunability over a large frequency range can be achieved. In this case, the device

becomes frequency tunable over the range ϕext ∈ [0, ϕcrossoverext ], where ϕcrossoverext is given by the

solution of −4βL cos(ϕcrossoverext /4) = 1, or by 2π if no solution exists. Here, βL is the ratio between

the Josephson energy EJ of the smaller outer Josephson junction and the Josephson energy Eshunt
J
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of the larger shunt junction, and ϕext is the reduced magnetic flux threading the area defined by

the four outer junctions. In this regime, the energy of the shunted JRM is given by

E8JJ
JRM

ϕX,Y,Z�1
= −EJ sin

(ϕext
4

)
ϕXϕY ϕZ (1.18)

+

(
EJ cos

(ϕext
4

)
+
Eshunt
J

2

)(
ϕ2
X

2
+
ϕ2
Y

2

)
+2

(
EJ cos

(ϕext
4

)
+
Eshunt
J

4

)
ϕ2
Z

−4EJ cos
(ϕext

4

)
.

The first term has again the desired mixing properties, and the subsequent terms simply renor-

malize the mode frequencies. This time however only one solution exists, so that the tunability

with externally applied magnetic field can be exploited.

Figure 1.4 shows three implementations of the JRM, a) one unshunted version with four Joseph-

son junctions fabricated using the Dolan bridge technique [62], b) one shunted version with eight

Josephson junctions using the Dolan bridge technique, and c) one shunted version using the bridge-

free technique [63]. The red areas show the outer JRM junctions providing the nonlinearity for the

amplification process, while the yellow areas show the shunt junctions. The bridge-free technique

allows one to fabricate large junctions without having to worry about the collapse of resist bridges

during the fabrication process (which sometimes happens during the plasma cleaning step), and

also to increase the junction size without having to modify the resist stack height and evaporation

angles.

1.2.3 Microstrip JPC Design

In order to realize the Hamiltonian of Eq. 1.7 with the JRM, it needs to be embedded in a

resonant circuit. The first generation of JPC consisted of two edge coupled microstrip resonators

[24], connected to two nodes each to excite the X and Y modes. The design is inconvenient for

several reasons: to achieve Q’s of about 100, large coupling capacitors are required and finger

capacitors, which are a convenient planar solution, turn out to be difficult to predict in this case.

Plate capacitors are a good alternative, but come with the drawback of requiring an additional

lithography step. A more problematic issue is the fact that signal and idler coupled microstrip lines

necessarily have to cross to connect to JRM nodes on opposite sides, and so a multilayer fabrication
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a)
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b)

5μm 

c)

Figure 1.4: SEM images of different implementations of the Josephson Ring Modulator (JRM). The
devices are fabricated with aluminum evaporated on high resistivity silicon substrates. a) A JRM
with four Josephson junctions and no shunts, fabricated using the Dolan bridge technique. b) A
shunted JRM with 8 Josephson junctions fabricated using the Dolan bridge technique. The four
large Josephson junctions are dividing the ring into four parts, adding frequency tunability to the
device. c) A shunted JRM fabricated using the bridge-free technique. The red areas show the JRM
junctions, and the yellow areas the shunt junctions.
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process is required.

One of the goals of this thesis work was to come up with a resonator design solution which

allows for a single layer fabrication process. This is achieved by realizing the signal and idler

resonant modes with two microstrip λ/2 resonators, crossing at their voltage nodes, where the

JRM is inserted. The full JPC circuit with a shunted JRM is shown in Fig. 1.5, where the blue

resonator corresponds to the higher frequency signal mode, and the red resonator corresponds to

the lower frequency idler mode. A picture of a full device is shown in Fig. 6.1 of Chapter 6.

The transmission line resonators are connected to the 50 Ω environment through coupling ca-

pacitors. In most devices, one of the signal feedlines is shorted to ground, so that the signal mode

can be excited through the remaining port, as seen in Fig. 1.5 a). The idler resonator is always

connected to a hybrid. The disadvantage of this asymmetry is that the signal mode voltage node

is shifted away from the center, opening up the possibility of power leaking out of the idler port.

In newer generation devices, signal resonators are also connected to hybrids, as seen in Fig. 1.5 b),

assuring that the JRM is at a voltage node and thus reducing cross-talk to the idler ports. The

pump at the sum frequency of signal and idler is coupled in through the Σ port of the idler hybrid,

and is non-resonant in the system.

The reason coupling capacitors are necessary is that the impedance of the 300 µmwide microstrip

transmission lines fabricated on 250 µm thick silicon wafers lead to characteristic impedances of

the resonances of close to 50 Ω, close to the impedance of the environment. Coupling capacitors

then act as impedance transformers at frequencies around the resonance frequency (here ω0/2π ∼

5 − 8 GHz), and from the point of view of the close to 50 Ω transmission line resonators, they

transform the environment to impedances of order ∼ Qext×50 Ω, where the coupling quality factor

for a symmetrically coupled transmission line resonator is given by (see Appendix A, [64]):

Qext =
π

4

1

Z0
· RL

(ω0CinRL)
2 , (1.19)

with Z0 the characteristic impedance of the transmission line (typically 40 to 50 Ω), RL the

impedance of the environment (50 Ω), ω0 the resonance frequency, and Cin the coupling capac-

itance. In the case of the shorted signal feedline as in a), the factor π/4 in the expression is

replaced by π/2.

Another feature of this JPC design that has to be kept in mind is the fact that the circuit actually

has three fundamental resonances: one for which the two red transmission line arms combined have
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Figure 1.5: Schematic of a frequency tunable Josephson Parametric Converter (JPC). Two trans-
mission line λ/2 resonators define the signal (blue) and idler (red) modes. The two resonators cross
each other at their voltage nodes, where a Josephson Ring Modulator (JRM) is inserted, providing
the mode-coupling nonlinearity for the amplification process. The JRM is threaded by an external
magnetic flux, allowing for frequency tunability. a) One of the signal feedlines is shorted to ground,
while a hybrid on the two idler feedlines allows to also couple in the non-resonant pump tone. b)
Both signal and idler are coupled in through hybrids.
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device JPX09 JPX14 JPX16 JPX22 JPX26 JPX30 JPXs01 JPXs04
ωa,b
2π (GHz) 8.32/6.63 8.12/6.45 8.18/6.22 7.63/5.4 7.90/5.37 7.26/5.3 7.4-7.8/5.2-5.3 7.7-7.8/5.7

Qa,b 67/63 73/66 140/100 290/280 350/256 200/150 240/ 220 140/ 100
γa,b
2π (MHz) 124/105 111/98 58/62 26/19 22/21 36/35 ∼ 38/ ∼ 24 ∼ 55/ ∼ 57

pa,b 5%/4% 4%/3% 2%/3% 4%/3% 6%/4% 7%/6% 7− 15%/5− 12% 4− 5%/3%

papbQaQb 8 6 8 97 215 126 185-950 17-21

meas. Gmax
0 (dB) 19 21 25 > 40 > 40 > 30 ∼ 30 > 30

Table 1.3: List of notable JPC samples with relevant measured parameters.

the length λI/2 (the idler mode), one for which the two blue arms correspond to λS/2 (the signal

mode), and a third common mode for which one red arm and one blue arm have the combined

length λC/2, so that λC = (λS + λI) /2. The second harmonic of this mode can actually be close

to the pump frequency, potentially leading to a softening of the pump, and care was taken to avoid

this situation.

The big advantage of the microstrip design is that the fabrication is relatively easy. Devices were

fabricated by depositing aluminum on silicon substrates, requiring only one electron beam (e-beam)

lithography and evaporation step. This allows for flexible sample design, as Josephson junction

parameters, resonator lengths (i.e. JPC frequencies), and coupling capacitors (i.e. dynamical

bandwidths) can all easily be changed from one device to the next.

1.3 Main Measurement Results

In this section, important measured JPC characteristics are presented. Many devices were fabricated

and measured over the course of this thesis work, and an overview of notable devices can be found

in Table 1.3. For more details on device characteristics and parameters, in particular on how the

participation ratios pa,b are determined, see Chs. 4 and 6.

1.3.1 Tuning Bandwidth

The dynamical bandwidth of the JPC is of the order of the bandwidths of typical qubit readout

cavities, so that center frequency matching becomes an important practical concern when using the

JPC as preamplifier in the readout of qubits. As explained in Sec. 1.2.2, the inductively shunted

JRM allows for significant frequency tuning. This is most easily understood by considering the

effective inductance of the shunted JRM of the signal and idler modes X,Y in the relevant applied

magnetic flux region:
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shown in Fig. 1.7. Similar results have been obtained in [28].

L−1
X,Y

ϕX,Y,Z�1
=

(
Lshunt
J

)−1

2

(
2βL cos

(ϕext
4

)
+ 1
)
, (1.20)

where βL = EJ/E
shunt
J , and Lshunt

J is the Josephson inductance of the shunt junctions. For βL large

enough, there exist external magnetic fluxes such that the term 2βL cos
(
ϕext

4

)
+ 1 becomes small

and thus the effective JRM inductance large, pulling the frequency down. This behavior is shown

in Fig. 1.6, where the measured JPC signal center frequency as a function of applied magnetic flux

around zero is shown. The linear signal frequency can be tuned by close to 1 GHz, compared to

only tens of MHz typically achieved by detuning the pump frequency with a four junction JRM.

The colored lines in the figure indicate the flux bias points at which gain was measured, when

applying a pump tone at the sum of signal and idler frequencies (13.1 to 12.5 GHz) with the

appropriate powers. The measured Lorentzian-like power gain response functions are shown in Fig.

1.7. The gains of 20 dB were chosen only as reference; maximum gains achieved for this device

were ∼ 30 dB. The photon flux at which the JPC saturates at this gain depends on the biasing

point. The numbers next to the gain curves correspond to the measured saturation photon flux

per dynamical bandwidth at those points (B ≈ 2π · 3MHz). The data of the saturation photon

numbers presented here are to be understood as a proof of principle only. Those numbers can be

maximized by carefully choosing the flux bias and pump frequency, and differences of up to 10 dB

in the saturation powers for the same gain and center frequency have been observed. Newer devices
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measured while this thesis was written appear to have better saturation powers for similar gains

and bandwidths, and saturation powers generally about 10 dB larger than those shown here have

been reported in [28].

1.3.2 Gain and Dynamical Bandwidth

The gain of the JPC depends on the pump power applied. As the normalized pump amplitude

|ρ0| → 1−, the gain G0 at the JPC center increases, as explained in Sec. 1.1.4. At the same time,

the dynamical bandwidth reduces as G−1/2
0 , so that the amplitude-gain-bandwidth product B×G1/2

0

is constant and equal to B0 = 2γaγb/(γa + γb), where γa,b is the linear signal/idler bandwidth.

Figure 1.8 a) shows the measured gain response function of a JPC with a four junction JRM.

The gain curves all lie on top of each other, but the 3 dB bandwidth reduces with increasing gain,

from about 28 MHz at a gain of 9 dB to about 9 MHz a gain of 19 dB. The white trace on top of

the red trace is a Lorentzian fit to the 0 dB pump power trace. Figure 1.8 shows the bandwidth

of the same data as a function of the inverse amplitude gain together with a line fit. The fit gives

an amplitude-gain-bandwidth product of 80 MHz, which is close to the expected value of 100 MHz

from the measured signal and idler linear bandwidths.
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Figure 1.8: Gain and dynamical bandwidth of a JPC (sample JPX14). a) Measured power gain
response function as a function of frequency. The maximum gain increases from 5 dB to 19 dB with
increasing applied pump power (purple to red). Note that the applied pump power is changed by
less than 60% (2 dB). A Lorentzian fit to the 0 dB pump data is shown as white trace. b) 3 dB
bandwidth as a function of maximum gain. The bandwidth increases linearly with the inverse of
the amplitude gain.

1.3.3 Gain and Power Limitations

The previous discussion about dynamical JPC bandwidth seems to suggest that the linear resonator

bandwidths need to simply be increased in order to achieve more amplifier bandwidth, and so the

question arises why the coupling capacitors are necessary at all in the presented microstrip design.

In fact, there are several more limitations on the power and gain of the JPC, which require the

linear resonator quality factors Qa,b = ωa,b/γa,b to be sufficiently large. The limitations on the

gain, power, and bandwidth are ultimately determined by the Josephson energy EJ made available

by the junctions, the frequency ωa,b at which the device is operated, and the participation ratios

pa,b of the JRM inductance compared to resonant circuit inductance, as defined later in Sec. 3.1.

The following mechanisms restrict the maximum gains and powers the JPC can handle [25, 27]:

1. The signal power is too large and excites higher order nonlinearities.

In the derivation of the JRM energy (Eqs. 1.14, 1.18), it is assumed that the generalized fluxes

ΦX,Y remain small compared to Φ0, so that the expansion to only third order remains valid.

Or, using the particle analogy commonly used in the description of Josephson junctions, it

means that the position ΦX,Y needs be small enough so that the particle remains close to
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the bottom of the potential well. This requires the maximum power in the signal (and idler)

resonator to remain finite, and the limit is given by

Pmax
cav =

γa,b
pa,b

Eeff
J , (1.21)

where Eeff
J is an effective Josephson energy available for the amplification process. This

maximum power is to be understood as the maximum power the JPC can provide at the

output of signal and idler ports. This suggests that large junctions, small participation ratios,

and large bandwidths are desirable.

2. The pump power is too large and excites higher order nonlinearities.

In this case, the pump power can never reach the limit |ρ0| → 1−, required to achieve appre-

ciable gains (Eq. 1.9), without excitation of higher order nonlinear terms. To assure that high

gains are possible, the circuit needs to designed such that the Q · p−product is large enough,

QaQbpapb > Ξ, (1.22)

where Ξ is a number of order unity [27]. In practice (see Table 4.1) it was observed that

a Q · p−product smaller than 10 leads to maximum gains of 20 dB and below, whereas a

Q · p−product larger than 10, gains of above 30 dB were routinely achieved. A second effect

observed with samples of small Q · p−product is that the gain abruptly drops once the signal

input power becomes too large [26]. Thus, for large bandwidth (small Q’s), large participation

ratios are required.

3. The signal photon flux becomes comparable to the pump photon flux.

The two requirements above are still met, i.e. ΦX,Y,Z � Φ0 is still true, large gains can be

achieved, and the power circulating in the signal resonator is easily handled by the junctions,

and the three-wave mixing term in the Hamiltonian fully describes the system. However, the

stiff pump approximation, which says the dynamics of the pump can be neglected, is not true

anymore. In this case, the fully nonlinear regime is reached and signal, idler, and pump modes

are to be treated on the same footing, as described by the three coupled nonlinear equations

of motion presented in Chapter 3 (Eq. 3.5). The consequence is that when the signal input

photon flux is increased, the gain G will eventually drop to 1− ε of its original value G0. For
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this drop not to exceed 1− ε, the following condition has to be met:

x < 2εG
−3/2
0 , (1.23)

where x ≡ ṅa/ṅc is the ratio between signal and pump photon fluxes (the signal and pump

power is given by Pa,c = ~ωa,cṅa,c). This expression predicts for instance that at the operating

point G0 = 20dB, the gain will drop by 1dB (ε ≈ 0.2) when the signal photon flux ṅa is about

34 dB lower than the pump photon flux, but says nothing about the absolute photon fluxes.

These absolute photon fluxes are determined by noting that, at high gains, the pump photon

flux is close to the threshold photon flux equivalent to |ρ0| ≈ 1−, ṅc ≈ ṅpoc = γaγbγc/4g
2
3 ,

and g2
3/~ = papbpcωaωbωc/E

eff?
J , where Eeff?

J ∝ EJ with a numerical prefactor. So one finally

arrives at the condition for the incoming signal photon flux not to lead to the softening of the

pump with associated drop in gain (by 1− ε):

ṅa < 2εG
−3/2
0 × ṅpoc = 2εG

−3/2
0 × 1

QaQbpapb
· γc

4pcωc
· Eeff?

J /~ (1.24)

4. Amplified zero-point fluctuations become too large for junctions.

The JPC signal and idler resonator always have to amplify zero-point fluctuations, and this

circulating power in the resonators, can overwhelm the junctions for too large gains. This

sets the limit of the maximum gain achievable to

Gmax
ZPF = Eeff

J

2

~ωa,bpa,b
, (1.25)

where again Eeff
J is the effectively available junction energy. Large junctions and small par-

ticipation ratios are favorable in this case.

Equations 1.11,1.12,1.21,1.22,1.24, and 1.25 thus show that it is not possible to simultaneously

optimize for gain, bandwidth, and input power handled by the JPC, and compromises need to be

made. The bandwidths typically achieved here of 3− 10 MHz at gains of 20 dB with participation

ratios of a few percent allow to achieve saturation input powers of a few photons. It should be

possible to even further increase the JPC dynamical bandwidth and saturation powers in future

generation devices, by increasing the linear bandwidths and Josephson junction size while at the

same time increasing the participation ratio.
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Figure 1.9: Measured JPC gain and output power dependence as a function of signal input powers
(sample JPXs01). a) The gain is constant for small input powers and drops at larger powers. The
dashed lines represent the expected maximum gain, maximum power (see text), and the power
representing one photon at the bandwidth B = B0G

−1/2. b) Same data as a), plotted as output
power G0Pin. The dashed line referring to the one photon input power is with respect to a constant
bandwidth of 5 MHz. Device parameters: pa = 0.1, I0 = 1µA (EJ/h = 496GHz.), γa ≈ B0 =
2π × 31 MHz, ωa = 2π × 7.6 GHz, papbQaQb ∼ 102 (Eeff

J = EJ/
√

2 chosen [27]).
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Figure 1.9 a) shows how the measured gain of a JPC depends on the signal input power, and

the discussed expected limitations are drawn as dashed lines for the parameters of this device

(see caption text and Table 4.1). This device has a Q · p−product of several hundred, so that

large gains (∼ 30 dB) can be easily achieved. This device can handle about 1 photon at gains

of 20 dB, as indicated by a dashed line, and shows constant gains G0 for input powers below the

saturation powers. Note that the calculated Gmax
ZPF is also around 30 dB, where it was assumed

that Eeff
J = EJ/

√
2 [26]. It is likely that the estimations of Eeff

J and pa for this particular device

were not accurate, as one should not expect to be able to operate too close to Gmax
ZPF. Figure 1.9

b) shows the same data as in a), but plotted as output power vs. input power. Even though the

calculated maximum output power Pmax
cav = −94 dB is clearly above the maximum power achieved

by this device, the device appears to be limited by an effective maximum output power about 10dB

lower when saturating. This suggests that the relevant saturation mechanism here is either that

a maximum circulating power in the signal resonator has been reached, or that the signal photon

flux starts to become large compared to the idler photon flux.

1.3.4 SNR Improvement

Adding a JPC in a measurement chain as preamplifier to a HEMT amplifier leads to a decrease

of the measurement system noise temperature. In principle, the JPC adds only half a photon of

noise if operated in the low temperature regime kBT � ~ω. To date, reported measurements of

the JPC noise temperature set an upper bound at about 1.5 to 2 added photons [66, 28]. What

is more important to the experimenter than the measured or inferred noise temperature however,

is to verify that the JPC in the measurement chain actually improves the overall system noise

performance compared to the case where the JPC is absent. This change in the system properties

then also reflects possible losses from cryogenic circulators, transmission lines connecting the various

components, connectors, etc..

The ratio between the system noise temperature with and without JPC in the measurement

chain is the noise rise, given by

noise rise =
GJPC · T JPC sys

N + THEMT sys
N

THEMT sys
N

(1.26)

and the improvement of the SNR due to the JPC can then be expressed as the ratio of the JPC
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Figure 1.10: Signal-to-noise ratio improvement with JPC in measurement chain (JPXs01). At low
JPC gain, the system noise is dominated by the HEMT amplifier noise, while at large JPC gain it
is dominated by the JPC noise.

gain to the noise rise:

SNR impr. =
GJPC

noise rise
(1.27)

=
GJPC(

GJPC · T JPC sys
N + THEMT sys

N

)
/THEMT sys

N

(1.28)

=
1

T JPC sys
N /THEMT sys

N + 1/GJPC
, (1.29)

where T JPC sys
N and THEMT sys

N refer to the effective noise temperatures of the JPC and HEMT,

taking into account the imperfections of the setup. As expected, this expression predicts that for

small JPC gain the SNR improvement increases linearly as GJPC, since the noise at the JPC output

GJPC ·T JPC sys
N is small compared to THEMT sys

N . Note that commercially available HEMT amplifiers

nowadays have noise temperatures of 4 K at 8 GHz, but taking into account the setup, system

noise temperatures of 10 K are more realistically achieved. At the same time, the noise temperature

of half a photon, TQ, at 8 GHz is about 190 mK. On the other hand, at large JPC gains, Eq. 1.29

shows that the SNR improvement saturates at the ratio of the HEMT noise temperature to the

JPC noise temperature.

Figure 1.10 shows the measured SNR improvement on the signal port as a function of JPC gain

for a sample with shunted JRM. The gain was measured with a small amplitude probe tone at
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the amplification center frequency of 7.64 GHz and in a 10 Hz bandwidth. The probe power was

reduced with increasing gain, to ensure not to saturate the device. The noise rise was measured at

the center frequency in a 1 kHz bandwidth, which is much smaller than the dynamical bandwidth of

this device of 3 MHz at 20 dB of gain. The SNR improvement shown must thus be understood as an

ideal value, which is reduced when the signal to be processed is making use of the entire dynamical

bandwidth available. The dashed lines show the behavior in the limiting cases of low and high

gains. The fit function (black line) has only one free fit parameter, the ratio T JPC sys
N /THEMT sys

N ,

which is found to be −11.4 dB (equal to the negative of the dashed constant line). Assuming a

system noise temperature of 10 K with only the HEMT, this implies an added noise of 2 photons

(720 mK) of the system consisting of the JPC sample at the given bias point and embedded in the

measurement chain, consistent with previous results.

1.3.5 Qubit Measurements

The frequency tunable JPCs developed in the course of this thesis work are now routinely used

in the readout of superconducting transmon [57, 59] and fluxonium [58] qubits. The dispersive

readout scheme consists of monitoring coherent states injected at the readout cavity frequency for

the measurement time Tm. The qubits interact with the field in the cavity, so that its state is

ultimately mapped onto the state of the itinerant microwave field [50].

Figure 1.11 shows measured microwave field quadrature histograms obtained in the dispersive

readout of a transmon qubit6[42]. The quantum state of the qubit is mapped onto the phase of

the coherent states injected at the cavity frequency of 7.541GHz. By rotating the I − Q plane

appropriately, all qubit state information is contained in the Im quadrature, where Im is the in-

phase quadrature of the measured field (here in uncalibrated units). As is clearly visible, using

a JPC amplifier considerably improves the ability to discriminate between the qubit population

being in the ground vs. the excited state, leading to a separation of the two Gaussian histograms

of almost 5σ. In particular, it reveals that even without an excitation pulse, the qubit has 8%

of its population in the excited state (small blue hump), corresponding to a qubit temperature of

∼ 100mK.

This increased discrimination capability for instance makes it possible for the qubit state to be

monitored in real time, revealing quantum jumps between the ground and the excited state [37, 42].
6Qubit measurements presented here were performed by S. Shankar and M. Hatridge.
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Figure 1.11: Transmon qubit measured with (solid lines) and without (dashed lines) a JPC
(JPXs01), tuned to the qubit readout frequency of 7.541GHz. The dynamical bandwidth at the
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Figure 1.12: Quantum jumps of a transmon qubit measured with a JPC (JPXs01). (Data courtesy
of S. Shankar and M. Hatridge.)
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Figure 1.12 shows quantum jumps measured in the same device of Fig. 1.11, where the measurement

time Tm = 240 ns is short compared to the qubit lifetime T1 = 2.8 µs, but long compared to the

cavity lifetime (30 ns).

The figure of merit in such measurements is the measurement efficiency, defined as

η :=
σ2
ideal

σ2
meas.

, (1.30)

where σ2
ideal = (1/4 + 1/4) is the resulting quadrature variance of a coherent state after the mea-

surement with an ideal phase-preserving amplifier and referred to the amplifier input, as explained

in Fig. 1.2 a), and σ2
meas. is the quadrature variance of a coherent state after the measurement with

the JPC and referred to the amplifier input (see supplemental material of [42]). The added noise

of the measurement setup can be expressed in terms of the noise rise defined in Sec. 1.3.4 as

T sys
N = T JPC sys

N ×
(

noise rise
noise rise-1

)
, (1.31)

so that the bound on the JPC noise temperature can usefully be expressed as

kBT
JPC sys
N
~ωa

=

(
noise rise-1
noise rise

)
×
(

1

η
− 1

2

)
. (1.32)

In this experiment the efficiency was found to be η = 0.2, which, taking into account the noise

rise of about 3.5 dB at a JPC gain of 13 dB, puts the bound on the added amplifier noise at

kBT
JPC sys
N /~ωa = 2.5 photons. Note that the noise rise prefactor in Eq. 1.32 disappears at large

enough gain, as the noise rise increases proportionally to the gain (see Fig. 1.10), so that η becomes

a direct measure of the noise temperature. In more recent experiments, η ≈ 0.4 is achieved with

tunable JPC devices similar to the one presented here.

