
Model-Free Quantum Control with Reinforcement Learning

V. V. Sivak ,1,* A. Eickbusch ,1 H. Liu,1 B. Royer ,2 I. Tsioutsios,1 and M. H. Devoret1,†
1Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA

2Department of Physics, Yale University, New Haven, Connecticut 06520, USA

(Received 3 May 2021; revised 3 December 2021; accepted 28 January 2022; published 28 March 2022)

Model bias is an inherent limitation of the current dominant approach to optimal quantum control, which
relies on a system simulation for optimization of control policies. To overcome this limitation, we propose a
circuit-based approach for training a reinforcement learning agent on quantum control tasks in a model-free
way. Given a continuously parametrized control circuit, the agent learns its parameters through trial-and-
error interaction with the quantum system, using measurement outcomes as the only source of information
about the quantum state. Focusing on control of a harmonic oscillator coupled to an ancilla qubit, we show
how to reward the learning agent with measurements of experimentally available observables. We train the
agent to prepare various nonclassical states via both unitary control and control with adaptive
measurement-based quantum feedback, and to execute logical gates on encoded qubits. The agent does
not rely on averaging for state tomography or fidelity estimation, and significantly outperforms widely used
model-free methods in terms of sample efficiency. Our numerical work is of immediate relevance to
superconducting circuits and trapped ions platforms where such training can be implemented in
experiment, allowing complete elimination of model bias and the adaptation of quantum control policies
to the specific system in which they are deployed.
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I. INTRODUCTION

Quantum control theory addresses a problem of opti-
mally implementing a desired quantum operation using
external controls. The design of experimental control
policies is currently dominated by simulation-based opti-
mal control theory methods, with favorable convergence
properties thanks to the availability of analytic gradients
[1–3] or automatic differentiation [4,5]. However, it is
important to acknowledge that simulation-based methods
can only be as good as the underlying models used in the
simulation. Empirically, model bias leads to a significant
degradation of performance of the quantum control poli-
cies, when optimized in simulation and then tested in
experiment [6–9]. A practical model-free alternative to
simulation-based methods in quantum control is thus
desirable.
The idea of using model-free optimization in quantum

control can be traced back to the pioneering proposal in
1992 of laser pulse shaping for molecular control with a

genetic algorithm [10]. Only in recent years has the
controllability of quantum systems and the duty cycle of
optimization feedback loops reached sufficient levels to
allow for the experimental implementation of such ideas.
The few existing demonstrations are based on model-free
optimization algorithms such as the Nelder-Mead (NM)
simplex search [6–8], evolutionary strategies [9], and
particle swarm optimization [11].
At the same time, deep reinforcement learning (RL)

[12,13] emerged as not only a powerful optimization
technique but also a tool for discovering adaptive deci-
sion-making policies. In this framework, learning proceeds
by trial and error, without access to the model generating
the dynamics and its gradients. Being intrinsically free of
model bias, it is an attractive alternative to traditional
simulation-based approaches in quantum control. In a
variety of domains, deep reinforcement learning has
recently produced spectacular results, such as beating
world champions in board games [14,15], reaching
human-level performance in sophisticated computer games

]16,17 ], and controlling robotic locomotion [18,19].
Applying model-free RL to quantum control implies

direct interaction of the learning agent with the controlled
quantum system, which presents a number of unique
challenges not typically encountered in classical environ-
ments. Quantum systems have large continuous state
spaces that are only partially observable to the agent
through measurements. For example, a pure qubit state
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can be described as a point on a Bloch sphere, but a
projective measurement of a qubit observable yields a
random binary outcome. Qubits are often used as ancillary
systems to control harmonic oscillators, in which case the
underlying state space is formally infinite dimensional.
Learning quantum control of such systems is akin to
learning to drive a car with a single sensor that provides
binary-valued feedback. The following question arises: Can
classical model-free RL agents efficiently handle such
“quantum-observable” environments?
The previous applications of RL to quantum control

[20–39], which we survey in Sec. II, relied on a number of
simplifying assumptions rendering the quantum control
problem more tractable for the agent but severely limiting
their experimental feasibility. These approaches provide the
agent with the knowledge of a quantum state or rely on
fidelity as a measure of optimization progress. Such
requirements are at odds with the fundamental properties
of quantum environments, stochasticity and minimalistic
observability. Trying to meet these requirements in realistic
experiments leads to a large sample size, e.g., 107 mea-
surements to learn a single-qubit gate with only 16
parameters, as recently demonstrated in Ref. [40] using
a quantum-state-aware agent that relied on tomography to
obtain the quantum state. Other model-free approaches that
view quantum control as a standard cost function optimi-
zation problem [6–10] are subject to similar limitations.
Scaling such methods beyond one- or two-qubit applica-
tions is prohibitively expensive from a practical point
of view.
In this paper, we develop a framework for model-free

learning of quantum control policies, which is explicitly
tailored to the stochasticity and minimalistic quantum
observability. It does not rely on restrictive assumptions,
such as a model of the system’s dynamics, knowledge of a
quantum state, or access to fidelity. By framing quantum
control as a quantum-observable Markov decision process
(QOMDP) [41], we consider each stochastic experimental
realization as an episode of interaction of the learning agent
with a controlled quantum system, after which the agent
receives a binary-valued reward through a projective
measurement. Instead of utilizing averaging, every such
episode is performed with a different control policy, which
is being continually updated by a small amount within a
trust region with the help of the reward signal. This novel
strategy of exploration of the policy space leads to excellent
sample efficiency on challenging high-dimensional tasks,
significantly outperforming widely used model-free
methods.
To illustrate our approach with specific examples, we

focus on the quantum control of a harmonic oscillator.
Harmonic oscillators are ubiquitous physical systems,
realized, for instance, as the motional degrees of freedom
of trapped ions [42,43] or electromagnetic modes in
superconducting circuits [44,45]. They are primitives for

bosonic quantum error correction [46–48] and quantum
sensing [49]. Universal quantum control of an oscillator is
typically realized by coupling it to an ancillary nonlinear
system, such as a qubit, with state-of-the-art fidelities in the
0.9–0.99 range in circuit quantum electrodynamics (QED)
[50–52] and trapped ions [53]. In such a quantum envi-
ronment, ancilla measurements with binary outcomes are
the agent’s only source of information about the quantum
state in the vast unobservable Hilbert space and the only
source of rewards guiding the learning algorithm.
For an oscillator-qubit system, we demonstrate learning

of both unitary control and control with adaptive meas-
urement-based quantum feedback. These types of control
are special instances of a modular circuit-based framework,
in which the quantum operation executed on a system is
represented as a sequence of continuously parametrized
control circuits, whose parameters are learned in situ with
the help of a reward circuit. We show how to construct task-
specific reward circuits that implement an experimentally
feasible dichotomic positive operator-valued measure
(POVM) on the oscillator and how to use its outcomes
as reward bits in the classical training loop. We train the
agent to prepare various nonclassical oscillator states, such
as Fock states, Gottesman-Kitaev-Preskill (GKP) states
[54], Schrödinger cat states, and binomial code states
[55], and to execute gates on logical qubits encoded in
an oscillator.
Although our demonstration is based on a simulated

environment producing mock measurement outcomes, the
RL agent that we developed (code available at Ref. [56]) is
compatible with real-world experiments.

II. RELATED WORK

In recent years, multiple theoretical proposals have
emerged around applying reinforcement learning to quan-
tum control problems such as quantum state preparation
[20–23,23–28] and feedback stabilization [29,30], the
construction of quantum gates [31–33], design of quantum
error correction protocols [34–37], and control-enhanced
quantum sensing [38,39]. These proposals formulate the
control problem in a way that avoids directly facing
quantum observability and makes it more tractable for
the RL agent. In simulated environments, this is possible,
for example, by providing the agent with full knowledge of
the system’s quantum state, which supplies enough infor-
mation for decision making [20,23–25,27,29,34,38,39].
Moreover, in the simulation, the distance to the target state
or operation is known at every step of the quantum
trajectory, and it can be used to construct a steady reward
signal to guide the learning algorithm [23–25,38], thereby
alleviating the well-known delayed reward assignment
problem [12,13]. Taking RL a step closer towards quantum
observability, some works only provide the agent with
access to fidelities and expectation values of physical
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observables in different parts of the training pipeline
[21,26,28,57,58], which would still require a prohibitive
amount of averaging in an experiment, a problem exacer-
bated by the iterative nature of the training process. Under
these various simplifications, there are positive indications
[23,31] that RL is able to match the performance of
traditional gradient-based methods, albeit in situations
where the agent or the learning algorithm has access to
expensive or unrealistic resources. Therefore, such RL
proposals are not compatible with efficient training in
experiment, which is required in order to eliminate model
bias from quantum control. To address this challenge, it is
necessary to develop agents that learn directly from
stochastic measurement outcomes or from low-sample
estimators of physical observables. Initial steps towards
this goal were studied in Refs. [22,30,59].

III. REINFORCEMENT LEARNING
APPROACH TO QUANTUM CONTROL

A. Markov decision process

We begin by introducing several concepts from the field
of artificial intelligence (AI). An intelligent agent is any
device that can be viewed as perceiving its environment
through sensors and acting upon that environment with
actuators [60]. In RL [12,13], a subfield of AI, the
interaction of the agent with its environment is usually
described with a powerful framework of Markov decision
process (MDP).
In the MDP framework, the agent-environment inter-

action proceeds in episodes consisting of a sequence of
discrete time steps. At every time step t, the agent receives
an observation ot ∈ O containing some information about
the current environment state st ∈ S and acts on the
environment with an action at ∈ A. This action induces
a transition of the environment to a new state stþ1 according
to a Markov transition function T ðstþ1jst; atÞ. The agent
selects actions according to a policy πðatjhtÞ, which, in
general, can depend on the history ht ¼ o0∶t of all past
observations made in the current episode. In the partially
observable environment, observations are issued according
to an observation function OðotjstÞ and carry only limited
information about the state. In the special case of a fully
observable environment, the observation ot ¼ st is a
sufficient statistic of the past, which allows us to restrict
the policy to a mapping from states to actions πðatjstÞ.
Environments can be further categorized as discrete or
continuous according to the structure of the state space S,
and as deterministic or stochastic according to the structure
of the transition function T . Likewise, policies can be
categorized as discrete or continuous, according to the
structure of the action space A, and as deterministic or
stochastic.
The agent is guided through the learning process by a

reward signal rt ∈ R. The reward is issued to the agent

after each action, but it cannot be used by the agent to
decide on the next action. Instead, it is used by the learning
algorithm to improve the policy. The reward signal is
designed by a human supervisor according to the final goal,
and it must indicate how good the new environment state is
after the applied action. Importantly, it is possible to specify
the reward signal for achieving a final goal without
knowing what the optimal actions are, which is a major
difference between reinforcement learning and more
widely appreciated supervised learning. The goal of the
learning algorithm is to find a policy π that maximizes
the agent’s utility function J, which in RL is taken to be the
expectation J ¼ Eπ½R& of the reward accumulated during
the episode, also known as a return R ¼

P
t rt.

