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Generation of entanglement between qubits connected by a lossy channel is an important

primitive for large-scale, modular, quantum information processing. Photon loss errors oc-

curring in the channel can be detected by a time-bin entanglement protocol. We present

an experiment for time-bin, pitch-and-catch entanglement between remote superconducting

cavities. A particular four-wave mixing process performs an entangling gate between a flying

photon, source/target system, and an ancillary mode. Through local measurement of the

ancillary modes, we detect photon loss errors in the channel and successfully herald the cre-

ation of entangled Fock states between the remote cavities. We demonstrate experimentally

that the fidelity of the generated entangled state, after post-selecting for no photon loss, is

limited mainly by the coherence times of the ancillary modes, as predicted by theory. Our

experiment could be improved to generate entanglement with higher fidelity.
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Chapter 1

Introduction and Overview

1.1 The importance of modularity in quantum computation

A large-scale, fault-tolerant, gate-based quantum computer would be a highly complex ma-

chine, leading us to ask: How should one tackle the problem of designing a complex system

that must behave quantum-mechanically even at the level of signals and control variables?

One strategy, pervasive in the discipline of classical engineering, and emergent in the natural

world, is to split the system into discrete modules with separable optimization strategies.

Modules, viewed externally, perform tasks according to simple rules, even though their in-

ternal behavior may be rather complicated. For instance, an operational amplifier may be

implemented using upwards of twenty transistors [1], though the circuit in totality is well

approximated by one single law. An electrical engineer may build a circuit from many op-

erational amplifiers without concerning herself with what any particular transistor within

an operational amplifier is doing. In biology, the organelles of a cell have seemingly well-

separated functions implemented internally by complex chemical processes. Reasoning about

a system of connected modules reduces to reasoning about how their interfaces react. It is

this hiding of internal complexity that makes reasoning about such modular complex systems

feasible.

The construction of a large-scale quantum computer is a monumentally complex task.

Reasoning about the interactions and imperfections of thousands of qubits is not straightfor-

ward. The modular approach we are following here proposes that this task becomes easier
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Figure 1.1: Modular architecture | We consider a quantum network consisting of quantum
processing modules connected by a quantum router (rounded hexagon.) Each quantum
processing module contains a storage cavity (vertical Fabry-Perot with green field), which
is well isolated from the environment but strongly coupled to a communication qubit (pink
circle with black arrow). A buffer cavity (horizontal Fabry-Perot with blue field) is coupled
to the qubit as well as a communication channel (black line). A configurable quantum
router (grey hexagon) then routes messages (blue wavepackets) between any pair of quantum
processing modules on demand.

if one constructs a quantum computer in a modular fashion [2, 3]. A modular quantum

computer consists of quantum processing modules connected by a router module, where the

job of the quantum processing module is to store, recall, and manipulate quantum infor-

mation in a robust manner, and the job of the router module is to establish connections

between any two modules on demand for the generation of quantum entanglement. These

connections involve only linear couplings between electromagnetic modes. It is this linear

character of inter-module connections that ensures that each module can be tested sepa-

rately before being assembled to form a complex quantum system. Obviously, no system

spontaneously retains quantum information with perfect fidelity, for indefinite periods. It is

through the magic of error correcting codes that an error-prone physical system may become

a more suitable vessel for quantum information. In the following, we refer to logical qubits,

two-state manifolds of a larger Hilbert space that have a higher level of protection against

decoherence than the two lowest energy levels in the same Hilbert space [4]. These logical

qubits are then placed in individually shielded modules to ensure they are well controlled,
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and well isolated to mitigate crosstalk and decoherence. Communication between the logical

qubit and the outside world is done in a carefully engineered manner. In the modular archi-

tecture pictured in 1.1, the logical qubit encoded in the Hilbert space of the storage cavity

(green Fabry-Perot) is only allowed to interact with the communication channel using the

qubit (pink circle with slanted arrow) and buffer cavity (blue Fabry-Perot), protecting the

logical qubit, but presenting a well-controlled interface for the transmission and reception

of quantum information.

Quantum information exported from the module must then face the imperfections of the

communication channel. Cables, connectors, and switches in the real world are not perfect

conduits for quantum information. In our approach, generating high-quality entanglement

between quantum processing modules through imperfect channels is a responsibility shoul-

dered by the quantum processing modules themselves. In this dissertation, we present a

quantum processing module that demonstrates this functionality. Through time-bin encod-

ing [5, 6, 7], losses due to imperfections of a channel are detected and weeded out. We

demonstrate such time-bin encoding in a system that has already proven itself as an excel-

lent platform for a logical qubit [8], the architecture of circuit quantum electrodynamics,

circuit QED.

1.2 Circuit-QED is well-suited for the modular architecture

The modular architecture detailed previously requires quantum processing modules that

have well controlled interactions between degrees of freedom internal to the module and the

environment at large. For instance, a control signal which was intended to have an effect

on one module must have minimal effects on neighboring modules. Additionally, for a qubit

to be long-lived, its coupling to radiation modes must be well controlled [10]. One possible

approach to designing a quantum computer is to use the atomic spins, Nature’s qubits. The

weak interaction between the electromagnetic field and atomic spins is both a blessing and

a curse, affording atomic qubits long lifetimes with the caveat of slow gates. The field of

cavity QED [11, 12] was born of using a resonant cavity to enhance this coupling, wherein

an atom embedded within a cavity interacts with the light flying through it, multiplying the

3



a b

Figure 1.2: Cavity QED and circuit QED | The design for a superconducting two-level
atom coupled to a linear cavity inspired by experiments in cavity QED (left), in which a
natural atom (green) interacts with the quantized light of an optical cavity (blue) as it flies
through it. In circuit QED (right) the atom is replaced by a nonlinear artificial atom while
the optical cavity is replaced by a linear cavity. Both objects are macroscopic and coupled
by a capacitor (green), which allows for independent control of the frequencies and coupling
between both modes. Figure and caption adapted from Vool [9]

interaction strength by the quality factor of the cavity.

Inspired by cavity QED, circuit QED [13] couples a superconducting artificial atom to

a cavity. The effective spin-1/2 system of this artificial atom corresponds not to an atomic

degree of freedom, but to the quantum degrees of freedom of the electromagnetic field in a

macroscopic superconducting circuit. Such circuits are built from combinations of lumped

circuit elements. Choice of elements and their parameters determines the frequencies and

internal impedances of modes of the artifical atom, leading to a large variety of devices [14,

15, 16]. Of particular interest are devices where the internal impedance of the artificial atom

is well matched to the vacuum impedance, yielding strong coupling with electromagnetic

modes. In contrast to atomic qubits, such atoms in free space have short lifetimes due to

their large dipole moments, but the strong coupling affords nanosecond time-scale gates.

The key insight of circuit QED is to embed this strongly interacting artificial atom in an

off-resonant cavity to prevent the atom from radiating, in contrast to cavity QED, which

uses this cavity to enhance the coupling. In addition to providing protection for the qubit,

the cavity also acts as a qubit-state dependent phase shifter [17]. Light traveling through the

cavity thus acquires qubit state information, which may be decoded by heterodyne detection.

Superconducting qubits may serve dual usage as both storage elements for quantum

information, as well as a source of nonlinearity for the generation of parametric interactions,

controlled by strong drives [18, 19, 20]. Such interactions are useful for implementing gates

4



Space
Time

“Late” “Early”

Figure 1.3: Time-bin encoding | Time-bins are quasi-orthogonal wavepacket envelopes,
which form the two quantum states of a protected flying qubit when occupied by a single
photon. In this picture we imagine the wavepackets propagating to the right in real space.
The photon can be in either the early or late state or any superposition thereof. Figure and
caption adapted from Weihs et al. [25].

between modes within the module. In particular, one may swap half an excitation from the

qubit into a buffer cavity, where the excitation will leak out into the attached transmission

line [21, 22, 23, 24], yielding a qubit entangled with a flying photon. Importantly, we are

also afforded the reverse process, where a photon impinging upon the buffer cavity may be

completely and efficiently absorbed into the qubit, providing a means for the generation of

entanglement between remote modules in a pitch-and-catch remote entanglement scheme.

Crucially, such a scheme is not robust to losses in the transmission line. In this dissertation,

we extend pitch-and-catch remote entanglement to form a photon-loss robust scheme.

1.3 Photon loss error detection with time-bin encoding

Quantum error detection requires that the consequences of errors can be separated from

the intended message emitted by the sender, by the message recipient. Let us suppose two

parties, Alice and Bob, wish to communicate one bit of quantum information through a

channel. Let us also suppose Alice and Bob agree on a protocol where Alice trivially maps

her one qubit onto a flying photon. Alice’s |e〉 state maps onto a transmitted photon, and

Alice’s |g〉 state maps onto no transmitted photon. Bob decodes this by mapping a received

photon onto |e〉 and no received photon onto |g〉. Such an encoding will work as long as

the channel faithfully transmits the photon. However this encoding will fail if the photon

is lost. When the photon is lost under this protocol, then only one outcome is possible for

Bob, regardless of what Alice sent.

We can make this protocol robust to such flaws in the channel by redundantly encoding

5



the transmitted information. Instead, if Alice transmits two photons, mapping |g〉 → |01〉

and |e〉 → |10〉, then a photon loss event will result in Bob receiving the state |00〉, signaling

a message corrupted by photon loss. A quantum error correction code requires verification

of successful transmission without measuring the encoded data. Measurement of the en-

coded data inevitably collapses quantum correlations associated with the encoded state. In

particular, we require a measurement that is agnostic towards which of the two received

modes is excited.

Time-bin remote entanglement [5, 6, 7] encodes one logical flying qubit into two physical

flying qubits, namely two well-separated quasi-orthogonal temporal wavepackets on a trans-

mission line [25] as shown in Fig. 1.3. We write the Hilbert space of the combined system

H = HL⊗HE where HE is the Hilbert space of the early arriving wavepacket mode, and HL

is the Hilbert space of the late arriving wavepacket mode. Following the previous section,

the protected subspace of this system is spanned by {|1, 0〉 , |0, 1〉}. Chiefly, these two states

correspond to a single photon which arrives late in time, and a single photon which arrives

early in time.

1.4 Dissertation overview

This dissertation introduces a protocol for photon-loss robust, time-bin remote entanglement

in the framework of circuit QED. We implement the protocol in a simple quantum network

between two quantum information processing modules, and verify the ability of the protocol

to detect photon loss, yielding entangled states mostly limited by local qubit decoherence.

In Chapter 2, we introduce in greater detail the framework of circuit QED and the

transmon qubit. We then discuss the theory of parametric drives, which we used both

to apply multi-qubit gates within the module, and will be used to construct the multi-

module gates used in the time-bin entanglement protocol. We then present a hardware

quantum information processing module amenable to the time-bin-entanglement protocol.

The coherence times, gate fidelities, mode frequencies, and other crucial parameters of the

module are then characterized.

In Chapter 3, we discuss how to use the parametric drives described in chapter 2 to cou-
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ple the qubit and storage mode to the transmission line. The chapter begins with treating

the qubit-buffer mode system under pumping and dissipation, and explains how the para-

metric drives implement a Q-switch. We then explain the implementation details of this

setup. In particular, the frequency and amplitude compensation required to contend with

the intervening AC-Stark shift terms generated by the drives. The chapter concludes with

data showing that the AC-Stark shift terms were properly compensated for all four para-

metric processes necessary for the time-bin entanglement protocol, and that these processes

are under our control.

In Chapter 4, we consider these modules in the context of a network. The chapter begins

with a brief discussion of various networks used in circuit QED entanglement experiments.

We then introduce the theoretical tools used to model the modules connected to the commu-

nication channel. We then characterize the communication channel realized in experiment,

and then how we perform joint qubit readout with the connectivity we use. We then use

the mechanics developed in chapter 3 to implement gates that efficiently convert stationary

states into propagating states with controlled temporal modes. With the shape of the tem-

poral mode under control, we additionally show that the reverse process is possible: with

known flying temporal mode, it is possible to efficiently convert a photon impinging upon a

module into a stationary state inside the module. We then demonstrate parametric processes

necessary for our time-bin entanglement protocol may be used to transfer an excitation from

one module to the other.

In Chapter 5, we introduce our time-bin entanglement protocol in detail, and describe

how we implemented it. We then put the protocol to the test and entangle the storage

modes of two quantum information processing modules, and detect photon loss. We then

apply joint tomography on the storage modes of the modules, and characterize the fidelity

of the generated entanglement with and without error detection.

We conclude by examining some potential ways to improve the fidelity of the entangled

states generated by our hardware, as well as some potential future experiments to extend

upon the work in this dissertation.

7



Chapter 2

Quantum Processing Modules

In this chapter, we detail the design and characterization of the individual modules of our

elementary quantum network, which will be reduced to only two modules connected by a

directional transmission line.