1.3.6 Coherent Attenuation

What makes the JPC an attractive system is of course its use as paramp, working close to the

quantum limit of added noise. Then only one of its ports is used (up to now typically the higher

frequency “signal” port) while the second port is terminated with a matched load. Further, the JPC

is operated in the stiff pump regime, which, as explained later in Chapter 3, requires the device to be

designed and fabricated such that the pump is either resonant with a very broad bandwidth (γc �
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γa,b) or non-resonant and significantly detuned from any close by resonant mode (|ωp − ωc| � γc).

The second requirement for the stiff pump regime, which depends on the operation, is that injected

signal (and/or idler) tones are sufficiently small. More precisely, the incoming signal photon flux

has to be small compared to the pump photon flux: x := ṅS/ṅp � 1 (see Eq. 1.23).

When all of these conditions are met, the operation of the JPC can be described by the two-port

scattering matrix of Eq. 1.8, which is non-unitary as it completely neglects any dependence on the

pump. Interestingly, the full tri-linear term ΦXΦY ΦX of Eq. 1.6, which under the rotating wave

approximation leads to the terms a†b†c+abc† in the Hamiltonian (Eq. 1.7), is not needed to derive

the scattering matrix in the stiff pump approximation (see Ch. 3). The term a†b†c, which in photon

language predicts the (coherent) creation of a pair of signal and idler photons at the expense of the

annihilation of one pump photon is completely sufficient. In fact, while a†b†c describes the coherent

amplification when balanced beams are injected at signal and idler ports (ṅI = ṅS), the term abc†

describes the time-reversed process, CA. This process corresponds to the annihilation of a pair of

signal and idler photons and the creation of a pump photon.

The scattering matrix can predict the effects of coherent amplification and CA on signal and

idler ports for small signal and idler flux, ṅS/I � ṅp (see Ch. 5, Eq. 5.9), which are closely related

to the phase-sensitive operation of the JPC (Ch. 3). It does however not reveal anything about

the pump dynamics for fluxes close to ṅp. To confirm that the JPC Hamiltonian indeed is of the

form of Eq. 1.7, containing the term abc†, balanced signal and idler tones were injected and the

relative phase φ between them slowly varied in time at a rate of 0.1 Hz7, while the pump phase was

kept constant [67]. When the CA condition φ = 2π is met, signal and idler tones are absorbed and

converted into additional pump photons. Since it is extremely difficult to observe the tiny change

of the reflected pump power on top of the large pump tone background, an additional small signal

probe tone was monitored, allowing one to detect changes in the JPC gain as a function of φ.

Figure 1.13 shows how at the CA condition the gain measurably increases when the device is

operated with pump powers corresponding to stiff pump gains G0 of 11 dB (blue dots) and 15 dB

(red dots) and for increasing signal and idler photon fluxes (ṅI = ṅSin the experiment). This gain

increase is expected: signal and idler photons are converted to extra circulating pump photons,

leading to an increase of the pump parameter |ρ| closer to 1 and thus an increase in the gain (Eq.

1.9). At phases away from φ = 2π signal and idler tones do not exactly cancel each other out and
7More precisely, φ is the relative phase between signal and conjugated idler.
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Figure 1.13: JPC gain enhancement at the Coherent Attenuation (CA) point φ = 2π. Balanced
photon fluxes ṅS = ṅI are injected in signal and idler ports, and the pump photon flux ṅP is set
such that the JPC gain is G0 for low signal input powers (ṅS � ṅp, ṅI = 0). Inset: The JPC
gain G (as system parameter and corresponding to the reflection coefficient of any additional small
tone) is modulated with the nonlinear phase φ. The colored traces (blue to red; in 2 dB steps)
correspond to increasing relative signal photon fluxes x = ṅS/ṅp and G0 = 11 dB.

thus demand a significant pump power to be converted to signal and idler photons. This leads to a

diminishing circulating pump amplitude and thus a decrease of gain. This phase dependent effect

is shown in the inset of Fig. 1.13, where the colored traces correspond to an increase of signal and

idler photon flux in 2 dB steps (from blue to red). This CA effect on the gain is calculable (the

theory is presented in Ch. 5) and as can be seen in the figure, the measured gain increase is about

1/3 of the expected value, believed to be largely due to experimental limitations. There is of course

the possibility that there is some spurious dissipation in the conversion process, so that the above

result can be regarded as a benchmark result of how close the JPC Hamiltonian comes to the form

of Eq. 1.7.
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Chapter 2

Josephson Ring Modulator

The four-port circuit element that provides the nonlinearity for the parametric amplification pro-

cess in the Josephson Parametric Converter (JPC) is the Josephson Ring Modulator (JRM). Two

variations are presented below, principally consisting of a ring of four identical Josephson junctions,

threaded by an externally applied magnetic flux. As will be shown in the following, the JRM pro-

vides an energy mixing term of the form KΦXΦY ΦZ , which, when embedded into a circuit with

three resonant modes, leads to non-degenerate parametric amplification. In this chapter, first the

four junction version of the JRM will be discussed. In particular, it will be shown that the energy

has the required generalized flux dependence. As this device is degenerate with respect to the

external magnetic flux, its frequency tunability is limited. In the second section, it will be shown

how this degeneracy is lifted by quartering the original loop with four shunt inductors leading to

frequency tunability over more than 100 MHz.

2.1 Ring Modulator with Four Junctions

In the following, the properties of the JRM with four identical Josephson junctions, as shown in

Fig.2.1, will be discussed.

2.1.1 Definitions and Sign Conventions

Before analyzing the JRM, it is useful to define some variables (and the sign convention used) for an

arbitrary circuit element. Figure 2.2 shows circuit branch k connected to nodes 1 and 2, together
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Figure 2.1: The Josephson Ring Modulator, consisting of a ring of four identical Josephson junc-
tions, threaded by an external magnetic flux Φext. Arrows indicate sign convention of currents and
fluxes.

1

2

kΦk, uk ik

Figure 2.2: Schematic of branch element with arrows indicating sign convention used.

with the sign convention used. Two quantities are of interest in the following analysis: first the

generalized flux across the element, Φk :=
´ t
−∞
´ 2

1
~E(~s, t′)d~sdt′, where ~E is the electric field and the

integration path is inside the element, and second the current ik flowing through the branch. When

the integral of the vector potential ~A is zero (e.g. no external applied magnetic field), then the

generalized flux reduces to Φk = φ1−φ2, where the φi are the time integrated electric potentials at

nodes i. Ultimately the goal is to express the JRM in terms of generalized fluxes which reduce to

the time integrals of microwave voltages. Since various notations for the generalized flux, reduced

flux, electric potential, etc. are used in the literature, a summary of the notation used here is given

in Table 2.1 (the sign convention is illustrated in Fig. 2.2).
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Variable Symbol used
Electric potential at node i: vi
Voltage across branch k: uk ≡ v1 − v2

Current through branch: ik
Node flux: φi ≡

´ t
−∞ vi(t

′)dt′

Generalized branch flux: Φk ≡
´ t
−∞ uk(t′)dt′ +

´ 1

2
~A(t)d~s = φ1 − φ2 +

´ 1

2
~A(t)d~s

Reduced branch flux: ϕk ≡ Φk
ϕ0

Magnetic flux quantum: Φ0 ≡ h
2e ≡ 2πϕ0

Reduced magnetic flux quantum: ϕ0 ≡ ~
2e ≡

Φ0

2π

External magnetic flux: Φext

Table 2.1: Symbols used in circuit element of Fig. 2.2.

Two circuit elements are of interest in this chapter, the inductor with current-phase relation

Φk = Lik (2.1)

and energy

E =
Φ2
k

2L
= EL

ϕ2
k

2
, (2.2)

where EL ≡ ϕ2
0/L and ϕk = Φk/ϕ0, and the (large) Josephson junction, with current-phase relation

ik = I0 sin (ϕk) , (2.3)

where I0 is the critical current, and energy

E = −EJ cos (ϕk) , (2.4)

with EJ ≡ I0ϕ0. Typical junctions described in this work have critical currents of 3 − 5µA, with

areas of ∼ 5µm2, and capacitance per unit area ∼ 50fF/µm2. The charging energy term of the

junctions can thus safely be neglected, as all junctions in this work typically have EJ ≈ 104EC ,

where EC ≡ e2

2C .

A flux dependent inductance of the Josephson junction can be defined through

1

LJ
:=

1

ϕ2
0

∂2E

∂ϕ2
k

=
cos (ϕk)

LJ0

, (2.5)

where LJ0 := ϕ0/I0.
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2.1.2 JRM Energy

The total energy of the JRM is the sum over the junction energies:

E4JJ
JRM = −

∑
k

EJk cos (ϕk) (2.6)

= −EJ (cos (ϕa) + cos (ϕb) + cos (ϕc) + cos (ϕd)) . (2.7)

Introducing the fluxes



ϕX

ϕY

ϕZ

ϕM


:=



1
2 − 1

2 − 1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
4 − 1

4
1
4 − 1

4

1 1 1 1





ϕa

ϕb

ϕc

ϕd


(2.8)

and its inverse relation



ϕa

ϕb

ϕc

ϕd


=



1
2

1
2 1 1

4

− 1
2

1
2 −1 1

4

− 1
2 − 1

2 1 1
4

1
2 − 1

2 −1 1
4





ϕX

ϕY

ϕZ

ϕW


(2.9)

then allows one to re-express the JRM energy as

E4JJ
JRM = −4EJ

[
cos
(ϕX

2

)
cos
(ϕY

2

)
cos (ϕZ) cos

(ϕM
4

)
(2.10)

+ sin
(ϕX

2

)
sin
(ϕY

2

)
sin (ϕZ) sin

(ϕM
4

)]
,

with

ϕM
4JJ JRM≡ ϕext + 2πn , (2.11)

according to Kirchhoff’s law (Eq. 2.13). Note that this last equality remains true throughout all

the cases discussed in this chapter (with or without microwave currents/voltages, with or without

shunt inductors). At this point, the choice of the factors 1/2 and 1/4 in the definition of the fluxes
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ϕX,Y,Z is not obvious. It will become clear shortly (Eq. 2.24 ff.) that these factors make it possible

to identify ϕX,Y,Z to be exactly the relevant generalized branch fluxes of the system.

There are four distinct energy states, parametrized by n = 0, 1, 2, 3. For small fluxes, ϕX,Y,Z �

1, the energy term becomes

E4JJ
JRM

ϕX,Y,Z�1
= −EJ sin

(ϕext
4

+ n
π

2

)
ϕXϕY ϕZ + EJ cos

(ϕext
4

+ n
π

2

)(ϕ2
X

2
+
ϕ2
Y

2
+ 2ϕ2

Z − 4

)
(2.12)

and thus has the desired mixing form ∼ ϕXϕY ϕZ . The terms in ϕ2
X,Y,Z merely renormalized the

mode frequencies and don’t lead to any unwanted additional nonlinear mixing. The ϕXϕY ϕZ form

in itself is not sufficient, as the fluxes ϕX,Y,Z defined above have to have the “correct” dependence

of externally applied microwave voltages at the nodes in order to be meaningful variables. As will

be shown below, this is the case and the ϕX,Y,Z can be expressed as differences of the node fluxes

φi, which justifies the choice of the modes X,Y, Z through Eq. 2.8. Note also that Eq. 2.12 has a

coupling energy term −EJ sin
(
ϕext

4 + nπ2
)
whose sign depends on the external magnetic flux. This

leads to a phase difference of π in the mixing term g3 and thus ultimately to a π phase shift in the

two-mode squeezing parameter phase ϕ (see Eq. 3.42).

2.1.3 Current Induced by Magnetic Flux

Before treating the general case of externally applied direct current (DC) magnetic field and radio

frequency (RF) microwave currents and voltages, consider the case where just a (DC) external

magnetic flux Φext is applied, but without any applied microwave fields. Let Φk, k ∈ {a, b, c, d} be

the generalized flux across junction k (at branch k) as seen in the schematic of Fig. 2.1.

Applying Kirchhoff’s laws for currents and fluxes together with flux quantization yields

Φa + Φb + Φc + Φd = Φext + nΦ0 (2.13)

−ia + id = 0 (2.14)

−ic + ib = 0 (2.15)

−id + ic = 0 (2.16)

−ib + ia = 0, (2.17)
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where n ∈ Z. Together with the Josephson relation ik = I0 sin (Φk/ϕ0) this leads to the solution

ΦDC
a = ΦDC

b = ΦDC
c = ΦDC

d
4JJ-JRM

=
Φext

4
+ n

Φ0

4
(2.18)

and

iDC
a = iDC

b = iDC
c = iDC

d
4JJ-JRM

= I0 sin
(ϕext

4
+ n

π

2

)
, (2.19)

where the notation ΦDC
k and iDC

k is used to indicate that these solutions correspond to currents and

fluxes which are due only to the external applied magnetic field. Equation 2.19 shows that a DC

magnetic flux threading the loop will lead to four different possible circulating current configurations

in the ring: ±I0 sin (ϕext/4) and ±I0 cos (ϕext/4) .

2.1.4 Adding External Microwaves

When connecting nodes 1, 2, 3, 4 to an outside circuit, the influence of possible additional microwave

currents/voltages on the fluxes Φa,b,c,d and thus ΦX,Y,Z,M has to be considered. As mentioned

above, ΦM ≡ Φext + nΦ0, so it is decoupled from outside currents/voltages. These RF voltages

will influence the node fluxes, while the vector potential ~A (i.e. the applied magnetic field) remains

unaffected. In general one can write

φi = φDC
i + φRFi , (2.20)

where φDC
i is the node flux due to the magnetic field, and φRFi the node flux due to the microwave

field. It then follows that Φk = ΦDC
k + ΦRF

k and since Eqs. 2.8 are linear, also that

ΦX = φRF3 − φRF4 + ΦDC
X (2.21)

ΦY = φRF1 − φRF2 + ΦDC
Y (2.22)

ΦZ =
φRF1 + φRF2 − φRF3 − φRF4

2
+ ΦDC

Z . (2.23)

Since ΦDC
X,Y,Z

4JJ-JRM
= 0 in the four junction JRM (Eqs. 2.8 and 2.18), one finally arrives at
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ΦX
4JJ-JRM

= φRF3 − φRF4 (2.24)

ΦY
4JJ-JRM

= φRF1 − φRF2 (2.25)

ΦZ
4JJ-JRM

=
φRF1 + φRF2 − φRF3 − φRF4

2
. (2.26)

These expressions justify the choice of ΦX,Y,Z as relevant generalized branch fluxes. For instance,

when the JRM is inserted into a circuit as a two-node (black-box) element with nodes 3 and 4, then

ΦX is simply the generalized branch flux across this element.

2.1.5 Lowest Ring Energy

When no microwave currents/voltages are applied, ϕX,Y,Z = 0 and the energy expression reduces

to

E4JJ
JRM

ϕX,Y,Z=0
= −4EJ cos

(ϕext
4

+ n
π

2

)
, (2.27)

with n = 0, 1, 2, 3. Figure 2.3 shows the four magnetic flux degenerate energy states together with

the lowest energy envelopes. Since there is a potential barrier to switching from energy state n to

n′ 6= n, there will be hysteresis, i.e. the energy state depends on the sweep direction, as indicated

in Fig. 2.3 b).

2.1.6 Current-Flux Relation

The current-flux relation for modes X,Y, Z can be found by noting that the JRM is a non-linear

inductance, with

L−1
X,Y,Z :=

1

ϕ2
0

∂2E

∂ϕ2
X,Y,Z

. (2.28)

So in the case where Φk 6= 0, while Φk′ = 0 for k, k′ ∈ {X,Y, Z}, and using Eq. 2.10, one finds

L−1
X

ϕY,Z=0
= L−1

J cos
(ϕX

2

)
cos
(ϕext

4
+ n

π

2

)
(2.29)

L−1
Y

ϕX,Z=0
= L−1

J cos
(ϕY

2

)
cos
(ϕext

4
+ n

π

2

)
(2.30)

L−1
Z

ϕX,Y =0
= 4L−1

J cos
(ϕZ

2

)
cos
(ϕext

4
+ n

π

2

)
, (2.31)
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Figure 2.3: JRM energy for ϕX,Y,Z = 0. a) Schematic of magnetic flux degenerate energy states
(colored) and lowest energy envelope (black). b) Same as a), but with hysteresis. Depending
on the magnetic field sweep direction, different energy states are attained (black and gray). An
energy barrier (not shown here) separates the different flux states and is associated with the cost
of entrance of additional flux quanta into the loop [68]. The exact locations of jumps between flux
states are determined by the barrier height and the amount of noise present in the system. JPC
working points are typically at Φ0/2 (mod Φ0), indicated by the white disk.
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where LJ ≡ I0/ϕ0. Again, four different solutions are found, parametrized by n = 0, 1, 2, 3. The

JRM thus has a current-flux relation very similar to a single junction, with a critical current reduced

by the external field. To first order in ϕX,Y,Z � 1, one finds

4JJ JRM: L−1
X,Y

ϕX,Y,Z�0
= L−1

J cos
(ϕext

4
+ n

π

2

)
(2.32)

L−1
Z

ϕX,Y,Z�0
= 4L−1

J cos
(ϕext

4
+ n

π

2

)
. (2.33)

2.1.7 Experiment

The JRM energy state as a function of Φext can be monitored in the JPC by measuring the

resonance frequency of e.g. the signal mode as a function of the applied magnetic flux. When

no idler and pump tones are applied, no coupling between modes ϕX,Y,Z exists, as ϕY,Z = 0 and

the ring modulator energy (Eq. 2.10) reduces to E4JJ
JRM

ϕY,Z=0
= −4EJ cos

(
ϕX
2

)
cos
(
ϕext

4 + nπ2
)
. For

small signal probe powers (ϕX � 1), the inductance of the JRM is given by Eq. 2.32, and the

equivalent circuits are shown in Fig. 2.4. a) Shows the equivalent JPC circuit for balanced coupling

through a 180-degree hybrid coupler, while b) shows the JPC circuit when one of the transmission

line resonator ports is shorted to ground. Some of the devices fabricated were of the type shown in

a) on the idler port, while being of type shown in b) on the signal port. In either case, around their

respective resonance frequencies they can be represented by LC-circuits with a linear inductor in

series with the nonlinear inductance given by the JRM (Eq. 2.32).

Figure 2.5 shows a picture of a typical JRM fabricated using the Dolan bridge technique [62].

The junctions are in the range of I0 = 3− 5µA and have an area of 5× 1µm2.

2.1.7.1 Flux Modulation

When varying the magnetic flux through the JRM and measuring the phase response of the JPC

signal or idler ports (without pump tone), the degeneracy of the energy state can be observed, as

the system is hysteretic.

As seen in Fig. 2.6 a) and b), the resonance frequencies are changing with the magnetic field

and jumps occur, which correspond to a change in energy states (n = 0 → n = 3 → n = 2 →

n = 1 → n = 0 when increasing the flux). When reversing the sweep direction of the flux, the

jump locations change and hysteresis can be observed. The yellow traces are the resonator center
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a)

b)

Φext

50Ω
∆ Σ

Φext

Figure 2.4: Schematic of transmission line resonators with 4JJ JRM. a) Symmetric coupling through
180-degree hybrid. b) Single ended resonator. This type of transmission line resonator has the
advantage that no hybrid coupler is needed to excite its differential mode, but the disadvantage
that the current anti-node is shifted from its geometric mid-point, where the JRM is usually located.

5μm 

Figure 2.5: A four junction JRM fabricated with e-beam lithography and using the Dolan bridge
technique.
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Figure 2.6: Phase response of JPC for modulated magnetic flux. No pump power is applied. a)
Reflected phase of microwaves injected on signal port. 2D color plot: phase for increasing magnetic
flux. Yellow trace: resonance frequency for increasing magnetic flux. White trace: resonance
frequency for decreasing magnetic flux. b) Same as a), but for idler resonator. The signal resonator
of this sample (JPX30; JRM similar to one shown in Fig. 2.5) is of the type shown in Fig. 2.4 b),
while the idler resonator is of the type shown in Fig. 2.4 a).
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frequencies as the flux is swept upward, while the white traces are the resonance frequencies as the

flux is swept downward. The JPC is typically operated at flux points Φext = Φ0/2 (mod Φ0), as

this point is usually sufficiently far away from jump locations and also provides non-zero coupling

(the coupling vanishes at Φext = 0 (mod Φ0)1. This working point is shown as white disk in Fig.

2.3.

2.1.7.2 Degeneracy and Phase Shift

The hysteresis is due to the energy cost associated with switching from e.g. state n = 0 to state

n = 3 around Φext = Φ0/2. This energy degenerate state corresponds to two circulating currents

with equal magnitude but opposite circulation direction, as shown in Fig. 2.7 (the two white

disks). While increasing or decreasing the flux far away from Φ0/2 and then returning to that flux

value will always return the JRM to the energy −4EJ/
√

2, the current will change direction. This

change can be observed experimentally as it corresponds to a phase shift π in the (effective) pump

phase ϕ, as mentioned in Sec. 2.1.2. As shown in Sections 5.1.1 and 3.2.6.1 (e.g. Eq. 3.127),

when balanced (ṅS = ṅI) signal and idler tones are applied to the JPC, the signal (and also idler)

reflection coefficient depends on the nonlinear phase ϕn = ϕS + ϕI + ϕ, where ϕ is related to the

applied pump phase ϕp by ϕ ≡ −ϕp ± π/2. The sign in front of the π/2 term depends on the

direction of the circulating current. When fixing the values of ϕp and ϕS and changing the phase of

the idler tone at a rate of 0.1Hz, the signal reflection coefficient changes from 4G0 to (4G0)
−1, i.e.

from amplification to attenuation. This is shown in Fig. 2.8, where the red trace is the measured

reflected signal port power, normalized by G0.

When forcing the JRM to jump from state n = 3 to n = 0 by sweeping the magnetic flux

sufficiently far below Φ0/2 and back, ϕ will change by π, and this change will appear in the idler

phase dependence of the Coherent Attenuation (CA) experiment. The blue trace of Fig. 2.8 shows

the same measured signal port power as a function of the nonlinear phase, just after a forced state

jump.

2.2 Shunted Ring Modulator

As seen in Fig. 2.6, the four junctions JRM can have some modest range of frequency tunability

with magnetic flux. In practice, however, it is always operated around Φ0/2 and its tunability thus
1This is true, if, as it does, the system returns to the lowest energy state at multiples of Φ0.
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Figure 2.7: Circulating current in JRM induced by magnetic flux. Working points are typically
at Φ0/2 (mod Φ0) and indicated by the two white disks, representing clockwise and anti-clockwise
circulating currents. These two states are degenerate in energy (see Fig. 2.3). Note that the current
direction is defined in Fig. 2.2, so that a positive current is flowing in the opposite direction of the
integration path defining Φext.
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Figure 2.8: Coherent attenuation experiment at degenerate flux point Φext = Φ0/2 (sample JPX26).
The reflected signal port power is measured as a function of the idler phase, which is changed at a
rate of 0.1Hz. Red trace: flux is set to Φ0/2 (in decreasing field sweep direction). Blue trace: flux
also set to Φ0/2, but only after sweeping it below Φext = 0 and back up, to induce jump in JRM
state.
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Figure 2.9: Schematic of shunted Josephson ring modulator. The sign of currents is defined with
respect to the red arrows, while the sign of fluxes is defined with respect to the green arrows.

very limited. At fluxes Φext between 0 and Φ0/2, there is not much change in the JPC frequency, as

LX (defined in Eq. 2.32) changes only by ∼ 30%, and makes up only ∼ 5% of the total equivalent

resonator inductance. Further, and more importantly, the coupling term between modes X,Y, Z

goes as sin (ϕext/4) (Eq. 2.12), so that it vanishes around Φext = 0. Beyond Φext = Φ0/2 however,

the device becomes more sensitive to magnetic field noise and more likely to undergo flux state

jumps.

The degeneracy can be lifted by quartering the ring with shunt inductors, which will create

four loops with only one junction per loop, as seen in Fig. 2.9. As will be shown below, when

using Kirchhoff’s loop rule and evaluating the integral
ı
~Ad~s = Φloop+nloopΦ0, the term nloopΦ0 is

entirely absorbed by the junction flux, which is unique up to multiples of Φ0 anyways, so that the

degeneracy is lifted. Note that simply shunting each junction outside of the loop will not lift the

degeneracy, but will simply create an uncoupled current through the inductors, while the junction

current is still set by the flux through the large loop2.
2One could think of it as two independent rings: an unshunted JRM and a ring with four linear inductors.
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Figure 2.10: Schematic of JRM with magnetic flux quanta in each loop (left) and external magnetic
flux (right). The flux Φext is defined with respect to the area enclosed by the four outer junctions.

