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Fast universal control of an oscillator with 
weak dispersive coupling to a qubit
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Full manipulation of a quantum system requires controlled evolution 
generated by nonlinear interactions, which is coherent when the rate of 
nonlinearity is large compared with the rate of decoherence. As a result, 
engineered quantum systems typically rely on a bare nonlinearity much 
stronger than decoherence rates, and this hierarchy is usually assumed 
to be necessary. Here we challenge this assumption by demonstrating the 
universal control of a quantum system where the rate of bare nonlinear 
interaction is comparable to the fastest rate of decoherence. We introduce 
a noise-resilient protocol for the universal quantum control of a nearly 
harmonic oscillator that takes advantage of an in situ enhanced nonlinearity 
instead of harnessing a bare nonlinearity. Our experiment consists of a 
high-quality-factor microwave cavity with weak dispersive coupling to a  
s up erconducting qubit with much lower quality. By using strong drives to 
temporarily excite the oscillator, we realize an amplified three-wave-mixing 
interaction, achieving typical operation speeds over an order of magnitude 
faster than expected from the bare dispersive coupling. Our demonstrations 
include the preparation of a single-photon state with high fidelity, the 
generation of squeezed vacuum with large intracavity squeezing and 
measurement-free preparation of logical states for the binomial and 
Gottesman–Kitaev–Preskill quantum error-correcting codes.

A strong nonlinearity relative to decoherence is crucial for the coherent 
control of a quantum system1. Because of this, many quantum phys-
ics experiments strive to operate in a regime where the relevant rate 
of undriven nonlinear interaction is orders of magnitude larger than 
the fastest rate of decoherence. Such a hierarchy is at the heart of most 
engineered quantum systems, including the prototypical realizations of 
cavity quantum electrodynamics (QED) with Rydberg atoms2, nonlinear 
quantum electromechanics3, hybrid superconductor–semiconductor 
systems4 and circuit QED5. With this prevalence, it is natural to question 
if a large native nonlinearity relative to decoherence is required for 
high-fidelity operations, or if a driven, enhanced nonlinearity could 
be used instead.

To address this question, here we introduce and demonstrate 
universal control compatible with the weak dispersive regime of  
circuit QED, arriving at the counterintuitive result that a large bare  
nonlinear interaction is not required for the coherent control of 
an oscillator. The technique could be adapted to many dispersive 
cavity-QED-like hybrid architectures such as those including super-
conducting qubits5, acoustic modes3,6,7, semiconducting qubits4,  
electrons on helium8 or Rydberg atoms9. Such a weak coupling 
approach can also be beneficial as a means to selectively control a  
single oscillator when multiple oscillators are coupled to the same 
qubit10. In our proof-of-principle demonstration, the oscillator is real-
ized as the lowest-energy mode of a superconducting microwave cavity, 
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displacement of length α0, the ECD(β) gate occurs in a time of approxi-
mately |β|/(χα0) through the trajectory (Fig. 1b) and ideal drive sequence 
(Fig. 1c). The ECD gate cancels the dynamics from the dispersive and 
Stark-shift terms in H̃ up to a qubit phase because of its symmetric 
construction and qubit echo (Supplementary Section 4).

To build a full gate set, we combine the ECD(β) gate with unselec-
tive qubit rotations, Rφ(θ) = exp(–i(θ/2)(σxcosφ + σysinφ)). The rotation 
pulse bandwidth must be sufficiently large compared with 〈a†a〉χ so 
that the oscillator state does not entangle with the qubit during rota-
tions. As a result, a large transmon anharmonicity satisfying K ≫ χ is 
needed to avoid populating higher-excited states of the transmon. 
Together, the set {ECD(β), Rφ(θ)} is universal for the control of oscillator 
and qubit (Methods). Any desired unitary on the joint oscillator and 
qubit Hilbert space can be approximated by the decomposition shown 
in Fig. 1d, with four real-valued parameters per step, and a fidelity that 
depends on circuit depth N. The full sequence has a total duration of 
Ttotal = (χα0)

−1∑N
i=1 |βi| in the instantaneous displacement and qubit 

pulse limit; hence, a large α0 ≫ 1 can enhance the overall speed of a 
target unitary. Every ECD control sequence has an intrinsic dynamical 
decoupling of low-frequency noise coupled to σz because of its 
designed symmetric structure, motivating the choice of this gate set.