Even from this brief description, it is clear that learning
environments vary vastly in complexity from “simple”
discrete, fully observable, deterministic environments, such
as a Rubik’s cube, to “difficult” continuous, partially
observable, stochastic environments, such as those of
self-driving cars. Where does quantum control land on
this spectrum?

B. Quantum control as quantum-observable
Markov decision process

To explain how quantum control can be viewed as a
sequential decision problem, for concreteness we specialize
the discussion to a typical circuit QED [45] experimental
setup, depicted in Fig. 1, although our framework is
independent of the physical platform. The agent is a
program implemented in a classical computer controlling
the quantum system. The quantum environment of the
agent consists of a quantum harmonic oscillator, realized as
an electromagnetic mode of the superconducting resonator,
and an ancilla qubit, realized as the two lowest energy
levels of a transmon [61]. Note the difference in the use of
the term “environment,”which in quantum physics refers to
a dissipative bath coupled to a quantum system, while in
our RL context, it refers to the quantum system itself, which
is the environment of the agent.
It is convenient to abstract away the exact details of the

control hardware and adopt the circuit model of quantum
control. According to such an operational definition, the
agent interacts with the environment by executing a para-
metrized control circuit in discrete steps, as illustrated in
Fig.1.Oneachstep t, theagent receives anobservationot and
produces the action vector at of parameters of the control
circuit to apply in the next time step. The agent-environment
interaction proceeds for T steps, comprising an episode.
Compared to the typical classical, partially observable

MDPs (POMDPs), there are two significant complications
in the quantum case: (i) The quantum environment is
minimally observable to the agent through projective
ancilla measurements; i.e., the observations ot carry no
more than 1 bit of information, and (ii) the observation
causes a random discontinuous jump in the underlying
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environment state. While, in principle, classical POMDPs
could have such properties, they arise more naturally in the
quantumcase. Historically, RLwas sometimes benchmarked
in stochastic but always richly observable environments, and
it is therefore an open question whether existing RL
algorithms are well suited for quantum environments with
properties (i) and (ii). There is also a fundamental question of
whether classical agents can efficiently, in the algorithmic
complexity sense, learn compressed representations of the
latent quantum states producing the observations and if such
representations are necessary for learning quantum control
policies. Recognizing some of these difficulties, Ref. [41]
introduced the quantum-observable Markov decision proc-
ess (QOMDP), a termwewill adopt to describe our quantum
control framework.
We use the Monte Carlo wave-function method [62] to

simulate the quantum environment of the agent. For the
environment consisting of an oscillator coupled to an

ancilla qubit and isolated from the dissipative bath, the
most general QOMDP has the following specifications:
(1) State space is the joint Hilbert space of the oscillator-

qubit system, which in our simulation corresponds to
S ¼ fjsi ∈ C2 ⊗ CN; hsjsi ¼ 1g, with N ¼ 100
being the oscillator Hilbert space truncation in the
photon number basis.

(2) Observation spaceO ¼ f−1;þ1g is a set of possible
measurement outcomes of the qubit σz operator. If the
control circuit contains a qubit measurement, the
observation function is given by the Born rule of
probabilities. If the control circuit does not contain a
measurement, the observation is a constant, which we
take to be ot ¼ þ1. We refer to the former as
measurement-based feedback control and the latter
as unitary control.
In other approaches [20,23–25,27,29,34,38,39], an

observation is a quantumstate itselfot ¼ jsti, which is
not naturally compatible with real-world experiments.
It could be obtained through quantum-state tomogra-
phy [40], but thiswould result in exponential scalingof
the training sample complexity with system size.

(3) Action space A ¼ RjAj is the space of parameters a
of the control circuit. It generates the set fK½a&g of
continuously parametrized Kraus maps. If the con-
trol circuit contains a qubit measurement, then each
map K½a& consists of two Kraus operators K'½a&
satisfying the completeness relation K†

þ½a&Kþ½a& þ
K†

−½a&K−½a& ¼ I and corresponding to observations
'1. If the control circuit does not contain a meas-
urement, then the map consists of a single unitary
operator K0½a&.

(4) State transitions happen deterministically according
to jstþ1i ¼ K0½at&jsti if the control circuit does not
contain a measurement and otherwise stochastically
according to jstþ1i ¼ K'½at&jsti=

ffiffiffiffiffiffi
p'

p
, with proba-

bilities p' ¼ hstjK†
'½at&K'½at&jsti.

In this paper, we do not consider the coupling of a
quantum system to a dissipative bath, but it can be
incorporated into the QOMDP by expanding the Kraus
maps to include uncontrolled quantum jumps of the state
jsti induced by the bath. This would lead to more
complicated dynamics, but since the quantum state and
its transitions are hidden from the agent, nothing would
change in the RL framework.
In the traditional simulation-based approach to quantum

control, the model for K½a& is specified, for example,
through the system’s Hamiltonian and Schrödinger equa-
tion, allowing for gradient-based optimization of the cost
function [1–5]. In contrast, in our approach, the Kraus map
K½a& is not modeled. Instead, the experimental apparatus
implements K½a& exactly. In this case, the optimization
proceeds at a higher level by trial-and-error learning of the
patterns in the action-reward relationship. This ensures that
the learned control sequence is free of model bias.

Classical
Quantum

FIG. 1. Pipeline of classical reinforcement learning applied to a
quantum-observable environment. The agent (yellow box),
whose policy is represented with a neural network, is a program
implemented in a classical computer controlling the quantum
system. The quantum environment of the agent consists of a
harmonic oscillator and its ancilla qubit, implemented with
superconducting circuits and cryogenically cooled in the dilution
refrigerator. The goal of the agent is to prepare the target state
jψ targeti of the oscillator after T time steps, starting from initial
state jψ0i. Importantly, the agent does not have access to the
quantum state of the environment; it can only observe the
environment through intermediate projective measurements of
the ancilla qubit yielding binary outcomes ot. The agent controls
the environment by producing, at each time step, the action vector
at of parameters of the control circuit (pink box). The reward R
for the RL training is obtained by executing the reward circuit
(blue box) on the final state jsTi prepared in each episode. This
circuit is designed to probabilistically answer the following
question: “Is the prepared state jsTi equal to jψ targetijgi?” A
batch of B episodes is collected per training epoch and used in the
classical optimization loop to update the policy.
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In practice, common contributions to model bias come
from frequency- and power-dependent pulse distortions in
the control lines [63,64], higher-order nonlinearities, cou-
pling to spurious modes, etc. Simulation-based approaches
often attempt to compensate for model bias by introducing
additional terms in the cost function, such as penalties for
pulse power and bandwidth, weighted with somewhat
arbitrarily chosen coefficients, or finding policies that are
first-order insensitive to deviations in system parameters
[65]. In contrast, our RL agent will learn the relevant
constraints automatically since it optimizes the true
unbiased objective incorporated into the reward.
As shown in Fig. 1, the reward in our approach is

produced by following the training episode with the reward
circuit. This circuit realizes a dichotomic POVM on the
oscillator, whose binary outcome probabilistically indicates
whether the applied action sequence implements the
desired quantum operation. Since the agent’s goal is to
maximize the expectation J ¼ E½R&, we require that in the
state preparation QOMDPs, the reward circuit is designed
to satisfy the condition

argmax
jψi

E½R& ¼ jψ targeti; ð1Þ

where expectation is taken with respect to the sampling
noise in reward measurements when the state jψijgi is
supplied at the input to the reward circuit.
In circuit QED, dichotomic POVMs are realized through

unitary operation on the oscillator-qubit system followed
by a projective qubit measurement in the σz basis. Since the
reward measurement, in general, will disrupt the quantum
state, we only apply the reward circuit at the end of the
episode and use the reward rt<T ¼ 0 at all intermediate
time steps. Hence, from now on, we will omit the time-step
index and refer to the reward as simply R≡ rT. Such
delayed rewards are known to be particularly challenging
for RL agents because they need to make multiple action
decisions during the episode, while the reward only informs
about whether the complete sequence of actions was
successful but does not provide feedback on the individual
actions.
A common choice of reward R in other approaches

[20,21,23,25–28,31–33,40] is the fidelity of the executed
quantum operation. The fidelity oracle, often assumed to be
freely available, would translate into time-consuming
averaging in experiments involving quantum systems with
high-dimensional Hilbert space, and it is therefore prohibi-
tively expensive from a practical point of view.
Clearly, quantum control is a “difficult” decision process

according to a rough categorization outlined in Sec. III A.
One may compare it to driving a car blind with a single
sensor that provides binary-valued feedback instead of a
rich visual picture of the surroundings. In the following
subsection, we describe our approach to solving QOMDPs
through policy gradient RL.