2.2.1 Circuit Equations

It is useful to write out the circuit equations for the JRM in the absence of external (microwave)

currents and voltages, in order to understand how the energy states are parametrized. The loop

rule gives (with or without external currents/voltages)

Φa − ΦL1
+ ΦL4

=
Φext

4
+ naΦ0 (2.34)

Φb − ΦL4 + ΦL2 =
Φext

4
+ nbΦ0 (2.35)

Φc − ΦL2
+ ΦL3

=
Φext

4
+ ncΦ0 (2.36)

Φd − ΦL3 + ΦL1 =
Φext

4
+ ndΦ0, (2.37)

where Φext is the external magnetic flux threading the area enclosed by the four junctions, and the

na,b,c,d ∈ Z are the flux quanta per partial loop, as shown in Fig. 2.10. The Φk, k ∈ {a, b, c, d} and

ΦLi , i ∈ {1, 2, 3, 4} are the generalized fluxes shown in Fig. 2.9.
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The node rule (without external currents) gives

id − ia − iL1
= 0 (2.38)

ib − ic − iL2
= 0 (2.39)

ic − id − iL3
= 0 (2.40)

ia − ib − iL4 = 0, (2.41)

where the i are the currents again shown in Fig. 2.9. With identical junctions and inductors, the

current-flux relations are

ik = I0 sin (ϕk) k ∈ {a, b, c, d} (2.42)

iLi =
1

L
ΦLi i ∈ {1, 2, 3, 4} , (2.43)

where ϕk ≡ Φk/ϕ0.

2.2.2 Shunted JRM Energy

The goal is again to show that the energy term of the shunted JRM provides a mixing of the modes

of the form ϕXϕY ϕZ , for certain values of the external magnetic flux Φext. The energy of the

shunted ring modulator is given by

Eshunted
JRM = −EJ [cos (ϕa) + cos (ϕb) + cos (ϕc) + cos (ϕd)] (2.44)

+
EL
2

[
ϕ2
L1

+ ϕ2
L2

+ ϕ2
L3

+ ϕ2
L4

]
,

where EL ≡ ϕ2
0/L, EJ ≡ ϕ2

0/LJ0
, and LJ0

≡ ϕ0/I0. The modes X,Y, Z are again defined in Eq.

2.8, and again, the M mode is decoupled from the JRM, since

ϕM
shunted JRM≡ ϕext + 2π

∑
k

nk . (2.45)

The difference to the four junction case (Eq. 2.11) is that (
∑
k nk/4) ∈ Z, so that the Josephson

term can be expressed as
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E = −EJ [cos (ϕa) + cos (ϕb) + cos (ϕc) + cos (ϕd)] (2.46)

= −4EJ

[
cos
(ϕX

2

)
cos
(ϕY

2

)
cos (ϕZ) cos

(ϕext
4

)
(2.47)

+ sin
(ϕX

2

)
sin
(ϕY

2

)
sin (ϕZ) sin

(ϕext
4

)]
.

The degeneracy of this term is now lifted (compare to Eq. 2.10), as the magnetic field enters with

unique values as cos (ϕext /4) and sin (ϕext /4).

For any value of (na, nb, nc, nd), the inductive part can be expressed as

ϕ2
L1

+ ϕ2
L2

+ ϕ2
L3

+ ϕ2
L4

=
ϕ2
X

2
+
ϕ2
Y

2
+ ϕ2

Z (2.48)

+2π2
(
n2
X + n2

Y + 2n2
Z

)
−2π (nXϕX + nY ϕY + 2nZϕZ)

=
(ϕX − 2πnX)

2

2
+

(ϕY − 2πnY )
2

2
(2.49)

+ (ϕZ − 2πnZ)
2
,

where the nX,Y,Z are defined analogous to the ϕX,Y,Z :

nX :=
na − nb − nc + nd

2
(2.50)

nY :=
na + nb − nc − nd

2
(2.51)

nZ :=
na − nb + nc − nd

4
. (2.52)

Note that in general the nX,Y,Z need not be integers, but rather multiples of ±1/2 or ±1/4.

So finally the shunted JRM energy can be expressed as:

54



Eshunted
JRM = −4EJ

[
cos
(ϕX

2

)
cos
(ϕY

2

)
cos (ϕZ) cos

(ϕext
4

)
(2.53)

+ sin
(ϕX

2

)
sin
(ϕY

2

)
sin (ϕZ) sin

(ϕext
4

)]
+
EL
2

[
(ϕX − 2πnX)

2

2
+

(ϕY − 2πnY )
2

2
+ (ϕZ − 2πnZ)

2

]
.

Just as in the case of the unshunted JRM, this energy has the useful ϕXϕY ϕZ nonlinear mixing

term for small ϕX,Y,Z , but it still needs to be assured that the modes X,Y, Z are the relevant ones.

Again, in general the branch fluxes can be expressed as superpositions between DC fluxes ΦDC

induced by the applied external magnetic field Φext and the RF fluxes ΦRF due to the externally

applied microwave fields, Φk = ΦDC
k +ΦRF

k . By noting that the vector potential terms
´
~Ad~s remain

the same with or without the ΦRF terms, it is not difficult to show that for any state (na, nb, nc, nd)

the ΦX,Y,Z can be expressed as functions of the (applied) node fluxes φRFi , i ∈ {1, 2, 3, 4}:

ΦX = φRF3 − φRF4 + ΦDC
X (2.54)

ΦY = φRF1 − φRF2 + ΦDC
Y (2.55)

ΦZ =
φRF1 + φRF2 − φRF3 − φRF4

2
+ ΦDC

Z . (2.56)

To determine the energy mixing term, all that remains to do is to find the magnetic field induced

fluxes ΦDC
X,Y,Z , or equivalently, the circulating DC currents in the ring.

The JRM energy state can be parametrized by the integers (na, nb, nc, nd) and two cases

with high symmetry are of interest and considered below: (na, nb, nc, nd) = (m,m,m,m) and

(na, nb, nc, nd) = (m,−m,m,−m), where m ∈ Z.

2.2.3 Solutions (m,m,m,m)

In this case,
∑
k nk = 4m and nX,Y,Z = 0, ∀m ∈ Z.

2.2.3.1 Circulating Currents

Solving Kirchhoff’s Eqs. 2.34ff. and 2.38ff. one finds
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ϕext < 0 ϕext = 0 ϕext > 0

Figure 2.11: Current pattern for the state (m,m,m,m) around ϕext = 0. The arrows indicate the
direction of the current flow, while the dots indicate that the circulating currents are zero.

ΦDC
a,b,c,d

(m,m,m,m)
=

Φext

4
+mΦ0 (2.57)

⇒ iDC
a,b,c,d

(m,m,m,m)
= I0 sin

(ϕext
4

)
(2.58)

ΦDC
L1,2,3,4

(m,m,m,m)
= 0 (2.59)

⇒ iDC
L1,2,3,4

(m,m,m,m)
= 0. (2.60)

Figure 2.11 shows the current pattern for this state, centered around ϕext = 0. No current

flows through the central inductors, while a current is circulating in the loop defined by the four

junctions, and whose direction and magnitude is uniquely determined by the magnetic flux ϕext.

In particular, this means that

ΦDC
X,Y,Z

(m,m,m,m)
= 0 (2.61)

and thus that

ΦX
(m,m,m,m)

= φRF3 − φRF4 =: ΦRF
X (2.62)

ΦY
(m,m,m,m)

= φRF1 − φRF2 =: ΦRF
Y (2.63)

ΦZ
(m,m,m,m)

=
φRF1 + φRF2 − φRF3 − φRF4

2
=: ΦRF

Z , (2.64)

which is the desired dependence on the φRF.
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2.2.3.2 Energy

Thus Eq. 2.53 becomes

Eshunted
JRM

(m,m,m,m)
= −4EJ

[
cos

(
ϕRFX

2

)
cos

(
ϕRFY

2

)
cos
(
ϕRFZ

)
cos
(ϕext

4

)
(2.65)

+ sin

(
ϕRFX

2

)
sin

(
ϕRFY

2

)
sin
(
ϕRFZ

)
sin
(ϕext

4

)]
+
EL
2

[(
ϕRFX

)2
2

+

(
ϕRFY

)2
2

+
(
ϕRFZ

)2]
.

The energy expression shows in particular that no dependence on the parameter m ∈ Z exists,

which means that all solutions (m,m,m,m) are in fact physically identical.

For small ϕRFX,Y,Z , one obtains the desired mixing term ϕRFX ϕRFY ϕRFZ , but this time without

degeneracy:

Eshunted
JRM (m,m,m,m)

ϕRF
X,Y,Z�1

= −EJ sin
(ϕext

4

)
ϕRFX ϕRFY ϕRFZ (2.66)

+

(
EJ cos

(ϕext
4

)
+
EL
2

)((
ϕRFX

)2
2

+

(
ϕRFY

)2
2

)

+2

(
EJ cos

(ϕext
4

)
+
EL
4

)(
ϕRFZ

)2
−4EJ cos

(ϕext
4

)
.

It is this energy state that is of interest for the parametric amplification process, and care has

to be taken to ensure the JRM is operated in this state. Below it will be shown for which magnetic

fluxes this state is attained. For ϕRFX,Y,Z = 0, the energy reduces to the non-degenerate value

Eshunted
JRM (m,m,m,m)

ϕRF
X,Y,Z=0

= −4EJ cos
(ϕext

4

)
. (2.67)

2.2.3.3 Equivalent Inductance

Using Eq. 2.283 for ϕRFX,Y,Z � 1 the magnetic field dependent equivalent inductances of the shunted

JRM become
3The derivative is of course with respect to ϕRFX,Y,Z .
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shunted JRM:

(m,m,m,m) L−1
X,Y

ϕRF
X,Y,Z�1

=
L−1

2

(
2βL cos

(ϕext
4

)
+ 1
)

(2.68)

L−1
Z

ϕRF
X,Y,Z�1

= L−1
(

4βL cos
(ϕext

4

)
+ 1
)
, (2.69)

where βL ≡ L/LJ0
= EJ/EL. Note that Eq. 2.68 is the solution also found through simple cir-

cuit analysis, by assuming that the junctions are linear inductors with inductance LJ/ cos(ϕext/4).

2.2.4 Solutions (m,−m,m,−m)

The second set of solutions of interest are those for which (na, nb, nc, nd) = (m,−m,m,−m), m ∈ Z,

or equivalently (nX , nY , nZ , nW ) = (0, 0,m, 0), where nW :=
∑
k∈{a,b,c,d} nk.

2.2.4.1 Circulating Currents

Solving the loop and node equations, one finds

ΦDC
a,c

(m,−m,m,−m)
= + (xϕ0 +mΦ0) +

Φext

4
(2.70)

ΦDC
b,d

(m,−m,m,−m)
= − (xϕ0 +mΦ0) +

Φext

4
(2.71)

⇒ iDC
a,c

(m,−m,m,−m)
= I0 sin

(
x+

ϕext
4

)
(2.72)

⇒ iDC
b,d

(m,−m,m,−m)
= I0 sin

(
−x+

ϕext
4

)
(2.73)

ΦDC
L1,2

(m,−m,m,−m)
= −ΦDC

L3,4
=
x

2
ϕ0 (2.74)

⇒ iDC
L1,2

(m,−m,m,−m)
= −iDC

L3,4
=
xϕ0

2L
, (2.75)

where x is solution to the RF-superconducting quantum interference device (SQUID)-like equation

x = −4βL cos
(ϕext

4

)
sin (x) , (2.76)

with βL := L
LJ0
≡ EJ

EL
.

Figure 2.12 shows the current pattern found above, centered around ϕext = 4π. This time, a

current flows through the central inductors, given by xϕ0/(2L). At magnetic fluxes away from 4π,

the current through the shunt inductors remains the same, but the junction currents are pairwise
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ϕext < 4π ϕext = 4π ϕext > 4π

Figure 2.12: Current pattern for the state (m,−m,m,−m) around ϕext = 4π. One of the two
degenerate solutions is shown (the second one corresponds to each ring modulator rotated by 90
degrees). The arrows indicate the direction of the current flow, while the size of the rings indicate
the magnitude. Note that all three sub-figures shown here belong to the same solution, characterized
by the net current flow through the shunt inductors (here: from top/bottom nodes into center and
outward from center into left/right nodes). Passing through ϕext = 4π does not change this pattern,
it only changes the relative current magnitudes in the outer ring junctions.

different in magnitude (the respective junction fluxes are frustrated by ±xϕ0). Note that the state

is degenerate, and Fig. 2.12 shows only one of the two solutions. The second solution is obtained

by simply rotating each sub-figure by 90 degrees.

So finally one finds

ΦDC
X,Y

(m,−m,m,−m)
= 0 and ΦDC

Z

(m,−m,m,−m)
= xϕ0 +mΦ0 , (2.77)

so that

ΦX
(m,−m,m,−m)

= φRF3 − φRF4 (2.78)

ΦY
(m,−m,m,−m)

= φRF1 − φRF2 (2.79)

ΦZ
(m,−m,m,−m)

=
φRF1 + φRF2 − φRF3 − φRF4

2
+ xϕ0 +mΦ0. (2.80)

2.2.4.2 Energy

Using these expressions for ΦX,Y,Z (Eq. 2.78ff.), the JRM energy (Eq. 2.53) can be expressed as
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Eshunted
JRM

(m,−m,m,−m)
= −4EJ

[
cos

(
ϕRFX

2

)
cos

(
ϕRFY

2

)
cos
(
ϕRFZ + x

)
cos
(ϕext

4

)
(2.81)

+ sin

(
ϕRFX

2

)
sin

(
ϕRFY

2

)
sin
(
ϕRFZ + x

)
sin
(ϕext

4

)]
+
EL
2

[(
ϕRFX

)2
2

+

(
ϕRFY

)2
2

+
(
ϕRFZ + x

)2]
,

where x is the DC term determined by Eq. 2.76. Again, there is no explicit dependence on

m, so that all solutions (m,−m,m,−m) represent the same physical state. Note also that x is

essentially the current flowing through the central inductors, induced by the magnetic flux. This

energy expression in fact also exhibits the desired nonlinearity ϕRFX ϕRFY ϕRFZ , only that the prefactor

now is −EJ cos(x) sin(ϕext/4). There are also other additional mixing terms compared to the case

x = 0.

For no applied external microwave fields, one finds

Eshunted
JRM (m,−m,m,−m)

ϕRF
X,Y,Z=0

= EL

(
x2

2
− 4βL cos

(ϕext
4

)
cos (x)

)
, (2.82)

and minimizing this expression in terms of x yields exactly Eq. 2.76. An important remark is that

there is again no dependence on the parameter m in either the currents (Eqs. 2.72ff.) or the energy

expressions (Eqs. 2.81 and 2.82). Nonetheless, this state is energy degenerate, as x and −x yield

the same energy (Eq. 2.82) but currents circulating in opposite directions.

2.2.4.3 Inductance

The inductances LX,Y now become (using Eq. 2.28 for small ϕRFX,Y,Z):

shunted JRM:

(m,−m,m,−m) L−1
X,Y

ϕRF
X,Y,Z�1

=
L−1

2

(
2βL cos (x) cos

(ϕext
4

)
+ 1
)

(2.83)

L−1
Z

ϕRF
X,Y,Z�1

= L−1
(

4βL cos (x) cos
(ϕext

4

)
+ 1
)
. (2.84)
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Figure 2.13: JRM energy as a function of x, for different values of −4βL cos(ϕext/4). The dots
correspond to local and global energy minima. The blue trace corresponds to the case where
∃x 6= 0 which are the energetically most favorable solutions and the ring modulator is in state
(m,−m,m,−m). All other cases lead to x = 0 and the ring modulator is in state (m,m,m,m).

2.2.5 Crossover

As stated above, it is desirable to operate the JRM in the regime corresponding to state (m,m,m,m),

so it is important to understand which energy expression (Eq. 2.65 or Eq. 2.81) describes the JRM

for a given magnetic flux. This comes down to comparing the energy expressions in the two cases

for ϕRFX,Y,Z = 0, i.e. Eq. 2.67 and 2.82. It is clear that for x = 0, the two states are identical, so

that one needs to find the condition for when x 6= 0, and one needs to distinguish between different

cases.

ϕext ∈ [0, 2π] ∪ [6π, 8π]: amplification always possible

This is the flux region where cos(ϕext
4 ) > 0 and which is of interest for parametric amplification,

as the state (m,m,m,m) is always minimizing the energy. There are solutions x 6= 0 as long as

the magnetic flux and βL satisfy −4βL cos(x0) cos(ϕext/4) > 1, where x0 ≈ 4.495 and − cos(x0) ≈

+0.22 are given by the tangent equation x0
!
= tan(x0). However, these solutions represent local

minima, while x = 0 remains the global energy minimum solution. The other case, where 0 <

−4βL cos(x0) cos(ϕext/4) < 1, has x = 0 as only solution. Thus in this magnetic flux region, the

JRM is always described by the state labeled (m,m,m,m) above, and Eq. 2.65 holds. The red and

pink trace in Fig. 2.13 show the JRM energy as a function of x for −4βL cos(x0) cos(ϕext/4) = 1

and −4βL cos(x0) cos(ϕext/4) > 1, respectively.
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ϕext ∈ [2π, 6π]: amplification sometimes possible

In this region, cos(ϕext
4 ) < 0 and the state (m,m,m,m) minimizes the energy only for particular

flux values. Solutions x = ±x1 6=0 exist for −4βL cos(ϕext/4) > 1 and these solutions correspond to

global minima, leading to the state (m,−m,m,−m). The black and blue traces in Fig. 2.13 show

the energy for −4βL cos(ϕext/4) = 1 and −4βL cos(ϕext/4) > 1, respectively. For a given shunted

JRM described by βL ≡ L/LJ0
, the magnetic flux ϕcrossoverext ∈ ]2π, 4π[ at which the crossover

between the state (m,m,m,m) and the state (m,−m,m−m) occurs, is given by

−4βL cos(ϕcrossoverext /4) = 1 . (2.85)

This equation does not necessarily have solutions. In the case that the shunt inductors are suf-

ficiently small so that 4L < LJ (4βL < 1), the mode (m,m,m,m) is stable, and parametric

amplification still possible. This happens at the expense of frequency tunability, as LX,Y remains

small for any magnetic field Φext (see Eq. 2.68). Additionally, by lowering L, EL becomes large

and starts to significantly alter the JPC resonance frequency.

Equation 2.68 suggests that the inductance LX,Y can become negative and thus ill-defined

for fluxes such that −2βL cos(ϕext/4) > 1, that is, only if 2βL > 1. This would however occur

somewhere in the interval ϕext ∈ ]ϕcrossoverext , 4π[, in which Eq. 2.68 is not valid anymore, as LX,Y is

described by Eq. 2.83.

Figure 2.14 shows the calculated resulting JPC (signal) frequency for the JRM in the relevant

state (m,m,m,m), and for different values of βL. The ratio LJ0
/Lg is kept constant at 0.1,

where Lg is linear inductance of the signal resonator. The dashed lines represent the locations of

crossover between states (m,m,m,m) and (m,−m,m,−m), given by Eq. 2.85. The location of the

magnetic flux ϕzeroext for which the frequency (of the state (m,m,m,m)) goes to zero, is given by

−2βL cos(ϕzeroext /4) = 1. Figure 2.14 b) is a magnification of the region ϕext ∈ [π, 4π]. Note that for

βL →∞ (blue trace), one recovers the result of the unshunted JRM, but without degeneracy.

2.2.6 Experiment

The JPC devices fabricated and measured in this thesis work were designed to have 2βL values

in the range [0.5, 1], which means that they qualitatively lie somewhere between the orange and

the black traces in Fig. 2.14. The advantage of such low values of the shunt inductances is that
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Figure 2.14: Calculated JPC frequency (e.g. of the signal mode) as a function of the applied
magnetic flux, for different values of βL and LJ0/Lg = 0.1, where Lg is the inductance of the bare
resonator without JRM. Dashed lines indicate flux locations where the lowest JRM energy state
changes (from (m,m,m,m) to (m,−m,m,−m)).
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34

Figure 2.15: JRM with eight Josephson junctions. The outer four junctions are the JRM junctions
(red), while the inner four junctions are the shunt junctions (yellow).

the state (m,m,m,m), which is of interest for amplification, is relatively stable over the external

magnetic flux range: the switching to state (m,−m,m,−m) occurs rather late. On the other hand,

L is large enough to show significant frequency tuning with shallower slope compared to the case

of very large inductances. The disadvantage compared to higher shunt inductors however is that

the flux dependent mode coupling term in the JRM energy goes as sin(ϕext/4) (Eq. 2.65) and thus

decreases away from ϕext = 2π, where these devices have to be tuned to attain the lower frequencies.

A compromise between shallow frequency slope, tunability and coupling strength would be to choose

a value of βL similar to the turquoise trace in Fig. 2.14: the tunable range is close to ϕext = 2π

and thus around the maximal coupling strength.4

2.2.6.1 Shunting the JRM with Large Junctions

There are several possibilities to make shunt inductors that are of the order of the Josephson

inductance LJ0
∼ 100pH of the JRM Josephson junctions. The most straightforward option is to

make wires that are comparable in width with the rest of the JRM wires, i.e. of the order of one µm.

In this case, the geometric inductance of the wire is given by ∼ µ0l, where l is the length of the wire,

so that the wires need to be between 50 − 100µm long. The wires then need to be meandered, in

order not to make the loop size too large, which would lead to an increased sensitivity to magnetic

field noise. A JPC using this approach has been successfully measured by the ENS group [28].

Another path is to fabricate short but narrow wires, making use of the kinetic inductance of

the superconductor. This type of device has been shown to work in our group at Yale, however

it is difficult to consistently fabricate identical narrow wires and thus to achieve the desired shunt

inductances.
4Note that the situation is a bit more complicated: when the coupling strength is maximal, the junction phases

are less likely to be driven too far up the energy well, but the devices is also less stiff.
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Figure 2.16: SEM image of two implementations of the JRM with eight junctions: a) Device
fabricated using the Dolan bridge technique. b) Device fabricated using the bridge-free technique.

The strategy taken in this work is to fabricate additional larger Josephson junctions which

shunt the JRM junctions, as shown schematically in Fig. 2.15. This method has the advantage

of reliability and predictability in the fabrication of Josephson junctions with LJ0
∼ 100 pH. Two

type of devices were developed and fabricated, one which made use of the Dolan bridge technique

[62] and a second without suspended resist bridge, called the bridge-free technique [63]. These two

type of JRMs are shown in Figs. 2.16 a) and b), respectively. The ratio of the junction areas in a)

is 1:0.3 (5µm2 to 1.5µm2), so that 2βL = 0.6, assuming the ideal case where the junction critical

current scales exactly with the area5 and where the inductances of the connecting wires of the

ring do not significantly contribute to the overall inductance. In this case the crossover as defined

in Eq. 2.85 is expected at ϕcrossoverext = 3.25π. For the junctions in Fig. 2.16 b) the ratio of the

junction areas is 1:0.43 (5.3µm2to 2.3µm2), so that 2βL = 0.87 and the expected crossover is at

ϕcrossoverext = 2.8π.

Figure 2.17 shows the magnetic flux dependence of the resonance frequencies of a JPC (sample

JPXs01) with shunted JRM (nominally identical to device shown in Fig. 2.16 a) ). The three large

lobes centered around Φext = 0,±4 correspond to the state (m,m,m,m), while the two small lobes

correspond to the state (m,−m,m,−m). It is apparent in this figure that 1. the degeneracy was

successfully lifted by shunting the JRM junctions, as there is no hysteresis (data in sub-figure a)

swept upward, in b) swept downward) and 2. that this devices is tunable in frequency over almost

1GHz on the signal port (sub figure a) ). Further, the crossover appears to occur close to ϕext = 3π,

so that the expected value of 2βL = 0.6 cannot be far from the actual value.

Figure 2.18 shows the flux dependence of another JPC with shunted junctions, fabricated this
5This is approximately true for junctions of the sizes considered here.
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Figure 2.17: Phase response of JPC with shunted JRM for modulated magnetic flux (sample
JPXs01; fabricated with Dolan bridges). No pump power is applied. a) Signal port. The yel-
low color indicates the location of the resonator center frequency. The flux is swept upward. b)
Idler port. The flux is swept downward.
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Figure 2.18: Phase response of JPC with shunted JRM for modulated magnetic flux (sample
JPXs01; fabricated with bridge-free technique). No pump power is applied. a) Signal port. The
yellow color indicates the location of the resonator center frequency. The flux is swept upward. b)
Idler port. The flux is swept downward. An additional hysteretic state appears.

time with the bridge-free technique (sample JPXs04; nominally identical to device in Fig. 2.16 b) ).

This device again shows three large lobes, and the device is operated in that regime when used as

an amplifier. On the signal port, the frequency tunability is around 300MHz. There are two reasons

for this reduced (yet sufficient) tunability: first, the junctions have a higher critical current density

than the junctions in the device of Fig. 2.176, and thus the junctions overall participate more in

the resonance frequency. And second, an additional state seems to appear, which is hysteretic.

It is possible that this state is due to the fact that the wires connecting the junctions have non-

negligible inductance, as they are only 200nm wide and 20-30nm thick. In future devices fabricated

with the bridge-free technique, care should be taken to increase the wire with and especially the

wire thickness.