To realize a desired unitary or state transfer with the ECD gate set, 
we use a two-step optimization approach. In the first step, we find the  
circuit parameters {β⃗, φ⃗, θ⃗} that maximize the fidelity and minimize the  
circuit depth N. Here we use an efficient gradient-based parameter 
optimization using automatic differentiation implemented on a 

and the ancillary qubit is realized by the lowest two energy levels of  
a transmon.

Oscillators can be controlled by coupling to an ancillary qubit in the 
dispersive regime described by the Hamiltonian H/ℏ = χa†aσz/2, where 
a is the annihilation operator of the oscillator, σz is the Pauli-Z opera-
tor of the qubit and ℏ is the reduced Planck constant. State-of-the-art 
universal control methods include the qubit cavity mapping proto-
col11, the selective number-dependent arbitrary phase (SNAP) and 
displacement gate set12–15, measurement-based methods for oscillator 
state preparation16 or pulse-shaping methods such as gradient ascent 
pulse engineering (GRAPE)17–19. These methods can perform relevant 
operations in time comparable to 2π/χ, so the bare dispersive shift is 
usually engineered to be orders of magnitude larger than the fastest 
decoherence rate in the system, that is, χ/2π ≫ max(Γ2, Γ1, κ), where 
Γ2 = 1/T2 and Γ1 = 1/T1 are the qubit decoherence and relaxation rates, 
respectively, and κ is the oscillator relaxation rate5,20.

Instead, to realize universal control in the weak dispersive regime 
where χ/2π ≲ max(Γ2, Γ1, κ), we use resonant microwave drives to induce 
phase-space displacements of the oscillator far from the origin. With 
this, the weak four-wave-mixing dispersive interaction is transformed 
into an effective three-wave-mixing interaction between the oscillator 
relative to its displaced centre of mass and the qubit. A similar scheme 
is used for enhancing the mixing processes in quantum parametric 
amplification21 and optomechanical coupling22; however, in these 
applications, the resulting lower-order interactions around the centre 
of mass are linear and thus not universal. In addition, some circuit QED 
experiments have harnessed driven four-wave mixing to generate 
enhanced three-wave-mixing interactions between an oscillator and 
qubit at rates faster than the native dispersive shift19,23–31; however, 
high-fidelity universal control faster than 2π/χ has not been previously 
demonstrated, to the best of our knowledge.

The phase-space displacement acts as a lever arm under the 
dynamics of dispersive interaction (Fig. 1a). To analyse this effect, H 
can be transformed into a displaced frame, giving

H̃/ℏ = χa†aσz2 + χ(α(t)a† + α∗(t)a)σz2 + χ|α(t)|2 σz2 , (1)

where ∂tα(t) = –iε(t) – (κ/2)α(t) is the classical response to a resonant 
drive, namely, Hd/ℏ = ε*(t)a + ε(t)a†. With a large displacement α0 =  
max|α(t)|, the second term in H̃ dominates, and the effective interaction  
between the oscillator and qubit becomes a qubit-state-dependent force 
with the maximum effective interaction strength geff = χα0 (refs. 23,25,29). 
For a transmon with anharmonicity K, the critical oscillator photon num-
ber limits the enhanced interaction to gmaxeff ≈ √χK/6 (Methods).

Large displacements populate highly excited states of the oscil-
lator, enhancing some decoherence mechanisms. Fortunately, there 
is no additional decoherence caused by oscillator photon loss after a 
coherent displacement provided the deterministic re-centring force 
at a rate κ/2 is included when calculating the drive ε(t) needed for the 
desired displacement trajectory α(t). However, oscillator dephasing at 
a rate κϕ causes enhanced decoherence under a displacement, resulting 
in diffusion-like terms at an effective rate 2∣α(t)∣2κϕ (Methods). Oscilla-
tors such as superconducting cavities can have dephasing rates much 
weaker than their relaxation rates limiting this effect27,29,32; however, it 
reveals a trade-off between faster control with large displacements and 
enhanced loss from oscillator dephasing (Supplementary Section 6).

