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A quantum system driven by a weak deterministic force while under strong continuous

energy measurement exhibits quantum jumps between its energy levels (Nagourney et al.,

1986, Sauter et al., 1986, Bergquist et al., 1986). This celebrated phenomenon is em-

blematic of the special nature of randomness in quantum physics. The times at which the

jumps occur are reputed to be fundamentally unpredictable. However, certain classical

phenomena, like tsunamis, while unpredictable in the long term, may possess a degree of

predictability in the short term, and in some cases it may be possible to prevent a disaster

by detecting an advance warning signal. Can there be, despite the indeterminism of quan-

tum physics, a possibility to know if a quantum jump is about to occur or not? In this

dissertation, we answer this question affirmatively by experimentally demonstrating that

the completed jump from the ground to an excited state of a superconducting artificial

atom can be tracked, as it follows its predictable “flight,” by monitoring the population of

an auxiliary level coupled to the ground state. Furthermore, we show that the completed

jump is continuous, deterministic, and coherent. Exploiting this coherence, we catch and

reverse a quantum jump mid-flight, thus preventing its completion. This real-time inter-

vention is based on a particular lull period in the population of the auxiliary level, which

serves as our advance warning signal. Our results, which agree with theoretical predictions

essentially without adjustable parameters, support the modern quantum trajectory theory

and provide new ground for the exploration of real-time intervention techniques in the

control of quantum systems, such as early detection of error syndromes.
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Overview

Can there be, despite the indeterminism of quantum physics, a possibility to know if a

quantum jump is about to occur or not?

Chapter 1 introduces the notion of quantum jumps between energy levels and discusses

their original experimental observation, in a single atomic three-level system (Nagourney

et al., 1986, Sauter et al., 1986, Bergquist et al., 1986), seven decades after Bohr the-

oretically proposed their existence (Bohr, 1913). Section 1.1 presents our proposal to

experimentally map out the dynamics of the quantum jumps in a three-level supercon-

ducting system, and using recent insights from quantum trajectory theory (Carmichael,

1993, Gardiner et al., 1992, Dalibard et al., 1992, Korotkov, 1999), to catch and reverse

the quantum jump from the ground, |G〉, to an excited, |D〉, state of the atom mid-flight.

The remainder of Chapter 1 presents the main catch and reverse results, which demon-

strate that we can answer affirmatively to the question above. The rest of the dissertation

is supporting material for this claim.

Chapter 2 provides a general background to the central ideas and results of quantum

measurement theory and introduces basic notions of the measurement formalism, in view

of specific examples, which are employed in Chapter 3 to develop a rigorous quantitative

description of quantum jumps in the three-level atom from the vantage point of quantum

trajectory theory. Experimental methods are presented in Chapter 4, and the energy

participation ratio (EPR) approach for the design and optimization of Hamiltonian and

1



2

dissipative parameters of circuit quantum electrodynamics (cQED) systems is presented

in Sec. 4.1.1.

Chapter 5 presents the results of control experiments that support the conclusions

reached in Chapter 1. A comparison between the experimental results and predictions of

the theory developed in Chapter 3 is presented in Sec. 5.5. Chapter 6 summarizes the

results of this dissertation and discusses future research directions.



1
Introduction and main results

If all this damned quantum jumping
were really to stay, I should be sorry I
ever got involved with quantum
theory.

Erwin Schrödinger
Brit. J. Philos. Sci. III, 109 (1952)

Bohr conceived of quantum jumps (Bohr, 1913) between energy levels in 1913, but it

took seven decades until they were directly observed in a single atom (Nagourney et al.,

1986, Sauter et al., 1986, Bergquist et al., 1986). Since then, quantum jumps have been

observed in a variety of atomic (Basche et al., 1995, Peil and Gabrielse, 1999, Gleyzes

et al., 2007, Guerlin et al., 2007) and solid-state (Jelezko et al., 2002, Neumann et al.,

2010, Robledo et al., 2011, Vijay et al., 2011, Hatridge et al., 2013) systems. Recently,

quantum jumps have been recognized as an essential phenomenon in quantum feedback

control (Deléglise et al., 2008, Sayrin et al., 2011), and in particular, for detecting and

correcting decoherence-induced errors in quantum information systems (Sun et al., 2013,

Ofek et al., 2016).

Here, we focus on the canonical case of quantum jumps between two levels indirectly

3



1.1. Principle of the experiment 4

monitored by a third — the case that corresponds to the original observation of quantum

jumps in atomic physics (Nagourney et al., 1986, Sauter et al., 1986, Bergquist et al.,

1986), see the level diagram of Fig. 1.1a. A surprising prediction emerges: according to

quantum trajectory theory (see Carmichael (1993) and Chapter 2), not only does the state

of the system evolve continuously during the jump between the ground |G〉 and excited

|D〉 state, but it is predicted that there is always a latency period prior to the jump,

during which it is possible to acquire a signal that warns of the imminent occurrence

of the jump (see Chapter 3 for theoretical analysis and mathematical treatment). This

advance warning signal consists of a rare, particular lull in the excitation of the ancilla

state |B〉. The acquisition of this signal requires time-resolved detection of every photon

emitted from |B〉, an almost unsurmountable problem in atomic physics (Volz et al.,

2011). Instead, exploiting the specific advantages of superconducting artificial atoms

and their quantum-limited readout chain, we designed an experiment that implements

with maximum fidelity and minimum latency the detection of the advance warning signal

occurring before the quantum jump (see rest of Fig. 1.1).

1.1 Principle of the experiment

First, we developed a superconducting artificial atom with the necessary V-shape level

structure (see Fig. 1.1a and Section 4.1). It consists, besides the ground level |G〉, of one

protected, dark level |D〉 — engineered to not couple to any dissipative environment or

any measurement apparatus — and one ancilla level |B〉, whose occupation is monitored

at rate Γ. Quantum jumps between |G〉 and |D〉 are induced by a weak Rabi drive ΩDG

— although this drive might eventually be turned off during the jump, as explained later.

Since a direct measurement of the dark level is not possible, the jumps are monitored using

the Dehmelt shelving scheme (Nagourney et al., 1986). Thus, the occupation of |G〉 is



1.1. Principle of the experiment 5

linked to that of |B〉 by the strong Rabi drive ΩBG (ΩDG � ΩBG � Γ). In the atomic

physics shelving scheme (Nagourney et al., 1986, Sauter et al., 1986, Bergquist et al.,

1986), an excitation to |B〉 is recorded with a photodetector by detecting the emitted

photons from |B〉 as it cycles back to |G〉. From the detection events — referred to in

the following as “clicks” — one infers the occupation of |G〉. On the other hand, from

a prolonged absence of clicks (to be defined precisely in Chapter 3), one infers that a

quantum jump from |G〉 to |D〉 has occurred. Due to the poor collection efficiency and

dead-time of photon counters in atomic physics (Volz et al., 2011), it is exceedingly difficult

to detect every individual click required to faithfully register the advance warning signal.

However, superconducting systems present the advantage of high collection efficiencies

(Vijay et al., 2012, Ristè et al., 2013, Murch et al., 2013a, Weber et al., 2014, Roch

et al., 2014, De Lange et al., 2014, Campagne-Ibarcq et al., 2016), as their microwave

photons are emitted into one-dimensional waveguides and are detected with the same

quantum efficiencies as optical photons. Furthermore, rather than monitoring the direct

fluorescence of the |B〉 state, we monitor its occupation by dispersively coupling it to an

ancilla readout cavity. This gives us a way to counter-balance the residual inefficiency of

our microwave photon detectors, as we now explain.

The readout cavity, schematically depicted in Fig. 1.1a by an LC circuit, is resonant

at ωC = 8979.64 MHz and cooled to 15 mK. Its dispersive coupling to the atom results

in a conditional shift of its resonance frequency by χB/2π = −5.08± 0.2 MHz (χD/2π =

−0.33 ± 0.08 MHz) when the atom is in |B〉 (|D〉), see Fig. 1.1c. The engineered large

asymmetry between χB and χD together with the cavity coupling rate to the output

waveguide, κ/2π = 3.62± 0.05 MHz, renders the cavity response markedly resolving for

|B〉 vs. not-|B〉, yet non-resolving (Gambetta et al., 2011, Ristè et al., 2013, Roch et al.,

2014) for |G〉 vs. |D〉, thus preventing information about the dark transition from reaching

the environment. When probing the cavity response at ωC−χB, the cavity either remains
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Figure 1.1 | Principle of the experiment. a, Three level atom possessing a hidden
transition (shaded region) between the ground |G〉 and dark |D〉 state, driven by a Rabi
drive ΩDG(t). Quantum jumps from |G〉 to |D〉 are indirectly monitored by a stronger Rabi
drive between |G〉 and the bright state |B〉, whose occupancy is continuously monitored
at rate Γ by an auxiliary oscillator (LC circuit on right), itself measured in reflection by
a CW probe tone (light-blue wave). When the atom is in |B〉, the LC circuit frequency
shifts to a lower value (effect schematically represented by switch). Therefore, the probe
tone performs a |B〉/not-|B〉 measurement on the atom, and is blind to any superposition
of |G〉 and |D〉. b, The actual atom used in the experiment is a superconducting circuit
consisting of two strongly-hybridized transmon qubits placed inside a readout cavity at
15 mK. Control signals for the atom and cavity are supplied by a room-temperature field-
programmable gate array (FPGA) controller. This fast electronics monitors the reflected
signal from the cavity, and after demodulation and filtering, actuates the control signals.
The amplifier chain includes circulators (curved arrows) and amplifiers (triangles and
trapezoids). c, Frequency landscape of atom and cavity responses, overlaid with the
control tones shown as vertical arrows. The cavity pull χ of the atom is nearly identical
for |G〉 and |D〉, but markedly distinct for |B〉. The BG drive is bi-chromatic in order to
address the bright transition independently of the cavity state. d, Hierarchy of timescales
involved in the experiment, which are required to span 5 orders of magnitude, symbols
explained in text (also, see Chapter 5).
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empty, when the atom is in |G〉 or |D〉, or fills with n̄ = 5±0.2 photons when the atom is

in |B〉. This readout scheme yields a transduction of the |B〉-occupancy signal with five-

fold amplification, which is an important advantage to overcome the noise of the following

amplification stages. To summarize, in this readout scheme, the cavity probe inquires: Is

the atom in |B〉 or not? The time needed to arrive at an answer with a confidence level

of 68% (signal-to-noise ratio of 1) is Γ−1 ≈ 1/ (κn̄) = 8.8 ns for an ideal amplifier chain

(see Chapter 3).

Importantly, the engineered near-zero coupling between the cavity and the |D〉 state

protects the |D〉 state from harmful effects, including Purcell relaxation, photon shot-noise

dephasing, and the yet unexplained residual measurement-induced relaxation in supercon-

ducting qubits (Slichter et al., 2016). We have measured the following coherence times for

the |B〉 state: energy relaxation TD
1 = 116± 5µs, Ramsey coherence TD

2R = 120± 5µs,

and Hahn echo TD
2E = 162± 6µs. While protected, the |D〉 state is indirectly quantum-

non-demolition (QND) read out by the combination of the V-structure, the drive between

|G〉 and |B〉, and the fast |B〉-state monitoring. In practice, we can access the popula-

tion of |D〉 using an 80 ns unitary pre-rotation among the levels followed by a projective

measurement of |B〉 (see Chapter 5).

Once the state of the readout cavity is imprinted with information about the occupation

of |B〉, photons leak through the cavity output port into a superconducting waveguide,

which is connected to the amplification chain, see Fig. 1b, where they are amplified

by a factor of 1012. The first stage of amplification is a quantum-limited Josephson

parametric converter (JPC) (Bergeal et al., 2010), followed by a high-electron-mobility

transistor (HEMT) amplifier at 4 K. The overall quantum efficiency of the amplification

chain is η = 0.33± 0.03. At room temperature, the heterodyne signal is demodulated by

a home-built field-programmable gate array (FPGA) controller, with a 4 ns clock period

for logic operations. The measurement record consists of a time series of two quadrature
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outcomes, Irec and Qrec, every 260 ns, which is the integration time Tint, from which the

FPGA controller estimates the state of the atom in real time. To reduce the influence of

noise, the controller applies a real-time, hysteretic IQ filter (see Section 5.3.1), and then,

from the estimated atom state, the control drives of the atom and readout cavity are

actuated, realizing feedback control.

1.2 Unconditioned monitoring of the quantum jumps

Having described the setup of the experiment, we proceed to report its results. The field

reflected out of the cavity is monitored in a free-running protocol, for which the atom is

subject to the continuous Rabi drives ΩBG and ΩDG, as depicted in Fig. 1.1. Figure 1.2a

shows a typical trace of the measurement record, displaying the quantum jumps of our

three-level artificial atom. For most of the duration of the record, Irec switches rapidly

between a low and high value, corresponding to approximately 0 (|G〉 or |D〉) and 5

(|B〉) photons in the cavity, respectively. The spike in Qrec at t = 210µs is recognized

by the FPGA logic as a short-lived excursion of the atom to a higher excited state (see

Section 5.3.1). The corresponding state of the atom, estimated by the FPGA controller,

is depicted by the color of the dots. A change from |B〉 to not-|B〉 is equivalent to a

“click” event, in that it corresponds to the emission of a photon from |B〉 to |G〉, whose

occurrence time is shown by the vertical arrows in the inferred record dN (t) (top). We

could also indicate upward transitions from |G〉 to |B〉, corresponding to photon absorption

events (not emphasized here), which would not be detectable in the atomic case.

In the record, the detection of clicks stops completely at t = 45µs, which reveals a

quantum jump from |G〉 to |D〉. The state |D〉 survives for 90µs before the atom returns

to |G〉 at t = 135µs, when the rapid switching between |G〉 and |B〉 resumes until a

second quantum jump to the dark state occurs at t = 350µs. Thus, the record presents
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Figure 1.2 | Unconditioned monitoring of quantum jumps in the 3-level sys-
tem. a, Typical measurement of quadratures Irec and Qrec of signal reflected from readout
cavity as a function of time. The color of the dots (see legend) denotes the state of the
atom estimated by a real-time filter implemented with the FPGAs (see Section 5.3.1).
On top, the vertical arrows indicate “click” events (dN) corresponding to the inferred
state changing from |B〉 to not-|B〉. The symbol τnot-B corresponds to the time spent
in not-|B〉, which is the time between two clicks minus the last duration spent in |B〉.
An advance warning that a jump to |D〉 is occurring is triggered when no click has been
observed for a duration ∆tcatch, which is chosen between 1 and 12µs at the start of the
experiment. b, Log-log plot of the histogram of τnot-B (shaded green) for 3.2 s of contin-
uous data of the type of panel (a). Solid line is a bi-exponential fit defining jump rates
ΓBG = (0.99± 0.06µs)−1 and ΓGD = (30.8± 0.4µs)−1.

jumps from |G〉 to |D〉 in the form of click interruptions.

In Fig. 1.2b, which is based on the continuous tracking of the quantum jumps for

3.2 s, a histogram of the time spent in not-|B〉, τnot-B, is shown. The panel also shows

a fit of the histogram by a bi-exponential curve that models two interleaved Poisson

processes. This yields the average time the atom rests in |G〉 before an excitation to |B〉,

Γ−1
BG = 0.99± 0.06µs, and the average time the atom stays up in |D〉 before returning to

|G〉 and being detected, Γ−1
GD = 30.8±0.4µs. The average time between two consecutive

|G〉 to |D〉 jumps is Γ−1
DG = 220 ± 5µs. The corresponding rates depend on the atom

drive amplitudes (ΩDG and ΩBG) and the measurement rate Γ (see Chapter 3). Crucially,

all the rates in the system must be distributed over a minimum of 5 orders of magnitude,

as shown in Fig. 1.2d.
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1.3 Catching the quantum jump

Having observed the quantum jumps in the free-running protocol, we proceed to con-

ditionally actuate the system control tones in order to tomographically reconstruct the

time dynamics of the quantum jump from |G〉 to |D〉, see Fig. 1.3a. Like previously, af-

ter initiating the atom in |B〉, the FPGA controller continuously subjects the system to

the atom drives (ΩBG and ΩDG) and to the readout tone (R). However, in the event

that the controller detects a single click followed by the complete absence of clicks for

a total time ∆tcatch, the controller suspends all system drives, thus freezing the system

evolution, and performs tomography, as explained in Section 5.2.2. Note that in each

realization, the tomography measurement yields a single +1 or -1 outcome, one bit of

information for a single density matrix component. We also introduce a division of the

duration ∆tcatch into two phases, one lasting ∆ton during which ΩDG is left on and one

lasting ∆toff = ∆tcatch −∆ton during which ΩDG is turned off. As we explain below, this

has the purpose of demonstrating that the evolution of the jump is not simply due to the

Rabi drive between |G〉 and |D〉.

In Fig. 1.3b, we show the dynamics of the jump mapped out in the full presence of

the Rabi drive, ΩGD, by setting ∆toff = 0. From 3.4 × 106 experimental realizations we

reconstruct, as a function of ∆tcatch, the quantum state, and present the evolution of the

jump from |G〉 to |D〉 as the normalized, conditional GD tomogram (see Section 5.2.2).

For ∆tcatch < 2µs, the atom is predominantly detected in |G〉 (ZGD = −1), whereas for

∆tcatch > 10µs, it is predominantly detected in |D〉 (ZGD = +1). Imperfections, due

to excitations to higher levels, reduce the maximum observed value to ZGD = +0.9 (see

Section 5.5).

For intermediate no-click times, between ∆tcatch = 2µs and ∆tcatch = 10µs, the

state of the atom evolves continuously and coherently from |G〉 to |D〉— the flight of the
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Figure 1.3 | Catching the quantum jump mid-flight. a, The atom is initially
prepared in |B〉. The readout tone (R) and atom Rabi drive ΩBG are turned on until the
catch condition is fulfilled, consisting of the detection of a click followed by the absence of
click detections for a total time ∆tcatch. The Rabi drive ΩDG starts with ΩBG, but can be
shut off prematurely, prior to the end of ∆tcatch. A tomography measurement is performed
after ∆tcatch. b & c, Conditional tomography revealing the continuous, coherent, and,
surprisingly, deterministic flight (when completed) of the quantum jump from |G〉 to |D〉.
The mid-flight time ∆tmid is defined by ZGD = 0. The jump proceeds even when ΩDG

is turned off at the beginning of the flight (panel c), ∆ton = 2µs. Data obtained from
6.8× 106 experimental realizations. Solid lines: theoretical prediction. The data suggests
that an advance-warning signal of the jump can be provided by a no-click period for catch
time ∆tcatch = ∆tmid, at which half of the jumps will complete.
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quantum jump. The time of mid flight, ∆tmid ≡ 3.95µs, is markedly shorter than the Rabi

period 2π/ΩDG = 50µs, and is given by the function ∆tmid =
(

Ω2
BG

2Γ

)−1

ln
(

Ω2
BG

ΩDGΓ
+ 1
)
,

in which ΩDG enters logarithmically (see Section 3.1.1). The maximum coherence of

the superposition, corresponding to
√
X2

GD + Y 2
GD, during the flight is 0.71 ± 0.005,

quantitatively understood to be limited by several small imperfections (see Section 5.5).

Motivated by the exact quantum trajectory theory, we fit the experimental data with

the analytic form of the jump evolution, ZGD(∆tcatch) = a + b tanh(∆tcatch/τ + c),

XGD(∆tcatch) = a′ + b′ sech(∆tcatch/τ
′ + c′), and YGD(∆tcatch) = 0. We compare the

fitted jump parameters (a, a′, b, b′, c, c′, τ, τ ′) to those calculated from the theory and

numerical simulations using independently measured system characteristics (see Section

5.5).

By repeating the experiment with ∆ton = 2µs, in Fig. 1.3c, we show that the jump

proceeds even if the GD drive is shut off at the beginning of the no-click period. The

jump remains coherent and only differs from the previous case in a minor renormalization

of the overall amplitude and timescale. The mid-flight time of the jump, ∆t′mid, is given

by an updated formula (see Chapter 3). The results demonstrate that the role of the Rabi

drive ΩDG is to initiate the jump and provide a reference for the phase of its evolution1.

Note that the ∆tcatch � ∆tmid non-zero steady state value of XGD in Fig. 1.3b is the

result of the competition between the Rabi drive ΩDG and the effect of the measurement

of |B〉. This is confirmed in Fig. 3c, where ΩDG = 0, and where there is no offset in the

steady state value.

The results of Fig. 1.3 demonstrate that despite the unpredictability of the jumps from

|G〉 to |D〉, they are preceded by an identical no-click record. While the jump starts at

1A similar phase reference for a non-unitary, yet deterministic, evolution induced by measurement
was previously found in a different context in: N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R.
McDermott, M. Neeley, M. Steffen, E. M. Weig, A. N. Cleland, J. M. Martinis, and A. N. Korotkov,
Science (New York, N.Y.) 312, 1498 (2006).
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a random time and can be prematurely interrupted by a click, the deterministic nature

of the flight comes as a surprise given the quantum fluctuations in the heterodyne record

Irec during the jump — an island of predictability in a sea of uncertainty.

1.4 Reversing the quantum jump

In Fig. 1.4b, we show that by choosing ∆tcatch = ∆tmid for the no-click period to serve

as an advance warning signal, we reverse the quantum jump2 in the presence of ΩDG; the

same result is found when ΩDG is off, see Section 3.1.3. The reverse pulse characteristics

are defined in Fig. 1.4a. For ϕI = π/2, our feedback protocol succeeds in reversing the

jump to |G〉 with 83.1%± 0.3% fidelity, while for ϕI = 3π/2, the protocol completes the

jump to |D〉, with 82.0%±0.3% fidelity. In a control experiment, we repeat the protocol by

applying the reverse pulse at random times, rather than those determined by the advance

warning signal. Without the advance warning signal, the measured populations only reflect

those of the ensemble average.

In a final experiment, we programmed the controller with the optimal reverse pulse pa-

rameters {θI (∆tcatch) , ϕI (∆tcatch)}, and as shown in Fig. 1.4c, we measured the success

of the reverse protocol as a function of the catch time, ∆tcatch. The closed/open dots

indicate the results for ΩDG on/off, while the solid curves are theory fits motivated by the

exact analytic expressions (see Chapter 3). The complementary red dots and curves repro-

duce the open-loop results of Fig. 1.3 for comparison. The excellent agreement between

experiment and theory including known experimental imperfections provides support to

the modern quantum trajectory theory and its reliability for predicting the performance of

real-time intervention techniques in the control of quantum systems.

2Reversal of quantum jumps have been theoretically considered in different contexts, see H. Mabuchi
and P. Zoller, Phys. Rev. Lett. 76, 3108 (1996) and R. Ruskov, A. Mizel, and A. N. Korotkov, Phys.
Rev. B 75, 220501(R) (2007).
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Figure 1.4 | Reversing the quantum jump mid-flight. a, Bloch sphere of the
GD manifold, showing the axis X’ for the jump reversal, defined by the azimuthal angle
ϕI. The angle of the intervention pulse is θI. b, Success probabilities PG (purple) and
PD (orange) to reverse to |G〉 and complete to |D〉 the quantum jump mid-flight at
∆tcatch = ∆tmid, with θI = π/2, in the presence of the Rabi drive ΩDG. Black dots:
success probability for |G〉 (closed dots) and |D〉 (open dots) in a control experiment
where intervention is applied at random times along the record, rather than at ∆tcatch.
c, Optimal success of reverse protocol (purple) as a function of ∆tcatch. The FPGA
controller is programmed with the optimal {θI (∆tcatch) , ϕI (∆tcatch)}. Closed and open
dots correspond to ∆ton = ∆tcatch and ∆ton = 2µs, respectively. Red points show the
corresponding open-loop (no intervention) results from Fig. 1.3b and c.



2
Quantum measurement theory

In quantum physics you don’t see
what you get, you get what you see.

A.N. Korotkov
Private communication

T his chapter provides a general background to the central ideas and results of quan-

tum measurement theory. It begins with a prelude, Section 2.1, where the elemen-

tary notions of the measurement formalism are introduced. Secs. 2.1.1 and 2.1.2 develop

the basic concepts of probability theory that concern measurements. For simplicity, this

initial discussion concerns classical systems, but most concepts carry over to quantum

systems, as discussed in Section 2.1.3. This approach allows us to more easily discern the

classical and quantum aspects of measurements. The ideas of Sec. 2.1 are generalized

in Sec. 2.2 to time-continuous measurements. For definitiveness, this is accomplished by

treating a microscopic model for the homodyne monitoring of a qubit. Although simple,

the model contains sufficient generality to illustrate the principal ideas of continuous quan-

tum measurements. The concept of the stochastic path taken by the state of a monitored

quantum system over time, known as its quantum trajectory, is introduced. Section. 2.2.3

introduces the Gaussian white noise (Wiener) process and formulates the basic notions of

15
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stochastic calculus. Finally, Section 2.3 develops the general theory of quantum measure-

ments and quantum trajectories, and presents the mathematical formalism employed in

the description of quantum jumps and the experiment, see Chapters 3 and 5. Section 2.4

provides recommendations for further reading.

2.1 Prelude: from classical to quantum measure-

ments

This section introduces the basic concepts of measurement theory. First, those concerning

classical systems1 are introduced, which, as will be shown, carry over to quantum systems

with few but profoundly important modifications. The purpose of this approach is to pro-

vide a mathematically simpler, and we hope more intuitive, introduction to the formalism.

Further, it allows us to more easily discern the classical and quantum contributions to

the nature of measurements. For concreteness, throughout the discussion, we keep the

simplest possible classical and quantum examples in view, generally, involving classical or

quantum bits.

2.1.1 Classical measurement theory: basic concepts

Bit: simplest classical system. The simplest classical system is one that can be in

either one of two configurations. Physically, such a system could represent a coin on a

table (head or tails), the tilt of a seesaw (left or right), or the thresholded value of a

voltage in a transistor (less than 5 V or not). Mathematically, the system is described by

its configuration,2 which is a set of variables describing its intrinsic properties, which have
1For further reading on classical measurement theory, we suggest Refs. Wiseman and Milburn (2010)

and Jacobs (2014). Our notation closely follows that of Wiseman’s book.
2The term ’state’ is often employed in place of ’configuration’, however, in classical measurement

theory, we reserve the term ’state’ for probability distributions only. This choice is motivated by the
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definite values. The bit system has only one property, corresponding to the question: Is

the system in the first configuration, or not? The answer to this question can be specified

by a binary variable S that takes only one of two values, 1 or −1.3 For the example of a

coin, we assign S = 1 to tails and S = −1 to heads.4

In principle, a perfect measurement of a classical system can be performed to unam-

biguously obtain the values of the system variables. In this way, an observer can determine

the precise configuration of the system, and hence learn everything there is to know about

the system and results of future measurements. More generally, a probabilistic description

of the system is required either due to imperfect measurements of the system or due to

the uncertain preparation of an ensemble of systems. Here, we will focus on the latter

situation, which is analogous to the typical situation encountered with quantum systems.

For concreteness, consider a coin that is prepared probabilistically, for instance, by a

toss in the air. Following the toss, a measurement of its variable S is performed, yielding

the result heads (S = −1) or tails (S = 1). To describe the expectation of measurement

results, we introduce the state of the system5 — a probability distribution over all possible

system configurations, known as the configuration space, S. Notably, this description of

the state of a classical system is the direct analogue of the density matrix description of

a quantum system. For the example of a coin, the state can be written as a vector of

probabilities over the two configurations,

~S ≡




Pr [S = 1]

Pr [S = −1]


 , (2.1)

analogy with quantum measurement theory.
3We choose ±1, rather than 0 and 1, to parallel the later discussion of the quantum bit and the

outcome of the Pauli Z measurement.
4For simplicity, at this stage, we assume no time dynamics.
5For our discussion, it suffices to adopt the point of view that the state of the system represents

subjective knowledge of the observer regarding the system.
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Figure 2.1 | Geometric representation of the state of a classical and quantum
bit. a, State of a classical bit system represented as the one-dimensional probability
vector p on the line segment Z between −1 and 1 (see Eq. (2.5) for the definition of Z).
b, State of quantum bit (qubit) represented as the three-dimensional Bloch vector. Unlike
the classical bit, the qubit has three observables (X, Y, and Z), which do not commute.
The quantum state of the qubit, ρ, is bounded by the unit sphere. The surface of the
sphere contains all pure states, which can be parametrized by the angles φ and θ.

where Pr [S = s] is the probability that the variable S of the system will have the value s,

where s ∈ {1,−1}.6 Since a measurement always yields a result, the sum of the probabil-

ities is one, which constrains the L1 norm of the state vector ~S,
∣∣∣~S
∣∣∣
L1

=
∑

s Pr [S = s] =

1, where |·|L1 denotes the L1 norm. Notably, this is similar to the unit-trace property of

the density matrix for quantum states. The state of the coin system, Eq. (2.1), can thus

be simplified:

~S =




1+p
2

1−p
2


 , (2.2)

where p denotes the bias of the coin and is a number between −1 and 1. The bias, p,

is a quantity of central importance, since it completely specifies the system state. It is

analogous to the Bloch vector of a quantum bit (qubit), and can be viewed as a one-
6In this section, we employ the convention that capital letters denote variables (typically, random

ones) and lower case letters denote values.
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dimensional probability vector, see Fig. 2.1a, which constitutes a geometric representation

of the state.

Operations on the system. An operation on the system results in a change of its

configuration. For the example of a coin, there are only two possible operations: i) not,

the coin is flipped; ii) identity, the coin is left as is. An operation applied to all systems

in the ensemble results in a change of the state of the system that can be described by a

linear map, represented by a state-transition matrix U , i.e., ~S ′ = U ~S, where ~S ′ denotes

the state after the operation. For the coin, the identity and not operations are given by

I ≡




1 0

0 1


 and σx ≡




0 1

1 0


 , (2.3)

respectively. Notably, σx is the bit-flip Pauli matrix.

Perfect classical measurement of a system ensemble. Consider the long-run av-

erage value a series of repeated measurements of the coin variable S, for the example of

randomly prepared coins. The expected mean value of S is the weighted average of the

results, defined as

E [S] ≡
∑

s

sPr [S = s] , (2.4)

where E [·] represents “expectation value of” and the sum is taken over all possible values

s of S. In matrix form, recalling Eq. (2.2), Eq. (2.4) simplifies to

E [S] =
∣∣∣σZ ~S

∣∣∣
L1

= p , (2.5)

where p is non-negative and we have introduced the measurement operator σZ , associated

with the variable S and given by the Pauli matrix
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Concept Symbols Definition / Description

Basic concepts

variable S,E Describes intrinsic property of system, has
definite value independent of measurement
apparatus

variable value s, e Specific value that a variable can take

probability Pr [S = s] Probability that variable S has value s

configuration {S},{E},{S,E} Set of all system variables

configuration space S,E,J Set of all possible system configurations

state ~S, ~E, ~J Probability distribution on the configuration
space, represented as a vector

expectation value E [S] Expected (mean) value of repeated
measurements of S, see Eq. (2.4)

Table 2.1 | Basic concepts of classical measurement theory.

