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Coherent quantum e�ects are the hallmark of atomic systems. �e �eld of circuit quantum elec-

trodynamics (cQED) also allows for the control of coherent quantum systems. However, these

quantum states do not correspond to atomic degrees of freedom, but to the quantized behavior of

the electromagnetic �eld in a macroscopic superconducting circuit. �ese “arti�cial atoms” simu-

late many of the e�ects in atomic systems, with the added bene�ts of tunability and fast control and

measurement. �is thesis explores the di�erent arti�cial atoms and quantum operations accessi-

ble to us using superconducting circuits, and the techniques we can use to create more interesting

and complex atoms. One experiment focuses on selection rules in superconducting circuits. Using

non-linear coupling, we are able to break the selection rules of a �uxonium arti�cial atom and

drive forbidden transitions. We use this technique to construct a Λ system from the �uxonium

coupled to a resonator at the �uxonium sweet spot. Another experiment focuses on the new arti�-

cial atoms and operations accessible by adding continuous external drives to the circuit. By taking

the Jaynes-Cummings (JC) Hamiltonian of a qubit coupled to a cavity and adding two continuous

tones, we are able to simulate an e�ective JC Hamiltonian in the transverse (σx) basis. �e ener-

gies and interaction terms are completely governed by the drives, and the system can be tuned to

any interaction regime in situ. �is scheme also allows us to cool the qubit to the eigenstates of

the transverse basis, and perform a continuous quantum non-demolition (QND) measurement of

the transverse component of a qubit.
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Chapter 1

Introduction and overview

Coherent quantum e�ects can now be observed and controlled at the level of a single particle or

the equivalent in several physical systems, as opposed to the early eras of quantum measurements

during which only ensembles were studied. In most such systems, the energy states and transiti-

ons arise from the degrees of freedom of atomic systems. �e internal degrees of freedom of the

electrons, the nuclei, and the interactions between them give rise to a rich energy level structure.

Many interesting isolated quantum state manifolds are buried in the level structure of the various

atomic systems, each with its own useful properties. Notable examples are Rydberg atoms [Sa�-

man et al., 2010], trapped ions [Leibfried et al., 2003] and nitrogen-vacancy centers [Jelezko et al.,

2004, Childress et al., 2006]1. �ese have led to great advances in the �elds of quantum sensing

[Maze et al., 2008], quantum communication [Duan et al., 2001, Pfa� et al., 2014] and quantum

computation [Jaksch et al., 2000, Cirac and Zoller, 1995, Monroe et al., 1995, Weber et al., 2010].

�e �eld of superconducting circuits [Clarke and Wilhelm, 2008, Devoret and Schoelkopf, 2013]

also enables the control of coherent quantum systems. �ese systems, however, do not correspond

to atomic degrees of freedom but rather to the behavior of macroscopic electromagnetic �elds in

components such as capacitors, inductors, and Josephson junctions. By changing the parameters
1�e implementation of a quantum system using electron spins in quantum dots [Loss and DiVincenzo, 1998, No-

wack et al., 2007, Hanson et al., 2007] is also an important example. �e encoded states in this implementation are
electron spin states, but they can be controlled by an electrostatic potential. �us quantum dots are not quite an ex-
ample of an atomic implementation of a quantum system, but a hybrid between an atomic system and an engineered
arti�cial atom.

1
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of these components and the pa�erns in which we combine them, we are able to synthesize a

variety of “arti�cial atoms”. In a sense, instead of studying a given system and exploring its quan-

tum mechanical properties, the �eld of superconducting circuits takes a potentially interesting

theoretical quantum system and builds a physical implementation of it.

�e great advantage of these synthetic quantum systems is that we are able to engineer them.

While the energy transitions in e.g. trapped ions are �xed by the hyper�ne interaction between

electrons and nuclei, the energy transitions in a superconducting circuit can be designed to match

desired parameters by changing a capacitance or inductance, or even tuned in situ with an applied

current or voltage. �e coupling between di�erent quantum systems can also be similarly enginee-

red, allowing for strong interactions which are a requirement for performing coherent operations

on a larger system.

�is thesis explores the di�erent arti�cial atoms and quantum operations accessible to us using

superconducting circuits, and the techniques we can use to create more interesting and complex

atoms. We discuss several important quantum systems, and how their properties can be imple-

mented as a circuit. Especially, we discuss the notion of selection rules in our arti�cial atom, which

govern when certain transitions are allowed or forbidden, and how we can manipulate these rules

to create more interesting atoms.

Another central notion of the thesis is that of driven quantum systems. By applying an external

drive on our circuit, we are able to create another e�ective arti�cial atom with distinct features.

�is second level of synthesis can dramatically increase the variety of arti�cial atoms we make.

�is is a �eld of interest in small coherent quantum systems [Mollow, 1969, Xu et al., 2007, Baur

et al., 2009, London et al., 2013, Laucht et al., 2017], and recently also for many-body quantum

systems [Kitagawa et al., 2010, Lindner et al., 2011]. Here we show a proof-of-concept example

of a driven two-level atom coupled to a harmonic oscillator. Already in this well-studied system,

the addition of drives gives rise to novel quantum operations as we vary drive parameters. �e

combination of di�erent drive parameters and the ability to physically engineer circuit parameters

gives us many knobs to turn, allowing us to implement an increasing variety of quantum systems

and quantum operations.
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1.1 “Natural” quantum systems

A coherent quantum system, which is isolated from its environment, is o�en described by its

Hamiltonian H . Knowing H and the initial state of the system should in principal allow us to

determine the state of the system at any give time, following Schrödinger’s equation. �e eigen-

states of the Hamiltonian, the time-independent states of the system, are a very useful to describe

the dynamics of the system. Fig. 1.1a shows an example of a generic quantum system (or atom),

with its lowest eigenstates: |g〉, |e〉, |f〉, and |h〉.

(b) (c) (d)

Two-level system (qubit) Λ system Harmonic oscillator

e

e

f

0

1

2

3

g

(a)

Generic atom

e

f

h

g
g

Figure 1.1: (a) A generic atom can be described in terms of its energy eigenstates. Here the lowest
eigenstates |g〉, |e〉, |f〉, and |h〉 are shown. Transitions between the eigenstates are shown as
straight arrows with the color corresponding to the frequency or energy di�erence between the
states. �e dashed arrow corresponds to a transition forbidden by a selection rule. (b) A two-level
system consists of two eigenstates: the ground state |g〉 and the excited state |e〉. �e system can
be manipulated by applying a drive at the frequency corresponding to the di�erence between the
energy levels. (c) A Λ system is a three-level system in which the lowest two states |g〉 and |e〉 are
usually similar in energy in contrast to the higher third state |f〉. �e direct transition between |g〉
and |e〉 is forbidden and all transitions are made through the |f〉 state. (d) A harmonic oscillator
is a linear quantum system. �e transition energy between nearest eigenstates is the same for all
levels, and corresponds to the resonance frequency of the oscillator. Transitions are only allowed
between neighboring states.

�e energy transitions between the eigenstates are shown via colored arrows. By applying an

external perturbation to the Hamiltonian, we are able to drive transitions between eigenstates of

the system. �e most common perturbation, and the only one treated in this thesis, is an electro-

magnetic �eld interacting with the atom. �is is a vast domain with rich physics (see Allen and

Eberly [1975] for a detailed review), but the most basic e�ect is that if two eigenstates have an

energy di�erence E, a photon of the same energy can cause an excitation between them. �us,
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using an electromagnetic �eld oscillating at frequency E/~, we can induce excitations between

the corresponding eigenstates.

�e dashed line corresponds to a forbidden transition, in which the electromagnetic �eld can-

not couple the two energy levels regardless of the power applied. �e rules governing which

transitions are forbidden, commonly known as selection rules, are o�en related to a symmetry of

the quantum system. For example, if the energy eigenstates of an atom are also eigenstates of spin,

transitions between states of opposite spin are forbidden.

1.1.1 Two-level system

�e most basic atom is a two-level system (see. Fig. 1.1b), which only has two levels |g〉 and

|e〉 separated by the energy ~ωge. In the context of quantum information, a two-level system is

commonly known as a quantum bit, or qubit. It is analogous to the classical bit of information,

but, due to its quantum nature, it can be in an arbitrary superposition α|g〉+ β|e〉 where α and β

are complex numbers such that α2 + β2 = 1.

ψ

e

e+ gg e+i

φ

θ

g

σx

σz

σy

Figure 1.2: �e Bloch sphere is a representation of a two-level system in the Pauli operator basis.
Every pure state |ψ〉 is represented as a point on the surface of the sphere. �e energy eigenstates
|g〉 and |e〉 are at the two poles and their equal superpositions are on the equator. �e state can
be represented as a superposition of |g〉 and |e〉 using spherical coordinates: |ψ〉 = cos θ2 |g〉 +

eiϕ sin θ
2 |e〉. Mixed states, in which we do not have full information on the state of the system, are

represented as points inside the Bloch sphere.

�e states of a two-level system and quantum operations performed on it are best described

using the formalism of Pauli operators. �e space which spans all states of a two-level system in the

Pauli operator basis is known as the Bloch sphere (see Fig. 1.2). While originally used to describe

the behavior of spins under a magnetic �eld in nuclear magnetic resonance (NMR)[Slichter, 1990],
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it is very useful for all two-level systems regardless of their implementation. �e three axes of the

sphere correspond to the expectation values of the three Pauli operators: ax = 〈σx〉, σy , and σz .

�e density matrix which describes a two-level system can be directly inferred from these values:

ρ =
1 + axσx + ayσy + azσz

2
. (1.1)

�e points on the surface of the Bloch sphere correspond to pure states, where the system is

not entangled with its environment and can be fully described independently. Any such state |ψ〉

can be represented by two angles θ and ϕ (see Fig. 1.2) by the relation:

|ψ〉 = cos
θ

2
|g〉+ eiϕ sin

θ

2
|e〉. (1.2)

Mixed states correspond to points within the Bloch sphere. In these states, the probabilities to

be in any two orthogonal states still sum to one (Trρ = 1), but the information on their relative

phase is incomplete as the system is not isolated (Trρ2 < 1).

�e factor 1
2 in the angle representing the state in Eq. 1.2 shows us that the Bloch sphere is

a skewed representation of the Hilbert space. �e orthogonal states |g〉 and |e〉 are actually anti-

parallel on the sphere.

Note that in Fig. 1.2 we associate the state |e〉 with the point az = 1 on the Bloch sphere.

�is is a convention we use throughout the thesis, and within it the Hamiltonian can be wri�en as

H =
ωge
2 σz . Here we see the usefulness of the Bloch sphere representation, as the Pauli operators

generate rotations on it. Our Hamiltonian leads to the unitary evolution U = e−iHt/~ which is

simply a rotation around the σz axis on the Bloch sphere. �is is the accumulation of phase

between eigenstates of di�erent energies. Similarly, a Rabi drive ΩR
2 σx corresponds to a rotation

around the σx axis, in which the state oscillates between |g〉 and |e〉 as a function of time.

1.1.2 Λ system

A Λ system (see Fig. 1.1c) is a three-level system made up of the states |g〉, |e〉, and |f〉. �e

lowest two energy levels |g〉 and |e〉 are usually similar in energy, while the third level |f〉 is of
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substantially higher energy. �e direct |g〉 ↔ |e〉 transition is either very weak or forbidden by a

selection rule, and the transitions |g〉 ↔ |f〉 and |e〉 ↔ |f〉 are allowed.

�e two lowest states are assumed to be “metastable” - isolated from the environment and thus

long-lived, while the higher level is easily accessible and thus lossy. �is level structure allows for

many interesting e�ects that are not possible in a two-level system.

An example of such an operation is the spontaneous Raman transition, where a drive on the

|g〉 ↔ |f〉 transition with the decay of the |f〉 state prepares the system in the state |e〉. �is

can be very useful for preparation of a system in a given state. Stimulated Raman transition is

another e�ect, where both transitions driven simultaneously lead to an operation between the

|g〉 and |e〉 states. To avoid populating the lossy intermediate |f〉 state, the transitions are driven

o�-resonance - at an incorrect frequency. However, the detunings of both drives from their corre-

sponding resonant frequencies are taken to be equal, and thus a second order process, which is a

coherent process involving only |g〉 and |e〉, becomes the dominant e�ect [Steck, 2007].

For manipulation of quantum information, such e�ects are very useful as they allow the qubit

spanned by |g〉 and |e〉 to be long-lived and isolated, while still enabling fast state preparation,

coherent operations, and measurement by using the |f〉 state. �ese systems are commonly used

in atomic system implementation of qubits. For example, in trapped ions, state preparation and

coherent oscillations between the two qubit states are performed through a higher excited state

[Wineland et al., 1998].

Other interesting e�ects rely on the existence of a “dark state” in the system. Since we are

able to drive transitions between both |g〉 and |e〉 to the |f〉 state simultaneously, for a particular

superposition of |g〉 and |e〉 these transitions cancel out and the system stays in its state despite

the drives. �is e�ect can be used for coherent population trapping (CPT) [Arimondo and Orriols,

1976, Gray et al., 1978], where the drives, together with the decay of the |f〉 state, are used to

stabilize the “dark state” of the system, which can be an arbitrary superposition of |g〉 and |e〉 by

changing the amplitude and phase of the drives.

A very similar trick can be used to coherently transfer population from |g〉 to |e〉. �is process

is known as stimulated Raman adiabatic passage (STIRAP) [Bergmann et al., 1998, Vitanov et al.,
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2017]. By changing the drive parameters, we change the dark state of the system from |g〉 to |e〉.

If the initial state of the system is |g〉 and the process is done adiabatically, the state of the system

follows the imposed dark state and thus the �nal state of the system is |e〉. Remarkably, this process

can be performed with high coherence even if the |f〉 state is very lossy, as the system is never in

that state - only in its dark state.

1.1.3 Harmonic oscillator

�e quantum harmonic oscillator is a basic quantum system which is at the heart of many physical

e�ects. Most notably, it describes the quantum behavior of electromagnetic �elds and mechanical

vibrations. As the analog of the classical harmonic oscillator, we can write the Hamiltonian for

the system as:

H =
p2

2m
+
mω2

0x
2

2
, (1.3)

where x and p are the position and momentum operators of the oscillator with the commutation

relation [x,p] = i~. m is the mass of the oscillator and ω0 is its characteristic frequency. For

mechanical vibrations, the actual position and momentum of the motion can be treated, and for

electromagnetic �elds the electric and magnetic �eld can play the role of position and momentum

(see Chapter 2 for more details).

�e well-known solution to this Hamiltonian relies on the de�nition of the annihilation ope-

rator a =
√

mω0
2~

(
x+ i

mω0
p
)

. �us the Hamiltonian can simply be wri�en as:

H = ~ω0

(
a†a+ 1/2

)
, (1.4)

with the commutation relation
[
a,a†

]
= 1. �e eigenstates of this Hamiltonian are eigenstates

of the number operator n = a†a and can be labeled |n〉, n ∈ N . �e transition energy between

any neighboring states is identical and given by ~ω0. �e number n, which corresponds to the

excitation number, is known as the number of photons in an electromagnetic oscillator, or the

number of phonons in a mechanical oscillator.

�e operator a is called the annihilation operator as it annihilates one photon from the state
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of the system: a|n〉 =
√
n|n − 1〉. Its conjugate operator, a†, is the creation operator as it cre-

ates a photon in the system. From our de�nition x =
√

~
2mω0

(
a+ a†

)
. �us, a linear drive

which interacts with the oscillator, for example an electric �eld interacting with a dipole, leads to

a Hamiltonian term of the form ε
(
a+ a†

)
(up to a phase), where ε is the drive amplitude (see

Chapter 3 for more details).

Transitions in the harmonic oscillator are thus only allowed between nearest-neighbor states,

as they are the only states coupled by the a + a† interaction. All other transitions are forbid-

den. �e symmetry corresponding to this selection rule is that the harmonic oscillator energy

eigenstates are also eigenstates of the photon number operator.

As its equations of motions are linear, the harmonic oscillator is o�en called a linear oscillator.

In fact, it is ’the’ linear system - any system with linear equations of motion is equivalent to a

harmonic oscillator. �e addition of non-linear terms changes the eigenstates and energies of the

system and leads to a more complicated structure, in which the states are not equally spaced in

energy. For a weakly non-linear system, the operators of the harmonic oscillator still serve as a

very convenient basis.

�e two-level system can be thought of as the dual of the harmonic oscillator - a system so non-

linear that we can neglect all higher excited states. �e joined atom of a two-level system linearly

coupled to a harmonic oscillator with a similar frequency is known as the Jaynes-Cummings (JC)

Hamiltonian [Jaynes and Cummings, 1963, Haroche and Raimond, 2006], and is central to many

atomic implementations of coherent quantum systems, as well as superconducting arti�cial atoms.

1.2 Superconducting quantum systems

Superconducting circuits are made up of electromagnetic circuit elements, such as inductors and

capacitors. �us, the most natural quantum system for such circuits is the harmonic oscillator.

�is system can be implemented as a pa�erned superconducting planar circuit or as the stationary

wave mode of a cavity. With su�ciently high coherence (ω � κ where ω is the cavity frequency

and κ is its decay rate) and low temperature (~ω � kBT ), this system shows quantum e�ects and
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behaves as a quantum harmonic oscillator.

While the harmonic oscillator is an interesting quantum system, it can only implement a li-

mited range of e�ects and does not allow full quantum control [Weedbrook et al., 2012]. Adding

non-linearity to the system signi�cantly increases the range of operations we can perform, and

potentially allows us to create an arbitrary unitary evolution of the quantum system.

�e Josephson junction is the main source of non-linearity used for superconducting arti�cial

atoms. It consists of two superconductors sandwiched by a thin oxide layer (see Fig. 1.3a). �is

element allows for the tunneling of Cooper pairs across it. As the tunneling is discrete in units

of charge, the conjugate �ux across the junction must be periodic. �is periodic form makes the

Josephson junction behave as a non-linear inductor (see Chapter 2 for more details).

(a) (b) (c)

S

S

I

EJEC

Figure 1.3: (a) A Josephson junctions consists of two superconductors (S) sandwiching a thin
insulating layer (I). (b) �e Josephson junction is described in circuit form as a capacitor with
capacitive energy EC in parallel with the tunneling element (shaped like an x) with Josephson
energy EJ. �e tunneling of Cooper pairs across the junction can be understood as a non-linear
inductance. �is element is the source of non-linearity used in all superconducting quantum cir-
cuits. (c) �e sketch of the combined capacitor and tunneling element.

�e Josephson tunneling can be expressed in the form −EJ cosϕ where EJ is the tunneling

energy and ϕ is the superconducting phase across the junction. �us the Josephson element can

be expressed as a non-linear inductor by expanding the cos term:

− EJ cosϕ =
EJ

2
ϕ2 − EJ

24
ϕ4 + · · · , (1.5)

where the �rst term is the linear part and the following terms contribute to the non-linearity. �e
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Josephson tunneling element always appears in parallel with a capacitive term (see Fig. 1.3b). �is

capacitanceC is o�en described in terms of its capacitive energy for a single electronEC = e2/2C .

�us the capacitor and non-linear inductor of the Josephson junction already correspond to a non-

linear quantum oscillator.

To make di�erent circuits, we pa�ern di�erent structures of capacitors, inductors and Josep-

hson junctions. For example, we can shunt the Josephson junction with an additional shunt capa-

citor Cs � C , and thus reduce its capacitive energy. �is circuit, known as the transmon [Koch

et al., 2007], is a weakly non-linear oscillator which is currently the most common implementation

of a superconducting qubit. A more detailed description, as well as a variety of superconducting

circuits, are presented in Chapter 2.

�e two lowest energy levels of the circuit are commonly taken to be the qubit states. Due to

the non-linearity, the energy di�erence between levels is not equal and thus this transition can be

addressed individually. Note that this transition energy, and the coupling between multiple such

qubits, are completely given by the parameters of the circuit. �is ability to engineer our atoms to

the desired behavior is a signi�cant advantage of superconducting arti�cial atoms.

Our ability to engineer circuits, however, is not absolute. As our toolbox of circuit elements is

limited, we are bounded to particular atom structures. In Chapter 5 we discuss the limitation of

selection rules in our atoms, and introduce a new circuit element which can li� this limitation. �e

addition of tools into our toolbox is necessary to expand the abilities of superconducting circuits,

and may eventually allow us to simulate an arbitrary Hamiltonian.

1.3 Open superconducting quantum systems

So far we have discussed the degrees of freedom of an isolated circuit, in which we can combine

di�erent circuit elements to produce a variety of Hamiltonians. Our system, however, is never

completely isolated. �ere is always some parasitic coupling to the external environment, and

decreasing the sensitivity of our system to di�erent loss mechanisms is a central e�ort in the �eld

of superconducting qubits.
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But even the ideal circuit is not isolated. To perform our operations and measurements, we

need to interact strongly with the circuit. And so, there is a delicate balance in which the system

should be completely isolated from the environment, but also strongly coupled to our controlled

environment when we interact with it. Designing systems which are closer and closer to this

perfect balance is perhaps the main focus of the �eld of experimental quantum information.

Our controlled interaction with the system can be separated into two parts: the drive, in which

we apply an oscillating electromagnetic �eld to the system, and the dissipation, in which we ex-

tract energy and information out of the system2. Commonly, the drive is used to perform gates by

sending pulsed tones at the system, and the dissipation is used to measure the system. However,

the combination of the two can be used in a variety of ways to implement novel quantum opera-

tions, and create e�ective arti�cial atoms. A combination of continuous drives with a controlled

dissipation were used to autonomously prepare arti�cial atoms in a desired state [Geerlings et al.,

2013, Murch et al., 2012, Shankar et al., 2013, Leghtas et al., 2013] and even stabilize a degenerate

manifold of states [Leghtas et al., 2015] - which allows us to encode arti�cial atoms in the states

of a cavity [Mirrahimi et al., 2014].

�ese scheme are based on constant “pump” drives, tuned to speci�c frequencies which, when

combined with the non-linearity of the Josephson junction, can make high-order e�ects reso-

nant and therefore signi�cant. However, drives that do not correspond to speci�c transitions can

not be neglected, and can actually lead to signi�cant e�ects as well. In Chapter 6 we discuss a

proof-of-concept example, in which, by applying two drive tones, we obtain an e�ective arti�cial

atom with parameters determined by the drive amplitudes and frequencies. With the drives on a

resonant transition, this protocol leads to the cooling of the qubit to a transverse eigenstate, but

o�-resonance this protocol can be used to continuously measure the state of the qubit in the trans-

verse basis - the �rst such measurement in any implementation of a quantum system [Vool et al.,

2016].

�e observation of such signi�cant e�ects by only applying two drive tones to the JC Hamil-
2�ese two are actually fundamentally related by the �uctuation-dissipation theorem [Callen and Welton, 1951,

Steck, 2007, Vool and Devoret, 2017], as the �uctuations of the drive (even the vacuum drive when none is applied) lead
to an inherent dissipation and vice versa.
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tonian, perhaps the most well-studied system in our �eld, hints at the potential in open supercon-

ducting systems. �e space of quantum operations available to us with the ability to tune drive

parameters, dissipation and the non-linearity of the circuit itself seems vast, and we have only

begun studying its possibilities.

1.4 �esis overview

�is thesis discusses the encoding of arti�cial atoms in superconducting system, and explores the

possibility to synthesize a larger variety of superconducting arti�cial atoms and quantum opera-

tions.

Building on the introduction in Chapter 1, Chapter 2 gives the theoretical framework for wri-

ting the Hamiltonian of an electric circuit and quantizing it. It also discusses the e�ects of adding

non-linear elements to the circuit, and how to combine linear and non-linear circuit elements

within this framework. It ends with a brief description of the common superconducting arti�cial

atoms.

Chapter 3 describes the framework of circuit quantum electrodynamics (cQED). It begins with

a discussion of using the harmonic oscillator basis vs. the spin 1/2 basis to describe a general non-

linear system, and how both should be seen as imperfect treatments with their advantages and

disadvantages. �en we discuss the physics of the JC Hamiltonian for a two-level atom coupled

to a harmonic oscillator. �is allows us to describe the control and measurement of our system

within the framework of cQED [Blais et al., 2004], and also serve as an important theoretical basis

for the experiment described in Chapter 6. We brie�y discuss the master equation treatment of dri-

ves and dissipation in this context, and particularly describe the physics of measurement-induced

dephasing, in which photons in the harmonic oscillator lead to loss of coherence in the qubit.

Chapter 4 reviews some experimental techniques for the experiments described in the thesis.

We begin by discussing the fabrication of our Josephson junctions, as well as the sample holders

used to house them. We also review the dispersive readout technique, the common readout techni-

que in superconducting circuits which was used in all experiments in this thesis, with a discussion
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on readout in transmission vs. re�ection.

Chapter 5 discusses the experimental work to break selection rules in the �uxonium. We begin

with a review of selection rules in superconducting circuits. �en we discuss the novel three-wave-

mixing device nicknamed the Josephson Non-linear Asymmetric Inductive eLement (SNAIL), and

its potential use for non-linear coupling and ampli�cation [Fra�ini et al., 2017]. Finally, we describe

how to integrate the SNAIL into the �uxonium qubit, and show that we are able to drive forbidden

transitions in the new SNAIL-�uxonium system. We use this ability to construct an e�ective Λ-

system from the �uxonium arti�cial atom.

Chapter 6 discusses the experimental work to continuously measure the qubit in the trans-

verse (σx) basis. We begin with a theoretical treatment of the dispersive JC Hamiltonian with two

additional drives, and the transformation to an e�ective frame in which this Hamiltonian becomes

the undriven Rabi Hamiltonian between a qubit in the σx basis and a displaced harmonic oscilla-

tor. We discuss the resonant and dispersive limits of this model, and show how they can lead to

transverse cooling and measurement respectively. �e next section discusses the experiment to

cool a qubit to the eigenstates ofσx using this framework. �e last section presents the implemen-

tation of a continuous, quantum non demolition (QND), measurement of σx, and an observation

of quantum jumps in the transverse basis.

�e �nal chapter concludes the thesis with �nal thoughts and o�ers perspectives on the ideas

presented.

�is thesis does not discuss all the projects studied during my PhD. �e main project not discus-

sed is the measurement of quasiparticle dynamics in superconducting circuits using the �uxonium

arti�cial atom, and it can be viewed in Ref. Vool et al. [2014].



Chapter 2

From a circuit to an atom

Superconducting circuits are commonly described as a network of elements such as capacitors,

inductors and Josephson junctions. However, they represent coherent quantum systems which

should be treated using the formalism of atomic physics and quantum optics [Devoret, 1997, Blais

et al., 2004, You and Nori, 2011]. �e character of the e�ective arti�cial atom encoded within the

circuit is o�en not apparent, and requires rigorous treatment to decode. �e situation is simpler

for linear systems, as we can reduce the analysis to determining the resonance frequencies and

characteristic impedances of the e�ective modes of the system. For strongly non-linear systems,

however, the system cannot be easily decoupled and the dependence of the eigenstates on the

value of a particular circuit element can be quite complex.

�is chapter provides a brief description of the physics of quantum electromagnetic circuits,

and a tutorial on deriving atom parameters from circuit parameters. We begin with the treatment

of linear circuits, and show how an arbitrary linear circuit can be expressed as a collection of

quantum harmonic oscillators. We then study the Josephson junction - the source of non-linearity

in our circuits. We integrate the Josephson junction into our circuit and discuss how to treat non-

linear circuits in the harmonic oscillator basis and how to combine linear and non-linear elements.

We conclude by presenting several common superconducting arti�cial atoms.

14
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2.1 An electromagnetic circuit

In this section, we describe how to �nd the degrees of freedom (DOF) of a circuit and write its

Hamiltonian. �is section follows the recent review paper in Ref. Vool and Devoret [2017], which

is itself based on the Les Houche Summer School lecture notes given in Ref. Devoret [1997]. �e

review contains a more detailed discussion, with an emphasis on the treatment of open quantum

circuits.

2.1.1 Circuit degrees of freedom

An electric circuit is a representation of the electric and magnetic �eld as a network of discrete

elements connected by nodes. Each such element is considered as a “branch” of the circuit (see

Fig. 2.1a).

loop

node

(a) (b) (c)

ib(t)vb(t) b

branch
element

node A node B

ground

L1 L2

L3

Φext

C3

C1 C2

Figure 2.1: (a) A sketch of a general circuit which shows dipole element branches connected
by nodes and forming loops. (b) Sign convention for the voltage and current associated with an
arbitrary branch b of an electrical circuit. (c) Example circuit with a spanning tree selection. �e
spanning tree goes from the ground node to nodes a and b following the red path.

�e element of each branch b at time t is characterized by two variables: the voltage vb (t)

across the element and the current ib (t) �owing through it (see Fig. 2.1b). For each branch b we

choose an orientation, which determines the sign of the voltage and current values.
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�e voltage and the current are de�ned from the underlying electromagnetic �elds by

vb(t) =

∫ end of b

beginning of b

−→
E (−→r , t) ·

−→
d` (2.1)

ib(t) =
1

µ0

∮
around b

−→
B (−→r , t) ·

−→
ds (2.2)

In Eq. 2.2 the magnetic �eld is integrated along a closed loop in vacuum encircling the ele-

ment. Note that the voltage and current orientations were chosen to be opposite. �is is an

intentional choice so that the energy absorbed by the element can be conveniently de�ned as

Eb(t) =
∫ t
−∞ vb(t

′)ib(t
′)dt′.

We consider our elements to be lumped, and thus the voltage and current should not depend

on the path taken during the integration. To insure this, we assume the paths are well outside the

wire of inductors for the line integral of electric �eld (so that the magnetic �eld is zero along the

path) and well outside the dielectric of capacitors for the loop integral of magnetic �eld (so the

electric �eld is zero along the loop).

We can now integrate the current and voltage in time to obtain the �ux and charge of each

branch:

Φb (t) =

∫ t

−∞
vb(t

′)dt′ (2.3)

Qb (t) =

∫ t

−∞
ib(t
′)dt′ (2.4)

�ese quantities allow us to write the Kirchho� relations while accounting for external �ux

and charge biases, which are necessary for the Hamiltonian formulation of a circuit:

∑
all b around l

Φb = Φl
ext (2.5)∑

all b arriving
at n

Qb = Qnext (2.6)

where l is a loop of branches with external �ux Φl
ext threaded through it, and n is a node which
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connects several branches with a charge Qnext on it. From these relations we see that not every

branch �ux, for example, is an independent DOF of the circuit.

Before proceeding to �nd the independent DOF and write its corresponding Hamiltonian, let

us simplify the discussion by de�ning two speci�c types of elements which are used in virtually

any treatment of electric circuits:

A dispersive element b for which the voltage vb(t) is only a function of the charge Qb(t) and

not directly of the time t or any other variable, is said to be a capacitive element.

vb(t) = f(Qb(t)) (2.7)

Its capacitance, which is only a function of the charge, is given by:

C(Qb) =

[
df

dQb

]−1

(2.8)

A linear capacitance is independent of Qb (C(Qb) = C), and so we can simplify the relation

to be vb(t) = (Qb(t))/C . Its energy is then given by Eb(t) = 1
2C (Qb(t))

2. As Φ̇b = vb we can also

write Eb(t) = C
2 (Φ̇b(t))

2

Similarly, a dispersive element b for which the current ib(t) is only a function of the �ux Φb(t)

and not directly of the time t or any other variable, is said to be an inductive element.

ib(t) = g(Φb(t)) (2.9)

Its inductance, which is only a function of the �ux, is given by:

L(Φb) =

[
dg

dΦb

]−1

(2.10)

A linear inductance is independent of Φb (L(Φb) = L), and so ib(t) = (Φb(t))/L. Its energy

is then given by Eb(t) = 1
2L(Φ(t))2.

In this section, we limit ourselves to linear circuits, made of a combination of linear inductances
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and capacitances. �e integration of non-linear elements into the circuit is treated in Section 2.3.

To �nd independent DOF for our circuit, we would like to incorporate the Kirchho� relations

into our variable de�nition. �ere are two methods which can be used for this, and they correspond

to choosing �ux or charge as the “position” variable of our circuit. Here, we follow the method

of nodes, in which we assign a �ux to every node in the circuit. �e other method, the method

of loops, assigns a charge to every loop in the circuit. While these methods are equivalent at this

point, the Josephson non-linearity introduced in the following chapters is inductive, making the

method of nodes a natural choice.

�is initial step in the method of nodes is to de�ne a ground node. �is is the node of zero

�ux from which we de�ne all others. Now we can construct a spanning tree (see Fig. 2.1c) which

goes from the ground node to every other node, following a particular path. �e �ux φn associated

with node n is given by the sum of branch �uxes for all the branches in the path Pn connecting

the ground node to node n: φn =
∑

b∈Pn
Φb. �us all branch �uxes are related to the node �uxes

by:

Φb∈T = φn − φn′ (2.11)

Φb∈T̄ = φn − φn′ + Φl
ext (2.12)

where T is the set of branches which are part of the spanning tree, and T̄ is the complement of

that set. If a branch is not part of the spanning tree, it necessarily forms a loop l with spanning

tree branches, and Φl
ext is the �ux threaded through that loop.