6Sample JPXs04 underwent Ar-Ox cleaning before the evaporation step, JPXs01 did not.
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Chapter 3

Scattering Matrix Description of

Gain and Noise of Parametric

Amplifiers

In this chapter, the scattering matrix description of parametric amplifiers (paramps) is presented,

which allows one to explicitly calculate the gain and noise properties of these devices. The scattering

matrix for the Josephson Parametric Converter (JPC), linking input and output field operators, is

first derived from the Hamiltonian of three harmonic oscillators coupled through only a tri-linear

term XY Z, and under the stiff pump approximation. By introducing flying oscillators and the

two-mode squeezing operator, the same scattering matrix is re-derived and the noise properties

of the JPC are explicitly calculated. The close link between phase-preserving and phase-sensitive

paramps is established, and it is shown how phase-preserving amplifiers can be constructed from

phase-sensitive amplifiers and vice versa. Lastly, the evolution of coherent states is calculated,

showing that those states are a natural basis in which to describe the JPC operation.

3.1 JPC Scattering Matrix

An ideal non-degenerate parametric amplifier is composed of three LC oscillators coupled by a

three-wave mixing term and described by a Hamiltonian of the form (neglecting damping and drive

terms)
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H0 =
Φ2
X

2La
+

Φ2
Y

2Lb
+

Φ2
Z

2Lc
(3.1)

+
Q2
X

2Ca
+
Q2
Y

2Cb
+
Q2
Z

2Cc

+KΦXΦY ΦZ ,

where ΦX,Y,Z are the generalized flux variables andQX,Y,Z the charge variables [69, 27]. This Hamil-

tonian represents three independent harmonic oscillators with frequencies ωa,b,c = 1/
√
La,b,cCa,b,c

and characteristic impedances Za,b,c0 =
√
La,b,c/Ca,b,c, coupled to each other through the three-

wave mixing coefficient K. In general, the modes are described by their (non-degenerate) resonant

frequencies ωa,b,c and (non-overlapping) bandwidths γa,b,c, which for the case ωa < ωb < ωc means

that ωa + γa � ωb − γb and ωb + γb � ωc − γc. In terms of annihilation operators a, b, and c

associated with each oscillator, the Hamiltonian can be written as

H0 = ~ωaa†a+ ~ωbb†b+ ~ωcc†c (3.2)

+~g3(a+ a†)(b+ b†)(c+ c†),

where the three-wave mixing interaction is now described by the coupling energy ~g3 = KΦ0
XΦ0

Y Φ0
Z

and Φ0
X,Y,Z :=

√〈
0
∣∣∣Φ2
X,Y,Z

∣∣∣ 0〉 is the zero-point fluctuation of the flux.

As explained in Ch. 2, in the case of the JPC this tri-linear mixing term is realized by the

Josephson Ring Modulator (JRM). As the generalized fluxes across the JRM represent only a

fraction of the total generalized fluxes ΦX,Y,Z described in Eq. 3.1, the participation ratios pa,b,c ≈

LJo/La,b,c come into play. These participation ratios represent the fraction of the respective mode

energy contained in the JRM. Consequently, the coupling term in the case of the JRM can be

expressed as [27]

g2
3 =

papbpcωaωbωc
Eeff
J /~

, (3.3)

where Eeff
J is the effectively available Josephson energy, proportional to EJ of the junctions.

With ωc = ωa + ωb and under the rotating wave approximation (RWA) one finally arrives at

HRWA
0 = ~ωaa†a+ ~ωbb†b+ ~ωcc†c+ ~g3

(
a†b†c+ abc†

)
. (3.4)
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This Hamiltonian allows for a photon picture interpretation of the amplification process: the term

a†b†c describes the annihilation of one pump photon at ωc that leads to the creation of a pair

of signal and idler photons at ωa and ωb, respectively. The coherent amplification process (with

non-zero signal or idler inputs) occurs for pump photon fluxes close to but below the threshold

photon flux ṅpoc = γaγbγc/4g
2
3 , which is the regime of interest in this work. Under the stiff pump

approximation (see below) [27], only the term a†b†c enters in the derivation of the JPC scattering

matrix. The hermitian conjugate term abc†, which describes the reverse process of a pair of signal

and idler photons being annihilated to create a pump photon and leads to Coherent Attenuation

(CA), is the subject of Chapter 5.

By adding drive and dissipation to the Hamiltonian of Eq. 3.4, the coupled equations of motion

(quantum Langevin equations) of operators a, b, c can be derived:

d

dt
a(t) = −iωaa(t)− γa

2
a(t)− ig3b

†(t)c(t) +
√
γaã

in(t) (3.5)

d

dt
b(t) = −iωbb(t)−

γb
2
b(t)− ig3a

†(t)c(t) +
√
γbb̃

in(t)

d

dt
c(t) = −iωcc(t)−

γc
2
c(t)− ig3a(t)b(t) +

√
γcc̃

in(t),

where γa,b,c are the mode bandwidths and the ãin, b̃in, c̃in are related to the input fields ain, bin, cin

through ãin(t) := (2π)−1/2
´∞

0
ain[ω]e−iωtdω and similarly for b̃in, c̃in (see Sec. 3.2.1.1 for field

operator properties). When operating the JPC as an amplifier, the regime of interest is where

the pump dynamics do not play a role. The incoming pump photon flux should be orders of

magnitude above the incoming signal and idler photon flux while γc � γa,b, i.e. here of the order

of ωc, so that still only few pump photons occupy the pump resonator at any one time. This

is the stiff pump approximation, in which the operator c(t) can be replaced by the average value

〈c(t)〉 =
√
n̄ce−iωct−ϕp , where n̄c is the average photon number of the coherent state produced in the

pump resonator. This number is assumed to be constant over time, so that the coupled equations

of motion 3.5 reduce to two equations for signal and idler only. Finally, using Eq. 3.5 together with

resonator input output relations √γaa(t) = ãin(t) + ãout(t) and similarly for b(t), which link the

mode amplitudes a(t), b(t) to the outside field operators ain/out[ω], bin/out[ω], one arrives at probably

the most important equation describing the JPC, the (reduced) two-port scattering matrix [25, 27]:
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 aout[ω1]

bout†[ω2]

 =

 raa[ω1, ω2] sab[ω1, ω2]

sba[ω1, ω2] rbb[ω1, ω2]


 ain[ω1]

bin†[ω2]

 , (3.6)

where ω1,2 are linked to each other through ω1 + ω2 = ωc and

raa[ω1, ω2] =
A?[ω1]B?[ω2] + |ρ0|2

A[ω1]B?[ω2]− |ρ0|2
(3.7)

rbb[ω1, ω2] =
A[ω1]B[ω2] + |ρ0|2

A[ω1]B?[ω2]− |ρ0|2
(3.8)

sab[ω1, ω2] =
−2iρ0

A[ω1]B?[ω2]− |ρ0|2
(3.9)

sba[ω1, ω2] =
2iρ?

A[ω1]B?[ω2]− |ρ0|2
, (3.10)

with

A[ω1] = 1− iω1 − ωa
γa/2

(3.11)

B[ω1] = 1− iω2 − ωb
γb/2

(3.12)

and ρ0 the dimensionless pump amplitude given by

ρ0 =
2g3
√
n̄ce−iϕp

√
γaγb

. (3.13)

For incoming and outgoing signal and idler tones at zero detuning, i.e. at ω1 = ωa and ω2 = ωb

and A = B = 1, Eq. 3.6 becomes

 aout[ω1]

bout†[ω2]

 ω1=ωa; ω2=ωb
=

 √
G0 −ie−iϕp

√
G0 − 1)

ieiϕp
√
G0 − 1)

√
G0


 ain[ω1]

bin†[ω2]

 , (3.14)

where G0 is the power gain given by

√
G0 =

1 + |ρ0|2

1− |ρ0|2
. (3.15)

Thus the gain diverges as the pump amplitude |ρ0| → 1−, i.e. when n̄c → n̄poc = γaγb
4|g3|2

. For
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large gains
√
G0 − 1 ≈

√
G0 and Eq. 3.14 predicts that the JPC essentially adds signal and idler

amplitudes with power gain G0. When operated as a one-port amplifier, the JPC amplifies the

input with power gain G0 while adding half a photon of noise entering through the idler port and

stemming from the zero point fluctuations of the incoming field bin[ω].

While the frequency dependent scattering matrix of Eq. 3.6 looks rather complicated compared

to the one obtained for zero detuning in Eq. 3.14, for large gains it simply predicts a Lorentzian

shaped (power) gain function at frequencies close to the mode centers ωa,b for both the signal and

the idler port:

G0(∆ω) = G0
B2(G0)/4

B2(G0)/4 + ∆ω2
, (3.16)

where ∆ω = ω1 − ωa = ωb − ω2 and

B(G0) = B0G
−1/2
0 (3.17)

is the full width at half maximum (i.e. the bandwidth) of the Lorentzian at gain G0, and which is

determined by the pump strength through Eq. 3.15. The constant bandwidth B0 is given by a sort

of average of the signal and idler resonators γa, γb through

B0 =
2γaγb
γa + γb

, (3.18)

and it is clear from these expressions that the JPC bandwidth B is dominated by the smaller of

the signal and idler resonator bandwidths, and it is thus desirable to make them equal.

Figure 3.1 summarizes how the reduced scattering matrix of Eq. 3.6 couples frequency compo-

nents ω1 and ω2 of the signal and idler fields, respectively, which are linked by ω1 +ω2 = ωc. Figure

3.1 (a) shows the Lorentzian power gain response functions of signal and idler ports together with

all relevant frequency relations and bandwidths. Figure 3.1 (b) shows graphically the frequency

mixing process described by the JPC scattering matrix of Equation 3.6.

3.2 Phase-Sensitive and Phase-Preserving Amplification

Many of properties of the JPC (operated in its amplification mode) can be calculated using its

reduced scattering matrix. It describes how the JPC processes classical signals and allows one to
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Idler Signal

Pump

ωaωb ωc

ω1ωc−ω1

ωa

ω1

ωb−ωb−ωa

−ω1

ωaωb−ωb−ωa

ω1ωc−ω1−(ωc−ω1)−ω1

ωc

ωc

a)

b)

0

0

0

ω

ω

ω

γb

IN

OUT

γa

ωa + ωb = ωc

Figure 3.1: a) Schematic of JPC operation in frequency space, as could be observed with a com-
mercial spectrum or network analyzer. The red and blue Lorentzian shapes represent the power
gain response functions of the JPC, centered around the signal and idler center frequencies ωa and
ωb respectively. The respective dynamical amplifier bandwidths are given by γa and γb. Colored
arrows represent CW tone powers. The pump tone is applied at ωc = ωa + ωb. An applied signal
tone at ω1 within the signal bandwidth will be amplified and a further amplified copy will also
appear at the idler port at ωc − ω1. b) Frequency mixing properties of the JPC, as calculated
by scattering matrix 3.49. Vertical colored arrows represent CW tone amplitudes a† and a etc.,
corresponding to positive and negative frequency components. An applied CW tone with frequency
ω1 (top half of figure) is represented by its positive and negative frequency components at ±ω1,
and leads to amplified CW tones at frequencies ω1 and ωc − ω1 (bottom half of figure), again rep-
resented by positive and negative frequency components. The dashed arrows show how the JPC
mixes the different frequency components. The purple arrows show the frequency relation between
signal, idler, and tones. Vertical dashed arrows correspond to amplitude gains

√
G0 and diagonal

to amplitude gains
√
G0 − 1. Noise in the idler port (no applied tone) is mixed in to appear at the

output of both the signal and idler port.
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calculate statistical properties of e.g. coherent states. In particular, it makes it clear that the

zero-point fluctuation on the idler port is at the origin of the JPC amplifier noise. It also makes

it possible to predict the statistical properties of two-mode squeezed noise produced by the JPC

[70, 71]. The scattering matrix approach further allows one to identify the relationship between

a non-degenerate, phase-preserving paramp such as the JPC and a conceptually closely related

device, the degenerate, phase-sensitive parametric amplifier, of which several different experimental

implementations with superconducting Josephson circuits exist [20, 29, 22, 23]. Before (re-)deriving

the scattering matrix using the two-mode squeezing operator Sab(Λ), it is useful to review some

commutator properties of the signal and idler input annihilation operators ain, bin, derived from

the input field operators ain[ω] and bin[ω], and their corresponding quadrature operators.

3.2.1 Commutation Relations

3.2.1.1 Field Operators

The equations of motion (quantum Langevin equations) of Eq. 3.5 describe the time evolution of

operators a(t), b(t), and c(t), associated with the three LC oscillators of the JPC. At t = 0, a(0) = a,

b(0) = b, and c(0) = c and these operators obey the usual harmonic oscillator commutation relations:

[a, a†] = 1 (3.19)

etc. These standing wave amplitudes link incoming and outgoing field operators ain[ω] (bin[ω] ) and

aout[ω] (bin[ω]) to each other through the oscillator input-output relations

√
γaa(t) = ãin(t) + ãout(t) (3.20)

√
γbb(t) = b̃in(t) + b̃out(t), (3.21)

where

ãin(t) :=
1√
2π

∞̂

0

ain[ω]e−iωtdω (3.22)

b̃in(t) :=
1√
2π

∞̂

0

bin[ω]e−iωtdω (3.23)
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(e.g. see appendix of [27]). Further, these field operators satisfy

[
ain(out)[ω], ain(out)[ω′]

]
=

[
bin(out)[ω], bin(out)[ω′]

]
= sgn (ω − ω′) δ (ω + ω′) , (3.24)

and

〈{
ain[ω], ain[ω′]

}〉
= 2N in

a

(
ω − ω′

2

)
δ (ω + ω′) (3.25)

〈{
bin[ω], bin[ω′]

}〉
= 2N in

b

(
ω − ω′

2

)
δ (ω + ω′) , (3.26)

where

N in
a,b(ω) =

sgn(ω)

2
coth

(
~ω

2kBT

)
+ 2πṅa,b [δ (ω − ω1,2) + δ (ω + ω1,2)] (3.27)

is the photon spectral density of the incoming fields, T is the temperature, and ṅa,b is the photon flux

of an applied tone at frequency ω1,2. Note that ain(out)[ω]† = ain(out)[−ω], bin(out)[ω]† = bin(out)[−ω].

3.2.1.2 Flying Oscillators

From the field operators, flying oscillator amplitudes can be defined using Shannon wavelets [72, 73]:

ain(out),n :=
1√
κ

ωa+κ/2ˆ

ωa−κ/2

ain(out)[ω]e+iω nκ dω (3.28)

bin(out),n :=
1√
κ

ωb+κ/2ˆ

ωb−κ/2

bin(out)[ω]e+iω nκ dω, (3.29)

(3.30)
with κ� γa, γb . Using 3.24 it is easy to show that

[
ain(out),n, a

†
in(out),n

]
=

[
bin(out),n, b

†
in(out),n

]
=

1

κ

∞̂

−∞

∞̂

−∞

sgn (ω + ω′) δ (ω − ω′) e+i(ω−ω′)nκ dωdω′

= 1. (3.31)

In the following, the index n will be dropped to simplify the discussion. Note also that this discussion
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is limited to flying oscillators defined at resonance, i.e. around ωa and ωb. This could be further

generalized to off-resonance frequencies ωa − δω and ωb + δω, as schematically done in Fig. 3.1.

The commutation relations of ain and bin are

[ain, a
†
in] = [bin, b

†
in] = 1 (3.32)

[a
(†)
in , b

(†)
in ] = 0. (3.33)

The quadrature operators I and Q are defined as

Iain :=
ain + a†in

2
(3.34)

Qain :=
ain − a†in

2i
(3.35)

Ibin :=
bin + b†in

2
(3.36)

Qbin :=
bin − b†in

2i
, (3.37)

and from this follows that they obey the following commutation relations:

[Iain , Qain ] = [Ibin , Qbin ] =
i

2
(3.38)

and

[Iain , Ibin ] = [Qain , Qbin ] = [Ia(b)in , Qb(a)in ] = 0. (3.39)

Note that operators I and Q are hermitian, i.e. I† = I and Q† = Q and the corresponding

eigenvalues are thus real. The annihilation operators ain and bin can be expressed in terms of I and

Q as

ain = Iain + iQain (3.40)

bin = Ibin + iQbin . (3.41)
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3.2.2 Two-Mode Squeezing Operator and JPC Scattering Matrix

The mode coupling term g3(a†b†c+ abc†) in the JPC Hamiltonian (Eq. 1.7) leads to an evolution

operator of the form UJPC = exp[za†b† − h.c.], where z ∈ C. The evolution of incoming signal and

idler fields |Ψ〉in is described by S†ainbin
(Λ) |Ψ〉in, where Sab(Λ) is the two-mode squeezing operator ,

defined as

Sab(Λ) := exp[Λa†b† − Λ?ab] , (3.42)

with Λ ≡ λeiϕ, and λ, ϕ ∈ R. Note that the phase ϕ is directly related to the pump phase ϕp

through ϕ = −ϕp + π/2, whereas λ = ln(
√
G0 +

√
G0 − 1) is a measure of the JPC power gain G0.

The two-mode squeezing operator is unitary:

S−1
ab (Λ) = S†ab(Λ) = Sab(−Λ). (3.43)

The Baker-Hausdorff formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + ... (3.44)

together with the commutation relations of Equation 3.32 can then be used to calculate the output

fields as a function of the input fields:

aout = Sainbin(Λ)ainS
†
ainbin

(Λ) (3.45)

= ain +
(−Λ)

1!
b†in +

(−Λ)(−Λ?)

2!
ain +

(−Λ)(−Λ?)(−Λ)

3!
b†in + ... (3.46)

=

( ∞∑
n=0

|Λ|2n

(2n)!

)
ain +

(−Λ)

|Λ|

( ∞∑
n=0

|Λ|2n+1

(2n+ 1)!

)
b†in (3.47)

= cosh(|Λ|)ain +
(−Λ)

|Λ|
sinh(|Λ|)b†in, (3.48)

and similarly for b†out, so that one finally arrives at the reduced JPC scattering matrix

 aout

b†out

 =

 cosh(λ) −eiϕ sinh(λ)

−e−iϕ sinh(λ) cosh(λ)


 ain

b†in

 , (3.49)

where cosh(λ) ≡
√
G0, sinh(λ) ≡

√
G0 − 1 and λ ≡ |Λ|. Note that since Sainbin(Λ) is unitary, aout
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and bout obey the same commutation relations as ain and bin:

[aout, a
†
out] = [bout, b

†
out] = 1. (3.50)

Equation 3.49 also implies that Sainbin(Λ) ≡ Saoutbout(Λ).

Alternatively, the operation of the JPC can be described through the transformation of the

quadrature operators I and Q, which can be easily calculated using the scattering matrix in Equa-

tion 3.49 together with definitions of Equations 3.34, 3.35, 3.36, 3.37:

Iaout ≡ aout+a
†
out

2 = cosh(λ)Iain + sinh(λ)Ib′in (3.51)

Qaout ≡ aout−a†out
2i = cosh(λ)Qain − sinh(λ)Qb′in (3.52)

Ib′out
≡ b′out+b

′†
out

2 = cosh(λ)Ib′in + sinh(λ)Iain (3.53)

Qb′out
≡ b′out−b

′†
out

2i = cosh(λ)Qb′in − sinh(λ)Qain , (3.54)

where b′in = e−i(ϕ+π)bin, and b′out = e−i(ϕ+π)bout are simply the phase shifted incoming and outgoing

idler wave annihilation operators. This phase shift corresponds in I −Q space to a rotation by an

angle ϕ+ π:

 Ib′in(out)

Qb′in(out)

 :=

 cos(ϕ+ π) sin(ϕ+ π)

− sin(ϕ+ π) cos(ϕ+ π)


 Ibin(out)

Qbin(out)

 . (3.55)

This means that the effect of the pump phase on the idler field is equivalent to phase-delaying

sections of loss-less transmission lines on the idler input and output ports (i.e. redefining the idler

reference planes) with delay ϕ+π and −(ϕ+π) respectively. This justifies setting −eiϕ !
= 1, as done

later in this chapter to simplify the discussion. Of course this makes sense only in situations when

the pump phase is kept constant. Note again that the JPC preserves the commutation relations of

I and Q (Equation 3.38), i.e. [Iaout , Qaout ] = i
2 etc.

Both the scattering matrix of Equation 3.49 and the transformation rules for the field quadra-

tures of Equations 3.51 and 3.52 reveal how the JPC amplifies signal field amplitudes and quadra-

tures with amplitude gain cosh(λ) ≡
√
G0 in the absence of incoming idler fields. Further it becomes

clear that the origin of amplifier noise is the incoming noise on the idler port which is amplified by
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a factor sinh(λ) ≡
√
G0 − 1 ≈

√
G0 ≡ cosh(λ) for large gains.

3.2.3 One-Mode Squeezing Operator and JBA-paramp Scattering Ma-

trix

There is a strong connection between a non-degenerate, phase-preserving paramp performing three-

wave mixing operations, such as the JPC and a degenerate, phase-sensitive paramp performing

four-wave mixing operations, such as the Josephson Bifurcation Amplifier (JBA) (in its paramp

mode of operation). In fact, as will be shown below, a JPC can be constructed with two JBAs, and

a JBA can be constructed with one JPC. It is useful to review the JBA scattering matrix, which

can be calculated similarly to the JPC scattering matrix using the one-mode squeezing operator

Sa(ξ) := exp[
ξ

2
a†a† − ξ?

2
aa] , (3.56)

with ξ ≡ |ξ|eiϕξ ,1 where ϕξ again is related to the pump phase ϕp, since ϕξ = −2ϕp + π/2. The

one-mode squeezing operator is also unitary:

S−1
a (ξ) = S†a(ξ) = Sa(−ξ). (3.57)

Using the commutation relations [a†ina
†
in, ain] = [a†in, ainain]† = −2a†in together with Equation 3.44

yields

aout = Sain(ξ)ainS
†
ain

(ξ) (3.58)

= cosh(|ξ|)ain −
ξ

|ξ|
sinh(|ξ|)a†in, (3.59)

so that the phase-sensitive degenerate paramp (e.g.JBA) is described by

aout = cosh(|ξ|)ain − eiϕξ sinh(|ξ|)a†in , (3.60)

and cosh(|ξ|) ≡
√
G0 is the amplitude gain, and sinh(|ξ|) ≡

√
G0 − 1. At first glance, Equations

3.49 and 3.60 look very similar, a closer look however reveals that the signal output field in the
1Note that ξ is used as a parameter in the general one-mode squeezing operator, while λ is the parameter used

in the two-mode squeezing operator. As will be shown below, the two-mode squeezing operation can be rewritten as
two one-mode squeezing operations, with |ξ| = |λ|.
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phase-sensitive amplifier depends only on the signal input field and its conjugate, and no mixing

with an idler field occurs. The consequences of this relationship becomes much clearer when looking

at the transformation rules for the field quadratures I and Q:

Iout ≡ aout + a†out
2

= (cosh(|ξ|)− cos(ϕξ) sinh(|ξ|)) Iin − (sin(ϕξ) sinh(|ξ|))Qin (3.61)

Qout ≡ aout − a†out
2i

= − (sin(ϕξ) sinh(|ξ|)) Iin + (cosh(|ξ|) + cos(ϕξ) sinh(|ξ|))Qin, (3.62)

where Iin ≡
ain+a†in

2 and Qin ≡
ain−a†in

2i . Again, a change in reference plane greatly simplifies the

above expression, this time rotating both the input and output fields by the same phase +
ϕξ
2 :

 I ′in(out)

Q′in(out)

 :=

 cos(
ϕξ
2 ) sin(

ϕξ
2 )

− sin(
ϕξ
2 ) cos(

ϕξ
2 )


 Iin(out)

Qin(out)

 , (3.63)

or equivalently

a′in(out) := e−i
ϕξ
2 ain(out). (3.64)

This finally leads to the following transformation rules for the quadrature operators:

I ′out = e−|ξ|I ′in and Q′out=e+|ξ|Q′in . (3.65)

This means that a phase-sensitive degenerate paramp amplifies one quadrature (here Q) by a

factor e+|ξ| ≡
√
G0 +

√
G0 − 1, while deamplifying the conjugate quadrature (here I) by e−|ξ| ≡

√
G0 −

√
G0 − 1. Thus signals with phase +ϕξ/2 + π/2 + nπ (n ∈ Z) are amplified, while signals

with phase +ϕξ/2 + nπ are deamplified. Of course one can formally interchange the amplified and

deamplified quadratures (I ↔ Q) in Equations 3.65 by an appropriate redefinition of the reference

plane (i.e. rotation of the incoming and outgoing fields) or by setting the pump phase to ϕξ = π in

Equations 3.61,3.62.

3.2.3.1 Implementations of phase-sensitive amplifiers

Phase-sensitive parametric amplification is typically achieved with frequency degenerate amplifiers,

but can also be done with non-degenerate amplifiers such as the JPC, as shown in Ch. 5. Several

different implementations with Josephson devices exist, mainly differing in the frequency of the

applied continuous wave (CW) pump tone. They all have in common that only one relevant resonant
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ω0

Pump 1

ωa+∆ωa-∆

Figure 3.2: Different implementations of degenerate parametric amplifiers. a) Pump frequency at
twice the amplification center frequency ωa. This type of device corresponds to a non-linearity of
the form X2Z (χ(2)-medium in optics) and has been implemented with Josephson junctions [22].
b) Pump frequency at the amplification center frequency ωa. Several implementations of this X4

type non-linearity (χ(3)-medium in optics) have been achieved with superconducting circuits, e.g.
JBA-paramp [23], Josephson junction array paramp [20], and non-linear CPW resonators [29]. c)
Two pumps at equal distance and on opposite sides of center frequency ωa. This operation can be
achieved by e.g. applying two pumps in a JBA device [74].

mode exists. Figure 3.2 summarizes the operation of some degenerate paramps in frequency space.