σZ ≡




1 0

0 −1


 . (2.6)

The matrix formulation given by Eq. (2.5) for the expectation value of a classical mea-

surement bears marked resemblance to that employed with quantum systems. For a

measurement on a quantum bit, the expectation value of the Z component of its spin

is given by Tr [σ̂zρ], where ρ is the qubit density matrix, σ̂z is the Pauli Z operator,

represented by the matrix given in Eq. (2.6), and Tr [·] denotes the trace function.

Composite system. Extending the coin example, consider a composite system consist-

ing of two coins. The first coin is described by the variable S, or in the ensemble situation,

by the state ~S, defined over the configuration space S ≡ {S = 1, S = −1}. The second
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coin is similarly described by a single variable, E, and a state ~E =




1+pE
2

1−pE
2


, where pE

is the coin bias. Its configuration space is E ≡ {E = 1, E = −1}. The configuration of

the composite system consists of the simultaneous specification of all variables, namely,

S and E. The set of all possible configurations of the composite system is

J = S⊗ E (2.7)

= {1S,−1S} ⊗ {1E,−1E}

= {1S1E, 1S − 1E, −1S1E, −1S − 1E} ,

where ⊗ denotes the tensor product, and where, momentarily, we have used the notation

where 1S stands for S = 1.7 The state of the composite system is a probability distribution

over J, which can be represented by a 4-dimensional probability vector, ~J . When the two

subsystems are uncorrelated, the composite state is separable, and can be written as a

simple product of the states of the constituent subsystems, ~J = ~S ⊗ ~E. However, when

the subsystems are correlated, this is no longer possible. For concreteness, consider the

case where the two coins are prepared randomly but always the same, the correlated

randomness of the two systems is described by the composite state ~J =
(

1
2
, 0, 0, 1

2

)ᵀ,

where ᵀ denotes the transposition operation. More generally, an operation that represents

an interaction between the two coins results in statistical correlations between them, and

thus renders the composite state inseparable. These features generally carry over to

the description of composite quantum systems, but standard statistical correlations are

replaced by entanglement. In the following subsection, Sec. 2.1.2, we explore the effect

of an interaction between the two coins.
7So that no confusion arises, we note that the dimension of the composite system space is not the

sum but is the product of the subsystem dimensions, i.e., dim J = dimS× dimE, where dim represents
“dimension of.”
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Figure 2.2 | Classical toy model of the interaction between the system and
environment. Circuit of the interaction between the system, with agents Adam and Bob,
and the environment, with agent Eve. Vertical lines depict the bits of the system and
environment, initially prepared by Adam and Eve in the states S (0) = sA and E (T ) = e,
respectively. The two bits interact via a controlled-NOT (cNOT) gate. Bob measures the
system at time T , obtaining the value S (T ). Brick wall depicts the lack of communication
between the agents of the system and environment.

2.1.2 Classical toy model of system-environment interaction

For a more general discussion of measurements, it is necessary to consider the interaction

of the system with another, which probes it and is often referred to as the environment.

In this subsection, we consider the minimal limit of this model, where both the system

and environment are bits. Further, to introduce only the essentials for now, we consider

only the effect of a single interaction between the classical system and environment,

and discuss the effect of the interaction on the system transfer of information. In the

following subsection, Sec. 2.1.3, we consider the analogous quantum case, consisting of

the interaction between a system and environment, each of which is quantum bit. In

Sec. 2.2, we generalize the toy model to the time-continuous homodyne monitoring of a

quantum bit.
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Classical toy model. Continuing with the example of two coins, we label one as the

“system” and the other as the “environment.” For definitiveness, consider the case where

the system coin belongs to Adam, who aims to employ it to communicate with Bob. To

achieve this, at time t = 0, Adam prepares his coin in the configuration S (0) = sA,

where sA is the bit value Adam hopes to communicate. He sends the coin flying to Bob,

who receives it at time T , and measures it to obtain the value of S (T ). If the coin flies

undisturbed, S (T ) = S (0), and Bob faithfully receives Adam’s bit.

However, during its flight, the coin unavoidably interacts with a second flying coin,

which belongs to an agent, Eve, who, at time t = 0, has prepared her coin in the

configuration E (0) = e, where E is the variable describing her coin, and which is unknown

to Adam and Bob. For concreteness, suppose the interaction between the two coins is

described by the controlled-NOT (cNOT) gate,

cNOT ≡ I ⊗




1 0

0 0


+ σx ⊗




0 0

0 1


 =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



, (2.8)

where I and σx are defined according to Eq. (2.3). Matrices associated with operations

on the system (resp: environment) are placed to the left (resp: right) of the tensor

product. Given that Adam and Bob lack knowledge of Eve’s bit value, e, but are aware

of the interaction, to what degree can they communicate, i.e., what is the effect of the

interaction on the value, S (T ), measured by Bob? More importantly, what action can Bob

undertake to undo the effect of the interaction, so as to obtain Adam’s bit, S (T ) = S (0)?

Evolution of the state, and Bob’s information gain. Employing the formalism

developed in Section 2.1.1, the initial state of the composite system, consisting of the two
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coins, is described by the state vector ~J (0) = ~S (0) ⊗ ~E (0) , where the initial states of

the system and environment are ~S (0) =




1+sA
2

1−sA
2


 and ~E (0) =




1+pE
2

1−pE
2


 , respectively.

The variable pE denotes the bias of Eve’s coin, see Eq. (2.2). Following the interaction,

the composite system state is given by ~J (T ) = cNOT ~J (0). The expected mean value

of Bob’s measurement of S (T ), represented by the matrix I ⊗ σz, is given by, recalling

Eq. (2.5),

E [S (T )] =
∣∣∣(I ⊗ σz) ~J

∣∣∣
L1

= pEsA. (2.9)

To understand Eq. (2.9), consider three limiting cases: i) Eve always prepares her coin

facing up, e = 1, corresponding to a maximal coin bias, pE = 1. Since for e = 1 the

interaction with her coin has no effect on Adam’s coin, Bob faithfully receives Adam’s bit

every time, E [S (T )] = sA. ii) Eve always prepares her coin facing down, e = −1. Since

her coin bias is now pE = −1, Bob always receives Adam’s coin flipped E [S (T )] = −sA.

While inconvenient for Bob, by flipping each coin he receives (a deterministic action), he

could recover the bit. The effect of Eve’s coin is to change the encoding of the information,

but has not resulted in its loss. iii) Eve prepares her coin completely randomly, pE = 0.

On average, Bob receives no information from Adam, E [S (T )] = 0! Eve has randomly

scrambled the encoding of the information for each of the realizations, which, from Bob’s

point of view, results in the complete loss of the initial system information encoded by

Adam. More generally, for an arbitrary coin bias pE, the information shared between Adam

and Bob is characterized by the correlation between the initial and final configurations

of the system, which is given by the bias of Eve’s bit, E [S (T )S (0)] = pE, which can

be understood as the result of information transfer between the system and environment,

facilitated by the cNOT interaction, however, where the “information” propagating to the

system from the environment is random noise.
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While the transfer of information between Adam and Bob is degraded by the influence

of the interaction with Eve’s bit, in principle no information has been erased, because

the cNOT interaction is reversible. For the case where pE = 0, Adams bit, sA, is not

transferred to Bob at all; rather, it is encoded in the correlation between the system

and environment, E [S (T )E (T )] =
∣∣∣(σz ⊗ σz) ~J

∣∣∣
L1

= sA, which is inaccessible to Adam

and Bob, who only have control over the system coin, and, hence, only access to S.

To summarize, the interaction between the system and a randomly prepared random

environment results in loss of information and injection of noise into the system, as far

as the system alone is concerned. Nevertheless, from the vantage point of the composite

system, no information is lost; rather, it is transferred into correlations between the system

and environment.

Recovering the information. To recover Adam’s bit, Bob requires access to Eve’s

physical coin or knowledge of e, the specific value of her coin for each realization. First,

consider the latter case, where Bob learns e. Recalling that cNOT2 = I ⊗ I, before Bob

performs a measurement, he can undo the interaction effect by preparing an ancillary,

third, coin with the value e, by employing it to perform a second cNOT operation on his

coin, thus reversing the first. Applied to each realization, this procedure results in faithful

communication, E [S (T )S (0)] = 1. Notably, Bob can also reverse the interaction effect

after performing his measurement by essentially applying the second cNOT operation

virtually, i.e., when e = 1, sA = sB, while otherwise, sA = −sB. We remark that any

operations performed by Eve on her coin after the system-environment interaction have

no consequences for Bob. To summarize, the examples highlights three distinct aspects

regarding the recovery of information in the classical setting:

1. Eve’s physical system was not required, only information about its initial configura-

tion, E (0) = e.
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2. The effect of the interaction can be reversed before or after Bob’s measurement.

3. Operations on Eve’s coin subsequent to the interaction have no consequences.

All three of these features break down in the quantum setting, as discussed in the following

subsection.

2.1.3 Quantum toy model

Rather than communicating with classical bits (coins), consider the situation where Adam

and Bob communicate with quantum bits (qubits), and Eve too employs a qubit. Before

proceeding, we briefly review the basic qubit concepts.

Quantum bit. While the fundamental concept of classical information is the bit, which

represents the minimal classical system, the fundamental concept of quantum information

is the quantum bit, or qubit for short, which represents the minimal physical quantum

system. A qubit has two basis states, |+z〉 and |−z〉. A pure state of the qubit is described

by the state |ψ〉 = cos
(
θ
2

)
|+z〉 + eiφ sin

(
θ
2

)
|+z〉, where the angles θ and φ, which fall

in the range 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, define a point on the unit sphere, known as

the Bloch sphere, see Fig. 2.1b. More generally, a statistical ensemble of pure states, a

mixed qubit state is described by the density matrix

ρ =
1

2

(
Î +Xσ̂x + Y σ̂y + Zσ̂z

)
, (2.10)

where X, Y , Z are real numbers parameterizing the state, given by the averages of the

Pauli operators, X ≡ Tr [σ̂xρ], et cetera, where Tr [·] denotes the trace operation. The

matrix representation of the identity, Î, and Pauli σ̂x and σ̂z operators is given in Eqs. (2.3)

and (2.6), while that of Pauli operator Y is σ̂y =




0 −i

i 0


, where i is the unit imaginary.
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The Bloch vector, (X, Y, Z)ᵀ, provides an important geometrical representation of the

state of the qubit, and as discussed in Sec. 2.1.1 is the analog of the coin bias p. For a

pure state, the Bloch vector extends to the surface of the Bloch sphere, while for mixed

states, it lies in the interior. Notably, it admits the spherical parameterization:

X = r sin (θ) cos (φ) ,

Y = r sin (θ) sin (φ) ,

Z = r cos (θ) , (2.11)

where the angles θ and φ are defined as for pure states and r is the length of the Bloch

vector, a number between 0 and 1. Notably, in the Bloch representation, mutually or-

thogonal state vectors are not represented by orthogonal Bloch vectors, but rather, by

opposite Bloch vectors, which specify antipodal points on the sphere.

Quantum toy model. Returning to the toy model example of the interaction between

two systems (recall Fig. 2.2, which depicts the analogous classical model), we consider

the case where at time t = 0 Adam prepares his qubit in the pure state |ψ (0)〉, with

corresponding Bloch vector components X (0), Y (0), and Z (0), while Eve prepares her

qubit in the pure state |+x〉, where |+x〉 = 1√
2

(|+z〉+ |+z〉). Unlike in the classical toy

model, Adam has a choice regarding the encoding of his information — the orientation

of the Bloch vector, which has no classical analog. Both qubits are sent flying. A

controlled-NOT interaction occurs, described by the operator cNOT = Î ⊗ |+z〉 〈+z| +

σ̂x ⊗ |−z〉 〈−z|, where operators on the left (resp., right) of the tensor product, denoted

⊗, act on the system (resp., environment). Notably, the matrix representation of the

cNOT operator is the same that of the classical cNOT gate, given in Eq. (2.8). After the

interaction Bob receives the system qubit, at time T .
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Effect of the interaction before the measurement. Before the measurement, the

pure state of the composite system, |Ψ (T )〉 = cNOT (|ψ (0)〉 |+x〉), is, in general, in-

separable — it cannot be written as a simple product of states of its component systems.

On a mathematical level, this result is the same as that for the classical model; however,

the interpretation and consequences are markedly distinct. Classically, the inseparability

represented statistical correlations between definite configurations of the system and en-

vironment. For the quantum model, the inseparability represents entanglement between

the system and environment — the system cannot be fully described without considering

the environment. Generally, measurements of the entangled system are correlated with

those of the environment, and the system alone cannot be represented by a pure state.

The consequences of the system-environment entanglement are at the heart of quantum

measurement theory.

Consider the reduced density matrix of the system qubit, found by taking the partial

trace over the environment, denoted TrE [·],

ρS (T ) = TrE [|Ψ (T )〉 〈Ψ (T )|] =
1

2




1 X (0)

X (0) 1


 . (2.12)

Evidently, entanglement in the composite state, the result of the interaction between

the system and environment results in the loss of information from the point of view of

the system. Specifically, the Y and Z Bloch components prepared by Adam, Y (0) and

Z (0), are absent in ρS (T ), despite the deterministic preparation of the ancilla in a pure

state |+x〉. However, if Adam chose to encode his information along the X component

of the Bloch vector, it would propagate to Bob undisturbed by the interaction with the

environment, and Bob could receive it by measuring X. It is the X component that is

preserved due to the choice of the interaction and initial pure state of the environment.
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Analogously to the classical case, no information is truly lost, but rather, when viewed in

the broader context of the composite system, Adam’s initial Y and Z qubit components are

encoded in the YZ, 〈Y Z〉 ≡ Tr [(σ̂y ⊗ σ̂z) ρ] = Y (0), and ZZ, 〈ZZ〉 ≡ Tr [(σ̂z ⊗ σ̂z) ρ] =

Z (0), correlations between the system and environment, respectively.

Recovering information before the measurement. In the classical case, by learning

the initial configuration of the environment, E (0) = e, Bob could undo the effect of

the system-environment interaction and could recover the state sent by Adam before

performing the measurement. In the quantum case, this is not possible. Even though

Bob can know the initial state, |+x〉, of the environment and can clone it, by preparing a

third ancilla qubit in the state |+x〉, he cannot use this ancilla to perform a second cNOT

operation on the system so as to reverse (recall that cNOT2 = Î) the cNOT performed

by the environment qubit. This is a profound consequence of the entanglement between

the system and environment, and has no classical analog. The only way to reverse the

interaction is to use the physical qubit of the environment to perform the second cNOT

operation — no clone will suffice.

Projective (von Neumann) measurement. For a classical system described by a

state of maximal knowledge, the result of any measurement can be determined with

certainty. However, for a quantum system described by a state of maximal knowledge, a

pure state, the result of a measurement is not, in general, determined. For definitiveness,

consider the description of a perfect projective (von Neumann) measurement performed

by Bob on the Z component of his qubit spin, with the associated operator (observable)

σ̂z. The measurement is described by the spectral decomposition of the observable,

σ̂z =
∑

r rπ̂r = π̂1 − π̂−1, where r is an eigenvalue, r = 1 or r = −1, to which

corresponds a measurement result, and π̂r is the projection operator onto the eigenstate

associated with r, π̂1 = |+z〉 〈+z| and π̂−1 = |+z〉 〈+z|. The probability of obtaining an



2.1. Prelude: from classical to quantum measurements 30

outcome corresponding to the eigenvalue r is

℘r = Tr [π̂rρ] . (2.13)

According to the projection postulate of quantum mechanics,8 the measurement leads to

the projection (or “collapse”)9 of the system state into an eigenstate of the measurement

operator. Immediately after the measurement, conditioned on the result r, the state of

the system is

ρr =
π̂rρπ̂r
℘r

. (2.14)

The evolution due to Eq. (2.14) is markedly non-linear in the state density, which appears in

the denominator, and represents a radical departure from the linear evolution encountered

with Schrödinger’s equation. Further, while a perfect measurement of a classical system

does not alter its state, a perfect measurement of a quantum system, in general, does

alter its state. This non-linear disturbance has profound consequences.

Suppose, at time T , Bob performs a Z measurement of his qubit and obtains the

result r = 1, with probability, recalling Eqs. (2.12) and (2.13), ℘1 = Tr [π̂1ρS (T )] = 1
2
.

Note that ℘1 is independent of X (0), Y (0), and Z (0). The system state after the

measurement is ρ1 = π̂1ρS (T ) π̂1/Tr [ρS (T ) π̂1] =




1 0

0 0


, corresponding to the pure

state |+z〉. Notably, the potentially recoverable information encoded by Adam, X(0),

is irreversibly lost. From the point of view of the composite system, described by the

state |Ψ (T )〉, the measurement has projected the state onto the measurement basis,

according to the effect of the projector π̂1 ⊗ Î. The state of the composite system

after the measurement, |+z〉 |ψ (0)〉, is pure and separable, i.e., the measurement has

8Curiously, the modern formulation of the projection postulate is not precisely that of von Neumann
(von Neumann, 1932), but contains a correction due to Lüders (Lüders, 1951).

9W. Heisenberg introduced the idea of wavefunction collapse in 1927 (Heisenberg, 1927).



2.2. Continuous quantum measurements: introduction to quantum trajectories and
stochastic calculus 31

disentangled the system and environment. In this toy model (and for this particular

measurement outcome), it just so happens that Adam’s state is completely teleported

to Eve’s qubit, a form of information transfer between the two systems. To understand

the situation a bit better, consider the alternative, where r = −1, with the associated

projector π̂−1 ⊗ Î. The conditional state of the system after the measurement is again

obtained by employing Eq. (2.14), yielding |+z〉 |ψ′〉 for the composite system, where

the state |ψ′〉 has the same Bloch vector as Adam’s initial state |ψ (0)〉 but with the

Y and Z components flipped. This example illustrates the more general feature that a

measurement on either the system or environment disentangles the two, resulting in a

perfect correlation between the measurement on one and the state of the other. Further,

it tends to lead to a transfer of information between the two subsystems. We explore the

profound consequences of these features in the following section.

2.2 Continuous quantum measurements: introduc-

tion to quantum trajectories and stochastic cal-

culus

In this section, we consider a heuristic microscopic model of continuous quantum mea-

surements, which, although simple, contains sufficient generality to introduce the principal

ideas. Specifically, we model the homodyne measurement of a qubit by a sequence of in-

teractions with a chain of identically prepared ancilla qubits. A chain of ancillary systems

modeling the environment is known as a von Neumann chain (von Neumann, 1932).

While the evolution due to the interaction with each ancilla is unitary, “deterministic,”

the addition of a projective (von Neumann) measurement of each ancilla subsequent to

its interaction with the system results in the stochastic evolution of the quantum state
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of the system — known as a quantum trajectory (Carmichael, 1993). Due to the cor-

relation between the state of a measured ancilla and the resulting state of the system,

the measurement results allow faithful tracking of the state trajectory (Belavkin, 1987,

Carmichael, 1993, Gardiner et al., 1992, Dalibard et al., 1992, Korotkov, 1999). After

introducing the time-discrete version of the model, we take its continuum limit, which

allows us to introduce the fundamental concepts of stochastic calculus. Specifically, we

focus on introducing the Wiener noise process and obtaining the stochastic differential

equations (SDEs) that describe the homodyne monitoring of the qubit. Most of the results

derived in this section carry over with little modification to the following section, Sec. 2.3,

which establishes the general formulation of quantum measurement theory. Time-discrete

chain models have been discussed in Refs. Caves and Milburn (1987), Attal and Pautrat

(2006), Korotkov (2011), Tilloy et al. (2015), Korotkov (2016), Bardet (2017).

2.2.1 Time-discrete model with flying spins

Time is discretized in small but finite bins of length ∆t labeled by the integer n, i.e., t =

n∆t. During each timestep, a single spin of the environment, referred to as the ancilla,

interacts with the system for time ∆t, see Fig. 2.3. For simplicity, assume each spin is

identically prepared in the state |+x〉. We employ the convention that the states |±x〉,

|±y〉, and |±z〉 denote eigenstates of the Pauli X, Y, and Z operators, respectively. The

interaction between the n-th ancilla and the system is described by the Hamiltonian

Ĥn ≡ −
~λ
2
σ̂Sz ⊗ σ̂(n)

z , (2.15)

where λ is the strength of the interaction, ~ is Plank’s constant, and σ̂Sz and σ̂(n)
z denote

the Pauli Z operators of the system and ancilla, respectively. For the time being, we

assume that Ĥn is the only generator of system evolution, and the system Hamiltonian
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Figure 2.3 | Homodyne monitoring of a quantum bit: time-discrete model.
The qubit, whose Bloch vector lies in the XZ plane, sequentially interacts with a chain
of ancilla qubits, which model the environment. At the beginning of each timestep, at
time t, the system is in a pure state, |ψ (t)〉S. During the n-th timestep, of length
∆t, the qubit interacts, subject to the Hamiltonian Ĥn, with the n-th ancilla, prepared
in |+x〉, whereafter, the Y component of its spin is projectively measured. The result
of the measurement, rn, which is either -1 or 1, is recorded and accumulated; in the
continuum limit, ∆t → 0, it leads to the homodyne signal J (t), a time-continuous
stochastic (Weiner) process.
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is zero, ĤS = 0. Following the interaction, the ancilla is measured by a detector that

performs a projective measurement of the ancilla spin Y component, which yields the

measurement result rn = −1 or rn = 1. The observer operating the measurement

apparatus keeps track of the sum total of the measurement results, the measurement

signal: Jt ≡
√

∆t
∑n

n′=0 rn′ .

Note two assumptions regarding the measurement: i) the ancilla qubits are undisturbed

during their flight from the system to the measurement apparatus, and ii) the measurement

apparatus performs a perfect measurement, and does not add technical noise. These

assumptions ensure no information is lost in the measurement, nor spurious noise is added

by it; i.e., the observer has perfect access to all information there is to know in the

environment, and is hence referred to as an omniscient observer.

Evolution of the composite system. For simplicity, assume the state of the

system at time t is pure and its Bloch vector lies in the XZ plane; i.e., it is described by

a single angle θ (t),

|ψ (t)〉S = cos

(
θ (t)

2

)
|+z〉S + sin

(
θ (t)

2

)
|−z〉S =




cos
(
θ(t)

2

)

sin
(
θ(t)

2

)


 . (2.16)

The state of the composite system at time t, consisting of the n-th ancilla and the system

qubit, is |Ψ (t)〉 = |ψ (t)〉S⊗|+x〉n, and for duration ∆t evolves subject to the Hamiltonian

Ĥn. The total evolution is given by the propagator Û (t, t+ ∆t) = exp
(
−iĤn∆t/~

)
,

and the composite-system state after the interaction is

|Ψ (t+ ∆t)〉 = Û (t, t+ ∆t) |Ψ (t)〉 , (2.17)
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Anticipating the ancilla Y measurement, we express |Ψ (t+ ∆t)〉 in terms of the measure-

ment operator eigenstates. The measurement operator on the ancilla alone is the Pauli Y

operator, σ̂(n)
y , with eigenstates |−y〉n and |+y〉n, in terms of which,

|Ψ (t+ dt)〉 =
∣∣∣ψ̃−1 (t+ ∆t)

〉
S
⊗ |−y〉n +

∣∣∣ψ̃+1 (t+ ∆t)
〉
S
⊗ |+y〉n , (2.18)

where the parameter ε ≡ λ∆t characterizes the measurement strength and the un-

normalized10 system states
∣∣∣ψ̃±1 (t+ ∆t)

〉
S
are

∣∣∣ψ̃±1 (t+ ∆t)
〉
S
≡




cos
(
θ(t)

2

)
cos
(
π/2±ε

2

)

sin
(
θ(t)

2

)
sin
(
π/2±ε

2

)



S

. (2.19)

The state of the composite system following the interaction, Eq. (2.18), is not separable.

The interaction has entangled the system and environment, as discussed of Sec. 2.1.3.

Projective (von Neumann) measurement of the ancilla. The action of the mea-

surement apparatus on the composite system is described, recalling the discussion on

Pg. 29, by decomposing the measurement operator Ŷn = Î⊗ σ̂y in terms of its eigenstate

projectors, π̂± ≡ ÎS ⊗ (|±y〉 〈±y|)n; note, Ŷ = π̂+− π̂−. According to the von Neumann

postulate, the projectors yield the probability for obtaining the results rn = −1 and rn = 1

from the measurement,

℘r (t) = 〈Ψ (t+ ∆t)| π̂r |Ψ (t+ ∆t)〉

=
〈
ψ̃r (t+ ∆t)

∣∣∣ψ̃r (t+ ∆t)
〉

=
1

2
(1− rn sin (ε) cos (θ (t))) , (2.20)

10By convention, a tilde will indicate an unnormalized state, with a norm less than one.
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as well as the state of the composite system immediately after the measurement, condi-

tioned on the result rn,

|Ψr (t+ ∆t)〉 =
∣∣∣ψ̃r (t+ ∆t)

〉
S
|y := r〉n /

√
℘r (t), (2.21)

where |y := r〉n denotes ancilla state |+y〉n (resp., |−y〉n) for r = 1 (resp., r = −1). The

measurement has transformed the entanglement between the system and environment,

evident in the non-separable state |Ψ (t+ ∆t)〉, Eq. (2.18), into a correlation between

the pure state of the system and environment after the measurement, evident in the

separable, non-entangled conditional state |Ψr (t+ ∆t)〉, Eq. (2.21). Assuming the ancilla

never interacts with the system again, it is unnecessary to retain it in the description of

the measurement; removing it from Eq. (2.21), we obtain the pure state of the system

alone at time t+ ∆t:

|ψr (t+ ∆t)〉S =
1√
℘r (t)

∣∣∣ψ̃r (t+ ∆t)
〉
S

=




cos
(
θr(t+dt)

2

)

sin
(
θr(t+dt)

2

)


 . (2.22)

From the point of view of the observer, the entanglement is transformed by the mea-

surement into a classical correlation between the result rn and the final conditional state

of the system, |ψr (t+ ∆t)〉S. Figure 2.4 summarizes the steps of the model and the

conditional state update.

Solution for the conditional state update. To explicitly solve Eq. (2.22) for the

updated angle of the qubit system conditioned on the measurement result rn, θr (t+ ∆t),

one can use Eqs. (2.20) and (2.19), following trigonometric manipulation, to obtain,

without any approximations, an explicit relation (Devoret, M.H.) between the Bloch angle
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Figure 2.4 | Circuit representation of the n-th timestep of the quantum tra-
jectory. At time t = n∆t, the system, described by the state |ψ (t)〉S, is subjected to
the system Hamiltonian ĤS and the interaction with the n-th ancilla, characterized by
the parameter ε. Every ancilla is prepared in |+x〉. Following the interaction, the detector
projectively measures the Y component of the ancilla spin, yielding the result rn, which
provides the information necessary to update the state of the system. In the case of
the omniscient observer, characterized by unit quantum measurement efficiency, η = 1,
at the end of the timestep, immediately after t + ∆, the system state, |ψr (t+ ∆t)〉S,
conditioned on the measurement result is pure. Contrast with Fig. 2.2.
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at the start and end of the timestep:

tan

(
θr (t+ ∆t)

2

)
= tan

(
θ (t)

2

)
tan

(
π/2 + rnε

2

)
. (2.23)

In the following section, Sec. 2.2.2, this seemingly non-linear equation is transformed

into a linear equation by a hyperbolic transformation of the circular angle θ, and is solved

exactly. Nonetheless, for the continuum-limit discussion in Sec. 2.2.3, consider the solution

of Eq. (2.23) in the limit of weak interactions, ε� 1, to order ε:

dθ (t) ≡ θ (t+ ∆t)− θ (t) ≈ εrnX (t) , (2.24)

where we have defined the Bloch angle increment, dθ (t), and X (t) is the X component

of the Bloch vector, X (t) = sin (θ (t)).

Interpretation and remarks. The system measurement dynamics are described in

entirety by Eqs. (2.20), (2.22), and (2.24). To make the discussion more concrete, consider

the particular case where the system and ancilla do not interact, ε = 0. The measurement

results are completely random, ℘r = 1
2
, uncorrelated with the system; similarly, the

system state is independent of the measurement results, rn; in fact, there is no state

evolution, dθ (t) = 0. Consider the more interesting case of weak interactions, ε � 1.

Measurement results are correlated with the Z component of the system Bloch vector,

℘r = 1
2

(1− εrnZ (t)), where Z (t) = cos (θ (t)). Nonetheless, due to ε � 1, the two

measurement results still occur with nearly equal probability, and the record consists of

random noise, but with a slight bias that correlates it with Z. Thus, the value of Z can be

obtained from the instantaneous average of the measurement results, E [rn] = −εZ. In

time, from the point of view of the observer, a long sequence of measurements gradually

results in the complete measurement of Z, obtained from the noisy measurement record.
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A peculiar feature of the weak interaction regime, ε� 1, is that amplitude of the noise is

essentially constant for all measurement strengths, its variance is Var [rn] = 1−(εZ)2 ≈ 1.

This origin of the randomness can be interpreted to be quantum in nature, since the system

and environment are in pure states at all times. Specifically, it is due to the incompatibility

(orthogonality) between the initial state of the ancilla, |+x〉n, and the eigenstates, |±y〉n,

of the measurement observable.

The random measurement result, rn, is correlated with a small “kick” on the state of

the system, described by Eq. (2.24). Conditioned on the result rn = 1 (resp., rn = −1)

the system experiences a downward (resp., upward) kick corresponding to the circular

increment dθ (t) = εrnsgn (X (t))
√

1− Z (t), whose magnitude is largest for Z = 0, but

vanishing in the limit where Z approaches ±1; the sign function is denoted sgn. This

state-dependent nature of the back-action kicks leads to the eventual projection of the

state onto one of the eigenstate of the system observable, σ̂z, as discussed in Sec. 2.2.2.

The form of the backaction depends on the ancilla quantity being measured by the ap-

paratus; for example, a measurement of a quadrature other than the ancilla Y quadrature

yields a different form of the measurement backaction. More generally, we emphasize that

no matter what ancilla quantity is measured, so long as the measurement is projective and

complete knowledge about the ancilla is obtained, the ancilla is collapsed onto a single

unique state. From this, it follows that the system cannot be entangled with the ancilla

and for this reason the system is left in a pure state.