With this in mind, the enhanced three-wave-mixing interaction 
and a qubit π-pulse can be used to engineer an entangling gate dubbed 
the echoed conditional displacement (ECD) gate, defined as 
ECD(β) = D(β/2)|e〉〈g| + D(–β/2)|g〉〈e|, where D(α) = eαa†−α∗a is the dis-
placement operator and {|g〉, 〈e|} are the ground and excited states of 
the qubit, respectively. A version of the gate was first implemented as 
a tool to realize the error correction of the Gottesman–Kitaev–Preskill 
(GKP) qubit manifold of states29. With an intermediate oscillator 
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Fig. 1 | ECD control. a, Under conditional rotation, phase-space displacements 
act as lever arms, generating a large separation conditioned on the qubit states 
|g〉 and |e〉. Here three displacements are shown acting on vacuum; with larger α0, 
there is a larger state separation after time t. b, ECD-gate phase-space trajectory 
in the limit of instantaneous displacements acting on a squeezed state for 
illustration. c, Oscillator drive (ε(t)) and qubit drive (Ω(t)) for the ideal ECD gate of 
duration T resulting in a final-state separation of β = 2iαsin(χT/2), where ∣α∣ = α0. 
d, Any unitary can be approximated by a sequence of N single-qubit rotations 
and ECD gates with a built-in dynamical decoupling generated through the 
symmetric construction of the full sequence.
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graphics processing unit. A batch of 500 circuits are randomly initial-
ized and optimized in parallel to realize multistart optimization  
(Supplementary Section 7).

As an example of this first step of optimization, we focus on the 
preparation of Fock states in the oscillator, namely, |0〉|g〉→|n〉|g〉. These 
are not simple superpositions of displaced coherent states; therefore, 
it is not obvious that they can be easily prepared using conditional 
displacements starting from vacuum. Optimization results for the 
preparation of Fock states |1〉–|9〉 are shown in Fig. 2a. The required 
circuit depth increases with the photon number, with ten or fewer ECD 
gates needed to reach a state-transfer fidelity ℱ > 0.99 for the first 
seven Fock states. This example shows that ECD control can be an 
efficient circuit parameterization, with only 4N total parameters 
per sequence, a circuit depth comparable to the SNAP protocol12,14,15, 
and over an order of magnitude fewer parameters than time-domain 
GRAPE as used in state-of-the-art bosonic experiments20.

In the second optimization step, the cavity drive ε(t) and qubit 
drive Hq/ℏ = Ω*(t)σ− + Ω(t)σ+ are compiled from a set of ECD circuit 
parameters found in the first step. This optimization is done with real-
istic constraints to realize the ECD sequence in the shortest time given 
the bandwidth and amplitude limits (Supplementary Sections 3 and 4).

In our experiment, we use a three-dimensional aluminium super-
conducting cavity (frequency, 5.26 GHz; relaxation time, T1,c = 436 µs) 
coupled to a transmon qubit (frequency, 6.65 GHz; relaxation time, 
T1,q ≈ 50 µs; anharmonicity K/2π = 193 MHz) with a dispersive shift 
χ/2π = 33 kHz. Given this bare nonlinearity, the resulting sequence dura-
tion for the preparation of Fock states |1〉–|5〉 as a function of displace-
ment used during the ECD gates α0 is shown in Fig. 2b. We use the circuits 
with the shortest depth such that the optimized fidelity (Fig. 2a) is greater 
than 99%. This choice represents an optimum fidelity in the presence of 
decoherence as verified by the master equation simulations. At inter-
mediate values of α0, the sequence duration follows the instantaneous 
displacement limit Ttotal ∝ (χα0)–1. As α0 increases, the amplitude and 
bandwidth constraints result in sequences limited by the total duration 

of the constituent pulses, that is, Ttotal = 2Ntq + 4NtD, where the duration 
of qubit rotation pulse and oscillator displacement pulses used in our 
experiment are tq = 24 ns and tD = 44 ns, respectively (Supplementary 
Section 4). In our experimental demonstrations, we use α0 = 30 (Fig. 2b, 
stars) and operate close to the predicted maximum conditional displace-
ment rate gmaxeff /2π ≈ 1 MHz. The shortest lifetime in our experiment is 
the transmon Ramsey coherence time T2 ≈ 30 µs realizing 
χ/2π ≲ Γ2 ≪ geff/2π and allowing high-fidelity control in a regime where 
bare nonlinearity is comparable to the fastest decoherence rate.

