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Energy-participation quantization of Josephson circuits
Zlatko K. Minev 1,4✉, Zaki Leghtas1,2, Shantanu O. Mundhada1,5, Lysander Christakis1,6, Ioan M. Pop 1,3 and Michel H. Devoret 1

Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are a leading platform for
emerging quantum technologies. Increasing circuit complexity further requires efficient methods for the calculation and
optimization of the spectrum, nonlinear interactions, and dissipation in multi-mode distributed quantum circuits. Here we present a
method based on the energy-participation ratio (EPR) of a dissipative or nonlinear element in an electromagnetic mode. The EPR, a
number between zero and one, quantifies how much of the mode energy is stored in each element. The EPRs obey universal
constraints and are calculated from one electromagnetic-eigenmode simulation. They lead directly to the system quantum
Hamiltonian and dissipative parameters. The method provides an intuitive and simple-to-use tool to quantize multi-junction
circuits. We experimentally tested this method on a variety of Josephson circuits and demonstrated agreement within several
percents for nonlinear couplings and modal Hamiltonian parameters, spanning five orders of magnitude in energy, across a dozen
samples.
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INTRODUCTION
Quantum information processing based on the control of
microwave electromagnetic fields in Josephson circuits is a
promising platform for both fundamental physics experiments
and emerging quantum technologies1–3. Key to the success of this
platform is the ability to quantitatively model the distributed
quantized electromagnetic modes of the system, their nonlinear
interactions, and their dissipation (see Fig. 1). This challenge is the
subject of intensifying interest4–26, as experimental architec-
tures27–36 and nonlinear devices37–44 scale in both complexity
and diversity.
In this paper, we introduce a circuit quantization method based

on the concept of the energy-participation ratio (EPR). We reduce
the quantization problem to answering the simple question: what
fraction of the energy of mode m is stored in element j? This leads
to a constrained number between zero and one, the EPR, denoted
pmj

45. This ratio is the key quantity that bridges classical and
quantum circuit analysis; we show that it plays the primary role in
the construction of the system many-body Hamiltonian. Further-
more, dissipation in the system is treated on equal footing by
calculating the EPR pml of lossy element l in mode m.
The EPR method deviates from previous black-box quantization

work4,6,7, which uses the impedance-response matrix, denoted
Zjj0 ωð Þ, where j and j0 are index ports associated with nonlinear
elements. For all pairs of ports, the complex function Zjj0 ωð Þ is
calculated from a finite-element (FE) driven simulation in the
vicinity of the eigenfrequency of every mode. Our method
replaces these steps with a more economical FE eigenmode
simulation, from which one extracts the energy participations pml

and pmj, needed to fully characterize both the dissipative and
Hamiltonian properties of the circuit.
To test the method, we compared EPR calculations of circuit

parameters to experimentally measured ones for 8 superconduct-
ing devices designed with the EPR method, comprising a total of
15 qubits, 8 readout and storage resonator modes, and 1
waveguide system. The results demonstrate agreement for

Hamiltonian parameters spanning over five orders of magnitude
in energy. Resonance frequencies were calculated to 1% accuracy,
large nonlinear interactions, such as anharmonicities and cross-
Kerr frequencies, to 5%, and small, nonlinear interactions to 10%.
This level of accuracy is sufficient for most current quantum
information experiments.

RESULTS AND DISCUSSION
To quantize a simple circuit: qubit coupled to a cavity
In this section, we introduce the EPR method of quantum circuit
design on a modest, yet informative, example: a transmon qubit
coupled to a cavity mode (see Fig. 2). The transmon46 consists of a
Josephson junction shunted by a capacitance. It is embedded in
the cavity, which we will consider as a black-box distributed
structure. The Hamiltonian of this system Ĥfull can be conceptually
separated into two contributions (see Supplementary Section A2),

Ĥfull ¼ Ĥlin þ Ĥnl ; (1)

where Ĥlin consists of all terms associated with the linear response
of the junction and the resonator structure, and Ĥnl consists of
terms associated with the nonlinear response of the junction.
Restricting our attention to the cavity and qubit modes of the
otherwise black-box structure, the analytical form of the
Hamiltonian follows from standard circuit quantization47,48 (see
Supplementary Information):

Ĥlin ¼ �hωcâ
y
câc þ �hωqâ

y
qâq ; (2)

Ĥnl ¼ �EJ cos φ̂Jð Þ þ φ̂2
J =2

� �
; (3)

φ̂J ¼ φq âq þ âyq
� �

þ φc âc þ âyc
� �

; (4)

where ωc and ωq are the angular frequencies of the cavity and
qubit eigenmodes defined associated with Ĥlin, respectively, and
where âc and âq are their annihilation operators, respectively.
The Josephson energy EJ can be computed from the
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Ambegaokar–Baratoff formula adapted to the measured room-
temperature resistance of the junction49. The junction-reduced
generalized flux φ̂J corresponds to the classical variable
φJ tð Þ :¼

R t
�1 vJ τð Þ dτ=ϕ0, where vJ(τ) is the instantaneous voltage

across the junction47,48, and ϕ0 := �h/2e is the reduced flux
quantum. The junction flux operator [Eq. (4)] is a linear, real-
valued, and non-negative combination of the mode operators (see
Supplementary Section A5), and in its expression, φc and φq are
the quantum zero-point fluctuations of junction flux in the cavity
and qubit mode, respectively. It is worth stating that the linear
coupling between the cavity and qubit, commonly denoted g46, is
fully factored in our analysis and is implicitly handled in the
extraction of the operators from the electromagnetic simulation.
Our principal aim is to determine the unknown quantities: ωc, ωq,

φq, and φc. As we will show, we extract and compute these
quantities from an eigenanalysis of the classical distributed circuit
corresponding to Ĥlin. This includes the qubit–cavity layout,
materials, electromagnetic boundary conditions, and a model of
the junction as a lumped-element, linear inductor. The eigensolver
returns the requested set of eigenmodes and their frequencies,
quality factors, and field solutions. By running the eigensolver in
the frequency range of interest, we obtain the hybridized cavity
and qubit modes, whose eigenfrequencies ωc and ωq fully
determine Ĥlin (see Supplementary Section C for FE methodology).
To determine Ĥnl, we need the quantum zero-point fluctuations

φq and φc, which are calculated from the participation of the
junction in the eigenfield solutions. The participation pm of the

junction in mode m 2 c; qf g is defined to be the fraction of
inductive energy stored in the junction relative to the total
inductive energy stored in the entire circuit,

pm :¼ Inductive energy stored in the junction
Total inductive energy stored in modem

; (5)

evaluated when only mode m is excited. Thus, pm can be
computed from the electric E