We can now express the energy of each element in the circuit as a function of the node �uxes

φn. All inductive element energies can be summed to the potential energy Epot(φ1, φ2, ...) , and

all capacitive energies can be summed to the kinetic energy Ekin(φ̇1, φ̇2, ...).

Note that there are di�erent choices for spanning trees which result in di�erent expressions

for the energy, but eventually lead to the same equations of motion. However, some choices are

be�er than others as they simplify the solution of these equations. As a general rule, it is a good

idea to de�ne the tree through capacitive elements as the conjugate variable (de�ned in following
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section) then easily relates to the charge across the capacitor.

2.1.2 Hamiltonian of a circuit

We can now obtain the Lagrangian by subtracting the potential energy from the kinetic energy:

L = Ekin − Epot (2.13)

�e corresponding Lagrangian for the circuit of Fig. 2.1c is:

L
(
φA, φ̇A, φB, φ̇B

)
=

C1φ̇
2
A

2
+
C2φ̇

2
B

2
+
C3

(
φ̇A − φ̇B

)2

2

−

[
φ2
A

2L1
+
φ2
B

2L2
+

(φA − φB + Φext)
2

2L3

]
, (2.14)

where the DOF φA and φB are the �uxes of the nodes A and B.

�e equations of motion for the circuit are given by the Euler-Lagrange equations:

d

dt

∂L
∂φ̇n

− ∂L
∂φn

= 0 (2.15)

and we can de�ne charge conjugate to the node �ux:

qn =
∂L
∂φ̇n

(2.16)

Note that not every node �ux necessarily corresponds to a DOF of the circuit, as the Lagran-

gian can depend on only φn or only φ̇n. �ese nodes, which we call passive nodes, connect only

inductors or only capacitors. See the review paper [Vool and Devoret, 2017] for a more detailed

treatment of active and passive nodes in order to de�ne a circuit where all variables are true DOF.

�is is not strictly necessary, as the equations of motion reveal the behavior of the circuit.

For a passive node n which connects only capacitors, the Euler-Lagrange equation simpli�es to

q̇n = 0 and so qn is just a constant charge, the sum of the charges on the capacitors connected to

the node. For an inductive passive node, the Euler-Lagrange equation show a dependence between
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the di�erent node �uxes, so thatφn = f(φ1, ..φn−1, φn+1, ...), and thus the DOF can be eliminated.

Our next step is to write the Hamiltonian, which requires expressing Ekin as a function of the

conjugate charges {qn}. �is requires inverting Eq. 2.16, which can be wri�en in matrix form

as the capacitance matrix −→q = [C]
−→̇
φ relating the vector of all node �ux derivatives to their

corresponding node charges.

For the Fig. 2.1c, this relation can be expressed as:

qA
qB

 =

C1 + C3 −C3

−C3 C2 + C3


φ̇A
φ̇B

 (2.17)

A�er inverting the matrix and expressing the Lagrangrian as a function of {φn} and {qn}, we

can obtain our Hamiltonian from the Lagrangian using the Legendre transformation:

H =
∑
n

φ̇nqn − L (2.18)

If Ekin is a quadratic function of {qn}, we can also describe the Hamiltonian in a simpler form:

H = Ekin + Epot, (2.19)

where the Hamiltonian is equal to the total energy of the system. Note that this does not work for

general circuits with non-quadratic kinetic energy.

�e equations of motion are given in the form of Hamilton’s equations:

φ̇n =
∂H
∂qn

(2.20)

q̇n = − ∂H
∂φn

(2.21)
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For the circuit in Fig. 2.1c, the Hamiltonian can be wri�en as:

H (φA, qA, φB, qB) =
1

C1C2 + C1C3 + C2C3

[
(C2 + C3) q2

A

2

+
(C1 + C3) q2

B

2
+ C3qAqB

]
+

[
φ2
A

2L1
+
φ2
B

2L2
+

(φA − φB + Φext)
2

2L3

]
(2.22)

Note that the external �ux Φext in this case leads to an o�set in the �ux coordinates of the

form (φA − φB) Φext
L3

(which physically corresponds to a DC current). Also, the DOF are coupled

to each other due to terms such as C3
C1C2+C1C3+C2C3

qAqB or 1
L3
φAφB . For linear circuits, all these

terms can be eliminated by a proper linear coordinate transformation: φ1 = α1φA+β1φB+φoffset
1 ,

φ2 = α2φA + β2φB + +φoffset
2 .

In general, all linear circuits withN DOF can be brought to their diagonal form: H =
∑N

i=1
φ2
i

2Li
+

q2
i

2Ci
. �ese are N independent harmonic oscillators, each with its own characteristic resonance

frequency ωi = 1/
√
LiCi. �ey are sometimes called the resonant modes of the electric circuit.

Understanding any linear circuit thus reduces to understanding the behavior of a linear oscillator.

�ings are much more complicated for non-linear oscillators. O�set �uxes in a non-linear

circuit can signi�cantly alter its dynamics, and are thus used in many superconducting circuits

(see Section 2.4). Also, non-linear circuits can not generally be decoupled. �e full system, where

the di�erent DOF all a�ect each other, is o�en necessary to properly understand the behavior of

each non-linear mode.

2.2 �antization

2.2.1 When is a circuit quantum?

Nominally, every electromagnetic circuit can be treated with the formalism of quantum mechanics.

However, quantum e�ects are not very prominent in most circuits. �ere are two main reasons

for this suppression of quantum e�ects: �e electro-magnetic energy stored in the circuit is large
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compared to the energy quantum ~ω for a mode of frequency ω, masking the quantized nature of

the excitations, and quantum correlations are washed out due to interactions with external DOF.

�e �rst problem is experimentally solved by cooling the circuit down to a sub-Kelvin tempera-

ture T , for which kBT � ~ω. �e mode is then in its ground state, in which quantum �uctuations

become apparent.

�e second problem is solved by the use of a superconductors. A detailed discussion of the

broad �eld of superconductivity can be found in refs. Tinkham [2004], Bruus and Flensberg [2004],

De Gennes [1999], and here we only brie�y discuss the role of superconductivity in isolated quan-

tum circuits.

In the BCS mean-�eld theory of superconductivity, the number of electrons in the ground state

is not a conserved quantity, but their parity is. �e electrons are created and annihilated in pairs,

known as Cooper pairs, of opposite momentum and spin. �is interaction leads to an energy gap

∆ protecting the ground state. To allow an unpaired quasiparticle into the superconductor, it must

have an energy of at least ∆. For a photon to a�ect the superconductor, it needs to break a Cooper

pair, and thus needs to have an energy of at least 2∆. �us, for circuits made of superconductors,

modes for which ~ω � 2∆ can not interact with the superconductor quasiparticle DOF. �ese

modes are thus decoupled from their environment and behave as isolated quantum systems.

Note that insulators and semiconductors are also gapped, but of course electric circuits cannot

be made out of them. �eir gap prevents current or charge accumulation below the gap energy.

�e superconductor allows charge accumulation and current - as long as these involve only pairs of

electrons. �e combination of the electromagnetic excitations, similar to a metal, and the gapped

structure, similar to an insulator, is the unique property which allows for the creation of arti�cial

atoms out of superconducting circuits.

2.2.2 �antizing a circuit

�e transition to quantum DOF is straightforward in the framework of the Hamiltonian description

developed in the preceding section. �e classical variables and the Hamiltonian are replaced by
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their corresponding operators1:

φ → φ

q → q

H → H (2.23)

�e di�erent node �uxes φn correspond to the position operators of di�erent bosonic modes,

and thus all commute. However, pairs of operators corresponding to conjugate variables do not

commute. In the node variable framework, the commutator of every node �uxφn and its conjugate

node charge qn is:

[φn, qn] = i~ (2.24)

�is relation stems from the quantization of the electromagnetic �eld and corresponds to the

fundamental commutator for conjugate variables. Of course, Eq. 2.24 is valid only if the electric

state of node n is a true DOF of the circuit, meaning that neither φn, qn or their derivatives are

constants of motion. More generally, this is the canonical quantization [Dirac, 1967] which relates

the classical Poisson bracket and its corresponding commutator:

{A,B}PB →
1

i~
[A,B] (2.25)

As we have shown above, the treatment of an arbitrary quantum linear circuit reduces to the

treatment of an LC oscillator. Our Hamiltonian thus corresponds to:

H =
q2

2C
+
φ2

2L
, (2.26)

and it is completely analogous to Eq. 1.3 which we reviewed in Chapter 1.
1�roughout the thesis, we label quantum operators in bold.
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We can de�ne the creation and annihilation operators in an identical manner:

φ = φZPF

(
a+ a†

)
(2.27)

q =
1

i
qZPF

(
a− a†

)
(2.28)

where φZPF and qZPF are the zero-point �uctuations (ZPF) of the �ux and charge operators re-

spectively. �ese are the �uctuations of the �ux and charge of the ground state of the harmonic

oscillator. �ey correspond to an uncertainty in �ux or charge, as the ground state is not an ei-

genstate of these operators.

�e �uctuations are given by:

φZPF =

√
~Z0

2

qZPF =

√
~

2Z0
(2.29)

where, Z0 =
√

L
C is the characteristic impedance of the oscillator. �us, increasing the characte-

ristic impedance enhances �ux �uctuations and reduces charge �uctuations - which is equivalent

to the Heisenberg uncertainty principle. �is intuition can be useful when discussing the sensiti-

vity of arti�cial atoms to speci�c loss mechanisms such as charge noise or �ux noise.

It is sometimes convenient to de�ne normalized conjugate operators N = q/2e and ϕ =

φ/φ0 where e is the electron charge and φ0 is the reduced magnetic �ux quantum. �ese unit-

less operators obey the commutation relation [φ,N ] = i. Correspondingly, we will de�ne the

normalized ZPF NZPF = qZPF/2e and ϕZPF = φZPF/φ0

While we have only shown the quantization of a linear circuit, this quantization framework is

also useful for non-linear circuits. A non-linear circuit can also be expressed in the linear operator

basis with no approximation. However, it is important to remember that for such a circuit the

linear operators are just a convenient basis, and do not easily correspond to operations on the

eigenstates of the non-linear Hamiltonian.
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2.3 Non-linear circuit elements

As we have seen above, the physics of linear quantum circuits is not very rich. It can be reduced to

the treatment of a single quantum harmonic oscillator, and thus it clearly cannot simulate a large

variety of atoms, and is of limited usefulness as a quantum information resource [Weedbrook

et al., 2012]. �e addition of even a small non-linearity, however, completely changes the situation

and allows for universal control of the quantum state [Lloyd, 1992]. In atomic systems, the non-

linearity is obtained by the properties of the atoms themselves. In the �eld of quantum optics

[Walls and Milburn, 2008], it is obtained by the use of non-linear media.

Non-linear physics with superconducting circuits is based on the Josephson junction [Joseph-

son, 1962]. It is the cornerstone of most superconducting arti�cial atoms, and the only source of

non-linearity discussed in this thesis.

Until recently, it has also been the only source. However, recent advances have led to the

implementation of new non-linear elements in superconducting circuits. Notable examples are

nanomechanical oscillators [Chan et al., 2011, Teufel et al., 2011], and atomic-point contacts [Bret-

heau et al., 2013, Janvier et al., 2015]. Superconducting nanowires [Krogstrup et al., 2015], which

have recently been used as Josephson junctions in quantum circuits Larsen et al. [2015], can also

lead to a promising novel non-linear element.

2.3.1 �e Josephson junction

�e Josephson junction (see Fig. 1.3) is made up of a tunneling element in parallel with a capacitor.

To write a Hamiltonian description of the junction, let us consider the superconducting electrodes

of the junction, with Cooper-pair numbersN1 andN2. As the system is isolated, the sumN1 +N2

is constant, but the di�erence N = N1 − N2 is a DOF corresponding to the number of Cooper

pairs tunneling through the junction.

We should treat the di�erence variable as a quantum operator N =
∑

N N |N〉〈N | where

|N〉 is a state of the system with N Cooper pairs having passed through the junction. �e charge

across the capacitor is directly related to N , which is simply charge in Cooper-pair units: Q =
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2eN . �us we can write the Hamiltonian term for the capacitor (our kinetic energy equivalent)

as:

HC =
4e2N2

2C
= 4ECN

2 (2.30)

where EC = e2

2C is the capacitive energy for the junction capacitance C .

�e Josephson tunneling term can also be expressed in this basis as:

HJ = −EJ

2

N=−∞∑
N=−∞

(|N〉〈N + 1| + |N + 1〉〈N |) , (2.31)

where EJ is the Josephson tunneling energy.

�e operator HJ is clearly not diagonal in N , but it appears to be diagonal in the conjugate

operator. We can de�ne the conjugate basis:

|θ〉 =
N=−∞∑
N=−∞

eiNθ|N〉 (2.32)

|N〉 =
1

2π

∫ 2π

0
dθe−iNθ|θ〉 (2.33)

In the |θ〉 basis, the tunneling Hamiltonian takes the form:

HJ = −EJ

4π

∫ 2π

0
dθ
(
eiθ + e−iθ

)
|θ〉〈θ|, (2.34)

and so it is diagonal. �e eiθ and e−iθ terms correspond to Cooper-pair tunnelings in both directi-

ons, which in this basis impart opposite phases.

We can de�ne the operator cosθ = 1
2π

∫ 2π
0 dθ cos θ|θ〉〈θ|, and now the Josephson tunneling

potential takes the familiar form:

HJ = −EJ cosθ (2.35)

As θ is conjugate to the normalized charge operator N , it would be convenient to identify it

with the normalized �ux operator φ/φ0. However, θ is periodic and de�ned on the unit circle,

or equivalently the charge operator N is discrete in units of Cooper pairs. �us, these operators
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appear signi�cantly di�erent and not reconcilable with their harmonic oscillator counterparts.

�is periodic symmetry is easily li�ed by introducing a large inductor shunting the junction.

We can then de�ne the reduced �ux across the junction and inductor to be ϕ = φ/φ0 (we assume

no external �ux in the loop formed by the junction and inductor). �e potential of the linear

inductor is then ELϕ
2

2 where EL = φ2
0/L is the inductive energy. �is potential is not periodic,

and thus breaks the symmetry. �e inductance can be very large (EL � EJ) and so the Josephson

term completely dominates the behavior of the system2. �is inductance can be understood as a

physical stray inductance that shunts the junction or as a theoretical construct, but in any case

this addition allows us to treat the Josephson junction within the harmonic oscillator formalism.

Now we see the reason for using the operators ϕ and N , which are renormalizations to the

�ux and charge operators de�ned for linear circuits. �e operatorϕ can also be understood as the

superconducting phase di�erence between the two superconductors connected by the junction.

�e Hamiltonian for the Josephson junction can now be wri�en as:

H = 4EC(N)2 − EJ cosϕ, (2.36)

and the term−EJ cosϕ behaves as a non-linear inductor. We can expand the cosine, as in Eq. 1.5,

to obtain the linear and non-linear parts of the inductance.

2.3.2 Combining linear and non-linear elements

Now that we have obtained a quantum expression for the Josephson junction, we are set to write

the Hamiltonian for an arbitrary non-linear superconducting circuit.

�is can be done in a straightforward way by following the procedure in the beginning of this

Chapter. However, for larger circuits this can be quite involved, as the circuit is not longer reducible

to its independent modes. Also, one should be careful when making approximations which reduce
2A very important caveat to this statement is the dependence of the system on DC o�set charge Ng . With no

inductor, this o�set charge contributes signi�cantly to the energy levels (see Section 2.4.1). However, an arbitrarily
large inductor has zero impedance at DC and thus completely shunts the static charge. In the limit L → ∞, the AC
response of the shunted junction approaches that of the unshunted junction but the true DC response is inconsistent.
However, as true DC behavior corresponds to in�nite times, it is not experimentally accessible. �is inconsistently is
addressed in detail in Ref. Koch et al. [2009].
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the number of DOF in a circuit, as these can lead us to assume an incorrect symmetry an thus

obtain and incorrect Hamiltonian.

However, as the entire non-linearity is focused in several elements, we can make use of the

reducibility of linear circuits to simplify the calculation signi�cantly. �is procedure is known as

black box quantization (BBQ) and is presented in Ref. Nigg et al. [2012]. It is especially important

within the cQED framework, where a non-linearity interacts with several linear modes. In this

Section we only treat the case in which the circuit has a single non-linear element. �is treat-

ment can be extended to multiple non-linearities, but in that case the analysis is more subtle and

complicated [Solgun and DiVincenzo, 2015, Solgun et al., 2014].

(a) (b)

NL

Figure 2.2: (a) �e Josephson junction has a non-linear inductance which corresponds to the
potential energy −EJ cos(ϕ). It is o�en useful to separate it into a linear inductor and capacitor,
in parallel with a non-linear “spider” element (green) with is a purely non-linear inductive element
with potential energy −EJ cos(ϕ) + EJϕ

2/2 (b) �is method can be generalized to any lumped
element, which we break into its linear part and its purely non-linear part (green). In the case of
a non-linear inductance, the potential corresponding to the non-linear element only has terms of
the order ϕ3 and higher.

We start our treatment by separating the Josephson junction into its linear and non-linear

components. As the Josephson capacitance is in parallel with the tunneling element, and we use

ϕ as our position coordinate, it is convenient to express the Josephson junction as a capacitor,

linear inductor and non-linear inductor, all in parallel. Fig. 2.2a shows this separation, and the

non-linear inductor (green) is represented as a spider element [Manucharyan et al., 2007]. Its
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potential energy term can be expressed as:

U (ϕ) = −EJ cosϕ+ EJϕ
2/2, (2.37)

and it is indeed a purely non-linear term. �is treatment can by applied in general for any inductive

non-linear element. Fig. 2.2b shows the separation of a general circuit element to its linear compo-

nents and its purely non-linear component (green). �is is useful for treating the new non-linear

element described in Chapter 5.

(a) (b)

NL

NL

Figure 2.3: If we can isolate the non-linearity into a single element (green), the generic linear circuit
a�ached to it can be diagonalized into a Foster form. (a) and (b) show the parallel and series Foster
forms respectively. (a) �e current (charge) through the non-linear element is equal to the sum of
currents through the normalized harmonic oscillators. (b) �e voltage (�ux) across the non-linear
element is equal to the sum of voltages across the normalized harmonic oscillators.

Any circuit with a single non-linear element can thus be described as a non-linear element in

parallel with a linear circuit. �e behavior of the linear circuit is completely given by its resonant

modes. �us, we can transform any linear circuit into a combination of independent oscillators.

�is expansion of an arbitrary impedance into a set of oscillators is sometimes known as the Foster

form [Foster, 1924] of a circuit3.

Fig. 2.3 shows our circuit, in which a non-linear element is coupled to a general linear cir-

cuit. �e circuit is expanded in the parallel (Fig. 2.3a) and series (b) Foster forms respectively.

�ese forms are equivalent representations of the linear circuit. �ough as a whole they represent

the same circuit, the translation between any inductor and capacitor of one form to the other is
3We use this terminology as it is common and for lack of a be�er one. �e technique of expanding a complex

function into its poles, and its use for electromagnetic circuits, likely predates Foster’s work.
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generally complicated.

Notice that the parallel Foster circuit contains the resonant circuit modes as independent LC

oscillators in parallel, and also an additional pure inductor and pure capacitor. Similarly, the series

Foster circuit contains a pure inductor and capacitor in series. �ese elements correspond to the

behavior of the circuit at frequencies ω = 0 and ω =∞.

�ough the two circuits are in principle completely equivalent, we break the equivalence bet-

ween them with our de�nition of the non-linearity. Our non-linear element was de�ned as having

a linear inductor and capacitor in parallel (see Fig. 2.2), and for a Josephson junction we know

precisely what their values are. �us, in the parallel form of the Foster circuit in Fig. 2.3a, the

non-linear element is guaranteed to have a non-zero pure capacitor Cp and a �nite pure inductor

Lp in parallel. Note that the existence of a �nite Lp imposes that the circuit impedance Y [ω] obeys

Y [ω → 0] → ∞, as it contains a term of the form 1
−iωLp . �us, in the equivalent series circuit in

Fig. 2.2b, the impedance must obey Z[ω → 0]→ 0. �is imposes that the pure series capacitor Cs

is in�nite, as its impedance is of the form 1
iωCs

. �us we can remove the series capacitor from the

circuit (capacitor is grayed out in Fig. 2.2b). Similarly, the existence of a non-zero parallel capacitor

Cp in the parallel circuit imposes Z[ω → ∞] → 0 and thus the pure series inductor must obey

Ls = 0 and can be removed from the circuit (inductor is grayed out in Fig. 2.2b).

We have thus established that in the series Foster form, the non-linear element is in parallel

with a set of M independent series harmonic oscillators. For each independent oscillator k, we

can de�ne the corresponding annihilation operator ak and the reduced �ux across the oscillator

is simply given by ϕk =
φkZPF
φ0

(
ak + a†k

)
as we saw in Section 2.2.2. �e reduced �ux across the

non-linear element ϕ can thus be expressed as ϕ =
∑M

k=1ϕk from Kirchho�’s rule.

If we de�ne the potential energy of the non-linear inductive element as UNL (ϕ) (for the

Josephson non-linearity, it is given by Eq. 2.37) and the Hamiltonian for the linear circuit as

H0 (ϕ1,ϕ2, ...,ϕM ), we can express the Hamiltonian of the full non-linear circuit:

H = H0 (ϕ1,ϕ2, ...,ϕM ) +UNL (ϕ1 +ϕ2 + ...+ϕM ) (2.38)
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�e non-linear term in Eq. 2.38 is responsible for the non-linear corrections to each of the

modes, as well as non-linear couplings between them. For example, the lowest order terms in the

Josephson non-linearity include a term of the form:

−
EJ

(
φ1
ZPF

)4
4φ4

0

a†1a
†
1a1a1, (2.39)

which is a fourth-order Kerr non-linearity for linear mode 1. �ey also include a term of the form:

−
EJ

(
φ1
ZPFφ

2
ZPF

)2
4φ4

0

a†1a1a
†
2a2, (2.40)

which is a cross-Kerr coupling between the linear modes 1 and 2 (In Chapter 3, this type of dis-

persive coupling is be labeled χ). A coupling of this form can not be removed by a change of

coordinates as in the linear case, and a Hamiltonian of the form in Eq. 2.38 cannot generally be

separated into M independent uncoupled non-linear modes.

It is important to remember that even though we represent the Hamiltonian in the basis of the

linear modes of the circuit, these are not the energy eigenstates of the circuit. For weakly non-

linear system it can be a good intuition to think of the system as a set of linear modes perturbed by

a non-linearity, but we should still be careful that an operator such asa1 does not quite correspond

to the annihilation operator of an eigen-mode of the circuit, but can have a more complicated e�ect.

For a strongly non-linear system, the eigen-modes of the system are in general completely di�erent

from the linear modes, and expanding the linear modes may not be the best description of a circuit.

Even the notion of eigen-modes may not carry over as coupling terms become strong as well -

the non-linear circuit is sometimes best described as a complicated arrangement of inseparable

eigenstates.

In all these cases, however, the method we described is a convenient way to write the Hamilto-

nian of the circuit and analyze its eigenstates and dynamics [Smith et al., 2016], even if sometimes

this can only be done numerically.
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2.4 Common arti�cial atoms

Even though we only have three basic building blocks: a capacitor, an inductor and a Joseph-

son junction, di�erent values and di�erent combinations for these elements can produce a wide

selection of arti�cial atoms. In this Section we provide a short overview of a few common arti�-

cial atoms. �ese are relatively basic circuits, and are themselves o�en combined to produce more

complicated arti�cial atoms. �is is by no means an exhaustive list, and we focus on circuits which

are relevant in later parts of the thesis.

(a) (b)

Cg

CJ EJ

Vg

Cs

CJ CJEJ

(c)

αEJ

EJ

EL

EJ

Φext

(d)

EJ

Φext

Cooper-pair box transmon flux qubit fluxonium

Figure 2.4: (a) �e Cooper-pair box, which is made up of a Josephson junction biased by an
external voltage Vg through a gate capacitor Cg . �e charge on the island (marked by a dashed
red line) between the junction and the gate capacitor is the DOF for this arti�cial atom. (b) �e
transmon consists of a Josephson junction shunted by a large capacitor Cs, such that EC � EJ.
�e eigenstates of the transmon are similar to those of a harmonic oscillator, with a weak non-
linearity provided by the junction. (c) �e �ux qubit consists of a small junction in parallel with
two (or more) identical larger junctions. α is the ratio of their Josephson energies, and a �ux
Φext is threaded through the loop between them. �e �ux qubit is usually operated at Φext/Φ0 =
0.5 where the atomic states correspond to superpositions of clock-wise and counter clock-wise
currents. (d) �e �uxonium consists of a Josephson junction shunted by a linear inductance L
such that L� LJ. �is inductance is itself implemented as an array of large Josephson junctions,
and so can be seen as a limit of the �ux qubit. �e �uxonium is a tunable arti�cial atom, as its level
structure depends strongly on Φext.

2.4.1 Cooper-pair box

�e Cooper-pair box (CPB) (see Fig. 2.4a) is the father of virtually all modern superconducting

atoms. Coherent quantum states were �rst observed [Bouchiat et al., 1998] and controlled [Naka-

mura et al., 1999] in this arti�cial atom. It consists of a Josephson junction connected to an external

voltage source Vg by a gate capacitor Cg .
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We can write the Hamiltonian for this system as4:

HCPB =
4e2

2(Cg + CJ)
(N −Ng)

2 − EJ cosϕ, (2.41)

where CJ is the capacitance of the Josephson junction and EJ is its Josephson energy. ϕ is the

phase across the junction and N is the number of Cooper pairs across the junction and the con-

jugate to ϕ. Ng = V Cg/2e is an o�set charge set by the voltage source. �e CPB is operated

in the regime EC � EJ where EC = e2

2(Cg+CJ) and thus the quantum states of the system are

approximately the eigenstates ofN - the discrete charge on the island (dashed red line in Fig. 2.4a)

between the junction and gate capacitor.

Notice that the Hamiltonian eigenstates and their energies strongly depend on the value ofNg

and at Ng mod 1 = 0.5 there are two degenerate charge states. �is degeneracy is li�ed by the

Josephson tunneling term, and so the two states are split by EJ - similar to the Zeeman spli�ing

of a spin due to magnetic �eld.

�is original formalism seems to disagree with our derivation of the Josephson junction in

Section 2.3.1. In the derivation we introduced a parasitic linear inductance in parallel with the

junction which broke the periodicity of the �ux, or the charge discreteness, and allowed us to de�ne

the normalized charge and �ux as continuous operators like those of a harmonic oscillator. �is

inductance necessarily negates any e�ect of a static Ng . �is can be seen by applying the unitary

transformation U = eiNgϕ which simply removes the static o�set term from the Hamiltonian

[Koch et al., 2009].

�is is not true for a time dependent o�set, however. In that case the unitary becomes time

dependent and the Hamiltonian in the new frame is:

HCPB = 4ECN
2 − EJ cosϕ− ~Ṅgϕ, (2.42)

4Note that we have not treated a voltage source within our formalism. �is circuit is no longer isolated and thus
needs to be addressed as an open quantum system for full treatment. However, we can approximate the source to be a
very large capacitor C initially charged with charge Q such that Q/C → V as C → ∞. An inductance L should be
added in parallel to obtain the correct behavior at zero frequency. �e capacitor will discharge on the timescale

√
LC

but on shorter timescales we approximate this DOF as a static voltage source.
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and its eigenstates and energies are clearly a�ected by Ng . �is Hamiltonian should allow us to

treat the e�ects of a charge o�set within the BBQ framework.

2.4.2 Transmon

�e transmon qubit [Koch et al., 2007] is made up of a CPB shunted by a large inductanceCs � CJ.

�is signi�cantly reduces the capacitive energy of the junction so that EC = e2

2(CJ+Cs)
� EJ.

�e eigenstates of this Hamiltonian are very di�erent from those of the CPB, and are actually

quite similar to those of a harmonic oscillator. �e large capacitance decreases the zero-point

�uctuations in �ux, thus allowing us to expand the potential around ϕ = 0:

Htransmon = 4ECN
2 − EJ cosϕ ≈ 4ECN

2 +
EJ

2
ϕ2 − EJ

24
ϕ4 (2.43)

�e lowest eigenstates of the transmon have energies well within the cosine potential, and

thus it can be approximated as a slightly non-linear parabolic potential. �e transmon Kerr non-

linearity, the �rst-order correction of its eigenenergies from those of a harmonic oscillator, is ap-

proximately given by EC .

�e signi�cant advantage of reducing the capacitive energy is removing the sensitivity of the

transmon frequency to charge noise. A dri� in the charge o�setNg is screened by the capacitance

and no longer a�ects the transition frequency ωge between the lowest transmon eigenstates |g〉

and |e〉. �us the transmon can achieve higher coherence times.

2.4.3 Flux qubit

�e �ux qubit [Mooij et al., 1999, Wal et al., 2000, Chiorescu et al., 2003] is derived from the original

proposal by A. J. Legge� of observing macroscopic quantum-coherent oscillations between �ux

states of the RF-SQUID [Legge�, 1980, 1987]. Instead of the RF-SQUID, which consists of a Josep-

hson junction shunted by a geometric inductance, the �ux qubit consists of a Josephson junction

shunted by an e�ective inductance made up of an array of several bigger Josephson junctions in

series.
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Here we treat a shunting array consisting of two junctions:

HFQ = 4ECN
2 − αEJ cosϕ− 2EJ cos

(
ϕ− Φext/φ0

2

)
, (2.44)

where ϕ as the �ux across the small junction, Φext is the external �ux through the loop, and

α is the ratio of the junction sizes, which corresponds to the ratio of their Josephson energies.

Note that we have neglected the capacitances of the shunting junctions and the additional DOF

associated with them, and treat the shunting junctions as pure inductive elements. �is is justi�ed

as the frequency of this additional mode is high, and the single DOFϕ is su�cient to describe this

arti�cial atom at low energies.

�e potential of the small junction has a 2π periodicity in �ux, while that of the big junction

has a 4π periodicity. �e competition between these two terms as a function of Φext determines

the nature of the �ux qubit eigenstates. For most Φext values, the �ux qubit potential has a single

well of the lowest energy, and the ground state |g〉 adopted by the system resides in that well. �e

ground state approximately corresponds to a particular current �owing through the loop. At ex-

actly Φext mod Φ0 = Φ0/2, the full qubit potential has two degenerate wells, and thus there are

two degenerate current states for the device. �is degeneracy is li�ed by the capacitive charging

term, and the two eigenstates |g〉 and |e〉 correspond to the symmetric and anti-symmetric com-

binations of current propagating clockwise and counter-clockwise. �e ground-excited transition

energy ωge is a sensitive function of both Φext and EJ.

�e coherence time of the �ux qubit is signi�cantly reduced when moving even slightly away

from the optimal �ux point, due to the high sensitivity of the qubit to �ux noise. To decrease this

sensitivity, a variant of the �ux qubit [You et al., 2007] has been proposed in which its EJ/EC

ratio is reduced. While decreasing the sensitivity to �ux noise, this qubit is now more sensitive to

charge noise. To decrease this dependence, a large capacitance is added in parallel with the junction

(similar to the transmon qubit), and so this qubit is o�en called the C-shunt �ux qubit [Yan et al.,

2016].
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2.4.4 Fluxonium

�e �uxonium arti�cial atom [Manucharyan et al., 2009] is a loop circuit made up of a small Jo-

sephson junction (with Josephson energy EJ and capacitive energy EC ∼ EJ) in parallel with a

large linear inductor L, such that its inductive energy EL satis�es EL � EJ. �e Hamiltonian

for this circuit is:

Hfluxonium = 4ECN
2 − EJ cos (ϕ− Φext/φ0) +

EL
2
ϕ2, (2.45)

where Φext is the external �ux through the �uxonium loop.

However, a large physical inductance L, for example a wire of �nite length, is always accom-

panied by a parasitic capacitance Cp. �is leads to a L-Cp oscillator mode in parallel with the

junction, which must not shunt the junction’s the phase �uctuations. We thus need to satisfy

(L/Cp)
1/2 � (LJ/C)1/2 ∼ RQ where RQ = ~/(2e)2 ≈ 1kΩ is the resistance quantum. Such an

inductance is known as a “superinductance” [Manucharyan, 2011], and it is impossible to achieve

with a geometrical inductance, as its characteristic impedance is always limited by the vacuum

impedance of 377 Ω [Feynman et al., 1963]. Instead, the �uxonium inductance is implemented

using an array of large Josephson junctions (see Chapter 4).