In Fig. 2b, the duration of ECD pulse sequences are also compared 
with independently optimized GRAPE and SNAP sequences for Fock 
state preparation with our system parameters (Supplementary Section 
9). Here ECD sequences have over an order of magnitude enhancement 
in gate speed. For example, single-photon state preparation in the 
oscillator is realized about 30 times faster than 2π/χ, with compiled 
drives and simulated intracavity average photon number shown in  
Fig. 2c. This demonstrates the ability to utilize the oscillator’s vast 
Hilbert space to enhance the gate speed with a displaced field of 
max|α|2 = 900 photons during the gates. To indicate the insensitivity 
to low-frequency σz noise, Fig. 2d shows the simulation results for ECD 
Fock-state-preparation pulse sequences with an additional qubit detun-
ing H/ℏ = δzσz/2, showing resilience at the level of 1 − ℱ ≈ 0.01 to static 
detuning on the order of δz/ℏ ≈ 1 MHz.

In the experiment, we measure the complex-valued characteristic 
function 𝒞𝒞(β) = Tr (D(β)ρ)  by using an ECD gate to perform phase 
estimation of the displacement operator D(β) conditioned on a disen-
tangling transmon measurement (Supplementary Section 5)29,33,34. 
Importantly, tomography can also be performed in a time much faster 
than 2π/χ using large displacements (note that direct Wigner tomog-
raphy using typical circuit-QED parity measurements would be imprac-
tical, taking a time of π/χ ≈ 15 µs). The real parts of the measured 
characteristic functions for Fock states |1〉–|5〉 are shown in Fig. 2e. 
From the real and imaginary parts (not shown) of the characteristic 
functions, we reconstruct the density matrices using maximum 
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Fig. 2 | Fock state preparation. a, Best state-transfer infidelity found when 
optimizing the ECD circuit parameters to prepare oscillator Fock state |n〉 from 
vacuum as a function of circuit depth N. Here ℱ = |⟨g| ⟨n|UECD |0⟩ |g⟩|

2. b, Total 
pulse-sequence duration using the protocols from a with minimum N such that 
ℱ ≥ 0.99 (solid lines). The colour code is the same as a. The coloured long-
dashed lines are the instantaneous displacement scaling Ttotal = (χα0)

−1∑N
i=1 |βi| . 

The coloured dotted lines are the drive-constraint limits Ttotal = 2Ntq + 4NtD. We 
use α0 = 30 in our experiment, as indicated by the stars. Durations for 
independently optimized GRAPE (triangles) and SNAP (crosses) protocols are 

also included using our system parameters, where the x coordinate indicates the 
simulated largest displacement used (max|〈a〉|). c, Cavity drive ε(t) (top) and 
transmon drive Ω(t) (middle) for the preparation of Fock state |1〉 (real and 
imaginary parts shown in red and blue, respectively) and simulated average 
photon number during the sequence (bottom). d, Simulated drop in fidelity of 
the Fock-state preparation sequences with qubit detuning H/ℏ = δzσz/2. The 
dashed line indicates a drop of 1%. e, Measured real part of the characteristic 
functions for the first five excited Fock states in the cavity. The preparation 
fidelities are given in Table 1.
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likelihood estimation leading to the results summarized in Table 1 and 
reaching the best fidelity of ℱexp = 0.98 ± 0.01 for Fock state |1〉.