2.1 The transmon qubit/cavity architecture

2.1.1 The Josephson junction in the transmon regime

To create a quantum computer, we require well-behaved, controllable, quantum mechanical

degrees of freedom. In contrast to atomic physics, where microscopic degrees of freedom such

as spin are the focus, we focus on the macroscopic degrees of freedom of electrical circuits,

such as current and voltage. Electrical circuits fit into our overall modular approach, where

well-understood building blocks like resistors, capacitors, and inductors, are combined in

simple, well understood ways. A key advantage of building our custom, artificial atom

from tunable elements, is the freedom to tailor the atom to our own needs. Placing our

atom’s transition frequency in the microwave band means that all control fields may be

generated and manipulated through off-the-shelf microwave hardware. We also have a wealth

of knowledge from microwave electrical engineers to lean on for the design of attenuators,

filters, and mixers.

We build our circuits from superconducting aluminum. Aluminum, when cooled well

below its critical temperature of 1K, exhibits no dissipation for signal frequencies below

8
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Figure 2.1: The left panel displays a Josephson junction with inductance LJ shunted by
a capacitance C, implementing a transmon qubit. The right panel displays the quantized
energy spectrum of the transmon qubit (horizontal lines) residing in the cosine potential
energy well of the transmon (solid black sinusoid), overlaid with the quadratic potential
corresponding to a linearization of the cosine potential (dotted lines). Due to anharmonicity,
level spacing between levels |0〉 and |1〉 differs from that of |1〉 and |2〉

the gap [26]. This makes circuits fabricated from superconducting aluminum especially

suitable for the long-term storage of quantum information. To function as a usable qubit

our artificial atom must be in an environment where the typical energy kBT of thermal

fluctuations is much less than the energy quantum ~ω01 associated with transitions between

the ground and first excited state of the artificial atom to avoid spurious thermal excitations

[27]. A frequency of ω01 = 2π ·5GHz corresponds to a characteristic temperature of 250mK.

Temperatures corresponding to T � Tc and kBT � ~ω01 are readily obtained by cooling

the artificial atom with a commercially available dilution refrigerator.

Our artificial atom requires a source of nonlinearity to realize a system with individually

addressable energy levels. The Josephson junction is an ideal candidate, being both nearly

dissipationless and implementing a dynamical nonlinear inductance. A Josephson junction

consists of two superconductors sandwiching a thin insulating layer [28]. We separate the

Josephson junction into a Josephson capacitance CJ , set by the overlap area of the two pads

and the oxide thickness, in parallel with a nonlinear dynamical inductance element which we
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call the Josephson element. The Josephson element is governed by the following equations

V (t) =
~
2e

∂ϕ

∂t
(2.1)

I (t) = I0 sin (ϕ) , (2.2)

where V (t) and I (t) are the voltage and current across the junction, ϕ (t) is the phase

difference across the junction, and I0 is the parameter characterizing the Josephson element

[29]. This parameter is readily measured at room temperature through the normal state

resistance Rn of the junction, related to I0 by the Ambegaokar-Baratoff [30] relation

I0 =
π∆

2eRn
. (2.3)

Plugging I (t) into V (t), we find that the Josephson element behaves like a nonlinear induc-

tance LJ depending upon ϕ

LJ (ϕ) =
LJ0

cos (ϕ)
, (2.4)

where LJ0 = ϕ0/I0, and ϕ0 = ~/2e is the reduced magnetic flux quantum.

The Cooper-pair box is a device that consists of a Josephson junction connected to an

external voltage source Vg through a capacitor Cg [31]. We can write the Hamiltonian for

this system as:

H/~ = 4EC (n− ng)2 − EJ cos (ϕ) (2.5)

where the number operator n counts how many Cooper pairs have crossed the Junction. The

phase difference across the junction has been promoted to an operator, and now obeys the

commutation relation [ϕ,n] = i. We also write the gate charge ng, referring to the charge on

the superconducting island induced by the gate capacitance. EC = e2/2CΣ is the charging

energy and EJ = ϕ0I0 = ϕ2
0/LJ0 is the Josephson energy, and CΣ = CJ+Cg is the combined

capacitance of the gate and junction. The ratio EJ/EC characterizes the nonlinearity of the

device and sensitivity to charging. We may also write the plasma frequency ωq = 1/
√
LJCJ

corresponding to the frequency of classical oscillations at the base of the cosine well.
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In the regime where EJ/EJ ≈ 1, this Hamiltonian is sensitive to 1/f charge noise

fluctuations due to its energy dispersion. By shunting the junction with a capacitance, the

system may be moved into the transmon regime [14], characterized by EJ/EC ≈ 30− 100.

Here we alter CΣ with a the additional shunting capacitance CΣ = CJ +Cg+Cs where Cs is

the shunting capacitance. In this regime, the wave-function is well-localized in the flux basis

and poorly localized in the charge basis. The mean square fluctuation of the flux operator

Φ = ϕ0ϕ may be calculated

〈0|Φ2 |0〉 =
1

2
~Zc, (2.6)

where Zc =
√

LJ
CΣ

is the characteristic impedance of the oscillator, which for typical param-

eters of LJ = 10 nH and C ≈ 85 fF, Zc ≈ 300 Ω making
√
〈0|Φ2 |0〉 ≈ 0.06Φ0, meaning the

wavefunction is well localized inside the cosine potential. Conversely, the wavefunction is

spread out in the charge basis, making the transmon minimally sensitive to charge noise.

In this transmon regime, the offset charge ng may be removed from the equation by

applying a gauge transformation U = exp (−ingϕ) [31]. Furthermore, the flux operator

may be written in terms of the lowering operator q as Φ = ΦZPF

(
q + q†

)
, where ΦZPF =√

~Zc/2. The Hamiltonian may then be rewritten

H = ~ωpq†q− EJ
(

cos (ϕ) +
ϕ2

2

)
, (2.7)

splitting the Hamiltonian into the harmonic mode and nonlinear terms.

With previously given typical parameters, the characteristic impedance Zc ≈ 300 Ω is

within a factor of unity of the vacuum impedance Zvac ≈ 377 Ω. This implies that our

transmon will be relatively well matched to any pair of leads. This is in stark contrast to

atoms, which are very poorly matched to the electromagnetic vacuum. This strong coupling

provides for fast gates and fast readout, but requires some additional technical sophistication

to tame.
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2.1.2 Coupling a transmon to a cavity

A crucial insight in the field of cavity QED was the use of a high-Q cavity to enhance the

coupling of atoms to the electromagnetic field. The impedance of an atom [27] may be

crudely approximated by the impedance quantum RK = h/e2. We live in a universe where

the ratio Zvac/2RK , also known as the fine structure constant 1/137.0, is a small number.

By placing an atom in a cavity, this coupling may be enhanced by a factor of the cavity’s

Q. Circuit QED [13], on the other hand, operates in the regime where the artificial atom

impedance is relatively compatible with the vacuum impedance. While this means that

control and readout fields will interact strongly with the artificial atom, yielding fast gates

and readout, it also means that the artificial atom will readily radiate energy.

Crucially, a cavity may also be used to reduce the coupling of the artificial atom to the

electromagnetic environment. To see how, let us suppose a transmon capacitively coupled

to a single mode of a cavity with annihilation operator b,

HJC/~ = ωbb
†b + ωqq

†q + g
(
bq† + h.c.

)
. (2.8)

Here, the annihilation operator q corresponds to the transmon mode, ωb corresponds to

the cavity mode frequency, and g characterizes the coupling between cavity and transmon

modes. Here we take g � ∆, where ∆ = ωq − ωb is the mutual detuning between qubit

and cavity. This is known as the dispersive regime, where eigenstates of qubit and cavity

are only slightly modified by the coupling. Using Fermi’s golden rule, the decay rate of the

transmon mode will be given by

Γ = 2πg2D (ωq) . (2.9)

The density of states D (ω) due to the cavity is given by [32]

D (ω) =
1

π

κ/2

(ω − ωb)2 + (κ/2)2 . (2.10)

Here we have supposed that the cavity mode loses energy to the environment at a rate κ,
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yielding the decay rate due to coupling to the cavity of

ΓP ≈
( g

∆

)2
κ, (2.11)

where we have taken ∆� κ. With appropriate choice of couplings and detunings, radiative

losses to the transmission line of interest may be demonstrated to be vanishing relative to

other loss mechanisms [10].

Besides protecting our delicate qubit from the environment, putting the qubit in a box

confers other features, one of which being a mechanism for reading out the qubit. Applying

the so-called dispersive approximation [13], which uses that g � ∆, we obtain the following

Hamiltonian

H/~ = ωbb
†b + ωqq

†q− χb†bq†q (2.12)

with χ = 2g2

∆ is defined as the dispersive shift, the qubit state dependent shift of the cavity

frequency. We also neglect a small shifting of the cavity mode due to the Lamb shift. We

will later introduce techniques for probing the frequency of the cavity so that we may probe

the state of the qubit, giving us the ability to read out the state of the qubit on demand.

Now, let us analyze the coupling of the buffer mode to the outside world in more detail.

We suppose that this coupling to the environment is due to an attached transmission line

with associated input mode tin associated with electromagnetic waves traveling towards the

cavity, and output mode tout associated with electromagnetic waves traveling away from the

cavity, with a coupling to the cavity of κ. Under these conditions, input-output theory [33]

yields the following Langevin equation

ḃ =
i

~
[H,b]− κ

2
b−
√
κtin (t) (2.13)

= −i
(
ωb −

χ

2
σZ −

κ

2

)
b−
√
κtin (t) . (2.14)

If we drive write these equations of motion for a classical driving field 〈tin (t)〉 = ε (t) and
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condition upon the qubit state, we find equations for the classical cavity responses β (t)

β̇g = −
(
i
(
ωc +

χ

2

)
+
κ

2

)
βg −

√
κε (t) (2.15)

β̇e = −
(
i
(
ωc −

χ

2

)
+
κ

2

)
βe −

√
κε (t) . (2.16)

Taking a Fourier transform of the above equations, we obtain

β [ω] =

√
κε [ω]

i
(
(ω − ωc)± χ

2

)
− κ

2

, (2.17)

with + (−) associated with |g〉 (|e〉).

Importantly, the measurement field will have influence the qubit by proxy of the cavity

in the same way that the cavity is influenced by the qubit. We can rewrite Eq. 2.12 in the

form

H/~ = ωbb
†b +

(
ωw − χb†b

) σZ

2
(2.18)

making clear that photon population in the cavity will result in a frequency shift of the

qubit. We quote the results of Gambetta et al. [34], which finds that the qubit frequency is

shifted by a frequency

∆m (t) = χRe [βg (t)β∗e (t)] . (2.19)

Additionally, the intracavity field during measurement contains shot noise due to the cou-

pling of the mode to the transmission line. This field noise results in fluctuations of the

χσZb†b term in the Hamiltonian, and thus fluctuations of the qubit frequency, resulting in

dephasing. This results in an additional dephasing rate of

Γm (t) =χIm [βg (t)β∗e (t)] . (2.20)

This dephasing is a necessary consequence of measurement. Let us imagine an incoming

measurement field divided up into equal duration temporal wavepackets. During the process

of measurement, we imagine a small amount of qubit information written upon the amplitude

and phase of the each temporal wavepacket traveling through the cavity. When amplitude

and phase information of each wavepacket is acquired by a measurement apparatus, we then
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acquire the qubit information associated with that wavepacket. Measurement of each wave-

packet betrays information about the qubit, and therefore has the consequence of projecting

the qubit slightly towards one of the poles of the Bloch sphere. Excluding all information

acquired through the measurement, the kicks to the qubit result in qubit dephasing at a

rate Γm. Including all information acquired through the measurement, we understand that

Γm is the rate at which the measurement chain acquires information about the qubit state.

This is why Γm is referred to as the measurement rate. For a rigorous explanation of this

process, we recommend the reader explore the treatment detailed in Korotkov [35] or one of

the various experimental explorations of this process [36, 37].

2.1.3 Storage cavity

While the cavity made an effective shield and readout mechanism, microwave cavities have

additional applications in the field of circuit QED. Their ease of fabrication and superb qual-

ity factors make them excellent candidates for the long term storage of quantum information

[38]. However, as was discussed earlier, a harmonic mode does not possess uniquely address-

able energy levels. We may couple a transmon to a high-Q cavity, and use the nonlinearity

of the transmon to control a cavity dedicated to the storage of quantum information, or

“storage cavity.” The previously described Hamiltonian generalizes to three modes, with the

fundamental mode of the storage cavity associated with the annihilation operator s. Here we

take a slightly different route to deriving the Hamiltonian, in which we start from the cosine

potential of the Josephson element with additional harmonic buffer and cavity modes, with

participation of each mode in the Josephson element characterized by zero point fluctuations

ϕb, ϕq, and ϕs.

H/~ = ωbb
†b + ωqq

†q + ωbs
†s (2.21)

− EJ
(

cos (ϕ) +
ϕ2

2

)
(2.22)

ϕ = ϕb

(
b + b†

)
+ ϕq

(
q + q†

)
+ ϕs

(
s + s†

)
(2.23)
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We may expand this Hamiltonian to fourth order and apply a rotating wave approximation

to obtain

H/~ = ωbb
†b + ωqq

†q + ωbs
†s (2.24)

−
∑

a=b,q,s

χaa
2

(
a†a
)2

(2.25)

− χbqb†bq†q− χbsb†bs†s− χqsq†qs†s, (2.26)

with the coefficients ~χaa = EJϕ
4
a/2, ~χbq = EJϕ

2
bϕ

2
q , ~χbs = EJϕ

2
bϕ

2
s, and ~χqs = EJϕ

2
qϕ

2
s.