C. Solving quantum control through policy gradient
reinforcement learning

The solution to a POMDP is a policy πðatjhtÞ that
assigns a probability distribution over actions to each
possible history ht ¼ o0∶t that the agent might see. In
large problems, it is unfeasible to represent the policy as a
lookup table, and instead, it is convenient to parametrize it
using a powerful function approximator such as a deep
neural network [14,16,66]. As an additional benefit, this
representation allows the learning agent to generalize via
parameter sharing to histories it has never encountered
during training. We refer to such neural network policies as
πθ, where θ represents the network parameters. It is
advantageous to adopt recurrent network architectures,
such as the long short-term memory (LSTM) [67], in
problems with variable-length inputs. In this work, we use
neural networks with a LSTM layer and several fully
connected layers.
The output of the policy network is the mean μθ½ht& and

diagonal covariance σ2θ½ht& of the multivariate Gaussian
distribution from which the action at is sampled on every
time step, as depicted in Fig. 1. The stochasticity of the
policy during the training ensures a balance between
exploration of new actions and exploitation of the current
best estimate μθ of the optimal action. Typically, as training
progresses, the agent learns to reduce the entropy of the
stochastic policy, eventually converging to a near-
deterministic policy. After the training is finished, the
deterministic policy is obtained by choosing the optimal
action μθ.
In application to QOMDPs, such a stochastic action-

space exploration strategy means that every experimental
run is performed with a different policy candidate, which is
evaluated with a binary reward measurement. Instead of
spending the sample budget on increasing the evaluation
accuracy for any given policy candidate through averaging,
our strategy is to spend this budget on evaluating more
policy candidates, albeit with the minimal accuracy. Such a
strategy is explicitly tailored to the stochasticity and
minimalistic observability of quantum environments, and
is conceptually rather different from widely used model-
free optimization methods that crucially rely on averaging
to suppress noise in the cost function, as we further discuss
in the Appendix B.
Policy gradient reinforcement learning [12,13] provides

a set of tools for learning the policy parameters θ guided by
the reward signal. Even though the binary-valued reward R
is a nondifferentiable random variable sampled from
episodic interactions with the environment, its expectation
J depends on the policy parameters θ, and it is therefore
differentiable. The basic working principle of the policy
gradient algorithms is to construct an empirical estimator gk
of the gradient of performance measure∇θJðπθÞjθ¼θk based
on a batch of B episodes of experience collected in the
environment following the current stochastic policy πθk,
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and then perform a gradient ascent step on the policy
parameters θkþ1 ¼ θk þ αgk, where α is the learning rate.
This data collection and the subsequent policy update
comprise a single epoch of training.
Various policy gradient RL algorithms differ in their

construction of the gradient estimator. In this work, we use
the proximal policy optimization algorithm (PPO) [68],
whose brief summary is included in the Supplemental
Material [69]. PPO was developed to cure sudden perfor-
mance collapses often observed when using high-dimen-
sional neural network policies. It achieves this by
discouraging large policy updates (hence “proximal”),
inspired by ideas from trust region optimization. The
stability of PPO is essential in stochastic environments,
motivating our choice of this algorithm for solving
QOMDPs.
As described above, the learning process is a guided

search in the policy space, where the guiding signal is the
reward assigned to each attempted action sequence. Since
in the state preparation QOMDP the goal is to approach
arbitrarily close to the target state that resides in a
continuous state space, it is tempting to think that the
guiding signal needs to be of high resolution, i.e., assign
different rewards to policies of different qualities, with the
reward difference being indicative of the quality difference.
This condition is certainly satisfied by using fidelity as a
reward [20,21,23,25–28,31–33,40]. In contrast, our
reward-circuit-based approach breaks this condition but
promises high experimental sample efficiency by virtue of
not having to perform expensive fidelity estimation.
However, it is not obvious that stochastic '1 outcomes
of the reward circuits are sufficient to navigate a continuous
policy space and converge at all, not to mention reaching a
high fidelity. For example, consider that for two policies
with fidelities F 1 > F 2, in our approach, it is possible to
receive the rewards R1 ¼ −1 < R2 ¼ þ1 because of the
measurement sampling noise, leading to the incorrect
contribution to policy gradient. By probabilistically com-
paring multiple policy candidates and performing small
updates within the trust region, our proximal policy
optimization is able to successfully cope with such a highly
stochastic learning problem.
The next section is devoted to empirically proving that

our approach indeed leads to stable learning convergence,
i.e., that the agent’s performance gradually improves to a
desired level and does not collapse or stagnate. We
demonstrate this by training the agent to solve challenging
state preparation instances.
We also provide a simple introductory example illustrat-

ing the basic principles of our approach in Appendix A.

IV. RESULTS

Currently, direct pulse shaping with gradient ascent pulse
engineering (GRAPE) is a dominant approach to quantum
state preparation in circuit QED [48–50]. Nevertheless, a

modular approach based on repetitive application of a
parametrized control circuit has several advantages [51,52].
First, thanks to a reduced number of parameters, the
modular approach is less likely to overfit and can generalize
better under small environment perturbations. In addition,
each gate in the module can be individually tested and
calibrated. Finally, the modular approach is physically
motivated and more interpretable, leading to a better
understanding of the solution.
Our RL approach is compatible with any parametrized

control circuit, including piecewise constant parametriza-
tion used in direct pulse shaping. In this work, for
concreteness, we make the particular choice of a control
circuit based on the universal gate set consisting of the
selective number-dependent arbitrary phase gate SNAPðφÞ
and displacement DðαÞ [70]:

SNAPðφÞ ¼
X∞

n¼0

eiφn jnihnj; ð2Þ

DðαÞ ¼ expðαa† − α(aÞ: ð3Þ

In practice, this gate set has been realized in the strong
dispersive limit of circuit QED [52,71]. Displacements
DðαÞ are implemented with resonant driving of the oscil-
lator, while the Berry phases φn in the SNAPðφÞ gate are
created by driving the qubit resonantly with the jgijni ↔
jeijni transition. Recently, it was demonstrated that SNAP
can be made first-order path independent with respect to
ancilla qubit decay [72,73]. Furthermore, a linear scaling of
the circuit depth T with the state size hni can be achieved
for this approach [74], while many interesting experimen-
tally achievable states can be prepared with just T ∼ 5.
Inspired by this finding, we parametrize our unitary control
circuit as D†ðαÞSNAPðφÞDðαÞ; see Fig. 2(a).
In Secs. IVA–IV C, our aim is to demonstrate that

model-free RL is feasible; i.e., the learning converges to
high-fidelity protocols in a realistic number of training
episodes. To isolate the learning aspect of the problem, in
Secs. IVA–IV C, we use perfect gate implementations
acting on the Hilbert space as intended by Eqs. (2) and
(3). However, the major power of the model-free paradigm
is the ability to utilize available controls even when they do
not produce the expected effect, tailoring the learned
actions to the unique control imperfections present in the
system. We focus on this aspect in Sec. IV D by training the
agent with an imperfectly implemented SNAP. Moreover,
the advantage of model-free RL compared to other model-
free optimization methods is that it can efficiently solve
problems requiring adaptive decision making [14–19]. We
leverage this advantage of RL in Sec. IV D to learn adaptive
measurement-based quantum feedback strategies compen-
sating for imperfect SNAP implementation. Finally, in
Appendix E, we demonstrate learning of gates for logical
qubits encoded in an oscillator.
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A. Preparation of oscillator Fock states

One central question in our RL approach is how to assign
a reward R to the agent by performing a measurement on
the prepared state jsTi. To satisfy Eq. (1), it is sufficient to
design the reward circuit in such a way that E½R& ¼ fðF Þ,
where f is any monotonously increasing function of fidelity
F to the target state. Although this is not necessary, we find
it to be a useful guiding principle. For example, the most
efficient choice is to generate R as an outcome of a
measurement with POVM fΩtarget; I − Ωtargetg, where

Ωtarget ¼ jψihψ jtarget is the target projector. This POVM
maximizes the distinguishability of the target state from all
other states [75]. We refer to such a reward as the target
projector reward. If the measurement outcomes associated
with this POVM are '1, then the reward will satisfy
E½R& ¼ 2F − 1.
In the strong dispersive limit of circuit QED [76], a

dichotomic POVM measurement required for the target
projector reward can be routinely realized for an important
class of nonclassical states known as Fock states jni, which
are eigenstates of the photon number operator. To learn the
preparation of such states, we use the “Fock reward circuit”
shown in Fig. 2(a).
All reward circuits considered in this work contain two

ancilla measurements. If the SNAP is ideal as in Eq. (2),
the qubit will remain in jgi after the control sequence, and
the outcome of the first measurement will always be
m1 ¼ 1, which is the case in Secs. IVA–IV C and in
Appendix E. However, in a real experimental setup,
residual entanglement between the qubit and oscillator
can remain. Therefore, in general, the first measurement
serves to disentangle them. The second measurement with
outcome m2 is used to produce the reward. In the Fock
reward circuit, this is done according to the rule R ¼ −m2.
The training episodes begin with the oscillator in vacuum

jψ0i ¼ j0i and the ancilla qubit in the ground state jgi.
Episodes follow the general template shown in Fig. 1, in
which the control circuit is applied for T ¼ 5 time steps,
followed by the Fock reward circuit. The SNAP gate is
truncated at Φ ¼ 15 levels, leading to the (15þ 2)-dimen-
sional parametrization of the control circuit and amounting
to 85 real parameters for the full control sequence. In our
approach, the choice of the circuit depth T and the action-
space dimension jAj ¼ Φþ 2 needs to be made in
advance, which requires some prior understanding of the
problem complexity. In this example, we choose T ¼ 5 and
Φ ¼ 15 for all Fock states j1i; ...; j10i to ensure a fair
comparison of the convergence speed, but, in principle, the
states with lower n can be prepared with shorter sequences
[70,71]. An automated method for selecting the circuit
depth was proposed in Ref. [74], and it can be utilized here
to make an educated guess of T.
The action vectors are sampled from the Gaussian

distribution produced by the deep neural network with
one LSTM layer and two fully connected layers, represent-
ing the stochastic policy. The neural network input is only
the “clock” observation (one-hot encoding of the step index
t) since there are no measurement outcomes in the unitary
control circuit. The agent is trained for 4 × 103 epochs with
batches of B ¼ 103 episodes per epoch. This amounts to a
sample size of Mtot ¼ 4 × 106 experimental runs. The total
time budget of the training is split between (i) experience
collection, (ii) optimization of the neural network, and
(iii) communication and instruments reinitialization. We
estimate that with the help of active oscillator reset [77], the
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FIG. 2. Preparation of Fock states j1i;…; j10i. (a) Parametrized
control circuit (pink) and Fock reward circuit (blue). The reward
circuit contains a selective π pulse on the qubit, conditioned on
having n photons in the oscillator. (b) Evaluation of the training
progress. The background trajectories correspond to six random
seeds for each state; solid lines show the trajectory with the
highest final fidelity. (c) Summary of comparison of different
model-free approaches on the task of Fock state preparation. We
perform extensive hyperparameter tuning for all three ap-
proaches, as described in Sec. IVA for RL, and in Appendix B
for Nelder-Mead (NM) and simulated annealing (SA). All
approaches are constrained to the same total sample size of
Mtot ¼ 4 × 106. The displayed final fidelity is the highest
achieved among six tested random seeds.
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experience collection time in experiment can be as short as
10 minutes in total for such training (assuming 150 μs duty
cycle per episode). Our neural network is implemented
with TensorFlow [78] on a NVIDIA Tesla V100 graphics
processing unit (GPU). The total time spent updating the
neural network parameters is 10 minutes in total for such
training. The real experimental implementation will likely
be limited by instrument reinitialization [9]. This time
budget puts our proposal within the reach of current
technology.
Throughout this paper, we use the fidelity F only as an