The experimental fidelities listed in Table 1 are compared with 
master equation simulations ℱsim including all the independently meas-
ured decoherence mechanisms (Supplementary Section 6). Out of the 
measured decoherence sources, qubit relaxation during the ECD gates 
is the largest error contribution. The simulated fidelities are higher 
than the measured fidelity for most demonstrations, and a likely cause 
is the additional coherent error sources arising from unknown micro-
wave transfer functions, calibration drifts and other forms of model 
bias. Closed-loop optimization strategies such as reinforcement learn-
ing could be used to mitigate these effects35,36, but in this work, we did 
not perform such an optimization. An additional possible decoherence 
mechanism is pure oscillator dephasing that could arise from coupling 
to other uncontrolled modes such as two-level systems37. Although we 
do not have an exact measurement of the pure oscillator dephasing 
rate in this experiment, we have simulated the influence of relatively 
slow pure oscillator dephasing at a rate κϕ = (150 ms)−1, resulting in 
sequences with fidelities given by ℱκϕ

sim (Table 1). These results reveal 
that even a small pure dephasing rate of the oscillator can substantially 
lower the fidelity when using large displacements.

As a second demonstration, we prepare squeezed vacuum states 
|ζ⟩ = exp ((ζ∗a2 − ζa†2)/2) |0⟩ with a squeezing level in decibels defined 
as 20log10(e|ζ|). Highly squeezed states of an oscillator can allow sensing 
beyond the standard quantum limit, as was recently used to enhance 
the search for dark matter axions38. However, the presence of a large 
oscillator self-Kerr degrades the quality by distorting the squeezed 
state and increasing the variance of squeezed quadrature39. In our 
experiment, the small inherited oscillator self-Kerr of ~1 Hz, over three 
orders of magnitude smaller than is typically used18, minimizes the 
state distortion during preparation and idling periods.

In Fig. 3a (left), we show the ECD optimization results for squeezed 
state preparation starting from vacuum. We plot the minimum circuit 
depth needed to reach fidelity ℱ ≥ 99%. A related method for squeezed 
state creation was introduced elsewhere40, and the protocols here have 
fewer conditional displacements, demonstrating the ability of our 
optimization method to find novel control circuits. In our experiment, 
we apply the optimized squeezed-state-preparation ECD sequences 
for target squeezing levels of {6, 8, 10, 12, 14} dB using α0 = 30. The 
measured characteristic functions are shown in Fig. 3b, with achieved 
squeezing levels of {4.8, 6.7, 8.2, 9.8, 11.1} dB calculated from a fit to the 
reconstructed probability distribution along the squeezed quadrature 

(Supplementary Section 5). The reconstructed states show some 
non-Gaussian features as decoherence during the pulse causes distor-
tion, similar to the Fock preparation case, leading to a lower effective 
squeezing. To the best of our knowledge, the measured squeezing of 
11.1 dB demonstrated here is larger than any intraresonator squeezing 
demonstration in the microwave regime to date, with other demonstra-
tions achieving steady-state intracavity squeezing at the level of 8.2 dB 
(ref. 39) and a post-selected state preparation method demonstrating 
5.7 dB (ref. 16). The ECDs realized here could also be used to sense small 
displacements of a squeezed state using phase estimation41.

To further characterize the method, we implement logical state 
preparation for two different quantum error-correcting bosonic codes: 
the binomial code42 and the square GKP code43. For the binomial code, 
we focus on the smallest code for which the loss of a single photon is 
correctable, with code words |+Z⟩bin = (|0⟩ + |4⟩) /√2 and |–Z〉bin = |2〉. 
The GKP code, on the other hand, is defined as the mutual +1 eigenspace 
of the displacement stabilizers Sp = D(√2𝜋𝜋) and Sq = D(i√2𝜋𝜋) with 
logical operators given by X = D(√𝜋𝜋/2) and Z = D(i√𝜋𝜋/2). The ideal 
GKP code has infinite energy, and a finite-energy code can be defined 
by modifying the stabilizers and logical operators using the envelope 
operator Eδ = exp{–δ2a†a} under the transformation Oδ = EδOE−1δ , lead-
ing to code states that are superpositions of squeezed states with 
squeezing parameter ζ = lnδ (refs. 44,45).

For the binomial code, previous experiments have demonstrated 
logical state preparation using GRAPE, relying on a large bare nonlin-
earity χ/2π compared with decoherence rates18,46–49. With ECD control, 
the optimization results in protocols that prepare all the cardinal points 
of the Bloch sphere to a fidelity of ℱ = 99% with a circuit depth at most 
N = 5. Applying these circuits in experiment using α0 = 30 results in the 
measured characteristic functions shown in Fig. 3c with fidelity given 
in Table 1. The average pulse time for binomial state preparation is 
3.27 µs—about nine times faster than 2π/χ. In principle, fast logical 
operations, measurement and stabilization of the binomial code could 
also be performed using ECD control.