This Hamiltonian will constitute the undriven module system examined for the remainder

of the dissertation.

In the limit where the qubit line width is much smaller than χqs, the qubit will split

into number resolved peaks corresponding to the storage mode population. By driving the

qubit with a calibrated gaussian envelope pulse with σ � 1/χqs, the individual lines of the

number split qubit may be addressed, such that the qubit is only excited by the pulse when

the pulse is resonant with the peak corresponding to the storage population. Such a pulse

is referred to as a selective π-pulse, and is the first tool in our arsenal for communicating

with the storage mode.

2.2 Theory of parametric drives

The nonlinearity present in a transmon qubit is typically introduced as serving to lift the

energy level spacing degeneracy of the linear LC circuit. This nonlinearity may also serve

as an effective on-demand frequency converter and squeezer through the use of parametric

driving [39]. The idea is to avoid direct coupling between two or more modes, preferring

instead to engineer an effective coupling mediated by one or more strong drive tones and the

nonlinearity of the junction. In this setup, the amplitudes and phases of the drives directly

control the amplitude and phase of the realized interaction terms.

Let us start by simply driving a Harmonic oscillator of frequency ω with a classical drive:

an electric field E (t) = E0 (A (t) + ξ (t)), following Z. Leghtas (personal communication,
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2014). Here, E0 is a normalization factor which as the dimension of an electric field. A has

units of square root of photon number, and constitutes the amplitude of the field that we

impose on the oscillator. ξ (t) is a noise term which is a gaussian noise of average 0 and

standard deviation 1. This noise, called the shot noise, is intrinsic to any classical electric

field and is unavoidable. The resultant Hamiltonian is

H/~ = ω0a
†a + µE (t)

(
a + a†

)
, (2.27)

where µ is a coupling term between the oscillator and the field E (t). We denote ε (t) =

µE0A (t) and δε (t) = µE0ξ (t). Despite this noise term, we would like the field seen by the

oscillator to be as noiseless as possible. To this aim, we go to the limit µ→ 0 and A→∞

such that ε (t) stays constant, and δε→ 0. This brings us to this Hamiltonian:

H/~ = ω0a
†a + ε (t)

(
a + a†

)
, (2.28)

where ε (t) is a completely deterministic function of time with no noise. In this case where the

drive amplitude is much larger than the quantum fluctuations, we treat the drive completely

classically. This is known as the stiff-pump approximation, as the drive now acts as a sort

of voltage source where the drive transfers energy to the cavity without being depleted.

Now, we consider one transmon qubit coupled to a buffer cavity and storage cavity. Fol-

lowing Campagne-Ibarcq et al. [24] and Nigg et al. [40]. we split the Josephson junction into

a linear inductor and a purely nonlinear element. The environment seen by this nonlinear

element is a series of coupled linear modes with low dissipation (the plasma excitations of

the junction shunted by the antennas and the modes of the cavity.) One can then find a

decoupled mode basis (Foster decomposition) of this environment, whose two first resonant

modes are labeled q and b correspond to excitations of the transmon and cavity. We neglect

higher frequency modes. We consider N drives, which can drive the transmon and the cavity

modes (a = q,b, s) with strengths εaj , the Hamiltonian of the system reads

H/~ = ωqq
†q+ωbb

†b+ωss
†s−EJ

~

(
cos (ϕ) +

ϕ2

2

)
+
∑

a=q,b,s
j=1..N

2Re
(
εaje

−iωjt
) (

a + a†
)

(2.29)
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where Re denotes the real part, and the phase across the nonlinear element ϕ is the sum of

the contributions from the transmon and cavity modes (zero point fluctuations ϕq, ϕb, ϕs)

ϕ = ϕq

(
q + q†

)
+ ϕc

(
b + b†

)
+ ϕs

(
s + s†

)
(2.30)

Then, following Leghtas et al. [19], we move to a 3N displaced frame with the unitary

U =
∏

a=q,b,s
j=1..N

e−ξ̃aja
†+ξ̃∗aja = ei(θq+θc+θs)e

∑
aj −ξ̃aja†+ξ̃∗aja (2.31)

where the phases θq,c resulting from the non-commutation of ξ̃ai,aja†+ξ̃∗ai,aja when i 6= j give

a global phase not physically relevant. The displacements are chosen to be ξ̃aj = ξaje
−iωjt

with ξaj =
εaj

κa
2

+i(ωa−ωj) . Here, κa is the dissipation rate of mode a and can be neglected in

the transmon case. Note that each displacement corresponds to the steady state amplitude

of the considered mode when subjected to the drive. Finally, we place ourselves in the

interaction picture with respect to the Hamiltonian H =
∑

a=q,b,s (ωa − δa) a†a, where δa

are arbitrary detunings that will be used to cancel the Stark shifts due to the Kerr effect,

leading to

H̃/~ =
∑

a=q,b,s

δma†a− EJ
~

(
cos (ϕ̃) +

ϕ̃2

2

)
(2.32)

ϕ̃′ =
∑

a=q,b,s

ϕa

(
ae−i(ωa−δa)t + a†ei(ωa−δa)t

)
(2.33)

ϕ̃′′ =
∑

a=q,b,s

ϕa

∑
j

(
ξaje

−iωjt + ξ∗aje
iωjt
) , (2.34)

where we have written ϕ̃ = ϕ̃′ + ϕ̃′′. Here, ϕ̃′ contains terms corresponding to dynamical

degrees of freedom, and ϕ̃′′ contains terms corresponding to oscillating currents induced in

the junctions, which are completely enslaved to the drive tones with no degrees of freedom.

We may rewrite ϕ̃′′ in terms of drive frequency components

18



+
+

+

a) b)

Figure 2.2: Gates realized by parametric drives | Here we introduce the symbols we use
to refer to gates realized through applying the q†s+qs† process (left panel) and b†q†s+bqs†

(right panel) for half a Rabi cycle. Plusses and minuses (white symbol on solid black circle)
refer to annihilation and creation operators applied to modes denoted by horizontal lines,
labeled by their annihilation operator. Colored circles denote a single photon in the mode,
where the symbols denote the coherent removal of this photon and placement in one or more
modes by the gate. We remark that this symbol seemingly ignores the conjugate process,
but in general, the gate is applied in a context where it plays no role.

ϕ̃′′ =
∑
j

Pje
−iωjt + P ∗j e

iωjt (2.35)

Pj =
∑

a=q,b,s

ϕaξaj =
∑

a=q,b,s

ϕaεaj
κa
2 + i (ωa − ωj)

. (2.36)

where we have substitute in the definition for ξaj . This makes clear that the current flowing

in the junction is filtered by the modes of the system. Let us now specialize this Hamiltonian

to particular drives to form useful gates.

2.2.1 Synthesizing a SWAP gate between two internal modes

A particularly useful interaction between electromagnetic modes in quantum information

is the beam splitter. Here we synthesize a beamsplitter interaction between between two

modes: storage (s) and (q) given by the Hamiltonian g
(
s†q + q†s

)
. For this section we

neglect the remaining buffer mode (b), which is expected to stay in vacuum. We synthesize

such an interaction with parametric drives by placing drives at ω1 = ωs+∆−δs and another

at ω2 = ωq + ∆ − δq. We first remark that if ∆ � |ωq − ωs|, these drives will participate

predominantly in the modes to which they are closest in frequency. Again, following following

Campagne-Ibarcq et al. [24], we define complex drive amplitudes
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ξ1
′ = ξ1s +

ϕq
ϕs
ξ1q (2.37)

ξ2
′ = ξ1q +

ϕs
ϕq
ξ1s. (2.38)

This situation is therefore identical to the simplified case where we consider that each drive

addresses only one mode, except that the proportionality factor between the drive strength εj

and the effective displacement ξj is a priori unknown and can vary with the drive frequencies.

Developing 2.32 to fourth order and considering only terms that may be resonant,

H2 ≈ HStark + HKerr + HBS (2.39)

HStark/~ = (δq + ∆q) q†q + (δs + ∆s) s†s (2.40)

HKerr/~ = −χqq
2

(
q†q

)2
− χss

2

(
s†s
)2
− χqsq†qs†s (2.41)

HBS/~ = g′2 q†s + h.c. (2.42)

∆q = −2χqq
∣∣ξ′2∣∣2 − χqs ∣∣ξ′1∣∣2 (2.43)

∆s = −2χss
∣∣ξ′1∣∣2 − χqs ∣∣ξ′2∣∣2 (2.44)

g′2 = −χqsξ′1
(
ξ′2
)∗
, (2.45)

with the coefficients ~χaa = Ejϕ
4
a/2 and ~χqs = Ejϕ

2
qϕ

2
s. We have neglected terms of the

form a†a arising from the normal ordering of the 4th order term, since they simply shift the

bare frequencies ωa by a fixed amount [20]. We also labeled the qubit and storage mode

Stark shifts ∆q and ∆s, and choose reference frames δa = −∆a to cancel these shifts. To

stay on resonance, we need to adapt the drive frequencies such that

ω′1 = ωs + ∆− 2χss
∣∣ξ′1∣∣2 − χqs ∣∣ξ′2∣∣2 (2.46)

ω′2 = ωq + ∆− 2χqq
∣∣ξ′2∣∣2 − χqs ∣∣ξ′1∣∣2 (2.47)
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yielding the following Hamiltonian

H/~ = (g′2 q†s + h.c.)− χqq
2

(
q†q

)2
− χss

2

(
s†s
)2
− χqsq†qs†s, (2.48)

which realizes a SWAP between qubit and storage modes of the system. Under the in-

fluence of these drives, excitations will SWAP between qubit and storage modes at a rate

g′2 = χqsξ
′
1

(
ξ
′
2

)∗
. If we restrict the system to the first two levels, all self-Kerr terms may be

absorbed into the bare frequencies of the modes, and cross-Kerr terms vanish when consider-

ing states involved in Rabi oscillations between |q = 0, s = 1〉 ↔ |q = 1, s = 0〉. By enabling

ξ′1 and ξ′2 for time tg = π/ |g′2|, we realize a SWAP gate between qubit and storage modes

through the unitary

U = e−iHtg = exp
[
−iπ

(
q†s + h.c.

)]
(2.49)

In coming chapters, we will refer to SWAPs between these modes using the notation detailed

in Fig. 2.2a.

Additionally, we define unprimed ξ1,2 displacements and ω1,2 drive frequencies corre-

sponding to driving a SWAP between the qubit and buffer mode, implementing the process:

g2q
†s + h.c. (2.50)

2.2.2 Synthesizing a generalized SWAP gate between three modes

With one single drive, using the four-wave mixing nature of the Josephson junction, it is

possible to synthesize couplings between three chosen modes of our system. We place one

drive at the frequency

ω3 = (ωq − δq) + (ωb − δb)− (ωs − δs) . (2.51)

As in the previous section, we define one complex drive amplitude

ξ3 = ξ3b +
ϕs
ϕb
ξ3s +

ϕq
ϕb
ξ3q (2.52)
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noting that the drive will predominantly live in the buffer mode, as |ωs − ωq| � |ωb − ωq| .

Again, developing 2.32 to fourth order and considering only terms that may be resonant,

H ≈ HStark + HKerr + HBS (2.53)

HStark/~ =
(
δb − 2χbb |ξ3|2

)
b†b +

(
δq − χbq |ξ3|2

)
q†q +

(
δs − χbs |ξ3|2

)
s†s (2.54)

HKerr/~ =
∑

a=q,s,b

−χaa
2

(
a†a
)2
− χbqb†bq†q− χbsb†bs†s− χqsq†qs†s (2.55)

HBS/~ = g3 b†q†s + h.c. (2.56)

g3 = −EJ
~
ξ3φ

2
bφqφs = −ξ3

√
χbqχbs, (2.57)

with the coefficients ~χaa = EJϕ
4
a/2, ~χbq = EJϕ

2
bϕ

2
q , ~χbs = EJϕ

2
bϕ

2
s, and ~χqs = EJϕ

2
qϕ

2
s.

We have, as before, neglected terms from a†a due to normal ordering, and choose δb =

2χbb |ξ3|2, δq = χbq |ξ3|2 + χbq, and δs = χbs |ξ3|2, chosen to cancel the Stark shift induced

by the drives, where the additional term of χbq in δq is added to cancel the cross-Kerr that

crops up in states involved in the gate of interest. To stay on resonance, we adapt drive

frequencies such that

ω3 = ωq + ωb − ωs − χbq − (2χbb + χbq − χbs) |ξ3|2 (2.58)

yielding the following Hamiltonian

H′3 =
(
g3 b†q†s + h.c.