!
mð r!Þ and magnetic H

!
mð r!Þ

eigenfields as detailed in Supplementary Section C2; r! denotes
spatial position. In the quantum setting, Eq. (5) links pm, φ̂J , and
the state of the circuit,

pm ¼ hψmj 12 EJφ̂2
J jψmi

hψmj 12 Ĥlinjψmi
; (6)

where ψmj i denotes a coherent state or a Fock excitation of mode
m. Note that normal ordering must be used in Eq. (6); this correct
treatment of vacuum fluctuations is detailed in Supplementary
Section A6. Simplifying Eq. (6), one expresses the variance of the
quantum zero-point fluctuations φc and φq as a function of the
classical energy participations pm,

φc
2 ¼ pc

�hωc

2EJ
and φq

2 ¼ pq
�hωq

2EJ
; (7)

which completely determines Ĥnl and thus completes the
description of the system Hamiltonian Ĥfull. Here φc and φq can
be taken as positive numbers. As we will see in the next section, in
the presence of multiple junctions, this is not always true.
Designing experiments with the EPR requires one to further

extract from Ĥfull the transition frequencies and nonlinear
couplings between modes. Depending on the case, this can be
done approximately or exactly using numerical or analytical
techniques20. This task is easily achieved if Ĥnl is a perturbation to
Ĥlin

46. In this limit, Ĥfull for our qubit–cavity example can be
approximated by the effective, excitation-number-conserving
Hamiltonian, see Supplementary Section B1,

Ĥeff ¼ ωq � Δq
� �

n̂q þ ωc � Δcð Þn̂c � χqcn̂qn̂c

� 1
2 αqn̂q n̂q � 1̂

� �� 1
2 αcn̂c n̂c � 1̂

� �
;

(8)

where n̂q ¼ âyqâq and n̂c ¼ âycâc denote the qubit and cavity
excitation-number operators, respectively, Δq denotes the “Lamb
shift” of the qubit frequency due to the dressing of this nonlinear

Fig. 1 Conceptual overview. a Illustration of the physical model of an example quantum device, which comprises two three-dimensional (3D)
cavities (gray enclosures), each housing several qubit chips (green boxes). A close-up view of one of the chips is depicted in the inset. The
dotted box in the center of the chip schematically outlines a nonlinear inductive sub-circuit, referred to as a Josephson dipole. b Results of a
finite-element eigenmode analysis (FEe) of the Josephson circuit linearized about its equilibrium. The mth mode eigenfrequency and electric

and magnetic fields are ωm, E
!

m r!� �
, and H

!
m r!� �

, respectively, where r denotes spatial position. Center inset: E
!

m

��� ��� profile (red: high; blue:

low) for the fundamental mode of one of the 3D cavities. Additional FE driven simulations (FEd) are unnecessary; i.e., the impedance matrix
Zjj0 ωð Þ is not calculated. c The Hamiltonian Ĥfull, which includes nonlinear interactions to arbitrary order (see “Results”), is computed directly
from the eigenanalysis via the EPRs pmj and EPR signs smj= ±1 of the junctions, j. Dissipative contributions due to a lossy element l are similarly
computed from the loss EPRs pml; for linear dissipation, and the EPR signs sml are unnecessary. Direct extraction of Hamiltonian and dissipative
parameters from eigensolutions is unique to the EPR method. The geometry of the classical model is modified in an iterative search for the
desired dissipative and Hamiltonian parameters (left-pointing arrow).

qâ câ

JΦ

a b

Fig. 2 Quantizing a simple circuit. a Illustration of a 3D cavity
enclosing a transmon qubit chip. The cross symbol marks the
location of a Josephson junction. Vertical blue arrows depict the

electric field E
!

m r!� �
of the fundamental cavity mode, TE101. b

Equivalent two-mode lumped-element representation of the dis-
tributed circuit. Operators âq and âc denote the qubit and cavity
mode operators, respectively.
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mode by quantum fluctuations of the fields, αq (αc) is the qubit
(cavity) anharmonicity, and χqc is the qubit–cavity dispersive shift
(cross-Kerr coupling). The Hamiltonian parameters can be
calculated directly from the EPR, see Supplementary Section B2,

αq ¼ 1
2
χqq ¼ p2q

�hω2
q

8EJ
; (9)

αc ¼ 1
2
χcc ¼ p2c

�hω2
c

8EJ
; (10)

χqc ¼ pqpc
�hωqωc

4EJ
: (11)

Experimentally, the qubit Lamb shift can be obtained as Δq= αq−
χqc/2. Since a single EPR pm determines the nonlinear interaction
for each mode, the parameters χqc and αq are interdependent,

χqc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
χqqχcc

p ¼ 2
ffiffiffiffiffiffiffiffiffi
αqαc

p
: (12)

As shown in Supplementary Section A7, the EPRs pc and pq obey
the constraints

0 � pq; pc � 1 and pq þ pc ¼ 1: (13)

These relations together with Eqs. (9) and (12) are useful to budget
the dilution of the nonlinearity of the junction (see Supplementary
Section B2) and to provide insight on the limits of accessible
parameters (see “Methods”). Further, Eq. (13) is used to validate
the convergence of the FE simulation.

Quantizing the general Josephson system
The simple results obtained in the preceding section will now be
generalized to arbitrary nonlinear devices enclosed in a black-box,
distributed, electromagnetic structure. While such structures are
frequently classified as planar27,50–52 (two-dimensional), quasi-
planar28,29,32,53 (2.5-dimensional (2.5D)), or three-dimensional30,54–56

(3D), we will treat all classes on equal footing. The electromagnetic
structure is assumed to be linear in the absence of the enclosed
nonlinear devices. For simplicity of discussion, we can consider these
devices to be inductive and lumped; distributed nonlinear devices,
such as kinetic-inductance transmission lines57–60, can be thought of
as a series of lumped ones.
The simplest nonlinear device comprises a single element, such

as a Josephson tunnel junction [see Fig. 3a], an atomic-point
contact61,62, a nanobridge38,63, a semiconducting nanowire40,41,64–
67, or another hybrid structure68. A multi-element device, such as a
SQUID69,70, a SNAIL71 [see Fig. 3b], a superinductance72–74, or a
junction array5,75–80 refers to a subcircuit composed of purely
inductive lumped elements. This subcircuit can also be subjected
to external controls, such as voltage or flux biases.
The general nonlinear device that we now consider, referred to

as a Josephson dipole, is any lumped, purely inductive, nonlinear
subcircuit with two terminals. The key characteristic of the
Josephson dipole is that it possesses a characteristic energy
function, which encapsulates all details of its constitution. For
example, the two-terminal nonlinear device known as the
symmetric SQUID70 is described by the energy function
E jðΦj ;Φ