evaluation metric to benchmark the agent, and it is not used
anywhere in the training loop. If desired, in experiment, the
training epochs can be periodically interleaved with evalu-
ation epochs to perform fidelity estimation [79,80] for the
deterministic version of the current stochastic policy. Other
metrics can also be used to monitor the training progress
without interruption, such as the return and entropy of the
stochastic policy.
The agent benchmarking results for this QOMDP are

shown in Fig. 2(b). They indicate that our stochastic action-
space exploration strategy is not only able to converge but
also yields high-fidelity solutions within a realistic number
of experimental runs. The agent was able to reach F >
0.99 for all Fock states and F > 0.999 for Fock state j1i.
Such stable convergence in a stochastic setting is

possible with proximal policy optimization because after
every epoch, the policy distribution only changes by a small
amount within a trust region. This working principle is in
stark contrast with popular optimization algorithms such as
the NM simplex search [6–8] or SA [40], where each
update of the simplex (in NM) or the state (in SA) can result
in a drastically different policy. As a result, both of these
approaches perform poorly on high-dimensional problems
with the stochastic cost function, as shown in Appendix B
and summarized in Fig. 2(c). When constrained to the same
total number of experimental runs Mtot ¼ 4 × 106 as in
Fig. 2(b),NM is only able to find solutionswithF > 0.99 for
Fock states j1i and j2i and SA only for Fock state j1i.
Despite its low resolution, the target projector reward

represents the most informative POVM from the perspec-
tive of state certification [75], and it results in efficient
learning of state preparation protocols. However, for most
target states, it will be unfeasible to experimentally imple-
ment such POVM in a trustworthy way. Recall that in
circuit QED, any dichotomic POVM on the oscillator is
implemented with a unitary operation on the oscillator-
qubit system and a subsequent qubit measurement in the σz
basis. The trustworthiness requirement implies that this
unitary operation can be independently calibrated to high
accuracy because errors in its implementation can bias the
reward circuit and, as a result, bias the learning objective
of the agent. For example, in the Fock reward circuit in
Fig. 2(a), the unitary is a simple photon-number-selective
qubit flip whose calibration is relatively straightforward.

Therefore, we consider the Fock reward as a feasible and
trustworthy instance of the target projector reward.
In a more general case, when a target projector reward is

unfeasible to implement, consider the following probabi-
listic measurement strategy. Let fΩkg be a parametrized set
of POVM elements that can be realized in a trustworthy
way. To implement a reward measurement, in each episode,
we first sample the parameter k from some probability
distribution PðkÞ and then implement a dichotomic POVM
fΩk; I −Ωkg with associated reward R ¼ 'Rk. One can
view such a reward scheme as probabilistically testing
different properties of the prepared state, instead of testing
directly whether it is equal to the target state. The scale Rk
of the binary reward is chosen according to the importance
of each such property. Note that in such a reward scheme,
the expectation in Eq. (1) is taken with respect to both the
sampling of POVMs and the sampling of measurement
outcomes.
In Secs. IV B and IV C, we consider examples of such

probabilistic reward measurement schemes, with further
examples relevant for other physical systems included in
Appendix D.

B. Preparation of stabilizer states

The class of stabilizer states is of particular interest for
quantum error correction [81]. A state is a stabilizer state if
it is a unique joint eigenvalue-1 eigenstate of a commutative
stabilizer group. To demonstrate learning stabilizer state
preparation in an oscillator, we train the agent to prepare a
grid state, also known as the Gottesman-Kitaev-Preskill
(GKP) state [54]. Grid states were originally introduced for
encoding a 2D qubit subspace into an infinite-dimensional
Hilbert space of an oscillator for bosonic quantum error
correction, and they were subsequently recognized to be
valuable resources for various other quantum applications.
In particular, the 1D version of the grid state, which we
consider here, can be used for sensing both real and
imaginary parts of a displacement simultaneously [82,83].
An infinite-energy 1D grid state is a Dirac comb

jψGKP
0 i ∝

P
t∈Z Dðt

ffiffiffi
π

p
Þj0xi, where j0xi is a position eigen-

state located at x ¼ 0. The generators of a stabilizer group for
such a state are Sx;0 ¼ Dð

ffiffiffi
π

p
Þ and Sp;0 ¼ Dði

ffiffiffi
π

p
Þ. The

finite-energy version of this state jψGKP
Δ i can be obtained

with generators Sx;Δ ¼ EΔSx;0E−1
Δ and Sp;Δ ¼ EΔSp;0E−1

Δ ,
where EΔ ¼ expð−Δ2a†aÞ is the envelope operator and Δ
determines the degree of squeezing in the peaks of the Dirac
comb and the extent of the grid envelope.
To learn the preparation of such a GKP state, consider a

probabilistic reward measurement scheme based on a set
fΩkg, with k ¼ x, p of POVM elements, which are the
projectors onto the þ1 eigenspaces of stabilizer generators
Sx=p;Δ. The direction of the stabilizer displacement (along x
or p quadrature) is sampled uniformly, and the scale of
reward is Rk ¼ 1 for each direction. In this scheme, there is
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no simple relation between E½R& and F , but the condition
(1) is satisfied. In contrast, for a multiqubit system with a
finite stabilizer group, it is possible to construct a scheme in
which the expectation of reward is a monotonous function
of fidelity by sampling uniformly from the full stabilizer
group (see Appendix D).
The infinite-energy stabilizersSx=p;0 are unitary and can be

measured in the oscillator-qubit system with the standard
phase estimation circuit [84], as was experimentally dem-
onstratedwith trapped ions [85] and superconducting circuits
[86]. On the other hand, the finite-energy stabilizers Sx=p;Δ
are not unitary nor Hermitian. Recently, an approximate
circuit for generalized measurement of Sx=p;Δ was proposed
[87,88] and realized with trapped ions [88]. Our stabilizer
reward circuit, shown in Fig. 3(a), is based on these
proposals. The measurement outcome m2, obtained in this
circuit, is administered as a rewardR ¼ m2. Since this circuit
only approximates the desired POVM, such a reward will
only approximately satisfy E½R& ¼ ðhSx;Δiþ hSp;ΔiÞ=2 and
fulfill the condition (1). Nevertheless, the agent that strives to
maximize such a rewardwill learn to prepare an approximate
jψGKP

Δ i state.
After choosing the reward circuit, we need to properly

constrain the control circuit. Grid states have a large photon
number variance

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðnÞ

p
≈ hni ≈ 1=ð2Δ2Þ; hence, prepa-

ration of such states requires a large SNAP truncation Φ.
However, increasing the action-space dimension jAj ¼
Φþ 2 can result in less stable and efficient learning. As

a compromise, we chooseΦ ¼ 30 and T ¼ 9, amounting to
288 real parameters for the full control sequence.
The agent benchmarking results for this QOMDP are

shown in Fig. 3(b), with the average stabilizer value as the
evaluation metric [measured with the approximate circuit
from Fig. 3(a)]. For a perfect policy, the stabilizers would
saturate to þ1, but it is increasingly difficult to satisfy this
requirement for target states with smaller Δ because of a
limited SNAP truncation and circuit depth. Nevertheless,
our agent successfully copes with this task. Example
Wigner functions of the states prepared by the agent after
10,000 epochs of training are shown as insets.
Learning state preparation with a probabilistic reward

measurement scheme is generally less efficient than with a
target projector reward because individual reward bits carry
only partial information about the state. However, in
principle, if stabilizer measurements can be realized in a
quantum nondemolition way, this opens a possibility of
acquiring the values of multiple commuting stabilizers after
every episode, thereby increasing the signal-to-noise ratio
(SNR) of the reward signal.
Reward circuits in Secs. IVA and IV B are designed for

special classes of states. Next, we consider how to construct
a reward circuit applicable to arbitrary states.

C. Preparation of arbitrary states

In the general case, we aim to construct an unbiased
estimator of fidelityF based on a measurement scheme that
is (i) tomographically complete, (ii) feasible to implement
in a given experimental platform, and (iii) trustworthy. The
requirement (i), in combination with universality of the
control circuit, is necessary to guarantee that arbitrary states
can, in principle, be prepared with our approach. However,
it is not sufficient by itself and needs to be supplemented
with requirements (ii) and (iii) to ensure practical
feasibility.
In the strong dispersive limit of circuit QED, the Wigner

tomography is a canonical example satisfying all three
requirements above [89]. The Wigner function is defined
on the oscillator phase spacewith coordinatesα ∈ C, and it is
given as the expectation value of the “displaced parity”
operator WðαÞ ¼ ð2=πÞhΠαi, where Πα ¼ DðαÞΠD†ðαÞ,
and Π ¼ eiπa

†a is the photon number parity. Hence, for
the probabilistic reward measurement scheme based on the
Wigner function, we consider a continuously parametrized
set of POVM elements fΩαg, where Ωα ¼ ðI þ ΠαÞ=2 is a
projector onto þ1 (even) eigenspace of the displaced parity
operator.
Next, we need to determine the probability distribution

PðαÞ according to which the POVMs are samples from the
set fΩαg for reward evaluation. To this end, we derive the
estimator of fidelity based on the Monte Carlo importance
sampling of the phase space:

(a)

(b)

FIG. 3. Preparation of grid states. (a) Stabilizer reward circuit
for the target state jψGKP