)
(2.59)

+
∑

a=q,s,b

−χaa
2

(
a†a
)2
− χbq

(
1− b†b

)
q†q− χbsb†bs†s− χqsq†qs†s. (2.60)

Again we restrict ourselves to the first two levels of all modes, and trivially absorb self-

Kerr terms into the bare mode frequencies. The choice of δb,q,s cancels all cross-Kerr

terms for both involved states. This Hamiltonian generates Rabi oscillations between

|b = 0, q = 0, s = 1〉 ↔ |b = 1, q = 1, s = 0〉, implementing a SWAP-like gate that moves exci-

tations from one mode into two, and vis. versa. The symbol used to refer to this gate is
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shown in Fig. 2.2b.

2.2.3 Stationary-to-propagating conversion

A photon present in this buffer mode will leak out at a rate corresponding to its cou-

pling to the transmission line. Combining this with the drives from earlier, excitations can

be released into the environment at will. The buffer mode thus serves to buffer interac-

tions with the environment. Additionally, the time-reversed process is also available, where

quantum-information-carrying photons impinging upon the buffer mode may be captured

to the storage and qubit modes through parametric drives. Therefore, beyond readout and

protecting the qubit from the environment, the buffer mode buffers communication of qubit

and storage modes with the outside world. At this point, we defer detailed discussion of

this process to coming chapters, but remark that parametric drives will be used to form a

tunable coupler between qubit and transmission line.

2.3 Our quantum processing module suitable for demonstrat-

ing photon-loss robust remote entanglement

With the Hamiltonian of interest written down, we now need to engineer a device which

implements it. In this section, we explain the various choices that went into the design of

our quantum processing module, starting with the nearly-linear buffer and storage modes.

We then explain how we couple a qubit to these modes.

2.3.1 Long-term quantum information storage with a post cavity embed-

ded in a waveguide

A crucial requirement for the storage mode is that it be able to maintain the coherence

of quantum information for as long as possible. Superconducting microwave cavities are

known to have exceptionally high-quality factors, with Qs in the 109 to the 1010 range [41].

Superconducting cavities may also be designed to be relatively easy to fabricate. In the

field of circuit QED, superconducting cavities are routinely milled out of a single block of
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Copper Waveguide Lid

Bridge Transmon

Buffer Resonator

Buffer Port

Buffer Mode
Frequency Tuning
Screw

Waveguide Port

Dielectric Microwave
Absorber

Storage Resonator

Storage Port

Figure 2.3: Quantum processing module diagram | Here we show the schematic diagram
of the quantum processing module. The module consists of two linear post cavity modes,
named s for storage (left), and b for buffer (right), and a nonlinear transmon qubit mode
q (red cross). We couple the qubit mode to the storage and readout modes by using the
qubit to bridge both modes. The storage and buffer post cavities are located at the base of
waveguide sections with cutoffs set to block radiative loss from all modes. Both subsections
feature coupling pins designed to couple to the fundamental mode of the post cavity. The
buffer mode subsection features a pin inserted at the opposite end of the waveguide section
designed to couple in strong drives, as well as a tuning screw used to make small adjustments
to the buffer mode frequency. The module features a microwave absorbing dielectric material
in the copper cap of the module designed to cool higher parasitic modes of the system.
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aluminum, with integral features for locating coupling pins, mounting screws, and trenches

for locating chips, making for easy integration [42].

In practice, surface losses and radiative losses limit the quality factor of superconducting

cavities[43]. Any cavity realized through the process of machining will require an entry

point for tooling to remove material, resulting in potential pathways for energy to radiate.

The 3D post cavity design [38] minimizes radiative losses by localizing cavity fields away

from radiative pathways. A section of transmission line of length λ/4 is formed at the base

of a cavity in a piece of superconducting material, as shown in Fig. 2.3. Modeled as an

end-shorted post waveguide coupled to a rectangular waveguide, we pick the cross-section

of the rectangular waveguide such that the fundamental 3D post cavity mode propagates

evanescently in the rectangular section. We additionally choose the length of the rectangular

section such that the mode’s energy is well-protected from radiation out the unprotected

end of the rectangular waveguide section.

2.3.2 Frequency tuning a 3D post cavity

Our quantum processing modules, by use of previously described parametric processes, com-

municate quantum information using photons near their buffer mode frequency. It is for this

reason that the buffer mode frequencies of both modules must be matched. We achieve fre-

quency tunability through the placement of a superconducting aluminum screw in the base

of the cavity (see Fig. 2.3), where the mode’s B field is strongest. Advancing the screw

into the cavity then raised the frequency of the mode. Aluminum 3D post cavities have

the important property that their normal-state losses are low enough that their resonant

frequency may be extracted using a vector network analyzer (VNA) while the cavity is at

room temperature and the tuning screw accessible.

To tune the buffer modes of our two systems into resonance, we apply the following

procedure: First, the resonant frequency of both Alice buffer mode and Bob buffer mode are

measured at room temperature. A screw is inserted into the tuning screw hole of the cavity

with the lower frequency to raise its room temperature frequency to the room temperature

frequency of the other module’s buffer mode. Next, the modules are cooled to 20 mK, and

the frequencies of the buffer modes remeasured, and the detuning noted. Next, the modules
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are warmed back up, and the tuning screw adjusted to move the tuned cavity by exactly

the detuning, such that the modules are expected to be on resonance once cold. Finally,

the buffer modes are recharacterized cold, and this process repeated until the buffer mode

frequencies are within a line width of each other.

2.3.3 Reducing the influence of higher cavity modes

The desired Hamiltonian we wish to implement only includes three degrees of freedom,

corresponding to the fundamental storage mode, fundamental buffer mode, and the qubit

plasma oscillation mode. In practice, we expect many additional modes of our system to

contribute to the observed physics. Any mode a with dispersive coupling χaq to the qubit

will shift the qubit’s frequency when populated. If the mode is populated by thermal photons

with mean photon number n̄th,a, the mode population will be noisy, and thus contribute a

dephasing rate proportional to n̄th,a

Γth,a
φ =

n̄th,aκaχ
2
aq

κ2
a + χ2

aq

, (2.61)

where κa is the line width of the mode, and n̄th,a � 1. In a survey by [44] the author reports

a range of n̄th populations in circuit QED systems as high as 0.15, corresponding to an effec-

tive mode temperature of 140 mK, substantially higher than the dilution refrigerator base

temperature, supposed to be caused by poorly thermalized microwave components coupled

to these modes. In this work, the author additionally proposes and characterizes a cold mi-

crowave attenuator for shielding the qubit-cavity system from the warm environment, and a

substantially improved upper bound on residual photon population of 2× 10−4, confirming

the hot electromagnetic environment.

Here, we take the more conservative goal of trying to cool all modes besides the fun-

damental storage mode, fundamental buffer cavity mode, and the qubit plasma oscillation

mode. We design our module such that these three modes occur at frequencies below the

waveguide cutoff frequency, and such that all higher modes occur above the waveguide cutoff

frequency, coupling the higher stationary modes to traveling waveguide modes. This has the

result of increasing κ in the above expression for the higher modes, reducing Γth
φ . We remark
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that that due to the choice of cutoff frequency, the qubit is forbidden from radiating through

the waveguide, and thus will not Purcell limit the qubit. Finally, we suppose that the trav-

eling waveguide modes to which we couple are well thermalized to the dilution refrigerator.

This is done through the use of a microwave cold load made out of a dielectric microwave

absorber, pictured in Fig. 2.3. This microwave absorber is made out of a 1:1 mix by vol-

ume of Apiezon W wax and copper powder, with the wax chosen for minimal heat release,

and the copper powder suspension chosen to maximize skin losses. The absorbing material

is cured in the copper lid of the module, which is thermalized with copper thermalization

straps to the mixing chamber of the dilution refrigerator.

2.3.4 Bridge-transmon architecture

With the implementation of our buffer and storage modes worked out, we now focus on the

qubit mode. The Junction of our transmon qubits is a superconductor-insulator-superconductor

junction made of Al/AlOx/Al fabricated by the deposition of two layers of thin-film Al with

an intermediate oxidation step to create the insulating barrier. We fabricate our transmons

using the bridge-free electron-beam lithography technique [45] on double-side-polished chips

of c-plane sapphire. The junctions are connected via leads to two circular pads that act as

the shunting capacitance of the transmon as well as the coupling capacitance to each cavity.

For ease of coupling, we place two 3D post cavity systems back to back, separated

by a thin 1 mm wall, as in Fig. 2.3. We then machine a tunnel through this wall and

sides of the module, allowing the insertion of the sapphire chip such that each antenna pad

may capacitively couple to the fundamental mode of each cavity, and each side of the chip

protrudes slightly from either side of the module. This design additionally has the advantage

that the chip may be clamped on both sides of the module, controlling any vibrational modes

of the chip itself. The transmon qubit and cavity parameters as well as their couplings are

designed using finite-element simulations and black-box quantization [40].

2.3.5 Driving a transmon at the base of a waveguide

The pads of the transmon couple not only to modes of the 3D post cavity, but to all modes

of the enclosing waveguide section as well, which has advantages for parametric driving.
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From the previous sections, we understand that the strength of the parametric process of

interest will be set by how much power, at the drive frequency, can be introduced to the

modes of the system. In the harmonic approximation of a single mode of the system, the

internal field of a mode at frequency ωa and coupling to a transmission line κ is given by

input output theory with a drive ε [ω]

ξ [ω] =

√
κε [ω]

i (ω − ωa)− κ
2

. (2.62)

We may increase circulating drive power by increasing the coupling of the mode to the

environment κ, moving the drive tone ε closer to resonance, or simply by increasing ε.

Each of these has serious drawbacks. Increasing κ will increase exposure of the qubit to

the environment, reducing qubit coherence time through the Purcell effect as in Eq. 2.11.

Moving the drive tones may not be an option whatsoever, where the drive tones are fixed

absolutely as in Eq. 2.58. In Eq. 2.46, the drives may be moved by changing ∆, but too

small a ∆ risks excitation of the qubit mode. Finally, simply increasing ε by turning up the

output power on our microwave generator may induce more of a heat load on the dilution

refrigerator than is reasonable.

The environment that our qubit sees however is not just that of the storage and buffer

modes, but additionally the continuum of cold waveguide modes due to the cold load. Qubit

excitations are forbidden from propagating in the waveguide due to choice of cutoff frequency.

A drive with frequency above the waveguide, however, will propagate. By ensuring all

waveguide modes have κ � g, drive stiffness is additionally ensured. Said another way,

we expect that the cold attenuator will dissipate much more power than is ever used by

the driven process, and thus again, the drive is well approximated by classical drive in the

Hamiltonian.

To introduce drives to the waveguide modes, we insert a coupling pin in the lid of the

module. We avoid heating the waveguide modes with the hot electromagnetic environment

of the dilution refrigerator input lines by ensuring that the coupling of the waveguide modes

to the pin is small relative to the loss introduced by the absorber. We therefore expect the

waveguide modes to thermalize to the absorber, and not the dilution refrigerator input lines.
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Alice Bob
ωb/2π 7908.99 MHz 7909.17 MHz
ωq/2π 5984.17 MHz 5789.10 MHz
ωs/2π 5346.64 MHz 5030.51 MHz
κb/2π 252 kHz 248 kHz
χqq/2π 157 MHz 174 MHz
χqs/2π 4.88 MHz 2.11 MHz
χbq/2π 834 kHz 686 kHz
T1 70 µs 71 µs
T2R 5.7 µs 33 µs
T2E 43 µs 54 µs
T1,Cav 226 µs 520 µs

Table 2.1: Alice and Bob Intrinsic Parameters | This table lists the resonant frequencies,
dispersive shifts, and decay times for the various modes of the Alice and Bob quantum
processing modules.

2.4 Experimental characterization of our quantum processing

modules

We now proceed to characterize each module in isolation, showing the results of the char-

acterization in Table 2.1. First, a first approximation of the cavity resonance frequency was

determined by transmission VNA measurement. The qubit g ↔ e transition frequency ωq

was then determined by two-tone spectroscopy. Next, in an amplitude Rabi experiment,

we sweep the amplitude of a gaussian-shaped pulse (σ = 8 ns) to extract amplitudes cor-

responding to calibrated π and π/2 rotations, which we refer to as π and π/2 pulses. In

contexts where the axis of rotation is significant, we refer to rotations around the x (y) axis

of the Bloch sphere for an angle θ as RX (θ) (RY (θ)). In the upper three panels of Fig. 2.4,

we show traces from standard decay (T1) and Ramsey coherence measurements (with and

without echo, corresponding to T2E and T2R) [46] for characterizing the coherence times of

the qubit modes. The extreme disparity between Alice’s T2R and T2E times is not currently

understood. We determine χqq by searching for the qubit transition coupling |0〉 and |2〉

levels, occurring at ωq − χqq/2 [46], by spectroscopy.