ext
j Þ ¼ �EjðΦext

j Þ cosðΦj=ϕ0Þ, where Φj is the generalized
flux across the device terminals47,48, Ej is the effective Josephson
energy, Φext

j is the external flux bias, and the subscript j denotes
the jth Josephson dipole in the circuit. The flux Φj is defined as the
deviation away from the value in equilibrium, as discussed below.
To ease the notation, parameters such as Φext

j will be implicit
hereafter. Similarly to the example of the single-junction
transmon, the energy of a Josephson dipole can be separated in
two parts. One part E lin

j accounts for the linear response of the
dipole, while the other Enl

j accounts for the nonlinear response,

E j Φj
� � ¼ E lin

j Φj
� �þ Enl

j Φj
� �

; (14)

where

E lin
j Φj
� �

:¼ 1
2
Ej

Φj

ϕ0


 �2

; (15)

and where the constant Ej sets the scale of the junction energy.
This energy scale can be represented by the linear inductance
Lj := ϕ0/Ej presented by the Josephson dipole when submitted to a
small excitation about its equilibrium.

Frustrated equilibrium. External biases can set up persistent currents
in the circuit. These can alter the static (direct current) equilibrium of
the Josephson system. For example, frustrating a superconducting
ring with a magnetic flux sets up a persistent circulating current in the
ring. For a Josephson dipole in such a loop, the definition of the flux
Φj will differ in Eqs. (14) and (15) as a function of the equilibrium. Due
to this adjustment, terms linear in Φj are absent from Eq. (15) by
construction. Supplementary Sections A8 and A9 discuss these
equilibrium considerations in detail.

Quantum Hamiltonian. Having conceptually carved out non-
linear contributions from the system Hamiltonian Ĥfull and
collected them in the set of Enl

j functions, we define the linearized
Josephson circuit to correspond to everything left over in the
system. This linear circuit consists of the electromagnetic circuit
external to the Josephson dipoles, combined with their linear
inductances Lj. We will use the eigenmodes of the linearized
circuit to explicitly construct Ĥfull. The eigenmode frequencies and
field distributions are readily obtained using a conventional FE
solver (see Supplementary Section C). The Hamiltonian of the
linearized Josephson circuit can thus be expressed as (see
Supplementary Section A5)

Ĥlin ¼
XM
m¼1

�hωmâ
y
mâm ; (16)

Fig. 3 Schematic representation of the Josephson circuit and its
nonlinear elements. a A simple example of a Josephson dipole—a
Josephson tunnel junction. b An example of a composite junction,
comprising four Josephson junctions in a ring, frustrated by an
external magnetic flux Φext

j threading the loop. c Conceptual
decomposition of a general Josephson dipole, denoted j. For
convenience, its potential energy function E jðΦj;Φ

ext
j Þ can be Taylor

expanded in a sum of nonlinear inductive contributions of
increasing order Φp

j , with relative amplitude cjp, where p denotes
the index in the series. The energy function can be subjected to
external bias parameters Φext

j , such as flux or voltages. d Schematic
diagram of a general Josephson circuit conceptually resolved into a
purely dissipative (left, κlm), linear (middle, Ĥlin), and nonlinear (right,
Ĥnl) constitutions.
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where M is the number of modes addressed by the numerical
simulation, ωm is the solution eigenfrequency of mode m, and âm
the corresponding mode amplitude (annihilation operator),
defined by the mode eigenvector. We emphasize that the
frequencies ωm will be significantly perturbed by the Lamb shifts
Δm and should be seen as an intermediate parameter entering in
the calculation of the rest of the nonlinear Hamiltonian,

Ĥnl ¼
XJ

j¼1

Enl
j ¼

XJ

j¼1

Ej cj3φ̂
3
j þ cj4φ̂

4
j þ � � �

� �
(17)

¼
XJ

j¼1

Ej
X1
p¼3

cjpφ̂
p
j ; (18)

φ̂j ¼
XM
m¼1

φmjðâym þ âmÞ ; (19)

where J is the total number of junctions and φ̂j :¼ Φ̂j=ϕ0. In Eq.
(17), we have introduced a Taylor expansion of Enl

j , where the
energy Ej and expansion coefficients cjp are known from the
fabrication of the Josephson circuit, see Fig. 3c. For example, for a
Josephson junction, the constant Ej is just the Josephson energy,
while cjp are the coefficients of the cosine expansion; i.e., cjp is 0 for
odd p and �1ð Þp=2þ1=p! for even p. The expansion is helpful for
analytics but does not need to be used in the numerical analysis of
Ĥnl, see Supplementary Section A.
The Hamiltonian Ĥfull is specified since the operators φ̂j are

expressed in terms of the mode amplitudes as a linear
combination (see Supplementary Section A5). Here, φmj are the
dimensionless, real-valued, quantum zero-point fluctuations of the
reduced flux of junction j in mode m. Determination of Ĥfull is now
reduced to computing φmj. We achieve this by employing a
generalization of the EPR.
The EPR pmj of junction j in eigenmode m is defined to be the

fraction of inductive energy stored in the junction when only that
mode is excited,

pmj :¼ Inductive energy stored in junction j
Inductive energy stored inmodem

¼ hψmj 12 Ejφ̂2
j jψmi

hψmj 12 Ĥlinjψmi
;

(20)

which is a straightforward extension of Eq. (5), and is similarly
computed using normal ordering (see Supplementary Section A6).
The EPR pmj is computed from the eigenfield solutions E

!
mð r!Þ

and H
!

mð r!Þ as explained in Supplementary Section C3. It is a
bounded, non-negative, real number, 0 ≤ pmj ≤ 1. A zero EPR pmj=
0 means that junction j is not excited in mode m. A unity EPR pmj

= 1 means that junction j is the only inductive element excited in
the mode.
From the EPR pmj, one directly computes the variance of the

quantum zero-point fluctuations,

φ2
mj ¼ pmj

�hωm

2Ej
(21)

Equation (21) constitutes the bridge between the classical solution
of the linearized Josephson circuit and the quantum Hamiltonian
Ĥfull of the full Josephson system, up to the sign of φmj.
Universal EPR properties: The quantum fluctuations φmj are not

independent of each other, since the EPRs are submitted to three
types of universal constraints—valid regardless of the circuit
topology and nature of the Josephson dipoles. These are of
practical importance, as they are useful guides in evaluating the
performance of possible designs and assessing their limitations. As
shown in Supplementary Section A7, the EPRs obey one sum rule

per junction j and one set of inequalities per mode m,

XM
m¼1

pmj ¼ 1 and 0 �
XJ

j¼1

pmj � 1: (22)