3.2.3.2 Phase-preserving operation of a degenerate amplifier

One point of confusion that regularly arises in the discussion of frequency degenerate amplifiers is

their operation as phase-preserving amplifiers, similar to the operation of the JPC. The natural

mode of operation of degenerate amplifiers is as phase-sensitive amplifiers, as described by the

scattering matrix of equation 3.60. In this case, the signal is centered around the band center of

the amplifier, typically defined by the frequency of the CW pump tone (or half the frequency, see

Figure 3.2). Should however the signal be injected asymmetrically on only one side of the amplifier

band, then the device operates as a phase-preserving amplifier obeying Equation 3.49, and an idler

field appears on the opposite side of the signal band. This case is schematically described in Figure

3.3.
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ωa

ω1

-ωa

2ωa

2ωa

0 ω

IN

OUT

ωa-ωa 0 ω

-ω1

-ω1 -(2ωa-ω1) 2ωa-ω1 ω1

Figure 3.3: Operation of a degenerate paramp such as the JBA operated in the phase-preserving
mode, represented in frequency space. Colored arrows represent wavelet amplitudes a† and a, when
generalizing the flying oscillator definition to include frequencies off-resonance, and corresponding
to positive and negative frequency components. For orientation, Lorentzian shapes representing
amplifier power gain response functions are also shown. Blue represents the signal, red the idler.
Top: CW tone with frequency ω1 (represented by its positive and negative frequency components)
injected on the signal side of the amplifier center frequency ωa. Bottom: Output amplitudes present
at both signal and idler sides. Dashes arrows show direction of frequency mixing. Purple arrow
shows frequency relation between pump, signal, and idler tones.
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3.2.4 Common and Differential Mode Representation: Link Between

JPC and JBA-Paramp

As will be shown now, there is a close relationship between the two-mode JPC and the one-mode

JBA. To simplify the discussion it will be assumed that -eiϕ=1 in the JPC scattering matrix,

which, as mentioned above can be achieved by choosing the correct pump phase or by redefining

the idler field reference planes through rotations, so that Equation 3.49 becomes

 aout

b†out

 =

 cosh(λ) sinh(λ)

sinh(λ) cosh(λ)


 ain

b†in

 . (3.66)

Describing a phase-preserving parametric amplifier in terms of its signal and idler modes is natu-

rally useful when operating it as a signal amplifier while disregarding the idler port output. This

representation does not however make it easy to identify the correlations between signal and idler

outputs. To reveal those correlations, common and differential modes will now be introduced:

aΣin(out) : =
ain(out) + bin(out)√

2
(3.67)

a∆in(out) : =
ain(out) − bin(out)√

2
, (3.68)

and in terms of the quadrature operators

IΣin(out) :=
Iain(out) + Ibin(out)√

2
(3.69)

QΣin(out) :=
Qain(out) +Qbin(out)√

2
(3.70)

I∆in(out) :=
Iain(out) − Ibin(out)√

2
(3.71)

Q∆in(out) :=
Qain(out) −Qbin(out)√

2
. (3.72)

These definitions assure that the usual commutation relations still hold, namely [aΣ(∆)in , a
†
Σ(∆)in

] =

1, [a
(†)
Σin
, a

(†)
∆in

] = 0, [IΣ(∆)in , QΣ(∆)in ] = i/2, [IΣin , I∆in ] = 0 etc. and similarly for Σout and ∆out.

This leads to the following

alternative formulation of the JPC scattering matrix :
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+π/2

Phase-preserving amplifier
(e.g. JPC)

ωb↑ωa ωa↓ωb

phase-sensitive amp’s
(e.g. JBA-paramps)

-π/2

ain

bin bout

aout

a∆ in

a∑ in

a∆ out

a∑ out

bout

aout

a∆ out

a∑ out

a∆ inain

bin

a∑ in

(no input)

Figure 3.4: Equivalent circuit of a phase-preserving amplifier, consisting of two phase-sensitive
amplifiers. To illustrate its operation, the amplification process of a wave injected on the signal
port, noise on the idler port is shown. Grey boxes show the Fresnel representation of the wave as
it progresses through the different stages of the circuit.



aΣout

a†Σout

a∆out

a†∆out


=



cosh(λ) sinh(λ) 0 0

sinh(λ) cosh(λ) 0 0

0 0 cosh(λ) − sinh(λ)

0 0 − sinh(λ) cosh(λ)





aΣin

a†Σin

a∆in

a†∆in


. (3.73)

The scattering matrix is not just block-diagonal (Equation 3.49 can easily be rearranged to have

that property), but modes Σ and ∆ are completely decoupled from each other. Further it becomes

apparent (compare with Equation 3.60) that the JPC transforms each of these modes just like a

phase-sensitive JBA:

IΣout = eλIΣin and QΣout=e−λQΣin (3.74)

and

I∆out = e−λI∆in and Q∆out=eλQ∆in . (3.75)

In principle, the Σ and ∆ modes can be converted from and to modes a and b by using a

180-degree hybrid, whose scattering matrix is described by Equations 3.67, 3.68. Of course an
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Phase-sensitive amplifier
(e.g. JBA-paramp)

ωb↑ωa
ωa↓ωb
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bin bout

aout

a∆ in a∆ out

50Ω 50Ω

signal
idler

ain

bin

a∆ in

bout

aout

a∆ out

Figure 3.5: Equivalent circuit of a phase-sensitive amplifier, consisting of one phase-preserving
amplifier. The phase-preserving amplifier is shown with two ports, one for the idler and one for the
signal wave, generally at different frequencies ωa > ωb. Grey boxes show the Fresnel representation
of a wave as it progresses through the different stages of the circuit.

additional step would be necessary to convert modes a and b to the same frequency. This can be

achieved by employing additional JPCs in the noise-less frequency-conversion mode [75]. Figure

3.4 shows how to experimentally implement a phase-preserving JPC described by the scattering

matrix of Equations 3.49 and 3.73 with two phase-sensitive JBA paramps operating at the same

frequency, and both described by Equation 3.60, i.e. both fed with the same pump phase. The

two phase-shifting elements before and after the bottom JBA rotate the axis of amplification from

the I quadrature to the Q quadrature. Note that all elements of the circuit can be implemented

with dispersive elements, so that no additional noise enters the system. In particular the frequency

conversion ωa ↔ ωb can be achieved noise-free with the JPC in its gain-less conversion mode of

operation. The Fresnel representations of the wave as it progresses through the different stages of

the circuit will be explained in more detail below. It is noteworthy that the noise ellipses in the top

and bottom branches are tightly correlated.

The scattering matrix of Equation 3.73 reveals further how the JPC can be operated in phase-

sensitive mode. To achieve this, a signal wave has to be split into signal and idler waves through

a 180-degree hybrid, which are then injected into the JPC and then recombined using another

180-degree hybrid. Again two noise-less frequency conversion steps are necessary, and can be
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implemented with JPCs in conversion mode. This operation is shown in Figure 3.5. Note that the

matched termination at the input of the first hybrid will emit only quantum noise, provided the

device is operated at low temperature (kBT � ~ωa,b). This noise has no effect on the noise-less

amplification along the amplification axis (here the Q quadrature), since it appears at both the

signal and idler outputs and is ultimately canceled out through interference at the last hybrid. The

axis of amplification is determined by the pump phase of the JPC.

It is also possible to cascade two JPCs, connecting the two signal ports and the two idler ports

together and injecting and monitoring the fields on the signal port for instance. The first JPC then

creates a copy of the signal on the idler port and the state of the fields is similar to the state right

before the JPC in Fig. 3.5. There is however one important distinction to the case depicted in Fig.

3.5, as seen later in Eq. 5.9: the created idler tone is going to be phase-conjugated to the signal

tone, so that all signal phase information will be lost in the two JPC process. The amplification

process is still going to be phase-sensitive, but with respect to the difference of the two pump phases

of the two amplification stages. It is thus important that the frequency conversion stage described

in Fig. 3.5 does not phase-conjugate the signal.

In degenerate parametric amplifiers, the phase-sensitivity is sometimes measured by amplitude

modulating a signal, creating two sidebands around the center frequency of the amplifier (e.g.[22]).

The two created sideband tones are then phase-conjugated and the amplifier is sensitive to the

relative phase between the carrier and the pump, but insensitive to the original signal phase.

3.2.5 Signal and Noise Properties: Averages and Standard Deviations

Now that quadrature transformation rules for both the JPC and the JBA have been established

in Equations 3.51, 3.52, 3.65 it is time to investigate how input signals are transformed in general,

by looking at their expectation values E and variances D2 while assuming that no idler inputs are

present (in the JPC case). To simplify the discussion, the ′ symbols will be dropped in the following

and it will be assumed that the pump phases have been chosen appropriately 2.

Before looking at the signal output, it is useful to review some expectation values given the

quadrature operator properties. The length of the Fresnel vector of a signal (input or output, since

they obey the same commutation relations) can be expressed through the quadratures by
2Since only noise is presented to the idler port, the above result will hold true for any pump phase.
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√
〈I〉2 + 〈Q〉2 =

√〈
a+ a†

2

〉2

+

〈
a− a†

2i

〉2

(3.76)

=
√
〈a〉 〈a†〉 (3.77)

= |〈a〉| , (3.78)

where 〈X〉 ≡ E(X) is the expectation value. As expected, the length of the Fresnel vector is given by

the modulus of the average amplitude. The standard deviation of each quadrature can be expressed

as3

D2(I) =
〈
I2
〉
− 〈I〉2 (3.79)

=

〈(
a+ a†

2

)2
〉
−
〈
a+ a†

2

〉2

(3.80)

=
1

4

[〈
a2 + a†2 + aa† + a†a

〉
− 〈a〉2 −

〈
a†
〉2 − 2 〈a〉

〈
a†
〉]

(3.81)

=
1

4

[
1 + D2(a) + D2(a†) + 2Cov(a†, a)

]
, (3.82)

and similarly

D2(Q) =
〈
Q2
〉
− 〈Q〉2 (3.83)

=
1

4

[
1− D2(a)− D2(a†) + 2Cov(a†, a)

]
, (3.84)

where Cov(X,Y ) := E ((E(X)−X) (E(Y )− Y )) is the covariance.

The mean-square fluctuation of a can be defined by

|D|2 (a) :=
1

2

〈
aa† + a†a

〉
− 〈a〉

〈
a†
〉

(3.85)

≡ D2(I) + D2(Q). (3.86)

An important case is that of coherent states, where D2
|α〉(a) = D2

|α〉(a
†) = Cov|α〉(a†, a) = 0:

3D2(O) is used to designate the variance of observable O, while σ2 is used to represent a particular value of the
variance.
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D2
|α〉(I) = D2

|α〉(Q) =
1

4
, and |D|2|α〉 (a) =

1

2
(3.87)

which means that the mean-square fluctuation of a corresponds to half a photon in energy.

3.2.5.1 JPC

When operating the JPC as an amplifier, typically only signal waves are injected into the device

while noise is present on the idler port. An input signal represented by a Fresnel vector with

quadratures 〈Iain〉 and 〈Qain〉 and variances D2(Iain) = D2(Qain) and no input on the idler port

(〈Qbin〉 = 〈Qbin〉 = 0 and D2(Ibin)=D2(Qbin)) is transformed according to the JPC scattering matrix

given in Equations 3.66, 3.51, 3.52. The output quadratures then become

〈Iaout〉 =
√
G0 〈Iain〉+

√
G0 − 1 〈Ibin〉 (3.88)

〈Ibin〉=0
=

√
G0 〈Iain〉 (3.89)

〈Qaout〉 =
√
G0 〈Qain〉 −

√
G0 − 1 〈Qbin〉 (3.90)

〈Qbin〉=0
=

√
G0 〈Qain〉 (3.91)

so that for the output amplitude one finds

√
〈Iaout〉

2
+ 〈Qaout〉

2
=

√
G0 〈Iain〉

2
+ (G0 − 1) 〈Ibin〉

2
+G0 〈Qain〉

2
+ (G0 − 1) 〈Qbin〉

2

=

√
G0 |〈ain〉|2 + (G0 − 1) |〈bin〉|2 (3.92)

〈Ibin〉=〈Qbin〉=0
=

√
G0

√
〈Iain〉

2
+ 〈Qain〉

2 (3.93)

⇔ |〈aout〉| =
√
G0 |〈ain〉| . (3.94)

Equations 3.89, 3.91, 3.94 justify the appellation “phase-preserving” amplifier: both quadratures

are amplified by the same factor so that the phase is preserved in the amplification process, and

signals are amplified by an amplitude gain
√
G0. The noise properties of the JPC can be calculated

using the scattering matrix:
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D2(Iaout) = G0D2(Iain) + (G0 − 1)D(Ibin) + 2
√
G0

√
G0 − 1 〈IainIbin〉 (3.95)

〈IainIbin〉=0
= G0D2(Iain) + (G0 − 1)D2(Ibin), (3.96)

and

D2(Qaout) = G0D2(Qain) + (G0 − 1)D2(Qbin)− 2
√
G0

√
G0 − 1 〈QainQbin〉(3.97)

〈QainQbin〉=0
= G0D2(Qain) + (G0 − 1)D2(Qbin), (3.98)

where the fact that Iain , Ibin (Qain , Qbin) commute and are independent has been used. For large

gains (G0 � 1) and only quantum noise on the idler port (see Equation 3.87) one arrives at the

important result:

D2(Iaout) = D2(Qaout) = G0

(
σ2
I,Q +

1

4

)
and |D|2 (aout) = G0

(
σ2
a +

1

2

)
, (3.99)

where the signal input noise is assumed to be isotropic D2(Iain) = D2(Qain) =: σ2
I,Q and σ2

a :=

|D|2 (ain) = 2σ2
I,Q

4. The added noise of the JPC thus corresponds to only half a photon, which

is the minimum of added amplifier noise for a linear phase-preserving amplifier [5]. The JPC

minimally degrades the intensity signal-to-noise ratio (SNR) of input signals from |〈ain〉|2 /σ2
a to

|〈ain〉|2 /
(
σ2
a + 1

2

)
. Figure 3.6 (top) shows this behavior graphically.

3.2.5.2 JBA-Paramp

The calculation of signal and noise properties of the output of a phase-sensitive paramp is partic-

ularly simple, using Equations 3.65. Again, it will be assumed (for legibility and without loss of

generality) that the input and output fields are defined such that the ′-symbols in Equations 3.65

can be dropped (equivalently, ϕξ can be set to zero in Equations 3.61, 3.62). Then an input field

defined by 〈Iin〉 and 〈Qin〉 and variances D2(Iin) = D2(Qin) =: σ2
I,Q leads to output field quadratures

4More precisely, the error ellipse is circular, i.e. D2(ain) = 0 [5].
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〈Iout〉 = e−|ξ| 〈Iin〉 (3.100)

〈Qout〉 = e+|ξ| 〈Qin〉 . (3.101)

Thus the field is simply amplified by a factor e+|ξ| in the Q quadrature while deamplified by a

factor e−|ξ| in the I quadrature. It is clear that this amplifier is strongly phase-dependent, and for

large gains (e+|ξ| � 1) all phase information is nearly erased. The noise properties of these devices

are also easily calculated:

D2(Iout) = e−2|ξ|D2(Iin) (3.102)

= e−2|ξ|σ2
I,Q (3.103)

D2(Qout) = e+2|ξ|D2(Qin) (3.104)

= e+2|ξ|σ2
I,Q. (3.105)

Noise (variance) in the I quadrature is squeezed by the same factor e+2|ξ| as it is amplified in

the Q quadrature. The SNR of the quadratures remains unchanged, since the output intensity

SNR of the quadratures stays the same as the input SNR: 〈Iout〉2 /D2(Iout) = 〈Iin〉2 /σ2
I,Q and

〈Qout〉2 /D2(Qout) = 〈Qin〉2 /σ2
I,Q. Figure 3.6 (bottom) graphically shows this phase-sensitive am-

plification process.

3.2.6 Evolution of Coherent States

In the following, the evolution of coherent states UJPC |α, β〉in will be studied explicitly, where

|α, β〉in describes coherent states α and β in the incoming signal and idler flying oscillator modes

described above. The resulting state is described here in the same Hilbert space as the initial state,

namely in that of the incoming flying oscillators.

Using the displacement operator

Dain (α) ≡ eαa
†
in−α

?ain Eq. 3.44
= eαa

†
ine−α

?aine−
|α|2

2 , (3.106)

90



I

Q

|‹ain›|

I

Q

√G0•|‹ain›|

√G0•σI
2+(G0-1)•1/4

I

Q

|‹Iin›|
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Figure 3.6: Fresnel vector representation of quasi-coherent signals and their transformation through
quantum-limited paramps. Top: The phase-preserving operation of a quantum-limited paramp such
as the JPC will amplify both field quadratures I and Q equally, so that the output phase is the same
as the input phase. The added noise corresponds to half a photon at high gains when referred back
to the input. Bottom: The phase-sensitive operation of a quantum-limited paramp amplifies one
quadrature (here I) while deamplified the other quadrature (here Q). The SNR of either quadrature
remains unaffected by the amplification process.
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and similarly for bout, the state of the outgoing signal and idler modes can be written as 5

UJPC |α, β〉in = S†ab (Λ) |α, β〉in (3.107)

= S†ab (Λ)Dain (α)Dbin (β) |0, 0〉in (3.108)

= S†ab (Λ)Dain (α)Sab (Λ)︸ ︷︷ ︸ S†ab (Λ)Dbin (β)Sab (Λ)︸ ︷︷ ︸ S†ab (Λ) |0, 0〉in︸ ︷︷ ︸,(3.109)
and the first two terms are just transformations of the displacement operators, using the inverse

scattering matrix of Eq. 3.49:

S†ab (Λ)Dain (α)Sab (Λ) = eαS
†
ab(Λ)a†inSab(Λ)−α?S†ab(Λ)ainSab(Λ) (3.110)

Eq. 3.49
= eα cosh(λ)a†in−α

?cosh(λ)ain (3.111)

e−α
?eiϕ sinh(λ)b†in+αe−iϕ sinh(λ)bin

= Dain (α cosh(λ))Dbin

(
−α?eiϕ sinh(λ)

)
(3.112)

where Λ ≡ λeiϕ. This is exactly the result one would find using the scattering matrix for a classical

field α in the signal port. Making use of the fact that two consecutive displacements can be written

as

Dain (α)Dain (α′) = eiIm[αα′?]Dain (α+ α′) , (3.113)

the first two terms in Eq. 3.109 become

S†ab (Λ)Dain (α)Dbin (β)Sab (Λ) = S†ab (Λ)DaΣin

(
α+ β√

2

)
Da∆in

(
α− β√

2

)
Sab (Λ) (3.114)

= Dain

(
α cosh(λ)− β?eiϕ sinh(λ)

)
⊗Dbin

(
β cosh(λ)− α?eiϕ sinh(λ)

)
.

Again, the JPC scattering matrix reappears. Note that the phase factors of Eq. 3.113 exactly

cancel. So finally, the evolution of coherent states can be written as
5The † in the two-mode squeezing operator follows from the choice of definition 3.45.
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UJPC |α, β〉in = Dain

(
α cosh(λ)− β?eiϕ sinh(λ)

)
(3.115)

⊗Dbin

(
β cosh(λ)− α?eiϕ sinh(λ)

)
⊗S†ab (Λ) |0, 0〉in .

This result is quite remarkable and shows that coherent states are the natural basis in which to

describe the JPC operation. Coherent states almost transform as predicted by the (semi-)classical

scattering matrix of Eq. 3.49: the displacement operators transform according to the scattering

matrix, while additionally the vacuum state undergoes two-mode squeezing. Note that the case

where the signal and idler input states are the vacuum state is sometimes also called spontaneous

parametric down-conversion [76] or parametric fluorescence. Two-mode squeezing of the vacuum

state with the JPC was experimentally observed in [70, 71].

Before looking at a more specific case, consider the change of basis from a, b to Σ, ∆ as in Eqs.

3.67, 3.68:

Dain (α)Dbin (β) = DaΣin

(
α+ β√

2

)
Da∆in

(
α− β√

2

)
. (3.116)

Further, the two-mode squeezing operator can be decomposed into two one-mode squeezing opera-

tors:

Sab (Λ) = eΛa†inb
†
in−Λ?ainbin (3.117)

= e
Λ
2 a
†
Σin

a†Σin
−Λ?

2 aΣinaΣin (3.118)

⊗e
−Λ
2 a†∆in

a†∆in
−−Λ?

2 a∆ina∆in (3.119)

= SΣ (Λ)S∆ (−Λ) , (3.120)

where SΣ(∆) (ξ) := e
ξ
2a
†
Σ(∆)in

a†
Σ(∆)in

− ξ
?

2 aΣ(∆)inaΣ(∆)in is the one-mode squeezing operator. Then

S†ab (Λ)Dain (α)Sab (Λ) = DaΣin

(
α cosh(λ)− α?eiϕ sinh(λ)√

2

)
(3.121)

⊗Da∆in

(
α cosh(λ) + α?eiϕ sinh(λ)√

2

)
, (3.122)
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and

S†ab (Λ)Dain (α)Dbin (β)Sab (Λ) = DΣin

(
α+ β√

2
cosh(λ)− α? + β?√

2
eiϕ sinh(λ)

)
(3.123)

⊗D∆in

(
α− β√

2
cosh(λ)− α? − β?√

2
eiϕ sinh(λ)

)
.(3.124)

Finally the result of Eq. 3.115 can be expressed as

UJPC |α, β〉in = DΣin

(
α+ β√

2
cosh(λ)− α? + β?√

2
eiϕ sinh(λ)

)
(3.125)

⊗D∆in

(
α− β√

2
cosh(λ)− α? − β?√

2
eiϕ sinh(λ)

)
⊗S†Σ (Λ)S†∆ (−Λ) |0, 0〉in .

Again, this is the result expected from the (semi-)classical scattering matrix in Eq. 3.73, with

the addition of the one-mode squeezing of both signal and idler vacuum states.

3.2.6.1 Coherent Attenuation

The case of balanced input coherent states (α = |α|e−iϕS , β = |α|e−iϕI) can easily be analyzed

using Eq. 3.115:

UJPC
∣∣|α|e−iϕS , |α|e−iϕI

〉
in = Dain

(
|α|e−iϕS

(
cosh(λ)− ei(ϕS+ϕI+ϕ) sinh(λ)

))
(3.126)

⊗Dbin

(
|α|e−iϕI

(
cosh(λ)− ei(ϕS+ϕI+ϕ) sinh(λ)

))
⊗S†ab (Λ) |0, 0〉in ,

which, in terms of the displacement operators, is the same result found in Eq. 5.9:
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UJPC
∣∣|α|e−iϕS , |α|e−iϕI

〉
in = (3.127)

Dain

(
|α|e−i(ϕS+γ)

√
e2λ sin2

(
ϕS + ϕI + ϕ

2

)
+ e−2λ cos2

(
ϕS + ϕI + ϕ

2

))

⊗Dbin

(
|α|e−i(ϕI+γ)

√
e2λ sin2

(
ϕS + ϕI + ϕ

2

)
+ e−2λ cos2

(
ϕS + ϕI + ϕ

2

))
⊗S†ab (Λ) |0, 0〉in ,

with ϕ ≡ −ϕp + π/2, and γ being the phase of the complex number cosh(λ)− ei(ϕS+ϕI+ϕ) sinh(λ)

(λ ∈ R+). Thus for nonlinear phases ϕS + ϕI + ϕ = 2πn, n ∈ Z, the output state for CA is

UJPC
∣∣|α|e−iϕS , |α|e−iϕI

〉
in

coh. atten.
= Dain

(
αe−λ

)
Dbin

(
βe−λ

)
S†ab (Λ) |0, 0〉in , (3.128)

while for nonlinear phases ϕS + ϕI + ϕ = (2n+ 1)π the output state for coherent amplification

is

UJPC
∣∣|α|e−iϕS , |α|e−iϕI

〉
in

coh. ampl.
= Dain

(
αe+λ

)
Dbin

(
βe+λ

)
S†ab (Λ) |0, 0〉in . (3.129)

Equation 3.128 shows in particular that at the CA point and for large gains (G0, λ→∞) (and

still in the stiff pump approximation) the JPC puts out only two-mode squeezed vacuum noise, just

as in the case when no tones are presented at the input ports [70, 71]. In terms of e.g. the signal

port only, this state looks just like amplified vacuum noise, where an additional half photon in noise

energy is added by the idler port (see Eq. 3.99).
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Chapter 4

Operation of Amplifier, Experimental

Results

In this chapter, further experimental results of Josephson Parametric Converter (JPC) samples not

covered in Ch. 1 are presented. An overview of notable measured JPC samples with their most

relevant parameters is given first, and the measurement of important circuit properties is explained,

which were used throughout this work to characterize both the JPC microwave circuit properties

and amplifier performance. The following sections describe how the amplifier performance depends

on the pump parameters - frequency and power - which are used to set the gain and the exact

center frequency. Lastly, the measured saturation power dependence of the working point in a

shunted Josephson Ring Modulator (JRM) device is presented, showing that the exact working

point significantly changes the amount of photons the JPC can handle.