Generalized measurements. By introducing an ancilla that interacts unitarily with the

system and is subsequently measured, we obtained evolution equations for the pure state

of the quantum system conditioned on the measurement result rn, and could otherwise

disregard the ancilla in the measurement description. The ancilla scheme realizes an

indirect measurement of the system, which gradually obtains information about the system
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and disturbs it in a manner that is indescribable with the von Neumann formulation,

summarized by Eqs. (2.13) and (2.14). The example of this section belongs to a more

general class of measurements, referred to as generalized measurements. A powerful

theorem by Neumark, see Sec. 9-6 of Ref. Peres (2002), proved that any generalized

measurement can be formulated essentially according to the scheme presented so far,

where an auxiliary quantum system is introduced, it interacts unitarily with the system,

and is subsequently projectively measured, in the traditional von Neumann sense. The

effect of the generalized measurement on the system can be completely described by

system operators, denoted M̂r, that are not in general Hermitian. For our example, the

measurement operator,11 M̂r, follows directly from Eq. (2.21),

M̂r (t) =
n

〈
y := r

∣∣∣Û (t, t+ ∆t)
∣∣∣+x

〉
n

(2.25)

Note that |+x〉n is the initial ancilla state for the n-th timestep, while |y := r〉n is the

final ancilla state, follwing the projective measurement, while Û is the composite system

propagator. Since M̂r in Eq. (2.25) is not Hermitian, it does not belong to the traditional

notion of an ’observable’, and the outcomes rn are not the eigenvalues of M̂r, but serve

merely as labels. The measurement operators M̂1 and M̂−1, which are non-orthogonal

(M̂1M̂−1 6= 0) link the system state with the set of measurement probabilities ℘r, and

formally, their operator set,
{
M̂ †

rM̂r : r
}
, constitutes a positive-operator-valued measure

(POVM) on the space of results, see Sec. 2.2.6 of Ref. Nielsen and Chuang (2010). In

general, the measurement operators generalize von Neumann’s postulate in the following
11The measurement operator is sometimes referred to as a Kraus operator.
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way:

℘r (t) =Tr
[
M̂rρM̂

†
r

]
, (2.26)

ρr (t+ ∆t) =M̂rρ (t) M̂ †
r/℘r (t) , (2.27)

where ℘r (t) is the probability to obtain the measurement outcome r and ρr (t+ ∆t) is the

state of the system immediately after the measurement, conditioned on the result r. Note

that technically, the generalized projection postulate does not introduce anything funda-

mentally new beyond von Neumann’s postulate, since it follows from Neumark’s theorem

that considering a larger quantum system with projective (von Neumann) measurements

and unitary operations is completely equivalent.

2.2.2 Geometric representation of a continuous measurement:

random walk on a hyperbola

In this subsection, we present a geometric representation of the measurement dynamics.

Section 2.1.3 presented the geometric representation of the qubit state as a point on

the Bloch sphere, with coordinates X, Y , and Z, or for a pure state, as a point on the

surface of the sphere, parameterized by the angles θ and φ, Eq. (2.11). For our qubit

example, Y = 0 by assumption, hence its pure state, |ψ〉S, can be represented on the

Bloch circle, see Fig. 2.5a, parametrized by a single12 circular angle θ: X = sin (θ) and

Z = cos (θ). This geometric representation is particularly well suited to describing unitary

operations, which describe rotations in Hilbert space. For concreteness, consider the state

evolution subject to the Rabi Hamiltonian ĤS = 1
2
~ωσ̂y, where, without assumptions on

the timestep, ∆t, the effect of the propagator U (t, t+ ∆t) = exp
(
−iĤS∆t/~

)
on the

12For simplicity, we have assumed that X > 0, which corresponds to the angle φ = 0. Recall that
since 0 ≤ θ ≤ π, the left half of the Bloch circle, X < 0, corresponds to angle φ = π.



2.2. Continuous quantum measurements: introduction to quantum trajectories and
stochastic calculus 42

state is given by the simple linear equation:

θ (t+ ∆t)− θ (t) = ω∆t . (2.28)

The complexity of Eq. (2.23) indicates that the circular representation is not well suited

to describe the evolution due to the measurement. Rather, we show that a natural

representation for measurement dynamics is a hyperbolic one.

Hyperbolic representation. We map the Bloch circle onto the standard hyperbola

according to the equation Z = cos (θ) = tanh ζ, where ζ is the hyperbolic angle, the

analogue of the circular angle θ, see Fig. 2.5a. In terms of the hyperbolic representation,

without any approximations, Eq. (2.23) is transformed into a simple linear equation,

analogous to that of Eq. (2.28),

ζr (t+ ∆t)− ζ (t) = −rnξ , (2.29)

where ζr (t+ ∆t) is the hyperbolic angle of the system after the measurement, conditioned

on the result rn, ζ (t) is the hyperbolic angle before the interaction with the ancilla, and ξ is

the hyperbolic increment, tanh (ξ) = sin (ε). In view of the Eq. (2.29), the measurement

backaction kicks are understood as hyperbolic rotations of a definite amplitude ξ, but

random orientation rn. By iterating the calculation of Eq. (2.29) N times, one can obtain

the stochastic path taken by the qubit state, its quantum trajectory, which, understood

in terms of the stochastic difference equation dζr (t) ≡ ζr (t+ ∆t) − ζ (t) = −rnξ, is a

random walk on a hyperbola.

The circular and hyperbolic coordinate transformations together with Eqs. (2.28)

and (2.29) can be employed to construct a finite-difference numerical scheme to cal-

culate the quantum trajectory of the qubit subject to homodyne monitoring. Notably,
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Figure 2.5 | Random walk on the measurement hyperbola. a, Circular and hy-
perbolic geometric representations of the pure qubit state, ρ, parametrized by the circular
and hyperbolic angles θ and ζ, respectively, obeying cos (θ) = tanh ζ. The circle depicts
a slice though the XZ plane of the Bloch sphere, which is well-suited to represent uni-
tary dynamics. The random walk of ζ due to the measurement takes place on the unit
hyperbola, with asymptotes defined by the lines Z = ±X. b, Histogram of quantum
trajectory densities obtained from simulations of the flying-spin model. All trajectories
(not shown here) begin with the initial state defined by the Bloch coordinates X (0) = 1
and Z (0) = 0. The time axis is scaled in units of the measurement rate, κ.

since the difference equations were derived without approximations, especially with regard

to the size of ∆t, they guarantee a physical system state for all parameters and at all time,

features which offer some practical advantages for numerical simulations. In the following

subsection, Sec. 2.2.3, we construct the continuum limit of the model and formally derive

the differential equations for the quantum trajectory of the qubit.

2.2.3 Continuum limit: Wiener noise and stochastic calculus

In this section, we take the appropriate limit in which the measurement becomes continu-

ous. In this limit, the interaction time, ∆t, becomes infinitely small while the measurement

strength, λ, becomes infinitely large. Since each short sequence of individual measure-

ments carries an infinitesimal amount of information in this limit, we coarse-grain the

measurement record in the following way. The evolution up to time t is divided in m
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intervals of total duration dt, while each of these intervals is further subdivided in l yet

smaller intervals, each of duration ∆t; i.e., t = n∆t = ml∆t and dt = l∆t. The inter-

action amplitude, λ, is chosen to be λ =
√
κ/∆t, where κ denotes the interaction rate.

Subject to appropriate scaling, by a factor
√

∆t, the sum of all measurement results up

to time t is the measurement signal Jt =
√

∆t
∑m

m′=0

∑l
l′=0 rm′l′ . During a time interval

dt, beginning at t = ml∆t and ending at t′ = (m+ 1) l∆t, the signal changes by

dJt = J(m+1)l∆t − Jml∆t =
√

∆t

(m+1)l∑

k=ml

rk . (2.30)

Equation (2.30) is known as a stochastic difference equation, because the difference in-

crement in the variable Jt is a random variable. Assuming the state of the system does

not appreciably change over the time interval dt, the measurement results, rk, are inde-

pendent and identically distributed binary random variables described by the probability

function ℘ [rk] = 1
2

(1− εrkZ (t)) , recall Eq. (2.20), where ε =
√
κ∆t. It follows that

the mean and variance of the measurement increment are

E [dJt] = l
√

∆tE [rk] = −√κZ (t) dt , (2.31)

Var [dJt] =l∆tVar [rk] ≈ dt , (2.32)

respectively, while, according to the central limit theorem, all higher-order cumulants of

the probability distribution for dJt vanish in the limit of large l. Working in this limit, and

employing Eqs. (2.31) and (2.32), the stochastic difference equation, Eq. (2.30), can be

taken to the continuum limit,13

dJ (t) = −√κZ (t) dt+ dW (t) , (2.33)

13For completeness, we note that Eq. (2.33) is a special case of Eq. (2.58).
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where the infinitesimal term dW (t) represents Gaussian white noise, and is known as the

Wiener increment. It obeys the following canonical relations and probability density:

E [dW (t)] = 0 , dW (t) dt = 0 , (2.34)

E
[
dW (t)2] = dt , ℘ (dW ) =

exp (−dW 2/(2dt))√
2πdt

. (2.35)

Stochastic calculus. Equation (2.33) is known as a stochastic differential equation

(SDE) because the infinitesimal differential is not completely determined, but is a random

variable. Notably, in obtaining this equation, we took the value of the function Z (t) at

the beginning of the timestep dt. In general, because the stochastic noise is not smooth

and not differentiable if we had taken the value of the function at the end of the time-

interval dt we would have obtained a different form of the SDE. By taking the value of the

function at the beginning of the timestep, the SDE we obtained is said to be in Itô form;

otherwise, it would have been in Stratonovich form. The two forms are not equivalent

in a straightforward manner, but for our purposes, it will suffice to only consider the Itô

form; see Chapter 3 of Ref. Jacobs (2010) for an in-depth discussion. From Eqs. (2.34)

and (2.35) it follows that the SDE solution only depends on terms proportional to dt, dW,

and dW 2, while all other terms of the form dtpdW q are vanishing. Importantly, in an

unusual departure from the rules of differential calculus, in the continuum limit, one can

set dW 2 = dt, a result known as Itô’s rule. We note that dW (t) is an idealized Gaussian

noise process in that it has a perfect delta function correlation in time, which implies its

Markovianity, but also that it has a white noise power spectral density, non-zero for all

frequencies.
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Itô SDE for the Bloch vector. In our example, the Bloch vector of the qubit can

be parameterized14 by its Z component, ~S (t) =

(√
1− Z (t)2, 0, Z (t)

)ᵀ

. Thus, it

suffices to derive an SDE for Z (t), which is obtained from the system state, |ψJ (t)〉,

conditioned on the measurement signal J (t) by taking the expectation value of σ̂z, Z (t) =

〈ψJ (t)|σ̂z|ψJ (t)〉. The SDE is derived by first Taylor expanding Z (t) = cos (θ (t)) to

first order in dt, dZ (t) ≈ −
√

1− Z (t)2dθ (t) − 1
2
Z (t) dθ (t)2, where we have retained

terms to second order in dθ (t). This is necessary because dθ (t), recalling Eq. (2.24), is

proportional to dW , and dW 2 = dt. By summing l times over the difference equation

and performing the same coarse graining employed to arrive at Eq. (2.33), we arrive at

the Itô form of the SDE for the Z component of the Bloch vector of a qubit subject to

heterodyne monitoring of σ̂z,

dZ (t) = −√κ
(
1− Z (t)2) dW (t) . (2.36)

Equation (2.36) is a non-linear diffusion equation with a state-dependent diffusion coef-

ficient, D (Z) = κ (1− Z2)
2, which is maximized for Z (t) = 0, but approaches zero for

Z = ±1. Mathematically, it is for this reason, that in the limit t→∞, the system tends

to one of the pointer states (Z = ±1) of the measurement, where diffusion vanishes, and

states cluster.

2.3 Quantum trajectory theory

The preceding sections introduced the general background required to develop quantum

trajectory theory. With the aid of specific examples, important overriding themes were

highlighted, which will carry us forward in this section, and play a key role in understanding
14For simplicity, we have assumed X (t) > 0 for all t.
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photon-counting, homodyne, and heterodyne measurements.

2.3.1 Photodetection

Photodetection is the minimal time-continuous measurement scheme — at each moment

in time, the detector records one of only two possible results: r = 0 (“no-click”) or r = 1

(“click”). As discussed in Sec. 2.2, the measurement result communicates some knowledge

about the system state and the unavoidable disturbance caused to it by the measurement

itself.15 The information gain as well as the action of the disturbance are encoded in the

measurement operators, M̂r, recall Eq. (2.25). These operators, also known as Kraus

operators, generalize unitary evolution due to a system Hamiltonian, Ĥ, so as to include

the effect of the measurement process. Microscopically, the measurement operators, M̂r,

can be understood to describe the unitary interaction between the system and another,

auxiliary one, which is subsequently measured by a von Neumann measurement apparatus,

see discussion on Neumark’s theorem in Sec. 2.2. In this section, we will only concern

ourselves with the system evolution subject to measurement, and will make no further

reference to the auxiliary system, other than to specify the system operator ĉ that couples

the two. The minimal set of infinitesimal measurement operators, which corresponding

to the no-click (r = 0) and click (r = 1) evolution, are

M̂0 (dt) = 1̂−
(

1

2
ĉ†ĉ+ iĤ

)
dt , (2.37)

M̂1 (dt) =
√
dtĉ , (2.38)

in units where ~ = 1. One can verify that M̂0 (dt) and M̂1 (dt) form a positive-operator-

valued measure (POVM) on the space of results. Hence, they form a resolution of the

15From an operational point of view, the state of the system is strictly speaking only our knowledge
about the probabilities for outcomes of future measurements of the system.
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identity, M̂ †
0 (dt) M̂0 (dt) + M̂ †

1 (dt) M̂1 (dt) = 1̂ + O (dt2), guaranteeing that the law

of total probability is satisfied, i.e., a measurement yields an outcome with probability 1.

The probability for a specific outcome, r = 0 or r = 1, is is given by the generalized

measurement postulate, Eq. (2.26), ℘r (dt) =
〈
M̂ †

r (dt) M̂r (dt)
〉
,

℘0 (dt) = 1− dt
〈
ĉ†ĉ
〉

+O
(
dt2
)
, (2.39)

℘1 (dt) = dt
〈
ĉ†ĉ
〉
. (2.40)

We define the time-continuous photodetection measurement record to be the number of

photodetections up to time t, denoted N (t). It follows that the infinitesimal measurement

increment, denoted dN (t), is a point-process, also known as the Poisson process, defined

by

dN (t)2 = dN (t) , (2.41)

E [dN (t)] = ℘1 (dt) , (2.42)

where E [·] denotes the expectation value in the classical sense, see Sec. 2.1.1. In the

continuum limit, the detector photocurrent, I (t) = dN (t) /dt, consists of a series of

Dirac δ-functions at the times of the clicks.

Stochastic master equation (SME) for ideal photodetection. Ideal photodetec-

tion is the limit where the photodetector collects the entirety of the system output field

and adds no technical noise, i.e., the quantum measurement efficiency is one, η = 1.

According to the generalized projection postulate, Eq. (2.27), the state of the system

after a measurement at time t conditioned on the measurement result r = 0 or r = 1 is

ρr (t+ dt) =
M̂r (dt) ρ (t) M̂ †

r (dt)

℘r (dt)
. (2.43)
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In the continuum limit, where the instantaneous measurement outcome is the photocur-

rent I (t) , the two possible states, ρ0 (t+ dt) and ρ1 (t+ dt), can be combined in a

single stochastic differential equation (SDE) for the posterior system state ρI (t+ dt)

conditioned on I (t), resulting in the state differential, in Itô form,

dρI (t) = ρI (t+ dt)− ρI (t) (2.44)

= dN (t)
(
ρ1 (t+ dt)− 1̂

)
+ (1− dN (t))

(
ρ0 (t+ dt)− 1̂

)
, (2.45)

which can be simplified by Taylor expanding the denominator of ρ0 (t+ dt), retaining

terms to order dt, and employing the stochastic calculus rule16

dN (t) dt = 0 (2.46)

in order to obtain the stochastic master equation (SME) for photodetection, in the

Schrödinger picture and in Itô form,

dρI (t) =
(

dN (t)G [ĉ] + dtH
[
Ĥeff

])
ρI (t) , (2.47)

where the superoperators G [ĉ] ρ and H [ĉ] ρ are defined by

G [ĉ] ρ ≡ ĉ†ρĉ

Tr [ĉ†ρĉ]
− ρ , (2.48)

H [ĉ] ρ ≡ĉρ+ ρĉ† − Tr
[
ĉρ+ ρĉ†

]
ρ (2.49)

= (ĉ− 〈ĉ〉) ρ+ ρ
(
ĉ† −

〈
ĉ†
〉)
, (2.50)

16Technically, dN (t) dt is not strictly zero. However, because the mean of dN is infinitesimal, dN (t)
is negligible when compared with dt, and so are all higher-order products containing both dN and dt.
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The superoperator G results in point-like discontinuous state evolution, while H results in

smooth, continuous, but non-unitary evolution generated by the effective non-Hermitian

Hamiltonian

Ĥeff ≡ Ĥ − i1
2
ĉ†ĉ . (2.51)

Notably, the trace terms in Eqs. (2.48) and (2.49) make the photodetection SME, Eq. (2.47),

nonlinear in the state density, ρI . The origin of the trace term inH, namely Tr
[
ĉρ+ ρĉ†

]
,

is the Taylor expansion of the denominator of Eq. (2.43), which gives the no-click prob-

ability, ℘0 (dt). As discussed in Sec. 2.2, the role of this term is to preserve the state

density trace for all time, Tr [ρI (t)] = 1. The solution of the SME is a stochastic path

taken by the conditional state over time, known as a quantum trajectory, a term coined

in Ref. Carmichael (1993).

Stochastic Schrödinger equation (SSE) for photodetection. For a system in a

pure state, ρI (t) = |ψI (t)〉 〈ψI (t)|, the SME, Eq. (2.47), preserves the purity of the

state for all times. It follows that the state evolution is described by a type of Schrödinger

equation, known as the stochastic Schrödinger equation (SSE),

d |ψI (t)〉 =

[
dt

(〈
ĉ†ĉ
〉

(t)

2
− ĉ†ĉ

2
− iĤ

)
+ dN (t)

(
ĉ√
〈ĉ†ĉ〉 (t)

− 1̂

)]
|ψI (t)〉 ,

(2.52)

which is nonlinear in the state |ψI (t)〉. The non-linear terms contain the expectation value
〈
ĉ†ĉ
〉

(t) = 1
2

〈
ψI (t)

∣∣ĉ†ĉ
∣∣ψI (t)

〉
, which gives the click probability ℘1, see Eq. (2.40). Be-

cause these non-linear terms render analytic treatment of the equations particularly difficult

in general, a linear description of the state evolution is desired, and can be accomplished

as described next. The term 1
2
dt
〈
ĉ†ĉ
〉

(t) |ψI (t)〉, which updates the observer’s state-

of-knowledge in a non-linear way, mathematically, ensures the proper normalization of

|ψI (t)〉 for all times; however, normalization need not be enforced for each infinitesimal
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timestep dt. Instead, it can “manually” be enforced for the no-click periods, I (t) = 0,

by first first solving for the un-normalized system state, denoted with a tilde,
∣∣∣ψ̃I=0 (t)

〉
,

then normalizing it, |ψI=0 (t)〉 =
∣∣∣ψ̃I=0 (t)

〉
/
〈
ψ̃I=0 (t)

∣∣∣ψ̃I=0 (t)
〉
, where the effective

Schrödinger equation for
∣∣∣ψ̃I=0 (t)

〉
is

i
d

dt

∣∣∣ψ̃I=0 (t)
〉

= Ĥeff

∣∣∣ψ̃I=0 (t)
〉
, (2.53)

where Ĥeff is the non-Hermitian Hamiltonian, Eq. (2.51). Since Eq. (2.53) is linear, it is

generally easier to solve for the time-dynamics. Calculation of system averages still requires

normalizing
∣∣∣ψ̃I=0 (t)

〉
by its the state norm,

〈
ψ̃I (t)

∣∣∣ψ̃I (t)
〉
, which gives the probability

of no-clicks occurring for duration t. We remark that Eq. (2.53) corresponds to tracking

the sub-ensemble of quantum trajectories that contain no clicks, or mathematically, to

the repetitive application of the measurement operator M̂0; hence, in general, in the limit

t→∞, it leads to the decay of the norm to zero.

Unconditioned evolution: master equation for photodetection. By averaging

over all possible evolutions due to all measurement outcomes at each instant, one can ob-

tain the unconditioned evolution of the quantum state, denoted ρ (t+ dt), from Eq. (2.47).

Simplifying the average, ρ (t+ dt) =
∑

r ℘rρr (t+ dt),

ρ (t+ dt) = M̂0 (dt) ρM̂ †
0 (dt) + M̂1 (dt) ρM̂ †

1 (dt) (2.54)

= ρ (t)− i
[
Ĥ, ρ (t)

]
dt+D [ĉ] ρ (t) dt , (2.55)

where the superoperator D is defined to be

D [ĉ] ρ ≡ ĉρĉ† − 1

2
{ĉ, ρ}+ . (2.56)
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Eq. (2.55) for the unconditioned state evolution is known as the master equation, in

Lindblad form (Lindblad, 1976).17 Unlike the SME, it is linear in the state density, ρ, and

yields deterministic state evolution, since there are no stochastic increments, dN or dW .

Notably, the master equation is very general and makes no reference to photodetection,

other than specifying the system operator ĉ subject to detection, although it does not

specify how. As will be evident from the following section, the same master equation is

obtained for heterodyne detection of ĉ, see Sec. 2.3.2. The two SMEs corresponding to

the same master equation are known as unravellings18 of it. We note that the unravellings

of the master equation are not unique.

Imperfect detection. Imperfect conditions limit the observer’s access to informa-

tion regarding the system and generally result in excess noise. The effect of imperfections

can be modeled by considering an ideal photodetector that is, however, sensitive to only a

fraction η of the system output field. This fraction, known as the quantum measurement

efficiency, is a real number between zero and one, 0 ≤ η ≤ 1. Because of the loss of

information due to imperfect detection, over time, the system state will, in general, be-

come mixed, with purity less than one, 0 ≤ Tr [ρ2] < 1. To account for the imperfections,

SME, Eq. (2.47), is be modified in the following way, see Sec. 4.8.1 of Ref. Wiseman and

Milburn (2010):

dρI (t) =

(
dN (t)G [

√
ηĉ] + dtH

[
−iĤ − η1

2
ĉ†ĉ

]
+ dt (1− η)D [ĉ]

)
ρI (t) , (2.57)

17For a comprehensive summary of the properties of the master equation and Lindbladians, see Refs. Al-
bert and Jiang (2014), Albert et al. (2016).

18The term ’unraveling’ was coined in Ref. Carmichael (1993).
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where the jump probability for each timestep is obtained by also replacing ĉ with
√
ηĉ in

Eq. (2.42), E [dN (t)] = ηTr
[
ĉ†ĉρ

]
dt. Considering the two limits η → 0 and η → 1,

one can associate the Lindblad superoperator D with information loss, and H and G with

information gain due to the measurement.

2.3.2 Homodyne and heterodyne detection

The measurements described so far are not sensitive to the phase of the system output

field, but only its amplitude. In the following, we describe dyne measurements, homodyne

or heterodyne, which provide information about the phase and a qualitatively different

(diffusive) trajectory unraveling.

Physical implementation. Dyne detection is realized by mixing the system output

signal with a local-oscillator (LO) tone, see Fig. 2.6. For a system carrier frequency,

conventionally termed the radio frequency (RF), ωRF and LO frequency ωLO, the lower

sideband of the mixed-signal is at intermediate frequency (IF), ωIF = ωLO − ωRF. In

homodyne detection, the LO is tuned in resonance with the system carrier, resulting in a

direct-current (DC) IF signal, ωIF = 0, proportional to a quadrate of the RF signal that

depends on the LO phase. The IF signal is typically sampled and digitally processed. On

the other hand, in heterodyne detection, the LO frequency is significantly detuned from

the RF, ωIF � 0, resulting in a an oscillatory IF signal, which is demodulated to extract

the information-bearing in-quadrature (I) and out-of-quadrature (Q) components. Note

that the heterodyne measurement record consists of a series of not one but two values,

I and Q. Heterodyne detection is equivalent to two concurrent homodyne detections with

LO phases 90◦ apart.

Homodyne measurement record. The homodyne measurement signal is mathemat-

ically described by a function, Jhom (t), that is real and continuous everywhere but differ-
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Figure 2.6 | Schematic representations of a (a) photo, (b) homodyne, and (c) het-
erodyne detection schemes. a, The system output field, proportional to the system
coupling operator ĉ, is directly monitored with a photodetector, whose photocurrent I (t)
is the measurement record. b, Optical balanced homodyne detection: system output
field, assumed with carrier frequency ωRF, is interfered on a 50:50 beam splitter with a
strong local oscillator (LO) tone at the carrier frequency, ωLO = ωRF. The measure-
ment record, Jhom (t), is obtained from the difference of the photodetector currents on
each output arm of the beamsplitter. c, Balanced heterodyne detection scheme (with
digital demodulation): LO frequency is detuned by an intermediate frequency value, ωIF,
where ωIF � ωRF, ωLO. The difference of the photodetector currents of each arm, which
oscillates at ωIF, is digitally demodulated to obtain the in-phase [out-of-phase] quadra-
ture ReJhet (t) [ImJhet (t)] by digitally mixing the signal with a reference one, cos (ωIFt)
[sin (ωIFt)], and low-pass filtering the output to reject tones above ωIF. Digital panel
schematic inspired by Ref. (Campagne-Ibarcq et al., 2016).
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entiable nowhere, see Sec. 2.2.3. The measurement signal gradually reveals information

about a system operator of the form ĉ+ ĉ†, where ĉ is the operator coupled to the mea-

surement apparatus, which for the example of Sec. 2.2.3 is ĉ = −
√
κ

2
σ̂z. In Itô form, the

measurement increment is

dJhom (t) =
〈
ĉ+ ĉ†

〉
(t) dt+ dW (t) , (2.58)

where dW (t) is the stochastic Wiener increment satisfying the canonical relations given

in Eqs. (2.34) and (2.35).

Heterodyne measurement record. The heterodyne measurement signal consists of

two functions: the in-phase, JI (t), and out-of-phase, JQ (t), quadrature functions, which

can be combined in a single complex function, Jhet (t) ≡ 1
2

(JI (t) + iJQ (t)), continuous

everywhere but differentiable nowhere. In heterodyne detection, Jhet (t) gradually reveals

information about a system operator ĉ, which need not be Hermitian but which can be

decomposed into the sum of two Hermitian operators, corresponding to two observables,

know as the quadrature operators,

Î ≡ ĉ+ ĉ† and Q̂ ≡ −i
(
ĉ− ĉ†

)
, (2.59)

so that ĉ = 1
2

(
Î + iQ̂

)
. The Itô form of the measurement increment is

dJhet (t) = 〈ĉ〉 (t) dt+ dZ (t) , (2.60)

where dZ ≡ 1√
2

(dWI (t) + idWQ (t)) is the complex Wiener increment, the sum of two

independent Wiener increments, dWI (t) and dWQ (t), that satisfy E [dWI (t) dWQ (t)] =

0, so that dZ (t)∗ dZ (t) = dt and dZ (t)2 = 0. We note that dZ is obtained by making
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the substitution eiωRFtdW → dZ in the heterodyne derivation.

For concreteness, consider the example of a qubit coupled to the environment where

an observer performs heterodyne detection of the qubit fluoresce (Campagne-Ibarcq et al.,

2014, 2016, Naghiloo et al., 2016). The system-environment coupling is given by the non-

Hermitian operator ĉ = σ̂− ≡ |+z〉 〈−z|, which is decomposed into the two Hermitian

quadrature operators Î = σ̂x and Q̂ = −σ̂y. Note the minus sign in Q̂. The heterodyne

detection of σ̂− can be understood as a homodyne detection of the observable Î and a

concurrent homodyne detection of the observable Q̂, each with efficiency η = 1/2, see

below. Consider the example where the qubit is replaced by a cavity, the coupling operator

is ĉ = â, where â is the annihilation operator, and the whose cavity output field is subject to

heterodyne monitoring, which reveals information about Î = â+ â† and Q̂ = −i
(
â− â†

)
.

For a coherent state in the cavity, |α (t)〉, the measurement record gradually reveals its

complex amplitude, E [dJhet (t) /dt] =
〈
α (t)

∣∣∣12
(
Î + îQ̂

)∣∣∣α (t)
〉

= α (t).

Measurement operators and the SME for perfect dyne detection. At an instant

in time, the noisy heterodyne record, Jhet (t), relates the measurement outcome to the

quantum trajectory evolution according to the action of the measurement operator (see

discussion on Pg. 40)

M̂J = 1̂− iĤdt− 1

2
ĉ†ĉdt+ J∗het (t) ĉdt . (2.61)

The measurement operator for homodyne detection, also denoted M̂J , is obtained by

making the substitution J∗het (t) → Jhom (t) in Eq. (2.61). Notably, the non-orthogonal

set of measurement operators for dyne detection,
{
M̂J : J

}
, is continuous, in contrast

with that of photodetection, which consists of two elements,
{
M̂0, M̂1

}
, since there are

only two possible measurement outcomes, click or no click. The system state conditioned

on the record at time t, denoted ρJ , is obtained by employing the generalized measurement
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postulate, Eq. (2.27),

ρJ (t+ dt) =
M̂JρJ (t) M̂ †

J

Tr
[
M̂JρJ (t) M̂ †

J

] . (2.62)

Equation (2.62) is simplified by Taylor expanding the denominator to order dt and writing

the infinitesimal state change, in Itô form, dρJ (t) = ρJ (t+ dt)− ρJ (t), thus obtaining

the SME for perfect heterodyne detection, in the Schrödinger picture,

dρJ (t) =
[
−idt[Ĥ, ·] + dtD[ĉ] + dZ∗ (t)H[ĉ]

]
ρJ (t) , (2.63)

where the superoperators D and H are defined in Eqs. (2.56) and (2.49), respectively.

Equation (2.63) has to be solved jointly with Eq. (2.60). The homodyne SME is obtained

by making the substitution dZ∗ (t)→ dW (t) in Eq. (2.63).

SME for imperfect measurements. Measurement imperfections (see discussion on

Pg. 2.57) are primarily due to: i) losses associated with the propagation of the system

output field to the measurement apparatus, characterized by a quantum efficiency ηprop,

and ii) finite detector efficiency, ηdet. The measurement chain efficiency is given by the

product of those of it sub-components, η = ηpropηdet, and is used to modify Eq. (2.60)

to account for imperfections by making the substitution ĉ→ √ηĉ,

dJhet (t) =
√
η 〈ĉ〉 (t) dt+ dZ (t) . (2.64)

Similarly, the homodyne measurement increment is dJhom (t) =
√
η
〈
ĉ+ ĉ†

〉
(t) dt +

dW (t). In Eq. (2.64), the effect of an efficiency less than one, η < 1, is to reduce

the measurement signal amplitude, 〈ĉ〉, relative to the noise, dZ, resulting in a degraded

signal-to-noise (SNR) ratio. In the extreme limit η → 0, the measurement is entirely noise,
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and the SNR is zero. Only in the limit η → 1, as discussed in Sec. 2.2, can the noise

be interpreted as entirely due to quantum vacuum fluctuations. The trajectory evolution

associated with the noisy signal, Jhet (t), is obtained by making the substitution ĉ→ √ηĉ

in the innovator, H, term of the heterodyne SME, Eq. (2.63), which is responsible for

the information gain due to the measurement, thus obtaining the SME for finite-efficiency

heterodyne detection,

dρJ (t) =
[
−idt[Ĥ, ·] + dtD[ĉ] + dZ∗ (t)H[

√
ηĉ]
]
ρJ (t) , (2.65)

which upon the the substitution dZ∗ (t)→ dW (t) becomes the SME for finite-efficiency

homodyne detection. Equations (2.65) and (2.64) have to be solved simultaneously.