The total EPR of a Josephson dipole is a quantity that is
independent of the number of modes—it is precisely unity for
all circuits in which the dipole is embedded. It can only be diluted
among the modes. On the other hand, a given mode can accept at
most a total EPR of unity from all the dipoles. In practice, this sum
rule can be fully exploited only if the bound M reaches the total
number of relevant modes of the system.
The next fundamental property concerns the orthogonality of

the EPRs. Rewriting Eq. (21) in terms of the amplitude of the zero-
point fluctuation, we have

φmj ¼ smj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmj_ωm=2Ej

q
; (23)

where the EPR sign smj of junction j in mode m is either +1 or −1.
The EPR sign encodes the relative direction of current flowing
across the junction. Only the relative value between smj and smj0 for
j ≠ j0 has physical significance (see Supplementary Fig. 8). The EPR
sign smj is calculated in parallel with the process of calculating pmj,
from the field solution H

!ð r!Þ, see Supplementary Section C3. We
now obtain the EPR orthogonality relationship

XM
m¼1

smjsmj0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmjpmj0

p ¼ 0 ; (24)

valid when the sum from 1 to M covers all the relevant modes, see
Supplementary Section A7.
Excitation-number-conserving interactions: Thus, as announced,

knowledge of the EPRs completely specifies Ĥnl, through Eqs. (17),
(19), and (21). The Hamiltonian can now be analytically or
numerically diagonalized using various computational techni-
ques20. In this section, our focus will be now to explicitly handle
the effect of the nonlinear interactions Ĥnl on the eigenmodes.
Before treating the case of a general nonlinear interaction, we
focus on the leading-order effect of Ĥnl in the case of the
“canonical” Josephson system. In this case, the J Josephson
dipoles are all Josephson tunnel junctions and the dispersive
regime is satisfied for all pairs of modes k and m; i.e., ωk � ωm �
Ejcjp<φ̂

p
j > for p ≥ 3 and in the absence of strong drives. The

leading-order nonlinear terms are the subset of p= 4 terms that
conserve excitation number. After normal ordering, see Supple-
mentary Section B1, one finds the effective Hamiltonian

Ĥ4 ¼ ��h
XM
m¼1

Δmâ
y
mâm þ αm

2
ây2m â2m þ

X
n<m

χmnâ
y
mâ

y
nâmân ; (25)

which is a generalization of the one found in Eq. (8). In Eq. (25), we
have introduced the Lamb shift Δm of mode m, the anharmonicity
αm of the mode, and its total dispersive shift χmn (so-called cross-
Kerr term) with a different mode, labeled n. Each of these
parameters is directly calculated from the EPRs. As shown in
Supplementary Section B, for arbitrary m and n,

χmn ¼
XJ

j¼1

�hωmωn

4Ej
pmjpnj ; (26)

while αm= χmm/2 and Δm ¼ PM
n¼1 χmn=2. Equation (26) imple-

ments, mathematically, the idea that the amplitude of these
nonlinear couplings is the result of a spatial-mode scalar product
of the EPRs. Remarkably, from Eq. (26) it is seen that the EPRs are
essentially the only free parameters subject to design, when
determining the nonlinear couplings, since ωm, ωn, and Ej are
generally tightly constrained by experimental considerations.
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Equation (26) can be cast in matrix form by introducing the EPR
matrix

P :¼
p11 � � � p1J

..

. . .
. ..

.

pM1 � � � pMJ

0
BB@

1
CCA; (27)

which we have found useful in handling large circuits, especially
for those in excess of 100 modes. We also introduce the diagonal
matrices of eigenfrequencies Ω :¼ diag ω1; ¼ ;ωMð Þ and junction
energies EJ :¼ diag E1; ¼ ; EJð Þ, which lead to the matrix form of
Eq. (26),

Kerr matrix: χ ¼ �h
4
ΩPE�1

J PΩ;

Anharmonicity: αm ¼ 1
2
χ½ �mm;

Lamb shift:Δm ¼ 1
2

XM
m0¼1

χ½ �mm0 :

(28)

We have defined the symmetric matrix of dispersive shifts χ, with
elements χ½ �mm0 ¼ χmm0 . Further discussion of the matrix approach
and applications to pth-order corrections is deferred to Supple-
mentary Section B2, and the amplitude of an arbitrary multi-
photon interaction stemming from the full Ĥnl is calculated in
Supplementary Section B3.
EPR for dissipation in the circuit: The EPR method treats the

calculation of Hamiltonian and dissipation parameters on equal
footing. Unlike in the impedance method4, one can completely
characterize both Ĥfull and the effect of dissipative elements in the
circuit from the eigenfield solutions, E

!
mð r!Þ and H

!
mð r!Þ. The list

of dissipative elements include bulk and surface dielectrics81–83,
thin-film metals53,84, surface interfaces85–89, and metal seams90.
The EPR of a dissipative element l in mode m will be denoted pml.
It is calculated similarly to pmj, as summarized in Supplementary
Section D. The participation pml and the quality factor Ql of the
material of this element are used to estimate the total quality
factor of mode m in the standard way when the fields are not
greatly altered by the dissipation (Qm≫ 1)30,91–93,

Q�1
m ¼

X
l

pmlQ
�1
l : (29)

Experimental values of Ql are found in the literature, and some are
provided in Supplementary Section D. Equation (29) and the
dissipative EPR pml provide a dissipation budget for the individual
influence of each dissipation mechanism in the system, providing
a useful tool to optimize design layout for quantum coherence94.

Comparison between theory and experiment
Applying the EPR method, we designed eight superconducting
samples to test the agreement between the EPR theory and
experimental results. We tested several sample configurations,
comprising 15 qubits, 8 cavity modes, and 1 waveguide in 3 different
circuit quantum electrodynamics (cQED) architectures. The samples
were measured in a standard cQED set-up, see “Methods,” at the
15mK stage of a dilution unit, over multiple cool downs.
Six of the samples were each composed of two qubits and one

3D cavity, one sample was composed of two qubits and a
waveguide, and one sample was a flip-chip, 2.5D system28

consisting of a flip-chip qubit embedded in a two-mode
whispering gallery mode resonator53 (WGMR). The specifics of
each sample are discussed in the “Methods” section.
For each sample, we measured the circuit parameters of

interest: dressed mode frequencies ωm− Δm, anharmonicities of
qubits and high-Q cavities αm, cross-Kerr frequencies χmn, and
input–output (I–O) quality factors QC for any readout modes. Our
measurement methodology is detailed in the “Methods” section.