Buffer mode frequencies and couplings are determined first using VNA measurement in

transmission and fitting of the Lorentzian line-shape. Due to the cascade of Alice and Bob

systems, separating the lines of the two systems in the presence of reflections in the lines
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Alice Subsystem Bob Subsystem

Time (μs)

Figure 2.4: Coherence and decay measurements of Alice and Bob modes | Alice (left
column) and Bob (right column) qubits subjected to Decay (T1), and Ramsey measurements,
with echo (T2E) and without (T2R) experiments (top 3 rows.) for characterization of their
decay and coherence times. In the bottom row, the Alice and Bob storage modes were
prepared in the |1〉 state and then after a variable delay, their population measured using a
selective π pulse followed by qubit readout, extracting the cavity decay time.

30



becomes difficult. A more precise characterization of the buffer mode frequencies, couplings,

and dispersive shifts is done using a dressed Ramsey interference experiment, explained in

detail in Section 4.3.1.

The storage mode frequency for each system is determined using the dispersive coupling

between qubit and storage mode. Two tones, one at the qubit frequency, and one swept near

the storage mode, are driven for a time long relative to 1/χqs, where χqs here is assumed from

simulation. When the storage drive tone is resonant, the storage mode will be displaced,

Stark shifting the qubit away from resonance, preventing it from being excited by the qubit

drive tone.

We extract the qubit-storage dispersive shift χqs through a variable amplitude pulse

applied to the storage mode on resonance, followed by spectroscopy of the qubit. The

variable amplitude pulse generates a coherent state in the storage mode, resulting in photon-

number resolved peaks at ωq − χqsn for Fock state |n〉, corresponding to the dispersively

shifted qubit. The spacing of these peaks then corresponds to χqs [47].

We next characterize the storage modeT1,Cav. We begin measuring T1,Cav by the prepara-

tion of the Fock state |1〉 (discussed in the next section) in the storage mode. After waiting

for a variable decay time t, the |1〉 state probability is mapped onto the qubit through

a photon-number selective π pulse followed by qubit readout. The exponential decay of

population corresponds to the storage modeT1,Cav.

2.4.1 Coupling between internal degrees of freedom

In this section, we discuss the calibration of a SWAP gate between the qubit and storage

modes of each module. First, as shown in Fig. 2.5, two blue detuned tones are applied

to the qubit and storage modes of a compute module, first prepared with the qubit in the

excited state, and the coherent oscillation of population between modes is observed. To tune

the process on resonance, the qubit tone is swept until qubit population is minimal after

half a cycle. As the transfer pulse is of constant amplitude, the Stark shift correction is

incorporated into this frequency calibration. A sinusoid is fit to the curves in the right pane

of 2.5 to extract the time needed to SWAP one full excitation between qubit and storage,

namely 600 ns for Alice, and 500 ns for Bob.
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Qubit Sideband Drive Frequency (MHz)

Figure 2.5: Rabi oscillations between qubit and storage modes of Alice system |
We show the coherent oscillation of energy between the qubit and storage mode under the
application of two tones, blue detuned from the qubit and storage by 20 MHz. The left pane
shows the characteristic chevron pattern from detuned Rabi oscillations. The vertical black
dotted line highlights the frequency at which the drives are resonant, and correspondingly
where the drives are applied to generate full SWAPs between qubit and storage modes. The
left pane shows the coherent exchange of population between qubit and storage modes. Note
that no correction has been applied to correct for readout contrast, and thus the amplitude
of oscillation and vertical offset is not respresentative of the actual mode population. Bob
subsystem displays qualitatively similar chevron pattern and Rabi oscillations.
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Figure 2.6: Characterization of SWAP gate Between qubit and storage modes | We
show the results of the repeated application of our calibrated qubit-storage SWAP gate on
Alice and Bob. The qubit is first prepared in the excited state, n SWAP gates are applied,
and then the population of the qubit mode and storage mode are read out. Here we plot the
readout contrast corrected population of the qubit (solid circle) and storage mode (hollow
circle) after division by the expected loss of coherence per round due to decay of both the

qubit and storage modes for each module, Kn = exp

(
−1

2 tgate

(
T−1

1,cav + T−1
1

)−1
)n

, with

Kn
A (Kn

B) having coherence times corresponding to the Alice (Bob) module.
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To characterize the error of the gate, the qubit is prepared in the excited state, and then

the SWAP gate repeatedly applied. The loss of population is well explained by intrinsic decay

time scales of each mode, as shown in Fig. 2.6.
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Chapter 3

Opening the Module to the Network:

Q-Switching

In the previous chapter, we have laid the groundwork for a quantum processing module

that can store, manipulate, and recall quantum information in isolation. To be useful in

a large-scale quantum computer, it needs to export and import quantum information to

facilitate entanglement over a network. Namely, we need a set of quantum-coherent gates

which operate between stationary qubits and flying qubits, where these flying qubits shuttle

information in and out of our quantum processing modules, establishing entanglement over

our quantum network.

One could imagine as many gates to do this as there are potential encodings of flying

qubits. In our experiment, we choose to encode our flying qubits in Fock states. The

photon-loss robust protocol we develop in this dissertation gains its robustness from how

an imperfect, lossy communication channel acts upon such Fock states. In this chapter, we

develop gates that exchange quantum information between stationary degrees of freedom

and flying Fock states. We will show in the later in the next chapter, how to assemble them

into a robust entanglement protocol.
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Figure 3.1: Tunable coupling | Here we show two modes, a high-Q mode (orange), and a
low-Q mode (blue), where the Q is set by the coupling κ to a transmission line, also in blue.
We also have a variable linear coupling g between orange and blue modes, which provides
an effective tunable coupling with the transmission line, by proxy of the blue mode.

3.1 Tunable Q-switch: Theory

3.1.1 High-level overview of Q-switching

The term Q-switch is appropriated from laser physics, where the quality factor of a laser

cavity may be manipulated in time to produce a pulsed output beam. Here, we suppose two

different modes at two different frequencies, with two different quality factors. We couple

these modes through the process of amplitude tunable frequency conversion Ch. 2.2. A

photon converted from the high-Q mode to the low-Q mode may be lost to dissipation in

the low-Q mode, making for an effective tunable dissipation in the high-Q mode. We may

then dump energy from the high-Q mode into the environment at will. Such a Q-switch

has an excellent on-off ratio, as the frequency conversion process is forbidden by energy

conservation when the necessary drives are disabled.

Crucially, we require that the dissipation of the low-Q mode is well-controlled, such that

the photon is not merely lost, but shuttled from a well-controlled mode to a well-controlled

transmission line, making up our quantum channel as in Fig. 3.1. In this setup, the Q-

switch serves not only for sending quantum information, but also for receiving. Suppose

that a flying photon in this transmission line impinges upon the module and then occupies

the low-Q mode. By appropriately activating a frequency conversion process in time with

the impinging photon, this photon is converted and shuttled into the high-Q mode. This

Q-switching mechanism therefore provides bidirectional single-photon communication with

a transmission line. Absorbing a photon efficiently requires knowledge of the shape of the

incoming wavepacket to tailor the conversion amplitude. We will leave details of this process

to Ch. 4. In this configuration, the low-Q mode buffers communication with the transmission
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line, and thus we refer to it as the buffer mode.

Let us now explore the process of Q-switching in detail. We suppose a high-Q, dis-

sipationless qubit mode with annihilation operator q and low-Q mode buffer mode with

annihilation operator b with coupling to a transmission line κ. We consider the following

Hamiltonian modeling tunable frequency conversion with real amplitude g2 (t), written in

the doubly-rotating frame of the qubit mode and buffer mode.

H/~ = g2 (t)
(
q†b + b†q

)
. (3.1)

Writing the classical equations of motion, we obtain

q̇ (t) =− g2 (t) b (t) (3.2)

ḃ (t) =g2 (t) q (t)− κ

2
b (t) . (3.3)

This system has two timescales, and thus two interesting regimes where κ� g2 (t) and

one where κ � g2 (t). When κ � g2 (t), the buffer mode stays approximately in vacuum

and thus steady stated (ḃ (t) ≈ 0), and we can write

q̇ (t) =− 2g2
2 (t)

κ
q (t) .

Here, the buffermode has been effectively eliminated as a degree of freedom and we see

an effective tunable coupling to our transmission line of 2g2
2 (t) /κ. The alternative regime,

where κ � g2 (t) admits a solution of Rabi oscillations between qubit and buffer mode, as

demonstrated in Ch. 2.4.1. We may also fix g2 constant and solve these coupled equations

exactly to obtain
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Figure 3.2: Driving q†b + h.c. with dissipation on b | We suppose two bosonic modes,
named qubit (q) and buffer (b), under the influence of the Hamiltonian g

(
q†b + h.c.

)
with

dissipation on the buffer mode at rate κ. We initialize the system with the qubit mode in
|1〉 and the buffer mode in |0〉, and plot the mode populations as a function of time. In the
limit g � k, the photon in the qubit mode decays out the transmission line through the
transmission line at the approximate rate 2g2/κ. In the limit of g � κ, population sloshes
between qubit and buffer while a fraction of population is lost to the transmission line each
cycle.

q (t) =q (0) e−
κ
4
t

(
cosh

(
γt

4

)
+
κ

γ
sinh

(
γt

4

))
(3.4)

b (t) =
4q (0)

γ
g2e
−κ

4
t sinh

(
γt

4

)
, (3.5)

where we have taken b (0) = 0, and defined γ =
√
κ− 16g2

2. In the lab, we measure the

mode populations, available as |q (t)|2 and |b (t)|2. Plotting these two equations as a function

of time with q (0) = 1 in Fig. 3.2, we see population sloshing between q and b, resulting

in decaying Rabi oscillations, when g2 > κOut/4, and the smooth, exponential decay of

population from the q mode through the b mode into the trasmission line when g2 < κ/4.

Crucially, these equations are a function of the well characterized coupling between b mode

and transmission line, κ, and the well controlled initial populations of the modes, leaving

the only free parameter the conversion strength g2. We will later use these equations to

characterize the relationship between our drive power and the strength of the conversion

process.

We may also consider processes other than conversion for coupling the relevant modes.

Let us consider the following process, which will be a crucial ingredient for our time-binning
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Figure 3.3: Driving b†q†s +h.c. with dissipation on b | Here we suppose three bosonic
modes qubit (q) and buffer (b), and storage (s), under the influence of the Hamiltonian
g3

(
b†q†s + h.c.

)
with dissipation on the buffer mode at rate κ. We initialize the system

with the storage mode in |1〉 with the remaining modes in vacuum, and plot the mode
populations as a function of time. Dynamics of storage population are identical to qubit
population in Fig. 3.2, and buffer mode dynamics are identical in both figures. Crucially,
the Hamiltonian and dissipation moves the photon in the storage into both the qubit and
transmission line.

protocol:

H/~ = g3 (t)
(
b†q†s + s†bq

)
. (3.6)

Restricting ourselves to the first two levels of each mode of the system, we see that this

Hamiltonian will drive Rabi oscillations between |001〉 ↔ |110〉 written with the mode

indices bqs. Introducing a dissipation on the buffer mode will send the |110〉 → |010〉.

Under the action of the dissipation, we may think of the s†bq process as suppressed, and

understand that this system will drive population from the storage mode into both the qubit

mode and transmission line. Following Haroche and Raimond [12], we treat this is as an

effective three-level system spanned by the Hilbert space of |1〉 = |001〉, |2〉 = |110〉, and

|3〉 = |010〉 where we can write the master equation

ρ̇ = −ig3 (t) [|1〉 〈2|+ |2〉 〈1| ,ρ] + κD [|3〉 〈2|]ρ.

We can can write this out in terms of components of ρ
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˙ρ11 = −ig3 (t) (ρ21 − ρ12) (3.7)

ρ̇21 − ρ̇12 = 2ig3 (t) (ρ22 − ρ11)− κ

2
(ρ21 − ρ12) (3.8)

ρ̇22 = ig3 (t) (ρ21 − ρ12)− κρ22 (3.9)

ρ̇33 = κρ22. (3.10)

We can write this system in terms of three variables x = ρ11, y = ρ22, z = ρ21 − ρ12, as

the remaining variable ρ33 is constrained by Tr ρ = 1, resulting in the following system of

equations


ẋ

ẏ

ż

 =


0 0 −ig3

0 −κ ig3

−2ig3 2ig3 −κ/2




x

y

z

 . (3.11)

Exponentiating this system with an initial condition of Pq (|1〉) = 1, we obtain the mode

populations versus time

Pq (|1〉) = 1− Ps (|e〉) (3.12)

Ps (|1〉) =
e−κt/2

γ2

[(
κ2 − 8g2

3

)
cosh

(
γt

2

)
+ κγ sinh

(
γt

2

)
− 8g2

3

]
(3.13)

Pb (|1〉) =
16

γ2
eκt/2g2

3 sinh2

(
γt

4

)
, (3.14)

and plot in Figure 3.3.