Qualitative comparison of dyne- vs. photo- detection trajectories. In Sec. 2.3.1,

we considered the stochastic evolution of the conditional quantum state of a system sub-

ject to photodetection, a measurement scheme that results in one of two possible out-

comes, r = 0 and r = 1, at each moment in time. The state evolution was marked by

two qualitatively distinct possibilities: i) smooth, continuous, deterministic-like evolution

due to the non-Hermitian Hamiltonian Ĥeff , associated with r = 0, or ii) discontinuous,

point-like, jumpy evolution due to the action of the superoperator term G, associated with

the occasional outcome r = 1. Both the measurement record and the state evolution of

dyne detection are, in a sense, antithetic to those of dyne detection, which is charac-

terized by a (Gaussian-distributed) infinite continuum of possible measurement outcomes

and neither smooth nor jumpy state evolution. Rather, the evolution is diffusive (Gisin

and Percival, 1992), a consequence of the Gaussian-distributed measurement outcomes.

While in photodetection, a click could result in a substantial amount of information about

the system being acquired at an instant in time, such an event is not possible with dyne
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monitoring, where the noisy signal, J (t), only gradually reveals information about the

state of the system. It is only in this gradual sense that dyne measurements collapse the

system state to an eigenstate of the measurement operator, see discussion of Sec. 2.2.3.

2.4 Further reading

For further reading, we suggest the following books, and, where applicable, note sections

closely related to some of the topics discussed in more depth in this chapter:

• Carmichael (1993) & Carmichael (2008) — The formulation of quantum trajectory

theory is presented; key terms, such as ’unraveling’, are introduced. Section 17.2 of

Ref. Carmichael (2008) treats the example of a quantum bit subject to continuous

photodetection, comparing the state evolution in quantum measurement theory with

that of classical measurement theory.

• Gardiner and Zoller (2004) — Chapter 3 provides a useful derivation of input-output

theory by treating the one-dimensional transmission line. Focus on the Heisenberg

formulation of quantum measurements.

• Wiseman and Milburn (2010) — Classical measurement theory is introduced in

Chapter 2.

• Jacobs (2010) — Introduction to classical stochastic differential equations (SDE).

• Girvin (2014) — Chapter 3 discusses quantum measurements in the context of

circuit quantum electrodynamics (cQED), which is introduced in the remainder of

the notes.

• Steck (2017) —Lecture notes on quantum trajectories, SDE numerical methods,

and a number of related topics in quantum optics.



2.4. Further reading 60

We conclude this chapter with an amusing quote from H. Mabuchi:

“The quantum measurement problem refers to a set of people.”

[the set who have a problem with the theory of quantum measurements] (Fuchs, 2003).



3
Theoretical description of quantum

jumps

Photons, the quanta of light, are countable and discrete,
and one assumes they come and go in jumps. Einstein
proposed it so — though only as a pragmatic step ... Yet
the Schrödinger equation is deterministic and nothing
within its jurisdiction jumps. What then to make of this
unlikely marriage where the continuous is to somehow
cavort with the discrete.

H.J. Carmichael
New Zealand Science Review

Vol. 72 (2) 2015

T his chapter presents the quantum trajectory description of the Dehmelt electron-

shelving scheme and the catch-and-reverse circuit quantum electrodynamics (cQED)

experiment. Section 3.1 discusses quantum jumps in the three-level atom subject to flu-

orescence photodetection. The minimal idealized model with coherent Rabi drives is

considered in Section 3.1.1. To better conceptualize important aspects of the measure-

ment dynamics, Sec. 3.1.2 considers the simpler case of a three-level atom subject only

to measurement and no competing coherent dynamics; i.e., the Dark Rabi drive is zero,

61
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ΩDG = 0. The character of the unavoidable state-disturbance due to the back-action

of the measurement is examined in depth, and the notion of measurement-backaction

effective force and its geometrical representation are introduced. Section 3.1.3 continues

the description of quantum jumps and considers the flight of the jump in the presence of

an incoherent Bright drive and the conditional interruption of ΩDG (∆toff). Section 3.2

presents the trajectory description of the cQED experiment including all known imper-

fections. Section 3.2.2 discusses the Monte Carlo simulation of the linear Stochastic

Schrödinger equation (SSE), employed in the comparison between theoretical predictions

and experimental results, see Sec. 5.5.

3.1 Fluorescence monitored by photon counts

3.1.1 Dehmelt electron-shelving scheme and quantum jumps

As discussed in Chapter 1, the experiments with trapped ions (Nagourney et al., 1986,

Sauter et al., 1986, Bergquist et al., 1986) monitor intermittent fluorescence from the

bright state |B〉 to track jumps between |G〉 and |D〉 (Cook and Kimble, 1985). In the

simplest three-level scheme (Bergquist et al., 1986) and using coherent radiation to excite

both the BG and DG transitions, the master equation, Eq. (2.55), for the reduced density

operator ρ of the three-level system, written in the interaction picture, is

dρ

dt
(t) = (i~)−1[Ĥdrive, ρ (t)] + γBD [|G〉 〈B|] ρ (t) + γDD [|G〉 〈G|] ρ (t) , (3.1)

where D[ĉ]· = ĉ · ĉ†− 1
2
{ĉ†ĉ, ·} denotes the Lindblad superoperator, defined in Eq. (2.56),

γB and γD are radiative decay rates of the B and D level, respectively, and the drive
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Hamiltonian is

Ĥdrive = i~
ΩBG

2

(
|B〉 〈G| − |G〉 〈B|

)
+ i~

ΩDG

2

(
|D〉 〈G| − |G〉 〈D|

)
, (3.2)

with ΩBG and ΩDG the Rabi drives.

Quantum trajectory description. The quantum trajectory description (Carmichael,

1993, Dalibard et al., 1992, Dum et al., 1992) unravels ρ into an ensemble of pure states,

see Sec. 2.3.1, whose ket vectors evolve along stochastic paths conditioned on the clicks of

imaginary photon detectors that monitor fluorescence from |B〉 and, much less frequently,

from |D〉. Working in the limit of the omniscient observer, corresponding to unit quantum

measurement efficiency, η = 1, for both the B and D click records, denoted dNB (t) and

dND (t), respectively, see Eqs. (2.41) and (2.42), and corresponding to the quantum jump

operators ĉB =
√
γB |G〉 〈B| and ĉD =

√
γD |G〉 〈D|, respectively, the non-linear stochastic

Schrödinger equation (SSE) in Itô form, Eq. (2.52), is

d |ψI (t)〉 =dt
(
−iĤ +

γB

2
(〈|B〉 〈B|〉 (t)− |B〉 〈B|) +

γD

2
(〈|D〉 〈D|〉 (t)− |D〉 〈D|)

)
|ψI (t)〉

+ dNB (t)

(
|G〉 〈B|√
〈|B〉 〈B|〉 (t)

− 1̂

)
+ dND (t)

(
|G〉 〈D|√
〈|D〉 〈D|〉 (t)

− 1̂

)
.

(3.3)

The terms proportional to dNB (t) and dND (t) reset the ket vector to |G〉 with instanta-

neous probability γB 〈|B〉 〈B|〉 (t) dt and γD 〈|D〉 〈D|〉 (t) dt, respectively, and correspond

to the state-disturbance due to the detection of a click on the B and D detectors, re-

spectively. Otherwise, when no click is observed on either detector, the state follows a

deterministic evolution as a coherent superposition, governed by the terms proportional

to dt.
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Linear SSE and no-click evolution. To describe the conditional no-click evolution,

as discussed on Pg. 51, it is analytically favorable to work with the linear form of the

SSE, obtained by suppressing the expectation value terms in Eq. (3.3), and defining the

un-normalized quantum state,

∣∣∣ψ̃ (∆tcatch)
〉

= cG (∆tcatch) |G〉+ cB (∆tcatch) |B〉+ cD (∆tcatch) |D〉 , (3.4)

where ∆tcatch denotes the no-click duration. Immediately after a click, marked by ∆tcatch =

0, the state
∣∣∣ψ̃ (∆tcatch)

〉
is reset with the coefficients cG (∆tcatch) = 1 and cB (∆tcatch) =

cD (∆tcatch) = 0. Conditioned on no clicks, the evolution of the un-normalized state is

governed by the effective non-Hermitian Hamiltonian, see Eq. (2.51),

Ĥeff = Ĥdrive − i~
γB

2
|B〉 〈B| − i~γD

2
|D〉 〈D| , (3.5)

and the Schrödinger-type equation

i~
d
∣∣∣ψ̃ (∆tcatch)

〉

d∆tcatch

= Ĥeff

∣∣∣ψ̃ (∆tcatch)
〉
. (3.6)

Due to the purely imaginary-valued terms in Ĥeff , the norm of the state
∣∣∣ψ̃ (∆tcatch)

〉

decays as a function of ∆tcatch and gives the probability that the no-click evolution has

continued without click interruptions for duration ∆tcatch. In the limit ∆tcatch → 0, the

norm of the ket approaches zero. The evolution of the state can be described by a matrix

equation for the state coefficients, using Eqs. (3.4), (3.5), and (3.6),

d

d∆tcatch




cG

cB

cD




=
1

2




0 −ΩBG −ΩDG

ΩBG −γB 0

ΩDG 0 −γD







cG

cB

cD



. (3.7)
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In general this 3×3 system does not have a closed solution in simple form, although there

is a particularly simple solution under conditions that produce intermittent fluorescence,

i.e., rare jumps from |G〉 to |D〉 [“shelving” in the dark state (Nagourney et al., 1986)]

interspersed as intervals of fluorescence “off” in a background of fluorescence “on”. The

conditions follow naturally if |D〉 is a metastable state (Nagourney et al., 1986, Sauter

et al., 1986, Bergquist et al., 1986) whose lifetime γ−1
D is extremely long on the scale

of the mean time, τBG = (Ω2
BG/2γB)−1, between photon detector clicks for a weak ΩBG

Rabi drive. Subject to (ΩDG, γD) � Ω2
BG/2γB � γB, one way to solve Eq. (3.7) is to

first adiabatically eliminate the fast time dynamics of the B level, by setting the time

derivative of the B coefficient to zero,

dcB

d∆tcatch

= 0 , (3.8)

Solving Eq. (3.8), cB = ΩBG

γB
cG, allows one to eliminate the B level from the description

of the dynamics and to extract the effective GD dynamics, to obtain the un-normalized

state conditioned on the detection of no clicks,

∣∣∣ψ̃ (∆tcatch)
〉

= exp

(
−Ω2

BG

2γB

∆tcatch

)(
|G〉+

ΩBG

γB

|B〉
)

+

[
exp

(
−γD

2
∆tcatch

)
− exp

(
−Ω2

BG

2γB

∆tcatch

)]
γBΩD

Ω2
BG

|D〉 . (3.9)

Note that
∣∣∣ψ̃ (∆tcatch)

〉
has purely real coefficients, since Ĥeff has purely imaginary ones.

The Bloch vector components of the normalized GD manifold evolution conditioned on
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no-clicks are obtained by normalizing the state, Eq. (3.9),

ZGD(∆tcatch) =
WDG(∆tcatch)−W−1

DG(∆tcatch)

WDG(∆tcatch) +W−1
DG(∆tcatch)

, (3.10)

XGD(∆tcatch) =
2

WDG(∆tcatch) +W−1
DG(∆tcatch)

, (3.11)

YGD(∆tcatch) = 0, (3.12)

where we have defined the ratio (Porrati and Putterman, 1987)

WDG(∆tcatch) ≡ cD(∆tcatch)

cG(∆tcatch)
. (3.13)

Notably, as an alternative to the adiabatic method employed to solve Eq. (3.7), one can

instead directly write down the equation of motion for WDG within the same approxima-

tions,
dWDG

d∆tcatch

=
Ω2

BG

2γB

WDG +
ΩDG

2
, (3.14)

which, with the initial condition WDG(0) = 0, has the solution

WDG(∆tcatch) =
ΩDG

Ω2
BG/γB

[
exp

(
Ω2

BG

2γB

∆tcatch

)
− 1

]
, (3.15)

and also yields the Bloch components, Eqs. (3.10), (3.11), and (3.12). The timescale of

the transition, the mid-flight time of the quantum jump, ∆tmid, is found by setting the G

and D coefficients equal to each other, cG (∆tmid) = cD (∆tmid) ,

∆tmid =

(
Ω2

BG

2γB

)−1

ln

(
Ω2

BG/γB

ΩDG

+ 1

)
. (3.16)

For strong monitoring, Ω2
BGγ

−1
B � ΩDG, the +1 in Eq. (3.16) can be dropped. Working

in this limit, Eqs. (3.10)–(3.12) provide simple formulas for the continuous, deterministic,
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and coherent evolution of the completed quantum jump:

ZGD(∆tcatch) = tanh

[
Ω2

BG

2γB
(∆tcatch −∆tmid)

]
, (3.17)

XGD(∆tcatch) = sech

[
Ω2

BG

2γB
(∆tcatch −∆tmid)

]
, (3.18)

YGD(∆tcatch) = 0. (3.19)

These formulas, derived in the strong-monitoring limit, execute a perfect jump, ZGD(∞) =

1, XGD(∞) = YGD(∞) = 0. Departures from the ideal limit can be transparently

analyzed by adopting an incoherent Bright drive, see Sec. 3.1.3.

Remarks on the state evolution. The evolution of the GD manifold Bloch vector

(XGD (∆tcatch) , YGD (∆tcatch) , ZGD (∆tcatch)) conditioned on no clicks, dN (∆tcatch) =

0, for duration ∆tcatch, is plotted in Fig. 3.1a. The partial tomogram visually shows that

the predicted evolution of the quantum jump from |G〉 to |D〉 is continuous and coherent,

X2
GD + Y 2

GD + Z2
GD = 1 for all no-click times, ∆tcatch. The measurement record, dN ,

and the predicted trajectory is identical for any two jumps from |G〉 to |D〉. The time

axis has been scaled in units of the mean time, τBG = (Ω2
BG/2γB)−1, between photon

detector clicks. This time can also be understood as the inverse of the information-gain

rate of the measurement about the G level. To expand on this, for definitiveness, consider

the situation where the atom is initialized in |G〉, but this information is not shared with

the observer operating the photon detector. By measurement, how long does it take the

observer to statistically deduce that the atom is in |G〉 or not? The measurement drive

ΩBG is actuated and the observer monitors the detector for clicks. If the atom is in |G〉 ,

on average, the detector records a click after time τBG, and informs the observer that

the atom is definitively in |G〉. Alternatively, if the atom was initialized in |D〉 , no clicks

would be recorded. As the detector does not record a click for durations longer than τBG,
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Figure 3.1 | Conditional no-click evolution of the jump from |G〉 to |D〉: ideal
photodetection theory. a, A typical quantum trajectory for a jump from |G〉 to
|D〉 represented as the GD Bloch vector (XGD, YGD, ZGD), conditioned on no clicks,
dN (t) = 0, for duration ∆tcatch. The Rabi drives are ΩDG = 10−5 and ΩBG = 0.1
in units of the decay rate γB. Time axis is scaled in units of the mean time between
detector clicks, τBG = (Ω2

BG/2γB)−1. Time scale of the jump flight is the mid-flight time
∆tmid, defined by ZGD = 0. b, Log plot of the norm of the un-normalized no-click state,〈
ψ̃ (∆tcatch)

∣∣∣ψ̃ (∆tcatch)
〉
, as a function of ∆tcatch, in units of τBG. Parameters of the

plot correspond to those of panel a.
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the observer becomes increasingly confident that the atom could not be in |G〉 since it

becomes exponentially unlikely that a click has not yet been observed, see Fig. 3.1b, and

the alternative conclusion, that the atom is in |D〉, becomes increasingly likely. Although

this information-gain consideration is carried out from the point of view of the observer,

and with classical measurements would bear no consequence for the objective state of the

system, with quantum measurements the gain of information about the system by virtue of

a measurement is necessarily accompanied by a result-correlated state-disturbance (back-

action). In Hilbert space, the disturbance can be viewed as a measurement-backaction

effective force, as discussed in the following subsection, Sec. 3.1.2.

Probability of no-click record. Fig. 3.1b shows a plot of the conditional no-click

state norm, 〈ψ (∆tcatch)|ψ (∆tcatch)〉, as a function of the no-click duration, ∆tcatch. The

norm initially decays exponentially with a time-constant τBG, during which time, the atom

remains essentially in |G〉, as indicated by the ZGD Bloch component in panel a, which is

roughly equal to −1. However, as the no-click duration approaches mid-flight time of the

jump, ∆tcatch ≈ ∆tmid, the decay of the norm slows down dramatically, since the atom

transitions from |G〉 to |D〉, in which state one can stop expecting the rapid occurrence

of clicks. The quantum jump from |G〉 to |D〉 can be observed in the tomogram shown

in panel (a). For no-click duration ∆tcatch � ∆tmid, the decay of the norm initially

appears flat, however, on longer time-scales (not shown) it is seen that it also follows an

exponential decay law with a much longer time constant, τDG � τBG, corresponding to

the waiting-time for the jump back down, from |D〉 to |G〉.
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3.1.2 Measurement-backaction effective force in the absence

of the Dark Rabi drive

While in Sec. 3.1.1 we considered the coherent dynamics of the three-level atom in the

presence of both unitary evolution, due to the Rabi drive ΩDG, and the competing non-

unitary state collapse, due to the measurement, in this subsection, we examine the simpler

case where only measurement dynamics are at play, i.e., ΩDG = 0. In this simpler situation,

some important features of the measurement, consisting of the Rabi drive ΩBG and the

monitoring of the B level at the rate γB, are more easily discussed. In particular, we pay

attention to the notion of a measurement-backaction effective force, the special force that

unavoidably disturbs of the quantum state due to the measurement.

For definitiveness, consider the situation where the three-level atom is prepared in an

initial superposition involving the G and D levels, |ψ (0)〉 = N (|G〉+ ε |D〉), where ε� 1

and N is the ket normalization factor; for simplicity, assume |D〉 is completely decoupled

form the environment, γD = 0. To measure the atom, only the Rabi drive ΩBG is turned

on. One of two qualitatively distinct measurement records is observed: either clicks are

recorded indefinitely or no clicks are ever recorded, which can qualitatively be understood

in view of the following considerations. When the BG drive is first turned on, some of

the initial population from the G level is transferred to the B level due to the steering

force of ΩBG. However, even as a tiny amount of population is deposited in |B〉, the

strong coupling with the environment and the photodetector dampens the transfer and

quickly yields the detection of a click, with probability ℘1 (dt) =
〈
ĉ†BĉB

〉
(t) dt, where

ĉB =
√
γB |G〉 〈B| is the jump operator. The click resets the atom to the ground state,

|G〉. Once the atom is completely in |G〉, the amplitude of |D〉 is zero, and since ΩDG = 0,

the atom can never transition to |D〉 subsequently. The remainder of the history proceeds

as described above, the atom remains predominantly in |G〉 and continues to fluoresce
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though the partial excitation and subsequent relaxation of |B〉, by means of ΩBG and

the detection, γB, respectively. In this way, the Dehmelt electron scheme implements

a measurement with result |G〉, occurring with an approximate probability 1 − ε2. The

alternative set of trajectories, where no clicks are observed is quantitatively analyzed in

the following, and occur with approximate probability ε2.

No-click trajectory. The normalized state of the three-level atom conditioned on no-

clicks, 1

|ψI=0 (t)〉 = CG (t) |G〉+ CB (t) |B〉+ CD (t) |D〉 , (3.20)

evolves according to the non-linear Schrödinger equation, see Eq. (3.9),

d

dt
|ψI=0 (t)〉 =

(
−iĤ − 1

2
ĉ†BĉB +

1

2

〈
ĉ†BĉB

〉
(t)

)
|ψI=0 (t)〉 , (3.21)

which in terms of the normalized state coefficients (CG, CB, and CD) yields the set of

coupled non-linear equations,

d

dt
CB (t) =

1

2
γBCB (t)3 +

1

2
ΩBGCG (t)− 1

2
γBCB (t) , (3.22)

d

dt
CG (t) =

1

2
γBCB (t)2CG (t)− 1

2
ΩBGCB (t) , (3.23)

d

dt
CD (t) =

1

2
γBCB (t)2CD (t) , (3.24)

The measurement terms in Eqs. (3.22)-(3.24) associated with information gain are the

non-linear ones. As discussed in Sec. 2.3, they originate from the normalization term in

the conditional state update and give rise to non-unitary state dynamics, resulting in a

drastic departure from the usual Schrödinger equation. To analyze their effect and gain

some physical intuition, we introduce a graphical representation of the Hilbert space of
1Notationally, we employ capital letters for the coefficients of the normalized sate, and lower-case

letters for those of the un-normalized state.
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the three-level atom.

R-qutrit sphere representation. It follows from the real coefficients of Eqs. (3.22)-

(3.24) and the initial conditions that CG, CB, and CD are constrained to be real. Hence a

pure state of the atom admits a geometrical representation as a point on the unit sphere

defined by the state norm condition C2
B + C2

G + C2
D = 1, see Fig. 3.2. We nickname

this representation the ’R-qutrit sphere’. Unlike the Bloch sphere representation where

orthogonal state vectors are represented by antiparallel vectors, in the R-qutrit sphere

representation, orthogonal state vectors are actually represented by orthogonal vectors,

extending from the origin to the surface of the sphere. Notably, the sphere contains states

of the two-level sub-manifolds that are not represented on the Bloch sphere, those with

a “global phase.”2 The addition of the third level allows, in general, the observation of

the global phase because it can be measured relative to the phase of the third level. Con-

sequently, a Rabi rotation between two levels is no longer 2π periodic but 4π periodic.

Unitary evolution is represented by rotations on the sphere; for instance, the evolution

due to the Bright Rabi drive, ΩBG, is a rotation about the D axis, and the correspond-

ing infinitesimal-state-change vector field, d |ψ〉 (ΩBG) = 1
2

(CG |B〉 − CB |G〉) ΩBGdt, is

plotted on the surface of the sphere in Fig. 3.2. Note that the length of the vectors is

largest at the GB equator and approaches zero toward the D poles. The vector field repre-

sentation is useful in the analysis of the non-linear measurement-backaction effective force

due to the renormalization terms and we hope can provide a more intuitive understanding

of the interplay between the coherent Rabi and the stochastic measurement dynamics.

Before elaborating on the geometrical representation of the measurement dynamics, it is

useful to first algebraically solve Eqs. (3.22)-(3.24).

2The special unitary Lie group SU(2) is not isomorphic to the special orthogonal Lie group SO(3),
but is a double cover of it.
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DC〉ψ|
)BG(Ω〉ψ|d

Figure 3.2 | Geometrical representation of a qutrit state with real coefficients:
R-qutrit sphere. Geometric representation of the Hilbert space of pure states of a qutrit,
|ψ〉 = CB |B〉+CG |G〉+CD |D〉, with real-valued coefficients, notably isomorphic to the
special orthogonal group SO (3). Overlaid vector field represents the infinitesimal state
change, d |ψ〉, due to the Rabi drive ΩBG.

Measurement-backaction force steers atom towards |D〉. Although there is no

Rabi drive or measurement directly applied to the Dark level, conditioned on not detecting

a click, according to Eq. (3.24), a force is nonetheless exerted by the B-level monitoring

that steers the atom toward the Dark level. Specifically, the rate of change of the D

level amplitude, d
dt
CD, is given by an anti-damping term with a state-dependent rate

proportional to the B level population, CB (t)2, and measurement rate, γB. Solving

Eq. (3.24), one finds

CD (t) = CD (0) exp

(∫ t

0

dt′
1

2
γBCB (t)2

)
. (3.25)

In this sense, the renormalization of the conditional state amounts to a (non-unitary)

measurement-backaction force on |D〉, which is linked to the population of |B〉 . To ex-
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plicitly solve Eq. (3.25), we need to solve the remaining equations, Eqs. (3.22) and (3.23).

Adiabatic elimination of the Bright state dynamics. Because Eq. (3.22) is non-

linear, we consider the B level dynamics and their adiabatic elimination with greater care.

Eq. (3.22), contains both a damping, −1
2
γBCB, and an anti-damping, 1

2
γBCB

3, term.

These cancel out perfectly only if the atom is either entirely in |B〉, CB = ±1, or not

at all in |B〉, CB = 0; otherwise, |CB| < 1, the damping dominates, steering CB in

the direction of zero. In the extreme case, where ΩBG = 0, one can explicitly solve the

B level dynamics, CB (t)2 =
[
1 +

(
CB (0)−2 − 1

)
exp (γBt)

]−1
, which for small initial

populations, CB (0)2 � 1 rapidly decays to a stable zero equilibrium at a rate 1
2
γB,

CB (t) ≈ CB (0) exp
(
−1

2
γBt
)
. Since γB is the fastest timescale in the problem and the

B dynamics are convergent, we can adiabatically eliminate CB by setting d
dt
CB (t) = 0;

solving the cubic equation, one finds three solution branches,

C̄B (t) =





−1− ΩBG

2γB
CG (t) +O

(
(ΩBG/γB)2)

1− ΩBG

2γB
CG (t) +O

(
(ΩBG/γB)2)

ΩBG

γB
CG (t) +O

(
(ΩBG/γB)3) .

(3.26)

Operating the three-level atom in the limit where the |B〉 level is never appreciably popu-

lated, we employ the third solution branch, C̄B (t) = ΩBG

γB
CG (t), in Eq. (3.23) to find the

effective equation of motion for the G level dynamics,

d

dt
CG (t) = −τ−1

BG

[
1− CG (t)2]CG (t) , (3.27)

which are now completely decoupled from the other levels. In Eq. (3.27), we identify a

damping and an anti-damping term with a constant and G-population dependent, C2
G,

rate, respectively. The scale of both terms is given by the parameter τ−1
BG = Ω2

BG/2γB,
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Figure 3.3 | Adiabatic solution for the no-click GD manifold trajectory of a
superposition state measured with ΩDG = 0. Adiabatic-approximation (solid lines)
and numerical (dashed lines) solution for the partial tomogram of the GD manifold of the
no-click quantum trajectory of an initial superposition state |ψ (0)〉 = N (|G〉+ ε |D〉),
where ε = 0.1 and N = (1 + ε2)

−1/2. The Bright Rabi drive is ΩBG = 0.1, in units of
the decay rate γB. Time axis scaled in units of τBG = (Ω2

BG/γBG)
−1
.

which is the expected rate of clicks when the atom is in |G〉. By eliminating the B level,

we have obtained an explicit relation for the effective monitoring of the G level, which

occurs at a rate τ−1
BG, which can also be interpreted as the quantum Zeno rate (Misra and

Sudarshan, 1977, Gambetta et al., 2008, Matsuzaki et al., 2010, Vijay et al., 2011, Slichter

et al., 2016, Harrington et al., 2017, Hacohen-Gourgy et al., 2018). The numerator Ω2
BG

is proportional to the population transfer rate from |G〉 to |B〉 while the denominator

γB gives the rate of projection from |B〉 to |G〉. Solving Eq. (3.27) and substituting its

solution in Eq. (3.25), one finds

CG (t)2 =
pG

pG + (1− pG) e2t/τBG
, (3.28)

CD (t)2 =
pDe

t/τBG

pD + (1− pD) e2t/τBG
, (3.29)
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where pG ≡ CG (0)2 and pD ≡ CD (0)2 are the initial conditions. Note, for pD = 0, the

above solution for CD is always zero. The evolution of the GD Bloch vector conditioned

on no clicks for the initial state |ψ (0)〉 = N (|G〉+ ε |D〉) is obtained by substituting

Eq. (3.28) and (3.29) in Eqs. (3.10)-(3.12),

ZGD(t) = tanh [t/τBG + arctanh [ZGD(0)]] , (3.30)

XGD(t) = sech [t/τBG + arctanh [ZGD(0)]] , (3.31)

YGD(t) = 0. (3.32)

We note that a few results of this subsection, especially Eqs. (3.30)-(3.32), bear resem-

blance to results from Sec. 3.1.1, yet we stress that the two situations are fundamentally

distinct, and the resemblance must be considered with care. For instance, we note that

the mid-flight time ∆tmid cannot be recovered from the simpler situation considered here,

where no quantum jumps occur and there is no competition between unitary dynamics

due to ΩDG and the measurement.

In Fig. 3.3a, we plot the adiabatic-approximation solution to the non-linear Schrödinger

evolution, Eq. (3.21), for the GD manifold Bloch vector conditioned on no clicks, Eqs. (3.30)-

(3.32), obtained in the limit ΩBG � γB. Overlaid (dashed lines) is the corresponding

numerically calculated solution to Eq. (3.21). Even for modest separation of timescales,

ΩBG/γB = 0.1 in the plot, the two solutions appear nearly indistinguishable. The initial

atom state, ε = 0.1, is gradually projected to |D〉 on a timescale given by τBG and evolves

in a characteristically non-unitary manner. Notably, the state remains pure at all times,

and in the limit t � τBG remains essentially in |D〉, indefinitely. Importantly, for times t

on the other of τBG, the projection can (but need not) be interrupted by the detection of

a click, which would project the state to |G〉, and occurs with total probability ≈ 1− ε2.
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Figure 3.4 | Geometrical representation of the no-click measurement-
backaction force for ΩBG = 0. Shown are two projections of R-qutrit sphere overlaid
with the measurement-force vector field, d
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|ψI=0〉, due to the monitoring of the B level
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Hilbert space representation of the measurement dynamics. It is useful to con-

sider a geometric representation of the measurement dynamics and in particular of the

non-linear measurement-backaction force. For simplicity, first consider the measurement

force due only to the monitoring of the B level, in the absence of the Bright Rabi drive,

ΩBG = 0. This force can be represented as a vector field on the surface of the R-qutrit

sphere, see Fig. 3.4. The vector field is calculated from Eqs. (3.30)-(3.32) for the change

in the state conditioned on detecting no clicks,

d

dt
|ψI=0〉 =

1

2
γBCB

2




CB − 1

CG

CD



. (3.33)

The colormap in Fig. 3.4 depicts the relative magnitude of the change, Norm
[

d
dt
|ψI=0〉

]
,

which we note is only zero in two special cases: i) when the atom is ± |B〉, corresponding

to the points (±1, 0, 0) , and ii) when the atom is in a state involving exclusively |G〉 and

|D〉 but not |B〉. The latter is special in that it corresponds to an entire manifold of states,

the GD equatorial circle, which can be visually recognized in Fig. 3.4 as the dark vertical

stripe at the center of the left panel and the dark circular perimeter of the disk in the

right panel. All other states, not covered under the latter two cases, are superpositions

involving |B〉. From the vector field plot, it is evident that these states are guided by the

force away from the |B〉 poles and toward the GD equator. It is precisely this feature of

the measurement force that results in the gradual projection of the state conditioned on

no clicks — it is the unavoidable disturbance of the atom due to the information-gain of

the no-click measurement outcomes, which lead the observer to gradually learn that the

atom is not in |D〉, thus resulting in the increased likelihood that it is in |G〉 or |D〉. This

dynamics embody the message of the Chapter 2 epigraph, “In quantum physics you don’t
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Figure 3.5 | Geometrical representation of the measurement-backaction force
and a no-click trajectory with ΩBG = 0.1γB. Two projections of the R-qutrit sphere
overlaid with the measurement-force vector field d
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|ψI=0〉 (blue arrows) and the path of

the quantum trajectory from Fig. (3.3) (red arrows), depicting the gradual projection of
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see what you get, you get what you see.”