The measured parameters were compared to those calculated
using the energy-participation method. The linearized Josephson
circuit of each sample was modeled in Ansys High-Frequency
Electromagnetic-Field Simulator (HFSS). Junctions were modeled as
lumped inductors, whose nominal energy Ej was inferred from room-
temperature resistance measurements49. To account for the error bars
of the measurement and the drift in resistance over time, Ej was
adjusted by no more than 10% to fit the measured qubit frequency.
To minimize the number of free parameters, we neglect the small
junction intrinsic capacitance CJ in our modeling. The tradeoff is a
small and estimable systematic offset of the bare simulated mode
anharmonicities. We estimate this correction to be on the order of 4%
for a CJ= 4 fF. From the eigenfield solutions, we calculated the EPRs
pmj and the sign smj to construct Ĥ and extract its parameters. Detailed
steps of the procedure can be found in Supplementary Section C. The
results are presented in Tables 1–3.
Figure 4 summarizes the agreement of the measured and

calculated sample parameters, which span five orders of magnitude
in frequency. Accounting for CJ, we find that mode frequencies are
calculated to 1% accuracy, large nonlinear interaction energies
(namely, anharmonicity and cross-Kerr frequencies >10MHz) are
calculated at the 5% level, and small nonlinear interaction energies
agree at the 10% level. We highlight that we have used minimal,
coarse adjustment to account for shifts in Ej, and otherwise, by
neglecting Cj, the calculation is free from adjustable parameters.
The results of Fig. 4 demonstrate the accuracy and applicability of

the EPR method. For each device, the EPR results are obtained from a
single eigenmode simulation, using full automation of the analysis,
provided by our open-source package PYEPR (see the PYEPR95 code
repository at http://github.com/zlatko-minev/pyEPR). For current
standard applications, we find the agreement sufficient. Further
improvements in accuracy would require improved ability to estimate
the Josephson dipole energy Ej and its intrinsic capacitance CJ. At the
same level of accuracy, improvements in the precision and
reproducibility of the implementation and assembly of the Josephson
circuit design are needed, such as in chip-clamping techniques,
precision machining of the device sample holder, and I–O couplers.

Conclusion. An intuitive, easy-to-use, and efficient method is
needed to design and analyze Josephson microwave quantum
circuits. We have described in this article such a method, based on
the distribution of the electromagnetic energy in the circuit and its
participation in nonlinear and dissipative elements. This so-called EPR
method offers physical insight helping the design process and
provides a simple link between the classical circuit and its quantum
properties. By comparing our theory to eight experimental devices
incorporating Josephson junctions, we have shown that our method
is accurate and applicable to a large range of quantum circuit
architectures. It is directly applicable to a broader class of nonlinear
inductive elements, such as weak-link nanobridges38,63, nano-
wires40,41,64,66,67, and kinetic-inductance thin films43,58,59. While best
suited for weakly nonlinear systems, the EPR method is derived
within circuit theory without approximations. It can be seen as arising
from a change of basis adapted to nonlinear elements, as detailed in
Supplementary Section A. In practice, the useful reach of the method
is set by the numerical ability to include all relevant electromagnetic
modes and to compute the spectrum of the extracted Hamiltonian20.
We contribute an open-source package PYEPR (see the PYEPR95 code
repository at http://github.com/zlatko-minev/pyEPR), which auto-
mates the EPR method, and was tested in the design of several
further experiments28,74,96–105.

METHODS
Methods of the experiment
Device fabrication. Unless otherwise noted, samples were fabricated
according to the following methodology. Sample patterns, both large and
fine features, were defined by a 100 kV electron-beam pattern generator
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(Raith EBPG 5000+) in a single step on a PMAA/MAA (Microchem A-4/
Microchem EL-13) resist bilayer coated on a 430 μm thick, double-side-
polished, c-plane sapphire wafer, grown with the edge-defined film-fed
growth technique. Using the bridge-free fabrication technique106–108, the

Al/AlOx/Al Josephson tunnel junctions were formed by a double-angle
aluminum evaporation under ultra-high vacuum in a multi-chamber
Plassys UMS300 UHV. The two depositions were interrupted by a thermal
oxidation step, static 100 Torr environment of 85% argon and 15% oxygen,
to form the thin AlOx barrier of the tunnel junction. Prior to the first
deposition, to reduce junction aging108, the exposed wafer surfaces were
exposed to 1min oxygen–argon plasma cleaning, under a pressure of 3 ×
10−3 mbar. After wafer dicing (ADT ProVecturs 7100) and chip cleaning, the
normal-state resistance RN of the Josephson junctions was measured to
provide an estimate of the Josephson energy, EJ, of the device junctions.
The junction energy was to first order estimated by an extrapolation of RN
from room temperature to the operating sample temperature, at
approximately 15mK, using the Ambegaokar–Baratoff relation109,

EJ ¼ 1
2

hΔ

2eð Þ2 R
�1
N ; (30)

where Δ is the superconducting gap of aluminum, e is the elementary
charge, and h is Planck’s constant.

Sample holder. Sample holders were machined in aluminum alloy 6061;
seams were formed using thin indium gaskets placed in machined grooves

Table 1. Two-qubit, one-cavity devices.

Device Frequency (MHz) Anharmonicity (MHz) Cross-Kerr (MHz) I–O coupling

ωD/2π ωB/2π ωC/2π αD/2π αB/2π χDB/2π χBC/2π χDC/2π QC

R9C1 4951 5664 9158 138 170 92 4.7 0.4 5.20 × 103

4866 5691 9154 150 185 99 4.2 0.55 7.40 × 103

−1.7% 0.5% −0.04% 8% 8% 7% −12% 27% 29%

R2C1 4823 5567 8947 150 192 64.5 4.8 0.3 4.97 × 103

4770 5640 8950 161 211 67.7 5.88 0.46 5.44 × 103

−1.1% 1.3% 0.03% 6.8% 9% 4.7% 18% 35% 9%

R7C1 4726 5475 8999 156 189 67 4.8 0.34 2.68 × 103

4770 5640 8950 161 211 67.7 5.88 0.46 3.07 × 103

0.9% 2.9% −0.55% 3.1% 10% 1% 18% 26% 13%

R3C2 4845 5620 8979 152 195 61 5.1 0.3 2.11 × 103

4770 5640 8950 161 211 67.7 5.88 0.46 1.78 × 103

−1.5% 0.4% −0.3% 5.6% 7.6% 9.9% 13% 35% −19%

R3C1 4688 5300 9003 148 174 85 5 0.33 2.43 × 103

4745 5265 8922 159 198 73 5.1 0.37 5.65 × 103

1.2% −0.7% −0.9% 6.9% 12.1% −16% 2% 9% 57%

DT3 6160 7110 9170 130 150 278 3 2.5 9.17 × 103

6100 7141 9155 140 177 312 3.9 3.1 7.33 × 103

−1.0% 0.4% −0.15% 7% 15% 11% 23% 19% −25%

Summary of measured and calculated Hamiltonian and input–output (I–O) coupling parameters for the six devices described in “Methods.” Indices D, B, and C
denote the dark, bright, and cavity modes, respectively. The input–output quality factor to the readout cavity is denoted QC. For each device, the first (second)
row quantifies the measured, m, (bare calculated, c) values. The third row quantifies the bare agreement, i.e., c �mð Þ=c. In the anharmonicity column, the bare
agreement should be corrected by the systematic shift due to our choice to neglect the junction intrinsic capacitance in our modeling (see “Methods”). We
evaluate the correction to be of order 4%, estimated by taking a nominal junction CJ= 4 fF; hence, an overall corrected agreement of 4.3% for this column.