Δ i. The circuit makes use of the condi-
tional displacement gate CDðαÞ ¼ Dðσzα=2Þ. The control circuit
is the same as in Fig. 2(a). (b) Evaluation of the training progress.
The background trajectories correspond to six random seeds for
each state; solid lines show the trajectory with the highest final
stabilizer value. Inset: example Wigner functions of the states
prepared by the agent after 10,000 epochs of training.
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F ¼ π
Z

d2αWðαÞWtargetðαÞ ð4Þ

¼ 2 E
α∼P

E
ψ

"
1

PðαÞ
ΠαWtargetðαÞ

#
; ð5Þ

where points α are sampled according to an arbitrary
probability distribution PðαÞ, which is nonzero where
WtargetðαÞ ≠ 0. The estimator (5) leads to the following
scheme, dubbed the “Wigner reward”: First, the phase-
space point α is generated with rejection sampling, as
illustrated in Fig. 4(b), and then the displaced parity Πα is
measured, corresponding to the reward circuit shown in
Fig. 4(a). The reward is then assigned according to the rule
R ¼ Rαm2, where Rα ¼ f2c=PðαÞgWtargetðαÞ is chosen to
reflect the importance of a sampled phase-space point, and
c > 0 is an arbitrary scaling factor. Such a reward satisfies
E½R& ¼ cF according to Eq. (5) but only requires a single
binary tomography measurement per policy candidate.
The estimator (5) is unbiased for any PðαÞ, but its

variance can be reduced by choosing PðαÞ optimally. The
lowest variance is achieved with PðαÞ ∝ jWtargetðαÞj,
as shown in Appendix C. Such a choice also helps to
stabilize the learning algorithm since it conveniently
leads to rewards R ¼ m2 sgnWtargetðαÞ of equal magnitude
jRj ¼ 1, where we made a proper choice of the scaling
factor c.
We investigate the agent’s performance with Wigner

reward circuit for (i) preparation of the Schrödinger cat
state jψ targeti ∝ jβiþ j − βi with β ¼ 2 in T ¼ 5 steps,
shown in Fig. 4(c), and (ii) preparation of the binomial code
state jψ targeti ∝

ffiffiffi
3

p
j3iþ j9i [55] in T ¼ 8 steps, shown in

Fig. 4(d). In contrast to target projector and stabilizer
rewards that asymptotically lead to a reward of þ1 for
optimal policy, the Wigner reward remains stochastic even
under the optimal policy. Since in this case it is impossible
to find the policy that would systematically produce a
reward of þ1, for some states, the agent converges to
policies of intermediate fidelity (green line). To increase the
SNR of the Wigner reward, we evaluate every policy
candidate with reward circuits corresponding to 1, 10,
and 100 different phase-space points, doing a single
measurement per point and averaging the obtained meas-
urement outcomes to generate the reward R. The results
show that the increased reward SNR allows us to reach
higher fidelity, albeit at the expense of increased sample
size. We expect that in the limit of infinite averaging, the
training would proceed as if the fidelity F was directly
available to be used as a reward (blue line).
We observe notable variations in convergence speed and

saturation fidelity depending on the choice of hyperpara-
meters, which is typical of reinforcement learning. A lot of
progress has been made in developing robust RL algo-
rithms applicable to a variety of tasks without extensive
problem-specific hyperparameter tuning [15,16], but this

still remains a major open problem in the field. The list of
hyperparameters used in all our training examples can be
found in the Supplemental Material [69]. Even with the
optimal choice of hyperparameters, there is no rigorous
guarantee of convergence—a problem plaguing all heuris-
tic optimization methods in nonconvex spaces. In the
presented examples, we plot learning trajectories corre-
sponding to several random seeds to demonstrate that the
probability of getting stuck with a suboptimal solution
is small.
This demonstration shows that arbitrary-state prepara-

tion is, in principle, possible with our approach, as long as a
tomographically complete reward measurement scheme is
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FIG. 4. Preparation of arbitrary states. (a) Wigner reward
circuit based on the measurement of the photon number parity.
In this circuit, the conditional parity gate corresponds to
jgihgj ⊗ I þ jeihej ⊗ Π. (b) Wigner function of the cat state
jψ targeti ∝ jβiþ j − βi, with β ¼ 2. Scattered stars illustrate
phase-space sampling of points α for the Wigner reward.
(c) Evaluation of the training progress for the cat state. The
background trajectories correspond to six random seeds for each
setting; solid lines show the trajectory with the highest final
fidelity. The Wigner reward is obtained by sampling 1, 10, and
100 different phase-space points, doing a single measurement per
point, and averaging the obtained measurement outcomes to
improve the resolution and achieve a higher convergence ceiling.
For the blue curves, the fidelity F is used as a reward,
representing the expected performance in the limit of infinite
averaging. (d) Evaluation of the training progress for the binomial
code state jψ targeti ∝

ffiffiffi
3

p
j3iþ j9i, whose Wigner function is

shown in the inset.
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available in a given physical system. In Appendix D, we
provide fidelity estimators based on the characteristic
function, enabling training for arbitrary-state preparation
in trapped ions and multiqubit systems.
Examples considered in Secs. IVA–IV C already dem-

onstrate the model-free aspect of our approach despite the
perfect gate implementations in the underlying simulation
of the quantum-state evolution. In the following example,
we demonstrate this aspect more explicitly by training the
agent on a system with imperfect SNAP. In addition, the
next example highlights the potential of RL for measure-
ment-based feedback control.

D. Learning adaptive quantum feedback
with imperfect controls

Many quantum control experiments with circuit QED
systems claim decoherence-limited fidelity [50,71]. The
effect of decoherence on the quantum operation can be
decreased by reducing the execution time. However, this
would involve controls with a wider spectrum and larger
amplitude, pushing the system to the limits where model
assumptions are no longer valid. Therefore, such experi-
ments are decoherence limited instead of model-bias
limited only by choice. Recent experiments that push
quantum control towards faster implementation [51,52]
reveal that significant parts of the error budget cannot be
accounted for by common and well-understood theoretical
models, making the problem of model bias explicit. Model-
free optimization will become an indispensable tool to
achieve higher experimental fidelity despite the inability to
capture the full complexity of a quantum system with a
simple model.
To provide an example of this effect, we consider again a

SNAP-displacement control sequence. In the oscillator-
qubit system with dispersive coupling Hc=h ¼ 1

2 χa
†aσz,

the Berry phases φn in Eq. (2) are created through photon-
number-selective qubit rotations:

SNAPðφÞ ¼
X

n

jnihnj ⊗ Rπ−φn
ðπÞR0ðπÞ; ð6Þ

where RϕðϑÞ ¼ expf−iðϑ=2Þ½cosϕσx þ sinϕσy&g. Note
that this operation, if implemented perfectly, would return
the qubit to the ground state, and hence it can be considered
as an operation on the oscillator alone, as defined in Eq. (2).
Such an implementation relies on the ability to selectively
address number-split qubit transitions, which requires
pulses of long duration τ ≫ 1=χ. In practice, it is desirable
to keep the pulses short to reduce the probability of ancilla
relaxation during the gate. However, shorter pulses of wider
bandwidth would drive unintended transitions, as illus-
trated in Fig. 5(b), leading to imperfect implementation of
the SNAP gate: In addition to accumulating incorrect Berry
phases for different levels, this will generally leave the
qubit and oscillator entangled. Such imperfections are

notoriously difficult to calibrate out or precisely account
for at the pulse or sequence construction level, which
presents a good test bed for our model-free learning
paradigm. We demonstrate that our approach leads to
high-fidelity protocols even in the case τ < 1=χ far from
the theoretically optimal regime, where the sequences
produced assuming ideal SNAP yield poor fidelity because
of severe model bias.
We begin by illustrating in Fig. 5(a) the degradation of

performance of the policies optimized for preparation of
Fock state j3i using the unitary control circuit from Fig. 2
(a) with an ideal SNAP (blue line), when tested with a
finite-duration gate SNAPτ (red and pink lines) whose
details are included in the Supplemental Material [69].
Achieving extremely high fidelity (blue line) requires
delicate adjustment of the control parameters, but this
fine-tuning is futile when the remaining infidelity is smaller
than the performance gap due to model bias, shown with
arrows in Fig. 2(a) and a priori unknown. As seen by
testing on the χτ ¼ 3.4 case (red line), any progress that the
optimizer made after 300 epochs was due to overfitting to
the model of the ideal SNAP. As depicted with a spectrum
inFig. 5(b), the qubit pulse of suchduration is still reasonably
selective (and is close to the experimental choice χτ ≈ 4 in
Ref. [71]), but it already requires a much more sophisticated
modeling of the SNAP implementation in order to not limit
the experimental performance. In the partially selective case
χτ ¼ 0.4 (pink line), the performance is drastically worse.
Note that sequences optimized with any other simulation-
based approach assuming ideal SNAP, such as Refs. [70,74],
would exhibit a similar degradation.
One way to recover higher fidelity is through a detailed

modeling of the composite qubit pulse in the SNAP [52],
although such an approach will still contain residual model
bias. An alternative approach, which comes at the expense
of reduced success rate, is to perform a verification ancilla
measurement and postselection, leading to a control circuit,
shown in Fig. 5(c). Postselecting on a qubit measured in jgi
in all time steps (history hT ¼ 11111) significantly boosts
the fidelity of a biased policy from 0.9 to 0.97 in the case
χτ ¼ 3.4, but it does not lead to any improvement in the
extreme case χτ ¼ 0.4. The postselected fidelity is still
lower than with the ideal SNAP because such a scheme
only compensates for qubit under- or over-rotation, and not
for the incorrect Berry phases. Additionally, the trajectories
corresponding to other measurement histories have
extremely poor fidelities because only the history hT ¼
11111 was observed during the optimization with an
ideal SNAP.
However, in principle, if the qubit is projected to jei by

the measurement, the desired state evolution can still be
recovered using adaptive quantum feedback. Experimental
Fock state preparation with quantum feedback was dem-
onstrated in the pioneering work in cavity QED [90]. In our
context, a general policy in the adaptive setting is a binary
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decision tree, equivalent to 2T−1 distinct parameter settings
for every possible measurement history. There exist model-
based methods for construction of such a tree [91], but they
are not applicable in the cases dominated by a priori
unknown control errors. A RL agent, on the other hand, can
discover such a tree in a model-free way. Even though our
policies are represented with neural networks, they can be
easily converted to a decision-tree representation, which is
more advantageous for low-latency inference in real-world
experimental implementation.
To this end, we train a new agent with a feedback-based

control circuit that directly incorporates a finite-duration
imperfect gate SNAPτ, shown in Fig. 5(c), mimicking
training in an experiment. We use a Fock reward circuit,
shown in Fig. 2(a), in whichm1 ¼ 1 in all episodes, despite
the imperfect SNAP, because of the qubit reset operation.
Since the control circuit contains a measurement, the agent
will be able to dynamically adapt its actions during the
episode depending on the received outcomes ot. As shown
with the green curves in Fig. 5(a), the agent successfully
learns adaptive strategies of high fidelity even in the
extreme case χτ ¼ 0.4. This indicates that RL is not only
good for fine-tuning or “last-mile” optimization, but it is
also a valuable tool for the domains where model-based
quantum control is not applicable, e.g., because of the

absence of reliable models or prohibitive memory require-
ments for simulation of a large Hilbert space.
To further analyze the agent’s strategy, we select the best-

performing random seed for the case χτ ¼ 0.4 after 25,000
epochs of training and visualize the resulting state evolu-
tion in Fig. 5(d). The average fidelity of such a policy is
F ¼ 0.974. There are five high-probability branches, all of
which yield F > 0.9, and further postselection of history
hT ¼ 11̄111 will boost the fidelity to F > 0.999. We
observe that fidelity reduces in the branches with more
“−1” measurement outcomes (top to bottom) because,
being less probable, such branches receive less attention
from the agent during the training. As shown in Fig. 5(e),
top panel, the agent chooses to focus only on a small
number of branches (5 out of 25) and ensure that they lead
to high-fidelity states. This is in contrast to the protocol
optimized with the ideal SNAP and tested with SNAPτ
(bottom panel), which, as a result of model bias, performs
poorly and has relatively uniform probability of all histories
(of course, such protocol would produce only history
11111 if it was applied with an ideal SNAP).
It is noteworthy that in the two most probable branches