In Fig. 3.5, we plot the measurement vector field in the presence of the Bright Rabi

drive ΩBG,

d

dt
|ψI=0〉 =

1

2
γBCB

2




CB − 1

CG

CD




+
1

2
ΩBG




CG

−CB

0



, (3.34)

with ΩBG = 0.1γB. The Bright Rabi drive, visually represented on the R-qutrit sphere in

Fig. 3.2, perturbs the measurement field, shown in Fig. 3.4, by linking the B and G levels

and lifting the degeneracy of the measurement, represented in GD equator. Visually, this is

evident in the tilt of the vertical dark stripe in the center of the left-panel colormap. In the
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right panel, it is also evident that |B〉 is no longer an equilibrium point; the equilibrium has

been shifted in the direction of |G〉 by an amount proportional ΩBG/γB, see Eq. (3.26),

and made metastable. The red arrows depict the path of the quantum trajectory in Hilbert

of the gradual projection of an initial superposition state of |G〉 and |D〉, for the same

parameters as employed in Fig. (3.3), where ε = 0.1. Initially, the state is quickly steered

in the direction of |B〉 by the force of ΩBG. However, as the state moves in the direction of

|B〉, the motion is quickly opposed by the no-click measurement-backaction force, which

grows larger in amplitude in this direction. The two forces do not precisely cancel each

other out, because of the slight mismatch in angles. The net force, albeit small, steers

the atom towards the GD equator and with a slight tilt toward |D〉. The opposition of the

ΩBG drive and the measurement back-action “trap” the state in the ridge where the two

forces nearly cancel each other out, the nearly vertical dark stripe in the left panel, and

the small angular mismatch slowly carries the state in the direction of |D〉, an equilibirum

point, where all forces are zero.

3.1.3 Incoherent Bright drive and Dark drive off

In this section, we consider the case of quantum jumps in the three-level atom subject to

photodetection and an incoherent Bright drive, rather than a Rabi one, see Sec. 3.1.1. The

situation analyzed in this section is somewhat more analogous to the cQED experiment

where the Bright Rabi drive consists of a bi-chromatic tone that unconditionally addresses

the BG transition, independent of the population of the readout cavity, necessitated by

the dispersive pull of the readout cavity on the BG frequency. The bi-chromatic drive

effectively acts as an incoherent drive. The incoherent Bright drive photodetection theory

presented here sheds some further light on the dynamics of the quantum jump from |G〉

to |D〉. Features such as the non-zero coherence, XGD, and in the limit ∆tcatch � ∆tmid
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are discussed.3

Replacing the coherent Rabi drive ΩBG by an incoherent drive ΓBG in the master

equation of the three-level atom in the interaction picture, Eq. (3.1) becomes

dρ

dt
= (i~)−1[Ĥdrive, ρ] + ΓBGD [|B〉 〈G|] ρ+ (γB + ΓBG)D [|G〉 〈B|] ρ+ γDD [|G〉 〈D|] ρ,

(3.35)

and Eq. (3.5) becomes

Ĥdrive = i~
ΩDG

2

(
|D〉 〈G| − |G〉 〈D|

)
. (3.36)

The strong-monitoring assumption, τ−1
BG � γB, is also carried over from Sec. 3.1.1 by

assuming ΓBG � γB, i.e., the time between clicks in fluorescence is essentially the same

as the time separating photon absorptions from the incoherent drive, as absorption is

rapidly followed by fluorescence (γB + ΓBG � ΓBG). This brings a useful simplification,

since, following each reset to |G〉, the unnormalized state evolves in the GD-subspace,

i~
d
∣∣∣ψ̃
〉

d∆tcatch

=

(
Ĥdrive − i~

ΓBG

2
|G〉 〈G| − i~γD

2
|D〉 〈D|

) ∣∣∣ψ̃
〉
, (3.37)

thus replacing Eqs. (3.7) and (3.14) by the simpler 2× 2 system

d

d∆tcatch



cG

cD


 =

1

2



−ΓBG −ΩDG

ΩDG −γD






cG

cD


 , (3.38)

and, in the limit γD � ΓBG, the equation of motion for WDG, defined in Eq. (3.13), is

dWDG

d∆tcatch

=
ΓBG

2
WDG +

ΩDG

2
(1 +W 2

DG), (3.39)

3The following derivation is due to H.J. Carmichael and R. Gutierrez-Jauregui.
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with solution, for WDG(0) = 0,

WDG(∆tcatch) =
exp [(V − V −1)ΩDG∆tcatch/2]− 1

V − V −1 exp [(V − V −1)ΩDG∆tcatch/2]
, (3.40)

where

V =
1

2

ΓBG

ΩDG

+

√
1

4

(
ΓBG

ΩDG

)2

− 1. (3.41)

Inversion of the condition WDG(∆tmid) = 1 gives the characteristic time scale

∆tmid = 2
[
(V − V −1)ΩDG

]−1
ln

(
V + 1

V −1 + 1

)
. (3.42)

Although Eqs. (3.40) and (3.42) replace Eqs. (3.15) and (3.16), under strong monitoring,

ΓBG � ΩDG, they revert to the latter with the substitution Ω2
BG/2γB → ΓBG/2,; in

this way, Eqs. (3.10)–(3.12) are recovered with the same substitution. More generally,

WDG(∆tcatch) goes to infinity at finite ∆tcatch, changes sign, and returns from infinity

to settle on the steady value WDG(∞) = −V . The singular behavior marks a trajectory

passing through the north pole of Bloch sphere. It yields the long-time solution

ZGD(∞) =

√
1− 4

(
ΩDG

ΓBG

)2

, XGD(∞) = −2
ΩDG

ΓBG

, YGD(∞) = 0, (3.43)

in contrast to the perfect jump of Eqs. (3.17)–(3.19). The long-term coherence and

lower-than-one value of Z were observed in the experiments, see Fig. 1.3b. They can be

understood as the equilibrium point of the coherent Rabi drive ΩDG attempting to rotate

the state from |D〉 back to |G〉 perfectly balanced against the measurement-backaction

force of the no-click measurement steering the atom toward |D〉, recall discussion of the

measurement vector field, see Figs. 3.4 and 3.5.
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Dark drive off. Turing the Dark drive off shortly after a click demonstrates the con-

nection between the flight of a quantum jump and a projective measurement. The only

change is the setting of ΩDG to zero at time ∆ton on the right-hand side of Eqs. (3.14) and

(3.39). Subsequently, WDG(∆tcatch) continues its exponential growth at rate Ω2
BG/2γB

[Eq. (3.14)] or ΓBG/2 [Eq. (3.39)]. Equations (3.10)–(3.12) still hold, but now with

∆tmid =

(
Ω2

BG

2γB
,
ΓBG

2

)−1

ln
[
W−1

DG(∆ton)
]
. (3.44)

Further evolution realizes a projective measurement of whether the state is |G〉 or |D〉,

similar to the one analyzed in Sec. 3.1.2, where the normalized state at ∆ton is

|ψ(∆ton)〉√
N (∆ton)

=
cG(∆ton) |G〉+ cD(∆ton) |D〉√

N (∆ton)
, (3.45)

withN (∆ton) = c2
G(∆ton)+c2

D(∆ton) the probability for the jump to reach ∆tcatch = ∆ton

after a click reset to |G〉 at ∆tcatch = 0. The probability for the jump to continue to

∆tcatch > ∆ton (given ∆ton is reached) is then

N (∆tcatch)

N (∆ton)
=
C2

D(∆ton)

N (∆ton)
+
C2

G(∆ton)

N (∆ton)
exp

[
−
(

Ω2
BG

γB

,ΓBG

)
∆tcatch

]
, (3.46)

and, as expected, the probability for the jump to complete — for the measurement to

result in an answer |D〉 — is the probability to occupy state |D〉 at time ∆ton, i.e.,

c2
D(∆ton)/N (∆ton). When the Dark drive is turned off during the flight of the jump,

and is no longer present for ∆tcatch � ∆tmid, the long-term ZGD (resp., XGD) value

asymptotes to one (resp., zero), as observed experimentally, see Fig. 1.3c. This can also

directly be seen by setting ΩDG = 0 in Eq. 3.43, or considering the vector-field plot in the

absence of the steering force from |D〉 to |G〉, see Fig. 3.5.
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3.2 Heterodyne monitoring of readout cavity cou-

pled to three-level atom

3.2.1 Description of cQED experiment

In Chapter 1, we described the cQED experiment involving a superconducting atom with

the necessary V-shape level structure (see Fig. 1.1a or Sec. 4.1) subject to heterodyne

monitoring of |B〉 by means a dispersively coupled readout cavity. The three-level atom

is formed form two heavily hybridized transmon modes, which are coupled by means of a

cross-Kerr interaction to the readout cavity in an asymmetric way, χBC � χDC. In the

following, we present the quantum trajectory description of the heterodyne monitoring,

including imperfections.

System Hamiltonian. In the lab frame, the Hamiltonian of the system is, see also

Sec. 4.1,

Ĥlab = Ĥ0 + ĤI + Ĥd (t) , (3.47)

where the Hamiltonian of the uncoupled three-level atom and cavity, is

Ĥ0 = ~ωDG |D〉 〈D|+ ~ωBG |B〉 〈B|+ ~ωC ĉ†ĉ , (3.48)

where ωDG, ωBG, ωC are the Dark, Bright, and cavity mode frequency, respectively, ĉ is

the cavity amplitude operator, the atom-cavity interaction Hamiltonian is

ĤI = ĉ†ĉ [~χB |B〉 〈B|+ ~χD |D〉 〈D|] , (3.49)
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where the shift of the cavity frequency conditioned on |B〉 (|D〉) is χB (χD), and the

Hamiltonian of the atom Rabi drives and readout probe tone is

Ĥd (t) =− i~
2

[
κ
√
n̄ĉei(ωC+∆R)t + Ω∗DGe

i(ωDG+∆DG)t |G〉 〈D|

+Ω∗B0e
iωBGt |G〉 〈B|+ Ω∗B1e

i(ωBG+∆B1)t |G〉 〈B|+ H.c.
]
, (3.50)

where n̄ is the steady state number of photons in the cavity when driven resonantly,

∆R, ∆DG, and ∆B1 are the drive detunings from the bare mode frequencies. The first

Bright Rabi tone, ΩB0, addresses the Bright transition when the cavity is unpopulated,

while the second tone, ΩB0, addresses the BG transition when the cavity is populated, see

frequency spectrum in Fig. 1.1c. Moving to the rotating frame at the drive frequencies,

defined by the ket transformation |ψ(t)〉 = U(t) |ψlab(t)〉, where U(t) = exp (u (t) /i~)

and u(t) = ~t
[
(ωC + ∆R) a†a+ ωBG |B〉 〈B|+ (ωDG + ∆DG) |D〉 〈D|

]
, the Hamiltonian

in the rotating frame is

Ĥ (t) = ĤR + Ĥdrive (t) , (3.51)

where ĤR is a time-independent Hamiltonian,

ĤR = −~∆Rĉ
†ĉ+ i~

κ

2

√
n̄(ĉ† − ĉ) + ~

(
χB |B〉 〈B|+ χD |D〉 〈D|

)
ĉ†ĉ, (3.52)

and Ĥdrive is the time-dependent Hamiltonian of the atom Rabi drives,

Ĥdrive (t) = i~
[

ΩBG(t)

2
|B〉 〈G| − Ω∗BG(t)

2
|G〉 〈B|

]
+ i~

ΩDG

2
(|D〉 〈G| − |G〉 〈D|) .

(3.53)

The bi-chromatic drive, which unselectively addresses the BG transition, ΩBG(t) = ΩB0 +

ΩB1 exp(−i∆B1t) replaces the Rabi drive ΩBG of Eq. (3.2).
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Measurement record. The readout cavity input-output coupling is given by the jump

operator
√
κĉ. It follows from Eq. (2.64) that the heterodyne measurement-record incre-

ment is

dJhet (t) =
√
ηκ 〈ĉ〉 (t) dt+ dZ (t) , (3.54)

where dZ is a complex Wiener increment, see discussion below Eq. (2.60), and η is the

quantum efficiency of the readout and amplification chain. The record, dJhet (t), is scaled

— to units of (readout cavity photon number)1/2 — and filtered to generate the simulated

quadratures Irec and Qrec of the measurement record:

dIrec = −κfilter

2

[
Irecdt−

(
η
κ

2

)−1/2

Re(dJhet)

]
, (3.55)

dQrec = −κfilter

2

[
Qrecdt−

(
η
κ

2

)−1/2

Im(dJhet)

]
, (3.56)

where κfilter is the bandwidth of the amplifier chain. In practice, it is assured that κfilter

is the fastest rate in the problem, κfilter � κ, so that its effect is largely negligible.

3.2.2 Simulation of Stochastic Schrödinger equation (SSE)

The quantum trajectory unraveling monitors the reflected probe with efficiency η and ac-

counts for residual photon loss through random jumps. It follows that the linear stochastic

Schrödinger equation combines a continuous evolution (heterodyne readout channel),

d |ψ (t)〉 =

[
1

i~

(
Ĥdrive + ĤR − i~

κ

2
ĉ†ĉ
)

dt+
√
ηκdJ∗het (t) ĉ

]
|ψ (t)〉 , (3.57)

with the point-like process (photon loss),

|ψ〉 → ĉ |ψ〉 at rate (1− η)κ

〈
ψ
∣∣ĉ†ĉ
∣∣ψ
〉

〈ψ|ψ〉 . (3.58)
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Note that for perfect quantum efficiency, η = 1, the rate of the photon loss channel goes

to zero. We emphasize that expectation values are performed over the normalized state;

importantly, when calculating the measurement record increment dJ∗het (t), see Eq. (3.54),

〈ĉ〉 (t) = 〈ψ (t)|ĉ|ψ (t)〉 / 〈ψ (t)|ψ (t)〉 .

Independently measured imperfections. To more realistically model the cQED ex-

periment, we need to account for the small experimental non-idealities associated with

the device performance; namely, the finite energy relaxation lifetime of the levels (T1), the

finite dephasing time of the levels (T ∗2 ), which is generally smaller than the bound imposed

by the lifetime, T ∗2 < T1, and the finite temperature of the device (nth). Specifically, we

supplement the stochastic Schrödinger equation by spontaneous and thermal jumps on

both the |G〉 to |B〉 and |G〉 to |D〉 transitions (nB
th and nD

th) and by pure dephasing of

the GB and GD coherences (γφB and γφD). With these processes included, the term

−i~
{[γB

2
(nB

th + 1) + γφB

]
|B〉 〈B|+

[γD

2
(nD

th + 1) + γφD

]
|D〉 〈D|+ γBn

B
th + γDn

D
th

2
| |G〉 〈G|

}

is added to the non-Hermitian Hamiltonian, Ĥdrive + ĤR− i~κ2 ĉ†ĉ, on the right-hand side

of Eq. (3.57), with the additional three point-processes:

|ψ〉 → |G〉 at rate γB(nB
th + 1)

〈ψ|B〉〈B|ψ〉
〈ψ|ψ〉 + γD(nD

th + 1)
〈ψ|D〉〈D|ψ〉
〈ψ|ψ〉 , (3.59)

|ψ〉 → |B〉 at rate γBn
B
th

〈ψ|G〉〈G|ψ〉
〈ψ|ψ〉 + 2γφB

〈ψ|B〉〈B|ψ〉
〈ψ|ψ〉 , (3.60)

|ψ〉 → |D〉 at rate γDn
D
th

〈ψ|G〉〈G|ψ〉
〈ψ|ψ〉 + 2γφD

〈ψ|D〉〈D|ψ〉
〈ψ|ψ〉 . (3.61)

In the simulation, the parameters γB,D, n
B,D
th , and γφB,D are mapped to the independently

measured parameters T 1
B,D, n

G,D
th , and TB,D

2R listed in Table 5.1.
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Leakage from the GBD-manifold. Because the three-level atom is realized from

two transmon qubits, the three-state manifold, {|G〉 , |B〉 , |D〉}, is not strictly closed, and

transitions to higher excited states are sometimes observed. This imperfection is modeled

in the SSE simulation with the addition of the further term

−i~
{
γFG

2
|G〉〈G|+ γFD

2
|D〉〈D|+ γGF + γDF

2
|F〉〈F|

}

to the non-Hermitian Hamiltonian, and the associated additional random jumps,

|ψ〉 → |F〉 at rate γFG
〈ψ|G〉〈G|ψ〉
〈ψ|ψ〉 + γFD

〈ψ|D〉〈D|ψ〉
〈ψ|ψ〉 , (3.62)

|ψ〉 → |G〉 at rate γGF
〈ψ|F〉〈F|ψ〉
〈ψ|ψ〉 , (3.63)

|ψ〉 → |D〉 at rate γDF
〈ψ|F〉〈F|ψ〉
〈ψ|ψ〉 , (3.64)

where |F〉 models the all higher level by a single catch-all higher excited state. The results

of the simulation are presented in Sec. 5.5.



4
Experimental methods

If I knew what I was doing, it
wouldn’t be called research.

Albert Einstein
See Hawken et al. (2010)

T he design of the superconducting three-level atom and readout cavity is presented

in Sec. 4.1. It was optimized subject to the constrains of the experiment (Hamil-

tonian and dissipative) with the energy-participation ratio (EPR) approach, presented in

Sec. 4.1.1. The methodology of the finite-element numerical simulations employed to

engineer the electromagnetic (EM) properties of the distributed circuit is presented in

Secs. 4.1.2 and 4.1.3. Sample fabrication is discussed in Sec. 4.2, while design and as-

sembly of the sample holder are discussed in Sec. 4.3. Particular attention is paid to

material selection, a care continued in Sec. 4.4, where aspects of the cryogenic setup of

the experiment are discussed, including sample thermalization, surface preparation, light-

tightness, and magnetic shielding. The microwave setup of the experiment is discussed in

Sec. 4.5. For further information on experimental methods employed in circuit quantum

electrodynamics (cQED) experiments see Refs. Geerlings (2013), Reed (2013), Reagor

89
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(2016), Brecht (2017).

4.1 Sample design

Overview. The superconducting artificial atom presented in Sec. 1.1, see Fig. 4.1a,

consists of two coupled transmon qubits (Koch et al., 2007, Schreier et al., 2008, Paik

et al., 2011) fabricated on a 2.9 mm-by-7 mm double-side-polished c-plane sapphire wafer

with the Al/AlOx/Al bridge-free electron-beam lithography technique (Lecocq et al., 2011,

Rigetti, 2009); for fabrication methodology, see Sec. 4.2. The first transmon (B) is

aligned with the electric field of the fundamental TE101 mode of the aluminum rectangular

cavity (alloy 6061; dimensions: 5.08 mm by 35.5 mm by 17.8 mm), while the second

transmon (D) is oriented perpendicular to the first and positioned 170µm adjacent to it,

see Fig. 4.1b. The inductance of the Josephson junction of each transmon (nominally,

9 nH for both B and D), the placement and dimensions of each transmon, and the

geometry of the cavity were designed and optimized using finite-element electromagnetic

analysis and the energy-participation-ratio (EPR) method1, as discussed in Sec. 4.1.1.

Hamiltonian and level diagram. Under the rotating-wave approximation and in the

low-excitation limit, see Sec. 4.1.3, the effective Hamiltonian of the device, consisting of

the Dark, Bright, and cavity modes, is energy conserving,

Ĥ/~ =ωDn̂D + ~ωBn̂B + ~ωCn̂C

− 1

2
αDn̂D

(
n̂D − 1̂

)
− 1

2
αBn̂B

(
n̂B − 1̂

)

+ χDBn̂Dn̂B + χDCn̂Dn̂C + χBCn̂Bn̂C , (4.1)

1Z.K. Minev et al., in preparation.
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Figure 4.1 | Sample and chip layout. a, Photograph of Darkmon chip (2.9× 7 mm,
sapphire) in the aluminum (Al) cavity, which serves as the sample holder, shown with upper
half removed. Green arrow points to location of the chip. Also visible: input-output (I-
O) SMA coupler and frequency tuning screw (right side). b, Not-to-scale schematic
representation of the Bright (vertical) and Dark (horizontal) transmon qubits. Vertical
blue arrow indicates the orientation of the electric field of the fundamental (TE101) cavity
mode.

where n̂D,B,C are the Dark, Bright, and cavity photon-number operators, αD,B are the

Dark and Bright qubit anharmonicities, also referred to as self-Kerr frequencies, χDB is the

dispersive cross-Kerr frequency shift between the Dark and Bright modes, while χDC,BC

are the dispersive shifts between the cavity and the two transmons. The energy level

structure of the two-transmon composite system is schematically represented in Fig. 4.2.

When the anharmonicities, αB and αD, are relatively large, typically in the range 100 to

300 MHz, see Table 5.1 for device parameters, the level structure becomes sufficiently

anharmonic and we can restrict our attention to the manifold of the four lowest energy

states, {|gg〉 , |eg〉 , |ge〉 , |ee〉}, where the first (second) letter refers to the Dark (Bright)

transmon. When the two qubits are uncoupled, χDB = 0, the transitions among the levels

contain degeneracies, and |ge〉 and |eg〉 cannot be addressed individually. In the limit

where the coupling, χDB, is large, in practice, on the order of 100 MHz, the degeneracy

is lifted, and the |ge〉 and |eg〉 states become independent, allowing us to further restrict

our attention to the three lowest-lying states. We label |gg〉 simply as |G〉, |eg〉 as |D〉,

and |ge〉 as |B〉 . In reference to the protected Dark state, |D〉, which is engineered to be
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Figure 4.2 | Darkmon energy-level diagram. Energy level diagram of the hybridized
Dark and Bright transmon qubits. Red (Blue) color denotes association with the Dark
(Bright) transmon, while grey denotes strong association with both transmons. The
strong non-linear, dispersive interactions in the circuit, self-Kerr (αB,D) and cross-Kerr
(χDB), allow the lowest-lying three levels to be isolated, and for the two qubit system to
be employed as a three-level one with a V-shape structure.

decoupled from the environment and readout cavity, we nickname the device “Darkmon.”

Unique design constraints. In addition to the required large transmon anharmonicity,

αB, αD, and cross-Kerr, χDB, frequencies, a few somewhat unique, decoherence related,

constraints were required, notably, at odds with the large couplings. First, catching and

reversing the quantum jump from |G〉 to |D〉 coherently and with high fidelity required five

orders of magnitude in timescales, see Table 5.2, thus imposing the constraint that the |D〉

level coherences be minimally at the 100 µs level, both the energy-relaxation and dephasing

times, TD
1 , T

D
2R ≥ 100µs. The regime of long energy relaxation, TD

1 , is accessible with the

state-of-the-art Purcell-filtered three-dimensional (3D) transmon qubits (Paik et al., 2011,

Wang et al., 2015, Dial et al., 2016), but long quantum coherences, TD
2R, are far more

difficult to achieve, and are generally obtained by decoupling the transmon qubit from

the readout cavity (Gambetta et al., 2006, Rigetti et al., 2012), thus making a tradeoff
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between quantum coherence and the ability to perform a fast readout. In the quantum

jumps experiment, this tradeoff is not permissible, a fast readout of the |D〉 is required

simultaneously with long coherences.

To maximize the coherence properties of |D〉, we designed the Dark transmon to

be decoupled from all dissipative environments, including the readout cavity and input-

output (I-O) coupler. Removing the coupling between |D〉 and the cavity is advantageous

in three important ways: it protects |D〉 from i) dephasing due to cavity photon shot noise

(Gambetta et al., 2006), ii) energy relaxation through the cavity by means of the Purcell

effect (Gambetta et al., 2011, Srinivasan et al., 2011, Diniz et al., 2013, Dumur et al.,

2015, Novikov et al., 2015, Zhang et al., 2017, Roy et al., 2017), and iii) measurement-

induced energy relaxation (Boissonneault et al., 2009, Slichter et al., 2016), see Fig. (5.1).

Decoupling |D〉 might seem like a tradeoff at first, since |D〉 can no longer be directly

measured through the cavity. However, the strong coupling between the Dark transmon

and the Bright transmon, together with the special nature of the V-shape level structure

and the |B〉/not-|B〉 dispersive readout, can be employed to nonetheless achieve a fast

and faithful readout, see Sec. 5.2.2. The associated challenge is that when two transmon

qubits are strongly coupled, the D level needs to remain otherwise isolated and coherent

at the same time that the B level is strongly coupled to the low-quality (low-Q) cavity.

The coupling between |B〉 and the cavity is necessitated to yield a large dispersive shift,

χBC, used to realize the |B〉/not-|B〉 readout; however, this coupling is accompanied by

a degree of energy relaxation by means of the Purcell effect inherited by |B〉 (Gambetta

et al., 2011). The dissipation in |B〉 can in turn be inherited by the coupled state |D〉,

due to the hybridization between the two transmons, χDB, if the design is not carefully

optimized.

On a conceptual level, the Darkmon device and the couplings among the levels can

be understood in terms of an effective circuit model, see Fig. 4.3, where each mode is
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Dark Bright Readout Input-output

BLDL

Figure 4.3 | Effective circuit model of Darkmon system. Dark and Bright
transmons represented as lumped-element junction-capacitor circuits, junction denoted
by cross, coupled an LC circuit representing the readout cavity. LD,B denote the Dark
and Bright Josephson inductances, corresponding to the horizontal and vertical junctions
in Fig. 4.1, respectively.

represented by a single LC oscillator, with the two qubits having the inductors replaced by

non-linear Josephson tunnel junctions. The Dark resonator is capacitively coupled to the

Bright one, which is capacitively coupled to the readout resonator, which is capacitively

coupled to the input-output transmission line. The Bright and readout resonators can be

seen to act as a two-pole filter shielding the Dark resonator from the dissipative effect of

the transmission line. While the model is conceptually useful to analyze the qualitative

behavior of the circuit, it cannot produce reliable quantitative results. Instead, engineering

the highly asymmetric set of couplings while isolating the |D〉 level was achieved by means

of an iterative search over the design geometry with the energy participation ratio (EPR)

approach. In the following, we briefly summarize the methodology.

4.1.1 Energy-participation-ratio (EPR) approach

The design of distributed circuits with the aim of obtaining a desired Hamiltonian and

set of environmental couplings has attracted a lot of interest (Nigg et al., 2012, Bourassa

et al., 2012, Solgun et al., 2014, Solgun and DiVincenzo, 2015, Smith et al., 2016), but a



4.1. Sample design 95

general solution to this inverse problem appears to be out of reach. Instead, one applies a

search algorithm over the direct problem — a circuit is chosen, the non-linear mixing and

dissipation parameters are calculated, the circuit is modified, and the process is repeated

in search of the target parameters. A broadly-applicable approach based on the concept

of the energy-participation ratio (EPR) of the nonlinear elements -(Josephson devices) in

the circuit allows the efficient calculation of the Hamiltonian. In the following, we briefly

outline the EPR procedure and finite-element methodology employed in the design of the

sample.

Josephson tunnel junction

Non-linear, flux-controlled inductor. From the point of view of circuit theory (Yurke

and Denker, 1984, Devoret, 1997, Girvin, 2014, Vool and Devoret, 2017), a Josephson

tunnel junction (Josephson, 1962) is a two-terminal, non-linear, flux-controlled, lumped-

element inductor, whose constitutive current-flux relationship is

I (t) = Ic sin (Φ (t) /φ0) , (4.2)

where Ic is the critical current of the junction, a phenomenological parameter, φ0 ≡ ~/2e

is the reduced flux quantum, and Φ (t) is the generalized flux across the junction, which

has the same dimension as magnetic flux,

Φ (t) ≡
∫ t

−∞
dτV (τ) , (4.3)

where V is the instantaneous voltage drop across the junction terminals. The differential

inductance presented by the junction is LJ/ cos (Φ) , where LJ ≡ φ0/Ic is known as the

Josephson inductance. The quantity EJ ≡ φ0Ic is known as the Josephson energy, see
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Eq. (4.4). Since there are two Josephson junctions in the Darkmon device, we label the

junction variables with a subscript j ∈ {V,H}, where V and H denote the vertical and

horizontal junctions, respectively. From Eq. (4.2) it follows that the potential energy

function of the j-th junction is a function of flux,

Ej (Φj) = Ej (1− cos (Φj/φ0)) , (4.4)

where Ej and Φj are the Josephson energy and generalized flux of the j-th junction.

Linear and non-linear contributions. Dropping constant terms, the potential energy

of the Josephson junctions, Eq. (4.4), can conceptually be separated in two, corresponding

to terms associated with the linear-response and non-linear response of the junction, Ej,lin
and Ej,nl, respectively,

Ej (Φj) ≡ Ej,lin (Φj) + Ej,nl (Φj) , (4.5)

where

Ej,lin (Φj) =
1

2
Ej

(
Φj

φ0

)2

, (4.6a)

Ej,nl (Φj) = Ej

∞∑

p=3

cjp

(
Φj

φ0

)p
, (4.6b)

where cjp are the dimensionless coefficients of the Taylor series of Ej,

cjp =





(−1)p/2+1

p!
for even p

0 for odd p
. (4.7)
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Distributed circuit with non-linear lumped elements

Although electromagnetic (EM) structures are often classified as planar (Blais et al., 2004,

Wallraff et al., 2004, Barends et al., 2013, Yan et al., 2016) (2D), quasi-planar (Minev

et al., 2013, 2016, Brecht et al., 2016, Rosenberg et al., 2017) (2.5D), or three-dimensional

(Paik et al., 2011, Rigetti et al., 2012, Reagor et al., 2016, Axline et al., 2016) (3D), it

is possible to treat these classes on equal footing within the EPR framework. Aside from

the junctions, the distributed EM circuit of the readout cavity with the Darkmon chip

can be described by a quadratic Hamiltonian function, HEM, that depends on the device

geometry and the material properties. Analytic treatment of this function is impractical,

but finite-element (FE) numerical simulations are adept at handling systems described by

quadratic energy functions and finding their eigenmodes (Louisell, 1973, Jin, 2014). The

Hamiltonian of the Josephson circuit, consisting of the EM and Josephson elements, is

H = Hlin +Hnl , (4.8)

where its quadratic part is

Hlin ≡ HEM +
∑

j∈J

1

2
Ej (Φj/φ0)2 , (4.9)

while its non-linear part, originating from the non-linearity of the Josephson junctions, is

Hnl ≡
∑

j∈J

∞∑

p=3

Ejcjp (Φj/φ0)p , (4.10)

where, for notational convenience, J ≡ {V,H} . The quadratic Hamiltonian, Hlin, corre-

sponds to the linearized Josephson circuit (LJC), which can be numerically simulated with

FE EM methods to find its eigenfrequencies, ωm, and modal field distributions, consisting
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of the electric field, ~Em (~r), and magnetic field, ~Hm (~r), eigenvectors over the simulation

domain, where ~r is the spatial coordinate. For our device, we restrict our attention to the

lowest three eigenmodes, the Dark, Bright, and readout cavity modes, labeled D, B, and

C, respectively; i.e., m ∈M ≡ {D,B,C}. Quantizing Hlin, the quantum Hamiltonian of

the LJC can thus be expressed

Ĥlin =
∑

m∈M

~ωmâ†mâm , (4.11)

where âm is the m-th mode amplitude (annihilation operator). Importantly, the frequen-

cies ωm should be seen as an intermediate parameter entering in the calculation of the

rest of the quantum Josephson Hamiltonian,

Ĥnl =
∑

j∈J

∞∑

p=3

Ejcjpφ̂
p
j . (4.12)

While Ej and cjp are known from the fabrication of the circuit devices, the quantum

operators φ̂j ≡ Φ̂j/φ0 remain to be expressed in terms of the mode amplitudes. It can

be shown that φ̂j is a linear combination of the latter,

φ̂j =
∑

m∈M

φmj
(
â†m + âm

)
, (4.13)

where φmj are the dimensionless, real -valued zero-point fluctuations (ZPF) of mode m at

the position of the junction j. Calculation of Ĥ is now reduced to computing φmj. We

achieve this by employing the energy participation ratio.
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Energy participation ratio

We define the EPR pmj of junction j in eigenmode m to be the fraction of the total

inductive energy that is stored in the junction,

pmj ≡
Inductive energy stored in junction j
Inductive energy stored in mode m

(4.14a)

=
〈nm| : 1

2
Ejφ̂

2
j : |nm〉

〈nm|12Ĥlin|nm〉
, (4.14b)

where we have taken the normal-ordered (Gerry and Knight, 2005) expectation values

over the state |nm〉, a Fock excitation in mode m. The normal-ordering, denoted by : : ,

nulls the parasitic effect of vacuum-energy contributions.