(a) (b) (c)
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Figure 2.5: �e potential (black) and wave-functions of the ground (blue) and excited (red) states
of the �uxonium qubit as a function of the superconducting phase across the small junctionϕ. (a),
(b), and (c) correspond to Φext/Φ0 = 0, 0.25, and 0.5 respectively. �e �uxonium parameters used
for the �gure are: EC/~ = 3.6GHz,EL/~ = 0.46GHz, andEJ/~ = 10.2GHz. �ese parameters
correspond to the �uxonium measured in Ref. Vool et al. [2014].
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�e �uxonium level structure strongly depends on the value of Φext, and this device can be

considered a di�erent arti�cial atom at every �ux point. Fig 2.5 shows the �uxonium potential

(black) vs. the �ux ϕ, and the wave-functions for its two lowest eigenstates |g〉 (blue) and |e〉

(red). �ese are plo�ed for Φext/Φ0 = 0, 0.25, and 0.5 in Fig 2.5a, b, and c respectively.

At Φext = 0, the minimum of the parabolic term and the minimum of the cosine term coincide,

and thus the low energy �uxonium states are localized around a single well in �ux and its �rst

excitations somewhat resemble plasma excitations - such as those of the transmon. At Φext =

Φ0/2, the minimum of the parabolic term coincides with the maximum of the cosine term, and

thus the �uxonium low energy states lie in two degenerate �ux wells simultaneously, similar to

those of the �ux qubit. Also notice that the energy di�erence between |g〉 and |e〉 at this �ux point

is the lowest, and given by the tunneling rate between the two wells. �is frequency is commonly

ωge ≈ 2π × 500 MHz.

Between these two external �ux points, the �uxonium potential is asymmetric and its lowest

energy states reside in separate �ux wells. Φext = 0 and Φ0/2 are known as the “sweet spots” of

the �uxonium, where its energy ωge is �rst-order insensitive to noise in the external �ux.

Similarly to the �ux qubit, the inductor suppresses the low-frequency charge noise as it shunts

the two sides of the junction. However, due to its large inductance, the �uxonium energy ωge o�

of its sweet spots is signi�cantly less sensitive to external �ux noise compared to that of the �ux

qubit.



Chapter 3

Circuit quantum electrodynamics

In atomic quantum-coherent systems, manipulations of the atom are commonly performed using

electromagnetic waves. However, as the interaction is weak, the quantum nature of the light

itself is o�en neglected in the treatment of the system. �e �eld of cavity quantum electrody-

namics [Haroche and Raimond, 2006, Miller et al., 2005] changed this paradigm and allowed for

quantum-coherent interactions between atomic excitations and photons. �e photons are the ex-

citations of an optical cavity with low loss, and they interact via dipole coupling with an atom

placed inside it (see Fig. 3.1a). �e low loss in the system and the strong coupling between the

atom and cavity allow for quantum manipulation of the states of the cavity, and its treatment as a

coherent quantum system by itself.

Inspired by the achievements of cavity quantum electrodynamics, the �eld of superconducting

arti�cial atoms adopted a similar framework. In the circuit quantum electrodynamics (cQED) [Blais

et al., 2004, 2007] framework, a superconducting arti�cial atom is coupled to a microwave resonator

(see Fig. 3.1b). �e resonator itself can be implemented as either a circuit resonator or a microwave

cavity [Paik et al., 2011]. As the arti�cial atom is itself a circuit, the coupling between the arti�cial

atom and cavity can be tuned by changing the value of capacitor, and strong coupling can be easily

achieved.

�e cQED framework is currently the main way to manipulate and perform measurements on

superconducting atoms. It is also used to control the cavity itself as an arti�cial atom, and encode

38
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(a) (b)

Figure 3.1: �e design for a superconducting two-level atom coupled to a linear oscillator is
inspired by experiments in cavity QED (le�), in which a natural atom (green) interacts with the
quantized light of an optical cavity (blue) as it �ies through it. In circuit QED (right) the atom is
replaced by a non-linear arti�cial atom while the optical cavity is replaced by a linear resonator.
Both objects are macroscopic and coupled by a capacitor (magenta), which allows for independent
control of the frequencies and coupling between both modes.

quantum information within it [Mirrahimi et al., 2014].

In this Chapter, we introduce the mathematical formalism of the cQED framework with the

addition of external drives and dissipation. We start with a discussion on using either the harmonic

oscillator or the spin operators to describe the states of the arti�cial atom, and the problems with

either option. We then proceed to discuss the Jaynes-Cummings (JC) formalism for an arti�cial

atom (qubit) coupled to a cavity, with a focus on the dispersive regime. We then discuss how

to add external drives and dissipation to our treatment, and the conditions under which we can

approximate the driven system with a Hamiltonian. We �nish with a description of an e�ective

qubit drive due to its interaction with the cavity, and the loss of energy and information which the

qubit inherits from the cavity due to this interaction.

3.1 Photon or spin?

�e Hamiltonian of the arti�cial atom was derived in Chapter 2 as a non-linear oscillator, and it

is convenient to describe it using the operators of a linear oscillator. For a single non-linear DOF,

the Hamiltonian in Eq. 2.38 can be expanded in the linear creation and annihilation operators :

H/~ = ω0a
†a+ d3(a+ a†)3 + d4(a+ a†)4 + ... (3.1)
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where ω0 is the frequency of the linear circuit and dn are the n-th order non-linear corrections.

�is is an accurate description of the arti�cial atom, but the translation between the valuesw0 and

dn to the eigenstates and eigenvalues of the system is not straightforward. Note that the linear

eigenstates {|n〉} are not eigenstates ofH!

A much more convenient Hamiltonian may be derived by normal ordering the terms, such that

creation operators are always to the le� of annihilation operators - note that this mixes terms of

di�erent orders due to the commutation relation. We also simplify the Hamiltonian by using the

rotating wave approximation (RWA), in which we transfer to the rotating frame U = ei~ω0a†at

and neglect rapidly oscillating terms. �is allows us to neglect “non energy-conserving terms”

such as a†a†a. �e new approximate Hamiltonian now takes the form:

HRWA/~ = ωa†a+
K

2
a†a†aa+ ... (3.2)

where ω is the new frequency of the oscillator, which includes corrections from the non-linear

terms, and K is the Kerr non-linearity. �is Hamiltonian is much more intuitive and provides a

very useful description for the behavior of the system. �e linear eigenstates are eigenstates of the

approximate HamiltonianHRWA, and we can utilize our intuition for linear systems to study our

circuit. ~ω is indeed the transition energy for the |0〉 ↔ |1〉 transition and ~K is the correction in

transition energy for the |1〉 ↔ |2〉 transition.

However, many terms have been neglected in this step, and we need to make sure we are still

accurately describing our arti�cial atom. Most importantly, the RWA is only allowed for weakly

non-linear systems. If the non-linear coe�cients are on the same order as ω0, the rotating terms

are signi�cant and by neglecting them we have obtained the wrong Hamiltonian. Even for weak

non-linearities, the rotating terms can have signi�cant corrections of a higher order and should

be taken into account if our non-linearity is expanded to higher orders. �e neglected terms can

also have signi�cant e�ects when drives are applied to the system, or when we are interested in

the behavior of higher excited states. Higher-order RWA, which includes higher-order corrections

due to the rotating terms, can improve the accuracy of the obtained Hamiltonian [Rouchon and
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Mirrahimi, 2010].

Another approximation, which is especially useful for strongly non-linear systems, assumes

that our non-linearity is in�nite and treats our system as a two-level atom with the Hamiltonian:

HTLS/~ =
ω

2
σz (3.3)

In this description of the system, we completely neglect the e�ect of the higher energy states, but

instead get an intuition for the behavior of the isolated two-level system formed by the two lowest

eigenstates |g〉 and |e〉. It is a useful description when we only operate near the frequency ω and

all other transition frequencies are signi�cantly di�erent.

�ere are some correspondences between these two descriptions. �e linear energy term a†a

corresponds to the Pauli operatorσz , and the linear amplitude or drive term
(
a+ a†

)
corresponds

toσx = (σ− + σ+). σ+ andσ− are the creation and annihilation operators in the spin 1/2 basis,

but note their commutator: [σ−,σ+] = −σz , as opposed to
[
a,a†

]
= 1. �us, we should not

use the intuition of linear systems to discuss spins and vice versa.

Another noticeable di�erence is the notion of order. �e terma+a† corresponds to the electric

�eld and is said to be �rst-order. �e a†a term corresponds to the energy and is thus second-order.

�e corresponding spin operators σz and σx are simply rotations of each other and certainly one

is not of higher order than the other. �us, in strongly non-linear systems we should be careful

with the notion of order, as it is not always a good description for the system.

Neither the spin nor harmonic oscillator bases are perfect, but they both capture signi�cant

parts of the physics of arti�cial atoms. �e choice of basis depends on the speci�cs of the system

and the e�ects being studied. �roughout this thesis, we use the harmonic oscillator basis for

linear systems such as a cavity mode or resonator, and the spin basis for arti�cial atoms such as

the transmon or �uxonium. Note that the spin basis is not valid if the drives applied on the non-

linear system are stronger than its Kerr non-linearity, and thus there is a bound on the applied

drives within our description.
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3.2 �bit coupled to a cavity

�e system we consider consists of a cavity and a qubit, coupled via dipole interaction. �e Ha-

miltonian for the system, sometimes known as the Rabi Hamiltonian, is given by:

HR/~ = ωca
†a+

ωq
2
σz + g

(
a+ a†

)
σx, (3.4)

where ωc is the cavity frequency, ωq is the qubit frequency, and g is the e�ective interaction bet-

ween the qubit and cavity. �e more common form of this Hamiltonian is obtained by assuming

that ωc ∼ ωq and applying the RWA to neglect rapidly rotating terms. �e resulting Hamiltonian

is known as the Jaynes-Cummings (JC) Hamiltonian [Jaynes and Cummings, 1963, Haroche and

Raimond, 2006]:

HJC/~ = ωca
†a+

ωq
2
σz + g

(
aσ+ + a†σ−

)
(3.5)

�is Hamiltonian is analytically solvable, as the ground state |g, 0〉 is unperturbed by the qubit-

cavity interaction, and the excited states are only coupled in pairs. �e eigenstates of HJC are

given by:

|n+〉 = cos θn|e, n〉+ sin θn|g, n+ 1〉 (3.6)

|n−〉 = − sin θn|e, n〉+ cos θn|g, n+ 1〉, (3.7)

where θn = 1
2 arctan 2g

√
n+1

∆ and ∆ = ωq − ωc is the detuning between the cavity and qubit

frequencies. θn de�nes the hybridization between the cavity-qubit states, and notice that the hy-

bridization is larger for higher photon numbers n.

�e cavity and qubit are never fully isolated from the environment and we assign decay rates κ

and Γ which correspond to the cavity and qubit respectively (see the following section for a detailed

treatment of dissipation in the system). In most uses, the cavity decay κ is made intentionally

high so that the system can be manipulated and measured, and so κ � Γ. However, due to their

interaction, the cavity can mediate qubit decay - an e�ect known as the Purcell e�ect [Purcell,

1946, Houck et al., 2008].
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�e JC system is said to be in the strong-coupling regime when g � κ,Γ. Achieving this

regime was the hallmark of cavity QED, and was made simpler by implementing the Hamiltonian

in circuit QED. As the coupling term g gets larger and approaches or surpasses the cavity and qubit

frequencies ωc and ωq , the system is said to be in the ultra-strong-coupling regime or deep-strong-

coupling regime [Casanova et al., 2010]. In this regime the full Rabi Hamiltonian must be treated,

and the behavior of the system can no longer be isolated into the qubit and cavity dynamics.

In this thesis, we focus on two extreme cases of the Hamiltonian: the resonant case in which

∆ = 0, and the dispersive case in which |∆| � |g|.

In the resonant case where ∆ = 0, the states are completely hybridized such that |n±〉 =

|e, n〉 ± |g, n + 1〉. Due to this, the Purcell e�ect is maximal in this case and the qubit decay is

generally dominated by the cavity (see Section 3.3.4 for more details).

In the dispersive case where |∆| � |g|, the qubit and cavity states are weakly hybridized.

While the hybridization always increases with photon number, we can focus on the lowest excited

states which can be approximately expressed as |0+〉 ≈ |e, 0〉 + g
∆ |g, 1〉 and |0−〉 ≈ − g

∆ |e, 0〉 +

|g, 1〉. �e interaction between the qubit and cavity is small and the Purcell e�ect is thus strongly

suppressed.

Notice that under the RWA, we can simply ignore the interaction term as it is small and rapidly

rotating at the detuning frequency. However, this is too harsh of an approximation as this term

has an important second-order correction. To see this, let us apply the Schrie�er-Wol� dispersive

transformation U = e
g
∆

(aσ+−a†σ−) and keep terms up to �rst order in g
∆ [Schrie�er and Wol�,

1966, Blais et al., 2004]. Under this transformation we obtain the Hamiltonian:

Hdisp/~ = ωca
†a+

ωq + χ/2

2
σz +

χ

2
a†aσz, (3.8)

where χ = g2

∆ is known as the dispersive shi�1. In this frame, the interaction term contributes a

Lamb shi� to the qubit frequency. More importantly, it leads to a new term in which the cavity
1Here we can see a good example of the problem with approximating our arti�cial atom as a two-level system. For the

transmon, the higher levels signi�cantly a�ect the dispersive shi� and the correct expression is given by χ = g2K
∆(∆−K)

where K is the Kerr non-linearity of the transmon [Koch et al., 2007].
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frequency depends on the qubit state and vice versa. Note that the new cavity and qubit eigenstates

are eigenstates of the dispersive Hamiltonian, but the two systems are still not decoupled - this is

due to the non-linearity in our system, and impossible for coupled harmonic oscillators.

Even in those cases where the decay of the cavity does not signi�cantly contribute to qubit

loss, it erases qubit phase information through the dispersive interaction as the qubit frequency

depends on the number of photons in the cavity (see Section 3.3.4 for more details). �is should not

be seen as a purely negative e�ect, however, as it is precisely the e�ect that we utilize to measure

the state of the qubit using the cavity (see Section 4.2).

3.3 Adding drives and dissipation

3.3.1 Input-output formalism

�ere are many ways to describe the physics of open quantum systems [Breuer and Petruccione,

2002]. Here, we follow the input-output formalism [Gardiner and Zoller, 2004] which extends the

Heisenberg equation to include the e�ects of incoming or outgoing �elds. We only show an outline

of the derivation, for a more complete derivation see Refs. Steck [2007], Clerk et al. [2010], Girvin

[2011]. Also see Ref. Vool and Devoret [2017] for an alternative derivation.

Let us focus only on the cavity, with its internal Hamiltonian Hcav = ωca
†a. �e cavity is

also coupled to a dissipative bath, which we model as a continuum of modes:

Hint/~ =
1√
2π

∫ ∞
0

dω
√
κ(ω)

[
ab†(ω) + a†b(ω)

]
, (3.9)

where b are modes in the bath with the commutation relation
[
b(ω), b†(ω′)

]
= δ(ω − ω′). Note

that since the modes b†b correspond to a density of photons per unit bandwidth, the b operators

have units of 1/
√

Hz. Also note that we have already assumed the RWA in Hint, as we ignore

terms of the form ab(ω).
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We can write the Heisenberg equation for a as:

ȧ = − i
~

[a,Hcav +Hint] = −iωa− i√
2π

∫ ∞
0

dω
√
κ(ω)b(ω) (3.10)

�is term depends on the time evolution of the modes b, which we can obtain by solving their

own Heisenberg equation and integrating in time. �is integral ends up contributing two terms,

one due toHint and the other due to the internal evolution of the modes b. In general these terms

are complicated integrals, but we can simplify them using the Markov approximation where the

coupling is independent of frequency: κ(ω) = κ. �is is justi�ed when κ� ωc as only modes in

a narrow range of frequencies around ωc signi�cantly interact with our system.

Under this approximation, the Heisenberg equation becomes:

ȧ = −iωa− κ

2
a−
√
κain, (3.11)

which is known as the quantum Langevin equation.

�e second term in Eq. 3.11 corresponds cavity dissipation, and we can see that κ is the energy

decay rate of the cavity. �e third term corresponds to the incoming �eld which impinges on

the cavity from the bath. It is obtained by integrating the modes b at an early time t0 before

the interaction started : ain = i√
2π

∫∞
0 dωb0(ω)e−iω(t−t0) where b0 = b|t=t0 . Note that the

dissipation and drive terms always appear together and are both related to the coupling κ - this is

known as the �uctuation-dissipation theorem. �e units of ain are 1/
√
s, and thus it can be

interpreted as the the square-root of the photon �ux incoming at the cavity.

�is relation can be equivalently derived using the outgoing �eld aout:

ȧ = −iωa+
κ

2
a−
√
κaout, (3.12)

where aout is obtained by integrating the modes b at a later time a�er the interaction ended. From
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Eqs. 3.11,3.12 we can derive the relation:

aout − ain =
√
κa, (3.13)

which is known as the input-output relation. Here we have translated the dynamics of the

cavity into a sca�ering problem, in which it is completely governed by the ingoing and outgoing

�elds.

3.3.2 Sti�-pump approximation

When we drive the cavity, we interact with it through the incoming �eld term ain. �is term

can be separated into two parts, a classical drive and quantum �uctuations around it: ain(t) =

āin(t)+a0
in(t). If the drive amplitude is much larger than the quantum �uctuations, we can neglect

their e�ect and treat the drive classically. �is is known as the sti�-pump approximation, as it

assumes the pump transfers energy to the cavity without being depleted. Note that it can be done

for an arbitrary drive strength on the cavity itself as the drive term is: E(t) =
√
κāin(t), and for

every value of E we can choose an arbitrarily high āin and an arbitrarily small κ to compensate.

�e sti�-pump approximation can be formulated as driving in�nitely hard through an in�nitely

weakly-coupled port.

Under this approximation, we can write Eq. 3.11 as ȧ = −iωa − κ
2a − E(t), and we see an

identical equation is obtained by simply adding a term −i~E(t)
(
a+ a†

)
to the Hamiltonian.

Let us assume we are driving the system with a continuous tone of frequency ωd. We can write

the driven cavity Hamiltonian as:

Hc/~ = ωca
†a+ 2ε cosωdt

(
a+ a†

)
(3.14)

�is is a time-dependent Hamiltonian, but as its time dependence is periodic and we assume

ωd ≈ ωc, we can transform to a time-independent Hamiltonian by moving to the frame rotating
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at the drive frequency (U = ei~ωda
†at) and neglecting rapidly rotating terms. We then obtain:

Hc/~ = ∆ca
†a+ ε

(
a+ a†

)
, (3.15)

where ∆c = ωc − ωd is the detuning of the cavity drive.

An interesting property of the driven harmonic oscillator is that it can be described as an

undriven harmonic oscillator in a di�erent frame. To see this, let us �rst �nd the steady-state of

the system by writing its Langevin equation:

ȧ = −i∆ca−
κ

2
a− iε, (3.16)

and se�ing the le�-hand side to zero. We �nd that the steady-state value for the cavity decay

operator is ā = ε
iκ/2−∆c

. �e steady state of the cavity is the coherent state |ā〉, an eigenstate of

the annihilation operatora. Let us now express our system in terms of an operator which describes

the �uctuations around this mean d = a− ā. Formally, this is done by applying the displacement

transformation U = eā
∗a−āa† . In this new frame, the quantum Langevin equation is:

ḋ = −i∆cd−
κ

2
d, (3.17)

the equation for an undriven oscillator. �e steady state in this frame is the displaced coherent

state, which is simply the ground state |0〉.

3.3.3 E�ective qubit drive

We have discussed in detail how to add drives and dissipation to the cavity. Now, let us bring back

the qubit term and see how it is a�ected. Note that generally when we drive the qubit to perform

operations on it, the incoming electromagnetic �eld is not coupled directly to the qubit dipole but

the interaction is mediated by the cavity.

We can see this by applying a drive at the cavity with a frequency ωqd, which is close to the

qubit frequency ωq . �us, we add a term 2εq cos(ωqdt)
(
a+ a†

)
to the Hamiltonian. Under the
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Schrie�er-Wol� transformation we have used to reach the Hamiltonian in Eq. 3.8, this drive term

transforms into a qubit drive term 2εqg
∆ cos(ωqdt)σx. �e e�ect of this drive on the cavity itself is

neglected as it is far away from the cavity resonance. �e amplitude of the qubit drive in frequency

units is commonly known as the Rabi frequency ΩR =
2εqg
∆ .

�e driven qubit Hamiltonian can thus be wri�en as:

Hq/~ =
ωq
2
σz + ΩR cos(ωqdt)σx, (3.18)

and once again we can transform to the rotating frame of the drive (U = ei
ωqd

2
σzt) and neglect

rapidly rotating terms:

Hq/~ =
∆q

2
σz +

ΩR

2
σx, (3.19)

where ∆q = ωq − ωqd. Note that this already appears to be an undriven Hamiltonian. We can

make this transformation explicit by de�ning a new basis σ̃z =
∆q√

∆2
q+Ω2

R

σz+ ΩR√
∆2
q+Ω2

R

σx, which

is simply a rotation on the Bloch sphere (see Fig. 1.2 and Ref. Allen and Eberly [1975]). In this basis

the Hamiltonian takes the simple form:

Hq/~ =

√
∆2
q + Ω2

R

2
σ̃z, (3.20)

which is precisely an undriven qubit.

We have thus seen that a driven cavity can be transformed into a displaced, undriven cavity

whose frequency is the detuning of the drive, and a driven qubit can be transformed into an und-

riven qubit in a rotated basis which depends on the detuning and amplitude of the drive. �ese

are two simple examples of the ability to create e�ective arti�cial atoms from driven quantum

systems. In Chapter 6 we will see an e�ective arti�cial atom which builds on these two ideas.

3.3.4 cavity-induced decay

�e qubit is itself not completely isolated and thus its energy and information can decay to the en-

vironment. �is decay is both due to the intentional coupling which we use to perform operations
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on the qubit, as well as spurious coupling to other decay mechanisms we do not control.

Using NMR terminology, we call the qubit energy relaxation rate Γ1 and its corresponding

time T1 = 1/Γ1. �is is the characteristic time for the qubit to reach thermal equilibrium with

its environment. As the qubit in the JC Hamiltonian (Eq. 3.5) interacts with the cavity, the cavity

lifetime inherently limits the lifetime of the qubit through the Purcell e�ect2.

�is cavity-induced decay of the qubit is most pronounced in the resonant JC Hamiltonian

where the qubit and cavity are maximally hybridized. In this case, the e�ective decay rate of the

qubit depends on the coupling strength g compared to the cavity decay rate κ.

In the weak coupling regime g � κ, a qubit excitation |e, 0〉 slowly performs a coherent

transformation to |g, 1〉, which quickly decay to |g, 0〉. �us we can use the adiabatic approxima-

tion [Steck, 2007] in which the |g, 1〉 state is never populated, and |e, 0〉decays directly to |g, 0〉. In

this case the e�ective qubit decay rate is given by:

Γ1 = 4g2/κ. (3.21)

�is result can also be obtained by Fermi’s golden rule by assuming the state |g, 1〉 has a density

of states of width κ [Girvin, 2011].

In the strong coupling regime g � κ, a qubit excitation |e, 0〉 performs fast oscillations with

the |g, 1〉 state, sometimes known as vacuum-Rabi oscillations. �ese oscillations then decay due

to κ. In this case, the qubit spends half of its time as a cavity excitation, and thus the e�ective

decay rate is Γ1 = κ/2.

In the dispersive JC Hamiltonian, this e�ect is strongly suppressed by the frequency mismatch.

As the qubit-like excitation is approximately of the form |e, 0〉+ g
∆ |g, 1〉, it has a probability

( g
∆

)2
to be a cavity excitation. �us the e�ective decay rate is Γ1 =

( g
∆

)2
κ.

2Note that here we are referring to the case of a lossy, or “readout” cavity, in which κ � Γ1. �ere have recently
been experiments with long-lived “memory” cavities, whose lifetime is actually limited by the qubit lifetime through
the reverse Purcell e�ect [Reagor et al., 2016].
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3.3.5 Cavity-induced dephasing

In addition to energy relaxation, the qubit can be a�ected by a loss of the phase of the qubit state,

due to a noise in its frequency. �e process is caused by noise coupled to the σz operator of the

qubit, as opposed to a T1 process which is caused by noise coupled to σx and σy . We label the

characteristic dephasing time of the qubit by by Tϕ and its corresponding rate by Γϕ = 1/Tϕ.

In the dispersive JC Hamiltonian (Eq. 3.8), the qubit and cavity are very weakly hybridized

and so energy relaxation due to the Purcell e�ect is suppressed. However, as the qubit frequency

depends on the number of photons in the cavity, photon noise causes qubit frequency noise, and

thus dephases the qubit [Bertet et al., 2005a, Schuster et al., 2005]. Formally, the �uctuations of the

photon number operator n = a†a couple to the σz qubit operator and, in the limit χ � κ, we

can relate the qubit dephasing to the �uctuations in the number of photons using Fermi’s golden

rule [Ithier et al., 2005]:

Γϕ =
χ2

2
Snn(ω = 0), (3.22)

where Snn is the power spectral density of the noise in the cavity photon number. Notice that we

take the value of the spectral density at zero frequency, as this process causes transitions between

states orthogonal to σz , such as the states |±〉 - the transverse eigenstates of σx, and they are

degenerate in energy3. �is is unlike T1 processes which correspond to the spectral density at the

qubit frequency ωq .

�e spectral density is derived by �rst calculating the correlation functionCnn(t) = 〈n(t)n(0)〉−

〈n(t)〉〈n(0)〉where the expectation is taken over the cavity equilibrium state. �e spectral density

is then the Fourier transform of the correlation function Snn(ω) =
∫∞
−∞ dtCnn(t)e−iωt. Clearly,

for the cavity ground state |0〉 the correlation function and the spectral density are zero, and thus

there is no dephasing due to photon noise.
3�is is true for the basic dephasing which contributes to the decoherence measured in a Ramsey experiment. Pro-

tocols such as spin-echo, CPMG, and T1ρ (see Ref. Slichter [1990] for more information on these NMR sequences) are
sensitive to the spectral density at di�erent frequencies corresponding to the drives applied. In these cases, it is im-
portant to distinguish between Snn(+ω) which corresponds to spontaneous absorption - a process where energy ω
is lost, and Snn(−ω) which corresponds to spontaneous emission. �ese protocols thus e�ectively create an energy
di�erence ω between the transverse eigenstates. �is distinction is o�en irrelevant as the spectral density is symmetric,
but it can be engineered to be asymmetric - and so the dephasing prefers one of the transverse eigenstates. �is is the
idea behind the experiment in Ref. Murch et al. [2012], see Section 6.2 for more information.
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We separate our discussion into two distinct kinds of photon noise. One is spurious noise, due

to a thermal distribution of photons in the cavity, and the other is noise due to a coherent cavity

drive. �e la�er is o�en called measurement back-action, as it is precisely the protocol we use to

measure the qubit state whose back-action is to dephase the qubit [Clerk et al., 2010].

For the driven case, the equilibrium state of the cavity is the coherent state |α〉 and the calcula-

tion can be simpli�ed signi�cantly be moving to the displaced frame d = a−α. In this frame the

cavity equilibrium state is |0〉 and thus many terms in the correlation function cancel. �e result

simpli�es to:

Cdnn(t) = n̄〈d(0)d†(t)〉 = n̄e−i∆ct−κ2 t, (3.23)

where ∆c is the detuning of the cavity drive from the cavity resonance, and n̄ = α?α is the mean

photon-number in the cavity. �e corresponding spectral density is then:

Sdnn(ω) =
n̄κ

(ω −∆c)2 + (κ/2)2
, (3.24)

and so the dephasing rate is given by:

Γdϕ =
n̄χ2κ/2

∆2
C + (κ/2)2

(3.25)

For χ ≈ κ, we can no longer use Fermi’s golden rule. However, the rate can still be obtained

from a full solution of the master equation for the system [Gambe�a et al., 2006, 2008]. �ere

is an additional complication as the number of photons in the cavity now depends on the qubit

state, which a�ects the detuning of the drive from the cavity. We can thus de�ne for each qubit

state n̄g = ε2

(k/2)2+(∆c−χ/2)2 and n̄e = ε2

(k/2)2+(∆c+χ/2)2 . If we take the average photon number

n̄ =
n̄g+n̄e

2 , we can write the full expression for the dephasing term:

Γdϕ =
n̄χ2κ/2

∆2
C + (χ/2)2 + (κ/2)2

(3.26)

For dephasing due to thermal population in the cavity, calculating the correlation function is

a bit more involved. From Eq. 3.11 we can express a(t) as a function of ain(t) and the thermal
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population in the cavity nth is given by 〈a†in(t)ain(t′)〉 = nthδ(t−t′) (see Appendix E in Ref. Clerk

et al. [2010]). �e full derivation is given in Annex A of Ref. Bertet et al. [2005b]. He we quote the

�nal result, which is:

Cth
nn(t) = nth(nth + 1)e−κt (3.27)

And so, in the limit nth � 1, we obtain the corresponding spectral density:

Sth
nn(ω) =

2nthκ

ω2 + κ2
, (3.28)

and the dephasing rate:

Γth
ϕ =

nthχ
2

κ
(3.29)

For χ ≈ κ, a full solution of the master equation [Clerk and Utami, 2007, Yan et al., 2016] gives

a correction to this formula:

Γth
ϕ =

nthχ
2κ

κ2 + χ2
(3.30)

Note that the expressions for the dephasing due to coherent and thermal photons in the cavity

are quite similar. �e main di�erence between them is that in the driven case, the noise is due to

an interference between the drive amplitude and its �uctuations, and thus the correlation function

depends on the amplitude decay rate of the cavity κ/2, while in the thermal case there is no such

interference and the correlation function simply depends on the cavity energy decay rate κ. �us,

the spectral density of the thermal �uctuations is a Lorentzian with twice the width compared to

that of the coherent �uctuations. Experimentally, the source of the �uctuations can be veri�ed by

measuring the spectral density of the dephasing noise in a T1ρ experiment [Yan et al., 2013, 2016].

In the opposite limit χ� κ, the dephasing no longer depends on χ as every photon loss in the

cavity completely dephases the qubit [Sears et al., 2012]. �e dephasing rate is then simply given

by the cavity photon loss rate:

Γϕ = n̄κ (3.31)



Chapter 4

Experimental methods

�e theory of superconducting arti�cial atoms is especially exciting as it lies at the crossroads of

many disciplines: superconductivity and condensed ma�er physics, electromagnetism and electric

circuits, quantum optics and atom-light interaction, and quantum information. Until this point,

the thesis has focused on the theoretical aspects and touched on some of these disciplines and how

they combine. �e physics of experimental superconducting arti�cial atoms also lies at a cross-

roads between many experimental techniques, and a successful experiment requires combined

knowledge in a large variety of tasks.

We can list some of the main techniques in the chronological order of the experiment. Electron-

beam lithography is used to prepare the superconducting Josephson circuits. Sample packaging

must be done carefully to maximally isolate our system from the spurious environment, and some

sample holders - such as microwave cavities - are themselves part of the experiment and treated

as quantum mechanical objects. A dilution refrigerator is used to cool the samples to ≈ 20mK,

and proper thermalization of the sample is crucial. Flux-tunable samples are controlled through

an external superconducting coil using a DC source. Most operations on the quantum system are

performed using RF signals, and our experiments depend on the stability of RF generators and

the fast control of their amplitude and phase. �e arti�cial atoms are measured using heterodyne

interferometry.

In this thesis, we only touch on a few speci�c experimental methods used in superconducting

53
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arti�cial atoms. For details on techniques not covered here, please see other Yale theses which

discuss them in depth, such as Kurtis Geerlings’ thesis given in Ref. Geerlings [2013].

In this chapter, we focus on the preparation of our sample. We describe the process of making

our Josephson circuits using electron-beam lithography, with a focus on �uxonium fabrication.

We also describe two sample holders: the 3D cavity and the waveguide. A waveguide was used

to measure the �uxonium in the experiment described in Chapter 5, and a 3D cavity was used to

measure the transmon in the experiment described in Chapter 6.

We also discuss the readout - how measurements are performed on our system. We focus on

dispersive readout, which allows us to continuously monitor the state of the qubit. We compare the

measurement of our system by transmi�ing a microwave tone through our resonator or re�ecting

o� of it, and discuss the obtained signal and the advantages of each method.

4.1 Sample preparation

4.1.1 Sample fabrication

�e fabrication of transmon and �uxonium atoms in the 3D architecture requires only a single

fabrication step. We use e-beam lithography to write a pa�ern which includes Al capacitive and

inductive structures, and Al/AlOx/Al Josephson junctions. �e junctions used for the experiments

in Chapters 5 and 6 were fabricated using the bridge-free fabrication technique [Lecocq et al., 2011,

Pop et al., 2012], which was developed in Grenoble.

As its name suggests, the bridge-free fabrication technique is distinguished from the traditional

Dolan bridge technique [Dolan, 1977], in which the junctions are made by double-angle evapora-

tion across a bridge of resist. �e size of the bridge then determines the size of the junction, and

thus the junction sizes are limited by our ability to make resist bridge.