4.1 Measured Devices

Many samples were fabricated and measured over the course of this thesis work. Table 4.1 sum-

marizes some important amplifier properties of notable samples. For fabrication and design details

see Table 6.1. As explained in Ch. 6, several changes to the microstrip design were made through-

out this work. All devices have in common that the microstrip lines are of 300 µm width, and

made of aluminum on silicon. Devices JPX01 through JPX21 were fabricated on a silicon wafer of

300µm thickness, and with holes in the microstrip lines (see Sec. 6.1.1.1). Samples were glued to
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device JPX09 JPX14 JPX16 JPX22 JPX26 JPX30 JPXs01 JPXs04

f
S/I
0 (GHz) 8.32/6.63 8.12/6.45 8.18/6.22 7.63/5.4 7.90/5.37 7.26/5.3 7.4-7.8/5.2-5.3 7.7-7.8/5.7

QS/I 67/63 73/66 140/100 290/280 350/256 200/150 240/ 220 140/ 100
γS/I
2π

(MHz) 124/105 111/98 58/62 26/19 22/21 36/35 ∼ 38/ ∼ 24 ∼ 55/ ∼ 57

p
S/I
L (Φ0/2) 5%/4% 4%/3% 2%/3% 4%/3% 6%/4% 7%/6%

β
S/I
L

= 0.54/0.64 β
S/I
L

= 0.71/0.46

LJ0

L
S/I
g

= 0.12/0.07
LJ0

L
S/I
g

= 0.05/0.04

p
S/I
L

= 7 − 15%/5 − 12% p
S/I
L

= 4 − 5%/3%

pSLp
I
LQ

SQI 8 6 8 97 215 126 185-950 17-21

gapS/I(µm) 13/13 12/14 12/13 12/13 12/13 6/6 12/13 12/3

meas. CS/I
in (fF) - - - 34/34 30/36 43/48 37/40 34/55

sim. CS/I
in (fF) - - - 39/37 39/37 46/46 39/37 39/55

meas. Gmax
0 (dB) 19 21 25 > 40 > 40 > 30 ∼ 30 > 30

Table 4.1: List of notable JPC samples with relevant measured parameters. Meaning of symbols is
given in Sec. 4.2.

the sample box using poly methyl methacrylate (PMMA) or GE varnish (Lake Shore VGE-7031

varnish). The characteristic impedance of the resulting transmission lines is then expected to be

close to 45 Ω [61]. Devices JPX22 through JPX30 and JPXs01 through JPXs04 were fabricated on

250 µm thick silicon, and without holes in the resonators. silver was deposited on the wafer back

side and samples were attached to the sample box using silver paste. The expected transmission

line characteristic impedance is then around 41 Ω [61].

Samples had typical signal frequencies of 7− 8 GHz and idler frequencies of 5− 6 GHz. Linear

bandwidths were typically between 20 and 100 MHz, while participation ratios were in the few %

range. The newest device generation (JPX22 and up) routinely achieved gains of 30 dB and above.

4.2 Circuit Characterization

4.2.1 Quality Factor

The signal and idler mode resonance frequencies and quality factors are determined through simple

reflection measurements using a vector network analyzer (VNA), as shown in Fig. 4.1. Since there

is no amplitude response (the resonators are in the overcoupled regime), all information is contained

in the phase response, and the phase undergoes a 360◦ phase shift when crossing the resonance.

The resonance frequency is given by the zero crossing, while the bandwidth is approximately given

by the ±90◦. These values can also be obtained by fitting the data to the phase of the reflection

coefficient of an LC resonator measured with a 50 Ω transmission line, as shown in the figure.

One of the reasons to evaporate silver on the substrate back was to ensure a constant distance
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Figure 4.1: Measurement of JPC signal mode center frequency and quality factor (sample JPX30).

to the ground plane, which in earlier device generations (JPX01 through JPX21) was defined by

the sample box. Microstrip resonator properties depend on the effective substrate dielectric and

the distance to the ground plane, so this point proved crucial in the reproducibility of resonator

frequencies and quality factors. Measurement of devices without junctions showed a variability in

the measured resonance frequency between nominally identical devices of less than 5 MHz and a

measured variability between cooldowns of less than 1 MHz. Typically the quality factor can be

determined with a precision of about 10 %, due to the fact that the resonances are broad and the

line impedance not being exactly constant over a broad frequency range (see wiggles in figure). The

quality factor of nominally identical resonator devices was measured to be the same within about

30 %.

4.2.1.1 Coupling Capacitor

As explained in Appendix A, the quality factor of the overcoupled transmission line resonators used

in this work is entirely determined by the coupling capacitors and depends inversely on the coupling

capacitance squared. For a transmission line with characteristic impedance of Z0 and symmetrically

coupled to loads of impedance RL with identical coupling capacitors Cin on both ports, the coupling

Q for typical parameters of this work is given by

Qext =
π

4

1

Z0
· RL
ω2

0C
2
inR

2
L

, (4.1)
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Figure 4.2: Coupling capacitance as function of microstrip gap size. a) Colored dots are measure-
ments, black solid line is simulated in Maxwell, and the blue dashed line is a theoretical expression.
b) Magnification of a) around small gap sizes.

where ω0 is the resonance frequency. In the case of one feedline being shorted to ground, the Q is

given by twice this expression.

It is therefore important to know how the capacitance scales with the designed geometric pa-

rameters, namely the microstrip gap between transmission line and feedline.

Figure 4.2 compares coupling capacitances inferred from quality factor measurements to those

calculated with analytical expressions found in the literature [77, 78] and with values obtained

through electrostatic calculations using Maxwell. The green dots correspond to data obtained

from resonators fabricated without JRM, while red and blue dots correspond to idler and signal

data. Since idler resonators have lower frequencies and higher geometric inductances, the modes

are less perturbed by the junctions (the participation ratio is lower) than in the signal case and the

inferred capacitance values are more accurate. As seen in the graphs, inferred coupling capacitances

agree with the simulation within about 20 %. There are several reasons for this uncertainty: first,

as explained above, there is an uncertainty in the measurement of quality factors due to their

low values. Further, there is an uncertainty of up to 0.5 µm in the actual gap size compared to

the mask gap size (which could of course be significantly improved by systematically measuring

and confirming gap sizes with the scanning electron microscope (SEM)). Lastly, there is still the

possibility that the simulation does not exactly represent the devices measured. The dashed blue

line represents an analytical expression found in the literature, and which is claimed to be valid up

to a gap size of 10 % of substrate thickness (here 25 µm). Table 4.2 lists fabrication parameters of
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device JPX23 JPX25 µSR01 µSR02 µSR03 µSR04

fab name 110302_shortJPC_b 110302_shortJPC_c 110426_µSR_a 110426_µSR_b 110412_µSR 110415_µSR

substrate t (µm) 250µm 250µm 250µm 250µm 250µm 250µm
TL type solid solid solid solid solid solid
Ag backed X X X X X X

litho. system NPGS NPGS NPGS NPGS NPGS NPGS
lengthS/I(mm) 6.12/9 6.12/9 6.3/(n/a) 6.3/(n/a) 6.3/(n/a) 6.3/(n/a)
gapS/I(µm) 12/13 12/13 6/(n/a) 9/(n/a) 12/(n/a) 20/(n/a)

msmt. CS/I
in (fF) 37/40 33/38 52 40 39 34

sim. CS/I
in (fF) 39/37 39/37 47 42 39 33

Table 4.2: List of notable resonator samples with relevant fabrication parameters.

notable resonator samples used to calibrate the gap capacitors.

One is mainly interested in the JPC bandwidth, which is proportional to the linear signal and

idler resonator bandwidths γ (see Eq. 1.11 ff.) for identical signal and idler bandwidths. According

to Eq. 4.1 this bandwidth goes as

γ ∝ ω3
0C

2
in, (4.2)

so that it is very sensitive on the mode frequency. Figure 4.2 shows simulation results for larger gap

sizes in anticipation of future devices designed for higher quantum bit (qubit) readout frequencies.

4.2.2 Participation Ratio

An important concept in the description of the JPC is the inductance participation ratio of the

JRM inductance to the total mode inductance. In all that follows, the participation ratio will be

defined as

pL(ϕext) :=
LJRM(ϕext)

LJRM(ϕext) + Lg
, (4.3)

where LJRM(ϕext) is the linear part of the inductance of the JRM of the signal (X) or idler (Y )

mode (see Ch. 2) and Lg is the inductance of the resonant mode without junctions.

4.2.2.1 Four Junction JRM

In the case of a JPC with a four junction JRM, only the participation ratio evaluated at Φ0/2 is

of relevance, as this is where the device is typically operated. The participation ratio depends on

only the ratio of the Josephson inductance LJ0 to the geometric inductance Lg, just as does the

variation of the mode frequency with flux:
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Figure 4.3: Participation ratio inferred from frequency tunability of a JPC with a four junction
JRM (sample JPX30). a) Measured signal frequency as function of magnetic flux (blue circles).
Black line is a fit. Yellow line is the participation ratio as a function of flux inferred from the fit
parameter pL(Φ0/2). The dashed line shows the usual operating point Φext = Φ0/2. b) Same as in
a) but for idler data.

ω0 ∝
1√

Lg + LJRM(Φext)
. (4.4)

As shown in Eq. 2.32, for the signal and idler modes one finds LJRM(Φext) = LJ0
/ cos (πΦext/(2Φ0)),

where Φ0 = h/2e is the magnetic flux quantum.

Figure 4.3 shows the measured signal and idler mode frequencies for varying magnetic flux.

Note that the data is obtained by merging forward and backward flux sweeps, as the jumps when

sweeping the flux in only one direction. The black line corresponds to a fit to 4.4 and yields the

fit parameter pSL(Φ0/2) = 7% for the signal mode and pIL(Φ0/2) = 6% for the idler mode. This

uniquely determines the shape of the participation ratio function of Eq. 4.3, which is plotted in
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yellow and can be expressed as

pL(Φext)
4JJ JRM

=
LJ0

LJ0
+ Lg cos

(
2πΦext

4Φ0

) , (4.5)

or, in terms of pL(Φ0/2), as

pL(Φext)
4JJ JRM

=
pL(Φ0/2)

pL(Φ0/2) +
√

2 (1− pL(Φ0/2)) cos
(

2πΦext
4Φ0

) . (4.6)

As expected, the higher frequency signal mode participation ratio is larger than the lower frequency

idler participation ratio, due to the lower geometric inductance of the signal mode. It is important

to note that the model presented above neglects stray inductances present in the JRM.

4.2.2.2 Eight Junction JRM

In the case of JPCs with shunted JRM, the concept of flux dependence of the participation ratio

becomes important, as devices are operated over a range of different fluxes. In this case, the ring

modulator inductance is given by Eq. 2.68 LJRM(Φext) = 2L/ (2βL cos (πΦext/(2Φ0)) + 1), where

βL = L/LJ0
and L is the shunt inductance. The participation ratio is this time given by two

parameters, any two ratios of the three inductances involved: LJ0
, L, Lg. Here the two parameters

βL and pg := LJ0
/Lg will be chosen.

The flux dependence of the frequency is again of the form of Eq. 4.4, but this time two param-

eters determine its change with magnetic flux: βL and pg. Thus again the participation ratio can

be obtained from the flux dependence of the mode frequencies.

Figure 4.4 shows the measured signal and idler resonance frequency as a function of applied

magnetic flux. The black curves are fits, yielding βSL = 0.54, pSg = 0.12 for the signal mode and

βIL = 0.64 and pIg = 0.07 for the idler mode. The resulting participation ratio is plotted in yellow

and can be expressed as

pL(Φext)
8JJ JRM

=
2βLpg

2βLpg + 1 + 2βL cos
(

2πΦext
4Φ0

) . (4.7)

Note that Eq. 4.7 converges toward Eq. 4.6 for βL →∞, as it should.

For this particular device (JPXs01) and in the range of frequencies it is typically operated, the
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Figure 4.4: Participation ratio inferred from frequency tunability of a JPC with shunted JRM
(sample JPXs01). a) Measured signal frequency as function of magnetic flux (blue circles). Black
line is a fit. Yellow line is the participation ratio as a function of flux inferred from the fit parameters
βL and LJ0/Lg. b) Same as in a) but for idler data.
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Figure 4.5: Measured gain vs. applied pump power (blue circles, sample JPXs01) and theoretical
prediction (black).

participation ratio of the signal mode thus varies by a factor of two, between around 7% and 15%

while the idler mode varies between around 5% and 12%.

4.3 Gain Scaling with Pump Power

As explained in Ch. 3 (Eq. 3.15), the JPC scales with the injected pump power Pp as

√
G0 =

1 + αPp
1− αPp

, (4.8)

where α is a proportionality constant representing the losses between generator and the sample. At

the critical pump power Pp = Ppo, determined by |ρ0|2 = 1, where |ρ0|2 = αPp is the normalized

pump power, the gain is expected to diverge. In reality however, the gain remains finite and levels

off more smoothly than expected by Eq. 4.8, as seen in Fig. 4.5. The data was taken in a resolution

bandwidth (RBW) of 5Hz at a center frequency of 7.64GHz, an care was taken to reduce the probe

tone power used to measure the gain as the gain increased, to assure the device was not saturating

at any point. Two possible explanations for the flattening of the gain compared to the theoretical

black curve (calculated from the experimental gain point at 11 dB), are that the pump impedance

starts changing at higher gains, leading to a deviation from the simple proportionality |ρ0|2 = αPp,

and/or that the device reaches gains which are sufficiently large to excite higher order nonlinearities

in the signal mode with zero-point fluctuations alone. In the case where higher order non-linearities

are excited, the equations of motion Eqs. 3.5 are not valid anymore and no analytical expression
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Figure 4.6: Measured gain curves for varying pump frequencies (sample JPX14).

of the gain dependence as a function of the pump power can be derived. One would need to use

numerical methods to fit the curve of Fig. 4.5, which was beyond the scope of this work.

4.4 Tunability with Pump Frequency

The pump frequency ωp is the second available parameter of the pump. As shown in Ch. 3 (Eq.

3.6), the center frequency of amplification depends on the exact value of the pump frequency:

G[ω] =

∣∣∣∣∣A?[ω]B?[ωp − ω] + |ρ0|2

A[ω]B?[ωp − ω]− |ρ0|2

∣∣∣∣∣
2

, (4.9)

where

A[ω] = 1− iω − ωa
γa/2

(4.10)

B[ω] = 1− iω − ωb
γb/2

, (4.11)

and ωa,b and γa,b are the signal/idler mode resonant frequencies and linear bandwidths.

Figure 4.6 shows this tunability with pump frequency, which in practice is of the order of γa,b

for the signal/idler mode. The arrows on top indicate the locations of the theoretically expected
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center frequencies of the gain curves as described by Eq. 4.9. The linear bandwidth for this device

is about 100 MHz and it is frequency tunable with the pump frequency over about 50 MHz. Note

however that the curves represent approximately the maximum gains achieved at the shown tuning

points, and that those maximum gains significantly decrease at the extrema of the tuning. The

narrow range of tunability together with the decrease in gain away from the ideal tuning point

ωp = ωc = ωa + ωb make tunable JPC based on shunted JRMs necessary for practical operation.

4.5 Saturation Powers for Tunable JPC

For JPCs with JRMs without shunt only one working point is in practice considered (Φ = Φ0/2),

so that only one set of parameters determine its saturation behavior. In the tunable JPCs however,

it was found that saturation powers can significantly change depending on the flux point and

pump parameters chosen. Figure 4.7 shows the measured P-1 dB saturation powers as a function

of the gain, for amplifier frequencies tuned from 7.38 GHz to 7.8 GHz. The P-1 dB are defined as

the signal input powers at which the amplifier gain drops by 1 dB, and are extracted from data

similar to the one presented in Fig. 1.9. As becomes apparent, the saturation powers decrease with

increasing gain, with a slope of about −1.2 dB/dB. More importantly, the saturation powers differ

starkly between tuning points, by up to 20 dB. Thus, when tuned to a gain of 20 dB at the center

frequency of 7.8 GHz the device could handle about 10 photons from a qubit readout cavity with

5 MHz (black dotted line represents one photon at 5 MHz). But when tuned to the same gain at a

center frequency of 7.4 GHz it could handle only a fraction of a photon. While this feature is partly

due to the changing participation ratio and coupling strength g3 at different bias points (see Ch. 2

and Sec. 4.2.2), differences of up to 10 dB were observed at close-by tuning points and frequencies,

making it necessary to carefully set frequency bias points using both the flux and pump frequency

tuning. This is likely due to the fact that there is a range of pump frequencies for each flux bias

point at which amplification is possible, but which are not necessarily optimal, in the sense that

the pump frequency is detuned away from the sum of the linear signal and idler frequencies (at

the given flux bias). This question of saturation powers and mechanisms as a function of flux and

pump settings needs to be studied in more detail in the future.
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Chapter 5

Coherent Attenuation and Reverse

Operation of the JPC

Three-wave mixing has been known since the early days of nonlinear optics to be a phase sensitive

three wave process, depending on the phase ϕn = ϕS + ϕI − ϕp relevant to this nonlinear system,

where ϕS,I,p are the signal, idler, and pump phases respectively [79], and provides a basic building

block for measurements at the single photon level [80, 81]. Usually the Josephson Parametric

Converter (JPC) is operated as a phase preserving amplifier, and only tones on the signal port

are applied. As explained in Ch. 3, the JPC can also be operated in phase sensitive mode, when

applying tones with equal photon fluxes on both the signal and idler ports. Depending on the

phase ϕn, this can either lead to coherent amplification or its time-reversed equivalent, Coherent

Attenuation (CA), analogous to time-reversal in lasers [82, 83] and optical parametric oscillators

(OPO) [84]. Moreover, power conservation predicts that CA leads to an increase of the circulating

pump amplitude, effectively leading to an increase of the gain of the JPC.

Both effects, the attenuation of signal and idler tones at the CA condition and the increase of

pump photons as manifested through an increase of the gain, will be explored below [67], confirming

that the JPC Hamiltonian must not only have a mixing term of the form a†b†c but also the hermitian

conjugate term abc†.
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5.1 Theory

5.1.1 Coherent Attenuation

The absorption of balanced signal and idler input tones for small tone amplitudes (stiff pump

approximation still applies) can be fully described by the JPC scattering matrix of Eq. 3.49. For

classical signal and idler wave amplitudes αin = |αin| e−iϕS and βin = |βin| e−iϕI the scattering

matrix becomes:

 αout

β?out

 =

 cosh(λ) −ie−iϕP sinh(λ)

ieiϕP sinh(λ) cosh(λ)


 αin

β?in

 , (5.1)

where ϕP is the pump phase and
√
G0 ≡ cosh(λ). Balancing the input photon fluxes |αin|2 ≡ ṅS

!
=

ṅI ≡ |βin|2 one obtains

αout = cosh(λ) |αin| e−iϕS − ie−iϕP sinh(λ) |βin| e+iϕI (5.2)

= |αin|
(
cosh(λ)e−iϕS − ie−iϕp sinh(λ)e+iϕI

)
. (5.3)

The CA |αout|2 / |αin|2 (or ’return loss’ in microwave terminology) on the signal port then is

|αout|2

|αin|2
=

∣∣cosh(λ)e−iϕS − ie−iϕp sinh(λ)e+iϕI
∣∣2 (5.4)

= cosh2(λ) + sinh2(λ) + i cosh(λ) sinh(λ)
(
e−i(ϕS+ϕI−ϕp) − e+i(ϕS+ϕI−ϕp)

)
(5.5)

= cosh(2λ) + sinh(2λ) cos(ϕS + ϕI − ϕp − π/2) (5.6)

= cosh(2λ)

(
cos2(

ϕS + ϕI − ϕp − π/2
2

) + sin2(
ϕS + ϕI − ϕp − π/2

2
)

)
(5.7)

+ sinh(2λ)

(
cos2(

ϕS + ϕI − ϕp − π/2
2

)− sin2(
ϕS + ϕI − ϕp − π/2

2
)

)
(5.8)

so that finally one arrives at the CA equation :

|αout|2

|αin|2
=
|βout|2

|βin|2
= e2λ cos2

(
ϕn − π/2

2

)
+ e−2λ sin2

(
ϕn − π/2

2

)
, (5.9)
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where ϕn := ϕS + ϕI − ϕp is the relevant phase of the three waves1. Thus at large G0, one will

observe a power gain of e2λ ≈ 4G0 at ϕn = +π/2 or CA of e−2λ ≈ 1/(4G0) at ϕn = −π/2, with a

periodicity of 2π.

The same result is of course obtained when considering the (amplitude) eigenvalues e±λ ≈(
2
√
G0

)±1, and corresponding eigenvectors ~e± =
(
α, αei(ϕP±π/2)

)T
of the scattering matrix of Eq.

5.9. These eigenvalues correspond to ϕn = ±π/2, as expected form Eq. 5.9 and represent injecting

tones α in the signal port and α?e−i(ϕP±π/2) in the idler port.

5.1.2 Gain Modulation

When increasing the signal and idler tone amplitudes (keeping them balanced) eventually the stiff

pump approximation will break down and one has to consider the full nonlinear dynamics of all

three modes (signal, idler, and pump) as predicted by Eq. 3.5. In this case the gain G0 loses its

meaning as power reflection coefficient, but can be interpreted as system state parameter in case

the pump parameters stay untouched throughout the experiment, as is the case here. The return

loss on the signal (and idler) port will then depend on the system state parameter G0 (which still

is the power gain at small injected tones) as well as on the signal and idler photon fluxes relative to

the pump photon flux, captured by the parameter x := ṅS/ṅP = (ωc/ωa) · (PS/Pp), where PS(Pp)

is the injected signal (pump) tone power. The resulting signal port power reflection coefficient

G in the fully nonlinear regime is calculated2 by the coupled equations (see supplemental material

of [67])

ρ = ρ0

∣∣∣∣1 + x · ρ0

4

1√
G

[(
1 +
√
G
)2

e−i(ϕn+π/2) − 2
(

1 +
√
G
)√

G− 1 + (G− 1) ei(ϕn+π/2)

]∣∣∣∣ ,
(5.10)

and
√
G =

1 + ρ2

1− ρ2
, (5.11)

where

ρ2
0 ≡
√
G0 − 1√
G0 + 1

. (5.12)

Equations 5.10, 5.11 can be solved numerically but to gain some qualitative insight, one can
1This nonlinear phase can of course be redefined by adding a constant offset.
2The theory was worked out by A. Roy.

110



expand Eq. 5.10 in terms of 1/
√
G:

ρ = ρ0

∣∣∣∣1− x · ρ0

2

[
2
(√

G+ 1
)

cos2

(
ϕn − π/2

2

)
− 1

2
√
G

(5.13)

+i

(
1 +

1√
G

)(
cos2

(ϕn
2

)
− sin2

(ϕn
2

))]
+O

(
1

G

)∣∣∣∣ (5.14)

= ρ0


∣∣∣1−x · ρ0

(√
G+ 1

)
+O

(
1√
G

)∣∣∣ , for ϕn = +π/2∣∣∣1+x · ρ0

4
√
G

+O
(

1
G

)∣∣∣ , for ϕn = −π/2
. (5.15)

Equations 5.11, 5.12 show that G is a monotonous function of ρ, so that the minus sign in Eq. 5.15

means that the gain is reduced for ϕn = +π/2, while it is enhanced for ϕn = −π/2 (plus sign),

since for large JPC gains, G0, G� 1, ρ0, ρ ≈ 1, and further it can be assumed that x � 1. When

ϕn is +π/2, Eq. 5.9 predicts that the JPC (i.e. the pump) has to provide a maximum amount of

power for the amplification process, which for large signal and idler tones becomes unsustainable

and leads to a reduction of the gain G as predicted by Eq. 5.15. At the phase ϕn = −π/2 on

the other hand, signal and idler tones are coherently absorbed (they are suppressed by the factor

e−2λ, Eq. 5.9) and for large signal and idler amplitudes the power reappears as extra pump power,

leading to an enhancement of the JPC gain, as shown by Eq. 5.15.