The EPR pmj is computed from the FE eigenfield solutions ~Em(~r) and ~Hm(~r) as

explained in Sec. 4.1.2. It is a bounded real number, 0 ≤ pmj ≤ 1. For example, a

participation of 0 means that junction j is not excited by mode m, while a participation

of 1 means that it is the only inductive element excited by the mode. It can be shown

that the values φ2
mj and pmj are directly proportional to each other,

φ2
mj = pmj

~ωm
2Ej

. (4.15)

Equation (4.15) constitutes the bridge between the classical solution of the LJC and the

quantum Hamiltonian Ĥ of the full Josephson system, and, as detailed below, is very

useful for practical applications.

Fundamental design constraints. The ZPF φmj are not independent of each other,

since the EPRs are submitted to three types of constraints. These are of practical im-

portance, as they are useful guides in evaluating the performance of possible designs and

assessing their limitations. It is possible to show the EPRs obey one sum rule per junction
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j and one set of inequalities per mode m,

∑

m∈M

pmj = 1 , (4.16a)

0 ≤
∑

j∈J

pmj ≤ 1 . (4.16b)

In practice, Eq. (4.16a) can be exploited only if M contains the total number of relevant

modes of the system, otherwise the sum of the EPR is bounded by one, rather than equal

to one. The final fundamental EPR relation concerns the orthogonality of the EPRs.

Solving Eq. (4.15) explicitly for the ZPF,

φmj = Smj

√
pmj~ω/2Ej , (4.17)

where Smj = +1 or Smj = −1 is the EPR sign bit of Josephson device j in mode m. The

EPR sign bit encodes the relative current direction across the Josephson device. Specif-

ically, only the relative value between Smj and Smj′ for j 6= j′ has physical significance.

The EPR sign bit Smj is calculated during the process of calculating pmj, from the field

solution ~H(~r), see Eq. (4.25). The EPRs obey the orthogonality relationship

∑

m∈M

SmjSmj′
√
pmjpmj′ = 0 , (4.18)

valid when all relevant modes are considered.

4.1.2 Calculation of the EPR

Modeling the Josephson junction. In our device, as in most cQED experiments, the

physical dimensions of the Josephson junction (≈ 10−7 m) are approximately 5 orders

of magnitude smaller than the wavelength of the modes of interest (≈ 10−2 m), mak-
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ing the junction geometry unimportant, other than its role in establishing the value of

the Josephson inductance Lj. Similarly, the lead wires leading up to the junction from

the transmon pads are deep-sub-wavelength features, and it follows that, typically, their

geometry is also unimportant, and can be ignored altogether, aside from any kinetic in-

ductance contribution. In view of this, in the FE simulation, we model the j-th junction

as a single, two-dimensional rectangular sheet, Sj, see Fig. 4.4, acting as lumped-element

inductor with linear inductance Lj, Eq. (4.6a). The sheet is assigned a surface-impedance

boundary condition that links the tangental electric field, ~E‖, to the tangental magnetic

field, ~H‖, on the surface of the sheet, ~E‖ = ZS(n̂ × ~H‖), where n̂ is the surface normal

vector and ZS is the complex surface impedance, which is calculated so that the total

sheet inductance is Lj. Note that in the EM context, a hat symbol denotes a unit vector,

not a quantum operator.

Sj

Lj

Figure 4.4 | Finite-element model of linearized Josephson junction. Not-to-scale
schematic representation of the finite-element model of the linearized Josephson junction
(location marked by cross) connected by wire leads (elevated brown trace) to two large
metal pads (dark rectangles). Since the geometry of the junction and leads is in deep-
sub-wavelength regime, it can typically be ignored, and the inductance presented by the
junction, Lj, graphically represented by black inductor symbol with two open terminals,
can be modeled by a single lumped-element inductive sheet, Sj, in the FE simulation,
depicted by light grey rectangle. Green background represents the substrate.

After the design geometry and boundary conditions are established, additional fine-

mesh operations on crucial features of interest, such as the junction rectangles, are applied



4.1. Sample design 102

to speed up the solver convergence, which can be diagnosed by examining the parameters

ωm and pmj as a function of adaptive pass number. At each pass, the FE solver provides

the modal frequencies, ωm, and the electric, ~Emax(~r), and magnetic, ~Hmax(~r), phasors.

The electric field at a point ~r in the volume of the device, V , at time t is

~E (~r, t) = Re ~Emax (x, y, z) ejωmt .

The total magnetic and electric field energies of a mode can be computed from the

eigenfields (Pozar, 2011):

Eelec =
1

4
Re

∫

V

dv ~E∗max
←→ε ~Emax , (4.19)

Emag =
1

4
Re

∫

V

dv ~H∗max
←→µ ~Hmax , (4.20)

where the spatial integral is performed over total volume, V , of the device, and ←→ε

(←→µ ) is the electric-permittivity (magnetic-permeability) tensor. While the magnetic and

electric energies are typically equal on resonance (Pozar, 2011), when lumped elements

are included in the model, the more general equality is between the capacitive, Ecap, and

inductive, Eind, energies, Ecap = Eind . For our design, the capacitive energy is stored

entirely in the electric fields, Ecap = Eelec, but the inductive energy is stored both in

the magnetic fields and in the kinetic inductance of the Josephson junctions, Emag =

Eind + Ekin, where Ekin is the total energy stored in the kinetic inductors, H−HEM, see

Eq. (4.9); it follows,

Ecap = Eind + Ekin , (4.21)

which, for a single-junction device, implies that the EPR of the junction in mode m is

pm =
Eelec − Emag

Eelec

. (4.22)
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For a device with multiple junctions, such as the Darkmon, it follows from Eq. (4.14a),

that the EPR of junction j in mode m is

pmj =
1

2
LjImj

2/Eind , (4.23)

where Imj is the junction peak current, which can be calculated from the surface-current

density, ~Jms , of the junction sheet Sj,

|Imj| = l−1
j

∫

Sj

ds
∣∣∣ ~Jms

∣∣∣ , (4.24)

where lj is the length of the sheet, see Fig. 4.5.

jl

sJ�

jS

∣∣
∣

sJ�∣∣
∣

0

max

Figure 4.5 | Finite-element simulation of a transmon device. Plot of the surface-
current density, ~JS, of a transmon qubit mode, obtained with finite-element electromag-
netic eigenmode simulation; red (blue) indicates maximum (minimum) current magnitude.
Josephson junction (center rectangle) is modeled by a single inductive sheet (Sj) with
length lj, spanning the distance between the two transmon pads (dark rectangles). Green
background represents the transmon chip.

The calculation of the EPR sign bits, Smj ∈ {−1, 1}, requires the definition of a

convention for the junction orientation, which is accomplished by supplementing the FE

model with a directed line, DLj, along the length of the junction sheet Sj. The actual

orientation of the line is irrelevant, so long as it spans the two terminals of the junction.
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The sign of the current along the line can be used as the sign bit

Smj = sign

∫

DLj

d~l · ~Jms . (4.25)

Remarks. The convergence of the EPR extracted from local field quantities, Imj, can

be enhanced by renormalizing the EPRs so as to enforce the global condition given by

Eq. (4.21),
∑

j∈J pmj = Ekin/Eind. The eigenmode simulation approach affords several

distinct advantages. No prior knowledge of the mode frequencies is required to execute

the simulation. The solver can be queried to solve for the N -lowest eigenmodes. If only

information on modes above a particular frequency is desired, this cutoff frequency can

also be supplied to the solver. From a single mesh and simulation, the FE solver returns

complete information for all modes of interest — the parameters ωm, pmj, and Smj of

the Hamiltonian and, as shown in Sec. 4.1.4, the dissipation budget. These features

play nicely into the iterative nature of the design optimization, and make the eigenmode

design-optimization process easy to automate, provided freely to the community in our

software package pyEPR.2 In the optimization of the Drakmon device, the finite-element

software of choice was Ansys high-frequency electromagnetic-field simulator (HFSS).

4.1.3 Calculation of Hamiltonian parameters with the EPR

The quantities ωm, pmj, and Smj obtained from the FE eigenmode solution together with

Eqs. (4.13), and (4.15) completely specify Ĥnl, Eq. (4.12). The multitude of non-linear

interactions contained in Ĥnl mix the LJC modes. However, operating the Darkmon in the

dispersive regime (Blais et al., 2004, Koch et al., 2007), defined by ωk−ωm � Ejcjp

〈
φ̂pj

〉

for all p ≥ 3, we can restrict our attention to the leading order correction of Ĥnl to Ĥlin

to account for the device spectrum, see level diagram of Fig. 4.2. The leading-order
2http://github.com/zlatko-minev/pyEPR
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correction is given by the p = 4 terms that survive the rotating-wave approximation

(RWA) (Carmichael, 1999, Gardiner and Zoller, 2004), representing energy-conserving

interactions. To leading order, in the RWA, after normal-ordering, Ĥnl reduces to the

effective Hamiltonian

Ĥ4/~ = −
∑

m∈M

∆mâ
†
mâm +

αm
2
â†2m â

2
m +

1

2

∑

m6=n

χmnâ
†
mâmâ

†
nân , (4.26)

which when combined with Ĥlin, Eq. (4.11), yields Eq. (4.1). The Lamb shift, ∆m =

1
2

∑
n∈M χmn , represents the dressing of the linear mode m by the zero-point vacuum

energy of allM modes. From Eq. (4.26), it follows that the measured transition frequency

between |G〉 and |B〉 is ωBG = ωB−∆B, where ωB is the LJC Bright eigenmode frequency

and ∆B is the Bright mode Lamb shift; a similar conclusion holds for the GD transition.

The Kerr frequencies are found from the EPR,

χmn = −
∑

j∈J

~ωmωn
4Ej

pmjpnj (4.27)

and αm = χmm/2. Remarkably, from Eq. (4.27) it becomes evident that the EPRs are

essentially the only free parameters subject to optimization and design in engineering the

non-linear couplings, since the frequencies, ωm, and Josephson energies, Ej, are con-

strained to a narrow range due to practical considerations. Notably, Eq. (4.27) embodies

the structure of a spatial-mode overlap in the EPRs.

4.1.4 Calculation of dissipation budget with the EPR

In this subsection, we summarize the methodology employed in minimizing dissipation in

the Darkmon device. This is achieved by optimizing the geometry of the design (in parallel

with the Hamiltonian parameter optimization) with the aim of minimizing the susceptibility
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of each mode to the various unavoidable material and input–output losses. For each

design variation, we compute the bound on the modal quality factors by constructing a

dissipation budget, which consists of the loss expected due to each lossy element in the

design. By manipulating the geometry, the budget can be favorably altered, to a degree.

The calculation of the dissipation parameters is detailed in the following.

Losses can be classified as either capacitive, proportional to the electric field intensity,
∣∣∣ ~E
∣∣∣
2

, or inductive, proportional to the magnetic field intensity,
∣∣∣ ~H
∣∣∣
2

. The total loss due to

a material is proportional to its energy participation in the mode, pl, a geometric quantity

related to the field distribution, and its intrinsic quality, Q, a material property. The

intrinsic material quality, Q, can typically only be bounded, while pl can be calculated

from the eigenfields. The total capacitive and inductive losses, characterized by Qcap and

Qind, respectively, sum together with the loss due to input-output coupling, Qrad, and

give the upper bound on the quality factor of an EM mode, Qtotal, (Zmuidzinas, 2012,

Geerlings, 2013, Reagor, 2016)

1

Qtotal
=

1

Qcap
+

1

Qind
+

1

Qrad
. (4.28)

In the following, we explicate the calculation of each quantity. We note that the EPR treats

dissipation and Hamiltonian parameters on equal footing, and all quantities, Hamiltonian

and dissipative, are extracted from a single eigensolution.

Capacitive losses. Capacitive losses, proportional to the intensity of the electric field,
∣∣∣ ~E
∣∣∣
2

, can originate from bulk or surface of materials. Dielectrics, such as the substrate

of the Darkmon device, constitute the primary source of bulk loss (Martinis and Megrant,

2014, Dial et al., 2016, Kamal et al., 2016), and, unfortunately, every surface in a de-

vice possesses a near-unavoidable, lossy, surface dielectric layer, possibly due to chemical

residues, condensation, dust, etc. (Martinis and Megrant, 2014, Wang et al., 2015). Re-
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gardless of the microscopic origin of the dielectric losses, the loss properties of the l-th

dielectric are characterized by a catch-all quality factor Ql
cap (or equivalently the inverse

of the loss tangent) and the EPR of the dielectric in the mode, plcap — the fraction of

capacitive energy stored in dielectric element l. For a bulk dielectric, the dissipative EPR

is given by

plcap,bulk =
1

Eelec

1

4
Re

∫

Vl

dv ~E∗max
←→ε ~Emax , (4.29)

where the integral is carried over the volume of the l-th dielectric element, namely Vl.

The dissipative EPR of a surface dielectric, plcap,surf , can be approximated by

plcap,surf =
1

Eelec

tlεl
4

Re

∫

surfl
ds
∣∣∣ ~Emax

∣∣∣
2

, (4.30)

where the surface layer thickness is tl, and its dielectric permittivity is εl. The total capaci-

tive loss in the mode is the EPR-weighted sum of the individual contributions (Zmuidzinas,

2012, Geerlings, 2013),
1

Qcap
=
∑

l

plcap
Ql

cap
. (4.31)

Inductive losses. Electric currents flowing in metals or metal-metal seams can result in

inductive losses. The bound on the mode inductive-loss quality factor Qind is a weighted

sum of the intrinsic material quality Ql
ind of each lossy inductive element l, analogous to

Eq. (4.31),
1

Qind
=
∑

l

plind
Ql

ind
, (4.32)

where plind is the inductive-loss EPR of element l. For a metal surface, this can be

calculated from the eigenfield solutions,

plind,surf =
1

Emag

λ0µl
4

Re

∫

surfl
ds
∣∣∣ ~Hmax,‖

∣∣∣
2

, (4.33)
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where λ0 is the metal skin depth at ωm, and µl is the magnetic permeability of the surface

(typically, µl = µ0). In the case of superconductors plind,surf is the kinetic inductance frac-

tion (Gao, 2008, Zmuidzinas, 2012), commonly denoted α. Normal metals typically have

an inductive quality factor Ql
ind,surf of approximately one (Pozar, 2011). Bulk supercon-

ducting aluminum has been measured to have an inductive quality factor Qind,surf bounded

to be better than a few thousand (Reagor et al., 2013). Meanwhile, the bound on the

quality of thin-film Al has been measured to be better than 105 (Minev et al., 2013).

Seam losses. A distinct loss mechanisms occurs at the seam of two metals (Brecht

et al., 2015). For instance, a common source of such loss is the seam used in supercon-

ducting cavities. In the FE model, the seam can be modeled by a line, denoted seaml,

between the two mating metallic surfaces. The seam inductive participation is

plind,seam =
1

Emag

λ0tlµl
4

Re

∫

seaml

dl
∣∣∣ ~Hmax,⊥

∣∣∣
2

, (4.34)

where the seam thickness is denoted tl, its magnetic permeability µl, and its the penetra-

tion depth λ0. It is convenient to recast the seam loss contribution

plind,seam
Qseam

=
1

gseam

∫
seam

∣∣∣ ~Js ×~l
∣∣∣
2

dl

ωµ0

∫
vol |Hmax|2 dV

, (4.35)

in terms of a seam admittance gseam, which is defined in Ref. Brecht et al. (2015).

4.2 Sample fabrication

Samples were fabricated on 430 µm thick, double-side-polished, c-plane sapphire wafers,

grown withthe edge-defined film-fed growth (EFG) technique, with the bridge-free junction

fabrication method, see Refs. Lecocq et al. (2011), Pop et al. (2012), Pop (2011), Reagor
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(2016). We defined the sample pattern, both large and fine structures, with a 100 kV

electron-beam pattern generator (Raith EBPG 5000+) in a single step on a PMAA/MAA

resist bilayer. In the following, we describe each step of the fabrication process in detail,

and we hope that by adding some additional information about each step and motivation

behind it, a reader who is new to the subject will benefit.

Cleaning the wafer. First, the sapphire wafer is solvent cleaned under a chemical hood

in a two-step N -Methyl-2-pyrrolidone (NMP) process. The solvent removes dust, organic

residues, and oils on the wafer surface. For our samples, we heated the wafer to 90 ◦C

for 10 minutes in an NMP bath, then sonicated it in the bath for another 10 minutes.

After removing the wafer from the bath, if it is left out to dry on its own, the NMP would

evaporate quickly and leave undesirable residue behind. Instead, we rinsed the wafer in

an acetone bath, followed by a methanol one, before finally blow drying it with filtered

nitrogen gas. Methanol has low evaporation pressure and under the blow drying tends to

take away the residues, rather than simply evaporating and leaving residues behind. An

acid should not be used to clean the sapphire wafer, since the wafer is costly and already

polished.

Spinning the positive resist bi-layer. The copolymer resist (Microchem EL-13) is

spun onto the cleaned wafer at 2,000 revolutions per minute (r.p.m.) for 100 seconds,

then, it is baked for 5 minutes at 200 ◦C. The PMMA resist (Microchem A-4) is spun

on top of the first at 2000 r.p.m. for 100 seconds. The wafer is baked at 200 ◦C for

15 minutes, yielding a thickness of about 200 nm. It is worth noting why PMMA is the

resist of choice: it offers high, nm-sized resolution, simplicity and ease of handling, no

sensitivity to white light, nor shelf or film life issues, and is easily dissolved, qualities that

make it the ideal resist for this type of nanofabrication.

Before proceeding to patterning, fabrication on sapphire requires an extra step: the
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anti-charging layer. Whereas most silicon substrates are conducive enough to prevent

electron beam deflection during the e-beam writing, sapphire substrates are not. The

buildup of charge is mitigated by depositing a thin (10 nm) anti-charging layer of gold on

the wafer. In terms of metals, gold is an excellent choice, as it is inert, does not have

an oxide, and has notably high electrical conductivity. Alternatively, we have also used

aluminum for the anti-charging layer (13 nm thick).

Writing and developing the pattern. Both large and fine structures, including the

Josephson tunnel junction are patterned in a single step with the 100 kV EBPG, following

which, the gold layer is removed by submerging the wafer in a potassium-iodide/iodine

etch solution for 10 seconds. Next, the wafer is rinsed in water and the resist is developed

in a 3:1 IPA:water mixture at 6 ◦C for 2 minutes. After development, the pattern is

inspected under an optical microscope.

Plasma cleaning, deposition, and oxidation. The wafer is loaded in the electron-

beam evaporation system, a multi-chamber Plassys UMS300 UHV. To prepare the surfaces

for deposition and reduce the amount of aging of the Josephson junction, the exposed

sample surfaces are subjected to a 1 minute of oxygen-argon plasma cleaning, under a

pressure of 3 × 10−3 mbar. In this procedure, the etch removed 30 nm from the upper

resist layer; however, ideally, one would use a shorter duration and larger pressure (Pop

et al., 2012), which was not available. Next, the sample is transferred from the load-lock

to the deposition chamber, where an automated titanium sweep is performed to absorb

residual gases in the deposition chamber. At an angle of 19 degrees, 20 nm of Aluminum

is deposited onto the sample, following which, the sample is transferred to the oxidation

chamber, where it is exposed to a 3:17 oxygen:argon mixture for 10 minutes at 100 Torr.

This forms an approximately 1 nm thick aluminum oxide layer, the insulating barrier of

the Al/AlOx/Al Josephson tunnel junctions. The sample is returned to the deposition
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chamber, where the second and final layer of aluminum (30 nm) is deposited at an angle

of −19 degrees. Next, rather than directly removing the sample from the evaporation

system and allowing the exposed aluminum surfaces to uncontrollably oxidize in air, the

surfaces are passivated with a final oxidation step at 50 Torr for 10 minutes. The aluminum

forms a self-limiting oxide capping layer.

Liftoff. The sample is placed in a heated bath of NMP solvent at 70 ◦C for two hours.

It is then sonicated for 1 minute, while still in the NMP, following which, the NMP is

cleaned with acetone, methanol, IPA, and, finally, a dry nitrogen blow gun. The solvent

“lifts off” the unwanted metal from the wafer by dissolving the resist underneath it, thus

leaving the bath full of aluminum flakes. Note that NMP can’t be heated much above

100 ◦C, since that will likely damage the Al/AlOx/Al junctions.

Dicing. A protective coating of optical resist (SC1827) is spun at 1,500 r.p.m. for

120 seconds and baked at 90 ◦C for 5 minutes. The sample is loaded in the dicer (ADT

ProVecturs 7100), which then is calibrated, aligned, and which then performs the dicing.

The diced chips are cleaned with acetone, methanol, and dry nitrogen, and are stored

until they ready to be mounted in the sample holder.

Sample selection. The diced chips are cleaned (NMP, Acetone, methanol, nitrogen

air) and visually examined under an optical microscope where the normal-state resistance,

RN , of their Josephson junctions is measured. This is performed under an optical mi-

croscope (Copra Optical Inc. SMZ800) with probe needles (Quater-Research H-20242)

lowered to contact the transmon pads on either side of the junction, taking care to prop-

erly ground all object in contact with the sample and to minimize unavoidable scratching

of the pad during the probing. The measurement of RN provides a good estimate of the

junction Josephson energy, EJ , by an extrapolation from room temperature to the operat-

ing sample temperature (≈ 15 mk) using the Ambegaokar-Baratoff relation (Ambegaokar
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and Baratoff, 1963),

EJ =
1

2

h∆

(2e)2R
−1
N , (4.36)

where ∆ is the superconducting gap of aluminum. The chip closest matching the Joseph-

son energies, EJ , of the EPR-designed vertical and horizontal junctions is selected for

mounting in the sample holder.

4.3 Sample holder

In this section, we describe the methodology involved in the sample holder (readout cavity)

design and assembly, as well as the motivation behind the design choices. The readout

cavity depicted in Fig. 1.1 essentially forms the chip sample holder, as seen in Fig. 4.6c.

The sample holder design is similar to that presented in Ref. Paik et al. (2011). We begin

with a discussion of the design choices surrounding the material selection for the sample

holder.

4.3.1 Material losses and selection

Readout cavity considerations. The inner walls of the sample holder establish the

boundary conditions of the readout cavity mode, and hence have a large inductive, plind,surf,

and dielectric, plcap,surf, surface-loss participation ratio, see Sec. 4.1.4. It follows that the

material quality of the cavity inner walls is important in determining the readout quality

factor, QR. However, since this mode is purposefully made low-Q, by coupling it strongly

to the input-output (I-O) couplers, the importance of the sample-wall material is greatly

reduced, and could in principle be rather lossy. For instance, in some designs, copper,

which has an inductive quality factor of unity, Q = 1, has been used, thus limiting QR to

several thousand. Under these conditions, a fraction of the readout cavity signal is lost to
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the walls of the cavity, rather than to the I-O couplers. Nonetheless, the I-O coupling is

engineered to be larger still, so that most of the signal in the readout cavity makes it to

the amplifier chain, and a high quantum measurement efficiency, η, can still be obtained.

Qubit mode considerations. However, the Bright and Dark qubit modes, while pre-

dominantly spatially localized to the sapphire substrate region, have a small fraction of

their fields extending to the inner walls of the readout cavity. Although the lossy energy

participation ratios, plind,surf and p
l
cap,surf, are exponentially small (. 10−5), so that the

cavity walls participate on the part-per-million level, a normal-metal wall (Ql
ind ≈ 1) could

limit the qubit quality factors significantly, making lifetimes on the order of TD
1 ≈ 100 µs

out of reach. For this reason, we employ a low-loss superconducting material for the

sample holder, and clean its surfaces with care, see discussion on Pg. 121. Specifically,

we machined the readout cavity from 6061 aluminum alloy, which is typically found in

the construction of aircraft structures. Notably, it is a good superconductor, and due to

its hardened structure offers a machining advantage over regular aluminum, which is too

soft.

We remark that in other experiments, involving high-Q storage mode cavities, the

cavities are often machined from high-purity 4N (99.99% pure) aluminum (or sometimes,

5N), which is very soft, and thus difficult to machine. Further, the machining forms deep

cracks (≈ 100 µm), where machining oils and dirt seep in, and hence, the surfaces require

a more involved chemical etch process to remove about 150 µm of the surface. For further

information, see the dissertation of Matthew Reagor (Reagor, 2016).

Non-magnetic input-output couplers. It has been recognized that commercial flange-

based I-O couplers contain magnetic ferrite impurities with fields at the ten milligauss

level, which although small, due to the close spatial proximity of the coupler to the thin-

film superconducting pads of the transmon, as well as the Josephson junction, could
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Figure 4.6 | Non-magnetic couplers and sampler holder. a/b, Photograph of
two generations of custom-made, non-magnetic, SubMiniature version A (SMA), input-
output (I-O) pin couplers. c, Photograph of disassembled sample holder, inside walls
forms boundary condition for the readout cavity mode. Three machined grooves on the
mating surfaces of the two halves provide placement slots for samples. Mating surface of
lower-half has groove encircling the inside cavity, employed with an indium wire to seal the
two halves. Large through holes visible on the mating surfaces provide means to fasten
sample holder and attach it to a cold finger in the dilution refrigerator. Small hole visible
on the interior back wall of the lower half allows for screw-tuning of the readout cavity
frequency.

introduce vortices in the films, and it is suspected, generally degrade the superconduc-

tor performance. To achieve better control of the electromagnetic environment and to

reduce potential losses due to magnetic impurities, we employed custom-made pins from

non-magnetic materials, such as copper and brass.

Panels (a) and (b) of Fig. 4.6 show two generations of non-magnetic, SubMiniature

version A (SMA) pin-couplers. The first generation, see panel (a), was made in-house from

a standard, SMA copper cable with two female connectors. After testing the quality of

the cable, by checking its insertion loss with a vector network analyzer (VNA), the cable

was cut in two, partially stripped (external shielding and teflon) to expose the center

conductor, which serves as the pin inside the readout cavity, and soldered (non-magnetic

solder) to a custom copper flange. The flange can then be mounted to the outside

surface of the readout cavity, see panel (c), by non-magnetic, brass or aluminum, screws.
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Panel (b) shows a second generation of non-magnetic couplers, made from beryllium-

copper, and custom-ordered, courtesy of Christopher Axline. In general, components

used with the sample holder, placed inside the enclosing magnetic shielding, were tested

for magnetic compatibility with a magnetometer inside a magnetically shielded box at

room-temperature.

Sample-holder seam. To enclose the Darkmon chip in the sample holder, the sample

holder is designed as two separate halves, see Fig. 4.6c. As discussed in Sec. 4.1.4,

the placement of the seam in the design is important, as it determines the seam-loss

participation ratio, plind,seam. The seam in placed at the minimum of the current field

profile of the readout cavity mode. No perfect symmetry exists in the design; it is broken

by the I-O couplers and the sample chip, so even at this location, the participation is not

strictly zero for either the readout cavity or qubit modes. For this reason, it is important

that the seam quality is as high as possible. In the following, we remark on seam properties

at the microscopic level, and the use of an indium seal for improved electrical contact.

Seam quality at the microscopic level. Even under high pressure, applied by the

fastening action of the sample holder screws, see Fig. 4.6c, the mating faces of the two

halves of the sample holder do not join well at the atomic level. Three interface regions

can be identified: i) metal-to-metal regions, the rarest, where aluminum atoms from both

halves are in physical contact, allowing superconducting current to flow undisturbed, ii)

semi-conducting regions, more common, where contaminants, typically dielectric, result

in resistive conductance, and iii) non-conducting regions, typically, the most common,

where electrical flow is altogether prohibited, for either the region is a vacuum gap or is

dominated by a thick non-conductive film of oxides, sulphides, etc. The physical contact

area is typically less than a tenth of the area of the mating surfaces.

Higher-quality seam. To create a seam with higher electrical conductivity, one can
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first increase the force applied to form the bond to fracture the native oxide layer of the

mating surfaces and to yield a greater physical contact area, region (i). However, this

method is rather limited in applicability with our design, because the constraint of non-

magnetic screws excludes nearly all hard-material screws, including stainless steel ones, due

to magnetic impurities. The soft screws we use, aluminum and brass, lack the impurities

needed to make them withstand larger forces, and tend to break and strip easily. Mostly,

we relied on a soft-metal seal, a thin wire gasket placed in a small groove in one of the

mating faces. A number of materials metals are conventionally used as soft-metal seals,

such as copper, aluminum, indium, etc. The seal of choice in the cQED community is

indium, typically used in cryogenic hermetic seals and low-temperature solder with melting

point of 47 °C, since it remains soft and malleable even at cryogenic temperatures and is

a superconductor. The indium gasket has been observed to increase the internal quality

factor of a superconducting cavity by several orders of magnitude and its estimated seam

conductance is gseam & 106/Ωm (Brecht, 2017). In our experiment, we used an un-greased

99.99% indium wire of 0.020 in. diameter to form the seam gasket.