In bridge-free fabrication, however, the junctions are simply formed by holes in the resist,

and thus can be of arbitrary size. �e more complicated structures are the wires connecting to the

junctions. By using a two-layer resist stack, a “spring-board” of resist is formed - where the bo�om

layer has an undercut and thus the top layer extends further over it. Double-angle evaporation
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(a) (b)

1 µm 1 µm

Figure 4.1: (a) An SEM image of a transmon junction fabricated using the bridge-free technique.
�e middle part shows a junction made up of two aluminum layers sandwiching an aluminum
oxide barrier. �e top layer is connected to the le� transmon pad, and the bo�om is connected to
the right one. (b) �e bridge-free technique is especially useful for making junction arrays. �is
SEM image shows the small junction of a �uxonium atom, connected to larger array junctions.
�e connections between the junctions switch between connecting the top and bo�om layers.

is then used to selectively pa�ern the wires: metal deposited at an angle facing the undercut will

reach the substrate, and metal deposited facing away from it will not. Fig. 4.1a shows an SEM image

of a typical transmon junction made using bridge-free fabrication. �e junction is the structure

in the middle, where two layers of Al are sandwiched by AlOx. �e le� lead connects the le�

transmon pad to the top layer of the junction, and the right lead connects only the right transmon

pad to the bo�om layer of the junction. �e lead connecting the bo�om layer of the junction to

the le� pad was cut by the springboard pa�ern of the resist, and similarly the lead connecting the

top layer to the right pad was cut by an opposite springboard pa�ern.

�e bridge-free fabrication technique is especially useful for fabricating chains of Josephson

junction, and thus is used for Josephson arrays [Masluk et al., 2012] and the �uxonium arti�cial

atom [Pop et al., 2014, Vool et al., 2014]. Fig. 4.1b shows an SEM image of a cut from a �uxonium

arti�cial atom. �e small junction in the middle is surrounded by an array of larger junctions

which form the large shunting inductance of the �uxonium. �e leads connecting the junctions

alternate between connecting their top layers and their bo�om layers, and thus the only path in

the circuit is through all the junctions. �e array junctions are large and skinny - a pa�ern which

is impossible using the Dolan bridge technique. �is allows for large junctions, while minimizing

the capacitance to ground.



4.1. Sample preparation 56

�e techniques used to make transmon and �uxonium pa�erns are identical, and only the

pa�ern is di�erent. Here we describe the process used for creating the �uxonium atoms measured

in Chapter 5, but up to slight variations, this represents the recipe for all bridge-free devices made

at Yale at the time of writing.

�e wafer we use as a substrate is a 2 inch, 420 µm thick, double-sided polished c-plane

sapphire. �e substrate is cleaned in heated NMP (90 ◦C) for 10 minutes, sonicated in NMP and

rinsed with acetone and methanol. Microchem EL-13 copolymer resist is spun onto the wafer at

2000 RPM for 100 seconds and then baked at 200 ◦C for 5 minutes. �en a second resist layer of

Microchem A-4 PMMA resist is spun onto the wafer at 2000 RPM for 100 seconds and then baked

at 200 ◦C for 15 minutes. �e wafer is then coated in a ≈ 10 nm gold layer to prevent charge

accumulation in the substrate during the e-beam write.

�e pa�ern is wri�en on the device using a Vistec electron beam pa�ern generator (EBPG)

5000+ with a 100 kV electron beam. A�er the write, the gold is removed from the substrate using

a potassium iodine gold etch. �e double-layer resist is developed by manually wiggling the device

in a 3:1 IPA:water mixture at 6 ◦C for 2 minutes. �e resist pa�erns can at this point be observed

using an optical microscope.

Aluminium is deposited on the device using the Plassys UMS300 UHV multi-chamber evapo-

ration system. In the load-lock chamber, the sample is cleaned using an argon/oxygen plasma for

1 minute1. �e sample is then transferred to the deposition chamber, and an initial titanium sweep

is performed to clean the chamber (none is deposited on the device). �e �rst layer of 20 nm alu-

minum is deposited onto the substrate, and it is moved to the oxidation chamber. �e �rst layer

is oxidized in a 15% oxygen, 85% argon mixture, for varying pressures and times depending on

the device (for the �uxonium samples, we used 100 Torr for 14 minutes). A second layer of 30 nm

aluminum is then deposited, followed by a capping oxidation layer to protect the device.

Finally, the resist and excess aluminum are removed in li�-o� by soaking the device in 70 ◦C

1See Ref. Pop et al. [2012] for the importance of cleaning in high pressure to prevent junction aging. Pop et al. use
a reactive ion etcher to achieve a pressure of 3 × 10−1 mbar of oxygen and clean for 15 seconds (see reference 10
in their paper). We use the cleaning process in the UMS300 and with maximal �ow of oxygen and argon reach only
3 × 10−3 mbar. �e cleaning time of 1 minute was chosen as it removes 30 nm of resist out of a total of 200 nm in
the A-4 layer. �is recipe reduced the aging of Josephson junctions to about 5 − 10%, compared to the 20% or more
which was observed with the older recipe: cleaning at a total pressure of 4× 10−4 mbar for 2 minutes.
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NMP for 2 hours, and sonicating for 1 minute.

4.1.2 Sample holder

�e 3D architecture for superconducting circuits is currently the standard architecture used at Yale

as well as in other groups. Unlike the traditional 2D architecture, where the entire circuit is printed

on a chip and connected using wirebonds, in the 3D architecture the chip is suspended inside a

3D metallic box and all interaction with it is done through electromagnetic �elds. �e signi�cant

advantage of this architecture is that a larger fraction of the electromagnetic �eld of the modes in

our system is in vacuum, the lowest loss material, and thus the system is more isolated from its

environment, and coherence times are higher [Paik et al., 2011].

�e designs of devices in the 3D architecture are continuously developing and improving [Ax-

line et al., 2016, Blumo� et al., 2016, Reagor et al., 2016, Brecht et al., 2017], but in this thesis we

focus on two simple examples: the rectangular cavity and the waveguide.

Figure 4.2: (a) A copper cavity acts both as a sample holder and a harmonic oscillator coupled to
the non-linear qubit. �e chip of the sample is placed in one of the slots. �ere are two connectors
leading into the cavity, which allow for measurement in transmission. One is a weakly coupled
input port and the other is a strongly coupled output port which sets the quality factor of the cavity.
Any control of the qubit is mediated through the cavity. (b) A waveguide allows for independent
readout of several samples. In this design the readout mode is an antenna pa�erned on each
chip and inductively coupled to the qubit. One pin (on the right) is designed to be impedance
matched and readout is performed in re�ection. A second, weakly coupled, pin (le�) allows us to
drive transitions which are far below the waveguide cuto�, such as the �uxonium at half a �ux
quantum.

In the rectangular cavity (see Fig. 4.2a), the electromagnetic �eld lives in the region of va-
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cuum inside it, with the metal walls imposing the boundary conditions. �e fundamental mode

supported by the cavity is the TE101 mode, a transverse electric mode in which the electric �eld

everywhere is pointing in the y direction, and its �eld structure is constant in the y-direction,

while tracing half an oscillation in the x and z-directions. In Fig. 4.2a, the y-direction is the ver-

tical direction, where the rectangular box length is shortest. �e frequency of the mode can be

easily obtained from the dimensions of the cavity [Pozar, 2011]. �e frequency can be adjusted

in situ to a certain extent by adjusting the length of a screw which enters the cavity, and thus

changing the cavity mode from the rectangular ideal.

�e cavity has several slots in which we insert our sapphire chips. Once the sapphire chips

are in place, we fasten them to the cavity walls using indium wires, and close the two sides of the

cavity using indium wires as well. Note that there are no wires leading out from the circuit on the

chip, and they interact with the cavity mode via dipole coupling.

Fig. 4.2a shows two coaxial cables connecting to the cavity. �eir pins are inserted into the

cavity, and the length of the pin in the cavity determines the coupling κ between the cavity and the

traveling wave in the cable (see Section 3.3). �e two pins usually correspond to an input and an

output pin, such that κin � κout. �e weakly coupled input pin is used to drive the cavity, and the

output pin is used for measurement - the electromagnetic �eld leaves the cavity through this pin

into the measurement chain. �is two-pin setup allows us to measure the cavity in transmission,

while a single output pin is su�cient for re�ection measurement (see the following section).

�e cavity also has an inherent decay rate due to its spurious internal environment, which we

label κsp. For a good measurement of the system, we require all the electric �eld leaving the cavity

to reach our measurement setup, and thus κout � κsp. Usually, the output pin is chosen so that

Qout = ωc/κout ≈ 2000 or κout ≈ 4 MHz, allowing for fast readout. �is places a strong bound

on the internal quality factor of the cavity.

�e commonly used rectangular cavities are made out of high purity (4N) aluminum or oxygen-

free high-conductivity (OFHC) copper. Aluminum cavities are superconducting, and thus can re-

ach internal quality factors in the millions (and much higher with non-rectangular designs [Rea-

gor et al., 2013]). Copper cavities, on the other hand, are limited to roughly Qsp ≈ 104. However,
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copper cavities have the advantage of being easier to thermalize, and more importantly they al-

low magnetic �eld to enter. �us, all experiments with magnetically tunable circuits, such as the

SQUID transmon or the �uxonium, require the use of a copper cavity.

�e waveguide, shown in Fig. 4.2b, is physically very similar to the cavity as it is also a rectan-

gular box, but conceptually quite di�erent. �e main di�erence comes from the coupler, shown

connecting to the right piece of the waveguide in Fig. 4.2b. Unlike the weakly-coupled pin used

for the cavity, the coaxial cable is coupled to the waveguide using an impedance-matched adapter.

�us, the waveguide can be viewed as an extension of the coaxial cable - with the traveling wave

through the cable being converted to a traveling wave through the waveguide.

�e waveguide in Fig. 4.2b is a WR-102 waveguide made out of OFHC copper. �e waveguide

works best between its �rst and second fundamental modes, which can be tuned using a screw

similar to the cavity, but are around 6 − 8 GHz. Below the �rst mode, the transmission through

the waveguide is exponentially suppressed, while above the second mode the situation is more

complicated as multiple modes can propagate.

As the waveguide plays the role of a transmission line and not a resonator, we use it to measure

a 2D resonator pa�erned on the sapphire chip. �is technique is especially useful for the �uxonium

qubit, which has a small dipole moment and is thus coupled to its electromagnetic environment

through an antenna that shares part of its inductance with the �uxonium [Pop et al., 2014]. �e

waveguide allows us to use the antenna as a readout resonator for the �uxonium, while still bene-

�ting from the low-loss environment of the 3D architecture. �e signal coming from the resonator

is measured in re�ection through the impedance-matched port. A second, weakly-coupled port,

shown on the le� in Fig. 4.2b, is placed closer to the sample itself. It is used to directly drive the

�uxonium |g〉 ↔ |e〉 transition, which is far below the exponential cuto� of the waveguide.

�e waveguide also allows for multiplexed readout within the 3D architecture, as multiple arti-

�cial atoms and resonators can be placed in the waveguide and measured simultaneously. Ref. Kou

et al. [2017] shows the �rst simultaneous single-shot continuous measurement of two qubits, using

two �uxonia in a waveguide.
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4.2 Readout

In Chapter 3 we have seen that a driven resonator stabilizes to the coherent state |α〉 with α =

ε
iκ/2−∆c

, where ε is the drive amplitude, κ is the cavity decay rate and ∆c is the detuning between

the cavity drive and resonance frequency. �us, if we send a coherent drive into the cavity and

then wait for the state of the cavity to leak out into the output port, the amplitude and phase of

the outgoing �eld contains information about cavity properties.

However, in the case of the dispersive JC Hamiltonian (Eq. 3.8), the frequency of the cavity

depends on the state of the qubit: ωc + χ
2σz . �us, an applied cavity drive creates a coherent

state in the cavity which depends on the state of the qubit. �e drive, together with the dispersive

coupling, entangles the states of the qubit and the cavity. By measuring the coherent state coming

out of the cavity, we can thus measure the state of the qubit. �is type of measurement is known

as dispersive readout, and it is the most common readout within the cQED framework.

4.2.1 Measuring the outgoing �eld

Before we discuss how qubit information is encoded in the outgoing �eld of the cavity, let us ex-

amine the measurement of the cavity �eld itself, which is done using heterodyne interferometry.

�e outgoing �eld exits the cavity at the drive frequency ωd. It is down-converted to an interme-

diate frequency (IF), and sent to a digitizer2 . An additional reference tone at the IF frequency is

also sent to the digitizer. By combining our digitized signal with the reference signal in and out-

of-phase, we obtain the real and imaginary components of the outgoing �eld. �ese components

are sometimes called the in-phase (I) and quadrature (Q) components.

In Section 3.3.1, we described the outgoing �eld aout in units of 1/
√
s. �e outgoing photon

number operator a†outaout is thus in units of 1/s, as it corresponds to the photon �ux coming out

of the cavity. To obtain a measurement of the outgoing �eld, we measure it for a time T . �e total
2In the experiments described in this thesis, readout digitization and manipulation, as well as generation of RF

control sequences, were done using an Innovative Integration �eld-programmable gate array (FPGA) setup with in-
house logic. See the theses by Yehan Liu [Liu, 2016] and Andrei Petrenko [Petrenko, 2016] for more information.
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photon number in the measurement is3:

nmeas = 〈a†outaout〉T (4.1)

�is is a useful quantity to de�ne the units for I andQ. We describe them in units of
√

photon [Vool

et al., 2014]. Up to an arbitrary choice of the phase of the reference IF tone, we can relate these

�eld components to the outgoing �eld by:

I = Re 〈aout〉
√
t

Q = Im 〈aout〉
√
t (4.2)

To calibrate the �eld components in these units experimentally, we �rst calibrate the photon

number in the cavity [Vijay et al., 2012] and then convert this photon number to the photon number

nmeas in the integrated outgoing wave-packet. �is conversion is di�erent for transmission and

re�ection, and is described in the following section. Once we have obtained nmeas, we can just

calibrate the �eld components by I2 +Q2 = nmeas.

4.2.2 Measurement in transmission and re�ection

We separate our discussion into two measurement types: measurement in transmission, where a

drive tone through the weakly-coupled input port is transmi�ed through the cavity to the output

port, and measurement in re�ection, where a drive tone is re�ected o� of the cavity through the

output port.

�ough it requires two pins, transmission measurement is o�en seen as the simpler case. In

transmission measurement, the drive on the cavity is performed through a weakly coupled input

port with coupling κin � κout. Other than providing the coherent population in the cavity, this

port can be completely neglected. As no drive is applied at the output port, the input-output
3Note that in this case we assume a continuous drive and thus a continuous outgoing �eld which we measure

for a time T . More commonly, the measurement is a pulse with envelope ε(t). �us, to obtain all the information, the
integration needs to be weighed by the pulse amplitude as a function of time. In this case, we represent the measurement
in units of the total photon number in the pulse wave-packet.
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relation for it (see Eq. 3.13) can be simpli�ed to aout =
√
κa, where we identi�ed κ = κout as it is

the dominant decay channel. �e electromagnetic �eld coming out of the cavity is thus identical

to the electromagnetic �eld in the cavity, up to a constant.
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Figure 4.3: �e response of a harmonic oscillator with resonance frequency ω to a continuous tone
at frequency ωd. It is represented in the two quadratures I andQ of the electromagnetic �eld, and
the dashed line shows the average response for di�erent resonant frequencies ω. �e two red
circles mark the |g〉 and |e〉 states of the qubit, corresponding to the frequencies ω = ωd − χ/2
and ωd + χ/2 respectively. (a) Transmission measurement in which the information is encoded
in both the amplitude and the phase of the outgoing signal. (b) Re�ection measurement in which
the amplitude is always unity (the incoming signal must be fully re�ected) and the information
on the measured system is only encoded in the phase. Note that for a given number of photons
in the cavity, the SNR is identical in both measurement schemes as the separation between the
|g〉 and |e〉 states is identical. However, notice that there are more photons leaving the system in
a transmission measurement with a given SNR and thus re�ection measurement is more e�cient
when comparing outgoing photons.

Depending on the state of the qubit, the amplitude of the coherent state in the cavity is αg =

ε
iκ/2−∆c+χ/2

or αe = ε
iκ/2−∆c−χ/2 . For the case ∆c = 0, where the drive frequency is in-between

the two resonances corresponding to the two qubit states, the measured �eld components I andQ

of the outgoing �eld are sketched in Fig. 4.3a. �is I-Q plane is analogous to the phase space, but

notice these are integrated outgoing �elds and not system DOF. �e points corresponding to the

qubit being in |g〉 and |e〉 are marked in red. �e dashed line corresponds to the I andQ values for

the response of a cavity with varying resonance frequency ω but with identical drive amplitude ε

and frequency ωd, and an identical decay rate κ. We can see the response goes to zero as ω → 0

and ω → ∞, and that this response traces a perfect circle in phase space. �e angle θt quanti�es

how e�ective our measurement is at di�erentiating the two qubit states. It shows how much of

the outgoing amplitude we can utilize to distinguish between them.
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For a transmission measurement, the I andQ values are simply equal to the real and imaginary

parts of the coherent state amplitude in the cavity, with the added constant
√
κT (see Eq. 4.2). �us

we can calculate the expected �eld components. Remember that the orientation of the I-Q plane

is related to the arbitrary phase of the reference signal, compared to the phase of the input drive.

In Fig. 4.3, we chose a convenient frame which can be expressed as ε → iε. Note that this is only

done to make the �gure clearer, and any other phase provides an equally good description of the

measurement. Using this frame, we can write:

Itg =
√
κT Re

iε

iκ/2 + χ/2
=
√
κT

2εκ

κ2 + χ2

Qtg =
√
κT Im

iε

iκ/2 + χ/2
=
√
κT

2εχ

κ2 + χ2

Ite =
√
κT Re

iε

iκ/2− χ/2
=
√
κT

2εκ

κ2 + χ2

Qte =
√
κT Im

iε

iκ/2− χ/2
=
√
κT
−2εχ

κ2 + χ2
, (4.3)

where Itg/e correspond to the I values for the qubit being in |g〉 and |e〉 respectively, and the same

for Qtg/e. �e two states of the cavity have the same I value and opposite Q values, as plo�ed in

Fig. 4.3a. We can also see that:

θt = arctan
χ

κ
(4.4)

In a re�ection measurement, the drive is applied through the output port, and the input-output

relation also includes an input �eld: aout =
√
κa + ain. In the sti�-pump approximation, this

additional term can be seen as a displacement āin of the output �eld compared to the �eld in the

cavity. Physically, this corresponds to the sum of the signal coming from the cavity, and the signal

re�ecting directly from the cavity entrance, both adding to the outgoing �eld.

From the de�nition of the incoming �eld āin and the amplitude ε under the sti�-pump ap-

proximation in Section 3.3.2, we can see that āin = iε√
κ

. �us the amplitude of the outgoing �eld

is:

〈aout〉 =
√
κ〈a〉+ āin =

√
κε

iκ/2−∆c
+

iε√
κ

=
ε√
κ

∆c + iκ/2

−i∆c − κ/2
(4.5)
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Notice that the amplitude of the outgoing �eld is independent of the detuning. �is is not

surprising, as there is only one port and energy cannot be lost elsewhere - and so must be re�ected

back. �e information on the detuning is encoded entirely in the phase. Fig. 4.3b shows a sketch

of the I-Q plane for a re�ection measurement with ∆c = 0. Notice that the measured signal

is just a displacement of the transmission measurement in Fig. 4.3a, and that for a given cavity

frequency ω, the response is always of equal amplitude (dashed line). Now it is obvious why the

transmission response as a function of ω is a perfect circle, as it is simply a displacement of the

re�ection response, which must be a circle around the origin.

�e I and Q values can now be expressed for the re�ection measurement (once again we

choose the convenient rotation ε→ iε):

Irg =
√
T Re

−iχ/2− κ/2
iχ/2− κ/2

=
√
T
κ2 − χ2

κ2 + χ2

Qrg =
√
T Im

−iχ/2− κ/2
iχ/2− κ/2

=
√
T

2χκ

κ2 + χ2

Ire =
√
T Re

iχ/2− κ/2
−iχ/2− κ/2

=
√
T
κ2 − χ2

κ2 + χ2

Qre =
√
T Im

iχ/2− κ/2
−iχ/2− κ/2

=
√
T
−2χκ

κ2 + χ2
(4.6)

Note that the distance in phase space between the states |g〉 and |e〉 is identical in both measu-

rement techniques, and thus you could say they are equally good at distinguishing the qubit states.

�is is not quite correct, as notice that while the measurement sketches in Fig. 4.3a and b have the

same separation between the states, the amplitude of the outgoing �eld is smaller in the re�ection

measurement. �is is also expressed by the fact that θr = 2θt. A good way to resolve this issue

is to separate the discussion into energy in the cavity and outgoing energy. �e two sketches are

made so that they have equal population in the cavity, and thus, per photon in the cavity, they

contain the same information. However, in re�ection measurement the cavity signal mixes with

the re�ected signal āin and is partially canceled. �us, per photon in the outgoing �eld, the

re�ection measurement contains more information. �is can be very useful if our measurement

chain saturates above a certain threshold. �us, while the re�ection measurement is less intuitive
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(peaks in amplitude are easier to understand than a change in the phase), it always contains more

information. Or as Michel Devoret put it when he introduced me to the topic: “transmission is for

amateurs, and re�ection is for professionals”.

4.2.3 Weak and strong measurement

Note that in Fig. 4.3, we represent the states of the qubit as blobs of a certain area, rather than dots.

�is area represents the inherent uncertainty in the values of I and Q, as the traveling coherent

state is not an eigenstate of the �eld components. If we were to histogram many measurements

of the outgoing �eld for a given coherent state, they would not all have the same I and Q va-

lues but have a Gaussian spread around the mean value we discussed previously. In our units of
√

photon, the standard deviation for this ideal measurement is exactly σ0 = 1
2 for each quadrature

(this is directly related to the ~/2 value in the Heisenberg uncertainty principle). Of course, our

measurement is never ideal, and so this standard deviation is greater. Generally we can express

the standard deviation in our units as4 σ = 1
2
√
η when η is our measurement e�ciency [Hatridge

et al., 2013]. We can then de�ne the measurement strength, or the signal-to-noise ratio for a single

measurement as:
Qg −Qe

2σ
= 2
√
nmeasη sin θ, (4.7)

where θ is either θr or θt. We de�ne a measurement to be weak if Qg−Qe
2σ � 1, and strong if

Qg−Qe
2σ � 1.

Dispersive readout has the important advantage of being a quantum non-demolition (QND)

measurement [Braginsky et al., 1980]. �is means that the measured operator σz commutes with

the Hamiltonian in Eq. 3.8, and thus the eigenstates can be repeatedly measured without being

destroyed. Superpositions such as |g〉 + |e〉 are projected towards one of the eigenstates, and

thus phase information is lost (this is precisely the measurement-induced dephasing which was

discussed in Section 3.3.5). �is measurement back-action dephases the qubit more with increasing
4O�en in our experiments, we use a Josephson Parametric Converter (JPC) to amplify our readout. As it is a phase-

preserving ampli�er, it adds an additional half a photon of noise to our measurement, which we do not count towards
our measurement ine�ciency. �us, in this case, we represent the standard deviation as σ = 1√

2η
. For more details,

see part 2 of the supplementary material in Ref. Hatridge et al. [2013].
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measurement strength. A full description of the back-action of the dispersive readout for varying

measurement strengths is given in Ref. Hatridge et al. [2013].

In a strong measurement, the state of the qubit is completely projected to one of its eigenstates.

From our derivation it would seem that you can reach this regime by simply increasing the mea-

surement time T , but this time is limited by the coherence time of the e�ect we are interested in

measuring. Reaching this regime for measurement times well below the qubit coherence time was

made possible by the use of quantum-limited ampli�ers [Castellanos-Beltran et al., 2008, Bergeal

et al., 2010, Hatridge et al., 2011]. �is is a very large and important �eld within superconducting

quantum circuits, and it is not covered in this thesis. See the theses by Rajamani Vijay [Vijay,

2008], Flavius Schackert [Schackert, 2013] and Katrina Sliwa [Sliwa, 2016] for more details.

In a strong QND measurement we expect to initially project the qubit onto one of its eigen-

states, and the following repeated measurements should return the same eigenstate. �is does not

seem like a very interesting measurement in this case, but decay processes a�ect the qubit and

sometimes cause it to jump between eigenstates5. �is e�ect is known as quantum jumps [Na-

gourney et al., 1986, Sauter et al., 1986, Bergquist et al., 1986, Vijay et al., 2011]. �is can be seen as

the real-time measurement that is averaged to produce a qubit lifetime (T1) measurement of the

qubit. We can extract the qubit T1 from the mean time between jumps, but we also have access to

the qubit temperature from the ratio of times it spends in each of the states |g〉 and |e〉, and the

average jump rate between them. Furthermore, the jumps give us access to the behavior of qubit

decay in real-time, and thus allow us to study the dynamics of the processes which underlie qubit

decay [Vool et al., 2014].
5Note that this process is related to the quantum Zeno e�ect [Misra and Sudarshan, 1977, Gambe�a et al., 2008], in

which a measurement of the qubit is competing with a coherent process between its states, such as a Rabi drive. �e
behavior of the system then depends on the relative strength of the interaction and measurement rate. For a strong
interaction, we are unable to measure the state of the qubit as it quickly oscillates between the eigenstates. For a strong
measurement, the qubit is constantly projected and the coherent process is “Zenoed out” and does not contribute other
than to cause occasional quantum jumps. �is would suggest that the decay rate in our case acts like a very weak
coherent process, but then we expect to see the rate of jumps decrease as the measurement gets stronger. We have
never been able to cancel the e�ect of dissipation this way, and the jump rate is usually constant with measurement
rate (It sometimes increases for stronger measurements due to an e�ect we nicknamed “T1 vs. n̄” [Boissonneault et al.,
2009, Slichter et al., 2012]). A be�er model for the behavior of jumps is statistical. Most of the time the system is not
interacting with the environment and nothing competes with the measurement. Sometimes, on a timescale given by T1,
the system interacts with an external DOF much faster than the measurement rate, and as a result we measure quantum
jumps due to a process we cannot control. Another way to describe this is to treat the environment as a high-bandwidth
coherent system, which cannot be Zenoed out until the measurement rate exceeds its bandwidth
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In Chapter 6 we present a novel method to observe the quantum jumps of an e�ective qubit.

�ese quantum jumps allow us to study the real-time dynamics of qubit decoherence (T2), as

opposed to qubit decay (T1).



Chapter 5

Controlling the radiation selection

rules of superconducting circuits

Selection rules in atomic systems are the rules governing which transitions of the atom are acces-

sible by a certain external drive, and which are forbidden. �ey are a central hallmark of atomic

physics, and one of the main reasons for the variety of quantum systems that can be embodied

using the various atoms. �e states of an atomic system can have various symmetries, such as

spin, angular momentum, rotational, and vibrational symmetries etc. Each symmetry limits the

transitions between levels, and hence imposes selection rules .

Selection rules play a crucial role in the physics of atomic coherent quantum systems. Energy

states which are connected by a forbidden transition tend to have long coherence times between

them, as the environment is also forbidden from interacting with the transition. �ese are then

useful to encode quantum information, while all manipulation and measurement are done through

the allowed transitions. �ese techniques are actively used in qubits based on ion-traps [Leibfried

et al., 2003], and are especially important to the �eld of atomic clocks [Ludlow et al., 2015].

For superconducting arti�cial atoms, the symmetries limiting their transitions are currently

much simpler than those of atomic systems, due to their dependence on a relatively small num-

ber of DOF. Further study of our selection rules and how they can be manipulated is crucial for

engineering a larger variety of superconducting atoms. �e ability to engineer selection rules will

68
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potentially allow us to realize all the quantum systems accessible using atomic implementations,

and more.

In this Chapter, we discuss the selection rules for superconducting arti�cial atoms, and how

they can be manipulated to create a larger variety of e�ective quantum systems. We begin with

a description of the allowed and forbidden transition for the di�erent superconducting systems,

and the parity symmetry which governs them. We then present a new coupling element, known

as the SNAIL, which allows us to break the selection rule, while still maintaining the symmetry

of the arti�cial atom. We use this element to drive forbidden transitions in the �uxonium qubit,

and implement a Λ-system at the �uxonium sweet spot. We present the ability to control our

Λ-system through Raman processes, implement cooling via spontaneous Raman sca�ering, and

coherent oscillations via stimulated Raman transitions.

5.1 Allowed and forbidden transitions

Consider our two energy eigenstates |a〉 and |b〉 in a Hilbert spaceH, and a transition operator µ

of our Hilbert space H, which couples to an environment operator. A selection rule prevents the

transitions between |a〉 and |b〉 if:

〈a|µ|b〉 = 0 (5.1)

�is selection rule is usually associated with a certain symmetry of the Hamiltonian. �e

most common selection rules are associated with angular momentum. If the states |a〉 and |b〉

are eigenstates of the total angular momentum, the conservation of angular momentum imposes

selection rules on the transition, depending on the operatorµ. For example, ifµ corresponds to an

excitation due to a single photon (with spin 1), a transition between a state of angular momentum

J = 0 to another state of J = 0 is forbidden. �is is the cause of the forbidden transition between
1S0 and 3P0 in group 13 singly-charged ions, a long lived transition which is at the heart of many

atomic clocks [Ludlow et al., 2015]

For superconducting arti�cial atoms, we can analyze selection rules as an extension of those

of a harmonic oscillator. For a harmonic oscillator, the drive operator which generates transitions
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between energy eigenstates (see Section 3.3.2),
(
a+ a†

)
, is a combination of creation and annihi-

lation operators and can thus only cause a transition between two neighboring energy eigenstates,

such as |n〉 and |n+1〉. Transitions between non-neighboring states are thus always multi-photon

transitions mediated by the levels in between.

For non-linear systems, this rule is no longer true. As discussed previously, the drive operator

should not be interpreted as a creation and annihilation operator for the non-linear system, which

can be quite signi�cantly di�erent from its linear part. However, some limited symmetry can still

remain, which leads to selection rules. Consider the important case in which the Hamiltonian

of our single-mode non-linear system contains only even terms (compare to the general case in

Eq. 3.1), i.e is of the form:

H = ω0a
†a+ d4(a+ a†)4 + d6(a+ a†)6 + ... (5.2)

where ω0 is the resonance frequency of the linear mode and dn are the nonlinear coe�cients such

that d2n+1 = 0 for every n ∈ N. We can express this system in the basis of the linear system

eigenstates {|n〉}. It is easy to see that this Hamiltonian commutes with the parity operator P =∑∞
n=0 (−1)n |n〉〈n| and thus its (non-degenerate) eigenstates are also eigenstates of parity. �us

the eigenstates of the full non-linear Hamiltonian are combinations of either only-even or only-

odd eigenstates of the linear system. As the drive operator is an odd operator (it anti-commutes

with the parity operator P ), it can only cause transitions between states of di�erent parity. �is

is analogous to the Laporte (orbital inversion symmetry) selection rule for transitions between

atomic orbitals [Laporte and Meggers, 1925, Harris and Bertolucci, 1978].

�is selection rule has signi�cant consequences on the arti�cial atoms we can build. In all

the common superconducting arti�cial atoms, the two lowest eigenstates of the Hamiltonian, |g〉

and |e〉, have opposite parities and thus we can perform operations between them. However,

every higher excited state |m〉 has a distinct parity. �us, if 〈g|
(
a+ a†

)
|m〉 6= 0 then de�nitely

〈e|
(
a+ a†

)
|m〉 = 0 and vice versa. �is property prevents us from constructing Λ-type arti�cial

atoms (see Fig. 1.1c) using our lowest energy eigenstates.
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�is symmetry can be broken by introducing an odd term in the Hamiltonian. Physically it

is achieved by applying an external o�set, for example a charge o�set for the Cooper pair box

(see Fig. 2.4a) or a �ux o�set for the �ux qubit or �uxonium (see Fig. 2.4c,d). �is additional o�set

breaks the symmetry of the system, and transitions between all energy levels become allowed.

�is, however, comes at the price of lower coherence times. �e frequency of the |g〉 ↔ |e〉

transition depends on the value of the o�set and so the Cooper pair box becomes sensitive to

charge noise and the �ux qubits become sensitive to �ux noise. �is dependence is minimized in

the “sweet spots”, where the �rst derivative of the frequency w.r.t. the o�set vanishes [Ithier et al.,

2005], but those are exactly the o�set values for which the symmetry exists and the selection rules

stand. For example, the eigenstates of the �uxonium are shown in Fig. 2.5 for di�erent values of

the external �ux. At Φext = 0 and 0.5, which are the �uxonium “sweet spots”, the eigenstates

have distinct opposite parities and the selection rules apply. At Φext = 0.25 the wavefunctions do

not have a distinct parity and all transitions are allowed, but at the cost of decreased coherence

times. For a detailed study of selection rules in the �ux qubit, see Ref. Liu et al. [2005] and in the

�uxonium arti�cial atom, see Ref. Manucharyan [2011].