For GKP states, Fig. 3a (right) shows the circuit depth required for 
ECD protocols to prepare |+Z〉GKP, |+Y〉GKP and |–Z〉GKP optimized to a 
state-transfer fidelity of ℱ = 98% at different squeezing levels. The 
protocols found here represent a unitary protocol for GKP state crea-
tion, as opposed to the non-unitary protocols recently demonstrated 
in both trapped ions34 and superconducting circuits29 that require 
multiple measurements with feedback or many rounds of dissipative 
pumping. A related protocol for measurement-free GKP state prepara-
tion has been proposed50 and implemented in trapped ions51; however, 
it requires an initial squeezed state.

In Fig. 3d, we plot the measured characteristic functions found 
using these circuits with α0 = 30, achieving fidelities given in Table 1.  
For the GKP states, we use a target squeezing level of 10.3 dB and experi-
mentally achieve a squeezing level of 9.1 dB (Supplementary Section 5).  
Our pulse sequences are about 15 times faster than the state prepara-
tion method using measurements and feedback demonstrated in 
another work29 with similar experimental parameters. This order of 
magnitude reduction in initialization time can reduce the hardware 
overhead of error correction protocols requiring GKP resource states, 
such as teleported error correction52 or GKP surface code53,54.

The experimental demonstrations in this work have focused on 
oscillator state preparation; however, the ECD protocol is universal and 
can also be extended to performing fast unitary gates. As a demonstra-
tion of this, in Supplementary Section 8, we show the numerical opti-
mization of the logical S = diag(1, eiπ/2) and T = √S = diag (1, ei𝜋𝜋/4)  gates 
for a finite-energy GKP code at different squeezings δ. Remarkably, a 
circuit depth of only N = 3 is required to reach a gate fidelity of ℱ ≈ 0.99 
for the T gate and N = 4 for the S gate at δ = 0.25, revealing that the ECD 
gate set is well suited for control over the finite-energy GKP code.

With these proof-of-principle results, we demonstrate the coun-
terintuitive result that high-fidelity universal control can be carried 

Table 1 | Measured and simulated state preparation fidelities

State ℱexp (%) ℱsim (%) ℱκϕ
sim (%)

|1〉 98 99 98

|2〉 92 97 94

|3〉 88 97 93

|4〉 87 97 92

|5〉 82 94 83

|+Z〉bin 92 98 95

|+X〉bin 89 97 94

|+Y〉bin 91 97 93

|+Z〉GKP 85 93 85

|+Y〉GKP 83 92 87

|–Z〉GKP 80 93 85

ℱexp is the measured fidelity found from density matrix reconstruction, ℱsim is the simulated 
fidelity including all the independently measured decoherence rates and ℱκϕ

sim is the simulated 
fidelity including additional cavity dephasing at rate κϕ = (150 ms)−1. Fidelity is defined as 
ℱ = ⟨ψt |ρg |ψt⟩, where ρg is the oscillator state after projecting the qubit in |g〉 and |ψt〉 is the 
oscillator target state. We estimate that the quoted fidelities are accurate within 1% using 
bootstrapping. The average probability of measuring |g〉 after the state preparation sequences 
are {0.96, 0.93, 0.96, 0.92} for the Fock, squeezed, binomial and GKP states, respectively.
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out in a regime where the relevant rate of bare nonlinear evolution is 
comparable to the fastest decoherence rate. In particular, a large on–off 
ratio between the rate of control and bare oscillator–qubit hybridiza-
tion can be achieved without the need for additional hardware such as 
a tunable coupler. Importantly, the approach still requires a large 
ancilla qubit nonlinearity K, reflected by the enhanced interaction 
speed limit directly proportional to √χK.

Although our examples are specific to the oscillator and qubit sys-
tem, similar displaced-field-type control schemes could be designed and 
performed in other bosonic systems with bare nonlinearity of the fourth 
order or greater, such as the recently proposed scheme to enhance the 
rate of Fock state preparation in a Kerr oscillator55. The construction 
shown in Fig. 1d and parameter optimizations shown in this work could 
also be applied to realize the universal control of the motional state of a 
trapped ion. In such systems, spin-dependent forces can be used to realize 
conditional displacement56, and circuits similar to those presented here 
have been demonstrated for application-specific control34,51.