in Fig. 5(e), the agent actually finishes preparing the state in
just three steps and, in the remaining time, chooses to
simply idle instead of further entangling the qubit with the
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FIG. 5. Learning adaptive measurement-based quantum feedback for preparation of Fock state j3i with imperfect controls.
(a) Evaluation of the training progress. Blue lines: training the agent with the unitary control circuit, shown in Fig. 2(a), that uses an ideal
SNAP. The background trajectories correspond to six random seeds. The protocols of the best-performing seed are then tested using the
same control circuit but with a finite-duration gate SNAPτ substituted instead of an ideal SNAP. Such a test reveals the degradation of
performance (red and pink lines) due to the model bias. (b) Spectrum of partially selective qubit pulses used in the gate SNAPτ. The
degradation of performance in panel (a) occurs because the pulse overlaps in the frequency domain with unintended number-split qubit
transitions, leaving the qubit and oscillator entangled after the gate. (c) Feedback-based control circuit containing a finite-duration gate
SNAPτ and a verification measurement that produces an observation ot and disentangles the qubit and oscillator. The qubit is always
reset to jgi after the measurement. This control circuit requires either postselection or adaptive control. The agent successfully learns
measurement-based feedback control (a, green) even in the extreme case χτ ¼ 0.4 far from the theoretically optimal regime χτ ≫ 1.
(d) Example state evolution under the policy obtained after 25,000 epochs of training, shown with a black circle in panel (a). The agent
chooses to focus on a small number of branches and to ensure that they lead to high-fidelity states. (e) Cumulative probability and
fidelity of the observed histories quantifying this trend (top panel). The policy trained with ideal SNAP and tested with SNAPτ (bottom
panel) has relatively uniform probability of all histories and poor fidelity.
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oscillator and subjecting itself to additional measurement
uncertainty. In the other branches, this extra time is used to
catch up after previously receiving undesired measurement
outcomes. This indeed seems to be an intelligent strategy
for such a problem, which serves as a positive indication
that this agent will be able to cope with incoherent errors by
shortening the effective sequence length.
We emphasize that even though for this numerical

demonstration of model-free learning we had to build a
specific model of the finite-duration SNAP, the agent is
completely agnostic to it by construction. The only input
that the agent receives is binary measurement outcomes,
whose source is a black box to the agent. Effectively, in this
demonstration, the model bias comes from the mismatch
between ideal and finite-duration SNAP. We also tested the
agent against other types of model bias: We added
independent random static offsets to the Berry phases
and qubit rotation angles, and found that the agent performs
equally well in this situation.

V. DISCUSSION

As empirically demonstrated in Sec. IV, our stochastic
policy optimization is stable and leads to high sample
efficiency. Starting from a random initial policy, learning
the preparation of high-fidelity Fock states (with the target
projector reward) andGKP states (with the stabilizer reward)
required 106–107 experimental runs, and learning with the
Wigner reward required 107–108 runs. Although seemingly
large, this sample size compares favorably with the number
of measurements required to merely tomographically verify
the states of similar quality in experiments, e.g., 3 × 106 for
Fock states [50] and 2 × 107 for GKP states [86].
Exactly quantifying the sample complexity of heuristic

learning algorithms remains difficult. However, we can
qualitatively establish the general trends. A natural question
to ask is whether our approach will scale favorably with
increased (i) target state complexity, (ii) action space, and
(iii) sequence length.

(i) Target state complexity: Sample efficiency of learning
the control policy is affected by multiple interacting
factors, but among the most important is the variance
of the fidelity estimator used for the reward assign-
ment. Variance of the estimator in Eq. (5) withPðαÞ ∝
jWtargetðαÞj is given by Var ¼ 4ð1þ δtargetÞ2 − F 2,
where δtarget ¼

R
jWtargetðαÞjdα − 1 is one measure of

the state nonclassicality known as the Wigner neg-
ativity [92] (see Appendix C for the derivation). This
result leads to a simple lower bound on the sample
complexity of learning the state preparation policy
that reaches the fidelity F to the desired target state

M >
4ð1þ δtargetÞ2 − F 2

ð1 − F Þ2
: ð7Þ

This expression bounds the number of measurements
M required for resolving the fidelity F of a fixed
policy with standard error of the mean comparable to
the infidelity. The task of the RL agent is more
complicated since it needs to not only resolve the
fidelity of the current policy but, at the same time,
learn how to improve it. Therefore, this bound is not
tight, and the practical overhead depends on the
choice of control parametrization, the learning algo-
rithm, and its hyperparameters. However, the bound
(7) clearly indicates that learning the preparation of
larger nonclassical states is increasingly difficult, as
onewould expect, and the difficulty can be quantified
according to theWigner negativity of the state. This is
a fundamental limitation on the learning efficiency
with theWigner reward, which can only be overcome
by designing a reward scheme that takes advantage of
the special structure of the target state and available
trustworthy state manipulation tools, as we did, for
instance, for Fock states and GKP states. The Wigner
negativity of Fock states grows as

ffiffiffi
n

p
[92], where n is

the photon number, which would result in OðnÞ
scaling of the bound (7). In contrast, the target
projector reward, of which the Fock reward is a
special case, has target-state-independent variance
Var ¼ F ð1 − F Þ leading to a bound M > F=ð1−
F Þ, which does not increase with the photon number.
How such a reward design can be optimized in
general, is a matter that we leave for further inves-
tigation.

(ii) Action space: The overhead on top of Eq. (7) is
determined, among other factors, by the choice of the
control circuit. In the case of SNAPand displacement,
the action-space dimension jAj ¼ Φþ 2 has to grow
with the target state size to ensure individual control of
the phases of involved oscillator levels. This might
be problematic since the performance of RL (or any
other approach) usually declines on high-dimensional
tasks, as evidenced, for instance, by studies of robotic
locomotion with different numbers of controllable
joints [93,94]. However, the sample complexity is not
a simple function of jAj, as can be inferred from
Fig. 2(b),whereweuse the same jAj ¼ 17 for all Fock
states. For lower Fock states, the agent quickly learns
to disregard the irrelevant action dimensions because
their contribution to policy gradient averages to zero.
In contrast, for higher Fock states, it needs to discover
the pattern of relations between all action dimensions
across different time steps, and thus the learning is
slower. Note that on the same problem, a much
stronger degradation is observed when using the
Nelder-Mead approach or simulated annealing [see
Fig. 2(c)].

(iii) Sequence length: Tackling decision-making prob-
lems with long-term dependencies (i.e., T ≫ 1)
is what made RL popular in the first place,
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as exemplified by various game-playing agents
[14–17]. In quantum control, the temporal structure
of the control sequences can be exploited by adopting
recurrent neural network architectures, such as the
LSTM used in our work. Recently, machine learning
for sequential data has significantly advanced with
the invention of the transformer models [95], which
use attention mechanisms to ensure that the gradients
do not decay with the sequence depth T. Machine-
learning innovations such as this will undoubtedly
find applications in quantum control.

As can be seen above, there are some aspects of
scalability that are not specific to quantum control but
are common in any control task. The generality of the
model-free reinforcement learning framework makes it
possible to transfer the solutions to such challenges, found
in other domains, to quantum control problems.
Let us now return to the discussion of other factors

influencing the sample efficiency. As we briefly alluded to
previously, the overhead on top of Eq. (7) depends on the
learning algorithm and its hyperparameters. Model-free RL
is known to be less sample efficient than gradient-based
methods, typically requiring millions of training episodes
[13]. This is especially true for on-policy RL algorithms,
such as PPO, since they discard the training data after each
policy update. In contrast, off-policy methods keep old
experiences in the replay buffer and learn from them even
after the current policy has long diverged from the old
policy under which the data were collected, typically
resulting in better sample efficiency. Our pick of PPO
was motivated by its simplicity and stability in the
stochastic setting, but it is worth exploring an actively
expanding collection of RL algorithms [13] and under-
standing which are most suitable for quantum-observable
environments.
The sample efficiency of model-free RL in the quantum

control setting can be further improved by utilizing the
strength of conventional simulation-based methods. A
straightforward way to achieve this would be through
supervised pretraining of the agent’s policy in the simu-
lation. Such pretraining would provide a better initial point
for the agent subsequently retrained in the real-world
setting. Our preliminary numerical experiments show that
this indeed provides significant speedups.
The proposals discussed above resolve the bias-variance

trade-off in favor of complete bias elimination, necessarily
sacrificing sample efficiency. In this respect, model-free
learning is a swing in the opposite direction from the
traditional approach in physics of constructing sparse
physically interpretable models with very few parameters
which can be calibrated in experiment. Building on the
insights from the machine-learning community, model bias
can, in principle, be strongly reduced (not eliminated) by
learning a richly parametrized model, either physically

motivated [96,97] or neural-network based [98,99], from
direct interaction with a quantum system. The learned
model can then be used to optimize the control policy with
simulation-based (not necessarily RL) methods. Another
promising alternative is to use model-based reinforcement
learning techniques [100], where the agent can plan the
actions by virtually interacting with its learned model of the
environment while refining both the model and the policy
using real-world interactions. Finally, in addition to adopt-
ing existing RL algorithms, a worthwhile direction is to
design new algorithms tailored to the specifics of quantum-
observable environments.