�is treatment can be extended to multi-mode systems. For example, we can study a non-linear

system coupled to a linear system such as the JC Hamiltonian (Eq. 3.5). In this case, in addition

to the Hamiltonians of the individual systems, there is a coupling term which can be expressed in

the form ∝ φqφr where φq is the �ux of the non-linear system, or qubit, and φr is the �ux of the

linear resonator. With this term, the individual parity is no longer conserved, but the total parity

P =
∑∞

nr,nq=0 (−1)nr+nq |nr〉|nq〉〈nq|〈nr| is conserved if the non-linear system contains only

even terms. �us, transitions such as |g, 0〉 ↔ |e, 1〉 and |e, 0〉 ↔ |g, 1〉 are forbidden by selection

rules at the symmetry point of the non-linear system. Fig. 5.1 shows the selection rules for a qubit-

resonator system. Further details in the JC formalism can be found in Appendix E of Ref. Blais et al.

[2007] and for �ux qubits in Refs. Chiorescu et al. [2004], Liu et al. [2006].

�ese forbidden transitions can also be driven with two photons. For example, the transition

|g〉 ↔ |f〉 can be accessed by applying two drives: one at a frequency ωge + ∆ and another at

ωef − ∆ where ωge and ωef are the frequency di�erences between the |g〉,|e〉 and |e〉,|f〉 states
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Figure 5.1: �e selection rules for a non-linear system that is linearly coupled to a linear oscillator.
If the non-linearity contains only even terms (see text), there is a selection rule which forbids
transitions between two states with the same parity in the number of excitations. In the sketch,
we divide the levels of our system to two sets with even and odd total parities. Using a linear drive,
we are only able to excite transitions between the two sets, never within each of the sets.

respectively, and ∆ is a given detuning. �is is a Raman transition [Steck, 2007] through the |e〉

state, which is accessed virtually. A special case of this transition is the two-photon transition, in

which we apply only one drive at half of the frequency di�erence and use two photons from the

same drive to drive both the |g〉 ↔ |e〉 and |e〉 ↔ |f〉 transitions. In this case ∆ = K/2 where K

is the Kerr non-linearity of the qubit.

Two-photon transitions are also used in the two-mode case to drive transitions such as |g, 0〉 ↔

|e, 1〉 [Wallra� et al., 2007, Novikov et al., 2016]. In this case the virtual transition is done both

through the |g, 1〉 and the |e, 0〉 states1.

To conclude, superconducting arti�cial atoms at their sweet-spots have a selection rule which

prevents transitions between states with equal total parity in the harmonic oscillator basis. �is

signi�cantly limits the variety of arti�cial atoms we can construct. �is can be overcome by mo-

ving o� of the sweet-spots, at the cost of a decrease in qubit coherence. It can also be overcome by

using a two-photon process, at the cost of a more complicated driving scheme, as well as requiring

strong coupling to an intermediate level - which may also limit qubit coherence. In the following

section we present a third option, which allows us to drive a forbidden transition while maintai-
1�ere is a small subtlety here. If the qubit and resonator modes are completely decoupled, we certainly have no way

to entangle the two systems by applying a drive on each of the modes. Since |g, 0〉 ↔ |e, 1〉 is an entangling transition,
it must vanish, and indeed the virtual transitions through the |g, 1〉 and the |e, 0〉 states cancel each other out. If the
modes are coupled, we have an additional dispersive shi� (χ) of the cavity mode depending on the state of the qubit.
�is shi� breaks the cancellation and allow a virtual two-photon transition from |g, 0〉 to |e, 1〉.
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ning the qubit at the sweet-spot and using only a single photon. We do this by implementing a

non-linear drive on our system.

Before we continue, let us discuss two additional side notes on selection rules. �e �rst involves

an additional approximate selection rule in �ux-based arti�cial atoms o� of their sweet spots. As

their eigenstates can live in di�erent potential wells (see Fig. 2.5b), the overlap between the wave-

functions decreases exponentially with the distance between the wells compared to the well size.

�is can decrease the matrix element 〈g|φ|e〉 signi�cantly. �is selection rule was studied for the

�uxonium arti�cial atom in a recent paper given in Ref. Lin et al. [2017]. While they are still able to

drive the |g〉 ↔ |e〉 transition directly, the decrease in the matrix element leads to a×100 increase

in the qubit lifetime. However, as the �uxonium is away from its sweet spot, its coherence time is

still limited. �is approximate selection rule is a very promising idea and is related to the notion

of inherently protected superconducting qubits [Brooks et al., 2013, Douçot and Io�e, 2012, Bell

et al., 2014].

As a second side note, given our selection rule it seems there is another natural way to produce

a perfect Λ system. If we have a Hamiltonian in which the two lowest eigenstates |g〉 and |e〉 have

the same parity, these states form a Λ-system with any higher excited state of the opposite parity,

and there is no way to directly transition between |g〉 and |e〉. Ref. Xu et al. [2016] shows a similar

idea in which the |g〉 and |f〉 states of a transmon qubit are used to form a Λ system. While they

indeed have the correct parity structure, these are not the lowest energy eigenstates and the |f〉

state will eventually decay outside of the encoded Λ-system.

Obtaining a Hamiltonian in which the two lowest eigenstates are of the same parity seems like

a very important goal. A possible implementation of this is the cos 2ϕ element [Douçot and Vidal,

2002] which only allows tunneling between pairs of Cooper-pairs. �e two lowest eigenstates of

a qubit based on this element have opposite parity in Cooper-pair number, but equal parity in the

harmonic oscillator basis as both their wavefunctions are symmetric. �is kind of qubit has been

originally studied by Rutgers [Bell et al., 2014], and a �uxonium-like implementation is currently

being studied at Yale [Smith et al., 2017].



5.2. SNAIL 74

5.2 SNAIL

�e selection rule which forbids transitions between states of equal parity is a result of the drive

operator being odd. To drive these forbidden transitions, we require an operator of the form(
a+ a†

)2. As this operator is even (commutes with an even Hamiltonian), it enables transiti-

ons between states of the same parity (but not between states of di�erent parity). �e original

(linear) drive operator was a result of linear coupling between the qubit and the resonator, and

thus, to create the desired operator, we would require a non-linear coupling element with third-

order non-linearity.

�is project started with the goal of breaking selection rules in the 3D �uxonium architecture,

in which the �uxonium qubit is coupled to an on-chip resonator by a shared linear inductance2.

We thus wanted to design a third-order non-linear inductance to couple the �uxonium and the

resonator, and drive forbidden transitions through it.

�e device we came up with is named the Superconducting Non-linear Asymmetric Inductive

eLement, or SNAIL - a pun on other mollusk-inspired circuits such as the SQUID [Zimmerman and

Silver, 1966, Clarke and Braginski, 2006] and the SLUG [Clarke, 1966, Hover et al., 2012]. A sketch

of the SNAIL circuit is shown in Fig. 5.2a. �e SNAIL is a superconducting loop which consists

of n large Josephson junctions with Josephson energy EJ, shunted by a single smaller Josephson

junction with Josephson energy αEJ. An external �ux ΦS
ext is threaded through the SNAIL loop.

We can express the potential (inductive) energy of the SNAIL as:

USNAIL(ϕ) = −αEJ cosϕ− nEJ cos

(
ΦS

ext/φ0 −ϕ
n

)
, (5.3)

whereϕ is the superconducting phase across the small junction. Note that we have eliminated the

dynamics of the modes within the n-junction array, and consider the circuit as a single DOF with

equal phases across the array junctions. �is is valid whenEJ � EC for every array junction, and

C0 � CJ/n
2 whereC0 is the ground capacitance of the islands between the junctions andCJ is the

2Practically, this inductance is not quite linear as it is made up of an array of Josephson junctions. However, since
the Josephson potential is even (a cosine), the additional non-linear terms still cannot drive the forbidden transitions.
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Figure 5.2: (a) Circuit for the Superconducting Nonlinear Asymmetric Inductive eLement (SNAIL)
reduced to one degree of freedom ϕ. A loop made of three large junctions (with tunneling energy
EJ ) in parallel with one smaller junction (tunneling energy αEJ) is threaded with an external
DC �ux Φext. (b) An example SNAIL potential for α = 0.29 and ΦS

ext/Φ0 = 0.41 that includes
third-order nonlinearity (c3 6= 0) without fourth-order nonlinearity (c4 = 0). (c) Color maps of
the (α, ΦS

ext) parameter space for the third-order (top) and fourth-order (bo�om) nonlinear terms.
Notice the white region in the bo�om panel, corresponding to points with c3 6= 0 but c4 = 0. �e
black-hatched regions in (c) correspond to double well behavior. �e crosses in (c) mark the set of
parameters chosen for (b).

Josephson capacitance of each junction [Masluk et al., 2012]. �us, the frequencies corresponding

to the array modes are high, and we can neglect them within our treatment.

Note that our circuit is basically identical to that of the �ux qubit (see Section 2.4.3). However,

our operation point is completely di�erent. �e �ux qubit is operated around 0.5Φ0, and the ratio

of junction areas is usually α ≈ 0.8. �is creates the double-well potential in which the �ux qubit

levels reside. We would like to completely avoid the double-well area, and operate the SNAIL in a

regime which resembles a parabolic well, but with an asymmetry around the minimum of the well

- this asymmetry is precisely the third-order non-linearity we are looking for. Fig. 5.2b shows one

period of the SNAIL potential for a particular choice of ΦS
ext and α, and for n = 3. �e asymmetry

around the minimum is visible.

To expand Eq. 5.3 as a non-linear inductor, we must �rst �nd the minimum ϕmin of the poten-
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tial. �is minimum depends on ΦS
ext andα, and can be numerically obtained for each of those. �en

we can expand the SNAIL potential around the minimum, using the new coordinate ϕ̃ = ϕ−ϕmin.

We express the Taylor expansion of the potential as:

USNAIL(ϕ̃)/EJ = c2ϕ̃
2 + c3ϕ̃

3 + c4ϕ̃
4 + ..., (5.4)

where cm is the coe�cient of them-th order in the expansion3. c2 is related to the linear inductance

of the SNAIL as LS =
φ2

0
2c2EJ

. �ese coe�cients also depend on ΦS
ext, α, and n, and can be obtained

numerically. �e SNAIL can thus be viewed as a new non-linear element with the potential in

Eq. 5.4, and in future circuits we represent the SNAIL using a snail symbol, as shown in Fig. 5.2a.

�e case n = 1 corresponds to the asymmetric SQUID. In this case, the periodicity of the two

cos terms in Eq. 5.3 is identical and so their sum is simply an o�set cos term. �us in this case,

c3 = 0 regardless of the other parameters. For n ≥ 1, the competition between the di�erent

periodicities of the cos function gives rise to an asymmetry for certain �uxes and junction size

ratios. �e case n � 1 corresponds to the �uxonium circuit (see Section 2.4.4), where we know

the asymmetry exists. In the experimental implementations of the SNAIL shown in this thesis,

we use n = 3. �is is done mostly for fabrication constraints (see the following section for more

details).

In Fig. 5.2c, we plot the third-order non-linearity (c3) and the fourth-order non-linearity (c4)

vs. ΦS
ext and α in the top and bo�om plots respectively, for n = 3. �e dashed area corresponds

to values for which the potential has multiple wells, and thus the expansion is more problematic

and our circuit may show hysteretic behavior. �is is the regime in which the �ux qubit operates,

and we avoid it for the SNAIL.

Notice that the SNAIL has the unique feature that its c4 value changes sign for di�erent values

of ΦS
ext and α. �us, there is a particular selection of values (marked as a cross in Fig. 5.2c) for

which c3 6= 0 but c4 = 0. �e potential in Fig. 5.2b is plo�ed for this value.

�e third-order non-linearity of SNAIL allows it to facilitate three-wave mixing between dif-
3 �ese coe�cients are very related to the dm coe�cients in Eq. 3.1, as those were derived from a generic non-linear

inductor we assumed in our circuit. �ey are identical up to units, as dm = cmϕ
m
ZPFEJ
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ferent modes. �is has a�racted interest in the SNAIL as a dipole 3-wave mixing element, with

potential use for ampli�cation and mode conversion. �e cancellation of c4 is of special interest in

this case, as it may allow us to amplify signals and drive transitions between modes without the

Stark shi� caused by the Kerr non-linearity4.

We have implemented a parametric ampli�er based on the SNAIL, by integrating four SNAILs

in a loop inspired by the Josephson ring modulator (JRM) design for parametric ampli�cation [Ber-

geal et al., 2010]. �e details of this experiment are beyond the scope of this thesis. To summarize,

we were able to observe phase-preserving ampli�cation, facilitated by the third-order non-linearity

of the SNAIL and not the loop of the JRM, which was removed. �is SNAIL ampli�er showed per-

formance comparable to commercial JRM-based quantum-limited ampli�ers. �e details of this

experiment are available in Ref. Fra�ini et al. [2017].

�e SNAIL has also been independently discovered by A. Zorin [Zorin, 2016] for its use as part

of a three-wave mixing traveling-wave parametric ampli�er (TWPA). Such a TWPA was imple-

mented in a recent experiment given in Ref. Zorin et al. [2017].

(a)

(b)

Figure 5.3: (a) �e dipole nature of the SNAIL allows for arraying of three-wave mixing elements.
�is can be construct an ampli�er with increased dynamic range or bandwidth. (b) An example of
a circuit in which the SNAIL is used as a tunable coupling device between two modes, represented
by red and blue boxes.

An important advantage of the dipole nature of the SNAIL is the ability to combine many
4Recall the discussion at the beginning of Section 3.1. c4 = 0 does not quite imply that the Kerr non-linearity

K = 0. Second-order corrections from the c3 can add to the Kerr and should be included in the calculation. However,
the varying sign of the c4 term should still allow us to �nd a regime in which these e�ects cancel to produce K = 0.
�e experimental study of the Kerr non-linearity of the SNAIL vs. ΦS

ext and α is currently ongoing.
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SNAILs into an array. �is is an important technique for improving the the performance of para-

metric ampli�ers, and is commonly used in four-wave mixing ampli�ers [Castellanos-Beltran et al.,

2008]. Such an arraying for the SNAIL, as is shown in Fig. 5.3a, can lead to similar improvements

in three-wave mixing ampli�ers.

Additionally, the SNAIL can be used to facilitate tunable coupling between di�erent modes.

Consider two resonators which are coupled by a SNAIL, as shown in Fig. 5.3b. �e SNAIL is the

non-linearity in this circuit, and thus provides the three-wave mixing between the linear resonator

modes (see the non-linear potential term in Eq. 2.38). By applying a single drive at the di�erence

of the mode resonance frequencies, the three wave mixing term and the drive term can combine

to create the e�ective beam-spli�er Hamiltonian:

HBS = geff(t)
(
a†bar + a†rab

)
, (5.5)

where ar and ab are the annihilation operators of the red and blue resonators respectively, and

geff is the e�ective coupling which is proportional to the drive amplitude. �is Hamiltonian leads

to a coherent conversion between the populations of the two resonators. Similarly, by driving at

the sum of the two frequencies, we can create an e�ective two-mode squeezing Hamiltonian:

H2MS = Geff(t)
(
a†ba
†
r + arab

)
, (5.6)

which is actually the Hamiltonian term responsible for the ampli�cation of the JRM and the SNAIL

ampli�er. However, it can also be used as another form of coupling between two modes.

Such tunable couplers are becoming more important for the control of superconducting cir-

cuits. For example, recent experiments at Yale utilize tunable coupling between a long-lived cavity

mode and a fast cavity mode. �is allows for the coherent conversion between long-lived statio-

nary cavity states and traveling waves [Pfa� et al., 2017], and can potentially allow us to commu-

nicate between long-lived cavity nodes in a network. Currently, this is done using the four-wave

mixing property of a single Josephson junction with the addition of two pumps. Using the SNAIL,

it would be possible to perform this process more simply with a single pump, and potentially
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without the Stark shi�s due to the Kerr non-linearity.

5.3 SNAIL-�uxonium

We now present the 3D �uxonium qubit which enables us to drive forbidden transitions at the

�uxonium sweet spot. �is design integrates the SNAIL into the 3D �uxonium architecture as an

inductance shared between the �uxonium and its antenna resonator.

5.3.1 �eoretical model

Lr

Cr

L
q

E
C

E
J

L
S
tot

c
3
tot

φr φq

(a) (b)

Φf
ext

Figure 5.4: (a) �e �uxonium arti�cial atom (green) is made up of a small junction shunted by a
large inductance, itself made of an array of larger Josephson junctions. Some of this inductance
is shared with the resonator (blue). In this design, the shared elements (magenta) are taken to be
SNAILs, which allows us to break selection rules at the �uxonium sweet spot. (b) �e equivalent
circuit diagram. �is circuit has two DOF, and we express the Hamiltonian as a function of ϕr -
the �ux across the resonator capacitor and ϕq , the �ux across the �uxonium small junction.

Fig. 5.4a shows a sketch of the device. �e �uxonium arti�cial atom, shown in green, is made up

of a small junction shunted by an array of larger junctions. Some of the inductance of the �uxonium
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array is made up of N SNAILs (magenta), which are a shared inductance between the �uxonium

and an antenna resonator (blue). �e resonator is made up of capacitor pads, and junctions which

form its own unshared inductance.

To understand the behavior of the circuit quantitatively, let us simplify it into an e�ective

circuit given in Fig. 5.4b. �e �uxonium (green) is now represented by a small junction with

Josephson energy EJ and capacitive energy EC , shunted by a linear inductance Lq . An external

�ux Φf
ext is threaded through the �uxonium loop. �e resonator (blue) is represented as an LC

oscillator with capacitance Cr and unshared inductance Lr . �e N SNAIL array which couples

the two systems is reduced to a single e�ective SNAIL (magenta). We represent the SNAIL as

having only second-order and third-order terms.

We can label the superconducting phase across the SNAIL array asϕS, and assume it is divided

equally across all N SNAILs in the array (neglecting higher frequency modes as we have done

previously). �us, we can calculate the coe�cients of the total SNAIL array from those of the

SNAIL.

ctot
2 ϕ2

S = Nc2

(ϕS

N

)2
, (5.7)

where c2 is the second-order coe�cient of a single SNAIL in the array, and ctot
2 is the second-order

coe�cient of the whole array. �us, ctot
2 = c2/N or Ltot

S = NLS. Linear inductances in series

are simply added, as expected. A similar calculation shows that ctot
3 = c3

N2 , and so the third-order

non-linearity is suppressed by an additional factor ofN . Higher order non-linearities are similarly

suppressed by higher and higher factors, making the low-order non-linearity assumption be�er5.

�e circuit in Fig. 5.4b has only two true DOF and we choose to use the phase across the

Josephson junction ϕq , and the phase across the resonator capacitance ϕr . We can calculate the

Hamiltonian by following the steps provided in Chapter 2. A very similar derivation is given

in Ref. Smith et al. [2016], with a shared linear inductance replacing the SNAIL. �e addition of

the SNAIL adds a three-wave mixing term to the simple �uxonium-resonator Hamiltonian, of the
5�is is precisely the bene�t of the arraying we discussed in the previous section (see Fig. 5.3a) to improve the

performance of ampli�ers.
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form:

H3WM = ctot
3 φ3

0

(
LrL

tot
S

Lq(Lr + Ltot
S )

ϕq +
Ltot

S

Lr + Ltot
S

ϕr

)3

, (5.8)

where we have assumed that Lq � Lr, L
tot
S . �is three-wave mixing Hamiltonian gives rise to

several e�ects through its di�erent mixing terms, but let us focus on two terms of special impor-

tance:

H|g〉−|f〉 = 3ctot
3 φ3

0

(
Ltot

S

Lq

)2
L2
rL

tot
S

(Lr + Ltot
S )3

ϕrϕ
2
q (5.9)

H|g,0〉−|e,1〉 = 3ctot
3 φ3

0

Ltot
S

Lq

Lr(L
tot
S )2

(Lr + Ltot
S )3

ϕ2
rϕq (5.10)

�e term in Eq. 5.9 is proportional to the term ϕrϕ
2
q . With an additional resonator drive, this

gives rise to an even drive term6 of the form ϕ2
q which is able to drive the �uxonium |g〉 ↔ |f〉

transition at the �uxonium sweet spot as 〈g|ϕ2
q|f〉 6= 0. �e term in Eq. 5.10 similarly leads to

a drive term of the form ϕqϕr . �is is another even term, but one that allows us to drive the

forbidden joint transitions such as |g, 0〉 ↔ |e, 1〉7.

Eq. 5.10 should remind us of the tunable mode coupling we have discussed in the previous

section, and speci�cally Eqs. 5.5 and 5.6. �e even drive created by Eq. 5.10 actually gives rise to

both a beam-spli�er term, as in Eq. 5.5, which can drive the |e, 0〉 ↔ |g, 1〉 term, and a two-mode

squeezing term, as in Eq. 5.6, which can drive the |g, 0〉 ↔ |e, 1〉 transition. �us, our selection-

rule-breaking drive can also be understood as a tunable coupling between modes, such that the

parity is preserved.

�ere are two important things to notice in the coe�cients of Eqs. 5.9 and 5.10. First of all,

they both depend on Lr in the numerator. Lr is the unshared resonator inductance, and thus one

would expect that if the antenna shares more of its inductance, it is more coupled to the �uxonium
6We can see this by following the derivation in Section 3.3. Recall thatϕr = ϕrZPF(ar +a†r), and we add a drive of

the form ε(ar + a†r) in the drive frequency rotating frame. By applying the displacement operator, we end up with a
drive term of the form ϕrZPFαrϕ

2
q where αr is the coherent state amplitude in the resonator. A similar transformation

takes ϕ2
rϕq → 2ϕrZPFαrϕrϕq .

7�e distinction between ϕ2
q and ϕqϕr and the terms they can drive is not absolute, due to the coupling between

the resonator and the �uxonium. Both of these drive terms can drive the transitions |g〉 ↔ |f〉 and |g, 0〉 ↔ |e, 1〉
to some extent. However, as the coupling between the resonator and the �uxonium is weak (we are in the dispersive
regime), we associate each term with the transitions it couples to more strongly.
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and thus the SNAIL is be�er able to drive the forbidden transitions. �is intuition is false, as when

Lr = 0, the SNAIL element is the entire inductance of the resonator and the phase across it is ϕr .

�ere is still coupling between the two modes, mediated by the Lq inductor, but the SNAIL does

not participate in it and thus there is no three-wave mixing for the qubit mode. �us, a substantial

Lr , comparable to Ltot
S , is necessary to drive forbidden transitions.

�e second thing to notice is that the coe�cient in Eq. 5.10 is larger than Eq. 5.9 by a factor

of Lq/Ltot
S , which is experimentally ≈ 50. �us, this coupling scheme is more suited to drive the

two-mode forbidden transitions such as |g, 0〉 ↔ |e, 1〉.

It is important to remind again thatϕr andϕq are not the �eld operators of the resonator and

�uxonium modes, but simply convenient bases made up of their linear parts. Especially, ϕq is the

�eld operator of a linear mode very di�erent from the �uxonium qubit. �e statements 〈g|ϕq|f〉 =

0 and 〈g|ϕ2
q|f〉 6= 0 are true due to the selection rules described in Section 5.1, but calculating the

value of the matrix element requires a diagonalization of the �uxonium Hamiltonian, and is usually

done numerically.

5.3.2 �e device

�e SNAIL �uxonium was fabricated using aluminum on a sapphire substrate. It was made in

a single fabrication step, using the bridge-free fabrication technique (see Section 4.1.1 for more

information).

Fig. 5.5a shows a scanning electron microscope (SEM) image of a SNAIL. In the image we see

the SNAIL loop, with the upper path passing through three larger junctions, and the lower path

passing through a single smaller junction. �e ratio between the area of the smaller junction and

the larger junctions (and thus their Josephson energies) is α = 0.4.

A trick, unique to bridge-free fabrication, was used to make this device. As we have discussed

in Section 4.1.1, in this technique we can choose to connect the top layers of adjacent junctions,

or the bo�om layers. �e pa�ern of the upper path follows the normal array structure: the wire

coming from the le� connects to the bottom layer of the le� larger junction, a wire connects the

le� larger junction’s top layer to that of the middle larger junction, a wire connects the middle
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Figure 5.5: (a) an SEM image of a SNAIL made using the bridge-free fabrication technique. �e
top path of the loop is through three large Josephson junctions, while the bo�om one is only
through the smaller junction. �e larger junctions are not participating in the bo�om path as the
lines connecting them are a�ached to the same junction pad. (b) �e SNAIL in (a) is embedded
as a coupling element between a �uxonium and an antenna resonator. �e �uxonium is made
of a small junction and 126 array junctions. It is coupled to the antenna using 5 SNAILS. �e
antenna resonator also has 6 unshared junctions. Note that for a given applied magnetic �eld,
Φf

ext/Φ
S
ext = 60± 2 due to the area di�erence. �is allows us to independently tune both �uxes.

larger junction’s bottom layer to that of the right larger junction, and a wire connects to the right

larger junction’s top layer and exits on the right. �us the upper path passes through all three

larger junction. On the other hand, the lower path is a bit more tricky: the wire coming from

the le� connects to the bottom layer of the le� larger junction, a wire connects the le� larger

junction’s bottom layer to that of the smaller junction, a wire connects the smaller junction’s

top layer to that of the right larger junction, and a wire connects to the right larger junction’s top

layer and exits on the right. �us the lower path only passes through the smaller junction, with the

wires connecting to the larger junctions only passing through one of their layers, thus shunting
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them. �e distinction between the top and bo�om layer wires is visible in the SEM image. As the

pa�ern must begin with a bo�om layer and end in a top layer (or vice versa) - we must use an odd

number of larger junctions in the SNAIL.

�e SNAIL is embedded as a coupling element between the �uxonium and its antenna reso-

nator, as is shown in the SEM image in Fig. 5.5b. �e �uxonium is made of a small junction, and

an array of 126 array junctions. �ere are also N = 5 SNAILs which couple the �uxonium and

the resonator. �e antenna resonator also has its own unshared inductance, which is made up of

6 unshared junction. �e antenna wire, not shown due to scale, has a total length of 1 mm.

Note that the �uxonium loop is signi�cantly larger than that of the SNAIL. �e area of the

SNAIL loop is AS = 6 ± 0.2 µm2 while the area of the �uxonium loop is Af = 350 ± 10 µm2.

For a given applied magnetic �eld, the ratio of the �uxes through the �uxonium and SNAIL loops

is Φf
ext/Φ

S
ext = 60 ± 2. �is allows us to independently control the �ux through each loop, even

though we only have global control of the magnetic �eld. We can �rst set the the magnetic �eld to

a value such that ΦS
ext is signi�cant and so we have a substantial third-order term (see Fig. 5.2c).

�en we can �nely tune the magnetic �eld to �nd a half-�ux sweet spot of the �uxonium qubit,

i.e Φf
ext mod Φ0 = 0.5. �is �ne tuning does not substantially vary the value of ΦS

ext.

From resistance measurements of the di�erent elements in the SNAIL �uxonium we can esti-

mate the di�erent inductances [Ambegaokar and Barato�, 1963, Nigg et al., 2012]. We estimate that

Lq = 410nH,Lr = 14nH, andLtot
S = 9nH at zero �ux (it increases as �ux is threaded through the

SNAIL loop). �e measured antenna resonator resonance frequency is ωr = 2π × 6.82 GHz, and

thus we can estimate Cr = 24 fF. From a measurement of the small junction resistance and qubit

spectroscopy (shown immediately below), we estimate EJ/h = 8.5 GHz and EC/h = 2.8 GHz.

We cooled the device down using a dilution refrigerator, and characterized the properties of

our arti�cial atom. Fig. 5.6a shows a two-tone spectroscopy of the |g〉 ↔ |e〉 transition of the

�uxonium qubit. �e phase of a resonant drive re�ecting from the antenna resonator is measured

(see Section 4.2), while applying a CW tone at a varying frequency. A background has been sub-

tracted from the measurement to account for a change in the resonator frequency with �ux. �e

measurement shown is at the vicinity of Φf
ext/Φ0 = 6.5, which will eventually be our working
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Figure 5.6: (a) Two-tone spectroscopy of the |g〉 ↔ |e〉 transition around Φf
ext/Φ0 = 6.5. �e

change in the phase sign corresponds to a change in the dispersive coupling χ between the �uxo-
nium and the resonator. (b) A T1 measurement of the �uxonium qubit, with an exponential �t
(straight line) (c) & (d) Measurements of the Ramsey (T2R) and echo (T2e) decay times respecti-
vely.

point, but similar curves have been measured near other half-�ux sweet spots of the �uxonium.

�e �uxonium qubit frequency at its half-�ux sweet spot is ωq = 500 MHz. Notice there is a

change in the sign of the resonator response phase at around Φf
ext/Φ0 = 6.52. �is is likely due

to a change in the sign of the dispersive shi� χ between the �uxonium and the resonator. �e dis-

persive shi� of the �uxonium depends on higher level �uxonium-resonator transitions in a subtle

way [Smith et al., 2016], and similar transitions have been observed in the �uxonium. Luckily,

χ 6= 0 at the �uxonium sweet-spot, and thus we are able to measure the �uxonium transitions.

We measured the coherence times of the �uxonium |g〉 ↔ |e〉 transition at the �uxonium

half-�ux sweet spots. �e measurements at Φf
ext = 6.5Φ0 are shown in Fig. 5.6b, c, and d. We

�nd the qubit lifetime is T1 = 5.7 µs, the Ramsey decoherence time is T2R = 5.7 µs and the

echo decoherence time is T2e = 7.9 µs8. Similar values were observed at Φf
ext = 0.5Φ0. �e

y-axis calibration of the qubit population was done using a later measurement, and is discussed in

Section 5.3.4.

�ere is a concern that the addition of the SNAIL can introduce losses to our arti�cial atom.
8�e oscillations in Fig.5.6c and d are due to an arti�cial detuning of 1 MHz made by changing the phase of the

second π/2 pulse in the sequence. All π/2 pulses were performed on qubit resonance.
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�e �uxonium is taken at its sweet-spot, but notice that the SNAIL is not in its sweet-spot (this is

necessary to obtain the three-wave mixing). �us, �ux noise causes a change in its inductance, and

thus in the array inductance of the �uxonium Lq . At half-�ux, the �uxonium |g〉 ↔ |e〉 transition

depends on the parameters of the small junction9 and thus it should theoretically be �rst-order

insensitive to the array inductance.

�is has already been partially experimentally validated as the �uxonium in Refs. Pop et al.

[2014], Vool et al. [2014] used SQUIDs as coupling elements, and high coherences were measured.

However, these values were only measured at the lowest �ux sweet spot Φf
ext = 0.5Φ0 and not at

higher values. Also, the three-wave-mixing nature of the SNAIL could introduce additional losses

compared to the SQUID.

In our sample, we measure T2 values that are consistent with the best 3D �uxonium samples,

and a T1 value well below other waveguide 3D �uxonium samples (≈ 100 µs in Ref. Kou et al.

[2017]). �e low T1 value could be a result of introducing the SNAIL into the circuit. However,

an identical T1 value was measured at Φf
ext = 0.5Φ0, where the SNAIL three-wave-mixing term

is negligible. While the coherence of the SNAIL �uxonium requires further study, we believe this

low T1 is not introduced by the SNAIL but is due to other noise sources, such as dielectric loss.

�ese coherences of the SNAIL �uxonium are certainly high enough to observe and control

the �uxonium selection rules, and so we proceed to drive the forbidden transitions of the circuit.

5.3.3 Spectroscopy of forbidden transitions

�e ratio Φf
ext/Φ

S
ext = 60 allows us to study the e�ect of the SNAIL on the �uxonium transitions.

�e �uxonium spectrum is identical at its di�erent sweet-spots, but the �ux through the SNAILs

varies substantially - leading to a change in the value of the ctot
3 coe�cient for the SNAIL array.

We observe the |g, 0〉 ↔ |e, 1〉 transition which should be stronger due to its larger coe�cient (see

Eq. 5.10).

Fig. 5.7 shows a two-tone spectroscopy in the vicinity of the |g, 0〉 ↔ |e, 1〉 transition (ωr+ωq)
9�e �uxonium |g〉 ↔ |e〉 transition energy at half-�ux is related to the tunneling rate between the two lowest

�uxonium wells, and is proportional to ∝ e−
√

8EJ/EC [Manucharyan, 2011, Matveev et al., 2002].
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Figure 5.7: (a), (b), (c), and (d) show a two-tone spectroscopy of the |g, 0〉 ↔ |e, 1〉 transition with
a SNAIL-�uxonium device around Φf

ext/Φ0 = 0.5, 2.5, 4.5, and 6.5 respectively. �e di�erent
regions are all around half-�ux sweet spots of the �uxonium qubit, but the �ux through the SNAIL
increases. At higher �ux values, the SNAIL becomes a signi�cant three-wave-mixing element,
which allows us to drive the previously forbidden transitions. �e change in the sign of phase
observed in (d) is due to a change in the dispersive coupling χ between the �uxonium and the
resonator. It is also visible in a direct measurement of the |g〉 ↔ |e〉 transition in Fig. 5.6a.

around four di�erent �uxonium half-�ux sweet spots: Φf
ext/Φ0 = 0.5, 2.5, 4.5, and 6.5 shown in

Fig. 5.7a, b, c, and d respectively. �e measurements were done in the same setup and using a tone

of the same amplitude, yet they show substantially di�erent responses.