Table 2. Flip-chip (2.5D), one-qubit, one-storage-cavity, one-readout-cavity devices.

Device Frequency (MHz) Anharmonicity (MHz) Cross-Kerr (MHz) I–O coupling

ωQ/2π ωS/2π ωC/2π αD/2π χQS/2π χQC/2π QC

WG1 4890 7070 7267 310 0.25 0.30 20 × 103

4820 7020 7340 325 0.29 0.33 16 × 103

−1.4% −0.7% 1.0% 4.6% 13% 9% −22%

Summary of measured and calculated Hamiltonian and input–output (I–O) coupling parameters for the device described in “Methods.” Indices Q, S, and C
denote the qubit, storage, and readout cavity modes, respectively. The input–output quality factor to the readout cavity is denoted QC. For each device, the
first (second) row quantifies the measured, m, (bare calculated, c) values. The third row quantifies the bare agreement, i.e., c �mð Þ=c.

Table 3. Two-qubit, one-waveguide devices.

Frequency (MHz) Anharmonicity (MHz) Cross-Kerr (MHz)

ωD/2π ωB/2π αD/2π αB/2π χDB/2π

6010 8670 85 180 278

5824 8878 97 206 281

−3.2% 2.3% 12% 13% 1.1%

Summary of measured and calculated Hamiltonian parameters for the
device described in “Methods.” Indices D and B denote the dark and bright
modes, respectively. For each device, the first (second) row summarizes the
measured, m, (bare calculated, c) values. The third row quantifies the bare
agreement, i.e., c �mð Þ=c.
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in one of the mating surfaces. Only non-magnetic components were used
in proximity to the samples, molybdenum washers, aircraft-alloy
7075 screws (McMaster/Fastener Express) with <1% iron impurities, and
non-magnetic SubMiniature version A (SMA) connectors.

Cryogenic set-up. Samples were thermally anchored to the 15mK stage of
a cryogen-free dilution refrigerator (Oxford Triton 200) and were measured
using a standard cQED measurement set-up45,51,96. High-magnetic-
permeability, μ-metal (Amumetal A4K) shields together with aluminum
superconducting shields enclosed all samples. Microwave input and
output lines were filtered with Eccosorb CR-110 infrared-frequency
filters55,92, thermally anchored at the 15mK stage. Output lines were
additionally filtered with cryogenic isolators (Quinstar CWJ1019-K414) and
12 GHz K&L multi-section lowpass filters. Output lines leading up to the
high-electron-mobility transistor (HEMT) amplifier (Low Noise Factory),
anchored at 4 K, were superconducting (CoaxCo Ltd. SC-086/50-NbTi-
NbTi PTFE).

Quantum amplifier. The output signal of a sample was processed by a
Josephson parametric converter (JPC) anchored at the 15mK stage and
operated in amplification mode110,111, before routing to the HEMT. The JPC
provide a typical gain of 21 dB with a typical noise-visibility ratio of 6 dB.
See ref. 112 for a review of the parametric amplification.

Frequency and I–O coupling measurements. Spectroscopic measurements
were used to determine the frequencies of the resonator modes.
Anharmonicities were determined in two-tone spectroscopy92,113. Cross-
Kerr energies were determined from dressed dephasing measure-
ments114,115. In particular, the dressed-dephasing measurement sequence
consisted of first preparing the qubit in the ground state, then exciting it to
the equator by a π/2 pulse. Subsequently, a weak readout tone excited the
readout cavity of the qubit for a fixed duration, 10 times the readout cavity
lifetime κr, after which we measure the qubit X and Y Bloch vectors, after
waiting for a time 5/κr for any photons in the cavity to leak out. By varying
the amplitude and frequency of the applied weak-readout tone, we could
calibrate both the strength of our readout, in steady-state photon number
in the readout cavity, and the value of the cross-Kerr frequency shift
between the qubit and readout resonator. The values could be obtained

from fits of the X and Y quadratures. For each sample, the coupling quality
factor of the readout-cavity mode, denoted QC, was extracted from the
spectroscopic response of the readout cavity at low photon numbers92,113,
by measuring the scattering parameters, S21 or S11.
To test EPR’s robustness to experimental variability and its applicability

over wide range of experimental conditions, the presented samples were
fabricated in multiple runs and measured in different cooldowns. Some
devices were subjected to as many as six thermal cycles.
The Hamiltonian parameters and coupling energies for each sample

were also calculated, following the EPR method presented in section on
the general approach. In particular, we modeled the sample geometry and
materials in a FE electromagnetic simulation, as explicated in Supplemen-
tary Section C. Our aim in writing this supplementary section has been to
provide an easy access point to the practical use of the EPR method, which
we hope will benefit the reader, and allow them to adopt it easily. Our
choice of simulation software was the Ansys HFSS, although we emphasize
that the EPR ideas translate to any standard EM eigenmode simulation
package. Further, we modeled the loss due to the I–O couplers in the
simulation as 50Ω resistive sheets, see Supplementary Section D4. The
eigenmode analysis provided the calculated I–O quality factors and Purcell
limits. All electromagnetic and quantum analyses, including the extraction
of participations from the eigenfields and the numerical diagonalization of
the Hamiltonian to extract its quantum spectrum, were performed in a fully
automated manner using the freely available PYEPR package (see the
PYEPR95 code repository at http://github.com/zlatko-minev/pyEPR).
The mode quality due to the I–O coupling, QC, was set by the length of

the I–O SMA-coupler pin. Its length inside the sample-holder box was
measured at room temperature using calipers. This nominal length was
used then used in the HFSS model to create a 3D model of the pin inside
the sample holder. The quality factor QC was then obtained from the
eigenmode eigenvalue. We remark that the measurement of the pin
length is accurate to no more than 20%; further, it can be affected by
various idiosyncrasies, such as bending of the thin SMA center pin.
Nonetheless, the predictions of the quality factors for low-Q modes were
observed to be very reasonable estimates, and similarly, the predicted
Purcell limits for qubit and high-Q cavity modes were consistent with
estimates from measurements.