VI. CONCLUSION

Addressing the problem of model bias as an inherent
limitation of the dominant simulation-based approach to
quantum control, we claim that end-to-end model-free
reinforcement learning is not only a feasible alternative,
but it is also a powerful tool that will extend the
capabilities of quantum control to domains where simu-
lation-based methods are not applicable. By focusing on
control of a harmonic oscillator in the circuit QED
architecture, we explored various aspects of learning under
the conditions of quantum uncertainty and scarce observ-
ability. Our policy exploration strategy is explicitly tail-
ored to these features of the quantum learning
environments. We demonstrated stable learning directly
from stochastic binary measurement outcomes, instead of
relying on averaging to eliminate stochasticity as is done
in other model-free quantum control optimization meth-
ods. With multiple numerical experiments, we confirmed
that such a strategy leads to high fidelity and sample
efficiency on challenging control tasks that include both
the unitary control and control with adaptive measure-
ment-based quantum feedback. The RL agent that we
developed can be directly applied in real-world experi-
ments with various physical systems.
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APPENDIX A: EDUCATIONAL EXAMPLE

In this Appendix, we analyze a deliberately simple
problem with the purpose of illustrating in detail various
components and stages of the learning process.
Problem setting.—Consider a qubit state preparation

problem in which the initial state is jgi and the target state is
jei. Such state preparation can be achieved with a unitary
rotation gate parametrized as UðaÞ ¼ expð−iπaσxÞ, where
the optimal solution a ¼ 0.5 is known in advance. We let
the agent discover this solution in a model-free way,
without knowing which unitary is actually applied. The
training episodes consist of a single time step in which the
agent produces an action a ∈ R, leading to execution of
control circuit UðaÞ; the agent then collects a reward with a
simple reward circuit consisting of a σz measurement, as
shown in the inset of Fig. 6(a). The resulting measurement
outcome m ∈ f−1; 1g is used to issue a reward R ¼ −m,
which is maximized in the target state jei, hence satisfy-
ing Eq. (1).
Actor and critic.—In every training episode, the action a

is sampled according to the probability distribution speci-
fied by the policy. Policy πθðaÞ is parametrized with
learnable parameters θ. In this problem, it is convenient
to choose a simple Gaussian policy

πθðaÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp
"
−
ða − μÞ2

2σ2

#
; ðA1Þ

whose learnable parameters are θ ¼ fμ; σ2g. The policy
defines how the agent interacts with the environment, and it
is often referred to as the actor. Another important
component of PPO is the value function Vθ0 , or critic,
which helps the agent assess the value of the environment
state (see Supplemental Material [69]). In this example, the
value function can be chosen as a simple baseline Vθ0 ¼ b
with learnable parameters θ0 ¼ fbg. During the training
process, parameters fμ; σ2; bg are iteratively updated
according to the PPO algorithm.
Training process.—The training process, illustrated in

Fig. 6, is split into 50 epochs. Within each epoch k, the
parameters of the policy remain fixed, and the agent
collects a batch of B ¼ 30 episodes of experience, behav-
ing stochastically according to the current policy πθkðaÞ.
Figure 6(a) shows the policy distribution for a selected set
of epochs and the actions that the agent tried in the episodes
of the corresponding epoch. The initial policy is widely
distributed to ensure that the agent can adequately explore
the action space. Since initially most of the actions do not
lead to high-fidelity states, the agent is very likely to receive
negative rewards, as shown in Fig. 6(b). After every epoch,
the parameters of the stochastic policy (A1) are updated
θk → θkþ1 in a way that utilizes the information contained
in the reward signal. Controlled by the learning rate, these
updates result in gradually shifting the probability density
of the stochastic policy towards more promising actions, as
seen in Fig. 6(a). After iterating in this manner for several
epochs, the policy becomes localized near the correct value
of the action, which leads to a significantly increased
fraction of positive rewards. In the initial stage, the best
progress is achieved by rapidly learning the parameter μ.
However, to achieve high fidelity, it is necessary to localize
μmore finely, and thus, in the later stages, the agent shrinks
the variance σ2 of the policy. Eventually, there are almost
no episodes with a negative reward, meaning that the agent
has achieved good performance.
Complications.—This simple example illustrates how

learning proceeds in our approach. More realistic
examples contained in Sec. IV follow the same basic
principles. Additional complications arise from the follow-
ing considerations.

(i) Typically, the action spaceA is high dimensional. In
such a case, the Gaussian policy distribution is
defined on RjAj instead of R.

(ii) The agent can receive a nontrivial observation o,
for instance, a qubit measurement outcome, which
requires incorporating adaptive measurement-
based feedback into the policy. In such a case,
the policy distribution πθðajoÞ is conditioned on the
observation. In the case of a Gaussian policy, this is
achieved by making the mean and variance para-

(a)

(b)

1
Epoch

FIG. 6. Educational example of model-free learning. (a) Inset:
The task is to prepare qubit state jei starting from state jgi.
Episodes consist of a single time step; the control circuit contains
a rotation unitary UðaÞ, and the reward circuit contains a
measurement of σz. Main panel: policy distribution (solid lines)
for a selected set of epochs, and actions that the agent tried in the
episodes of corresponding epoch (dots). (b) Rewards received by
the agent in the episodes of every epoch.
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metrized functions of the observation fμ; σ2g ¼
fμθðoÞ; σ2θðoÞg. In our work, these functions are
chosen to be neural networks.

(iii) The episodes typically consist of multiple time steps.
In such cases, the policy distribution πθðajt; htÞ is
conditioned on the time-step index t and on the
history of observations ht ¼ o0∶t received up to the
current time step. For notational simplicity, we
usually treat the time dependence as implicit and
denote the policy as πθðajhtÞ.

APPENDIX B: ALTERNATIVE MODEL-FREE
APPROACHES

1. Qualitative comparison of
action-space exploration strategies

It is instructive to compare the action-space exploration
strategy of our RL agent to widely used model-free
methods. For this comparison, we focus on the NM simplex
search used in many quantum control experiments [6–8].
NM and other model-free methods that view quantum

control as a standard cost function optimization problem
explore the action space by evaluating the cost function for
a set of policy candidates and by using this evaluation to
inform the selection of the next candidate. In NM, the latter
step is done by choosing a new vertex of the simplex, as
illustrated in Fig. 7(a). The effectiveness of such an
approach relies on the ability to reliably approximate the
cost function landscape by only sampling it at a small
subset of points. In general, this is difficult to achieve in
high-dimensional action spaces or when the cost function is
stochastic. Therefore, such an approach requires spending a
large part of the sample budget on averaging, which limits
the number of policies that it can explore under the
constraint of a fixed total sample size of Mtot experimental
runs.
On the other hand, in our RL approach, every exper-

imental run (episode) is performed with a slightly different
policy. These random policy candidates are assigned a
stochastic score of '1, resulting from the reward meas-
urement outcome. Even though the value of the “cost
function” is not known to any satisfying accuracy for any of
the policy candidates, the acquired information is sufficient
to stochastically move the Gaussian distribution of policy
candidates towards a more promising region of the action
space, as illustrated in Fig. 7(b). In contrast to NM that
crucially relies on averaging, our RL agent spends the
sample budget to effectively explore a much larger part of
the action space.
To confirm this intuition, we quantitatively compare the

RL agent to widely used model-free approaches, the NM
simplex search and SA, on the task of Fock state prepa-
ration when constrained to the same total sample size of
Mtot ¼ 4 × 106. The results of this comparison are shown
in Fig. 2(c), revealing that RL indeed significantly

outperforms its model-free alternatives in terms of sample
efficiency, especially when the effective problem dimen-
sion increases, i.e., for higher photon numbers n. In the
following sections, we describe the numerical experiments
with NM and SA, performed using their SciPy 1.4.1
implementation [101].

2. Nelder-Mead simplex search

To ensure a fair comparison of NM with RL, we perform
hyperparameter tuning for NM and display the best of the
six independent optimization runs for each problem setting.
Given the simplicity of the NM heuristic with its small
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FIG. 7. Preparation of Fock states j1i;…; j10i with the NM
simplex search. (a) Cartoon depiction of the NM simplex search.
One algorithm iteration corresponds to an update of one vertex of
a simplex. The color-coded values of the cost function have high
resolution, achieved through averaging of many'1measurement
outcomes. (b) Cartoon depiction of our RL approach. Every
training epoch consists of several episodes executed with differ-
ent policy candidates that are sampled from a Gaussian distri-
bution. Policy candidates are assigned a low-resolution reward of
'1 based on a single measurement outcome instead of averaging.
(c) NM optimization progress with infidelity used as a cost
function. The background trajectories correspond to six random
seeds for each state, and solid lines show the trajectory with the
highest final fidelity. (d) NM optimization progress with a
stochastic cost function obtained by averaging 2000 outcomes
of the Fock reward circuit shown in Fig. 2(a).
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number of hyperparameters, we believe that the performed
tuning is exhaustive and that no further significant improve-
ments are possible.
First, we study the performance of NM when it is given

direct access to fidelity on the task of Fock state prepa-
ration. We initialize the control circuits with random
parameters whose magnitude is swept to optimize the
NM performance, as it is known to be sensitive to the
simplex initialization. We find that the optimal initialization
is similar to that in RL and corresponds to random initial
circuits that do not significantly deviate the oscillator state
from vacuum. With this choice, the convergence of NM is
shown in Fig. 7(c). It exhibits fast degradation with
increasing photon number n. Next, we study the perfor-
mance of NM in the presence of measurement sampling
noise. We constrain NM to the same total sample size
Mtot ¼ 4 × 106 as used for RL, and we optimally split the
sample budget between algorithm iterations and averages
per iteration to maximize the final performance. The
convergence of NM with 2000 averages per iteration is
shown in Fig. 7(d), and it can be directly compared to the
RL results in Fig. 2(b), clearly showing the advantage of
RL in the stochastic setting.

3. Simulated annealing

We use simulated annealing with the Cauchy-Lorentz
visiting distribution and without a local search on accepted
locations, which is a similar version to the recent experi-
ment [40]. We performed extensive tuning of hyperpara-
meters, including the magnitude of the randomly initialized
control circuit parameters, parameters of the visiting dis-
tribution, as well as initial and final temperatures. The

optimization results with the best choice of hyperpara-
meters are shown in Fig. 8, where for each optimization
trajectory, we only display the best fidelity of every 100
consecutive iterations to reduce the plot clutter resulting
from the periodic restarts of the annealing.
With direct access to fidelity, as shown in Fig. 8(a), the

convergence of SA is similar to NM, and is significantly
slower than the RL agent even when the agent does not
have access to fidelity. Next, we replace the fidelity with its
estimator based on 1000 runs of the Fock reward circuit.
This number of runs per cost function evaluation is tuned to
achieve the highest performance under the constrained total
sample size of Mtot ¼ 4 × 106. In such stochastic settings,
the performance of SA drops significantly, as shown in
Fig. 8(b), and is worse than that of both NM and RL.