At Φf
ext/Φ0 = 0.5 (Fig. 5.7a) we see no response at the |g, 0〉 ↔ |e, 1〉 transition, which agrees

with a regular �uxonium sample as seen in Ref. Manucharyan [2011]. �is is due to the parity

selection rule near the �uxonium sweet spot. At half-�ux sweet spots with higher �ux (Fig. 5.7b,

c, and d), the forbidden transition becomes more and more visible. �is is due to an increase in the

value of the three-wave-mixing coe�cient, which we predict to be EJ × ctot
3 /h = 8, 40, 70, and

100 MHz for Φf
ext/Φ0 = 0.5, 2.5, 4.5, and 6.5 respectively. �e new non-linear drive allows us to

break the selection rule and drive the forbidden transition at the �uxonium sweet spot. While it

is di�cult to obtain the amplitude of the three-wave-mixing drive from the spectroscopy, in the

following chapters we present independent ways to measure this non-linear drive amplitude and

compare it to the theoretical prediction.

Notice that the frequency of the |g, 0〉 ↔ |e, 1〉 transition at the �uxonium half-�ux decreases

slightly as the magnetic �ux increases. �is is due to a decrease in the resonator frequency, as the

linear inductance of the SNAILs increases with �ux. Also notice that we see a shi� in the sign of
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the response in Fig. 5.7d. �is is likely due to a change in the �uxonium-resonator dispersive shi�

χ, as we have already seen in the direct qubit measurement in Fig. 5.6a.

And so we are able to drive a forbidden transition by using non-linear coupling! We now utilize

this new ability to create a superconducting Λ-system within the �uxonium arti�cial atom.

5.3.4 Raman cooling

We operate the �uxonium qubit at Φf
ext/Φ0 = 6.5, where we have a visible response in spectroscopy

for the |g, 0〉 ↔ |e, 1〉 transition. A similar response is visible for the |e, 0〉 ↔ |g, 1〉 transition,

which is also accessible through the same non-linear drive term. Using these two transitions,

we are able to cool the �uxonium qubit via a Raman process, analogous to spontaneous Raman

sca�ering [Steck, 2007].

Recall that the energy of the |g〉 ↔ |e〉 transition in our �uxonium is ωq = 500 MHz, which

corresponds to a temperature of 24 mK. �us, even at dilution refrigerator temperatures, the

�uxonium has signi�cant excited state population in equilibrium. We label the thermal state of

the qubit as: P gth|g〉〈g| + P eth|e〉〈e| where P gth is the probability to be in the |g〉 state, P eth is the

probability to be in the |e〉 state, and P gth +P eth = 1. As the resonator frequency is ωq = 6.82GHz,

we assume it is not populated in equilibrium.

Fig. 5.8 shows an experiment to cool the population below the thermal equilibrium tempera-

ture, by using Raman processes. �e black curve corresponds to a regular amplitude-Rabi mea-

surement of the qubit. A Gaussian pulse of 20 ns σ and varying amplitude is applied at the qubit

|g〉 ↔ |e〉 transition, followed by a measurement of the qubit state. �e sinusoidal form corre-

sponds to the expected Rabi oscillations of the qubit. �e sinusoid amplitude shows the di�erence

in the resonator response when the qubit is in thermal equilibrium (at pulse amplitude 0), and

when the qubit population is inverted from thermal equilibrium (P gth ↔ P eth, at pulse amplitude

π). �e y-axis is calibrated to show the probability to be in the |g〉 state, and the details of this

calibration are explained belows.

�e red curve in Fig. 5.8 shows an identical amplitude-Rabi experiment, made a�er a Raman

cooling sequence to |g〉. In this sequence, the |e, 0〉 ↔ |g, 1〉 transition is driven for 5 µs. �e
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Figure 5.8: An amplitude Rabi experiment on the �uxonium qubit with di�erent initial preparati-
ons. A 20 ns σ pulse of varying amplitude is applied at the qubit (|g〉 ↔ |e〉) transition, followed
by a measurement of the qubit state. Without preparation (black), the qubit is 60% likely to be in
|g〉, which corresponds to an e�ective temperature of 62 mK. We repeated the experiment a�er
initially cooling the qubit to |g〉 by applying a tone resonant with the |e, 0〉 ↔ |g, 1〉 transition
(red) for 5 µs. We obtain 94% probability in |g〉. Similarly, we cooled the qubit to |e〉 by driving
the |g, 0〉 ↔ |e, 1〉 transition and inverted its population, obtaining 91.5% probability in |e〉. �e
straight lines are sinusoidal �ts to the measured Rabi oscillations.

state |g, 1〉 is thus populated, and quickly decays to the state |g, 0〉 via the decay rate κ of the

resonator (see red inset to Fig. 5.8). �is increases the population in the ground state, and thus

the amplitude of the Rabi oscillations is signi�cantly higher. Similarly, the blue curve shows the

same amplitude-Rabi experiment, a�er a Raman cooling sequence to |e〉. In this sequence, the

|g, 0〉 ↔ |e, 1〉 transition is driven for 5 µs. �e state |e, 1〉 is thus populated, and quickly decays

to the state |e, 0〉 via the decay rate κ of the resonator (see blue inset to Fig. 5.8). �us, at pulse

amplitude 0 we see a response corresponding to the �uxonium in the |e〉 state, the new initial state

of the amplitude-Rabi experiment.

Let us quantify our results. Recall that we measure the state of the �uxonium via its e�ect

on the resonator frequency, and there are positions in the response I-Q phase-space which corre-

spond to the �uxonium being in |g〉 and |e〉 (see Section 4.2). Let us mark half of the distance in

phase-space between these two positions as A. �us, if the initial state of the �uxonium qubit is

exactly |g〉 and it performs perfect Rabi oscillations, the amplitude for these observed oscillations
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would be A. However, as our qubit is in thermal equilibrium, the actual measured amplitude is:

Ath = A(P gth − P
e
th) = A(2P gth − 1) (5.11)

Similarly, we can de�ne the probability in |g〉 a�er the red Raman cooling sequence as P gred,

and the probability in |e〉 a�er the blue Raman cooling sequence as P eblue. �eir corresponding

Rabi oscillation amplitudes are then:

Ared = A(2P gred − 1) (5.12)

Ablue = A(2P eblue − 1) (5.13)

We can also �nd expressions for P gred and P eblue. Let us label the transition rate of the |e, 0〉 ↔

|g, 1〉 transition as gred. �e Raman cooling thus involves a coherent excitation to the state |g, 1〉

with a rate gred, followed by an incoherent decay of the resonator to |g, 0〉 at rate κ. As our

resonator has a large decay rate κ = 2π × 16.8 MHz, we can reasonably assume that gred � κ.

We can thus adiabatically eliminate the higher state [Steck, 2007]. A similar process can be done

for the |g, 0〉 ↔ |e, 1〉 transition and its rate gblue, and we can even make the approximation that

these rates are equal gred = gblue = g3
10. �us, we express the cooling rate for both processes

using adiabatic elimination:

Γcool =
4g2

3

κ
. (5.14)

Notice that this equation resembles the cavity-induced decay in Section 3.3.4, as our non-linear

drive creates a coupling between the �uxonium and the resonator.

�e thermal �uxonium population can be described in terms of an “up” rate Γ↑ which is the

rate of transition |g〉 → |e〉, and a “down” rate Γ↓ which is the rate of transition |e〉 → |g〉. �eir

sum equals the total thermalization rate Γ↓+Γ↑ = Γ1, and the qubit population is related to them
10�is is a reasonable approximation as these transitions have equal coe�cients and matrix elements, and their

frequencies are similar (6.3 GHz and 7.3 GHz) - so there should not be a substantial di�erence in line a�enuation.
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via:

P gth =
Γ↓

Γ↓ + Γ↑
=

Γ↓
Γ1

(5.15)

from a detailed balance assumption in equilibrium.

�e Raman cooling tones then enter to aid the di�erent thermal equilibration rates. �e red

tone cools the qubit to |g, 0〉, and thus the cooling rate Γcool aids Γ↓. Similarly, the blue tone cools

the qubit to |e, 0〉, and thus the cooling rate Γcool aids Γ↑. We can thus express the populations

a�er cooling as:

P gred =
Γcool + Γ↓

Γcool + Γ↓ + Γ↑
=

4g2
3 + κΓ↓

4g2
3 + κΓ↓ + κΓ↑

(5.16)

P eblue =
Γcool + Γ↑

Γcool + Γ↓ + Γ↑
=

4g2
3 + κΓ↑

4g2
3 + κΓ↓ + κΓ↑

(5.17)

Let us summarize all these relations. Eqs. 5.11, 5.12, and 5.13 relate three measured quantities,

Ath,Ared, andAblue, to expressions with several unknowns. From the following equations, we see

that we have expressed all of these terms using only three unknowns: A, g3, and P gth. All other

unknowns can be expressed using these three, as well as known quantities such as κ and Γ1. �us,

we can solve a set of three equations with three unknowns, and extract the thermal population of

our �uxonium qubit.

�e extracted qubit equilibrium temperature is 62 mK, which corresponds to P gth = 0.6. We

also obtain the population a�er cooling to |g〉, P gred = 0.94, and the population a�er cooling to

|e〉, P eblue = 0.915. �is is the calibration of the qubit population which is used in Figs. 5.6, 5.8,

and 5.9.

�is analysis also gives us the transition rate, g3 = 2π×0.87MHz. Notice we self-consistently

justify our assumption g3 � κ. We can also compare this measurement to the theoretical pre-

diction. We can relate the value of g3 to theory from Eq. 5.10 with the addition of a coherent drive

amplitude and the matrix element:

g3 = 6ϕrZPFαrc
tot
3 φ3

0

Ltot
S

Lq

Lr(L
tot
S )2

(Lr + Ltot
S )3
〈g, 0|ϕrϕq|e, 1〉, (5.18)
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and all the values in this equation have independent theoretical predictions besidesαr , which is the

coherent state population in the resonator which enables this drive. From the measurement of g3,

we can estimate the photon population in the resonator due to this cooling drive as |αr|2 = 0.35.

5.3.5 �e SNAIL-�uxonium as a Λ-system

In the previous section, we have already seen the use of a Λ-system formed between the low-

energy states |g, 0〉, |e, 0〉, and the higher state being |g, 1〉 for the red tone, and |e, 1〉 for the blue.

We observed spontaneous Raman sca�ering through the higher transition, which allowed us to

cool the system to either one of its low-energy eigenstates.

In this Section, we complete the picture by presenting coherent manipulation of a Λ-system

formed by the |g, 0〉, |e, 0〉, and |e, 1〉 states of the �uxonium-resonator system. We show Rabi

oscillations of the �uxonium qubit at its sweet-spot, with no drive tone being sent at the �uxo-

nium |g〉 ↔ |e〉 transition frequency. �e entire manipulation is done through stimulated Raman

transition, using detuned drives to the higher energy state |e, 1〉.

Fig. 5.9a, shows a level diagram for a stimulated Raman transition, in which the transition

|g, 0〉 ↔ |e, 0〉 is excited through the virtually populated |e, 1〉 state. We apply two tones to the

system. One direct drive on the resonator (black line in Fig. 5.9a) is sent at frequencyωd = ωr−∆r ,

where the detuning is �xed to be ∆r = 150 MHz. Another tone is sent to excite the non-linear

transition (magenta line in Fig. 5.9a) at frequency ωnl = ωr + ωq − ∆r − ∆ , where ∆ is an

additional detuning of the non-linear drive11.

A�er cooling the �uxonium to |g, 0〉, we apply both tones together at constant amplitude for a

varying amount of time. Fig. 5.9b shows the resulting time-Rabi oscillations, for varying values of

the additional detuning ∆ of the non-linear drive. Many coherent oscillations are observed, and

our results seem very similar to a regular detuned Rabi drive of a qubit. We are able to coherently

control the �uxonium qubit on the timescale of ≈ 100 ns using only high-frequency transitions.

We can write an e�ective Hamiltonian for this system, treating the �uxonium as a two-level
11Note that the drives are not inherently di�erent, as they are both applied at the same port. We associate a tone

with a transition because they are closer in frequency to it, but in principle both drives couple to both transitions.
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Figure 5.9: (a) Level diagram for a stimulated Raman transition using a direct resonator drive
(black) and non-linear drive (magenta) (b)Time Rabi oscillations of the �uxonium qubit using a
stimulated Raman transition through the |e, 1〉 state. Initially the qubit was cooled to the |g, 0〉
state, followed by two simultaneous tones for a varying time. Both tones were applied 150 MHz
detuned from resonance, and the |g, 0〉 ↔ |e, 1〉 had an additional varying detuning ∆. Note the
optimal detuning corresponds to ∆ = 60 kHz, due to a Stark shi�. From this we can infer the
amplitude of the coherent |g, 0〉 ↔ |e, 1〉 drive to be g3 = 3 MHz. (c) A cut taken at ∆ = 100 kHz.
We can infer the decay of Rabi oscillations TR = 5 µs. �e green line is a simulation of Eq. 5.20
with only one �t parameter ε.

atom:

HΛ/~ = ωra
†
rar+

ωq
2
σz+

χ

2
a†rarσz+ 2ε cos(ωdt)(ar+a†r) + 2g3 cos(ωnlt)(arσ−+a†rσ+),

(5.19)

where g3 is the transition rate of the non-linear drive (same coe�cient as in Eq. 5.18), ε is the

coe�cient of the direct resonator drive and χ = 2π× 0.7 MHz is the dispersive coupling between

the �uxonium and the resonator (estimate from the I-Q response of the �uxonium)12.

By moving to the rotating frames Ur = eia
†
rarωdt, Uq = eiσz

ωq−∆

2
t and taking the RWA, we

12Asχ� κ, notice that the resonator transition does not only drive |e, 0〉 ↔ |e, 1〉 but also |g, 0〉 ↔ |g, 1〉. However,
this transition is strongly detuned and there is no second transition to “catch” this virtual excitation, and thus this e�ect
can be neglected.
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arrive at the time-independent Hamiltonian:

HΛ/~ = ∆ra
†
rar +

∆

2
σz +

χ

2
a†rarσz + ε(ar + a†r) + g3(arσ− + a†rσ+), (5.20)

and we can use this Hamiltonian to understand the behavior of the system.

Notice that the Rabi-oscillations in Fig. 5.9b are not quite centered at ∆ = 0, but rather are

slightly o�set at ∆ = 60 kHz (the gray dashed line). �is is a result of the Stark shi� in the non-

linear mode, and it is related to the drive amplitude and the detuning by ∆Stark =
g2
3

∆r

13. �is

allows us to estimate g3 = 2π × 3 MHz. From Eq. 5.18 we can thus estimate the photon number

in the resonator to be |αr|2 = 4.314.

Fig. 5.9c shows a cut of Fig. 5.9b at ∆ = 100kHz. From the time Rabi oscillation we can extract

the Rabi decay time TR = 5 µs. �e measured time is shorter than the prediction for the decay

of a resonantly driven atom [Ithier, 2005]: ΓR = 3
4Γ1 + 1

2Γϕ = 5.9 µs. �is is likely due to an

imperfection of the Λ-system simulation of two-level system dynamics. To test this, we simulated

the oscillations using Eq. 5.20.

Notice that we have independent measurements of every coe�cient in Eq. 5.20 except ε. We

also know all the decay constant in the �uxonium and resonator, and the initial population of the

�uxonium (which was cooled to 94% in |g, 0〉, see the previous section). �us, we can simulate

the master equation for our system, and �t it to our measurement in Fig. 5.9c with only a single

�t parameter ε. �is numerical simulation result15 is shown as the green line in the �gure. Notice

we obtain good agreement with the measurement, and thus we conclude that our Hamiltonian in

Eq. 5.20 is a good description for the dynamics of the system.

�e value we get is ε = 2π × 50.8 MHz, and from it we obtain the e�ective Rabi rate of our

oscillations ΩR = 2g3ε
∆r

= 2 MHz.
13See Ref. Steck [2007] Part 6.1.1 for a derivation. Notice that in this case there is only one non-linear mode, and only

it experiences a Stark shi�.
14�is seems to contradict the transition |g, 0〉 ↔ |e, 1〉 as there are more photons in the cavity. But note that while

this drive is on we are in a displaced frame, and the states |g, 0〉 and |e, 1〉 are de�ned from this displaced value. Also
note this value is larger than that of the cooling drive by a factor of≈ 10, consistent with the generator being set 10dB
higher for this measurement.

15Numerical master-equation simulations shown in this chapter and the following made use of the �TiP simulation
so�ware in Python [Johansson et al., 2012, 2013].
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To conclude, we have shown that by using non-linear coupling via the SNAIL, we are able

to drive transitions which are forbidden by the parity selection rule. We use this to construct a

Λ-system at the �uxonium sweet-spot, and implement both spontaneous Raman sca�ering and

stimulated Raman transitions within it. To the best of our knowledge, this is the �rst such super-

conducting Λ-system. Other superconducting Λ-systems have been made within e�ective driven

systems [Inomata et al., 2014], �ux-tunable qubits o� of their sweet-spot [Yang et al., 2004, Murali

et al., 2004, Valenzuela et al., 2006, Grajcar et al., 2008], and by using two-photon transitions [Kelly

et al., 2010, Novikov et al., 2016, Earnest et al., 2017].

�is system can be useful for future implementations of the �uxonium qubit and more advan-

ced arti�cial atoms based on it. �is scheme allows us to have two nearly-degenerate eigenstates,

while performing all operations and measurements on them using only high frequency drives.

�us we can completely isolate the environment at the resonance frequency of this e�ective qubit,

and improve its coherence without sacri�cing our control.

More generally, this is a new arti�cial atom which expands our capability to synthesize quan-

tum systems. As a Λ-system, it can simulate many interesting e�ects used in quantum optics

with conventional atoms (see Chapter 1). However, while we have used our arti�cial atom as a

Λ-system, it is only one aspect of it. �e Hamiltonian in Eq. 5.20 seems like an e�ective JC-like

Hamiltonian where the frequencies of both the resonator and the qubit are tunable, and so is the

interaction between them. We can even choose to have beam-spli�er-like interaction of the form

arσ+ +a†rσ−, or two-mode-squeezing-like interaction of the form arσ−+a†rσ+, or even both

at the same time with independently tunable coe�cients. �us, the new quantum operations that

can be implemented using this type of device have not been exhausted, but rather we are only

scratching the surface of possibilities.



Chapter 6

Monitoring a qubit along σx

In the previous chapters, we saw how to create an arti�cial two-level atom from a superconducting

circuit. It is convenient to write the Hamiltonian for such a system using the Pauli operators. By

convention, the z axis is de�ned as the energy axis of the circuit. |g〉 and |e〉, the energy eigenstates

of the arti�cial atom, are taken to be the eigenstates ofσz with eigenvalues−1 and +1 respectively.

�e σx operator is then used to represent the o�-diagonal terms of the Hamiltonian. It �ips

between the eigenstates of σz (σx|g〉 = |e〉 and vice versa) and is thus used to describe drives and

interactions which perturb the “original” eigenstates of the Hamiltonian. �e presence of a σx

term in the Hamiltonian usually indicates that our basis is not the basis of energy eigenstates. A

possible conclusion would be that σx terms lead to a confusing description, and thus should never

appear in our Hamiltonian: we should rediagonalize the system to get rid of them. However,

there are several occasions where these terms help us describe the physics. For example, a time-

dependent perturbation to the Hamiltonian is useful to describe in the unperturbed basis, as this

will be the energy basis once the perturbation is turned o�. It can also be useful if we are studying

an open system. To understand the e�ects of energy and information loss, it is convenient to work

in the basis native to the corresponding loss operators, even if it is not the native Hamiltonian

basis.

In this Chapter, we present a qubit made of the eigenstates of σx. By using the JC coupling

of our (σz) arti�cial atom to a cavity and applying continuous drives, we create an e�ective JC

96
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Hamiltonian between aσx qubit and a harmonic oscillator. As our atom was already arti�cial, this

is a second-order arti�cial atom which allows for additional �exibility: all system energies and the

coupling between them are completely tunable in situ.

�is e�ectiveσx JC Hamiltonian can thus be used to study the physics of the Rabi Hamiltonian

(Eq. 3.4) in a variety of regimes. It is also interesting to discuss this interaction in the frame of the

original σz qubit - as in this frame the interaction enables several unique quantum operations that

we can add to our toolbox. �is Chapter will focus on this aspect of the σx qubit.

�is Chapter starts with a theoretical description of our driven JC system, and the e�ective

arti�cial atom which is derived from it. �e following section discusses the experimental imple-

mentation of the resonant σx JC Hamiltonian, which we use to cool the qubit to its transverse

eigenstates. �e �nal section discusses the dispersive σx JC Hamiltonian, which allows us to con-

tinuously monitor the quantum jumps between the transverse eigenstates of our qubit - the �rst

such measurement in any coherent quantum system.

6.1 �eoretical analysis

We begin our treatment with Eq. 3.8, which describes the dispersive JC Hamiltonian made of a

two-level atom (qubit) coupled to a harmonic oscillator (cavity):

Hdisp/~ = ωca
†a+

ωq
2
σz +

χ

2
a†aσz, (6.1)

where ωc is the cavity resonance frequency, ωq is the qubit resonance frequency and χ is the

dispersive shi� between the qubit and the cavity. We now add two continuous drive terms to the

system: one on the cavity mode with amplitude εsb and frequency ωsb near the cavity resonance

frequency ωc, and one on the qubit mode with amplitude (Rabi frequency) ΩR at frequency ωqd

near the qubit resonance frequency ωq .

A diagram of the modes and drives can be seen in Fig. 6.1. Note that in the diagram the qubit

Rabi drive is shown to be on resonance with the qubit. �is is the condition we desire for the Rabi

drive, but there is a subtlety in this de�nition which we discuss shortly. �e diagram also includes



6.1. Theoretical analysis 98

∆c

χ χ

κ

ωcωsb
ωq ω

ge

Figure 6.1: Frequency landscape. Our system consists of a qubit at frequency ωq and cavity with
qubit-state-dependent frequency ωc±χ/2 and linewidth κ. �e qubit frequency correspondingly
depends on the number of photons in the cavity, changing by χ for every photon. We apply a
strong sideband tone (red) detuned from the cavity frequency by ∆c and a strong Rabi tone (green)
at the qubit frequency. Readout is performed by applying a weak readout tone (blue) at the cavity
resonance frequency ωc to readout the system.

an additional probe drive (blue) which is used to read out the system. For now we ignore this tone,

and we will return to it as we discuss the experimental results. �e total Hamiltonian is now:

H/~ = ωca
†a+

ωq
2
σz +

χ

2
a†aσz + ΩR cos(ωqdt)σx + 2εsb cos(ωsbt)

(
a+ a†

)
(6.2)

We can move to the rotating frame of both the qubit and the cavity, Uc = eia
†aωsbt, Uq =

eiσz
ωqd

2
t and apply the RWA to remove terms oscillating at 2ωc and 2ωq . We are now le� with the

time-independent Hamiltonian:

H/~ = ∆ca
†a+

∆q

2
σz +

χ

2
a†aσz +

ΩR

2
σx + εsb

(
a+ a†

)
, (6.3)

where ∆c = ωc−ωsb and ∆q = ωq−ωqd. We can now eliminate the sideband pump by displacing

the cavity such that its steady state, which is a coherent state, becomes the new ground state. �is

can be done using the displacement operatorUd = eā
∗a−āa† which is equivalent to the change of

frame a = ā+d, where d is the new operator of the cavity and ā, a c-number, is the displacement

in phase space. To eliminate the sideband pump term in Eq. 6.3, we choose ā = −εsb
∆c−iκ/2 , where

κ is the energy relaxation rate of the oscillator (see Section 3.3.2 for more details). Under this
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transformation, the Hamiltonian becomes:

H/~ = ∆cd
†d+

∆q + n̄sbχ

2
σz +

ΩR

2
σx +

χ

2
(ā∗d+ ād† + d†d)σz, (6.4)

where n̄sb = ā∗ā. We can now choose ∆q = −n̄sbχ to cancel the σz term, as we choose the Rabi

drive to be resonant (see Fig. 6.1).

�e next trick will be labeling σz = σ+
x +σ−x where σ+

x and σ−x are the raising and lowering

operators of theσx eigenstates respectively. We label the eigenstates ofσx with eigenvalues 1 and

−1 as |+〉 and |−〉 respectively. And so σ+
x |−〉 = |+〉 and σ−x |+〉 = |−〉. Under this substitution,

we can rewrite the Hamiltonian as:

H/~ = ∆cd
†d+

ΩR

2
σx +

χ

2
(ā∗d+ ād† + d†d)(σ+

x + σ−x ) (6.5)

�is Hamiltonian resembles the Rabi Hamiltonian (Eq. 3.4) between the displaced cavity and

the σx quadrature of the qubit. �e Rabi drive term in the rotating frame can be seen as an und-

riven transverse qubit with energy di�erence ΩR, as discussed in Section 3.3.3, and the dispersive

shi� term under displacement resembles a linear interaction between the transverse qubit and the

cavity, with an e�ective interaction strength geff = χ|ā|
2 .

Notice that ∆c is tunable by changing the frequency of the sideband drive, ΩR is tunable by

changing the Rabi drive amplitude, and the coupling geff is tunable by changing the sideband

drive amplitude. �us, we have created an e�ective Rabi Hamiltonian where every parameter

is completely tunable in situ, allowing us to explore atom-cavity physics in any regime we are

interested in.

As we have done in our JC Hamiltonian treatment in chapter 3, we treat the system in two

extreme cases 1: �e resonant case where ΩR = ∆c, and the dispersive case where |ΩR −∆c| �
|χā|

2 .
1Notice that these equations are somewhat surprising - they compare the detuning of the sideband drive with the

amplitude of the qubit Rabi drive.
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6.1.1 Resonant σx JC Hamiltonian

In the resonant case, where ∆c = ΩR, we can use the RWA to simplify Eq. 6.5. In the frame

rotating at the e�ective cavity and e�ective qubit frequency (Ucx = eid
†d∆ct, Uqx = eiσx

ΩR
2
t),

we see that terms of the form d†σ−x are stationary, while terms of the form dσ−x rotate at 2ΩR

and terms of the form d†dσ−x rotate at ΩR. �e la�er two terms can thus be ignored, and we

arrive at a true e�ective resonant JC Hamiltonian (compare to Eq. 3.5):

HJCx/~ = ∆cd
†d+

ΩR

2
σx +

χā

2

(
dσ+

x + d†σ−x

)
, (6.6)

where we have assumed ā is real for simplicity.

�e ground state of the Hamiltonian in Eq. 6.6 is |−, 0〉, with the qubit in its transverse |−〉

state and the displaced cavity in its ground state. �e Purcell e�ect (see Section 3.3.4) in this case

leads to a cooling of the qubit to its transverse ground state, mediated by cavity decay.

In Section 6.2 we present an experimental implementation of this idea, which is published

in Ref. Murch et al. [2012]. We also present an alternative way to view this e�ect, in terms of

engineering the bath which governs qubit decoherence.

6.1.2 Dispersive σx JC Hamiltonian

In the dispersive case, where |∆| = |ΩR −∆c| � |χā|
2 , we do not make the RWA but rather keep

all the terms in Eq. 6.5. �ese terms are important, as they add a correction to the dispersive shi�2.

Similarly to the treatment in Section 3.2, we treat the coupling perturbatively by performing

the Schrie�er-Wol� dispersive transformation U = e
χ

2∆
(ā∗dσ+

x −ād†σ−x ) and keeping the terms

up to �rst order in χ|ā|
2∆ [Schrie�er and Wol�, 1966, Blais et al., 2004]. �is transformation dia-

gonalizes and removes the zeroth-order term χ
2 (ā∗dσ+

x + ād†σ−x ) but we are still le� with the

zeroth order terms χ
2 (ā∗dσ−x + ād†σ+

x ) + χ
2d
†d(σ−x + σ+

x ). To see the contribution arising
2Note that in Section 3.2 we have used the RWA immediately, and we use the JC Eq. 3.5 in both the resonant and

dispersive case. �is assumes that even in the dispersive case ∆ � 2ωq, 2ωc and so the counter-rotating terms can
be neglected. �is is not always a reasonable assumption, especially when these are tunable parameters in a driven
Hamiltonian. In the experiment presented in Section 6.3, ∆, ∆c, and ΩR are actually all of the same order. �us, we
derive the corrections of the counter-rotating terms to the dispersive shi�.
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from these rotating zeroth order terms, we can perform similar Schrie�er-Wol� transformations

U ′ = e
χ

2Σ
(ād†σ+

x −ā∗dσ−x ) and U ′′ = e
χ

2ΩR
d†d(σ+

x −σ−x ) where Σ = ΩR + ∆c and we assume

|Σ| � χ|ā|
2 and ΩR � χ

2 . Performing the three unitary transformations U , U ′, and U ′′ and

keeping �rst order terms in χ|ā|
2∆ , χ|ā|2Σ , and χ

2ΩR
, we obtain the Hamiltonian:

H/~ = ∆cd
†d+

ΩR + ζ ′/2

2
σx +

ζ

2
d†dσx +

χ2

4ΩR
d†d†ddσx, (6.7)

where the Lamb shi� is ζ ′ = χ2

2

(
n̄sb
∆ + n̄sb

Σ

)
and the σx dispersive shi� ζ is:

ζ =
χ2

2

(
n̄sb
∆

+
n̄sb
Σ

+
1

ΩR

)
(6.8)

�e transformation U ′′ contributes the �nal term in Eq. 6.8, but it also gives rise to the �nal

term in Eq. 6.7 - a Kerr term on the displaced cavity which depends on the state of the σx qubit.

�is term is neglected in our experiment as it only a�ects states with two or more photons, and

the population in the displaced cavity is signi�cantly lower. However, in a di�erent experiment

this could be an interesting e�ect by itself.

Suppressing this term and incorporating the Stark shi� into the Rabi frequency, we get a true

dispersive JC Hamiltonian (compare to Eq. 3.8):

Hdispx/~ = ∆cd
†d+

ΩR

2
σx +

ζ

2
d†dσx (6.9)

In the dispersive regime, the cooling e�ect discussed in the previous section is completely

suppressed due to the frequency mismatch. However, the second-order e�ect of this interaction

is signi�cant, and possibly even more profound that the resonant case. In the limit of bad cooling,

we obtained the ability for a QND measurement of the σx qubit operator.

In Section 6.3 we show an experimental implementation of this idea, which is also given in

Ref. Vool et al. [2016]. We implement the Hamiltonian in Eq. 6.9 and measure the cavity to project

the qubit onto its transverse eigenstates. We also utilize the QND nature of this measurement, and

continuously measure the qubit to obtain transverse quantum jumps.
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6.2 Cooling to |g〉 − |e〉

In this section, we present the experiment to cool a superconducting qubit to a state along the

equator of the Bloch sphere (Fig. 1.2), mediated by cavity decay. �is experiment was performed

at the quantum nanoelectronics lab at UC Berkeley, and is published in Ref. Murch et al. [2012].

�e experimental setup consisted of a standard transmon qubit at ωq/2π = 5 GHz, coupled

to a 3D cavity at ωc/2π = 6.8 GHz. �e linewidth of the cavity was κ/2π = 4.3 MHz, and the

dispersive shi� was χ/2π = −0.66 MHz.
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Figure 6.2: (a) A Ramsey measurement of a transmon qubit. �e measured Ramsey decay time was
T2R = 4.9 µs. (b) Ramsey fringes in the presences of the cavity sideband tone at frequency ωsb
and the Rabi drive tone at ωqd. �e drives are turned on for a varying duration, followed by a π/2
pulse. Note that T2 in the presence of the drive was actually shorter (below 1 µs), yet the Ramsey
fringes lasted forever as the system was stabilized into the |−〉 state.

Fig. 6.2a shows a standard Ramsey experiment of the transmon, which consists two π/2 pulses

with a varying time delay between them. �e pulses are intentionally detuned by 2.8 MHz from

the qubit frequency to produce the oscillations. �e initial π/2 pulse places the qubit on the Bloch

sphere equator, where it rotates at the pulse detuning frequency (in the qubit rotating frame), but
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eventually decays to its equilibrium at the center of the Bloch sphere. �e �nal π/2 pulse is thus

just as likely to project the qubit to its |g〉 or |e〉 state. �e Ramsey decoherence time measured for

this qubit was T2R = 4.9 µs.

In Fig. 6.2b, we present the Ramsey fringes in the presence of the sideband and Rabi drive tones.