Finally, weak bare nonlinearity has many benefits in the context of 
quantum information processing—for example, by sufficiently reduc-
ing dispersive coupling χ, oscillator nonlinearity and loss inherited 
from the qubit can be minimized as the controllability is retained, 
realizing a modular architecture where the qubit and oscillator can 
be more independently optimized. This is important in applications 
where these spurious couplings can cause decoherence and distortion 
of encoded states, especially during idling periods57. Also, the approach 
could allow for the control of oscillators with measured relaxation 
times on the order of seconds58 without reducing their lifetimes from 
the coupling to a lossy qubit through the Purcell effect5.

Online content
Any methods, additional references, Nature Research reporting  
summaries, source data, extended data, supplementary informa-
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Methods
Oscillator relaxation and dephasing in displaced frame
With photon loss at rate κ, the oscillator’s density matrix  
evolves according to the quantum master equation in the Lindblad 
form as

∂tρ = −i [H, ρ] + κ𝒟𝒟 [a]ρ, (2)

H = H0 + εa† + ε∗a, (3)

where 𝒟𝒟[L] = LρL† − (1/2) {L†L,ρ} and H0 is the oscillator’s Hamiltonian; 
we have included a time-dependent oscillator drive ε(t). Here we  
take ℏ = 1. The evolution of the density matrix in a time-dependent 
displaced frame ρ̃ = D† (α)ρD (α)  is given by the equivalent  
master equation:

∂tρ̃ = −i [H̃, ρ̃] + κ𝒟𝒟 [a + α] ρ̃, (4)

H̃ = D† (α)H0D (α) + (−i∂tα + ε)a† + h.c. (5)

In particular, the displaced-frame Lindbladian can be recast as

κ𝒟𝒟 [a + α] ρ̃ = κ𝒟𝒟 [a] ρ̃ − i [i κ2 (α
∗a − αa†) , ρ̃] , (6)

corresponding to photon loss at rate κ and a Hermitian re-centring 
force at rate κ

2
|α|. This deterministic force can be lumped into the effec-

tive displaced-frame Hamiltonian, giving

∂tρ̃ = −i [ ̃H̃, ρ̃] + κ𝒟𝒟 [a] ρ̃, (7)

̃H̃ = D† (α)H0D (α) + (−i∂tα − i
κ
2α + ε)a

† + h.c. (8)

Given a desired α(t), ε(t) can be chosen such that the term in the  
parentheses is zero, satisfying the classical Langevin equation for α(t) 
given in the main text and counteracting the re-centring force.  
With this choice of drive, the deterministic evolution is accounted for, 
and relaxation in the displaced frame is not enhanced compared  
with relaxation at the origin of the phase space. The classical drive 
equation can also be modified to account for all the linear terms  
in H̃, including those caused by nonlinear terms in H0 (Supplementary 
Section 4).

White-noise oscillator dephasing is given by the master equation 
∂tρ = 2κϕ𝒟𝒟 [a†a]ρ. Defining the superoperator 𝒮𝒮 [X,Y]ρ = XρY† − {Y†X,ρ}, 
oscillator dephasing is transformed in the displaced frame to

∂tρ̃ = 2κϕ𝒟𝒟[(a† + α∗)(a + α)]ρ̃

= 2κϕ {𝒟𝒟[a†a]ρ̃ + |α|2 (𝒟𝒟[a]ρ̃ +𝒟𝒟[a†]ρ̃)

+α2𝒮𝒮 [a†,a] ρ̃ + α∗2𝒮𝒮 [a,a†] ρ̃

+α (𝒮𝒮 [a†a,a] ρ̃ + 𝒮𝒮 [a†,a†a] ρ̃)

+α∗ (𝒮𝒮 [a†a,a†] ρ̃ + 𝒮𝒮 [a,a†a] ρ̃)} .