5.2 Some Experimental Details and JPC Characteristics

The JPC used in this experiment3 is tuned to have a signal center frequency fS = 7.6393 GHz, an

idler center frequency fI = 5.2277GHz with an applied pump tone fp = fS + fI = 12.867 GHz. To

observe the CA at low applied signal and idler powers of Eq. 5.9 as well as the modulation of the gain

at large signal and idler powers as described by Eqs. 5.10, 5.11 the phase ϕn = ϕS +ϕI −ϕp needs

to be varied. To achieve this, the signal and pump phases (ϕS, ϕP) are being kept constant while

the idler phase ϕI is varied in time at a rate of one cycle per 10 seconds, thus very slow compared

to any other time scale in the experiment. This is equivalent to offsetting the idler tone by δf = 0.1

Hz (ϕI(t) = ϕI(0) + φ(t), φ(t) := 2πδf · t) which is what has been done experimentally. Further,

since ϕn is defined only up to a constant, one can choose to set ϕn0
:= ϕS +ϕI(0)−ϕp

!
= −π/2, so

that ϕn = ϕn0
+ φ(t) = −π/2 + φ(t) and Eq. 5.9 yields

3Sample JPXs01, with an inductively shunted Josephson Ring Modulator (JRM).
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Figure 5.1: Schematic of the measurement setup. Signal, idler, and pump CW tones are applied,
with photon fluxes ṅS = ṅI, ṅp. Signal and idler tones are both injected to the signal port through
a combiner. The signal port output power is monitored with a spectrum analyzer (set to different
center frequencies and resolution bandwidths, see text).

Pout
G0Pin

=
|αout|2

G0 |αin|2
= G−1

0

(
e2λ sin2

(
φ(t)

2

)
+ e−2λ cos2

(
φ(t)

2

))
(5.16)

= 2−G−1
0 − 2

√
1−G−1

0 cos (φ(t)) . (5.17)

The observed output power on the signal port Pout thus varies between ≈ 4G0Pin (Pin is the

signal input power) and ≈ (4G0)
−1
Pin. When comparing this output power to the case without

any applied idler tone it becomes apparent that it is increased by 6dB (a factor 4) or reduced by(
4G2

0

)−1 and varying sinusoidally with φ(t). According to Eq. 5.17 the maximum CA of the input

signal power occurs at φ = 0 and has the following G0 dependence:

CA :=

(
Pout, min

Pin

)−1

=
(

2G0 − 1− 2
√
G0

√
G0 − 1

)−1

, (5.18)

where CA is defined so that it is positive when expressed in dB.

In both parts of the experiment (CA at small signal and idler photon fluxes and gain modulation

at large signal and idler photon fluxes) the signal port is monitored with a spectrum analyzer (SA),

set to different center frequencies and resolution bandwidths, as explained below. This is shown

schematically in Fig. 5.1.

The small probe tone used in the gain modulation experiment is injected into the signal port

together with the signal tone by using a power combiner. A 50 Ω termination on the idler port
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Figure 5.2: Schematic of frequencies involved in the experiment. Top: Signal (blue) and idler
(red) amplification bandwidths are shown as Lorentzian shapes. Applied signal and idler tones (red
and blue arrows) as well as the probe tone (dark blue arrow) are applied well within amplification
bandwidth. The pump (purple arrow) is at the sum frequency of signal and idler resonators.
Bottom: While the signal tone (blue arrow) is applied exactly at the center of amplification, the
idler tone (dashed red arrow) is offset by δf = 0.1 Hz, and appearing in the signal resonator through
up-conversion. The offset δf achieves a rolling of the phase ϕn. When applied, the small probe
tone is offset by 100 kHz from the amplification center.

assures that no amplified outgoing idler port power gets reflected back into the JPC. As mentioned

above, signal and idler input photon fluxes are balanced ṅS = ṅI for all experiments described in

this chapter. This is achieved by setting the JPC to very high gains of about 25 dB where the

ratio between G and G − 1 is about 0.01 dB. A small idler tone is then injected in the idler port

and detected at the signal port (after frequency conversion through the JPC and with gain G− 1)

and compared to a small signal tone injected and detected at the signal port. When both tones

are balanced, the resulting amplified tones on the signal port are within 0.01 dB of each other.

After balancing signal and idler inputs this way at the beginning of each experiment, the balance

is frequently checked in the course of the experiment, and typically found to be better than ~0.05

dB (i.e. ~1%).

Figure 5.2 shows the location of signal, probe, idler, and pump tones in frequency space. The

signal tone (blue arrow) is applied at the center of the amplification band (represented by the blue

Lorentzian gain response function), while the idler tone (red arrow) is offset by the idler port center

of amplification (red Lorentzian) by δf = 0.1 Hz to achieve the slow variation of the phase ϕn.

The probe tone is offset from the signal tone by 100 kHz, to assure that the signal tone output

power or the probe tone output power can independently be measured. Figure 5.2 b) further shows

that the idler tone is up-converted in frequency and appears as output power on the signal port
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Figure 5.3: JPC amplification bandwidths in the experiment. a) Measured gain curve (red circles)
at G0 ≈ 25 dB. The bandwidth at this gain point is 1.5MHz, as shown by the Lorentzian fit (black
line). b) Predicted bandwidths of the JPC at different gains G0 using the data point in a).

(dashed red arrow), as could be observed with a SA when setting the resolution bandwidth (RBW)

appropriately.

To assure that all tones are well within the JPC amplification bandwidth, gain versus frequency

curves were taken. Figure 5.3 a) shows such a gain curve for G0 ≈ 25 dB and 3 dB-bandwidth of

1.5 MHz, together with a Lorentzian fit. None of the gain settings G0 in these experiments exceed

25 dB, so that the 1.5 MHz represents a lower bound on the JPC bandwidth, since the bandwidth

as a function of gain varies as described by Eq. 3.17.

The calculated 3 dB-bandwidth vs. gain behavior based on this equation and the gain curve

in a) can be seen in Fig. 5.3 b). This observation is important, as it means that all relevant

bandwidths and frequency offsets in the experiments are far smaller than the JPC bandwidth. All

tones can be assumed to be applied at the center of the amplification band and the exact shape of

the gain response function can be neglected.

5.3 Coherent Attenuation

To observe the phase dependence of the JPC as predicted by Eq. 5.17, care must be taken to assure

the JPC operates in the stiff pump approximation. The signal and idler photon fluxes ṅS = ṅI (or

in powers PS = ωS
ωI
PI) need to be sufficiently small for every setting of G0 to avoid saturation of the

device. To confirm this, saturation curves were taken, where the signal input power PS was varied

and the signal port gain was measured for pump settings corresponding to different unsaturated
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Figure 5.4: Applied power in small amplitude Coherent Attenuation experiment. a) The applied
signal power (black discs) plotted together with gain vs. input power curves (colored traces). The
applied powers are well within the linear JPC regime, the stiff pump approximation remains valid
and the gain is insensitive to the input power. b) Same data as in a), plotted as output power vs.
input power. The signal input power is chosen so that the total output power is approximately
constant and stays above the system noise floor.

gains G0.

The colored traces in Fig. 5.4 a) clearly show that the JPC saturates at certain signal input

powers, when the gain drops below the unsaturated value G0. The black dots in the figure represent

the applied signal input powers in the CA experiment for a given G0 setting. It clearly shows that

the signal powers are in the linear gain region, so that the stiff pump approximation is valid in

describing this section. Of course the signal and idler powers could have been kept small and

constant for all gain settings G0. This however would have led to a degradation of the signal-to-

noise ratio (SNR) of the experiment for decreasing G0, as the total output power goes as G0PS.

The signal and idler powers were chosen so that G0PS ≈ const. for all G0, as seen in Fig. 5.4 b).

No probe tone is applied in this part of the experiment, as the fluxes ṅS = ṅI are too small to

change the device gain from G0. The frequency window (RBW) around fS measured by the SA is

chosen to be 36Hz, large enough to capture the signal output power dynamics due the rolling of

the idler phase at δf = 0.1 Hz.

This gives a phase resolution of ∼ 1◦. At the same time it is set small enough to be negligible

compared to the JPC bandwidth and more importantly so that the power detected is dominated

by the signal port output power and not by the system noise. This is summarized in Fig. 5.5.

The measured normalized output power P = Pout/(G0Pin) is shown in Fig. 5.6 (blue trace) for

the gain setting G0 = 11 dB and the white trace drawn on top is a fit to Eq. 5.17 (yielding the fit

parameter G0 = 11 dB, as expected). Further, several calibration traces are recorded, which are
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Figure 5.5: Schematic of frequency window measured by the spectrum analyzer in the small ampli-
tude Coherent Attenuation experiment. The window is centered at the signal tone frequency and
its width is set to 36 Hz, leading to a ∼ 1◦ phase resolution (since δf = 0.1 Hz) in the change of the
measured power. The signal tone power as a function of phase φ is measured for different values of
JPC gain G0.

used to determine the gain G0 and the maximum attenuation CA at φ = 2πn, n ∈ Z.

The pink trace is measured when the idler tone is turned off entirely, so that Pout = G0Pin

(where Pin is the injected signal power). The purple trace is measured with pump and idler tones

turned off, so that Pout = Pin. The black trace shows the system noise floor (pump on; signal and

idler tones off), which for large gains is dominated by the amplified JPC noise. CA is the fraction

of input power that the JPC ’absorbs’ at its maximum CA point φ = 2πn, and thus a measure of

how efficient the device is in converting signal and idler photons into pump photons.

Figure 5.7 shows the normalized output power P = Pout/(G0Pin) for varying gain G0. Clearly

visible is how the maxima approach 6 dB for increasing G0, while the minima tend to −∞.

Plotting the CA (as defined graphically in Fig. 5.6) vs. G0 (blue dots) in Fig. 5.8 shows that

there is good agreement between the experimental result and theory given by Eq. 5.18 (red trace)

up to a gain of about 14 dB.

At larger gains the distance of the received power at φ = 2πn to the noise floor decreases,

and eventually the minimum CA is not measurable anymore, as the power detected by the SA is

dominated entirely by noise. There are two reasons for this effect: first the noise floor moves up

at larger gains as G0, since the JPC gain at some point dominates the system noise; second the

received power at φ = 2πn decreases as (4G0)−1. The black triangles in Fig. 5.8 are the measured

distance to the noise floor, decreasing with larger gain until eventually crossing the red CA trace,

at which point CA cannot be measured anymore. Note that the error bars on the measured (blue)
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Figure 5.8: Coherent Attenuation at maximum interference point vs. gain setting G0 (blue dots).
The red curve shows the predicted behavior as described by Eq. 5.18. The black triangles represent
the resolution limitation due to the finite distance of the input signal power to the noise floor.

CA points as well as on the ’dist. to noise floor’ data (black) are calculated from the noise floor

data using the Dicke radiometer formula [85], which states that the ’noise on the noise’ power scales

as the noise power itself (with coefficient 1/
√
Bτ, where B is the bandwidth and τ the integration

time). The error bars on the CA data increase with increasing JPC gain, which is somewhat counter

intuitive. The reason for this is that the output power is kept constant for all G0, as shown in Fig.

5.4 b), while the system noise increases with G0 (the amplified JPC noise increases).

5.4 Gain Enhancement

To prove that at φ = 2πn signal and idler powers are not simply absorbed (i.e. converted to

uncontrolled modes) but converted into pump photons, the gain of the small probe tone injected

into the signal port is monitored. Signal and idler powers are increased to levels that individually

would saturate the JPC and would cause a significant drop in the device gain, as shown in Fig. 5.9.

At the CA point φ = 2πn however, the large signal and idler powers actually lead to an increase

in gain, as signal and idler photons are pairwise annihilated and converted into pump photons. This

increase in circulating pump current leads to an increase in ρ and thus an increase in JPC gain G.

Figure 5.10 shows the frequencies and offsets involved: the SA center frequency is set to the

probe tone frequency with the RBW set to 51 Hz. The probe tone is offset by 100 kHz from the

signal tone, which assures that no signal tone power is detected by the SA. The idler tone is still

offset by δf = 0.1 Hz from the idler center frequency, causing the phase φ to roll at 2π/10sec and

118



18

12

6

0

G
ai

n 
(d

B
)

-170 -160 -150 -140 -130 -120 -110

Input Power (dBm)

Gain G0:
 15 dB
 11 dB
 Applied power

Figure 5.9: Signal input powers applied (black dots) in the Gain Enhancement experiment, increased
in 2dB steps. The signal powers become large enough to saturate the JPC and cause a significant
drop in gain.

spectrum analyzer

∆f = f - ωa/2π
(ωa/2π=7.6393GHz)

Signal

Probeδf = 0.1 Hz
100 kHz

0Idler
(Up-Converted)

RBW = 51 Hz

JPC BW > 1.5 MHz

Figure 5.10: Schematic of frequency window measured by the spectrum analyzer in the Gain En-
hancement measurement. The resolution bandwidth of 51 Hz captures only the small probe tone
power, which is far detuned from the very large signal and idler tones. The probe tone power as
a function is measured as a function of the phase φ for different signal and idler powers and gains
G0.
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Figure 5.11: G0 set to 11 dB. a) Single trace showing the change of the probe tone gain as a function
of (uncalibrated) phase φ for a particular set of signal and idler powers (trace number 1000). Signal
and idler tones are turned on and balanced (ṅS = ṅI) for three cycles and turned off for one cycle
for calibration (determining the 0 dB level). b) Left: Tracking of the (uncalibrated) phase φ over
the course of the experiment ( 24 h). For every signal (and idler) power setting, 100 traces similar
to the one shown in a) are recorded and subsequently averaged. Right: Histogram of the phase.

leading to a change in JPC gain at a rate of 0.1 Hz.

At fixed G0, the probe power as a function of φ(t) = 2πδf · t is measured for 16 different signal

and idler power settings (again, ṅS = ṅI). Signal and idler powers are increased in steps of 2 dB. For

each signal and idler power setting 100 traces of 4 cycles (40 sec) are collected (for later averaging),

where signal and idler tones are turned on for 3 cycles and turned off for one cycle, as shown in Fig.

5.11 a). In this way slow drifts in the JPC gain can be calibrated out. Together with data transfer,

trigger delays and further calibration traces to assure that signal and idler powers are balanced and

the gain G0 does not drift significantly, each trace acquisition takes about 1min, so that the entire

experiment for one gain setting G0 takes about 24 h.

The generator phases drift relative to each other over the course of the experiment, as seen in

Fig. 5.11 b), where the location of the maxima of the individual traces is tracked. The decrease

in noise is simply due to the fact that at small signal and idler power settings very little gain
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Figure 5.12: Measured (colored traces) probe gain vs. φ for different values of signal and idler
powers. Signal and idler powers are increased (from blue to red traces) in 2 dB steps. Dashed
traces are numerical least square fits to Eq. 5.10. a) Unsaturated gain set to G0 = 11 dB. b)
G0 = 15 dB. c) Enlargement of region around φ = 2π, for G0 = 11 dB. Clearly visible is the
increase of the gain above G0 (0 dB line).

modulation occurs (the individual traces as in a) are flat) and it is more difficult to extract the

location of the maxima. This phase drift is taken into account when averaging the 100 individual

traces together at each signal and idler power setting.

Figure 5.12 shows the resulting (averaged) observed modulation of the gain as a function of the

phase φ(t) for G0 = 11 dB (Fig. 5.12 a) and c)) and G0 = 15 dB (Fig. 5.12 b)). For increasing

signal and idler powers (from blue to red traces) the gain drops significantly at φ = (2n+ 1)π, since

at these locations the maximum output power is extracted from the JPC (as seen in Fig. 5.6 in the

stiff pump case, where Pout ≈ 4G0Pin). This leads to a significant depletion of the pump photons

and a drop of ρ (and thus G), as predicted by Eq. 5.10. The dashed lines are fits to Eqs. 5.10

and 5.11, that correctly reproduce the 2 dB steps in x (or signal and idler powers). The fits start

to deviate around φ = (2n+ 1)π from the experimental curves at large x, which is probably partly

due the larger relative contribution of the system noise floor, as the detected probe power becomes

very small. Further, imbalances in the signal and idler tones will have a more significant effect at

high signal and idler powers. More spectacular however is the observed increase in gain around
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Figure 5.13: Gain Enhancement at φ = 2π for G0 = 11 dB (blue) and G0 = 15 dB (red) for
increasing signal-to-pump photon flux ratio x. The circles show the measured values, while the
lines are calculated with Eq. 5.10. Experimentally gain enhancement is clearly observed, even
though only about 1/3 of what is theoretically predicted. Nonetheless the observation of gain
enhancement is experimental proof of the reverse parametric operation and ultimately the trilinear
nature of the JPC Hamiltonian. See text for possible explanations of the discrepancy between
theory and experiment.

φ = 2πn, as shown in Fig. 5.12 c). While the drop in gain can easily be achieved with one input

tone (as in Fig. 5.9) and reflects the JPC saturation, the gain enhancement is a distinctly coherent

effect, depending on the presence of both signal and idler tones that need to be balanced and need

to be set to have a particular phase relation with the pump (expressed by the phase ϕn).

Figure 5.13 shows the maximum gain enhancement for G0 = 11 dB and G0 = 15 dB as a

function of x. The solid lines are the calculated values using Eqs. 5.10 and 5.11, the dots are the

data points extracted from the data shown in Figs. 5.12 a) and b). Several experimental factors

can lead to the discrepancy between observed and predicted values, that all lead to diminishing the

observed gain enhancement: since the phase modulation at 0.1 Hz is rather slow, the experiment is

sensitive to 1/f-noise, as well as to the generator phases (Fig. 5.11 b)). Any mismatch between ṅS

and ṅI will also significantly lower the gain enhancement. Beyond that, spurious dissipation into

uncontrolled modes in this reverse amplification process will also contribute, so that the results of

Fig. 5.13 can be understood as benchmarks (or lower bounds) on how much control one has over

the signal, idler, and pump modes in JPCs.
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Chapter 6

Experimental Methods

6.1 Sample Fabrication

The Josephson Parametric Converter (JPC) samples in this work were all fabricated on silicon using

electron beam (e-beam) lithography. Initially (samples JPX01 through JPX20), 2 inch wafers with

high resistivity of at least 9 kΩ×cm and 300 µm thickness were used. To increase the reproducibility

of the resonator characteristics, these were substituted by double-sided polished 3 inch silicon wafers

with resisitivities of at least 1 kΩ×cm and 250 µm thickness (samples JPX22 through JPX30 and

JPXs01 through JPXs04). The second polished side is necessary to deposit a 1.2 µm layer of silver on

the back side of the sample, thus ensuring that the distance of the ground plane to the transmission

line is given solely by the wafer thickness. The silver-backed samples were then glued to the sample

box with silver paste (SPI Supplies Silver Paste Plus) and left to dry at room temperature, while

the first generation of devices on the 300µm thick silicon were usually glued with poly methyl

methacrylate (PMMA) or GE varnish (Lake Shore VGE-7031 varnish) . GE varnish is know to

have good thermal conductivity at low temperatures and is often used to adhere sample chips to

the sample boxes, but has the disadvantage for the microstrip design used here that in practice it

is difficult to reproducibly have only a negligibly thin layer of it. It is easier to achieve thin layers

with PMMA, but it also dries very quickly, so that sometimes only part of the sample area would

be attached to the holder. This can lead to the sample detaching from the holder after thermal

cycling.

All samples measured were fabricated in a single lithography and evaporation step, so that a
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device JPX09 JPX14 JPX16 JPX22 JPX26 JPX30 JPXs01 JPXs04
fab date 100210 100910 101110 110301 110511 110928 110928 120118

Resonator Properties:
lengthS/I(mm) 6.5/8.5 6.3/8.5 6.3/9 6.12/9 5.8/9 5.8/9 5.8/9 5.9/8.35
gapS/I(µm) 13/13 12/14 12/13 12/13 12/13 6/6 12/13 12/3

substrate t (µm) 300 µm 300 µm 300 µm 250 µm 250 µm 250 µm 250 µm 250 µm
TL type w/ holes w/ holes w/ holes solid solid solid solid solid

litho. system NPGS NPGS NPGS NPGS NPGS EBPG EBPG EBPG
Ag backed no no no X X X X X

JRM X X X X X X

shunted JRM X (Dolan) X (BFT)
Junction Properties:

JRM JJ (µm2) 5× 1 5× 1 5× 1 5× 1 5× 1 5× 1 1.5× 1 1.5× 1.5

shunt JJ (µm2) n/a n/a n/a n/a n/a n/a 5× 1 2.3× 2.3

P (Torr) × t (min) 10× 5 10× 5 10× 5 10× 5 10× 5 10× 5 10× 5 10× 5

Ox cleaning X X X X X no no X

Rafter lift-off
n (Ω) 80 80 55 60 65 60 - -
Iinferred0 (µA) 3.5 3.5 5.1 4.7 4.3 4.7 - -
LinferredJ0

(pH) 93 93 64 70 76 70 - -

Table 6.1: List of notable JPC samples with relevant fabrication parameters.

maximum of flexibility was achieved in the choice of sample parameters from one sample to the

next. Aluminum was deposited for all samples in a Plassys MEB550S e-beam evaporator. The

wafers were spun with dual layers of e-beam resist (∼ 90 nm of PMMA on top of ∼ 700 nm of

PMMA), so that a resist undercut could be created and double angle evaporation techniques for

the junction fabrication could be used.

All samples had microstrip resonators of 300 µm width, leading to characteristic impedances

of the transmission lines of 45 Ω (300 µm thick silicon) or 41 Ω (250 µm thick silicon). Typically,

resonators were around 6 mm (signal) and 9 mm (idler) long. Table 6.1 summarizes fabrication pa-

rameters of notable JPC samples measured throughout this thesis work. See Table 4.1 for measured

amplifier parameters of these samples.

6.1.1 E-beam Lithography with Converted SEM

The e-beam lithography for samples JPX01 through JPX29 was done using a converted scanning

electron microscope (SEM) (FEI type 6634/17 30kV) using the NPGS (Nanometer Pattern Gen-

eration System) software. All these devices had (unshunted) Josephson Ring Modulators (JRMs)

with four junctions, all fabricated using the Dolan bridge technique [62]. Two layers of aluminum

of thickness 35 nm and 120 nm were deposited at angles ±40◦, with an oxidation step in between.
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Microstrip

Feedline

Coupling Capacitor

JRM

JJ

Figure 6.1: Typical JPC sample with designed holes in transmission line resonators (sample shown
is JPX14). Top left: JRM with four junctions. Top right: Single Josephson junction. Bottom left:
Gap capacitor for coupling to the 50 Ω environment.

6.1.1.1 Transmission Line Resonator with Holes

The first generation of samples (JPX01 through JPX21) were designed to have microstrip trans-

mission line resonators with irregular holes, to avoid magnetic flux creep during operation. It was

later realized that this precaution was unnecessary (though not harmful) and solid microstrip lines

were fabricated (JPX22 through JPX30 and JPXs01 through JPXs04).

Figure6.1 shows an optical image of a full JPC device, with two insets showing SEM images of

the JRM (top left) and a single junction (top right). The bottom left inset shows a magnification

of the coupling capacitor. The junctions of all (unshunted) JRM fabricated with the Dolan bridge

technique were of 5× 1 µm2.

6.1.1.2 Resist Mask

Figure 6.2 shows SEM images of resist masks created after the e-beam lithography step. Two

features that need to be pointed out are the thin (260 nm wide) bridge that is completely suspended

(no methyl methacrylate (MMA) underneath) and the undercuts above and below the junction

trenches. Note also that the resist edges are not completely straight in the sample shown. This is

not very important for junctions but can be adjusted by increasing the trench doses. The difficulty

then is to make sure that the resistance bridge does not collapse either after the development step
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trench

resist
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Figure 6.2: SEM images of typical resist masks created after e-beam lithography and used to
fabricate Josephson junctions. A thin (13 nm) layer of aluminum was evaporated onto the resist to
make imaging possible. Left: Resist mask of entire JRM. Right: Top right junction of same JRM.
(Sample 110207_testJPC.)

or the oxygen cleaning step in the evaporator. With the converted SEM it was found that it was

crucial not to apply an undercut dose to the bridge, no matter how small, as this caused bridges

to regularly collapse. Just as an example, using a trench dose for the junctions of 260 µC/cm2

and a bridge dose of 10 µC/cm2 would sometimes lead to collapsed bridges, even though the resist

edges looked rather rugged. Although it is not exactly clear why, removing this bridge dose made it

possible for the junction trench dose to be increased to 400 µC/cm2 without seeing bridges collapse.

6.1.1.3 Transmission Line Resonators without Holes

The transmission line resonator design was simplified by removing the holes from sample JPX22

onward. At the same time, a new substrate type was used, with silver evaporated on the back side.

While the new wafers were 250 µm instead of 300 µm thick, the width of the microstrip resonators

was left unchanged, so that the characteristic impedance of the transmission lines changed slightly

from 45 Ω to 41 Ω. Figure 6.3 shows a JPC device with solid microstrip lines.

6.1.2 E-beam Lithography with EBPG

The most recent generations of JPCs were fabricated using the 100 kV Vistec 5000+ electron beam

pattern generator (EBPG). Sample fabrication is considerably simpler in such a designated e-beam

lithography machine, as e.g. one needs not to worry much about alignment for the long resonators.

Also, the proximity effect correction software allows one to more easily fabricate the 300µm wide gap

capacitors, without having to specify local doses. Figure 6.4 shows SEM images of a gap capacitor
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300 µm

12 µm

300 µm

5 µm

Figure 6.3: Optical images of a JPC with solid microstrip lines. The top pictures show the device
center, with the a magnification of the JRM on the right. The bottom pictures show the bottom
gap capacitor, connecting the feed line to the transmission line resonator. (Sample JPX22.)

resist mask and a gap capacitor of a JPC test device. The mask was imaged after sputtering a thin

layer (∼ 10 nm) of gold. The gap capacitors are 5 µm and 3 µm wide over a length of 300 µm and

were chosen here to demonstrate that the EBPG proximity correction software is quite good for

these devices (gap sizes at or below 5 µm become difficult to fabricate with the converted SEM).