�e resonance condition for the drives was chosen to be ∆c/2π = ΩR/2π = 9 MHz, meaning we

are in the resonant JC regime (see Section 6.1.1). �e Rabi drive was on resonance with the qubit,

and the sideband drive amplitude was such that n̄sb = 3.6. In the experiment presented, no initial

π/2 pulse was applied. �e two drives were turned on for a varying amount of time, followed by

a �nal π/2 pulse.

�e in�nite Ramsey fringes in Fig. 6.2b, which do not decay even up to 1 ms, show that the

equilibrium state of the qubit in the presence of the drives is along the equator. �is agrees with

the prediction in Section 6.1.1, that the qubit is cooled to the |−〉 state due to the Purcell e�ect.

Note that this does not mean that the decoherence time T2 is in�nite! In fact, the decoherence

time is visible during the �rst part of the measurement in Fig. 6.2b, where the qubit decays to

its equilibrium state in less than 1 µs. �e dissipation through the cavity cannot improve qubit

coherence, it can only make it worse. It is actually important that the engineered dissipation is

signi�cantly stronger than the original qubit dissipation, so that we stabilize our desired state.

�ere is a di�erent formalism with which we can view this experiment, and it can help us

quantitatively understand the di�erent rates which are competing in the cooling process. In this

interpretation, the cooling experiment is analogous to sideband cooling, in which a red-detuned

drive on a high-frequency oscillator cools a low-frequency system through the oscillator dissi-

pation3. �is technique has been used to great e�ect in ion traps [Diedrich et al., 1989], cold

atoms [Hamann et al., 1998], and opto/electro-mechanical systems [Teufel et al., 2011].

Fig. 6.3 shows a sketch of this interpretation. �e sideband tone (black) is applied below the

cavity resonance. A photon of this sideband tone is not quite at the right frequency to enter the
3It is important to note that sideband cooling relies on third-order coupling between the low-frequency and high-

frequency systems. Our Hamiltonian uses the transmon non-linearity which only has terms of even order, so there
seems to be a contradiction. Notice, however, that the Hamiltonian term a†aσz is a third-order term when our qubit
is de�ned along the σx axis, and that is the trick at the heart of our scheme. �is is a good example of why the notion
of order is problematic when we operate in the spin basis (see Section 3.1).
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cavity. However, it can take additional energy from an excitation of the e�ective qubit, and the

two combine to create a blue sideband photon at ωsb + ΩR = ωc. �is photon is now precisely

on resonance with the cavity and can enter it and be dissipated. �is process has taken energy

ΩR from the qubit, and thus it made the transition |+〉 → |−〉. �e opposite process, |−〉 → |+〉,

occurs when an red sideband photon at ωsb − ΩR is created. �is photon is even more detuned

from the cavity frequency and unlikely to enter, and thus this e�ect is suppressed and the dominant

e�ect will be cooling to |−〉4.

ωsb ωc

ωsb ΩR

ωsb+ΩR

ωsb ΩR

ωsb-ΩR

ω

ΩRΩR

Figure 6.3: �e cavity-assisted cooling of a two-level system to the |−〉 state can be understood as
a Raman sideband cooling of the system. �e cavity sideband tone at frequency ωsb (straight black
line) is detuned from the cavity resonance frequency ωc. �e tone combines with the qubit Rabi
frequency ΩR to produce two sidebands. �e upper sideband (blue) takes energy from the qubit to
produce a photon of frequency ωd + ΩR while the lower sideband (red) gives energy to the qubit
and creates a photon of frequency ωd − ΩR. As the upper sideband is resonant with the cavity
(∆c = ΩR), the blue process is enhanced and the qubit loses energy to cool into the |−〉 state.

For a more quantitative understanding, let us recall the spectral density for photon noise in

the cavity in the presence of a coherent drive (see Section. 3.3.5 and Eq. 3.24):

Sdnn(ω) =
n̄sbκ

(ω −∆c)2 + (κ/2)2
, (6.10)

where in this case we are expressing the noise in the presence of the sideband cavity drive. Note

that we are in the weak dispersive coupling regime χ� κ, and thus can use Fermi’s golden rule.
4Note that this entire process relies on the cavity being in the ground state, as it only allows for photon dissipation,

and not photon creation which favors the opposite process. �is is a general concept behind sideband cooling, in
which a high-frequency system is used to cool a low-frequency system. Even if they are at the same temperature, due
to the frequency di�erence the low-frequency system can be �lled with photons while the high-frequency system is
completely empty. �e sideband tone then converts a low-frequency photon to a high-frequency one which decays,
thus cooling the low-frequency system well below thermal equilibrium.
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For an undriven qubit, the dephasing corresponds via Fermi’s golden rule to the spectral density

at ω = 0, as in Eq. 3.22. However, the Rabi drive creates an energy spli�ing between |−〉 and |+〉,

and thus we must separate between the rate Γ− for the process |+〉 → |−〉, which corresponds to

the spectral density at ω = ΩR, and the rate Γ+ for the process |−〉 → |+〉, which corresponds to

the spectral density at ω = −ΩR. �us, we can calculate the two rates:

Γ− =
χ2

4
Sdnn(ΩR) +

1

2T2
=
χ2

κ
n̄sb +

1

2T2
(6.11)

Γ+ =
χ2

4
Sdnn(−ΩR) +

1

2T2
=

χ2κ

16Ω2
R + κ2

n̄sb +
1

2T2
, (6.12)

where T2 is the inherent decoherence time of the qubit due to all other decay sources, and we

assume it does not prefer one of the transverse eigenstates (as is measured in Fig. 6.2a). Note

that the new total qubit decoherence is Γ− + Γ+ which is much faster than the qubit coherence

without the cavity-induced decay, as we discussed previously. However, Γ− � Γ+ and thus our

equilibrium state is close to |−〉. �e experimental purity of |−〉 a�er cooling was 85%, limited by

measurement imperfection and population in the second excited state (|f〉) of the transmon.

Notice that Eq. 6.11 agrees with the Purcell e�ect expression in Eq. 3.21 when we de�ne the

e�ective coupling strength geff = χ|ā|
2 . �us, these two methods of analyzing the e�ect are equi-

valent.

�e state |−〉 is not the only achievable state with this cooling technique. By using the blue

sideband detuning, ∆c = −ΩR, we can similarly show that we cool the qubit to its |+〉 state.

Furthermore, by changing the detuning of the Rabi drive, ∆q , and se�ing the sideband detuning

to be ∆c = ±
√

Ω2
R + ∆2

q , we cool the qubit to cos θ2 |g〉 ∓ sin θ
2 |e〉 where θ = arctan ΩR

∆q
. �is

allows us to cool the qubit to an arbitrary position on the Bloch sphere. However, the cooling rate

is reduced compared to the resonant Rabi drive case. A detailed derivation of this result is beyond

the scope of this thesis. See Ref. Murch et al. [2012] for an experimental realization of cooling to

an arbitrary qubit state, and the supplementary material of the reference for a detailed derivation

of the cooling rates in the di�erent regimes.

To summarize, we have shown an experimental realization of an e�ective resonant JC Hamil-
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tonian with tunable parameters, and use it to cool a qubit to a coherent superposition of its energy

eigenstates. In the following section, we complete the picture by presenting an experimental rea-

lization of the e�ective dispersive JC Hamiltonian.

6.3 Measuring σx

In this section, we present a QND measurement of the σx operator of our arti�cial atom. �is

seems paradoxical, as the static Hamiltonian for a qubit (∝ σz) does not commute with σx, and

so the projected states evolve during the measurement process, destroying the QND nature of the

measurement. However, by using a driven JC system we can create the e�ective Hamiltonian in

Eq. 6.9, which indeed commutes with σx. In the static qubit frame, our measurement axis evolves

with the Hamiltonian so that the projected state is pointing along the measurement axis at all

times, and thus our measurement is not destructive.

Here we describe the experimental implementation of an e�ective dispersive JC Hamiltonian

between a σx qubit and a displaced cavity. �e idea for this experiment, explained in Section 6.1.2,

builds on our theoretical study of the driven JC Hamiltonian, and the experimental work shown

in the previous section. We then use this Hamiltonian to perform a QND measurement of the

σx operator, and thus observe quantum jumps between its eigenstates. �is work is published in

Ref. Vool et al. [2016].

6.3.1 Experimental setup

Our experimental setup, shown in Fig. 6.4, consists of a transmon qubit at frequency ωq/2π =

4.9 GHz coupled to a 3D aluminum cavity with frequency ωc/2π = 7.48 GHz. �e cavity has

two coupling pins, a weakly coupled input pin with quality factor Qin ' 5 · 105 and strongly

coupled output port with Qout ' 1900, and thus a total decay rate κ/2π = 4 MHz. �e qubit

has a decay time T1 = 90 µs, a coherence time of T2R = 40 µs, and in thermal equilibrium

it has an excited state (|e〉) population of 12%. �e dispersive coupling between the qubit and

cavity is χ/2π = −3.2 MHz. All drives were applied at the input port and the signal from the
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output port was ampli�ed by a Josephson Parametric Converter (JPC), a nearly quantum-limited

ampli�er [Bergeal et al., 2010, Abdo et al., 2013], and later by a high-electron-mobility transistor

(HEMT) ampli�er, before being demodulated to extract I,Q quadrature measurement outcomes

(see Section 4.2).

HEMT

I

Q

Ref

Rabi
drive

readout

sideband

aluminum cavity
transmon qubit

Signal

Idler

Pump

JPCcirculator

Figure 6.4: Schematic of the experiment setup. A 3D transmon qubit - cavity system is continuously
driven by 3 tones termed as sideband (red), readout (blue) and Rabi (green). �e readout tone
is transmi�ed through the output port, ampli�ed by a JPC ampli�er and demodulated at room
temperature to give I,Q signals.

We applied a cavity sideband tone (red) with ∆c/2π = 15 MHz such that the cavity steady

state population was n̄sb = ā∗ā = 12 photons, which set geff/2π = χ|ā|/4π = 5.5 MHz. �e

qubit Rabi drive (green) was applied on resonance (∆q = −n̄sbχ), and with varying amplitude ΩR.

�ese two tones set the e�ective Hamiltonian, and we also applied a resonant readout tone (blue)

on the cavity, to read out the state of the qubit. �e readout tone was sent at the cavity resonance

frequency ωc, and with an amplitude such that there were n̄ = 0.9 photons in the displaced cavity.

6.3.2 Histograms vs. Rabi frequency

�e distinct signature of strong dispersive readout is the appearance of two separate Gaussian dis-

tributions in I ,Q phase space, which correspond to the two qubit states (see Section 4.2). �us, we

applied a continuous readout tone together with our sideband and qubit tones, and demodulated

the outgoing readout signal in chunks to obtain a histogram of the equilibrium state of the system.

�e histograms in Fig. 6.5 show the I ,Qmeasurement results from a 1s long readout pulse de-

modulated every 400 ns. In Fig. 6.5a the Rabi tone was o� and our measurement thus projects the

system to eigenstates of σz , as described in Section 4.2. �e top (bo�om) distribution correspon-
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ding to the |g〉 (|e〉) state of the qubit. As we turn up the Rabi tone, our measurement no longer

commutes with the system Hamiltonian and a “competition” takes place between the measurement

and Rabi drive, sometimes called the quantum Zeno e�ect [Misra and Sudarshan, 1977, Gambe�a

et al., 2008]. When the Rabi frequency is below our measurement rate5 Γm/2π = 2.8MHz we can

still observe two distinct states (Fig. 6.5b), but as it gets much stronger, the measurement can no

longer distinguish them (Fig. 6.5c).
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Figure 6.5: Histograms of I,Q measurements in the presence of the readout, sideband and Rabi
drives for various indicated values of ΩR. For each ΩR, a 1 s continuous trace was recorded and
integrated in 400 ns chunks to give an I,Q value, in units of

√
photon in the integrated chunk.

�e sideband and readout drive powers resulted in a steady state population of n̄sb = 12 and
n̄ = 0.9 photons in the cavity respectively. �e two Gaussian distributions corresponding to the
eigenstates of σz are visible in (a) and disappear as ΩR is increased. For large values of ΩR two
new distributions appear, corresponding to the eigenstates of σx. �e faint distribution near the
center in (e) corresponds to the 2nd excited state of the qubit (|f〉).

However, as the Rabi frequency increases beyond ∆c, two distinct distributions reappear (Fig. 6.5d

and e)! Here we see the remarkable e�ect the the sideband drive, which creates a Hamiltonian that

allows for QND measurement when the Rabi frequency is large. Without this additional drive, the

Rabi drive simply washes out the measurement results further as its amplitude increases. �is is a

strong signature of our desired σx measurement.

Fig. 6.5d shows the formation of two distributions, with most of the population in the bo�om

one and a faint top distribution. As the Rabi frequency increases even further, the bimodality of

the histogram becomes more marked and the two sub-populations become more equal (Fig. 6.5e).
5�e measurement rate is actually exactly the measured-induced dephasing rate of the qubit introduced in Eq. 3.25

for a perfect measurement (η = 1). Otherwise, the measurement e�ciency η (de�ned in Section 4.2.3) needs to be
accounted for. For our measurement chain, η = 0.6. See Ref. Gambe�a et al. [2008] for more details.
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�is can be qualitatively interpreted using the theoretical model in Section 6.1: when the system in

Eq. 6.5 is still close to the resonant regime geff ∼ |ΩR−∆c|, cavity dissipation cools the system to

|−〉 due to the Purcell e�ect (Section 6.1.1). Fig. 6.5d shows this e�ect, with the bo�om distribution

corresponding to the e�ective ground state |−〉 and the faint top distribution corresponding to |+〉.

As the Rabi frequency increases, the coupling becomes more dispersive (geff � |ΩR − ∆c|) and

the cooling e�ect weakens, as shown by the relative populations in Fig. 6.5e.

�e measurements in Fig. 6.5 are only a selection of the measurements taken. �e full set of

histograms for di�erent values of the Rabi frequency can be seen in the supplementary video to

Ref. Vool et al. [2016]. �e dispersive coupling parameter ζ can be extracted from these histograms

by using Eq. 4.4 as ζ is our predicted dispersive shi�. Fig. 6.6a shows these extracted ζ values for

Rabi frequencies ΩR > 50 MHz, where we are in the dispersive regime (geff � |ΩR − ∆c|) and

can distinguish two clear blobs in the histogram. �e solid red line is the theoretical prediction

from Eq. 6.8, and we can see good agreement between the measurement and the theoretical model.

Here we can see the importance of adding the contributions of the counter-rotating term to Eq. 6.8,

which lead to a correct model.

Notice that as we increased the Rabi frequency, a faint distribution appeared near the center

of the �gure. �is distribution corresponds to the second excited (|f〉) state of the transmon,

which has an 8% population in Fig. 6.5e. In Fig. 6.6b we show the |f〉 state population for all of

our measurements, extracted from the size of its corresponding Gaussian in the histogram. It is

reasonable to expect a higher population in the |f〉 as the Rabi frequency increases, as the drive

can overcome the detuning of the |e〉 ↔ |f〉 transition and thus populate the higher excited state.

To see if we quantitatively understand this behavior, let us add more terms to the Hamiltonian, to

account for the existence of a second excited state:

Hf/~ = K|f〉〈f | +
√

2ΩR(|e〉〈f | + |f〉〈e|) +
3χ

2
(ā∗d+ ād† + d†d)|f〉〈f | (6.13)

whereK = −200MHz is the Kerr non-linearity of the transmon qubit, which is also the detuning

of the |e〉 ↔ |f〉 transition from the qubit frequency. �e last term shows the dispersive shi� due
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Figure 6.6: Parameters extracted from I,Q histograms for varying Rabi frequency ΩR. (a) �e
e�ective σx dispersive shi� ζ vs. ΩR in the dispersive regime |ΩR − ∆c| � χ|ā|

2 . �e values
were extracted from the I,Q histogram as explained in the text. �e theoretical prediction in
Eq. 6.8 is shown in red, and there is good agreement between theory and measurement. (b) �e
population in the 2nd excited state |f〉 vs. ΩR. �e green line is a numerical master equation
simulation containing Hamiltonian H + Hf from Eqs. 6.5 and 6.13, and decay operators. At
ΩR/2π > 50MHz there is a discrepancy between the theory and measurement. (c) �e equilibrium
expectation value 〈σx〉 vs. ΩR. �e red line is a theoretical prediction and the green line is a
numerical simulation of a master equation containing the Hamiltonian H + Hf from Eqs. 6.5
and 6.13, and decay operators. �e equilibrium of the |+〉/|−〉 population does not agree with our
predicted models, but exhibits a much more irregular behavior.

to the qubit being in the |f〉 state. From the �rst two terms we can see that as the Rabi frequency

increases, so does the equilibrium population in |f〉. �e green line in Fig. 6.6b corresponds to a

theoretical prediction based on a master-equation simulation including the HamiltonianH +Hf

from Eqs. 6.5 and 6.13 as well as decay operations for the cavity and the qubit. While the agreement

is good at low Rabi frequencies, for Rabi frequency values ΩR/2π > 50 MHz the measured |f〉

state population is signi�cantly lower than its predicted value.

We veri�ed this e�ect is not due to even higher excited states by simulating the qubit as 7-level

system with fourth order nonlinearity and found similar results. �e |f〉 behavior was unchanged

and the third excited state was populated up to 4% for ΩR/2π = 100 MHz. All higher states

were never populated. We currently do not understand the reason for the discrepancy between

the measured and predicted population of the |f〉 for high values of ΩR.

We also wanted to quantify our statement regarding the equilibrium population of the states
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|−〉 and |+〉 vs. the Rabi frequency, where we expect the cooling to be less e�ective as we enter

the dispersive regime, and thus obtain populations which are more and more equal. In Fig. 6.6c

we show the equilibrium expectation value 〈σx〉 extracted from the population in the |+〉 and

|−〉 distributions of the I,Q histogram, for di�erent values of ΩR in the dispersive regime. �e

population �uctuates as a function of the Rabi frequency, sometimes with more population in |+〉

and sometimes in |−〉.

To a�empt a theoretical analysis of the e�ective qubit temperature, let us recall that the decay

rates Γ− and Γ+ which govern it are related to the photon number spectral density, as we have

seen in Eqs. 6.11 and 6.12. We can thus express these rates in our case as:

Γ− =
χ2

4
Sdnn(ΩR) +

1

2T2
=

χ2κ

4(ΩR −∆c)2 + κ2
n̄sb +

1

2T2
(6.14)

Γ+ =
χ2

4
Sdnn(−ΩR) +

1

2T2
=

χ2κ

4(ΩR + ∆c)2 + κ2
n̄sb +

1

2T2
. (6.15)

�ere is a correction to the equations above due to χ ∼ κ, where a χ2 term is a added in the

denominator as is shown in Eq. 3.26, but we can neglect it in our treatment as the detuning term

completely dominates the decay. From these two rates we can obtain the expected population as

〈σx〉 = Γ+−Γ−
Γ++Γ−

.

We can compare this theoretical model to our measurements. For ΩR/2π = 70.5 MHz we can

get 1/Γ− = 4 µs, which agrees with a measurement using quantum jumps that is discussed in

Section 6.3.4. However, the theory predicts 1/Γ+ = 9µs, while our quantum jumps measurement

shows it to be 4 µs as well, leading to equal population in |+〉 and |−〉. �e red line Fig. 6.6c

shows our theoretical prediction for 〈σx〉 vs. the Rabi frequency, and it deviates signi�cantly

from the measurement. �is could be a result of the |f〉 state population, which decays to |e〉 and

thus complicates the equilibrium dynamics. �e green line shows the result of a master equation

simulation of the HamiltonianH+Hf from Eqs. 6.5 and 6.13 which includes the |f〉 state, as well

as decay operators for the cavity and qubit. �e inclusion of the |f〉 state does predict a higher

population in the |+〉 state as is shown in the �gure, but it still does not explain the dynamics

of the equilibrium expectation value as a function of the Rabi frequency. �e “peaks” around
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ΩR = 78, 95MHz, where the qubit was more likely to be in the |+〉 state, are especially confusing.

It is possible they are due to speci�c noise at these frequencies, as note that the inherent dephasing

(which contributes to T2) should also be taken at ΩR in the presence of the drives. �ese e�ects

are at present not understood.

�e following sections show measurements in which the Rabi drive is chosen to be ΩR/2π =

70 MHz, which is well in the dispersive JC regime, but still with a signi�cant dispersive shi�

ζ = 1.9 MHz and hopefully below the high drive amplitude where more complicated e�ects

occur.

6.3.3 Measurement characterization

To prove that this measurement projects the qubit to the eigenstates ofσx, we prepared the system

in several well de�ned states before performing our measurement. We prepared the ground state

|g〉 by standard σz dispersive measurement, applied a pulse to prepare a state on the Bloch sphere,

and then turned on the Rabi tone with ΩR/2π = 70 MHz and the readout tone (the sideband tone

is applied throughout the experiment to maintain the same qubit frame - since the presence of

this tone causes a Stark shi� of the qubit frequency). In Fig. 6.7a(b), we prepared the system

in |−〉 (|+〉) and observed 90% (85%) population in the bo�om (top) distribution - and so we

are indeed measuring the σx eigenstates! In Fig. 6.7c and d, we prepared the qubit in |g〉 and

|i〉 = (|g〉+ i|e〉)/
√

2 respectively, and observed a nearly 50:50 population in both distributions.

To characterize the measurement further, and particularly understand our measurement in�-

delity, we prepare the qubit along the 3 main axes of the Bloch sphere (Fig. 6.8). For each state

we measure the expectation value 〈σx〉. �e dashed red lines correspond to the expected result of

an ideal measurement of 〈σx〉. In Fig. 6.8a and b, we observed the expected sinusoidal behavior

as we project unto eigenstates of σx. Fig. 6.8c shows the axis perpendicular to σx and so should

have a constant expectation 〈σx〉 = 0. We observed a 0.2 deviation from this distribution, leaning

towards |−〉 (|+〉) for negative (positive) angles.

To understand the behavior of the system, we simulated the master equation containing the

HamiltonianH+Hf from Eqs. 6.5 and 6.13 and the decay terms κ, T1 and T2. We did not simulate
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Figure 6.7: �e qubit is prepared in |−〉 (a), |+〉 (b), |g〉 (c) and |i〉 (d) as is shown by the Bloch
spheres. We then measure I,Q histograms in the presence of the readout, sideband and Rabi
drives (ΩR/2π = 70 MHz). �e results for the initializations |−〉 and |+〉 show two Gaussian
distributions separated by 5.4 σ. �e initializations |g〉 and |i〉 show nearly 50:50 weight in both
distributions as expected for 〈σx〉. Outcomes above (below) the separatrix (dashed white line) are
identi�ed as |+〉 (|−〉).

the measurement result, only the state preparation. �us, in this simulation, the Rabi frequency

ΩR was a time varying term, shaped like a Gaussian with a 4 ns σ width to simulate the physical

pulse that we applied. �e sideband tone was on during the preparation pulse because the qubit

frame needed to be preserved, the tone induces a χn̄sb qubit frequency shi�, and we need to work

in the correct qubit frame. Note that with the sideband tone on and qubit tone o� (ΩR = 0), the

sideband-induced lifetime of the qubit is T2 = 2/
(
χ2Sdnn(ω = 0)

)
= 150 ns (see Eq. 3.22), and so

we need to account for this in�delity in our preparation pulses. �is agrees with independent T2

measurements in the presence of the sideband tone but not the qubit tone.

�e solid red lines in Fig. 6.8 show the result of this simulation, along with a scaling of 88% and

a shi� of 2% due to measurement imperfection. Our measurement is imperfect as the qubit state

can jump during the measurement (e−TmΓ− = 90%), or be assigned incorrectly due to overlap



6.3. Measuring σx 114

Angle (ο)
18090-90 0-180

1

0

-1
1

0

-1
1

0

-1

(a)

(b)

(c)

φ

φ

θ

θ

γ

γ

σx

σ x

σz

σy

σx

σz

σy

σx

σz

σy

Figure 6.8: �e expectation value 〈σx〉 is plo�ed in blue for states prepared on the Bloch sphere
surface in the σx − σy plane (a), σx − σz plane (b) and σy − σz plane (c). �e dashed red
lines in (a)-(c) show the ideal expectation value 〈σx〉, while the solid red lines show a theoretical
prediction based on a simulation of the cavity-qubit system, including measurement imperfection.

in the Gaussian distributions (1% as they are 5.4 σ apart). We can combine these two e�ects to

predict 89% measurement �delity, while we experimentally obtain 88% by measuring twice in a

row and seeing the probability of agreement. �ere is an additional 2% shi� as our measurement

slightly prefers the |−〉 state to the |+〉 state.

Fig. 6.8a shows good agreement between the data and the theoretical prediction. In Fig. 6.8b

and c, the slight discrepancy can be a�ributed to a slight nonlinearity in the relation between the

amplitude of the preparation pulse and the Bloch sphere angle. From these experiments, we con-

clude that the average �delity of our σx measurement is 88%, which agrees with our theoretical

prediction.

�e deviation from a straight line in Fig. 6.8c is also captured by our theoretical prediction.

It is an artifact of the state preparation, albeit an interesting one as it is also an e�ect of the σx

cooling discussed in Section 6.2. During the preparation pulse for states on the σy − σz plane,

there is a Rabi drive along the σx axis, and so with the help of the sideband tone the system is

cooled to its lower eigenstate. �at is why the system is cooled to opposite states for negative and

positive angles, as the sign of the Rabi frequency during the preparation pulse is opposite.
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To summarize, we characterize our measurement, and conclude we indeed have a single-shot

projective measurement of the σx qubit operator with 88% �delity. In the following section, we

discuss the QND nature of our measurement.

6.3.4 �antum jumps

�e appearance of two Gaussian distribution in Fig. 6.5e is already a signature of the QND na-

ture of our readout, as the histogram is taken from a continuous repeated measurement of the

system. More direct evidence, however, can be obtained from the time trace of the continuous me-

asurements, where we expect to observe quantum jumps between the eigenstates of our e�ective

Hamiltonian (see Section 4.2.3).

In Fig. 6.9, we show a cut from the 1 s jump trace histogrammed in Fig. 6.5e, where we have

de�ned an angle ψ around the circumcenter of the |−〉, |+〉 and |f〉 distributions (see inset). Jumps

between the |−〉 and |+〉 states are clearly visible. �ere are also occasional jumps to the high |f〉

state which are induced by the strong Rabi drive, as discussed in Section 6.3.2. �e dashed orange

line corresponds to a two-point �lter estimating the state of the qubit6.

�e average time between jumps from |+〉 to |−〉 is 1/Γ− = 4 µs, which agrees with our

theoretical prediction discussed in Section 6.3.2. �e average time between |−〉 → |+〉 jumps

is also 1/Γ+ = 4 µs, which is faster than our prediction, but is consistent with our numerical

estimate which includes the e�ects of the |f〉 state (see Fig. 6.6c).

�antum jumps are a result of decay processes which do not commute with the Hamiltonian,

and thus their measurement allows us to characterize the dynamics of the decay processes which

limit our coherence (see the discussion in Section 4.2.3). �e common quantum jumps measure the

σz qubit operator, and thus give us access to the real-time dynamics of the processes responsible

for qubit decay (T1). �e quantum jumps in Fig. 6.9 are of σx, and thus give us access to the

real-time dynamics of the decoherence processes (T2) of our physical qubit.
6�is is a simple “latching” �lter in which we declare the qubit to be in its previous state unless it crosses a threshold

to another state, usually chosen to be 1 − 2 σ from it. We prefer this �lter to a more elaborate and optimal Bayesian
�lter (for example, see Ref. Gammelmark et al. [2014]) when we do no wish to pre-assume a model for the dynamics of
the jumps, but study them from the raw data. For more information, see the analysis in Ref. Vool et al. [2014], where
the quantum jumps are determined to be non-Poissonian.
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Figure 6.9: A cut of a continuous trace of quantum jumps taken from the measurement histogram-
med in Fig. 6.5e. �e blue line shows the angle in phase space around the point shown in the inset,
and we observe jumps between the eigenstates of σx. �e dashed orange line is a two-point �lter
estimate of the state of the qubit. �e qubit is sometimes in its second excited state (|f〉).

�ere is an important caveat to this claim, as the protocol we use to generate our e�ective

Hamiltonian also induces drive-induced dissipation. In fact, as we saw, the characteristic time be-

tween jumps is 1/Γ− = 4 µs, which is consistent with the dephasing induced by the side-band

drive. �us the dynamics we observe in Fig. 6.9 are due to the sideband drive shot-noise itself. �is

is not an inherent �aw of the measurement, however, and it can be overcome by using a di�erent

parameter regime. Note that the dispersive shi� ζ scales like n̄sb
(ΩR−∆c)

while the dephasing scales

like n̄sb
(ΩR−∆c)2 . �is distinction can allow us to increase both the cavity pump power and its detu-

ning, thus keeping the dispersive shi� constant while signi�cantly reducing the induced dephasing

- allowing us to observe quantum jumps due to the intrinsic qubit dephasing. Measuring the time

correlations of these quantum jumps [Vool et al., 2014, Kou et al., 2017] would then give access to

the spectral density of qubit dephasing, including both the negative and positive frequency com-

ponents, and also higher order components of their dynamics. We can also vary the value of ΩR,

and thus probe the real time dynamics of dephasing processes at a particular frequency. �is can

allow us study to the real-time dynamics of the dephasing noise spectrum [Bylander et al., 2011].

To summarize, we have presented a method to synthesize a tunable e�ective JC Hamiltonian
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between a cavity and an e�ective qubit, whose eigenstates are transverse superpositions of the

bare qubit. We have used this technique in the dispersive regime to observe, for the �rst time,

quantum jumps between the eigenstates of the σx qubit operator in the rotating frame.

Above, we discussed a direct application of this technique to study the decoherence processes

which limit the coherence of our arti�cial atoms. Furthermore, our e�ective JC Hamiltonian is an

interesting arti�cial atom by itself, as it can be tuned to reach the ultra-strong coupling regime

(geff/ω
eff
c ≈ 0.1) and the deep-strong coupling regime (geff > ωeff

c , ω
eff
q ) [Casanova et al., 2010,

Yoshihara et al., 2016, Forn-Diaz et al., 2016].

�e measurement of eigenstates ofσx could also be interesting for a fundamental study of compe-

ting measurements of non-commuting variables. Recent work [Hacohen-Gourgy et al., 2016] has

shown a protocol to measure two non-commuting Pauli operators of a qubit simultaneously7. �e

protocol described here measures the remaining operator, and a combination of both experiments

would allow us to measure all 3 Pauli operator of the qubit simultaneously with varying measu-

rement strengths, potentially leading to novel quantum state monitoring [Ruskov et al., 2010].

A potentially even more important aspect of this technique, however, is that it is a proof-of-

concept for using drive tones to create e�ective arti�cial atoms. �e dispersive JC Hamiltonian

we are using is one of the most well-studied system in coherent quantum physics, and with the

addition of two drive we were able to observe new and unexpected physics. Furthermore, unlike

the majority of driven arti�cial atom operations, there is no resonance condition required for the

drives. �is suggests that there are many new quantum operations and arti�cial atoms hiding in

plain sight, and are accessible using simple circuits with a clever choice of drive tones. �e combi-

nation of circuit engineering, which was discussed in the previous chapter, with drive engineering,

can capture a large variety of quantum e�ects, and perhaps allow us to implement an arbitrary

quantum system. Such ideas are at the heart of quantum simulation, and necessary for performing

quantum error correction and quantum computing using arti�cial atoms.

7�e protocol used by UC Berkeley is an interesting and related technique. �eir method uses the resonant JC
Hamiltonian in Eq. 6.6, with both the red and blue sideband drives on. �is implements a process analogous to back-
action evading measurement [Clerk et al., 2008]. In a doubly rotating frame, both at the qubit frequency and at the
Rabi frequency, this implements a longitudinal measurement of a qubit operator which can be chosen by tuning the
amplitudes and phases of the red and blue sideband drives.



Chapter 7

Conclusions and perspectives

In conclusion, the range of quantum operations accessible to us using superconducting arti�cial

atoms, and the variety of quantum systems we can e�ectively simulate, is rapidly increasing. �is

thesis reviewed some of the basic concepts in the design of quantum circuits, and the advantages

and disadvantages of commonly used circuits. Special a�ention was spent on the circuit which si-

mulates the JC interaction between a two-level atom and coherent light, a prevalent arti�cial atom

useful for readout, coherent control, and isolation of the quantum system from its environment.

We roughly split the discussion on arti�cial atom design into two parts. One focused on im-

plementing new arti�cial atoms by changing the parameters of the di�erent circuit elements, and

their arrangement. Although we use only a small selection of circuit elements (a capacitor, an in-

ductor and a Josephson junction), the di�erent combinations and parameter regimes of these allow

for a variety of di�erent coherent quantum systems. �e second part focused on open quantum

systems, in which a circuit is dressed by an external drive, giving rise to a new e�ective arti�cial

atom with substantially di�erent properties.

We focused on two experiments which explore the design of arti�cial atoms in these two ways.