APPENDIX C: VARIANCE OF THE FIDELITY
ESTIMATOR

Variance of the estimator (5) is given by

Var ¼ E
α∼P

E
ψ

"$
2

PðαÞ
ΠαWtargetðαÞ

%
2
#

−
$

E
α∼P

E
ψ

"
2

PðαÞ
ΠαWtargetðαÞ

#%
2

ðC1Þ

¼
Z

4

PðαÞ
W2

targetðαÞdα − F 2; ðC2Þ

where we made the simplifications Π2
α ¼ 1 and E

α∼P
½…& ¼R

½…&PðαÞdα.
We now use variational calculus to find the PðαÞ that

minimizes Eq. (C2) with the constraint
R
PðαÞdα ¼ 1. The

variational derivative is given by

δðVarÞ ¼
Z "

c −
4

P2ðαÞ
W2

targetðαÞ
#
δPðαÞdα; ðC3Þ

where c is the Lagrange multiplier for the constraint. From
this, we find that the optimal sampling distribution satisfies
PðαÞ ∝ jWtargetðαÞj, and the minimal variance is

minfVarg ¼ 4

$Z
jWtargetðαÞjdα

%
2

− F 2: ðC4Þ

We consider the sampling problem in which Nm ¼ 1
parity measurement is done per phase-space point, and in
such setting, we find an optimal sampling distribution
independent of the state that is being characterized—a rather
convenient property for the online training since the actual
prepared state is not known (only the target state is known).
We can consider a different problem, inwhich bothWðαÞ and
WtargetðαÞ are known, and where the goal is to compute the
fidelity integral (4) through Monte Carlo phase-space sam-
pling. This can be relevant, for instance, in a simulation, as an
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FIG. 8. Preparation of Fock states j1i;…; j10i with simulated
annealing. (a) SA optimization progress with infidelity used as a
cost function. The background trajectories correspond to six
random seeds for each state, and solid lines show the trajectory
with the highest final fidelity. (b) SA optimization progress with a
stochastic cost function obtained by averaging 1000 outcomes of
the Fock reward circuit shown in Fig. 2(a).
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alternative to computing the integral through the Riemann
sum. In such setting, the optimal condition for the variance is
modified to PðαÞ ∝ jWðαÞWtargetðαÞj. If, in addition, the
fidelity is known in advance to be close to 1, i.e.,
WðαÞ ≈WtargetðαÞ, then the optimal sampling distribution
becomes PðαÞ ∝ W2

targetðαÞ. The latter does not depend on
the state that is being characterized, and therefore, it can also
be used in the online setting, as was proposed in
Refs. [79,80]. However, such a sampling distribution is
optimal only in the limit Nm ≫ 1.
In general, consider fidelity estimation based on Nα

phase-space points and Nm parity measurements per point,
such that the total number of measurements N ¼ NαNm is
fixed. Under this condition, the optimal choice is Nα ¼ N,
Nm ¼ 1 (adopted in this work), in which case the distri-
bution PðαÞ ∝ jWtargetðαÞj is optimal. However, because of
various hardware constraints (e.g., small memory of the
FPGA controller), in some experiments, it might be
preferred to limit Nα ¼ C and compensate for it by
accumulating multiple measurements in each phase-space
point, i.e., Nm ¼ N=C ≫ 1. Under such constraints, the
optimal sampling corresponds to PðαÞ ∝ W2

targetðαÞ.

APPENDIX D: OTHER REWARD
MEASUREMENT SCHEMES

In this Appendix, we describe how our approach can be
adapted to the control of other physical systems, focusing
specifically on the design of probabilistic reward measure-
ment schemes.

1. State preparation in trapped ions

Universal control of a motional state of a trapped ion can
be achieved by utilizing the ion’s internal electronic levels
as ancilla qubit [42,43]. Control policies are typically
produced with GRAPE, but modular constructions also
exist [102]. Regardless of the control circuit parametriza-
tion, our RL approach can be used for model-free learning
of its parameters. Here, we propose a reward circuit that can
be used for such learning in trapped ions, based on the
characteristic function.
The symmetric characteristic function of a continuous-

variable system is defined as CðαÞ ¼ hDðαÞi [103]. It is
equal to the 2D Fourier transform of the Wigner function,
and it is therefore tomographically complete and can be
used to construct the fidelity estimator similar to Eq. (5):

F ¼ 1

π

Z
d2αCðαÞC(

targetðαÞ ðD1Þ

¼ 1

π
E

α∼P
E
ψ

"
1

PðαÞ
DðαÞC(

targetðαÞ
#
; ðD2Þ

where PðαÞ is the phase-space sampling distribution. In
trapped ions, the characteristic function can be measured

with phase estimation of the unitary displacement oper-
ator [53,85].
For simplicity, we focus on symmetric states whose

characteristic function is real (e.g., Fock states and GKP
states), although the procedure can be generalized to asym-
metric states. In this case, the reward circuit is similar to the
Wigner reward, and it is shown in Fig. 9. The conditional
displacement gateCDðαÞ, required for such a reward circuit,
is typically called the “internal-state-dependent force” in the
trapped ions community. Note that it was also recently
realized in circuit QED [51,86].

2. Multiqubit systems

Universal control of a system of n qubits with Hilbert
space of dimension d ¼ 2n can be achieved with various
choices of control circuits that can be tailored to the specific
physical layout of the device. We refer to the literature on
variational quantum algorithms for more details [104].
Here, we focus instead on the reward measurement
schemes. There exists a large body of work on quantum
state certification in the multiqubit systems [75]. Our RL
approach greatly benefits from this work since state
certification protocols can be directly converted into
probabilistic reward measurement schemes for state prepa-
ration control problems. Moreover, some state certification
protocols are directly linked to fidelity estimation, which
allows us to construct reward measurement schemes
satisfying the condition E½R& ¼ fðF Þ, where f is a
monotonously increasing function of fidelity. Here, we
propose a stabilizer reward built on the stabilizer state
certification protocol [75] and a reward for preparation of
arbitrary n-qubit states based on the characteristic function.

a. Stabilizer states

Consider a stabilizer group S ¼ fI; S1;…; Sd−1g and a
corresponding parametrized set of POVM elements fΩkg,
which consists of projectors Ωk ¼ 1

2 ðI þ SkÞ onto the þ1
eigenspace of each stabilizer, except for the trivial stabilizer I.
We sample the parameter k ¼ 1;…; d − 1 uniformly with
probabilities PðkÞ ¼ 1=ðd − 1Þ and with the associated
identical reward scale Rk ¼ 1. The reward of '1 is issued
based on the stabilizer measurement outcome. A straightfor-
ward calculation shows that, in this case, the expectation of
reward satisfies E½R& ¼ ð2nF − 1Þ=ð2n − 1Þ, and therefore,
it also automatically satisfies the condition (1). Note the
difference from the GKP state preparation example

FIG. 9. Reward circuit for learning preparation of arbitrary
symmetric states of a continuous-variable system, based on the
characteristic function.
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considered in Sec. IV B, where the stabilizer group was
infinite andwe considered sampling of only the generators of
this group, which does not lead to a simple connection
between E½R& and F .

b. Arbitrary states

The stabilizer reward is only applicable to a restricted
family of states. To construct a reward measurement
scheme applicable to arbitrary states, we need to choose
a tomographically complete set of POVM elements. The
simplest such scheme is based on the Pauli group, where
the fidelity estimator can be constructed based on the
measurements of d2 possible n-fold tensor products Gk of
single-qubit Pauli operators [79]. Instead of sampling
points α in the continuous phase space, in this case, we
sample indices k of the Pauli operators from a discrete
set fk ¼ 1;…; d2g with probability distribution PðkÞ.
Denoting the characteristic function as CðkÞ ¼ hGki, we
obtain an estimator

F ¼ 1

d

X

k

CðkÞCtargetðkÞ ðD3Þ

¼ 1

d
E
k∼P

E
ψ

"
1

PðkÞ
GkCtargetðkÞ

#
: ðD4Þ

Given the estimator above, the reward circuit simply
consists of measurement of the sampled Pauli operator.

APPENDIX E: LEARNING GATES FOR
ENCODED QUBITS

The tools demonstrated for quantum state preparation in
Sec. IV are applicable for learning more general quantum
operations that map an input subspace of the state space to
the target output subspace. For example, consider a qubit
encoded in oscillator states fj' ZLig, which serve as
logical Z eigenstates. Learning a gate Utarget on this logical
qubit amounts to finding an operation that simultaneously
implements the state transfers j' ZLi → Utargetj' ZLi and
that extends to logical qubit subspace by linearity.
However, the reward circuits introduced in Sec. IV will
result in a final state equal to the target up to an arbitrary
phase factor; hence, it is insufficient to only use the set
fj' ZLig during the training. To constrain the phase factor,
we extend this set to include all cardinal points fj'
XLi; j' YLi; j' ZLig on the logical Bloch sphere.
The training process for a gate is a straightforward

generalization of the training for state preparation depicted
in Fig. 1, as summarized below:
(1) Sample initial state jψ0i ∈ fj' XLi; j' YLi;

j' ZLig. Start the episode by preparing this state.
(2) Run the episode by applying T steps of the control

circuit, resulting in a state jψTi.

(3) Apply a reward circuit to state jψTi, with the target
state given by jψ targeti ¼ Utargetjψ0i.

Here, we demonstrate learning of logical gates for the
Fock encoding with jþ Zi ¼ j0i and j − Zi ¼ j1i, and for
the GKP encoding with Δ ¼ 0.3. In these numerical
experiments, we sample a new initial state every epoch,
and we use the same state for all batch members within the
epoch (preparation of the initial states can be learned
beforehand). We use an ideal SNAP-displacement control
circuit, as shown in Fig. 2(a), and a Wigner reward circuit,
as shown in Fig. 4(a), with a single phase-space point
and a single measurement per policy candidate. The
choice of training hyperparameters is summarized in the
Supplemental Material [69].
The training results are displayed in Fig. 10 for the

Hadamard H and Pauli X gates on the Fock qubit, and a
non-Clifford

ffiffiffiffi
H

p
gate on the GKP qubit. We use average

gate fidelity [105] as an evaluation metric. These results
show that stable convergence is achieved in such QOMDP
despite an additional source of randomness due to the
sampling of initial states. The total number of experimental
realizations used by the agent is 106, 2 × 106, and 4 × 106

for the H, X, and
ffiffiffiffi
H

p
gates, respectively.

In future work, an error amplification technique based on
gate repetitions, such as randomized benchmarking, can be
incorporated to increase the SNR of the reward, similarly to
how it is done in other quantum control demonstrations
[6,9]. However, this technique could be modified, in the
spirit of our approach, to use a single experimental
realization of a randomized benchmarking sequence as
one episode, instead of averaging them to suppress the
stochasticity of the cost function.

Epoch

0.9

0.99

0

Fi
de

lity
  

FIG. 10. Learning gates for logical qubits encoded in an
oscillator. The agent is trained to produce Hadamard H and
Pauli X gates on the Fock qubit, and a non-Clifford

ffiffiffiffi
H

p
gate on

the GKP qubit. The average gate fidelity is used as an evaluation
metric. The background trajectories correspond to six random
seeds for each gate, and solid lines show the trajectory with the
highest final fidelity.
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