4.3.2 Assembly

After the surfaces of the machined sample holder are cleaned, see discussion on Pg. 121,

the Darkmon chip selected from the diced wafer, Sec. 4.2, is cleaned (NMP, Acetone,

methanol, nitrogen air) and, under an optical microscope, is immediately placed in the

central groove of the sample holder, see Fig. 4.1a. The groove is designed to be larger

(at minimum 5%) than the dimensions of the chip to account for the differential ther-

mal contraction between aluminum and sapphire (mostly, the aluminum contracts) and

machining tolerances. The precision of the dicing saw (ADT ProVecturs 7100) is high,

several microns when recently calibrated, and the chip will not exceed the diced margin by
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more than a few microns, but it can fall quite short of that, because, unlike silicon, when

sapphire is diced, it shatters around the edges, much like glass, and forms a jagged edge.

For this reason, when placed in the groove, the chip can rattle about, and requires an-

choring, accomplished by placing four small bits of indium on its four corners and pressing

them down to fill the corner circular pockets machined in the groove, see Fig. 4.6c. To

minimize contamination during the mounting, the chip is placed face down in the groove,

although, we note that even dust on the back side of the chip can contribute to loss in

the qubit modes, though, its participation ratio will be far smaller than if it were on the

front face.

When the sample is well anchored, the indium gasket is laid down in the gasket

groove, as visible in Fig. 4.1a, and the top half of the sample holder is mounted on

top, fastened tightly with even-pressure to allow the indium to distribute evenly. For

the screws, we used aircraft-alloy 7075 (McMaster/Fastener Express), with less than

1% iron impurities. These screws, as discussed earlier, are rather soft, and to achieve

a higher compression between the two halves at cryogenic temperatures, we used the

screws with molybdenum washers, which provide differential contraction — the linear

thermal contraction for molybdenum (aluminum) between room temperature and 4 K is

0.095% (0.415%). Molybdenum is compatible with the non-magnetic requirement. After

10 minutes, the indium seal relaxes, and the screws can be further tightened, with even

pressure.

4.4 Cryogenic setup

The embedding environment of the sample is nearly as important as the properties of the

sample itself in achieving long-coherences and desired performance. For this reason, in

this section, we focus on a few notable aspects of the cryogenic setup, and pay particular
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attention to motivations. For the most part, our cryogenic setup is rather standard in

the field of cQED. For a more general discussion of low-temperature cryogenics, see

Refs. Ventura and Risegari (2010) and Pobell (2013).

4.4.1 Material selection

As already emphasized, the material selection of components used in the setup is of prime

importance. For this reason, we feel it worthwhile to note a few overriding principles,

corroborated by experience, employed when selecting materials for the cryogenic setup of a

cQED experiment, which have to be compatible with operation at milikelvin temperatures

and high vacuum (< 10−1 Pa).

Tested and well-understood cryogenic materials. In the cryogenic setup of our ex-

periment, we employed only materials that have been exhaustively studied, characterized,

and established in regular laboratory use. There are only a handful suitable for cQED

experiments, which, in the solid-state, can classified as: i) ambient-pressure supercon-

ductors: aluminum, niobium, indium, titanium, tin, molybdenum, and niobium-titanium

(NbTi), ii) normal metals: copper, brass, gold, beryllium, stainless steel, and iii) dielectrics:

silicon, sapphire, quartz, nylon, Teflon, Stycast, poly(methyl methacrylate) (PMMA). The

listed materials are the most common ones; for material properties, see Refs. Ventura and

Risegari (2010) and Pobell (2013).

Simplicity and homogeneity. The simplest and smallest number of materials were

employed in the cryogenic setup. The Darkmon sample (including I-O pins, seam gaskets,

screws, et cetera) consisted of essentially three types of atoms — aluminum, oxygen, and

indium. Beyond the materials employed in the sample holder, the properties of commercial

components were found to vary among manufacturers, for instance, the residual magnetic

impurity levels measured in screws and SMA connectors, barrels, adapters, et cetera varied
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across manufacturers. For this reason, prior to use in the setup, all components were

screened with a magnetometer, especially when employed inside magnetically shielded

compartments.

Aluminum. Chief among the materials employed was aluminum (Al), and hence, we

pay special attention to its properties. From a structural standpoint, Al is “light-weight,”

having one-third the density and stiffness of steel and copper. However, unlike steel, it

is free of magnetic impurities and has 59% of the thermal and electrical conductivity of

copper at room temperature. Importantly, when aluminum oxidizes, it forms a protective

coating of amorphous aluminum oxide (AlOx) that is thermodynamically favored to self

limit growth to a thickness of merely one nanometer. The AlOx layer is special in that it

has one of the highest hardness coefficients of all oxides, even greater than glass, making it

an excellent (unavoidable) encapsulation layer, rendering Al highly resistant to corrosion,

but also making the formation of a very-conductive Al-Al seam difficult, as discussed on

Pg. 115, and resulting in a surface dielectric layer with a loss tangent, see Sec. 4.1.4.

4.4.2 Thermalization

The design and implementation of a high-thermal-conductivity link between the Darkmon

sample and the main source of cooling power in the dilution refrigerator, the mixing

chamber pot, is crucial to take undesired heat away from the sample. At low temperatures,

the task is complicated since the rate limiting factor in the heat transfer becomes the

contact thermal resistance, RC, found at the interface of two mating surfaces, intricately

dependent upon on the interface properties and difficult to control. The temperature

discontinuity, ∆T , across two mating surfaces is

∆T =
RC

A
Q̇ , (4.37)
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where A is the surface area and Q̇ is the power flowing through the surface. It is seen

that to minimize ∆T once can increase the contact area, A, or decrease the geometry-

independent resistance, RC. In the following, we describe the thermal link setup of the

sample and briefly outline the strategies employed to minimize RC across the various

interfaces.

Gold plating and welding. The sample was mounted on a cold-finger attached to

the mezzanine mixing-chamber plate. The plate is gold plated (≈ 5µm by electroplating)

to achieve higher thermal conductivity. As a soft metal, gold allows for a larger ’real’

surface-area contact, and due to its chemical inertness, also provides protection from

oxidation of the surface, which keeps RC low across multiple uses and over time. The

cold finger is not gold-plated, due to the cost and long-lead time of the process. It is

machined from two oxygen-free high-thermal-conductivity (OFHC) copper blocks, which

are welded together to minimize the number of contact joints, essentially eliminating RC

altogether. Of course, the bulk thermal resistance of the OFHC copper block remains,

but it is rather small and the cross-sectional area of the cold-finger block is rather large,

providing a good thermal link.

Pressure and differential contraction. The sample is fixed to the cold finger

with aluminum screws. The cold finger is mounted on the mezzanine mixing-chamber

plate with stainless steel screws, which allow greater pressure. To maximize the pressure

across all joints, molybdenum washers were used everywhere to provide further differential-

contraction pressure, see discussion on Pg. 117.

Thermal straps. The cold finger thermalization link contains several unavoidable

joins, an issue that can be circumvented to a degree with the use of a flexible heat strap

(also known as thermal braid). Directly mounted on the sample was a small copper block

welded to a thick OFHC copper heat strap (models P6-501 and P7-501 from TAI ) that

extended to the mixing chamber plate without interruption. The strap has the advantage
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of being durable, flexible, and reusable.

Surface preparation. The physical and chemical condition of the surfaces forming

the contact determine RC. When a component is machined, the stresses applied to

the surface create dislocations and riddle the surface with extremely narrow (order of a

few nanometers) but deep (hundreds of nanometers) cracks, into which machining oils

seep. The cracks and oil residues degrade the surface quality, visually, electrically, and

thermally. For this reason, all surfaces involved in forming a thermal link were prepared in

the following way. First, they were cleaned abrasively with scotch bright, buffing, and fine

sandpaper, removing the top surface layer and resulting in a shiny mirror finish. Second,

the mating component was cleaned chemically. Typically, by sonication in an anionic

detergent solution (Alconox 1%), followed by acetone, then IPA, and finally blow dried

with dry nitrogen air. For more aggressive cleaning, we used a powerful oxidizing agent,

nitric acid (HNO3), to etch the surface. The acid and oxidized impurities were then

washed away with deionized water, followed by an acetone and isopropanol (IPA) bath,

and finally a nitrogen blow dry. The components were then mounted immediately, before

a substantial oxide layer could form. For previously treated components that required

remounting, the mating surface was cleaned with blue solder flux, which has a high

concentration of nitric acid, immediately prior to mounting.

4.4.3 Light and magnetic shielding

The quality factor of superconducting microwave aluminum resonators (and qubits) is

known to strongly depend on the quality of the infrared and magnetic shielding of the

embedding environment (Barends et al., 2011, Wang et al., 2014, Kreikebaum et al.,

2016). Stray infrared light that is absorbed by a superconductor creates quasiparticles,

which reduces the overall quality factor of the superconducting surface. This effect is
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especially pronounced in aluminum, whose superconducting gap is rather low, ≈ 88 GHz

(Barends et al., 2011, de Visser et al., 2011). The effect of stray light can be largely

mitigated with multistage infrared shielding. Magnetic fields at the surface of the super-

conductor can suppress the superconducting gap and introduce vortices, which generally

reduce the inductive surface quality, although, under certain conditions, the vortices can

act as quasiparticle traps, and can result in overall higher quality (Wang et al., 2014, Vool

et al., 2014).

Light shielding. Black-body radiation from warmer stages in the dilution refrigerator

was blocked by reflective thermal shields enclosing the mixing chamber space and special

care with taken to prevent line-of-sight leaks through screw holes, et cetera. However,

low frequency photons are more difficult to shield against, and several further strategies

were employed to make a light-tight sample space for the Darkmon device. In addition

to the indium seal between the two metal halves of the sample holder, the sample holder

was wrapped in three layers of aluminized mylar foil, secured with copper tape. In some

cooldowns, the inside of the magnetic shield housing the sample (see below) was lined with

infrared absorbing epoxy (Barends et al., 2011, Rigetti et al., 2012). Coaxial thermalization

and infrared filters (teflon replaced by Eccosorb CR-110 as the dielectric) were used on

the input and output lines of the sample.

Magnetic shielding. A high-magnetic-permeability, µ-metal (Amumetal A4K ) can en-

closed an aluminum superconducting cylinder which housed the sample. In this config-

uration, the µ-metal shield allows the superconducting shield to cool through its critical

temperature in a lower magnetic field, lowering the possibility of vortex trapping. Both

shields were thermally anchored to the mixing-chamber base plate by thermal straps, while

the µ-metal shield was also anchored to the cold-finger by direct contact. Components

employed within the can were tested for magnetic impurities with a magnetometer. Special
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care was taken to avoid markings and paint that could be magnetic; paint on components,

such as directional couplers, was stripped with a solvent bath (typically, Acetone).

4.5 Microwave setup

Room temperature. The control tones depicted in Fig. 1.1 were each generated from

individual microwave generators (ΩD and ΩB0: Agilent N5183A; readout cavity tone R

and ΩB1: Vaunix LabBrick LMS-103-13 and LMS-802-13, respectively). To achieve IQ

control, the generated tones were mixed (Marki Microwave Mixers IQ-0618LXP for the

cavity and IQ-0307LXP for ΩB0,ΩB1, and ΩD) with intermediate-frequency (IF) signals

synthesized by the 16 bit digital-to-analog converters (DACs) of the integrated FPGA

controller system (Innovative Integration VPXI-ePC ). Prior to mixing, each analog output

was filtered by a 50 Ω low pass filter (Mini-Circuits BLP-300+) and attenuated by a

minimum of 10 dB. The radio-frequency (RF) output was amplified at room temperature

(MiniCircuits ZVA-183-S+) and filtered by Mini-Circuits coaxial bandpass filters. The

output signal was further pulse modulated by the FPGA with high-isolation SPST switches

(Analog Device HMC-C019), which provided additional 80 dB isolation when the control

drives were turned off. The signals were subsequently routed to the input lines of the

refrigerator.

At room temperature, following the cryogenic high-electron mobility amplifier (HEMT;

Low Noise Factory LNF-LNC7_10A), the signal were amplified by 28 dB (Miteq AFS3-

00101200-35-ULN) before being mixed down (Marki image reject double-balanced mixer

IRW-0618) to an intermediate frequency (IF) of 50MHz, where they were band-pass

filtered (Mini-Circuits SIF-50+) and further amplified by a cascaded preamplifier (Stan-

ford Research Systems SR445A), before finally digitization by the FPGA analog-to-digital

converters (ADC).
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Cryogenic. The experiments were carried out in a cryogen-free dilution refrigerator

(Oxford Triton 200). Our input-output cryogenic setup is nearly identical to that de-

scribed in Ofek et al. (2016) and Minev et al. (2016), aside from the differences ev-

ident in the schematic of our setup (see Figs. 1.1b) Notably, for the output lines be-

tween the sample and the HEMT, we employed low-loss superconducting cables (CoaxCo

Ltd. SC-086/50-NbTi-NbTi PTFE ). The input line had a 12 GHz low-pass filter (K&L

6L250-12000/T26000-OP/O) and the output line had two broadband isolators (Quinstar

CWJ1019-K414), providing a total of 36 dB of reverse isolation between the HEMT and

the JPC. Since the experiment spanned more than a dozen cool-downs, we note that

regular retightening of all cryogenic SMA connectors and screws was observed to yield

overall better performance.
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Additional experimental results

A strong claim of violation [of Bell’s
inequality] should be supported by at
least a 5 sigma deviation.

Alain Aspect
Rosenthal Lecture, 2018

T his chapter presents experimental results and control experiments that support the

main experimental results and conclusions presented in Chapter 1. The charac-

terization of the Hamiltonian parameters, coherence properties, and other non-idealities

of the two-transmon, one-readout-cavity device employed in the experiment is discussed

in Sec. 5.1. The calibration of the tomography and control pulses and relevant control

experiments are discussed in Sec. 5.2. A summary of the drive amplitudes and frequencies

can be found in Sec. 5.2.3. Details of the experimental flow of the catch and reverse

protocol with regard to the FPGA controller are discussed in Sec. 5.4. A comparison be-

tween the predictions of the quantum trajectory description of the experiment developed

in Chapter 3 and the main experimental results is presented in Sec. 5.5.
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5.1 Characterization of the system

In this section, we describe the characterization of the Hamiltonian and coherence pa-

rameters of the two-transmon, one-readout-cavity device employed in the experiment. In

reference to the protected Dark level, which is engineered to be decoupled from the en-

vironment and readout cavity, we nickname the device “Darkmon.” The low-excitation

manifold of the Darkmon device is well described by the approximate dispersive Hamilto-

nian, see Sec. 4.1,

Ĥ/~ =ωBb̂
†b̂− 1

2
αBb̂

†2b̂2 + ωDd̂
†d̂− 1

2
αDd̂

†2d̂2 − χDBb̂
†b̂d̂†d̂ (5.1)

(
ωC + χBb̂

†b̂+ χDd̂
†d̂
)
ĉ†ĉ ,

where ωD,B,C are the Dark, Bright, and cavity mode frequencies, d̂, b̂, ĉ are the respective

mode amplitude (annihilation) operators, αD (αB) is the Dark (Bright) transmon anhar-

monicity, χD (χB) is the dispersive shift between the Dark (Bright) transmon and the

readout cavity, and χDB is the dispersive shift between the two qubits. The Dark, |D〉,

and Bright, |B〉 , states correspond to a single excitation in the Dark and Bright transmon

modes, d̂† |0〉 and b̂† |0〉, respectively; see Fig. 4.2 for a level diagram of the low-energy

manifold.

The readout cavity frequency was spectroscopically measured in reflection (Geerlings,

2013), ωC/2π = 8979.640MHz, and the extracted cavity linewidth agreed well with an

independent measurement of the energy-relaxation rate of the cavity extracted from a

time-domain ring-down measurement, κ/2π = 3.62±0.05 MHz. The cavity was observed

to be well over-coupled; i.e., the coupling quality factor, Qc, dominated the internal quality

factor, Qi; making it difficult to precisely extract Qi. The frequency and anharmonicity of

the B transmon were ωB/2π = 5570.349 MHz and αB/2π = 195 MHz, respectively, mea-
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sured with two-tone pulsed spectroscopy (Geerlings, 2013, Reagor, 2016). The frequency

and anharmonicity of the D transmon, ωD/2π = 4845.255 MHz and αD/2π = 152 MHz,

respectively, were measured in a modified two-tone spectroscopy sequence, where the |G〉

level was mapped to the |B〉 level at the end of the spectroscopy sequence, before the

readout, with π-pulse on the BG transition. In a similar two-tone spectroscopy experi-

ment, which included a pre-rotation on either the BG or DG transition, and a measurement

rotation after the probe tone is turned off but before the readout tone is actuated, the

cross-Kerr coupling between the two qubits was measured to be χDB/2π = 61±2 MHz. In

a standard energy-relaxation experiment (Geerlings, 2013), the |B〉 lifetime was measured

to be TB
1 = 28± 2µs, which we believe is limited by the Purcell effect with the readout

cavity mode, based on a finite-element calculation, see Sec. 4.1.2. The Ramsey coherence

time of |B〉 was TR,B
2 = 18 ± 1µs, possibly limited by photon shot noise (Gambetta

et al., 2006, Rigetti et al., 2012). The measured Hamiltonian and coherence parameters

of the device are summarized in Table 5.1, where the drive parameters employed in the

experiment can also be found.

5.1.1 Measurement-induced relaxation T1(n̄)

It has been established in the superconducting qubit community (Boissonneault et al.,

2009, Slichter et al., 2012, Sank et al., 2016, Slichter et al., 2016) that as a function of

the number of photons circulating in the readout cavity, n̄, the energy-relaxation time, T1,

of a dispersively coupled qubit is degraded. In Fig. 5.1, we show a measurement of the

T1 lifetime of the |B〉 and |D〉 states as a function of the readout drive strength, in units

of the number of circulating photons, n̄, when the drive is resonant; the measurement

protocol is explained in the figure caption. As typically observed in cQED experiments,

the Bright level, which is directly coupled to the readout cavity, exhibits a large parasitic
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Readout cavity BG transition DG transition

Mode frequencies and non-linear parameters

ωC/2π = 8979.640MHz ωBG/2π = 5570.349MHz ωDG/2π = 4845.255MHz

χB/2π = −5.08± 0.2 MHz χD/2π = −0.33± 0.08 MHz

αB/2π = 195± 2 MHz αD/2π = 152± 2 MHz

χDB/2π = 61± 2 MHz

Coherence related parameters

κ/2π= 3.62± 0.05 MHz TB
1 = 28± 2µs TD

1 = 116± 5µs

η = 0.33± 0.03 TB
2R = 18± 1µs TD

2R = 120± 5µs

Tint = 260.0 ns TB
2E = 25± 2µs TD

2E = 162± 6µs

nC
th ≤ 0.0017± 0.0002 nB

th ≤ 0.01± 0.005 nD
th ≤ 0.05± 0.01

Drive amplitude and detuning parameters

n̄ = 5.0± 0.2 ΩB0/2π = 1.20± 0.01 MHz ΩDG/2π = 20± 2 kHz

ΩB1/2π = 0.60± 0.01 MHz

∆R = χB ∆B1/2π = −30.0MHz ∆DG/2π = −275.0 kHz

Table 5.1 | Compilation of experimental parameters.



5.1. Characterization of the system 129

T
1-1

 (µ
s-1

)

Bright B

Dark D

Readout drive strength n

guide
for eye

Figure 5.1 | Measurement-induced energy relaxation T1(n̄). Energy relaxation
rate (T−1

1 ) of |B〉 (blue dots) and |D〉 (red dots) as a function of n̄, measured with the
following protocol: after the atom is prepared in either |B〉 or |D〉, the readout tone (R) is
turned on for duration tread with amplitude n̄ (corresponding to the number of steady-state
photons in the readout cavity when excited on resonance), whereafter, the population of
the initial state is measured. As in all other experiments, the readout drive is applied at
the |B〉 cavity frequency (ωC − χB). The relaxation rates are extracted from exponential
fits of the population decay as a function of tread, from 1.3×107 experimental realizations.
The solids lines are guides to the eye: blue line indicates the rapid degradation of TB

1 as
a function of the readout strength, while the red line indicates the nearly constants TD

1

of the protected dark level.

measurement-induced energy relaxation, TB
1 (n̄) – its lifetime suffers more than an order

of magnitude degradation. On the other hand, perhaps surprisingly, the lifetime, TD
1 , of

the Dark state, |D〉, remains essentially unaffected, even at very large drive strengths,

n̄ ≈ 50. In this sense, the Dark level is protected from the T1 (n̄) parasitic effect.
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5.2 Control of the three-level atom

5.2.1 Qubit pulses

The implementation of precise and coherent manipulation of the three-level atom is im-

portant for the tomographic reconstruction of the flight of the quantum jump as well the

ability to faithfully reverse it. One of the main sources of pulse infidelity is typically deco-

herence, but the rather long coherence time of the Darkmon device relative to the duration

of the pulses employed in the experiment make it largely unimportant, and instead, place

emphasis on the technical details of pulse generation and Hamiltonian non-idealities, such

as leakage to higher excited states.

Mitigation of main technical non-idealities. The effect of the zero-order hold of the

FPGA digital-to-analog converter (DAC) was mitigated by installing a 270 MHz low pass

filter (Mini-Circuits BLP-300+) on each of the analog output channels, see Sec. 4.5. All

microwave tones were generated with single-sideband IQ-controlled modulation at a base

intermediate frequency (IF) of 50 MHz, and the lower radio-frequency (RF) sideband was

used for the control tones (detuned 50 MHz below the local oscillator (LO) frequency).

The IQ mixers were calibrated with a four stage iterative routine to minimize carrier

leakage, by tuning the DC offsets of the I and Q channels, and to suppress the RF

image, by minimizing the quadrature skew and IQ gain imbalance. The LO leakage could

typically be suppressed to ≈ −70 dB relative to the RF tone. Spurious intermodulation

tones generated by higher-order non-linear terms present in the mixers [i.e., third-order

intercept-point (IP3) products] were generally negligible as the mixers were not typically

driven near saturation, but bandpass filters were installed on the RF outputs of all mixers

to nonetheless suppress any spurious tones. Excess noise from the following RF amplifier

(MiniCircuits ZVA-183-S+) was suppressed by 80 dB when the control drives were turned
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off by use of a high-isolation SPST switch (Analog Device HMC-C019).

The pulses applied to the Dark and Bright transition were calibrated with a combination

of Rabi, derivative removal via adiabatic gate (DRAG) (Chow et al., 2010), All-XY (Reed,

2013), and amplitude pulse train sequences (Bylander et al., 2011). Pulse timings and

delays, especially between the analog channels and the SPST switch digital markers,

were calibrated with a wide-bandwidth oscilloscope with ultra-low jitter (Keysight 86100D

Infiniium DCA-X ). The alignment was verified by performing a Gaussian qubit π pulse on

the GB transition and varying the delay between the rise of the SPST digital marker and

the signal on the analog IQ pair playing the pulse.

5.2.2 Tomography of the three-level atom

At the end of each experimental realization, we performed one of 15 rotation sequences

on the atom that transferred information about one component of the density matrix,

ρ̂a, to the population of |B〉, which was measured with a 600 ns square pulse on the

readout cavity. Pulses were calibrated as discussed in Sec. 5.2.1. The readout signal was

demodulated with the appropriate digital filter function required to realize temporal mode

matching (Eichler et al., 2012). To remove the effect of potential systematic offset errors

in the readout signal, we subtracted the measurement results of operator components of

ρ̂a and their opposites. From the measurement results of this protocol, we reconstructed

the density matrix ρ̂a, and subsequently parametrized it the useful form

ρ̂a =




N
2

(1− ZGD) N
2

(XGD + iYGD) RBG + iIBG

N
2

(XGD − iYGD) N
2

(1 + ZGD) RBD + iIBD

RBG − iIBG RBD − iIBD 1−N



, (5.2)
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where XGD, YGD, and ZGD are the Bloch vector components of the GD manifold, N is

the total population of the |G〉 and |D〉 states, while RBG, RBD, IBG and IBD are the

coherences associated with |B〉, relative to the GD manifold. The measured population

in |B〉, 1−N , remains below 0.03 during the quantum jump, see Fig. 5.3. Tomographic

reconstruction was calibrated and verified by preparing Clifford states, accounting for the

readout fidelity of 97%.

Control experiment. In Fig. 5.2, we show the results of a control experiment where we

verified the Ramsey coherence (TD
2R) and energy relaxation (T

D
1 ) times of the DG transition

with our tomography method. Solid lines are fitted theoretical curves for the free evolution

of the prepared initial state 1√
2

(|D〉 − |G〉). The TD
2R = 119.2µs value gained from the

simultaneous fit of XDG(t) and YDG(t) matches the lifetime independently obtained from

a standard T2R measurement. Similarly, the value of TD
1 = 115.4µs extracted from an

exponential fit of ZDG(t) matches the value obtained from a standard T1 measurement.

We note that our tomography procedure is well calibrated and skew-free, as evident in

the zero steady-state values of XDG and YDG. The steady state ZDG corresponds to the

thermal population of the dark state nD
th.

Mid-flight tomogram. In the presence of the coherent Rabi drive ΩDG (corresponding

to catch parameter ∆toff = 0), the complete tomogram of the three-level atom was

reconstructed, and a slice at the mid-flight time, ∆tmid, is shown in Fig. 5.3. All imaginary

components of the reconstructed conditional density matrix, ρc, are negligibly small, less

than 0.007, as expected, see Sec. 5.5, for well-calibrated tomographic phase control. The

population of the |B〉 state, 0.023, is nearly negligible as well, as it is conditioned away

by the IQ filter, see Sec. 5.3.1.
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Figure 5.2 | Control experiment: time-resolved tomogram of the free evolution
of a DG superposition. The atom is prepared in 1√

2
(|D〉 − |G〉) and tomography is

performed after a varied delay. Dots: reconstructed conditional GD tomogram (XDG, YDG,
and ZDG) and population in DG manifold, N , see Eq. (5.2). Solid lines: theoretical fits.

Re ρc(∆tmid)a b Im ρc(∆tmid)

Figure 5.3 | Mid-flight tomogram. The plots show the real (a) and imaginary
(b) parts of the conditional density matrix, ρc, at the mid flight of the quantum jump
(∆tcatch = ∆tmid), in the presence of the Rabi drive from |G〉 to |D〉 (∆toff = 0). The
population of the |B〉 state is 0.023, and the magnitude of all imaginary components is
less than 0.007.
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5.2.3 Atom and cavity drives

In all experiments, unless noted otherwise, the following drive parameters were used: The

DG Rabi drive, ΩDG, was applied 275 kHz below ωD to account for the Stark shift of the

cavity. The BG drive, ΩBG, was realized as a bi-chromatic tone in order to unselectively

address the BG transition, which was broadened and Stark shifted due to the coupling

between |B〉 and the readout cavity. Specifically, we addressed transitions from |G〉 to

|B〉 with a Rabi drive ΩB0/2π = 1.20± 0.01 MHz at frequency ωBG, whereas transitions

from |B〉 to |G〉 were addressed with a Rabi drive ΩB1/2π = 0.60 ± 0.01 MHz tuned

30 MHz below ωBG. This bi-chromatic scheme provided the ability to tune the up-click

and down-click rates independently, but otherwise essentially functioned as an incoherent

broad-band source. In Table 5.2, we summarize the hierarchy of timescales established by

the drive amplitudes and frequencies as well as the relevant decoherence properties of the

atom.

5.3 Monitoring quantum jumps in real time

5.3.1 IQ filter

To mitigate the effects of imperfections in the atom readout scheme in extracting a

|B〉/not-|B〉 result, we applied a two-point, hysteretic IQ filter, implemented on the FPGA

controller in real time. The filter is realized by comparing the present quadrature record

values {Irec, Qrec}, with three thresholds (IB, IB̄, and QB) in the following way:

Input: Qrec ≥ QB or

Irec > IB

Qrec < QB and

Irec < IB̄

Qrec < QB and

IB̄ ≤ Irec ≤ IB

Output: |B〉 not-|B〉 previous
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Symbol Value Description

Γ−1 ≈ 8.8 ns Effective measurement time of |B〉, approximately given
by 1/κn̄, where n̄ = 5± 0.2 in the main experiment

κ−1 44.0± 0.06 ns Readout cavity lifetime

Tint 260.0 ns Integration time of the measurement record, set in the
controller at the beginning of the experiment

Γ−1
BG 0.99± 0.06µs Average time the atom rests in |G〉 before an excitation

to |B〉, see Fig. 1.2b

∆tmid 3.95µs No-click duration for reaching ZGD = 0 in the flight of
the quantum jump from |G〉 to |D〉, in the full presence
of ΩDG, see Fig. 1.3b

Γ−1
GD 30.8± 0.4µs Average time the atom stays in |D〉 before returning to

|G〉 and being detected, see Fig. 1.2b

TD
1 116± 5µs Energy relaxation time of |D〉

TD
2R 120± 5µs Ramsey coherence time of |D〉
TD

2E 162± 6µs Echo coherence time of |D〉
Γ−1

DG 220± 5µs Average time between two consecutive |G〉 to |D〉 jumps

Table 5.2 | Summary of timescales.

The filter and thresholds were selected to provide a best estimate of the time of a click,

operationally understood as a change in the filter output from |B〉 to not-|B〉. The IB and

IB̄ thresholds were chosen 1.5 standard deviations away from the I-quadrature mean of

the |B〉 and not-|B〉 distributions, respectively. The QB threshold was chosen 3 standard

deviations away from the Q-quadrature mean. Higher excited states of the atom were

selected out by Qrec values exceeding the QB threshold.

5.3.2 Unconditioned monitoring

In Sec. 1.2, we described a protocol for the unconditioned monitoring of the quantum

jumps where the atom is subject to the continuous Rabi drives ΩBG and ΩDG, as depicted
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Figure 5.4 | Waiting time to switch from a |B〉 to not-|B〉 state assignment
result. Semi-log plot of the histogram (shaded green) of the duration of times corre-
sponding to |B〉-measurement results, τB, for 3.2 s of continuous data of the type shown
in Fig. 1.2a. Solid line is an exponential fit, which yields a 4.2± 0.03µs time constant.

in Fig. 1.1. From the continuous tracking of the quantum jumps, over 3.2 s. of data,

we histogrammed the times, τnot-B, spent in not-|B〉, Fig. 1.2b. In Fig. 5.4, we show

the complimentary histogram for the times, τB, spent in |B〉, which is unlike the latter,

in that it follows a single exponential decay law. This single Poisson process character

follows from the fact that the |B〉 measurement result collapses the atom to a single state,

|B〉, unlike the not-|B〉 result. The average time spent in |B〉, extracted from the fit, is

τ̄B = 4.2± 0.03µs.
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5.4 Catching and reversing the jump

5.4.1 Experiment flow

Figure 5.5a shows a flowchart representation of steps involved in the catch and reverse

protocol. In the following, we describe each block in the diagram in the order in which it

would be executed.

Start: internal memory registers are set to zero (Ofek et al., 2016, Liu, 2016), including

the no-click counter “cnt,” defined below.

Prepare B: controller deterministically prepares the atom in |B〉, a maximally conser-

vative initial state, with measurement-based feedback (Ristè et al., 2012a).

Initialize: controller turns on the atom (ΩBG and ΩDG) and cavity drives (R) and begins

demodulation.