One focused on the selection rules of arti�cial atoms, and our ability to break them by using non-

linear coupling to drive our atom. We implemented a �uxonium-resonator system at the �uxonium

sweet-spot, but were still able to drive forbidden transitions and thus implement a Λ-system. We

used this system to manipulate the low-frequency �uxonium states entirely by Raman processes

118
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through the resonator.

�e other experiment explored a qubit-cavity system manipulated by two drives. In the presence of

these continuous drives, we implemented an e�ective JC Hamiltonian between an e�ective qubit

in theσx quadrature and a displaced cavity. All parameters of the JC Hamiltonian were completely

tunable in situ by changing the amplitudes and detunings of the drive tones. We used this system

in the resonator JC regime to cool the qubit into a superposition of its energy eigenstates. In the

dispersive JC regime, we used the system to perform a continuous QND measurement of the σx

qubit component.

�ese results are part of a growing push to obtain more interesting and useful arti�cial atoms,

and implement a larger variety of quantum operations. Building on this work and the many other

experiments in this growing �eld, we will soon be able to implement circuits that reach and surpass

the complexity of natural atomic systems. We may perhaps approach the goal of a “quantum

printer”, the idea that we can take an arbitrary Hamiltonian, and create a physical implementation

of it as a quantum circuit.

In the following sections, we discuss possible research ideas which stem from the experiments

shown in this thesis. �ey are listed in ascending order of di�culty, from short-term projects

which can be realistically achieved within the next few years, to long-term projects for which

signi�cant additional theoretical and experimental understanding is required.

7.1 Integrating the SNAIL

�e Snail, discussed in Section 5.2, is a new dipole circuit element with third-order non-linearity.

Additionally, there is a parameter choice for the SNAIL in which its fourth-order non-linearity

cancels out, and thus it can be approximated as a purely third-order non-linear inductor. �e ex-

perimental study of the SNAIL, and particularly the characterization of its third-order and fourth-

order non-linearity are an on-going research project at Yale during the time of writing of this

thesis.

As we be�er understand the behavior of the SNAIL, we can integrate it into our quantum cir-
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cuits to improve their function and allow for new quantum operations. �e most direct application

of the SNAIL, which has been preliminarily explored in Ref. Fra�ini et al. [2017], is as a quantum-

limited ampli�er. It can perform three-wave-mixing for phase-preserving ampli�cation, similarly

to the JPC, but its dipole (or two-port) nature allows for tessellation of multiple SNAILs together

(Fig. 5.3a) to dilute its higher non-linearities for improved bandwidth or dynamic range. It can

also be used as a circulator or directional ampli�er, based on the JPC design given in Ref. Sliwa

et al. [2015]. In this context it has the advantage of allowing for multiple pumps, without needing

to account for their Stark shi�s (as the SNAIL has no Kerr non-linearity), thus making the imple-

mentation of this device much simpler. Away from the pure third-order non-linearity regime, the

SNAIL can also act as a four-wave-mixing based phase-sensitive ampli�er [Vijay, 2008], and both

third-wave and four-wave mixing ampli�cation processes can even be performed simultaneously.

�e SNAIL can also be integrated as a coupling element and non-linearity source in circuits.

�is has been shown in Fig. 5.3b, and we have extensively discussed the SNAIL integration into the

�uxonium-resonator system to break its selection rules. �is implementation has several future

direction that will be discuss in the other sections. Here we would like to discuss the integration of

the SNAIL with harmonic oscillators as their source of non-linearity, and speci�cally its integration

with a high-Q cavity, which is of growing interest as a quantum system [Vlastakis et al., 2013,

Leghtas et al., 2015, Ofek et al., 2016, Wang et al., 2016].

�e most obvious implementation of the SNAIL would be as a “Q-switch”. �e SNAIL can

couple a high-Q memory cavity with a fast readout cavity, and by applying a coherent tone at

their frequency di�erence we create a resonant beam-spli�er interaction (see Eq. 5.5) by which

the information in the memory cavity can leak through the readout cavity. �is is useful as a

reset protocol, where the memory cavity remains long-lived, but can be quickly emptied as the

drive is turned on [Blumo� et al., 2016]. It is also useful for quantum communication between

several memory cavities in a network, by transforming the cavity signal into a traveling wave that

can be caught by another distant cavity [Pfa� et al., 2017]. Currently this process is done using

two pumps though the four-wave mixing property of a single Josephson junction. �e SNAIL can

simplify this process to require only a single pump, and without the inherent frequency shi�s due
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to its Kerr non-linearity.

Non-linearity is also necessary to perform all quantum operations on the high-Q cavity. Cur-

rently, these are performed by using the dispersive interaction of the cavity with a transmon qubit,

and utilizing its fourth-order non-linearity. �is implementation allows for control of the cavity

state [Heeres et al., 2017], but with e�ciency limited by the transmon coherence time, as it is po-

pulated during these gates. �e SNAIL may be a be�er suited coupling element, as its lack of Kerr

non-linearity signi�cantly reduces the cavity dependence on the state of the qubit. It also potenti-

ally allows for faster gates due to its lower-order non-linearity, but this would require more careful

study.

7.2 Raman-controlled qubit

In Section 5.3.5, we discussed the implementation of a Λ-system in a �uxonium-resonator arti�cial

atom, and in Fig. 5.9 we show coherent Rabi oscillations between the ground states of the �uxonium

qubit, mediated by a virtual resonator excitation through the Λ-system con�guration. �us we

are able to control a transition at 500 MHz, while only applying tones around 7 GHz. �is opens

the possibility to create a qubit that is manipulated and measured exclusively through the higher

energy levels.

�e big advantage of this technique is that we can completely �lter the qubit environment at its

resonance frequency without sacri�cing fast control. For the �uxonium design, we can remove the

qubit drive pin (see Fig. 4.2b) and further engineer the sample environment so that it is completely

impenetrable at the low qubit frequency. Since all control sequences are done at a high frequency

which is not �ltered, we thus separate the qubit lifetime T1 from the time it takes to perform qubit

operations1.

It is also possible to perform qubit readout by using high-frequency transitions. �us we can

operate in a regime where the dispersive shi� χ = 0, but still measure the state of the qubit -
1Here we see the advantage of the direct implementation of the drive as opposed to a two-photon process. In our

system, we implemented |g, 0〉 ↔ |e, 1〉 directly and can thus perform fast qubit operations even when the direct
qubit transition |g, 0〉 ↔ |e, 0〉 is completely inaccessible. �e two-photon implementation of |g, 0〉 ↔ |e, 1〉 (as in
Ref. Wallra� et al. [2007]) relies on the direct qubit transition, and so we cannot �lter the qubit while maintaining fast
operations on it.
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thus separating qubit decoherence (T2) from the measurement time. For example, this can be done

by applying a tone resonant with the |g, 0〉 ↔ |e, 1〉 transition and measuring the signal leaking

from the resonator to determine if the qubit is in its ground state. �is measurement is not QND,

but it can perform fast qubit readout without a�ecting its dephasing. Such ideas for control and

readout through higher states are already used in qubits implemented in on ion-traps [Leibfried

et al., 2003], nitrogen-vacancy centers [Childress, 2007], and quantum dots [Press et al., 2008].

We can perform QND readout of the qubit by using the back-action evading measurement

scheme [Clerk et al., 2008]. By applying both the |g, 0〉 ↔ |e, 1〉 and the |e, 0〉 ↔ |g, 1〉 tones with

equal amplitude, we create a Hamiltonian term of the form σx(ar + a†r) in the rotating frame,

which allows for QND longitudinal readout of the qubit σx operator. �is is in fact a separate

method to continuously measure σx by using the third-order non-linearity of the SNAIL, and can

give us access to the dynamics of qubit dephasing at low frequency (as no Rabi frequency ΩR is

applied).

�ese ideas are useful for the �uxonium arti�cial atom, whose frequency can be tuned to be<

1GHz, and whose dispersive shi�χ is separately tunable due to higher-energy level dynamics [Zhu

et al., 2013, Smith et al., 2016]. �ere are potentially even more useful for more complex circuits

such as the rhombus [Bell et al., 2014], the double-�uxonium [Kou et al., 2016] and the future cos 2ϕ

qubit [Smith et al., 2017]. �ese circuits have an inherent protection in their lowest eigenstates,

which makes them useful as coherent quantum systems, but also makes direct control and readout

di�cult. Raman-based control through higher excited states may thus be necessary to manipulate

these qubits while maintaining their properties.

7.3 �antum-jump magnetometry

In Section 6.3.4, we discussed the measurement of quantum jumps between the eigenstates of

the σx qubit. �ese jumps show us the real-time dynamics of the processes which govern qubit

decoherence. �is can be useful to study the decoherence e�ects of the qubit itself. Furthermore, a

qubit with high coherence can also serve as a high-sensitivity detector for processes which cause
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transitions in the qubit.

Superconducting circuits are commonly used in the sensitive measurement of magnetic �eld.

SQUID loops have been used as magnetometers for several decades [Kleiner et al., 2004], and are

continuously improving in their spatial and magnetic �eld resolution [Finkler et al., 2012, Kirtley

et al., 2016]. �ese systems measure the change in the SQUID inductance due to the presence of

DC magnetic �ux in the SQUID loop. By building our coherent qubit using a SQUID transmon, we

obtain a similar device. Its frequency depends on the DC �ux �owing through the SQUID loop,

and thus continuous measurement of the frequency allows us to measure the nearby magnetic

�eld. More importantly, the coherence time of the qubit also depends on the magnetic �ux, and

is potentially much more sensitive, as decoherence due to other sources is suppressed for high-

coherence qubits. �is idea is inspired by the use of a coherent nitrogen-vacancy center as a

magnetometer [Maze et al., 2008].

By implementing our σx quantum jump protocol on a �ux-sensitive qubit, we would gain

access to the real-time dynamics of the AC magnetic �eld at a tunable frequency (by tuning the

value of the Rabi frequency ΩR). Other methods to obtain the dynamics measure the spectral

density of the �ux through properly timed echo sequences and spin-locking experiments [Bylander

et al., 2011, Yan et al., 2016], but they only give the average value of such a measurement. Using

quantum jumps, we basically get the raw data which is used to obtain the spectral density, and thus

more information can be extracted from it. For example, we can examine the e�ective temperature

of the system (separate the negative and positive parts of the spectral density) or gain information

about higher moments of the dynamics. �is can be useful to study chaotic magnetic �elds which

cannot be easily described by an average measurement. However, it comes at the price of increased

complexity, as our scheme requires the use of strong pump tones and single-shot readout.

�is measurement can also give us insight into the nature of the �ux noise [Koch et al., 1983,

Wellstood et al., 1987] which contributes to the coherence of many superconducting arti�cial

atoms.
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7.4 Autonomous quantum error correction

�antum error correction is the idea of encoding of a logical qubit redundantly in a larger Hil-

bert space, so that decoherence mechanisms can not directly access the encoded information. By

using a clever encoding, the information stored in the logical qubit is not erased by a decoherence

process, and can be recovered and restored. Even though qubit coherence times are growing, it

is established that quantum error correction is crucial for the coherent control of a Hilbert space

with many DOF, and thus for the implementation of a quantum computer [Nielsen and Chuang,

2000].

�antum error correction protocols are usually discussed in a discrete sense, in which syndro-

mes are being repeatedly measured to check for errors, and gates are performed on the system to

restore it to its correct state [Go�esman, 1997]. In this convenient framework, the measurements

extract entropy from the system and thus reduce the e�ects of all possible error mechanisms to

a limited set of operations, while the encoded information is untouched. If a su�ciently small

number of errors has occurred, the original state can be recovered by applying the appropriate

gate, and the monitoring of the system continues. �is is currently the prevailing method to im-

plement error correction schemes, but the �nite time needed for the monitoring and the recovery

can limit the error correction e�ciency [Kelly et al., 2015, Ofek et al., 2016]. �ere are alternative

ideas to instead perform error correction continuously [Ahn et al., 2002], by continuously perfor-

ming a weak measurement to detect the error syndromes and continuously correcting by creating

a time-dependent feedback Hamiltonian.

An additional improvement may come from a system where continuous error correction is

performed autonomously. No feedback or control tones are necessary, but only CW tones and

dissipation are used to implement the correction. Such systems have the obvious advantage of

avoiding the need for fast control and monitoring, and should in principle require no additional

intervention once they are set up. �ere is a strong connection between such a system and the

ideas for e�ective arti�cial atoms discussed in this thesis. A system undergoing autonomous er-

ror correction can be described as an e�ective arti�cial atom which is designed to be protected
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from certain noise mechanisms, and thus autonomous error correction is related to the notion of

physical or topological protection of quantum information [Douçot and Io�e, 2012, Kitaev and

Laumann, 2009]. Understanding di�erent error correction schemes and incorporating them into

our Hamiltonian, which is the essence of autonomous error correction, is actually a good way to

design protected arti�cial atoms.

Ref. Kerckho� et al. [2010] discusses the implementation of the 3-qubit bit-�ip (repetition)

error correction code autonomously within the framework of cavity QED. �is code was later

expanded [Kerckho� et al., 2011] to implement the 9-qubit Bacon-Shor code [Nielsen and Chuang,

2000] which allows for full quantum error correction of an arbitrary single qubit error. �e 3-

qubit scheme requires three cavity-qubit systems and two control relays. A continuous tone is

split and directed to re�ect o� of the cavities so that the measured error syndromes are encoded

onto its phase. Each encoded syndrome is then sent to a control relay, which directs the path of an

additional CW tone based on the incoming signal. �ese additional tones are then used to correct

the state of the qubit in case of an error.

�e non-standard components required for this scheme are the control relays and the qubits

themselves. Both of these components rely on a Λ-type system, and can thus be implemented in

cQED using the SNAIL-�uxonium system described in Section 5.3.

�e control relay necessary for this scheme is described in Ref. Mabuchi [2009]. �e relay

itself is also implemented as a qubit-cavity system, and Fig. 7.1a shows the level diagram for the

relay qubit, following the notation of the original reference. �e Λ structure allows this circuit

to act as a switch between the two states |g〉 and |h〉. �e “set” tone (blue) puts the system in

the |h〉 state via spontaneous Raman sca�ering (see Section 5.3.4), and similarly the “reset” tone

(blue) prepares the |g〉 state. It is assumed that the tones never appear together. �e |g〉 ↔ |e〉

transition is resonant with the cavity. �us, if the qubit is in the |g〉 state, the qubit and the cavity

are hybridized - which produces a shi� of the cavity frequency. A “power” tone (red) sent towards

the cavity at the |g〉 ↔ |e〉 frequency will then be re�ected back as it is o�-resonance. On the

other hand, if the qubit is in the |h〉 state, the “power” tone is resonant with the cavity and will be

transmi�ed. In this way the relay directs the “power” tone, based on the state of the qubit.
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Figure 7.1: (a) Sketch of the control relay level-diagram for a cavity QED atom, given in Ref. Ma-
buchi [2009]. �e “set” and “reset” tones set the system to the |h〉 and |g〉 states respectively. �e
|g〉 ↔ |e〉 transition is resonant with the cavity, and thus the state of the switch directs the output
path of a “power” tone sent at the cavity. (b) Level-diagram for the control relay implemented
using the SNAIL-�uxonium. �e cooling tones from Section 5.3.4 serve as “set” and “reset” tones,
and an additional transition, for example the |e, 0〉 ↔ |f, 0〉 �uxonium transition, is chosen for
the “power” tone.

In Fig. 7.1b we show a possible SNAIL-�uxonium implementation of the control relay. the “set”

and “reset” are performed by the two cooling tones described in Section 5.3.4. �e decay of the

resonator thus provides the entropy reduction which is necessary for error correction. �e cavity is

then chosen to be in resonance with another transition, in our case the |e, 0〉 ↔ |f, 0〉 �uxonium

transition, but of course other transitions can work just as well. �is implements a switch that

controls the output port of an incoming drive based on the state of the �uxonium arti�cial atom.

�is could be a useful element by itself, in addition to its use for autonomous error correction.

In the original scheme, the two switch states are degenerate, and the “set” and “reset” tones

are addressed independently by using di�erent polarizations. For now we do not have that ability

by using arti�cial atoms, and so we address them separately by using two di�erent frequencies.

�is will require an adjustment to the scheme in Ref. Kerckho� et al. [2010], where the frequency

of one of the tones needs to be adjusted prior to entering the relay. �is can be done by using

three-wave-mixing with a reference signal, by utilizing a JPC or a SNAIL.

�e physical qubits in this scheme are only corrected if they receive a signal from both relays.

�us, the correction is done via a stimulated Raman transition that requires two detuned drives to

the higher excited state of a Λ-system. �is transition has been implemented in Section 5.3.5, and

thus a SNAIL-�uxonium can also be used as the physical qubit for this error correction scheme.
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�e autonomous error correction scheme can thus be fully implemented using the SNAIL-

�uxonium. �is implementation is only an example, and other arti�cial atoms are possibly be�er

suited for this experiment. �e three-wave-mixing capability of the SNAIL opens up Λ-system

interactions for all superconducting circuits, and so it is possible to implement this scheme with a

di�erent qubit or with a memory cavity.

Other autonomous error correction schemes are also available in Refs. Kapit et al. [2015]

and Cohen and Mirrahimi [2014]. �e la�er implements the 3-qubit bit-�ip code for 3 transmon

qubits in the strong dispersive JC regime (χ � κ). By carefully choosing the dispersive shi�s of

the qubits so they cancel each other, and by applying CW drives and utilizing cavity dissipation, a

single qubit bit-�ip can be corrected. An extension of this idea to correct for a phase-�ip is discus-

sed in Ref. Cohen [2017], which builds on the e�ective dispersive JC Hamiltonian for the σx qubit

described in Section 6.3. �ese ideas can potentially be extended to include a full continuous auto-

nomous quantum error correction of a logical qubit, and even to an autonomous implementation

of topological error correction codes [Bardyn and Karzig, 2016].
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Douçot, B., and J. Vidal (2002), “Pairing of Cooper Pairs in a Fully Frustrated Josephson-Junction
Chain,” Physical Review Le�ers 88 (22), 227005.

Duan, L.-M., M. D. Lukin, J. I. Cirac, and P. Zoller (2001), “Long-distance quantum communication
with atomic ensembles and linear optics,” Nature 414 (6862), 413–418.

Earnest, N., S. Chakram, Y. Lu, N. Irons, R. K. Naik, N. Leung, J. Lawrence, J. Koch, and D. I. Schuster
(2017), “Realization of a Λ system with metastable states of a capacitively-shunted �uxonium,”
arXiv:1707.00656 .

Feynman, R. P., R. B. Leighton, and M. L. Sands (1963), �e Feynman lectures on physics (Addison-
Wesley Pub. Co., Reading, Mass.).

Finkler, A., D. Vasyukov, Y. Segev, L. Neeman, Y. Anahory, Y. Myasoedov, M. L. Rappaport, M. E.
Huber, J. Martin, A Yacoby, and E. Zeldov (2012), “Nano sized SQUID-on-tip for scanning probe
microscopy,” Journal of Physics: Conference Series 400 (5), 052004.

Forn-Diaz, P., J. J. Garcia-Ripoll, B. Peropadre, M. A. Yurtalan, J. L. Orgiazzi, R. Belyansky, C. M.
Wilson, and A. Lupascu (2016), “Ultrastrong coupling of a single arti�cial atom to an electro-
magnetic continuum,” arXiv:1602.00416 .

Foster, R. M. (1924), “A Reactance �eorem,” Bell System Technical Journal 3 (2), 259–267.

Fra�ini, N. E., U. Vool, S. Shankar, A. Narla, K. M. Sliwa, and M. H. Devoret (2017), “3-wave mixing
Josephson dipole element,” Applied Physics Le�ers 110 (22), 222603.

Gambe�a, J., A. Blais, M. Boissonneault, A. A. Houck, D. I. Schuster, and S. M. Girvin (2008),
“�antum trajectory approach to circuit QED: �antum jumps and the Zeno e�ect,” Phys. Rev.
A 77 (1), 012112.

Gambe�a, J., A. Blais, D. I. Schuster, A. Wallra�, L. Frunzio, J. Majer, M. H. Devoret, S. M. Gir-
vin, and R. J. Schoelkopf (2006), “�bit-photon interactions in a cavity: Measurement-induced
dephasing and number spli�ing,” Phys. Rev. A 74 (4), 042318.

http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1103/PhysRevLett.62.403
http://dx.doi.org/ 10.1063/1.89690
http://dx.doi.org/ 10.1063/1.89690
http://stacks.iop.org/0034-4885/75/i=7/a=072001
http://stacks.iop.org/0034-4885/75/i=7/a=072001
http://dx.doi.org/10.1103/PhysRevLett.88.227005
http://dx.doi.org/10.1038/35106500
http://arxiv.org/abs/1707.00656
http://dx.doi.org/ 10.1088/1742-6596/400/5/052004
http://dx.doi.org/10.1002/j.1538-7305.1924.tb01358.x
http://dx.doi.org/10.1063/1.4984142
http://dx.doi.org/10.1103/PhysRevA.77.012112
http://dx.doi.org/10.1103/PhysRevA.77.012112
http://dx.doi.org/ 10.1103/PhysRevA.74.042318


Bibliography 132

Gammelmark, S., K. Mølmer, W. Alt, T. Kampschulte, and D. Meschede (2014), “Hidden Markov
model of atomic quantum jump dynamics in an optically probed cavity,” Physical Review A
89 (4), 043839.

Gardiner, C., and P. Zoller (2004), �antum Noise (Springer-Verlag Berlin Heidelberg).

Geerlings, K. (2013), Improving Coherence in Superconducting �bits and Resonators, Ph.D. thesis
(Yale University).

Geerlings, K., Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and
M. H. Devoret (2013), “Demonstrating a Driven Reset Protocol for a Superconducting �bit,”
Physical Review Le�ers 110 (12), 120501.

Girvin, S. M. (2011), Circuit QED: Superconducting �bits Coupled to Mirco-
wave Photons, Les Houches Summer school lecture notes, available online at
h�ps://sites.google.com/site/stevenmgirvin/girvin-les-houches-lecture-notes-dra�s.

Go�esman, D. (1997), Stabilizer Codes and �antum Error Correction, Ph.D. thesis (California In-
stitute of Technology).

Grajcar, M., S. H. W. van der Ploeg, A. Izmalkov, E. Il’ichev, H.-G. Meyer, A. Fedorov, A. Shnirman,
and G. Schön (2008), “Sisyphus cooling and ampli�cation by a superconducting qubit,” Nature
Physics 4 (8), 612–616.

Gray, H. R., R. M. Whitley, and C. R. Stroud (1978), “Coherent trapping of atomic populations,”
Optics Le�ers 3 (6), 218–220.

Hacohen-Gourgy, S., L. S. Martin, E. Flurin, V. V. Ramasesh, K. B. Whaley, and I. Siddiqi
(2016), “�antum dynamics of simultaneously measured non-commuting observables,” Nature
538 (7626), 491–494.

Hamann, S. E., D. L. Haycock, G. Klose, P. H. Pax, I. H. Deutsch, and P. S. Jessen (1998), “Resolved-
Sideband Raman Cooling to the Ground State of an Optical La�ice,” Phys. Rev. Le�. 80 (19),
4149–4152.

Hanson, R., L. P. Kouwenhoven, J. R. Pe�a, S. Tarucha, and L. M. K. Vandersypen (2007), “Spins in
few-electron quantum dots,” Reviews of Modern Physics 79 (4), 1217–1265.

Haroche, S., and J.-M. Raimond (2006), Exploring the �antum: Atoms, Cavities and Photons (Ox-
ford University Press, Oxford).

Harris, D. C., and M. D. Bertolucci (1978), Symmetry and Spectroscopy: An Introduction to Vibrati-
onal and Electronic Spectroscopy (Courier Corporation).

Hatridge, M., S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M. Sliwa, B. Abdo,
L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret (2013), “�antum Back-Action of
an Individual Variable-Strength Measurement,” Science 339 (6116), 178–181.

Hatridge, M., R. Vijay, D. H. Slichter, J. Clarke, and I. Siddiqi (2011), “Dispersive magnetometry
with a quantum limited SQUID parametric ampli�er,” Physical Review B 83 (13), 134501.

http://dx.doi.org/10.1103/PhysRevA.89.043839
http://dx.doi.org/10.1103/PhysRevA.89.043839
http://dx.doi.org/ 10.1103/PhysRevLett.110.120501
http://dx.doi.org/10.1038/nphys1019
http://dx.doi.org/10.1038/nphys1019
http://dx.doi.org/ 10.1364/OL.3.000218
http://dx.doi.org/ 10.1038/nature19762
http://dx.doi.org/ 10.1038/nature19762
http://dx.doi.org/10.1103/PhysRevLett.80.4149
http://dx.doi.org/10.1103/PhysRevLett.80.4149
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1103/PhysRevB.83.134501


Bibliography 133

Heeres, R. W., P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf
(2017), “Implementing a universal gate set on a logical qubit encoded in an oscillator,” Nature
Communications 8 (1), 94.

Houck, A. A., J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch, J. M. Gambe�a, D. I. Schuster,
L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf (2008), “Controlling the Spontane-
ous Emission of a Superconducting Transmon �bit,” Phys. Rev. Le�. 101 (8), 080502.

Hover, D., Y.-F. Chen, G. J. Ribeill, S. Zhu, S. Sendelbach, and R. McDermo� (2012), “Supercon-
ducting low-inductance undulatory galvanometer microwave ampli�er,” Applied Physics Le�ers
100 (6), 063503.

Inomata, K., K. Koshino, Z. Lin, W. Oliver, J. Tsai, Y. Nakamura, and T. Yamamoto (2014), “Micro-
wave Down-Conversion with an Impedance-Matched Λ System in Driven Circuit QED,” Physi-
cal Review Le�ers 113 (6), 063604.

Ithier, G. (2005),Manipulation, readout and analysis of the decoherence of a superconducting quantum
bit, Ph.D. thesis (CEA-Saclay).

Ithier, G., E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makh-
lin, J. Schrie�, and G. Schön (2005), “Decoherence in a superconducting quantum bit circuit,”
Physical Review B 72 (13), 134519.

Jaksch, D., J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin (2000), “Fast �antum Gates
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Janvier, C., L. Tosi, L. Bretheau, Ç. Ö. Girit, M. Stern, P. Bertet, P. Joyez, D. Vion, D. Esteve, M. F.
Go�man, H. Pothier, and C. Urbina (2015), “Coherent manipulation of Andreev states in super-
conducting atomic contacts,” Science 349 (6253), 1199–1202.

Jaynes, E. T., and F. W. Cummings (1963), “Comparison of �antum and Semiclassical Radiation
�eories With Application To Beam Maser,” Proceedings of the Ieee 51 (1), 89–&.

Jelezko, F., T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup (2004), “Observation of Coherent Os-
cillations in a Single Electron Spin,” Physical Review Le�ers 92 (7), 076401.

Johansson, J. R., P. D. Nation, and F. Nori (2012), “�TiP: An open-source Python framework for
the dynamics of open quantum systems,” Computer Physics Communications 183 (8), 1760 –
1772.

Johansson, J. R., P. D. Nation, and F. Nori (2013), “�TiP 2: A Python framework for the dynamics
of open quantum systems,” Computer Physics Communications 184 (4), 1234–1240.

Josephson, B. (1962), “Possible new e�ects in superconductive tunnelling,” Physics Le�ers 1 (7),
251–253.

Kapit, E., J. T. Chalker, and S. H. Simon (2015), “Passive correction of quantum logical errors in a
driven, dissipative system: A blueprint for an analog quantum code fabric,” Physical Review A
91 (6), 062324.

http://dx.doi.org/ 10.1038/s41467-017-00045-1
http://dx.doi.org/ 10.1038/s41467-017-00045-1
http://dx.doi.org/10.1103/PhysRevLett.101.080502
http://dx.doi.org/10.1063/1.3682309
http://dx.doi.org/10.1063/1.3682309
http://dx.doi.org/10.1103/PhysRevLett.113.063604
http://dx.doi.org/10.1103/PhysRevLett.113.063604
http://dx.doi.org/10.1103/PhysRevB.72.134519
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1126/science.aab2179
http://dx.doi.org/ 10.1109/PROC.1963.1664
http://dx.doi.org/ 10.1103/PhysRevLett.92.076401
http://dx.doi.org/ 10.1016/j.cpc.2012.02.021
http://dx.doi.org/ 10.1016/j.cpc.2012.02.021
http://dx.doi.org/ 10.1016/j.cpc.2012.11.019
http://www.sciencedirect.com/science/article/pii/0031916362913690
http://www.sciencedirect.com/science/article/pii/0031916362913690
http://dx.doi.org/ 10.1103/PhysRevA.91.062324
http://dx.doi.org/ 10.1103/PhysRevA.91.062324


Bibliography 134

Kelly, J., R. Barends, A. G. Fowler, A. Megrant, E. Je�rey, T. C. White, D. Sank, J. Y. Mutus, B. Camp-
bell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. . C. Hoi, C. Neill, P. J. J. O’Malley, C. �intana,
P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis (2015), “State preser-
vation by repetitive error detection in a superconducting quantum circuit,” Nature 519 (7541),
66–69.

Kelly, W. R., Z. Du�on, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas (2010),
“Direct Observation of Coherent Population Trapping in a Superconducting Arti�cial Atom,”
Physical Review Le�ers 104 (16), 163601.

Kerckho�, J., H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi (2010), “Designing �antum Memo-
ries with Embedded Control: Photonic Circuits for Autonomous �antum Error Correction,”
Physical Review Le�ers 105 (4), 040502.

Kerckho�, J., D. S. Pavlichin, H. Chalabi, and H. Mabuchi (2011), “Design of nanophotonic circuits
for autonomous subsystem quantum error correction,” New Journal of Physics 13 (5), 055022.

Kirtley, J. R., L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl,
C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson,
and K. A. Moler (2016), “Scanning SQUID susceptometers with sub-micron spatial resolution,”
Review of Scienti�c Instruments 87 (9), 093702.

Kitaev, A., and C. Laumann (2009), “Topological phases and quantum computation,”
arXiv:0904.2771 [cond-mat, physics:quant-ph] ArXiv: 0904.2771.

Kitagawa, T., E. Berg, M. Rudner, and E. Demler (2010), “Topological characterization of periodi-
cally driven quantum systems,” Physical Review B 82 (23), 235114.

Kleiner, R., D. Koelle, F. Ludwig, and J. Clarke (2004), “Superconducting quantum interference
devices: State of the art and applications,” Proceedings of the IEEE 92 (10), 1534–1548.

Koch, J., V. Manucharyan, M. H. Devoret, and L. I. Glazman (2009), “Charging E�ects in the In-
ductively Shunted Josephson Junction,” Phys. Rev. Le�. 103 (21), 217004.

Koch, J., T. M. Yu, J. Gambe�a, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M.
Girvin, and R. J. Schoelkopf (2007), “Charge-insensitive qubit design derived from the Cooper
pair box,” Phys. Rev. A 76 (4), 042319.

Koch, R., J. Clarke, J. Martinis, W. Goubau, C. Pegrum, and D. Harlingen (1983), “Investigation of
1/f noise in tunnel junction DC SQUIDS,” IEEE Transactions on Magnetics 19 (3), 449–452.

Kou, A., W. C. Smith, U. Vool, R. T. Brierley, H. Meier, L. Frunzio, S. M. Girvin, L. I. Glazman, and
M. H. Devoret (2016), “A �uxonium-based arti�cial molecule with a tunable magnetic moment,”
arXiv:1610.01094 .

Kou, A., W. C. Smith, U. Vool, I. M. Pop, K. M. Sliwa, M. H. Hatridge, L. Frunzio, and M. H. Devoret
(2017), “Simultaneous monitoring of �uxonium qubits in a waveguide,” arXiv:1705.05712 .

Krogstrup, P., N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen, E. Johnson, J. Nygård, C. M.
Marcus, and T. S. Jespersen (2015), “Epitaxy of semiconductor–superconductor nanowires,” Na-
ture Materials 14 (4), 400–406.

http://dx.doi.org/ 10.1038/nature14270
http://dx.doi.org/ 10.1038/nature14270
http://dx.doi.org/10.1103/PhysRevLett.104.163601
http://dx.doi.org/10.1103/PhysRevLett.105.040502
http://dx.doi.org/10.1088/1367-2630/13/5/055022
http://dx.doi.org/10.1063/1.4961982
http://arxiv.org/abs/0904.2771
http://dx.doi.org/ 10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1109/JPROC.2004.833655
http://dx.doi.org/10.1103/PhysRevLett.103.217004
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1109/TMAG.1983.1062412
http://arxiv.org/abs/1610.01094
http://arxiv.org/abs/1705.05712
http://dx.doi.org/ 10.1038/nmat4176
http://dx.doi.org/ 10.1038/nmat4176


Bibliography 135

Laporte, O., and W. F. Meggers (1925), “Some Rules of Spectral Structure*,” JOSA 11 (5), 459–463.

Larsen, T., K. Petersson, F. Kuemmeth, T. Jespersen, P. Krogstrup, J. Nygård, and C. Marcus (2015),
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