We remark that that Ps (|1〉) in Eq. 3.13 is equal to |q (t)|2 in 3.4. This is expected,

as 3.1 moves excitations from q into the transmission line in the same way that 3.6 moves

excitations from s into the transmission line. Crucially, 3.6 coherently moves excitations

from s into both the q mode and the transmission line. This means that we will observe

the qubit undergoing decaying oscillations of the qubit from the |0〉 state to the |1〉 state,

as plotted in Fig. 3.3.
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Interestingly, the classical equations of motion and the master equation reproduce the

same dynamics. This may be shown by writing the classical equations of motion in terms of

the variables |q|2, |b|2, and q∗b, and then identifying x = |q|2, y = |b|2, and z = 2iq∗b. We

also note that a master equation analysis is also applicable to the q†b + h.c. process where

we choose the states |1〉 = |10〉, |2〉 = |01〉, and |3〉 = |00〉. The classical equations of motion

are therefore sufficient for analyzing both the q†b + h.c. and b†q†s + h.c. process.

Currently, a controllable Hamiltonian containing only the terms in 3.1 or 3.6 is beyond

our reach. Intervening Stark shift terms require frequency compensation, where frequency

compensation necessitates additional amplitude compensation. In the next section, we in-

troduce the relevant infrastructure for controlling the previously described processes.

3.2 Implementing Q-switching in our quantum processing mod-

ule

While in Ch. 2 we realized gates between internal quantum processing module modes

using parametric processes, and compensated appropriately for induced Stark shifts, the

dynamical behavior of the modes under control was of no interest. The goal was to move

the population between modes as quickly and as coherently as possible. The controlled

release and capture of microwave photons, on the other hand, does require complete control

over the time-resolved process strength g (t), as this sets the temporal mode shape of the

flying wavepacket. Additionally, capturing a flying wavepacket requires both knowledge of

the temporal mode profile of the wavepacket, as well as similarly modulated g (t) for the

receiving side. This means that we aim not to quickly switch to a certain maximal g (t), but

to smoothly change g (t) in accordance with a calculated optimal profile. This time-resolved

control over g (t) raises a number of technical complications, whose solutions we detailed in

this section. In particular, this section details the complications involved in referring g (t)

back to a complex voltage Ṽ (t) = VI (t)+ iVQ (t), where VI (t) (VQ (t)) is the voltage output

by the DAC controlling the In-Phase (Quadrature) component of the drive displacement.

We assume Ṽ (t) to corresponds to an idealized DAC with flat frequency response, and any

actual linear transfer function associated with a practical DAC may simply be folded into
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Figure 3.4: Stark shifting of modes: diagram | We demonstrate the effect of a variable
amplitude drive on the frequency matching condition of a transition of interest. In the lower
panel, we show the frequencies of the various modes present in our system (ωs, ωq, and ωb),
as well as the bare frequency of a transition of interest ωp. In the upper panel, we show that
the drive will induce an Stark shift on all modes in the system. Due to the shifting frequency
of the modes (green line, magenta line, blue line), the frequency matching condition for the
drive (grey line) will change as well.

any transfer functions mentioned in the text.

3.2.1 Stark shift compensation

While applied parametric drives develop useful terms in the Hamiltonian, they bring terms

along with them that pose some inconveniences. The cosine nonlinearity of the Josephson

element, treated in 2.1.1 will generate all combinations of even order interactions betweeen

all oscillators coupled to the element. Terms of the form χ |ξ|2 a†a, for some mode associated

with operator a, and effective drive displacement ξ induce a Stark shift on this mode χ |ξ|2.

When driving a parametric process, the drive must be applied on resonance such that energy

is conserved. If the modes involved in the process move in frequency, the drive frequency

must also move appropriately. In particular, we restate from sections 2.2.1 and 2.2.2 the

resonance conditions for the b†q + h.c. interaction, realized by two drives at ω1 and ω2
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Figure 3.5: Stark shift compensation: Experimental data | In the upper panel, we
apply on Alice or Bob a 10 µs long drive of variable amplitude, at the buffer sideband
frequency used to activate the b†q+h.c. interaction. Simultaneously, we probe the qubit with
a microwave tone near its resonance frequency. The quadratic shifting of the frequency with
increasing drive amplitude corresponds to the Stark shift. We extract the qubit frequency
position and plot in the lower panel as a function of drive amplitude, with an overlaid
quadratic fit, all in orange. Added to the lower panel is the result of applying the same
protocol and fitting procedure instead with one drive used for the q†b†s +h.c. process, with
data and fit plotted in green. Fit coefficients were later used to compensate the Stark shift
when chirping control pulses to stay on resonance.
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ω1 = ωb + ∆′ + χbq |ξ1|2 − 2χqq |ξ2|2 (3.15)

ω2 = ωq + ∆′ (3.16)

where we have absorbed all Stark shift terms intervening in ω2 into ∆ = ∆′ + 2χqq |ξ2|2 +

χqb |ξ1|2, and the q†b†s + h.c. interaction, realized by a single drive at ω3

ω3 = ωq + ωb − ωs − χbq − χbq |ξ3|2 , (3.17)

where we assume χbb, χbs � χqb � χqq. Compensation requires the susceptibility of each ωi

to drive magnitude |ξi|2. We recall that the relationship between drive amplitude ξis and

drive strength εis apriori unknown. Our best access to the AC-Stark shift susceptibility is

to measure the AC-Stark shift directly as a function of the DAC voltage Ṽ (t) controlling

the mode displacement.

We perform saturation spectroscopy dressed by the drive. The qubit is preparred in the

ground state, and subjected to both the drive tone whose Stark-shift susceptibility we wish

to characterize, and a coherent tone at frequency ω intended to excite the qubit when on

resonance. These tones are applied simultaneously for a duration t � T2 leaving the qubit

in a mixed state P1 = P0 = 1/2 when ω is detuned appropriately for the Stark shift induced

by the drive. By fitting the qubit resonance as a function of drive amplitude, we extract the

quadratic dependence of the frequency shift on the drive amplitude, as desired [24]. The

results of applying this protocol are shown in Fig. 3.5

The drives we apply may leak outside their target module. In particular, ω1 and ω3

drives intended for Alice leak to Bob through the communication channel. Fortunately, this

is correctable by applying one of the previously described protocols on Bob, while sweeping

the amplitude of a drive intended for Alice. What results is two Stark shift susceptibilities

per ω1 and ω3 drive intended for Alice, but additionally influencing Bob and one Stark shift

susceptibility per drive intended for Bob, and finally the Stark shift susceptibility of Alice

and Bob to the ω2 drive, for a total of eight calibrations.
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Figure 3.6: Dispersion compensation: Experimental data | Qubit dressed spec-
troscopy (left pane) for the Alice qubit in the presence of the q†b†s + h.c. drive applied
at constant amplitude and varying frequency. Drift of the qubit line reveals the effective
dispersion relation for the drive channel for the drive, using the qubit as a power meter
through the Stark shift. We fit the qubit resonance frequency, and back out the amplitude
dispersion of the line, normalized to zero detuning of the drive.

We remark that the stability of these calibrations is dependent upon the power stability

of the amplification chain, which may be influenced by changes in room temperature and

air currents, as well as supply voltage fluctuations. We found it helpful to automate the

measurement of this calibration data, such that the susceptibilities may be conveniently

recalibrated as necessary.

3.2.2 Dispersion compensation

An applied drive must traverse the microwave cables and various microwave hardware ele-

ments before finally inducing a current in the target Josephson junction. From the per-

spective of the Digital to Analog converter, the Stark shift susceptibility has not only

power dependence, but frequency dependence. In particular, for a Stark shift term of the

form −χ |ξ|2, and transfer function from DAC voltage to drive displacement defined by

ξ [ω] = SξV [ω]V [ω], we obtain a Stark shift of −χ |SξV [ωp]V0|2 for a drive signal of the

form V (t) = V0 cos (ωpt). If drive tones are to be chirped to stay on resonance, we must
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compensate for the dispersive effects of SξV [ω], such that for each frequency chirped to, the

appropriate amount of power is applied to realize the desired g.

We may calibrate these dispersive effects using a modified version of either of the two

Stark shift measurement protocols explained in the previous section [24]. Rather than

sweeping the amplitude of V (t), we instead fix the amplitude V0, and sweep the frequency ωp

such that the qubit is Stark shifted by −χ |SξV [ωp]V0|2. While this protocol only provides

access to the magnitude of SξV [ωp], the phase component is mostly inconsequential for our

purposes. In practice we extract the unitless quantity Slines [ω] = |SξV [ω] /SξV [ω0]| , with

ω0 being the frequency at which the drive is expected to be resonant with no Stark shift,

corresponding to zero detuning of the drive. The data from applying this protocol on Alice

for the q†b†s drive and extracted Slines [ω] are shown in 3.6. The remaining drives show

similar dispersion relation, with a maximum amplitude deviation over the maximum chirp

range of 20%.

3.2.3 Drive induced decoherence

All complicating complicating effects of the drives discussed thus far may be compensated.

Unfortunately, there are additional effects that these off-resonant drives cause, for which no

compensatory mechanism is known. In particular, strong drives can cause decoherence and

relaxation of the qubit, as shown in Fig. 3.7. The mechanism by which this happens is still

being understood. Currently, the only known method to deal with this issue is to simply

not drive so hard that it becomes an issue. There exists a careful balance in the choice of

drive power. For a certain drive power, the drive causes a certain amount of decoherence,

but also induces a certain g for the process of interest. Additional g implies that transfering

a certian amount of population using this process will be quicker, and thus the gate will be

shorter. A shorter gate then has the benefit of requiring the drive to be enabled for a shorter

time. Rather than an exhaustive search for the ideal pulse amplitude and time, we cap the

amplitude of the control pulses we generate to induce displacements that do not exceed the

knee in the plots of Fig. 3.7.

46



Figure 3.7: Drive induced decoherence | Relaxation and dephasing of Alice (red) and
Bob (blue) in the presence of the first round drives (solid lines) and second round drives
(dashed lines). For a dressed T1 sequence, the qubit is placed in the |e〉 state, the drive
is enabled for a time t with a displacement ξ, and then the qubit read out. For a dressed
T2E sequence, the qubit is placed in |+X〉, the drive enabled for a time t/2 at a strength
ξ, disabled, the qubit flipped, the drive re-enabled again for a time t/2 at strength ξ, after
which the qubit is read out. Decay envelopes are then fit, where the characteristic time of
the decay in the presence of the drive is plotted above.
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Figure 3.8: Verification of Stark shift compensation | Qubit dressed spectroscopy
in the presence of each drive used in the experiment. The qubit is started in |0〉 for the
q†b†s + h.c. and |1〉 for b†q + h.c. For each drive strength, we apply a 3 µs pulse where the
resonance condition for the transition is expected to match for that drive strength, plus a
small detuning plotted on the x-axis. A peak well centered at 0 detuning demonstrates that
the model predicts the resonance matching condition and compensates for induced Stark
shift.

3.2.4 Experimental verification of Q-switching and extraction of process

susceptibility to drive

In this section, we put all tools previously developed in this chapter together to verify control

over the strength of the b†q+h.c. parametric process and the q†b†s+h.c. processes on both

the Alice and Bob quantum processing modules. At this point, we refer to the strength of the

drives using the effective mode displacements ξi, as sefined in Chapter 2. Again we repeat

that these mode displacements correspond not to any individual mode displacement, but to

an effective displacement which assumes that the drive addresses one mode. To calibrate

ξ1,2,3, we referred the DAC output amplitude to the Stark shift measured in Section 3.2.1,

48
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Figure 3.9: Extraction of g vs. drive amplitude | Bottom panels Alice and Bob qubit
population when driving the associated parametric process for swept drive amplitude (color)
and time (x-axis). For the processes b†q + h.c., the qubit is initialized in the |1〉 state,
whereas for q†b†s + h.c. the storage is initialized in |1〉. Each envelope is fit to the damped
Rabi oscillations derived in Section 3.1.1 to extract the interaction strength for a given
drive amplitude. These drive amplitudes are then plotted against the extracted interaction
strength in the upper panel. The linear fits calibrate the interaction strength as a function
of drive strength, necessary for the generation of envelopes for the controlled release and
capture of a flying photon.
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using the dispersive shifts as a conversion factor through the relations derived in Chapter 2

∆q = −χbq |ξ1|2 − 2χqq |ξ2|2 − χbq |ξ3|2 . (3.18)

For the q†b†s + h.c. process, we swept the amplitude of the corresponding drive after

preparing the qubit in vacuum and storage in the |1〉 state using the qubit-storage SWAP

gate, while detuning the drive such that the drive stays on resonance, using the Stark shift

calibrations. We compensated the amplitude of the drive using the calibration from Section

3.2.2, such that the effective drive strength was frequency independent. In Fig. 3.8 we

incorporated a small detuning around the expected transition frequency. The measured

transition stays well centered for all tested drive amplitudes on both Alice and Bob.

We now wish to refer our drive strength to the amplitude of the driven process. To

do this, we prepared the qubit in vacuum and storage in the |1〉 state, and we played a

variable length, variable amplitude drive, which was frequency and amplitude compensated

in the same manner as the previous experiment. The damped Rabi oscillations of population

between qubit, storage, and buffer modes were fit to Eq. 3.12, extracting the interaction

strength g as a function of drive amplitude, with data and fits shown in 3.9. We found

a susceptability of 76.4 kHz/
√
Photon for Alice, and 45.9 kHz/

√
Photon for Bob. We also

remark that it is possible to calculate the relationship between g and ξ3 in terms of measured

cross-Kerrs. By application of the relationship between cross-Kerrs χab = 2
√
χaaχbb, we find

g3 = χbq

√
χqs
2χqq

ξ3, (3.19)

giving process susceptibilities of 99 kHz/
√
Photon for Alice, and 53 kHz/

√
Photon for Bob,

showing fair agreement with the calibration.