Three versions of JRMs were fabricated using the EBPG: Four junction rings very similar to the

ones shown above; Shunted JRMs with junctions using the Dolan bridge technique; And shunted

JRMs using the bridge-free technique.

5 µm

substrate

resist 3 µm substrate

aluminum
a) b)

Figure 6.4: SEM and optical images of two samples: a) test chip with gap capacitor resist mask
and b) JPC gap capacitor using the EBPG. (Samples 110816_captest and 111107_shuntedJPC.)
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a) b)

Figure 6.5: SEM images of junction resist mask (a), tilted by 40◦ and junction (b) fabricated with
the EBPG. (Samples 110812_RMD and 110824_testJPC.)

6.1.2.1 JRM with Four Dolan Junctions

Figure 6.5 a) shows a SEM image of a junction resist mask, fabricated using the EBPG. The mask

is shown at an angle of 40◦, making it apparent that the bridge is suspended and that no resist

remains underneath the undercuts. Figure 6.5 b) shows a Josephson junction fabricated with the

EBPG. The dark areas are believed to be (insulating) aluminum oxide folding back onto the leads

from the resist walls during lift-off.

6.1.2.2 Shunted JRM with Eight Dolan Junctions

Figure 6.6 shows a test device with eight Josephson junctions fabricated using the Dolan bridge

technique. The large shunt junctions have a size of 5 × 1 µm2 and the small junctions have an

area of 1.5 × 1 µm2. The one device successfully measured in the course of this work, which was

fabricated with eight Dolan type Josephson junctions is JPXs01.

6.1.2.3 Shunted JRM with Eight BFT Junctions

A simpler way to make large Josephson junctions without having to worry about potentially col-

lapsing bridges is to use the bridge-free technique (BFT) [63]. Instead of using a suspended bridge

to separate the two junction electrodes, only one side of the leads connecting to the junction elec-

trodes has undercuts. This way, arbitrary junction sizes and shapes can in principle be achieved,

but constraints are set on the lead widths and lengths. Figure 6.7 shows a) a schematic of the mask

design and b) an SEM image of the resulting Josephson junction. As can be seen, only one side

of each junction lead receives an undercut dose (blue). When evaporating aluminum at two angles
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Figure 6.6: SEM image of a shunted JRM with eight Dolan type Josephson junctions. (Sample
2011-09-12_shuntedRMD.)

trench

undercuta) b)

Figure 6.7: Josephson junction fabricated using the bridge-free technique. a) Mask design. b) SEM
image of a resulting junction.

(here ±25◦), only one of the two layers will adhere to the substrate, the other will adhere to the

resist walls and is removed during lift-off. Thus each junction electrode is connected only to one

aluminum layer.

Figure 6.8 shows a) the CAD design and b) an SEM image of a shunted JRM. Junction sizes

were chosen to be 1.5 × 1.5 µm2 for the smaller JRM junctions and 2.3 × 2.3 µm2 for the larger

shunt junctions. In this thesis work, the aluminum layer thickness was 20 nm and 30 nm and as

can be seen in the SEM images, the leads are of the order of 1-2 µm long and 200 nm wide. These

dimensions are very likely to lead to non-negligible kinetic inductances of the wires (several tenths

of pH) and subsequent generations of BFT JRMs were fabricated using thicker aluminum layers.

One device with a shunted JRM fabricated with the BFT was extensively measured: JPXs04.
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a) b)

Figure 6.8: Shunted JRM fabricated using the bridge-free technique. a) CAD mask design. b) SEM
image of a shunted JRM. (Sample 120114_BridgeFreeJRM)

6.1.3 Junction Aging

JPC samples were typically cooled down within a few days of sample fabrication. In this time, the

large 5× 1µm2 junctions fabricated with the Dolan bridge technique aged on average by ∼ 2 Ω per

day when cleaned with an argon-oxygen plasma before the deposition of the first aluminum layer.

Typical resistance values (depending on the oxidation parameters) were from 50-100 Ω. Aging

would vary significantly from wafer to wafer when removing the plasma cleaning step (e.g. to

avoid collapsing bridges), and this although all wafers were cleaned with the same procedure before

spinning resist. A “dirty” wafer could let the junctions age by as much as 300% within 24 hours of

lift-off. Figure 6.9 shows the change of junction resistance vs. time for the junctions of a typical test

JRM fabricated with the converted SEM. An optical microscope image of the measured device is

shown on the right, which underwent plasma cleaning before the evaporation. The reference value

of the junction resistance measured right after lift-off was 73 Ω and the change refers to this initial

value. In the first week after lift-off, the rate of change is approximately constant (∼ 2 Ω per day),

and levels off afterward.

6.2 Sample Holder

JPC samples were mounted onto a copper sample holder base, initially using PMMA or GE varnish

(Lake Shore VGE-7031 varnish), and most recently silver paste (SPI Supplies Silver Paste Plus).

The advantage of silver paste is that it provides good thermal conductivity to samples with thin

layers (1 − 2µm) of silver evaporated on the substrate back side, while at the same time tying
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Figure 6.9: Change in measured Josephson junction resistance measured after lift-off. The test
device is shown on the right. (Sample 100728_RMD.)

Figure 6.10: Photos of sample holder. From left to right: Sample holder base with mounted JPC
sample, to be connected to two hybrids. Base with mounted JPC sample, to be connected to one
hybrid (signal resonator shorted to ground on one side). Sample holder lid. Closed sample holder
with Anritsu connectors (photo courtesy of Anirudh Narla).

together sample and sample holder ground planes. The sample holder lid together with the base

form a cavity with approximate dimensions 1.85 × 1.85 × 0.5 cm3. Anritsu K103F-R microwave

connectors are attached to the holder base, designed with spacings compatible with Krytar hybrid

couplers, so that they can be connected without additional transmission lines. Figure 6.10 shows

JPC samples mounted onto sample holder bases (left two images), the sample holder lid, and the

entire closed sample holder. A magnetic coil is placed in a small recess on the lid back side. Two

types of printed circuit board (Rogers TMM 10I) 50 Ω transmission lines were used: One in a cross

shape (left most image), when connecting both signal and idler resonators to hybrids, and the other

with only one transmission line trace for the signal port (second image). In that case, the second

resonator feed line was wire-bonded to ground.

A groove in the lid allows the box to be sealed with indium wire, ensuring good electrical contact
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Figure 6.11: Insertion loss of sample box when connecting two of its ports to the network analyzer.
The lowest box mode is above 11 GHz.

between lid and base. This is crucial to make sure no spurious resonant modes appear near the

signal and idler frequencies. The lowest box mode for this geometry is at around 11GHz, as can be

seen in Fig. 6.11. Note that the presence of the sample and PC board pulls this frequency down by

only a few 100MHz, and thus it is still far away from typical signal and idler resonance frequencies

of around 8 GHz and 6 GHz respectively.

6.3 Setup

6.3.1 Heliox Refrigerator

Experiments up to sample JPX09 were performed at around 250 mK in a Oxford Heliox 3He

refrigerator. One JPC sample was measured per cooldown, with a typical line diagram shown in

Fig. 6.12. Signal and Idler input and output were separated by cryogenic circulators. Stainless

steel cables were used between temperature stages inside the inner vacuum can (IVC), ensuring

little thermal conductivity between them. high electron mobility transistor (HEMT) amplifiers on

the output lines, separated by two isolators from the sample, amplified signals reflected off the

device. The JPC samples were placed in high magnetic permeability Permalloy shields (Cryoperm

by Amuneal) to minimize magnetic field noise in the JRM.

6.3.2 Triton Refrigerator

The majority of samples (JPX09-JPX30 and JPXs01-JPXs04) were measured in a cryogen free

dilution refrigerator (Oxford Triton 200) at temperatures of around 25 mK. A typical wiring

diagram of the microwave lines is shown in Fig. 6.13. A six-way switch (Radiall) at base allowed
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Figure 6.12: Wiring diagram of microwave lines in the Heliox refrigerator. One JPC sample can be
measured at a time.

one to switch between several JPCs at low temperatures, so that several devices could be measured

in a single cooldown. Also shown is a qubit which could be switched in or out with an additional

transfer switch. Superconducting niobium-titanium cables were used to connect to the HEMT

amplifiers and reduce losses without creating a thermal link between the temperature stages. Input

lines were heavily attenuated to reduce room temperature noise to below quantum fluctuations.

Figure6.14 shows a JPC sample at the refrigerator base temperature stage, symmetrically cou-

pled to two hybrids, using short hand-formable copper cables. Also visible is a closed cryoperm

shielding can on the left.
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Figure 6.13: Wiring diagram of microwave lines in the Triton refrigerator. Six-way switches at the
base stage allow for several samples to be measured during the same cooldown

Figure 6.14: JPC sample mounted on dilution refrigerator base stage. Two cryoperm shields are
visible, one open to access the sample. The right copper plate is a mount for the three microwave
switches.
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Chapter 7

Conclusion & Outlook

This thesis summarizes my work on building and operating a practical, quantum-limited, phase-

preserving superconducting microwave parametric amplifier (paramp), the Josephson Parametric

Converter (JPC), with the goal of making it useful for the readout of superconducting quantum bits

(qubits). First, a new design of the JPC was developed, making the device parameters predictable

and reproducible. The simple device fabrication, with only one lithography and evaporation step,

considerably simplified device development, allowing to easily change all relevant parameters from

one device to the next. The addition of a silver layer on the substrate back plane assured the

reproducibility of resonator frequencies within a few MHz between nominally identical devices and

thermal cycling.

Second, devices with parameters matching those of qubit readout cavities were developed. These

JPCs had frequencies of between 5 and 8 GHz, amplifier bandwidths of 3 to 10 MHz at gains of

20 dB, while capable of processing a few photons and adding no more than 5/2 photons of noise,

close to the quantum limit of 1/2. This allowed to improve the measurement efficiency in the

measurement of a transmon qubit to 0.2− 0.4, which is sufficiently close to the ideal value of 1 to

perform variable strength measurements while observing the backaction, and to monitor the qubit

state in real-time.

Third, the addition of shunt inductors in the Josephson Ring Modulator (JRM) made the new

generation of JPCs frequency tunable, lifting the last major hurdle in using the JPC for qubit

readout. Precise frequency matching of better than 5 MHz is required, the typical qubit readout

cavity and JPC amplification bandwidths, and the tunable JPCs now easily achieve a tunability of
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over 100 MHz.

Lastly, the experimental observation of Coherent Attenuation (CA) and gain enhancement in

the reverse operation of the JPC fully demonstrates that the device is indeed described by a three-

wave mixing term in the Hamiltonian of the form a†b†c+ abc†, confirming that the JPC is close to

the ideal quantum-limited, non-degenerate, phase-preserving paramp.

At this point, many new devices based on the work presented here have been fabricated and

used in the readout of qubits, currently achieving measurement efficiencies of about 0.4. In future

it might be desirable to have more amplification bandwidth available and to be able to measure

with more than just a few photons. This could be achieved by moving towards a lumped (or

more generally: low impedance) resonator design of the JPC and by increasing the junction critical

currents. The fact that in a lumped circuit there should be no mode nearby the higher frequency

pump, unlike in the microstrip case, would make the pump naturally stiff, so that these devices

would be limited in gain and saturation powers by the available Josephson energy and need to

be optimized only by engineering the Q · p−product and the ratio of the Josephson energy to the

participation ratio to be sufficiently large. Since the lumped design makes it easy to increase the

junction participation ratio, the resonator bandwidths could be increased without being penalized

by a lowered Q · p−product. In fact, the participation ratio should be increased only as much as

necessary to compensate for the decrease in Q, as the saturation power and maximum available

gain increase with Josephson energy but decrease with p.
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Appendix A

Transmission Line Resonators

The purpose of this appendix chapter is to calculate the quality factor of transmission line resonators

capacitively coupled to a 50 Ω environment. As will be shown below, for a fixed resonator frequency

and characteristic transmission line impedance, the quality factor is entirely determined by the

coupling capacitors. This is important as it allows to engineer the Josephson Parametric Converter’s

(JPC) signal and idler linear resonator bandwidths, which in turn determine the amplification

bandwidth of the device.

A.1 Parallel RLC Resonator

In this section, we review the parallel RLC circuit1. It is the basis to all further analysis and will

allow us to easily determine the resonance frequency as well as the quality factor Q of a transmission

line resonator. There are three references we use for all of the following notes: Wallraff’s notes on

SC solid state qubits, Pozar, and chapter 3 of Dave Schuster’s PhD thesis.
1See Pozar, 3rd edition, pages 269-272
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C R

Zlumped ωlumped
c 0

L

Figure A.1: RLC resonant circuit.

The input impedance of a parallel RLC resonant circuit is 2 (see figure A.1):

Zin(ω) =

(
1

R
+

1

jωL
+ jωC

)−1

=

(
1

R
+

1

jωlumped0 L

( 1

1 + ∆ω/ωlumped0

)
+ jωlumped0 C + j∆ωC

)−1

≈
(

1

R
+

1

jωlumped0 L

(
1−∆ω/ωlumped0

)
+ jωlumped0 C + j∆ωC

)−1

=

(
1

R
+

j∆ω

(ωlumped0 )2L
+ j∆ωC

)−1

=

(
1

R
+ 2j∆ωC

)−1

=
R

1 + 2j∆ωRC

(A.1)

for ω = ωlumped0 + ∆ω and ∆ω � ωlumped0 . We thus find:

Zin ≈
R

1 + 2jQ∆ω/ωlumped0

for ω = ωlumped0 + ∆ω (A.2)

and ∆ω � ωlumped0

Where we have used the following identities:
2See Pozar, page 270, eqn. (6.19)
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ωlumped0 ≡ 1√
LC

(A.3)

Q ≡ ωlumped0 RC =
R

Zlumpedc

(A.4)

Zlumpedc ≡
√
L

C
(A.5)

A.2 Transmission Line Resonator

In this section we want to show that an open-circuited λ/2 transmission line (TL) has the same input

impedance as a parallel RLC circuit when ∆ω � ω0. The input impedance of an open-circuited

TL of length l is3 (see figure (A.2)):

Z0, vp, α+jβ, l

Zin
n

Figure A.2: Open-ended TL.

Zin = Z0 coth(αl + jβl) (A.6)

= Z0
1 + j tanβl tanhαl

tanhαl + j tanβl
, (A.7)

3see Pozar, page 276; Wallraff notes, section 2.2, page 8
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where α(ω), β(ω), Z0(ω), l(=const.) completely define the transmission line, with

Z0(ω) =

√
R+ jωL
G + jωC

(A.8)

γ(ω) = α+ jβ =
√

(R+ jωL)(G + jωC) (A.9)

vp(ω) =
1

β(ω)
ω =

λ(ω)

2π
ω = λ(f)f. (A.10)

Note at this point that in the most general case vp = v(ω) which defines the dispersion re-

lation of the TL. In most cases we encounter, vp =const., as for instance for TEM waves where

vp = c√
εr

=const. (assuming εr is not a function of frequency). Also in the lossless case (or low-loss

case, see below) we have vp = 1√
LC =const. (unless C or L are frequency dependent through e.g. εr).

We now want to consider only frequencies ω around the harmonics ωn of the TL. The condition

for a TL line of fixed length l to be resonating is that a multiple of half a wavelenth fits into l:

n
λn
2

= l. (A.11)

This equation defines the wavelengths of the n-th harmonic, which occur at the frequency ωn.

Equation (A.10) then allows us to explicitly calculate the frequencies at which the resonant condition

is met:

ωn = n
πvp
l

= nω1 (A.12)

and

βl = nπ
ω

ωn
= nπ + π

∆ωn
ω1

, (A.13)

with ∆ωn := ω − ωn.

For frequencies close to resonance, i.e. for ω = ωn + ∆ωn and ∆ωn � ω1
4, and using the

identity tan(nπ + x) = tanx and tanβl ≈ π∆ωn
ω1

and assuming that the TL has small losses

(tanhαl ≈ αl), we then find the input impedance of the TL around the n-th mode to be:

Znin ≈
Z0/n

(α/n)l + jπ∆ωn
ωn

for ω = ωn + ∆ωn (A.14)

and ∆ωn � ω1

4Note that this condition is the same as for the parallel RLC case only for the first mode. For higher modes this
condition is stricter.
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A.3 Mapping of an (unloaded) TL Resonator to a RLC Res-

onator

Comparing equation (A.2) to equation (A.14) shows that around the n-th harmonic (ω ≈ ωn), we

can map an (unloaded) TL resonator to a RLC resonator, with the following equalities (see figure

A.3):

Zlumpedc,n =

√
Ln
Cn

=
2

π

Z0

n
(A.15)

ωlumpedn = ωn =
1√
LnCn

= nω1 (A.16)

Rn =
Z0

αl
= R1 (A.17)

Cn =
π

2ωnZ0/n
=

π

2ω1Z0
= C1 (A.18)

Ln =
2Z0/n

πωn
=
L1

n2
, (A.19)

where Rn, Ln, and Cn are the parameters for the equivalent RLC resonator around ωn.

Zlumped ωlumped
c,n n

Ln Cn Rn

Figure A.3: Parallel RLC resonant circuit equivalent to an open-ended TL (see figure (A.2)) around
resonance.

Finally the correspondence allows us to determine the quality factor of the unloaded TL res-

onator around the n-th harmonic as

Qn =
nπ

2αl
= nQ1 (A.20)
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For the low-loss case5 where Z0 ≈
√
L
C and vp ≈ 1√

LC and α ≈ 1
2 ( RZ0

+ GZ0) we further have:

Cn =
l

2
C (low-loss) (A.21)

Ln =
2l

n2π2
L. (low-loss) (A.22)

A.4 Loaded TL Resonator

A.4.1 Admittance of Load

Now that we have established the equivalence between an unloaded TL resonator and a parallel

RLC resonator, we will look at the case where a TL resonator is coupled to the environment through

an input capacitance (figure (A.4)). This is equivalent to a RLC resonator coupled to the same

environment.

Z0, vp, α+jβ, l

Cin
RL

Figure A.4: Open-ended TL resonator with input capacitor.

First, let’s calculate the admittance of the load:

Yload =

(
1

jωCin
+RL

)−1

(A.23)

=

(
1 + jωRLCin

jωCin

)−1

(A.24)

=
jωCin

1 + jωRLCin
(A.25)

=
ω2RLC

2
in + jωCin

1 + ω2R2
LC

2
in

, (A.26)

5Pozar chapter 2.7, p.79-80
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where Cin and RL are the input capacitor and the load resistor (or impedance of the measurement

line) respectively. This is equivalent to an effective capacitor C∗ and effective resistor R∗ in parallel,

which has the admittance

Yload

Cin

RL

Cn Rn

Zc,n, ωn

Ln

Figure A.5: A transmission line with impedance RL capacitively coupled to a TL-resonator is
equivalent to a loaded RLC resonant circuit. Parallel RLC resonator loaded with an input capacitor
and a load resistor.

R*C*

Zc,n, ωn

Ln Cn Rn

Figure A.6: A transmission line with impedance RL capacitively coupled to a TL-resonator is
equivalent to a loaded RLC resonant circuit. Equivalent circuit to figure A.5.

Yload = jωC∗ +
1

R∗
. (A.27)

Comparing equation (A.27) to equation (A.26) allows us to identify:
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C∗ = Cin
1

1 + q2
in

(A.28)

R∗ = RL
1 + q2

in

q2
in

(A.29)

qin := ωRLCin. (A.30)

A.4.2 External Q: Input Coupling Only

As a last step we will now determine the Q of the loaded resonator. For this we can just use the

results from section A.1 a second time with

C = Cn + C∗ ≡ C1 + C∗ (A.31)

R =

(
(Rn)−1 + (R∗)−1

)−1

≡
(

(R1)−1 + (R∗)−1

)−1

(A.32)

L = Ln ≡
L1

n2
(A.33)

ω0,n =
1√
LC

= n
1√

L1(C1 + C∗)
(A.34)

According to equation (A.4) we then have

Q =
1

Zc
· 1

Re{Ytotal}
(A.35)

=

√
C

L
·R (A.36)

=

√
Cn
Ln

√
Cn + C∗

Cn
·
(

1

Rn
+

1

R∗

)−1

(A.37)

=

√
Cn
Ln

ωn
ω0,n︸︷︷︸ ·

(
1

Rn
+

1

R∗

)−1

(A.38)

correction factor

eqn.(A.15)
=

nπ

2

1

Z0

ωn
ω0,n

·
(

1

Rn
+

1

R∗

)−1

(A.39)

=
nπ

2

1

Z0

ω1

ω0,1
·
(

1

R1
+

1

R∗

)−1

(A.40)

eqn.(A.28)
=

nπ

2

1

Z0

ω1

ω0,1
·
(

1

R1
+

1
1

ω2
nC

2
inRL

+RL

)−1

(A.41)

=

(
1

Qint
+

1

Qext

)−1

. (A.42)
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With this definition of Qint we have already taken care of the loading6. For the external quality

factor we thus find:

Qext =
1

ZcRe{Yload}
=

ω1

ω0,1

1

Zc,nRe{Yload}
(A.43)

Qext =
nπ

2

1

Z0

ω1

ω0,1
·
(

1

n2ω2
1C

2
inRL

+RL

)
(A.44)

with

Z0 : Impedance of the resonantTL section (typically 50 Ω)

RL : Impedance of themeasurementTL (typically 50 Ω)

Cin : Input capacitor (what you actuallyDESIGN)

ω0,1 : Fundamental of LOADEDresonator (what youMEASURE)

ω1 : Fundamental of unloaded resonator

n : number of harmonic

A.4.3 External Q: Input and Output Coupling

According to Wallraff’s notes7, having an input and output capacitor Cin and Cout on each side

of the TL resonator (figure (A.7)) corresponds just to having two load circuits, which are effectively

in parallel.

Z0, vp, α+jβ

Cin Cout
RL RL

l

Figure A.7: TL resonator with input and output capacitor.

6Alternatively we could defineQint as the quality factor of the bare (unloaded) resonator. ThenQ−1 =
ω0,1

ω1
Q−1
int+

Q−1
ext and Qint ≡ Qn.
7Section 2.4.1, equation (2.25), page 10. See also Goeppl’s and Wallraff’s 2008 CPW paper.
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For Cin = Cout we then have to replace C∗ → 2 · C∗ and R∗ → 1
2 ·R

∗:

Qext =
nπ

4

1

Z0

ω1

ω0,1
·
(

1

n2ω2
1C

2
inRL

+RL

)
, (A.45)

where now ω1

ω0,1
=

√
C1+ 2 C∗

C1
.
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Appendix B

Recipes Used for JPC Fabrication

B.1 Spinning Resist

B.1.1 Wafer Cleaning

• 2 minutes ultrasound in NMP

• 2 minutes ultrasound in acetone

• 2 minutes ultrasound in methanol

• blow dry

B.1.2 Spinning

Co-polymer MMA-MAA EL13 (see Fig. B.1):

• 3000 rpm for 90 seconds

• bake at 175◦ C for 60 seconds

PMMA 950K A4 (see Fig. B.2):

• 4000 rpm for 90 seconds

• bake at 175◦ C for 30 minutes
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Figure B.1: Co-polymer spinning curves, provided by manufacturer.
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Figure B.2: PMMA spinning curve, provided by manufacturer.
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B.2 Development

B.2.1 Dolan Bridge Technique

• with tweezers, slowly wave sample in MIBK:IPA solution (3:1) for 50 seconds at 25◦ C

• remove and dip sample in IPA for 10 seconds, to stop resist development

• blow dry with dry nitrogen

B.2.2 Bridge Free Technique

• submerge sample (with tweezers or preferably with strainer) in IPA:water solution (1:3) for 2

minutes, ultra-sound turned on

• dry off with dry nitrogen

B.3 Aluminum Deposition

All samples were evaporated in the Plassys MEB550S electron beam (e-beam) evaporator.

B.3.1 Dolan Bridge Technique

• oxygen-argon (1sccm:3.5sccm) plasma cleaning: 250 V, 30 seconds

• titanium sweep

• evaporation of first Al layer: 35 nm at rate of 1 nm/s and +40◦

• oxidation (15% oxygen, 85% argon): at 10 Torr for 5 minutes (typical values)

• evaporation of second Al layer: 120 nm at rate of 1 nm/s and −40◦

• capping oxidation: at 10 Torr for 5 minutes

• lift-off: place in hot (65◦ C) acetone for ca. 20 min. Rinse with (cold) acetone and IPA, blow

dry with dry nitrogen
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B.3.2 Bridge-Free Technique

Same as above with following differences:

• angles are ±25◦

• Al layer thickness: 20 nm and 30 nm

• lift-off: place in hot (90◦ C) NMP for ca. 1h. Ulrasound for 20 seconds. Rinse with IPA,

blow dry with dry nitrogen
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