Monitor and catch ∆ton: with all drives on (ΩBG,ΩDG, and R), the controller actively

monitors the cavity output signal until it detects no-clicks for duration ∆ton, as described

in panel (b), whereafter, the controller proceeds to “monitor and catch ∆toff” in the

case that ∆toff > 0; otherwise, for ∆toff = 0, the controller proceeds to “tomography”

(“feedback pulse”) for the catch (reverse) protocol.

Monitor and catch ∆toff : with the Rabi drive ΩDG off, while keeping the drives ΩBG

and R on, the controller continues to monitor the output signal. The controller exits the

routine only if it detects a click, proceeding to the “declare B” step of the “monitor and

catch ∆ton” routine, or if no further clicks are detected for the pre-defined duration ∆toff ,

proceeding to “tomography” (“feedback pulse”) for the catch (reverse) protocol.

Feedback pulse: with all the continuous drives turned off, the controller performs a

pulse on the DG transition of the atom, defined by the two angles {θI (∆tcatch) , ϕI (∆tcatch)}.
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Figure 5.5 | Experiment flow. See text for detailed description.
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Tomography: controller performs next-in-order tomography sequence (see Sec. 5.2.2)

while the demodulator finishes processing the final data in its pipeline.

Advance tomo.: tomography sequence counter is incremented, and after a 50 µs delay,

the next realization of the experiment is started.

Logic and timing of catch subroutines

Monitor and catch ∆ton. Figure 5.5b shows a concurrent-programming flowchart

representation of the “monitor and catch ∆ton” routine. Displayed are the master and

demodulator modules of the controller. The demodulator outputs a pair of 16 bit signed

integers, {Irec, Qrec}, every Tint = 260 ns, which is routed to the master module, as

depicted by the large left-pointing arrow. The master module implements the IQ filter

(see Sec. 5.3.1) and tracks the number of consecutive not-|B〉 measurement results with

the counter cnt. The counter thus keeps track of the no-click time elapsed since the last

click, which is understood as a change in the measurement result from |B〉 to not-|B〉.

When the counter reaches the critical value Non, corresponding to ∆ton, the master and

demodulator modules synchronously exit the current routine, see the T* branch of the

“declare not-B” decision block. Until this condition is fulfilled (F*), the two modules

proceed within the current routine as depicted by the black flowlines.

To minimize latency and maximize computation throughput, the master and demod-

ulator were designed to be independent sequential processes running concurrently on the

FPGA controller, communicating strictly through synchronous message passing, which im-

posed stringent synchronization and execution time constraints. All master inter-module

logic was constrained to run at a 260 ns cycle, the start of which necessarily was imposed

to coincide with a “receive & stream record” operation, here, denoted by the stopwatch.

In other words, this imposed the algorithmic constraint that all flowchart paths staring
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at a stopwatch and ending in a stopwatch, itself or other, were constrained to a 260 ns

execution timing. A second key timing constraint was imposed by the time required to

propagate signals between the different FPGA cards, which corresponded to a minimum

branching-instruction duration of 76 ns.

Monitor and catch ∆toff . Figure 5.5c shows a concurrent-programming flowchart

representation of the master module of the “monitor and catch ∆toff” routine. The

corresponding demodulation-module flowchart is identical to that shown of panel (b);

hence, it is not shown. This routine functions in following manner: If a |B〉 outcome

is detected, the controller jumps to the “declare B” block of the monitor & catch ∆ton

routine; otherwise, when only not-|B〉 outcomes are observed, and the counter reaches

the critical value Noff , corresponding to ∆tcatch = ∆ton + ∆toff , the controller exits the

routine.

5.5 Comparison between theory and experiment

In this section, we present the comparison between the results of the quantum jumps

experiment and the predictions of the quantum trajectory theory of the experiment de-

veloped in Chapter 3. The results agree with the theoretical predictions, accounting for

known imperfections, essentially without adjustable parameters. Simulation plots courtesy

of H.J. Carmichael.

5.5.1 Simulated data sets

Independently measured parameters. The parameters used in the Monte Carlo sim-

ulation described in Sec. 3.2.2 are listed in Table 5.3. Nearly all are set to the value at

the center of the range quoted in Table 5.1, with three exceptions: i) TB
1 and TD

1 are set
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to lower values in response to the photon number dependence of the readout displayed in

Fig. 5.1, ii) ΩDG/2π is set higher, but still falls inside the experimental error bars, and iii)

nC
th = 0. Notably, of the three exceptions, only ΩDG/2π has a noticeable effect on the

comparison between simulated and experimental data sets.

Leakage from the GBD-manifold. As discussed in Sec. 4.1, see Fig. 4.2, the Dark-

mon system has higher excited states, which are generally unimportant, but do contribute

a small imperfection that needs to be considered to qualitatively account for the results.

As discussed in Sec. 3.2.2, we model the effect of leakage from the GBD manifold by

adding a single additional higher-excited state level, denoted |F〉 . The additional random

jumps to state |F〉 are governed by four parameters that are not independently measured;

they serve as fitting parameters, required to bring the simulation into agreement with the

asymptotic behavior of Z(∆tcatch), which, without leakage to |F〉, settles to a value higher

than is measured in the experiment. The evolution of the X(∆tcatch) is largely unaffected

by the assignment of these parameters, where any change that does occur can be offset

by adjusting ΩDG/2π while staying within the experimental error bars.

Ensemble average. Simulated data sets are computed as an ensemble average by sam-

pling an ongoing Monte Carlo simulation, numerically implementing the model outlined in

Eqs. (3.57)–(3.64). Quadratures Irec and Qrec are computed from Eqs. (3.55) and (3.56),

digitized with integration time Tint = 260ns, and then, as in the experiment, a hysteric

filter is used to locate “click” events (∆tcatch = 0) corresponding to an inferred change

of state from |B〉 to not-|B〉. During the subsequent sampling interval (∆tcatch ≥ 0), the

four quantities

(
ZjGD,X

j
GD,Y

j
GD,P

j
BB

)
(∆tcatch) =

(
Zrec

GD,X
rec
GD,Y

rec
GD,P

rec
BB

)
(tj + ∆tcatch), (5.3)
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with tj is the click time and

Zrec
GD(t) =

〈D|ψ(t)〉〈ψ(t)|D〉 − 〈G|ψ(t)〉〈ψ(t)|G〉
〈ψ(t)|ψ(t)〉 , (5.4)

Xrec
GD(t) + iYrec

GD(t) = 2
〈D|ψ(t)〉〈ψ(t)|G〉
〈ψ(t)|ψ(t)〉 , (5.5)

Prec
BB(t) =

〈B|ψ(t)〉〈ψ(t)|B〉
〈ψ(t)|ψ(t)〉 , (5.6)

are computed, and running sums of each are updated. The sample terminates when the

measurement record indicates a change of state from not-|B〉 back to |B〉. Finally, for

comparison with the experiment, Bloch vector components are recovered from the average

over sample intervals via the formula

(
ZGD,XGD,YGD

)
(∆tcatch) =

∑N(∆tcatch)
j

(
ZjGD,X

j
GD,Y

j
GD

)
(∆tcatch)

N(∆tcatch)−∑N(∆tcatch)
j P j

BB(∆tcatch)
, (5.7)

where N(∆tcatch) is the number of sample intervals that extend up to, or beyond, the

time ∆tcatch. The simulation and sampling procedure is illustrated in Fig. 5.6, and a

comparison between the experiment and the simulation is provided in Fig. 5.7.
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Readout cavity BG transition DG transition

Non-linear parameters

χB/2π = −5.08 MHz χD/2π = −0.33 MHz

Coherence related parameters

κ/2π= 3.62MHz TB
1 = 15µs TD

1 = 105µs

η = 0.33 TB
2R = 18µs TD

2R = 120µs

Tint = 260.0 ns

nC
th = 0 nB

th = 0.01 nD
th = 0.05

Drive amplitude and detuning parameters

n̄ = 5.0 ΩB0/2π = 1.20 MHz ΩDG/2π = 21.6 kHz

ΩB1/2π = 0.60 MHz

∆R = χB ∆B1/2π = −30.0MHz ∆DG/2π = −274.5 kHz

Table 5.3 | Compilation of the simulation parameters.
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Figure 5.6 | Sampling of the Monte-Carlo simulation. a, Simulated measurement
quadrature Irec and correlated trajectory computed from Eqs. (5.4) and (5.5). Three
sample intervals are shown. The earliest corresponds to leakage from the GBD-manifold,
where a jump from |G〉 to |F〉 is followed by a jump from |F〉 to |D〉. The second and third
sample intervals correspond to direct transitions from |G〉 to |D〉, which are continuously
monitored and the object of the experiment. b, Expanded view of the shaded region of
the second sample interval in panel (a). The evolution is continuous but not smooth, due
to backaction noise from the continuously monitored readout. This feature is in sharp
contrast to the perfect “no-click” readout upon which the simple theory of Sec. 3.1 is
based. Figure courtesy of H.J. Carmichael.
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Figure 5.7 | Comparison between simulation and experiment. a, Simulated data
set obtained with Rabi drive ΩDG turned on for the entire ∆tcatch; parameters taken from
Table 5.3 and leakage from the GBD-manifold included with (γFG, γFD)/2π = 0.38kHz
and (γGF, γDF)/2π = 11.24kHz. b, Simulated data set obtained with Rabi drive ΩDG

turned off at time ∆ton = 2µs; parameters taken from Table 5.3 and leakage from
the GBD-manifold included with γFG/2π = 0.217kHz, γFD/2π = 4.34kHz, γGF/2π =
11.08kHz, and γDF/2π = 15.88kHz. When leakage from the GBD-manifold is omitted,
the ZGD curve rises more sharply and settles to a value that is 10% (20%) higher in panel
(a) (panel (b)). Figure courtesy of H.J. Carmichael.



5.5. Comparison between theory and experiment 146

5.5.2 Error budget

In this section, we examine the effect of the various imperfections and dissipation channels

on the fidelity of the catch protocol.

Imperfections. The various imperfections are expected to reduce the maximum coher-

ence recovered in the measurement of XGD(∆tcatch). They include:

1. Readout errors when inferring |B〉 to not-|B〉 transitions and the reverse. Such

errors affect the assignment of ∆tcatch, which can be either too short or too long

to correlate correctly with the true state of the system.

2. Leaks from the GBD-manifold to higher excited states. Importantly, these errors

mimic a |B〉 to not-|B〉 transition, as in the first sample interval of Fig. 5.6, but

the anticipated coherent evolution within the GBD-manifold does not occur. In this

manner, the excitations to higher states lead to false detections.

3. Thermal jumps from |G〉 to |D〉. Such incoherent transitions contribute in a similar

way to ZGD(∆tcatch), while making no contribution to the measured coherence.

4. Direct dephasing of the DG-coherence, TD
2R.

5. Partial distinguishability of |G〉 and |D〉. The readout cavity is not entirely empty

of photons when the state is not-|B〉, in which case the cross-Kerr interaction

χD|D〉〈D|ĉ†ĉ shifts the ΩDG Rabi drive from resonance; hence, backaction noise is

transferred from the photon number to XGD(∆tcatch).

Budget for lost coherence. The maximum coherence reported in the experiment is

0.71± 0.005. In the simulation it is a little lower at 0.69. By removing the imperfections

from the simulation, one by one, we can assign a fraction of the total coherence loss to
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each. Readout errors are eliminated by identifying transitions between |B〉 and not-|B〉 in

the ket |ψ〉 rather than from the simulated measurement record; all other imperfections

are turned off by setting some parameter to zero. The largest coherence loss comes from

readout errors, whose elimination raises the XGD(∆tcatch) maximum by 0.09. The next

largest comes from leakage to higher excited states, which raises the maximum by a further

0.06. Setting χD to zero adds a further 0.04, and thermal transitions and pure dephasing

together add 0.02. Figure 5.8 illustrates the change in the distribution of Xj
GD(∆tcatch)

samples underlying the recovery of coherence. The removal of the finger pointing to the

left in panel (a) is mainly brought about by the elimination of readout errors, while the

reduced line of zero coherence marks the elimination of leakage to higher excited states.

Aside from these two largest changes, there is also a sharpening of the distribution, at

a given ∆tcatch, when moving from panel (a) to panel (b). Having addressed the five

listed imperfections, a further 10% loss remains unaccounted for, i.e., the distribution of

panel (b) is not a line passing through Xj
GD(∆tmid) = 1. The final 10% is explained

by the heterodyne detection backaction noise, a function of the drive and measurement

parameters, displayed in panel (b) of Fig. 5.6.
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Figure 5.8 | Coherence loss through sample to sample fluctuations. a, Contour
plot of the distribution of Xj

GD(∆tcatch) samples corresponding to the simulated data set
displayed in panel (a) of Fig. 5.7. b, Same as panel (a) but with transitions between |B〉
and not-|B〉 identified in the ket |ψ〉 rather than from the simulated measurement record,
and with changed parameters: (γFG, γFD, γGF, γDF)/2π = 0, nB

th = nD
th = 0, TD

2 = 2TD
1 ,

and χD/2π = 0. Figure courtesy of H.J. Carmichael.



6
Conclusions and perspectives

Technological forecasting is even
harder than weather forecasting.

Rolf Landauer

6.1 Conclusions

In conclusion, we experimentally demonstrated that, despite the fundamental indetermin-

ism of quantum physics in the context of the monitoring of the evolution of a system,

it is possible to detect an advance warning that signals the occurrence of an event, the

quantum jump from the ground state (|G〉) to the excited state (|D〉) of a three-level

superconducting atom, prior to its complete occurrence (Sec. 1.3). While the quantum

jump begins at a random time and can be prematurely interrupted by a click, a quantum

jumps that completes follows a continuous, deterministic, and coherent “flight,” which

comes as a surprise in view of standard textbooks on quantum mechanics. The special

nature of the transition was exploited to catch the jump and reverse it to the ground state,

|G〉. Additionally, the state of the atom was tomographically reconstructed, ρc, as a func-

149
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tion of the duration of the catch signal, ∆tcatch, from 6.8 × 106 individual experimental

realizations, each catching a single jump occurring at a random time. At the mid-flight

time of the quantum jump, ∆tmid, the atom was observed to be in coherent superposi-

tion of |G〉 (equivalent to no jump) and |D〉 (equivalent to a jump), with state purity

Tr [ρ2
c ] = 0.75 ± 0.004. Even when conditionally turning off the Rabi drive between |G〉

and |D〉, ΩDG, at the beginning of the jump, ∆ton = 2 µs, the flight of the quantum jump

was observed to nonetheless proceed in coherent, deterministic, and essentially identical

manner, despite the absence of the coherent Rabi drive. This demonstrated that the role

of ΩDG is to initiate the jump and set its phase but is otherwise unimportant, and that the

dynamics of the flight are (essentially) entirely governed by the measurement-backaction

force due to the measurement, discussed in Chapter 3.

The jump coherence and deterministic-like character (any two jumps take the same

gradual flight) provide a small island of predictability in a sea of uncertainty that was

exploited, see Sec. 1.4, to reverse the quantum jump to the ground state, thus precluding

its occurrence. When applied at the mid-flight time, ∆tmid, the protocol succeeded in

reversing the jump to |G〉 with 82.0%±0.3% fidelity. Remarkably, under ideal conditions,

every jump that would complete is detected by the warning signal and reversed, thus

eliminating all quantum jumps from |G〉 to |D〉, and preventing the atom from ever

reaching |D〉. Jumps that would not complete and are reversed by the protocol meet their

fate faster by the warning-based intervention.

In Sec. 5.5, we showed that the experimental results agree essentially without ad-

justable parameters with the theory predictions, accounting for known experimental im-

perfections, such as finite quantum measurement efficiency, η, temperature, nth, dephas-

ing mechanisms, T1 and T2, etc. The agreement testifies for the validity, reliability, and

predictive power of quantum trajectory theory and suggests its critical role in the practical

development of real-time feedback techniques for quantum system control.



6.2. Perspectives 151

On a technological level, we developed a three-level superconducting atom with distinct

features of interest. By decoupling one of the states, |D〉, from both the readout cavity

and the environment, we demonstrated a protected qubit design with notable quantum

coherence, TD
2R = 120 ± 5µs, importantly, without sacrificing measurement efficiency or

speed, as typically necessitated when decoupling a level, see Sec. 4.1. Integral to the

implementation was the design optimization with the energy participation ratio (EPR)

approach, as described in Sec. 4.1. In Sec. 5.1.1, we demonstrated the ability to populate

the readout cavity with a large number of photons without degrading the coherence

properties of |D〉 due to measurement-induced relaxation, T1 (n̄) .

6.2 Perspectives

In the following, we discuss a few possible research directions that build on the catch and

reverse experiment and the development of the Darkmon system, listed in ascending order

of difficulty.

Fundamental tests. The Darkmon three-level atom is a particularly versatile platform

for fundamental tests in quantum physics. Two unique aspects of the |B〉/not-|B〉 mea-

surement are important for fundamental tests: i) it is information-asymmetric, and ii) its

is degenerate. For definitiveness, consider the situation where a measurement is performed

on the atom prepared in an unknown initial state. At first, the observer has no knowledge

of the system, i..e, zero bits of information. Performing a measurement and obtaining

a B outcome, the observer learns that the measurement has projected the atom in the

definite, pure state |B〉, and now posses complete knowledge of the system, and has thus

gained I = ln2 3 ≈ 1.6 bits of information, although the initial state remains unknown.

In contrast, in obtaining a not-B outcome, only I = ln2 (3/2) ≈ 0.6 bits of information

are gained, since the atom could still be in |G〉 or |D〉. The measurement has left behind
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1 bit of the initial-state information. Importantly, the |B〉/not-|B〉 measurement does not

disturb this bit, and preserves its quantum coherence. Since it leaves behind a manifold

of states untouched, it is known as degenerate measurement.

Contextuality. — Degenerate measurements are required to perform tests of Kochen-

Specker contextuality (Kochen and Specker, 1967), which reveals an essential aspect of

the nonclassical nature of quantum measurements and constrains hidden variable theories;

it can be viewed as a complement to Bell’s theorem. It follows from the degenerate

measurement requirement that a qutrit is the simplest system in which contextuality can

be observed, and the Darkmon system with its notable control and coherence properties

could prove a well-suited testbed for rigorous tests (Mermin, 1993, Klyachko et al., 2008,

Yu and Oh, 2012, Szangolies, 2015).

Wavefunction collapse and the arrow of time. — There is a growing interest in the

community to experimentally investigate the dynamics of the wavefunction “collapse”

(Katz et al., 2006, 2008, Murch et al., 2013b, Hatridge et al., 2013, Weber et al., 2014,

Campagne-Ibarcq et al., 2014, 2016, Jordan et al., 2016, Naghiloo et al., 2016, Tan et al.,

2017, Harrington et al., 2017) and associated fundamental questions. An interesting

research direction is to investigate the emergence of the apparent irreversibility of the

collapse, which, it is argued, yields the arrow of time in quantum physics. Recently,

theoretical work has emerged that suggests ways in which quantum trajectory experiments

can begin to probe this outstanding question regarding the origin of the arrow of time with

the tools of quantum trajectory theory (Dressel et al., 2017, Jordan et al., 2017). Focus so

far has been almost exclusively on two level systems, but important fundamental features

in quantum physics, such as Kochen-Specker contextuality, only emerge in systems of

larger than two dimension. The arrow of time is an especially interesting direction in view

of the results presented here, where we reverse quantum jumps prior to their complete

occurrence. We believe the Darkmon system and its degenerate measurement could offer
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a unique vantage point on the problem.

Thermodynamics. — In a related research direction, the Darkmon system could be

employed to probe the emergence of thermodynamics in continuously monitored systems,

a question of active research in the community. Specifically, understanding (and formulat-

ing) the fundamental laws of thermodynamics in the quantum domain, as well as notions

such as work, heat, and Maxwell’s demon, with applications to heat engines, are under

investigation and can be explored with quantum trajectories in the multi-level system

(Alonso et al., 2016, Naghiloo et al., 2017, Elouard et al., 2017, Cottet et al., 2017).

Protected qubit with faithful readout. Technologically, pursuing further the ideas

demonstrated with the Darkmon system could lead to improved qubit coherences and

measurement capabilities within the cQED architecture with the aim of addressing the

third and fourth DiVincenzo criteria for practical quantum computation (DiVincenzo,

2000) .

In the development of fast and high-fidelity superconducting qubit readout, a number

of non-linear process have been employed (Cooper et al., 2004, Astafiev et al., 2004,

Siddiqi et al., 2006, Lupaşcu et al., 2006, Mallet et al., 2009, Reed et al., 2010), but

the linear dispersive readout, by means of a low-Q cavity (Wallraff et al., 2005, Blais

et al., 2004, Johnson et al., 2012, Ristè et al., 2012b), is adopted most widely. While the

cavity inhibits the spontaneous relaxation of the qubit, it introduces three additional loss

mechanisms: i) energy relaxation (T1) due to the Purcell effect (Esteve et al., 1986, Koch

et al., 2007, Neeley et al., 2008), ii) qubit dephasing (Tφ) due to the photon shot noise

of the readout cavity (Blais et al., 2004, Schuster et al., 2005, Gambetta et al., 2006,

Schuster et al., 2007, Gambetta et al., 2008, Sears et al., 2012, Rigetti et al., 2012),

often dominated by residual thermal population, nth, and iii) measurement-induced qubit

energy relaxation (T1 (n̄)) (Boissonneault et al., 2009, Slichter et al., 2012, Sank et al.,
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2016, Slichter et al., 2016). In contrast, the GD qubit in the Darkmon device is decoupled

from all three dissipation channels, while still benefiting from the cavity properties, and

not sacrificing the ability to perform a fast readout or to monitor the atom continuously.

Practically advantageous is that the design is hardware-efficient (simple) in the sense that

it does not require additional control gates, such as fast-flux lines or DC gates, or other

high-power pump tones.

An interesting idea to pursue further stems from the use of the readout cavity in the

catch and reverse experiment to provide amplification (and transduction) of the |B〉 signal

prior to its transmission to the following quantum-limited amplifier. Reducing losses in

the transmission, η, is an outstanding challenge in the field. However, a strategy to

overcome this problem is indicated by the design: the addition of a built-in gain element

at the site of the sample that provides sufficient amplification to overcome transmission

losses and whose coupling to the readout signal can be tuned independently of the gain

(in the experiment, by means of ΩBG). First, we note that direct monitoring of the |B〉

signal, by means of fluorescence detection, would have prohibited the faithful execution

of the catch and reverse protocol, since a large number of the click signals would have

been lost in transmission, due to η. In contrast, in the experiment, the |B〉/not-|B〉 signal

was effectively amplified fivefold (with frequency transduction) by the readout scheme by

use of the large disperse shift, χBC � κC , and the cavity probe tone, n̄. In contrast

to the usual dispersive readout scheme, where the use of a large probe signal, n̄, results

in degradation of the signal-to-noise ratio and qubit coherence due to the T1 (n̄) effect,

the |D〉 level was shown to be essentially immune to this, see Sec. 5.1.1. This could

provide the ability to use strong pump tones to activate interesting non-linear interactions

(Mundhada et al., 2017) without harming |D〉, and to implement a gain element or to

couple |B〉 to the readout cavity in a dissipation engineered manner. A specific form of

the latter would realize a coupling term proportional to |G〉 〈B|
(
â+ â†

)
, where â is the
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cavity annihilation operator that would operate as follows: if the atom is not-in-|B〉, the

cavity is empty, otherwise, as ΩBG steers the atom from |G〉 to |B〉, the cavity fills with

n̄ � 1 photons and activates a strong dissipation channel of |B〉 that repopulates |G〉

before |B〉 is ever appreciably populated. Similar-in-spirit dissipation channels have been

realized, e.g., with the double-drive reset-of-population (DDROP) protocol (Geerlings

et al., 2013). If sufficient gain is achieved, no quantum-limited amplifier is required, and

the scheme would simplify the setup and transmission losses, η.

Distillation and single-photon detector. The degenerate measurement of the Dark-

mon atom, perhaps employed with the lowest four levels, could make it an interesting

candidate for magic-state and entanglement distillation protocols (Bennett et al., 1996,

Bravyi and Kitaev, 2005). Interestingly, the detection of a quantum jump from |G〉 to

|D〉 can be viewed as the absorption and detection of a photon from the input-output

transmission line. In this sense, the three-level monitoring scheme implements a pho-

todetection apparatus for single flying microwave photons in cQED. The device could

be optimized with this goal in mind to address the outstanding challenge of detecting

itinerant microwave photons with high efficiency (Chen et al., 2011, Fan et al., 2014,

Inomata et al., 2016, Narla et al., 2016). In contrast to previous work on this subject,

which focused on operating detectors in a time-gated mode, the Darkmon scheme affords

the advantage of time-resolved, time-continuous photodetection with gain. It is possible

these advantages can be exploited for catching and releasing flying Fock states (Kalb

et al., 2017, Campagne-Ibarcq et al., 2017).

Stochastic drive, ΩDG, and reversal. Realizable with the current device, one could

catch and reverse the quantum jump from |G〉 to |D〉 in the presence of a stochastic

drive from |G〉 to |D〉, ΩDG (t). The stochastic drive more realistically models the effect

of the environment and breaks the feature of identical jumps; i.e., any two jumps no
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longer look identical. The phase of the mid-flight superposition between |G〉 and |D〉 is

determined by the details of the stochastic ΩDG phase during the initial period of the

jump, ∆tcatch � ∆tmid. Nonetheless, our prediction is that if the phase fluctuations of

ΩDG at the beginning of the jump are known, one could still successfully reverse the jump

mid-flight with the appropriate coherent intervention. This could be implemented by

generating ΩDG with the FPGA controller, on the fly, and having the controller calculate

the correct intervention angles, {θI (∆tcatch) , ϕI (∆tcatch)}. The reverse could be studied

as a function of the bandwidth of the noisy signal, ΩDG (practically, this could be made as

large as 25 MHz), thus exploring the crossover from jump dynamics due to deterministic

forces and those of the environment, perhaps shedding further light on decoherence and

measurement irreversibility.

Phase-agnostic reversal and quantum error correction. Calculation of the angles,

{θI (∆tcatch) , ϕI (∆tcatch)}, becomes increasingly difficult for larger noise bandwidths. An

alternative strategy is to implement a phase-agnostic reversal. This could be achieved with

dissipation engineering (Poyatos et al., 1996) to conditionally dynamically cool to atom

the ground state. Practical cooling protocols have been experimentally demonstrated in

cQED (Valenzuela et al., 2006, Grajcar et al., 2008, Murch et al., 2012, Geerlings et al.,

2013, Liu et al., 2016).

Instead of dissipation engineering, the jump could be reversed by means of a measurement-

backaction force due to another measurement. This will likely have to be probabilistic,

unless adaptive measurements (Wiseman, 1995, Jacobs, 2003) or measured-based quan-

tum steering is employed (Schrödinger, 1935, Murch et al., 2013b, Wiseman et al., 2007).

Specifically, we propose to investigate a four-level scheme that builds on the Darkmon,

see Fig. 6.1. The ground state, |G〉, is monitored though a Bright state, |B1〉, by means

of Rabi drive, ΩB1 (t), and the photodetection of |B1〉 at rate Γ. Similarly, the Dark level,
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Figure 6.1 | Four-level atom with two counter-steering measurements. Sketch
of a modified Darkmon atom consisting of four levels: ground, |G〉, Dark, |D〉, a first
“Bright,” |B1〉, and a second “Bright,” |B2〉. Both Bright levels are monitored at rate Γ,
while controlled-actuated Rabi drives ΩB1 (t) and ΩB1 (t) turn on the effective monitoring
of |G〉 and |D〉 , respectively. A potentially stochastic Rabi drive ΩDG (t) links |G〉 and
|D〉.

|D〉, is monitored by coupling it with a Rabi drive ΩB2 (t) to a second Bright state, |B2〉,

monitored at rate Γ. Conditioned on no clicks, the |G〉 measurement steers the atom

toward |D〉 , see Chapter 3. In contrast, conditioned on no clicks, the |D〉 measurement

steers the atom toward |G〉. Both forces are phase agnostic. Since they oppose each other,

one can be used to undo the effect of the other with proper conditioning and control of

the Rabi drives. If |G〉 is measured subject to the Dark Rabi drive ΩDG from |G〉 to |D〉,

which could be deterministic or stochastic, while ΩB2 = 0, the protocol demonstrated in

Chapter 1 is implemented. When the signal warning of the occurrence of the quantum

jump from |G〉 to |D〉 is detected, ΩB1 is shut off. If the catch time is set to ∆tmid, the

state of the GD superposition is known to be on the GD equator, but its phase may be

unknown. If ΩB2 is turned on and the record is conditioned on no clicks, the jump should

be reversed, no matter what the superposition phase is. More generally, the opposition

of the two counter-steering no-click measurements offers a unique testbed for studying

non-commuting simultaneous measurements, a topic of rising interest in the field (Jordan

and Büttiker, 2005, Ruskov et al., 2010, Hacohen-Gourgy et al., 2016, Perarnau-Llobet

and Nieuwenhuizen, 2017, Atalaya et al., 2017, Lewalle et al., 2017, Patti et al., 2017,
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Ficheux et al., 2017, Chantasri et al., 2018).

Quantum jumps are intimately involved in the detection and correction of errors in

quantum information systems (Sun et al., 2013, Ofek et al., 2016). A controller con-

tinuously monitors an error syndrome, often parity, such as that of a cavity state (Ofek

et al., 2016, Cohen et al., 2017) or multi-qubit stabilizer (Huembeli and Nigg, 2017), and

detects jumps in the measurement record, which signal the occurrence of an error. The

error needs to corrected. Catch and reversing the quantum jump of an error syndrome

prior to its occurrence could prevent the error from manifesting fully. A research direction

that could be explored is to couple the GD transition to the parity operator of a long-lived

quantum-memory cavity (Kirchmair et al., 2013) that encodes a logical quantum state

(Cochrane et al., 1999, Mirrahimi et al., 2014, Leghtas et al., 2015, Michael et al., 2016,

Li et al., 2017, Touzard et al., 2017). The parity bit of the cavity state would be contin-

uously mapped onto the GD manifold. The state |G〉 would indicate no error, while |D〉

would indicate that an error has occurred. If the noise process driving the parity bit flips

has sufficiently narrow bandwidth, it may be possible to extend the catch and reverse pro-

tocol to intervene in the occurrence of the parity-bit error. By monitoring the |B〉/not-|B〉

measurement record as discussed in Chapter 1, the controller would detect the advance-

warning signal and immediately perform a phase-agnostic reversal of the jump to prevent

the error. Applications of the jump reversal protocol to quantum error correction schemes

present an interesting and open direction for theoretical and experimental research.

Closing statement. We hope the catch and reverse experiment offers a new vantage

point on the state-disturbing nature of measurements and the interplay between deter-

ministic forces and the necessarily-stochastic ones due to quantum measurements. More

generally, we hope it could provide a conceptually simple but striking illustration to help

write operationally-based, rather than postulate-based, textbooks for quantum mechanics.
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