To verify the functionality of the b†q+h.c. process and calibrate its interaction strength,

we applied experiments similar to those used to calibrate the q†b†s + h.c. process, with the

following modification: The experiments were started with the qubit in the |1〉 state and the

storage in vacuum, and we also applied the two drives needed to activate the process simul-

taneously. We fixed the amplitude of the ξ2 drive drive on Alice to 0.13
√
Photon and on Bob
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to 0.12
√
Photon. These displacements were chosen empirically to induce minimal change in

coherence times of the Alice and Bob qubits. No dispersion compensation was necessary, as

the drive amplitude was fixed. The induced Stark shifts on Alice (4.94 MHz) and Bob (5.06

MHz) were measured at their set amplitudes and considered fixed frequency offsets during

the application of drive pulses. Extracting the process susceptibilities as before, but with

the fixed ξ2 drive, we found a process susceptibility of 0.097 kHz/
√
Photon for Alice, and

0.086 kHz/
√
Photon for Bob. As before, we may calculate the process susceptibilities using

measured cross-Kerrs using the relationship g = χqrξ1ξ
∗
2 , which for the fixed ξ2 drive, gives

a susceptibility for the ξ1 drive of 0.105 kHz/
√
Photon for Alice, and 0.101 kHz/

√
Photon

for Bob, showing good agreement with the calibration.

With the Stark shifts tamed and process amplitudes under our control, we are well

prepared to use these processes for the controlled release and capture of single microwave

photons. We will discuss theoretical considerations, and demonstrate the experimental re-

alization of this procedure in the next chapter.
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Chapter 4

Single Photon Transfer Between Two

Nodes of a Quantum Network:

Principle and Practical Realization

We have thus far developed the tools to apply gates between the various modes within a

quantum processing module, and we have developed the tools to control communication

of the module with the outside world. The modular quantum computer detailed in the

introduction chapter involves numerous quantum processing modules, all connected by a

router. In this dissertation, we take a small step towards such an architecture with two such

modules with fixed connectivity between the two modules. In this chapter, we first explain

how two quantum processing modules are connected, and the formalisms we use to treat

systems with the coupling we use. Next, we characterize the quantum channel we realize

in the experiment. Then, we develop the tools for efficiently transferring single microwave

photons over this channel using the parametric drives developed earlier, and finally, apply

these tools in the experiment.
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Figure 4.1: Concurrent and sequential remote entanglement | Here we show two
different types of networks that most remote entanglement schemes fall into. On panel a,
we show remote entanglement of the concurrent type, where qubits (pink), are coupled to
a network using a buffer cavity (blue). Both systems begin by broadcasting flying photons
(blue gaussians), which arrive at a which path information eraser (circle with Σ), which
for this particular concurrent remote entangler, sums the fields. A photon-number-sensitive
detector (green half-circle) projects the qubits into the entangled state when measuring the
arrival of one photon. On panel b, we show a sequential remote entanglement setup. Such
setups are broadly characterized as systems where both qubits have a chance to interact
with a flying photon which travels from sending system to receiving system. The flying
photon may begin and end its travel in the sending system and receiving system, or it may
be created and terminated by systems external to the diagram.

4.1 A survey of different methods for quantum network con-

nectivity

In the field of superconducing quantum computation, remote entanglement schemes are gen-

erally implemented with two different connectivity strategies: concurrent and sequential. In

concurrent remote entanglement, we generate entanglement through the use of coincidence

counts of flying qubits from independent sources [48, 49]. We suppose two quantum process-

ing modules Alice and Bob, connected in a network of the type visualized in Fig. 1.1a., with

stationary qubits qA and qB, who each broadcast flying qubits fA and fB, where stationary

qubits are entangled with stationary qubits. We suppose the entanglement is, for example

|ψ〉 = N−1 (|qA = 0, fA = 0〉+ |qA = 1, fA = 1〉)⊗ (|qB = 0, fB = 0〉+ |qB = 1, fB = 1〉) .

(4.1)

The key feature of concurrent remote entanglement is that these flying states are generated

concurrently, and that qA never interacts with fB, and qB never interacts with fA. The
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entanglement is generated through the use of a joint measurement on the fA ⊗ fB system,

which is manifestly blind to local information. We first suppose some element which is able

to erase which-origin information, that is, any information encoded on the flying state which

betrays local information about the originating qubit. For example, let us imagine a device

which sums fA and fB, creating a new qubit f such that |ψ〉 may be written

N |ψ〉 = (|qA = 0, qB = 0〉)⊗ |f = 0〉

+ (|qA = 0, qB = 1〉+ |qA = 1, qB = 0〉)⊗ |f = 1〉

+ (|qA = 1, qB = 1〉)⊗ |f = 2〉 (4.2)

Measuring fA+fB with the outcome 1 will project the qA⊗qB system into an odd Bell state.

Such concurrent schemes are necessarily non-deterministic, as measurement is required to

project out entanglement between the qA ⊗ qB and the fA ⊗ fB. Concurrent entanglement

schemes have been realized in optical systems [50] using flying optical photons, as well as

in superconducting qubits using flying photon states [51]. Additionally, such which-origin

information erasure has been attempted for flying coherent states in superconducting qubits,

though quantum correlations were below the threshold of entanglement [52].

In this dissertation, we consider an entanglement scheme of the sequential type. Such

sequential remote entanglers are broadly characterized by systems in which Alice and Bob

are both given a chance to interact with a single flying qubit f . Such systems break down

into two subcategories, namely sequential entanglement by measurement, and pitch-and-

catch remote entanglement. In sequential entanglement by measurement, a flying qubit f ,

provided by an external source, interacts with qA to generate entanglement

|ψ〉 = N−1 (|qA = 0, f = 0〉+ |qA = 1, f = 1〉) . (4.3)

The flying qubit f is then interacted with Bob in some way, to create three body entangle-

ment between Alice, Bob, and f . In this case, we suppose that the interaction creates the

state |ψ〉 identical to Eq. 4.2. We remark that in this case, rather than a device external

to Alice and Bob erasing the which-qubit information, the information is erased by the in-
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teraction of f and qB. Finally, entanglement is generated by measurement of the state of

f , where again, in the f = 1 case, the back-action of the measurement entangles qA and

qB. Schemes of the sequential entanglement by measurement type have been realized in

superconducting qubits in the work of Roch et al. [53].

Thus far, we have explored a scheme with two modules, an information eraser, and a

detector, and then a scheme with two modules and no information eraser. Taking this one

step further, we can remove the need for a detector entirely, while retaining the simple

network structure in sequential entanglement by measurement. With the removal of the

detector, we additionally realize an entanglement scheme which is deterministic. In the

scheme of pitch and catch remote entanglement, initially proposed in the seminal work by

Cirac et al. [21], a flying qubit f is sourced by the Alice system entangled with qA, and

then subsequently absorbed by the Bob qubit qB. The protocol crucially takes place in

a completely closed system, where a unitary gate generates entanglement between qA and

f , and another unitary gat exchanges the entanglement between qA and f to qA and qB.

Pitch-and-catch remote entanglement schemes have been realized using superconducting

qubits in the work of Campagne-Ibarcq et al. [24], Axline et al. [23], Kurpiers et al. [22].

In this dissertation, we build upon these schemes to realize a photon-loss-robust pitch and

catch remote entanglement scheme. Let us now treat in detail the theory and design of this

sequential-type network.

4.2 Two modules and a one-way channel: Cascaded quantum

systems

While pitch-and-catch remote entanglement takes place in a closed system, the network it is

built on is not. We may want to take a quick step back and explore the various options for

connecting two modules at a distance. With a scheme chosen, we then explore the theory

of how to couple our modules to such a network in the language of input-output theory,

and then in the language of cascaded quantum systems. Finally, we explore how our choice

of network facilitates rapid joint qubit readout, which is necessary for characterizing the

entanglement we generate.
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Figure 4.2: Direct connection between two quantum processing modules | Here we
demonstrate the two limiting conditions of a two-module system connected by a segment of
microwave coax. On the left panel, two Fabry-Perot cavities are connected with a cable, such
that the coupling between the cables and the cavity is small relative to the free spectral range
of the cable. This results in a comb of discrete modes living in the cable. In the opposite
limit, where the free spectral range of the cable is small relative to the coupling, the modes
of the cable merge into a continuum.

4.2.1 Schemes for the connection of two quantum processing modules

At first blush, the obvious scheme for connecting two quantum processing modules is a

piece of microwave coax. At any appreciable distance between modules, some cable (or

other microwave conduit) will be required, so why involve additional microwave circuit

elements? Such schemes have been implemented in the framework of circuit QED [54, 55, 56],

and generally break down into one of two limits. One limit, where κ � c/L, where L is

the length of the connecting cable, and κ is the coupling between the buffer mode and

the cable, and the opposite limit where κ � c/L. In the former limit, the piece of coax

connecting the two cavities forms a λ/2 microwave resonator, hosting a number of discrete

modes. These modes may temporarily host microwave photons for the transfer of quantum

information from one module to the other. Such a scheme is limited to short lengths of cable,

making its implementation in a large scale quantum computer challenging, or the regime of

weak couplings, where the transfer will be slow. Additionally, such a scheme compromises

modularity somewhat, as the cable modes hybridize with modes in both modules.
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The alternative regime, where κ � c/L, allows the discrete peaks of the cable modes

to merge together and blur out into a continuum. Intuitively, this may be understood as

the regime where a photon leaking out of a sending mode will never overlap with its own

reflections while being released. In this sense, over the timescale of the release, the cable

appears to be matched. The work of Zhong et al. [56] enters this regime with a one meter

long cable and an effective κ of 2π · 50MHz, realized through a dedicated on-chip tunable

couplers. The measured parametric couplings in the previous chapter reach a maximum of

2π · 200 kHz, necessitating an unreasonably long kilometer scale cable.

A system where we need not worry about cable resonances requires that, during the

process of sending a photon, reflections of the sent photon do not impinge upon the sending

cavity. Rather than using a long cable, we attempt to break the connection between the

output field of Bob and the input field of Alice, leaving only the output field of Alice

connected to the input field of Bob.

4.2.2 Theory of cascaded microwave quantum systems

Let us now explore how how we will connect two of our quantum processing modules together

to form a network. Connecting the output field of the Alice buffer module to the Bob buffer

module input field requires that we separate the input fields from the output fields of our

module, breaking reciprocity. We do this using a microwave circulator. The lossless three-

port circulator, with ports A, B, and C, has the scattering matrix defined by


Aout

Bout

Cout

 =


0 0 1

1 0 0

0 1 0




Ain

Bin

Cin

 . (4.4)

We connect the buffer modes bA and bB to a pair of microwave circulators such that bAout =

bAin, according to the signal flow graph in Fig. 4.3. For the purposes of this section, we

suppose that bAin is in vacuum, such that we may consider only the unidirectional connection

from Alice to Bob. By definition, Bob can not influence Alice, but the output field of Alice

drives Bob. A system of this form is known as a cascaded quantum system, and has been
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a b

c

d

Figure 4.3: Cascading microwave cavities using a circulator | Panels a and b depict
the ports of a circulator as well as the signal flow diagram. Panel c shows a unidirectional
connection between cavities Alice and Bob realized using microwave circulators. The signal
flow diagram for this configuration is shown in panel d.

58



treated a number of different ways throughout the history of quantum optics. Here we

follow Gardiner and Zoller [33], but for more complex systems, we recommend the use of

the modern SLH formalism [57].