(9)

In the displaced frame, the noise is dominated by diffusion-like 
terms at rate 2κϕ∣α∣2; unlike the relaxation case, there is no deter-
ministic part that can be counteracted with a simple displacement.  
However, this master equation is only valid in the Markovian  
regime; typically, the spectral density of the oscillator frequency 
fluctuations are due to non-white effects such as two-level-system 
defects37. In the case of coloured noise, it is possible that part of the 
enhanced dephasing noise could be echoed away using symmetric 
pulse constructions59.

Universality of ECD control
The universal control of the oscillator is the ability to perform arbitrary 
unitary transformations that are generated by Hamiltonians polynomial 
in q = (1/√2)(a† + a)  and p = (i/√2)(a† − a)  (refs. 60,61). Here we extend 
this definition to the universal control of the oscillator and qubit, which 
is the ability to perform arbitrary unitary transformations that are 
generated by linear combinations of Hamiltonians of the form qjpkσi, 
where j, k are non-negative integers and σi ∈ {I, σx, σy, σz}.

Given a set of generating Hamiltonians {A, B}, the two identities, 
namely,

e−iAδte−iBδteiAδteiBδt = e[A,B]δt2 +O(δt3), (10)

eiAδt/2eiBδt/2eiBδt/2eiAδt = ei(A+B)δt +O(δt3), (11)

can be used to generate the action of the Hamiltonian –i[A, B] and the 
Hamiltonian A + B in the limit δt→0 (ref. 61). By the repeated applica-
tion of the identities above, we can generate the evolution that is any  
superposition of the nested commutators of the original set  
of generators62.

Starting with the set of generators for ECD(β) and Rφ(θ), namely, 
{qσz, pσz, σx, σy}, commutators such as [qσz, σx] ∝ qσy and [σx, σy] ∝ σz can 
be used to expand the set to {σi, qσi, pσi}, where i ∈ {x, y, z}. This effec-
tively shows that by rotating the qubit between conditional displace-
ments, the ECD gate set can create more general Rabi-type interactions 
between the oscillator and qubit, where qubit-mediated nonlinear 
gates have been proposed63,64.

By using commutators similar to [qσx, qσy] ∝ q2σz, our set can be 
further expanded to all the quadratic polynomials of qσi and pσi. This 
process can be iterated to generate any qjpkσi product, where i ∈ {x, y, z}. 
Terms that do not contain a Pauli operator such as qjpk can be generated 
from commutators such as [qj+1pkσz, pσz] ∝ qjpk. With this, the full Lie 
algebra for polynomial operators on the qubit and oscillator Hilbert 
space is generated.

Speed limit of control
The maximum interaction rate between the oscillator and qubit will 
be limited by the maximum displacement in the oscillator before 
higher-order nonlinear effects begin to invalidate the dispersive 
approximation. From another work5, the critical oscillator photon 
number for the jth transmon state is

njcrit =
1

2j + 1 (
|∆ − jEC|2
4g2 − j) , (12)

where Δ is the transmon–oscillator detuning, g is the linear transmon–
oscillator coupling rate and EC is the charging energy of the transmon. 
For our experimental parameters, ngcrit ≈ 2, 740 and necrit ≈ 910. These 
bounds are not strict; however, they provide a guiding principle for the 
maximum photon number before higher-order effects become impor-
tant (Supplementary Section 3).

With this, the maximum conditional displacement rate is 
gmaxeff = αmax0 χ ≈ √necritχ  using the critical photon number for the  
first excited state of the transmon. From perturbation theory, the 
transmon–oscillator dispersive coupling is χ ≈ (2g2EC)/(Δ(Δ – EC)) and 
the transmon anharmonicity is K ≈ EC (ref. 5). In the regime Δ ≫ EC, we 
can approximate Δ − EC ≈ Δ and combine the above expressions to find

gmaxeff ≈√
χK
6 . (13)

We note that other experiments using sideband three-wave-mixing 
interactions are similarly limited by a bound directly proportional to 
√χK (refs. 24,26,28). This suggests that at a fixed dispersive shift, increasing 
the transmon anharmonicity could lead to faster interaction rates, 
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giving a path forward for engineering higher-fidelity gates with 
enhanced effective three-wave interactions.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
The code used for gate and pulse optimization is available via GitHub 
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