Devices: two-qubit, one-cavity devices
Device description. We measured six samples that were each comprised of
two qubits and one cavity. The cavity was a standard, machined aluminum
cavity54. It housed either one or two sapphire chips, which were either
patterned with transmon qubits or simply blank. Each transmon consisted
of two thin-film aluminum pads connected by a Josephson junction. We
tested two configurations of chips and patterns. Configuration A consisted
of one chip with two orthogonal qubits, as depicted in Fig. 5a. Similarly,
configuration B consisted of one chip with two parallel qubits, depicted in
Fig. 5b. The two qubits were aligned parallel to each other; however, unlike
configuration B, there was no galvanic connection between them. The
results of the measurements are presented in Table 1.

I-O

cavity

15 mm

E

ca b

Fig. 5 Two–qubit, one-cavity devices. a, b Not-to-scale diagram
illustrating chip configurations A and B, respectively. Vertical blue
arrow indicates cavity electric field orientation. Crosses mark the
location of Josephson tunnel junctions. c Optical photograph of
sample R2C1. Bottom half of aluminum sample holder is visible; top
half is removed. The two-qubit chip (outlined by the dashed green
box) is housed in the middle of the readout cavity (highlighted in
blue). Cavity fundamental mode electric field profile E depicted by
arrows. Input-output SMA pin coupler labeled I-O.
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x=y

Fig. 4 Theory vs. experiment. Comparison between theory and
experiment over five-orders of magnitude in energy scale of the
system Hamiltonian Ĥfull for eight distinct, multi-mode device
samples, described in detail in the “Methods” section, including
3D, flip-chip (2.5D), and 3D waveguide architectures incorporating
readout and storage resonators and qubit modes. For each device,
the dominant parameters in Ĥfull, dressed frequencies ω0

m, bare
anharmonicities αm, and cross-Kerr interactions χmn were measured
and calculated using the EPR method with our open-source PYEPR
package (see the PYEPR95 code repository at http://github.com/
zlatko-minev/pyEPR). Gray line is of slope one, representing ideal
agreement between theory and experiment.
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Samples R1C9, R2C1, R7C1, R2C1, and R3C2 were fabricated in
configuration A; sample DT3 was fabricated in configuration B. Three of
the sample (R2C1, R7C1, R3C1) were fabricated simultaneously on the
same sapphire wafer, all with nominally identical dimensions. Additionally,
R2C1 and R7C1 were designed to have nominally the same Josephson
junctions energy, Ej. The rest of the samples (R1C9, DT3, and R3C2) were
fabricated at different times and on different wafers. The dimensions of
their transmons and the inductance of the junctions were designed to be
different. Only sample R3C2 was designed to be very similar to the
nominally identical sample R2C1 and R7C1 but with adjusted Ej. For
samples R2C1, R7C1, R3C1, and R3C2 a second, un-processed, un-
patterned, blank sapphire chip was placed in parallel with the qubit
carrying chip [see Fig. 5c] to purposefully lower the readout cavity
frequency, thus bringing it within the JPC amplification band.
Configurations A and B were designed to test the ability of the EPR

method to calculate the mixing between strongly coupled modes. The
strong coupling was achieved in two distinct ways. First, configuration A
used the spatial proximity of the two qubits to yield a strong capacitive
coupling between them, which resulted in large qubit–qubit mixing.
Second, instead of spatial proximity, configuration B used a galvanic
connection between the qubits to yield strong hybridization. Our two-
qubit designs share some similar-in-spirit characteristics with the promis-
ing recent developments reported in refs. 116–121, but our implementation
is distinct and is designed to provide several unique advantages.

Mode structure and interesting physical insights. Configuration A is
characterized by strong capacitive coupling between the two transmons,
which have different pad sizes, see Fig. 5c, and hence different normal-
mode frequencies. Due to the strong hybridization, each qubit normal
mode consists of some excitation in the vertical and some in the horizontal
transmon. With some foresight, we will label the vertical mode bright (B)
and the horizontal dark (D). The bright-mode resonance is higher in
frequency and thus is closer to the resonance of the readout cavity mode
(C). This smaller detuning made it a natural choice for designing stronger
coupling between it, (B), and the readout mode (C). This was implemented
by orienting the transmon design that participates in mode (B) vertical.
To understand this design choice, let us first consider the popular

analogy46,122 between cQED and cavity QED, often used to discuss
mode couplings. In this atomic analogy, the transmon qubit is
analogous to a real atom inside the cavity. Thus, it can described by
an electric–dipole moment d

!
B. Meanwhile, its coupling, cross-Kerr, etc.

to the cavity mode are derived from the electric–dipole coupling
interaction. In particular, the coupling amplitude is proportional to
d
!

B � E!, where E
!

is the cavity electric field at the transmon junction.
From this analogy, one can infer that the coupling is maximized when
the two are parallel, d

!
Bk E!, and one could hope to measure a strong

cross-Kerr between the bright qubit and the cavity. This successful
conclusion is true, but a coincidence. We will shortly discuss how this
popular analogy fails spectacularly for the dark mode in configuration
B. Instead, we will argue that a correct way to understand the nonlinear
coupling between the two modes is through the participation ratio,
which will provide the correct coupling for both configurations A and B.
Before proceeding to configuration B, we note one further useful

features that configuration A exhibits. In particular, while the bright
qubit mode can be Purcell limited116,123, the dark mode is simulta-
neously Purcell protected. Thus, one can potentially achieve a high
ratio in the I–O bath coupling of the two qubits.
Configuration B has two qubit modes, which we will also label dark

(D) and bright (B). Since both transmons are designed with the exact
same transmon pad geometry and junction energy EJ, see Fig. 5, we can
expect that no single junction is preferred, due to the symmetry of the
sample. This is in sharp contrast to the asymmetric energy distribution
in configuration A. Returning to configuration B, we can estimate that,
in each qubit mode, both junctions participate equally and with near
maximal allowed participation,

pD1 ¼ pD2 ¼ pB1 ¼ pB2 �
1
2

: (31)

If the two transmons were well-separated spatially and not connected,
they would be uncoupled. However, the galvanic connection between
the two lower pads, see Fig. 5a, results in a very strong hybridization
and splitting between the nominally identical transmons. The result of
the strong hybridization is a symmetric and antisymmetric combination
of the two bare transmons. In other words, the hybridization results in a
common mode, namely, (B), where both junctions oscillate in phase,

and a differential mode, namely, (D), where both junctions oscillate out
of phase. These phase relationships are captured by the signs:

sD1 ¼ 1 ; sD2 ¼ �1 ; (32)

sB1 ¼ 1 ; sB2 ¼ þ1 : (33)

In an attempt to understand how these hybridized qubit modes will
couple to the cavity mode (C), let us first consider the atomic analogy
again. When the two junctions oscillate in phase, in the (B) mode, the
net dipole moment of the bright mode, d

!
B, must be large, since it is

the sum of the two junction dipole contributions. Second, d
!

B must be
oriented in the vertical direction, parallel to the cavity electric field E

!
.

Hence, we would conclude that the bright mode coupling is large,
d
!

B � E!� 0, and there should be a strong cross-Kerr interaction
between the cavity and bright qubit. Continuing the analogy in the
case of the dark mode, we would deduce that the net dipole moment
of the dark mode is zero, since the two junctions oscillate out of phase
and cancel each other’s contribution, d

!
D ¼ 0. Thus, we should not

expect any coupling between the dark qubit and the cavity mode,
d
!

D � E!¼ 0. To the contrary of this conclusion, as can be seen in the
measured results in Table 1, the nonlinear coupling of the dark and
bright qubit to the cavity is nearly equal. The atomic analogy and the
dipole argument have failed completely. We can understand the origin
of this failure and how to arrive at the correct conclusion by using the
EPR. As embodied in Eq. (26), in the dispersive regime, the nonlinear
coupling between two modes, in this case a qubit and cavity, is given
by the overlap of the EPR distribution. In particular, the cross-Kerr
amplitude between the dark qubit and the readout cavity mode is
given by

χDC ¼ �hωDωC

4EJ
pD1pC1 þ pD2pC2ð Þ ; (34)

where both junctions have the same junction energy EJ, and ωB (resp:
ωC) denotes the dark qubit (resp: cavity) mode frequency. The signs,
used in the atomic dipole logic, do not factor into the coupling,
because the Josephson mechanics is fundamentally different. To obtain
χBC, one can replace the label “D” with “B” in Eq. 34. Then, it is easy to
use Eq. (31) to show that the ratio of two Kerr couplings is not zero, but
rather of order unity,

χBC=χDC ¼ ωB=ωD : (35)

Failure of the conventional dipole approach. We showed that, although
the heuristic atomic analogy seems seductively accurate, it fails completely
in some cases to predict the nonlinear couplings. Instead, one can use the
intuition and calculation method provided by the EPRs.
As an added note, we observe that Eqs. (32) and (33) embodies the

orthogonality of the participations, see Eq. (24). We also remark that,
although the atomic analogy fails in the case of the nonlinear couplings, it
can yield some guidance when considering the linearmixing of the modes,
useful for discussing the Purcell effect. To illustrate, let us briefly extend the
atomic analogy. The dipole-like coupling between the bright mode and
the cavity suggests that the bright mode will inherit some coupling to the
environment, mediated by the cavity. Thus, since d

!
B � E!� 0, we can

expect the bright qubit to potentially be Purcell limited. In contrast, since
d
!

D � E!¼ 0, we could expect the dark qubit to be Purcell protected. Both
of these qualitative Purcell predictions are valid, but to quantify them, we
will use the EPR method and FE eigenmode simulation of the sample, as
will be discussed shortly.

Experimental results. Table 1 summarizes the results of the agreement
between the measured and calculated Hamiltonian parameters for all two-
qubit, one-cavity samples. The three modes in each sample are labeled
dark (D), bright (B), and cavity (C); the reason for this convention is
described above. In all samples, the qubits were designed to be in the
dispersive regime with respect to the cavity, which was detuned by
2–4 GHz. However, in a large number of the samples, the two qubits were
strongly hybridized, often necessitating higher-order nonlinear corrections
to be included in the calculation. This strong hybridization was used as a
test of the theory in this more challenging and fickle regime.
In total, for each sample we measured and calculated eight frequency

parameters and one dimensionless, coupling quality factor, QC, of the
readout cavity mode. In particular, in the low-excitation limit, the nonlinear
interactions among the modes were characterized by the effective
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dispersive Hamiltonian

Ĥ=�h ¼ ωDn̂D þ ωBn̂B þ ωCn̂C
� 1

2 αDn̂D n̂D � 1̂
� �� 1

2 αBn̂B n̂B � 1̂
� �

�χDBn̂Dn̂B � χDCn̂Dn̂C � χBCn̂Bn̂C ;

(36)

where n̂D; n̂B, and n̂C denote the dark, bright, and cavity photon-number
operator, respectively. The coupling of the resonator mode to the bath is
given by the Lindblad superoperator term κCD½âC�ρ, where κC=ωC/QC,
and ρ is the density operator.
We remark that all samples in configuration A demonstrated a large

asymmetry in the Kerr coupling between the bright-to-cavity and dark-to-
cavity coupling, χBC≫ χDC. In contrast, samples in configuration B
demonstrated near equal coupling, χBC ≈ χDC. In both configurations A
and B, the dark mode was Purcell protected, we calculated a Purcell
coupling factor of QD

Purcell � 107, using the eigenmode method
described in Supplementary Section D4. On the other hand, the bright
mode was somewhat Purcell limited, QB

Purcell � 106. From the relative
Rabi amplitudes of the dark and bright qubits, we could verify the order of
magnitude scaling calculated for the Purcell effect.

Devices: two-qubit, single-waveguide devices
We measured a two-qubit sample inside of a waveguide. Figure 6 presents
the set-up and depicts the sample, which was of the configuration B type
presented in Fig. 5. The sample chip was positioned inside an aluminum
WR90 waveguide. The waveguide was terminated in a short at one side and
attached to an impedance-matched SMA coupler port on the input-launcher
side, which was used to drive and measure the waveguide. The chip was
centered inside the cross-section of the waveguide and placed λ/4 away from
the termination wall, at the measurement frequency. The rest of the
experimental set-up was identical to that described in section “Methods of
the experiment.” The two qubit modes were labeled dark and bright, similarly
to the samples discussed in the section “Two-qubit, one-cavity devices.”
Table 3 presents the agreement between the measured and calculated

key Hamiltonian parameters of the sample. These consist of the two-mode
frequencies, two-qubit anharmonicities, and the strong cross-Kerr interac-
tion between the two qubits.

Devices: flip-chip (2.5D), one-qubit, one-storage-cavity, one-
readout-cavity devices
We also designed a multilayer planar28 (2.5D) cQED sample, depicted in
Fig. 7, with the EPR method. It consisted of high-Q storage mode (S), one
low-Q readout cavity (C), and one control transmon qubit (Q). The two
cavity modes were formed in the footprint of a single WGMR53. The three
modes were in the dispersive regime, and the storage mode was used to
encode and decode quantum information, as well as to observe parity
revivals. Details of the sample design have been reported in ref. 28. The
agreement between the measured parameters of the sample and those
obtained by the EPR calculation methods are presented in Table 2.
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