For the case that the channel is lossless, we may write the quantum input-output relations

for the Alice and Bob as

bAout = bAin +
√
κAbA (4.5)

bBin = bAout (4.6)

bBout = bBin +
√
κBbB

=
√
κAbA +

√
κBbB. (4.7)

We now combine this with the quantum Langevin equation, here written for an arbitrary

operator a acted on by a Hamiltonian Hsys, where the system mode c is coupled to a

transmission line at rate γ with transmission line modes d (t), giving

ȧ = − i
~

[a,Hsys]−
[
a, c†

] [γ
2

c +
√
γdin (t)

]
+
[γ

2
c† +

√
γd†in (t)

]
[a, c] , (4.8)

Leading to the following quantum Langevin equation for an arbitrary operator a

ȧ = − i
~

[a,Hsys]

+
[
−
[
a,b†A

]{κA
2

bA

}
+ h.c. \ a

]
+
[
−
[
a,b†B

]{κB
2

bB +
√
κAκBbA

}
+ h.c. \ a

]
, (4.9)

where the notation h.c. \ a implies the standard Hermitian conjugate of remaining terms

with the modification the operator a is not conjugated. Rearranging terms, we write this in

the form

ȧ = − i
~

[
a,Hsys +

i~√κAκB
2

(
b†AbB − b†AbB

)]
−
[
a,
√
κAb†A +

√
κBb†B

]{√κAbA +
√
κBbB

2

}
+ h.c. \ a (4.10)
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We now remark that this is precisely in the form of a Langevin equation where a non-

Hermitian component i~√κAκB
2

(
b†AbB − b†AbB

)
is added to the Hamiltonian, as well as a

combined dissipation channel, with operator
√
κAbA +

√
κBbB. This takes us directly to

the system’s Master equation

ρ̇ = − i
~

[
H +

i
√
κAκB
2

(
b†BbA − b†AbB

)
,ρ

]
+D [

√
κAbA +

√
κBbB]ρ (4.11)

Let us now treat the case where the channel is lossy. We suppose the channel has a

quantum efficiency of η. Again, following Gardiner and Zoller [33], we suppose some portion

of bAout will be lost in transmission, modeled by inserting a beam splitter in the channel bAout,

coupled to the ancillary transmission line mode c, so that we have

bBin =
√
ηbAout +

√
1− ηcin (4.12)

bBout =
√

1− ηcin +
√
ηbAin +

[√
ηκAbA +

√
κbB

]
. (4.13)

cin =
√

1− ηbAout (4.14)

Through means similar to the previous derivation, one may arrive at the master equation

ρ̇ = − i
~

[
Hsys +

i
√
ηκAκB

2

(
b†BbA − b†AbB

)
,ρ

]
+D [

√
ηκAbA +

√
κBbB]ρ+D

[√
(1− η)κAbA

]
ρ (4.15)
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4.3 Simulating the full cascaded system

Using the cascaded master equation 4.15, we write the full master equation for our system

ρ̇ = − i
~

[
Hsys +Hdrive +

i
√
ηκAκB

2

(
b†BbA − b†AbB

)
,ρ

]
+D [

√
ηκAbA +

√
κBbB]ρ+D

[√
(1− η)κAbA

]
ρ

+
∑
i=A,B

Γiφ
2
D
[
q†iqi

]
ρ+ Γ1D [qi]ρ+ Γ1,CavD [qi]ρ (4.16)

Hsys/~ =
∑
i=A,B

δibb
†
ibi − χbqb

†
ibiq

†
iqi (4.17)

Hdrive/~ =
∑
i=A,B

(
gi2 (t) b†iqi + h.c.

)
+
(
gi3 (t) b†iq

†
isi + h.c.

)
, (4.18)

where we introduced dephasing terms for each qubit at the rate Γiφ = 1/T i2−1/
(
2T i1
)
, decay

terms for each qubit Γi1 = 1/T i1, and decay terms for each storage modeΓi1,Cav, where i

indexes each module A for Alice and B for Bob. We also introduce terms for the parametric

drives in Hdrive at the rate gi2 (t) for the b†q + h.c. process and gi3 (t) for the b†iq
†
isi + h.c.

process, where again i indexes each module. Finally, we introduce detuning and cross-Kerr

terms in Hsys to capture frequency and dispersive shift mismatches throughout the protocol.

We integrate the master equation numerically using the qutip software package [58, 59]

and its master equation solver mesolve. Simulation of time-varying control signals is done

as follows: we suppose all time-varying parameters gji (t) are band limited to a bandwidth

B. Over a time τ � 1/B, all time-varying parameters are approximately stationary. We

propagate a state ρ (t) to ρ (t+ τ) by holding all time-varying parameters to their value at

the beginning of the interval, in a piecewise-constant approximation, and calling mesolve to

propagate the state forward over this interval. Repeated invocations of mesolve N times

propagating the state to a final time T = t+Nτ . In practice, we choose τ = 50 ns, where a

doubling this parameter has demonstrated minimal effect on the final simulated state ρ (T ).

The choice of dephasing and decay term strength is crucial for accurate simulation. Using

the coherence times from Tbl. 2.1 is too conservative, as the pumps will induce additional

dephasing. Instead, we cross-reference g (t) to the measured dephasing time induced by the
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Alice Bob

Figure 4.4: Measuring quantum efficiency of a cascaded quantum system | Two
cavities Alice and Bob connected by a unidirectional channel, interposed by a splitter (input
port not pictured) used to model loss in the channel. A pulse which rings up to a power
of PA bounces off the Alice system, encounters the channel loss, and then impinges on Bob
with a reduced power PB = ηPA. Using Alice and Bob to measure PA and PB extracts the
channel’s quantum efficiency η.

pump at maximum amplitude, taken from the data in Fig. 3.7. Accurate representation of

decay and decoherence processes is less important for bare population measurement as is

done in this chapter, but important for estimating entangled state fidelity.

4.3.1 Benchmarking our quantum channel

The critical figure of merit for our quantum channel is its quantum efficiency, or, the prob-

ability of a photon to traverse the channel without being absorbed. Entanglement between

modules will be mediated by photons emitted and absorbed near the buffer mode frequen-

cies, and therefore we aim to measure the quantum efficiency at these frequencies. To do

this, we apply a tone near the buffer mode frequencies, which bounces off the Alice buffer

mode, traverses the communication channel, and then bounces off Bob, as shown in Fig

4.4. The power due to this tone that Alice sees will be PA, and for Bob PB. The ratio

η = PB/PA is the quantum efficiency of the line at the frequency of the applied tone.

We may extract these powers PA and PB using a Ramsey interference experiment. First,

we recall Eq. 2.19

∆m = χbqRe [βg (t)β∗e (t)] , (4.19)
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Figure 4.5: Cavity Stark shift due to drive on buffer modes | Plot of the normalized
value of the Stark shift for Alice and Bob when varying the frequency f of a tone bouncing
off each buffer cavity. The normalizing power P1ph for Alice and ηP1ph Bob are extracted
simultaneously, yielding the quantum efficiency of the channel near the buffer mode fre-
quencies. The quantum efficiency is found to be 0.64. The fit also extracts buffer mode
frequencies, dispersive shifts, and transmission line couplings, shown in Table 2.1.

which gives the Stark shift induced when one of the buffer modes is driven near resonance.

Here we suppose that the cavities are driven with square pulses, for time T � κ, χ, amplitude

ε, with detuning from buffer mode |g〉 frequency ∆, giving

βg =

√
κε

i∆− κ
2

(4.20)

βe =

√
κε

i (∆− χbq)− κ
2

, (4.21)

which when combined with B (t) gives

B =
4 |ε|2 κχbq

(
κ2 + 4∆ (∆− χbq)

)
(4∆2 + κ2)

(
κ2 + 4 (∆− χbq)2

) . (4.22)

We extract the detuning induced by a variable amplitude, variable length, and variable
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frequency pulse near the buffer mode using a Ramsey interference experiment. The qubit

is prepared on the equator, the pulse enabled for a time T , and the phase of the qubit read

out by a π pulse, followed by readout, extracting the frequency shift. We fit the quadratic

dependence of the induced Stark shift on the pulse amplitude, and plot the fit coefficient

versus pulse frequency in Fig. 4.5. To this data, we fit the expression for ∆m (ω), extracting

qubit-buffer Stark shift χbq, buffer transmission line coupling κ, buffer resonant frequency ωb.

Importantly, we also extract a relationship between the drive amplitude at the level of the

DAC, ε = AVd, capturing the attenuation of the lines to the input port of the cavity. Here we

assume that the dispersion of the lines is minimal over the bandwidth of the frequency sweep.

The quantum efficiency is extracted as η = PB/PA = ε2A/ε
2
B = A2

A/A
2
B, where subscripts

denote the powers, drive amplitudes, and DAC to drive amplitude conversion coefficient for

the Alice and Bob systems, extracting a quantum efficiency of 0.64, comparable to other

cascaded quantum systems experiments in circuit QED [53, 24].

4.4 Synthesis of optimal pitch and catch drive waveform

We now wish to embark on using the parametric processes under control to release and

capture microwave photons. Here we present an algorithm for transferring microwave pho-

tons over the channel using the q†b + h.c. process, but we note that the following algo-

rithm applies equally to the control of the b†q†s + h.c. process, by mapping the states

|q = 0〉 → |s = 0, q = 1〉 and |q = 1〉 → |s = 1, q = 0〉. Additionally, we find that restricted

version of this calculation is analytically soluble, and documented in Appendix B. We be-

gin by writing the equations of motion for the qubit and buffer mode system. Following

Campagne-Ibarcq et al. [24], we write the Hamiltonian for the qubit and buffer mode sys-

tem under the influence of the q†b + h.c. process

H/~ = δb†b + g (t) q†b + h.c, (4.23)

where we have placed ourselves in a rotating frame detuned δ from the buffer mode. This de-

tuning will be necessary for releasing and capturing photons at a frequency slightly detuned

from the buffer mode frequency. This capability is required, as the buffer mode frequen-
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cies of Alice and Bob do not match exactly. In particular, the rotating frame we are in

corresponds to the rotating frame of the captured or released photon. Additionally, in this

section, we write g (t) without the subscript 2 or 3 corresponding to the process of interest,

as all results here for the synthesis of g (t) applies to both drives.

Following Cirac et al. [21], if some control sequence leads to efficient pitch and catch of a

“full” photon in a given wavepacket when Alice is initially in |g〉, the same sequence applied

when Alice is initially in
√
ε |g〉+

√
1− ε |e〉 will lead to the transfer of a photon in the same

wavepacket with amplitude
√
ε, coherently superposed with the system remaining idle in |e〉

with amplitude |1− ε〉. When ε� 1, from Bob’s point of view, this means catching a small

coherent state. Thus, we can compute the catch sequence considering that the field to be

caught is coherent, so that we may write the scalar Langevin equations. Given that b is

coupled to the transmission line at a rate κ, we write the scalar Langevin equation equations

for b and q

ḃ = −iδb− ig∗ (t) q − κ

2
b−
√
κbin (4.24)

q̇ = −ig (t) b (4.25)
√
κb = bout − bin. (4.26)

Suppose we wish to capture a particular wavepacket impinging upon the Bob cavity, bin (t),

normalized as
∫ T

0 |bin|
2 = nphot � 1. Following Korotkov [60], a perfect catch implies no

field is reflected off Bob’s cavity, such that bout = 0, giving that b (t) = −bin (t) /
√
κ, yielding

the following equations

ḃin + iδbin −
κ

2
bin = ig∗ (t) q (4.27)

ig (t) bin =
√
κq̇. (4.28)

At each discrete time-step t, knowing q (t), one then computes g (t) in order to satisfy

Eq. 4.27. We then propagate q to t + dt with Eq 4.28 and iterate up to the final time T.

Note however that this equation diverges if we choose q = 0 as the initial state: a symmetry
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allows one to choose arbitrarily the phase of g as long as q is initially displaced with the

same phase. We regularize this formal divergence by giving a small real value q0 �
√
nphot

to the field at t = 0.

The case of pitching a photon with Alice can be treated similarly. We find Alice’s

Langevin equation from Bob’s by re-labeling the states |g〉 → |e〉 and the field operator as

q → q†. One can again consider pitching a coherent state with a shape bout and containing a

small number of photons nphot. In practice, we will choose the same shape for Alice’s pitch

and Bob’s catch so that bAout (t) = bBout (t+ τ). Here, t � T is the (negligible) propagation

delay between Alice and Bob. We then compute g (t) by imposing b = bout/
√
κ at all time

t.

The choice of the initial state with respect to nphot is here crucial. If we choose q† (0)2 =

nphot, the qubit will end up in |e〉 and the pitch is full. If alternatively we set q† (0)2 = nphot/2

we get a “half-pitch” and generate entanglement between the two qubits. To avoid diverging

control pulses when the qubit nears |e〉 at the end of the full pitch, we reduce the number

of photons in the pulse in the same manner as as when catching a wavepacket with a qubit

initially in |g〉.

4.4.1 Compensating for Stark shift and dispersion

Having generated the optimal g (t) for the pitch or catch process, we now want to generate

microwave control signals that implement this g (t) for the process of interest. The microwave

control signals are generated in a phase-coherent manner using the microwave circuitry

detailed in Appendix A. The control signals originate at DACs which control the in-phase

and quadrature channels of an IQ mixer. The IQ mixer is fed a local oscillator tone

corresponding to where the pump is expected to be resonant, with a small known frequency

detuning to facilitate single-sideband modulation. We will suppose that these DACs emit

signals corresponding to the real and imaginary components of a complex voltage Ṽ (t),

with the real part of Ṽ (t) controlling the I channel of the IQ mixer, and the imaginary part

controlling the Q channel of the IQ mixer. For the purposes of this section, we will ignore

the finite detuning used in experiment, and suppose that a constant Ṽ (t) = V0 corresponds

to a tone resonant with the drive’s corresponding process with no induced Stark shift. Here,
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we address this Stark shift by chirping the control signal.

We begin first by using the process susceptibility calibrations from 3.2.4, through which

we refer g (t) back to control voltages on the DACs. Next, we add frequency modulation

to the signal to ensure that the pump stays resonant for all t. For a particular Ṽ (t) and a

Stark shift calibration χ̃ with units of Frequency/Volt2, measured in Ch. 3.2.1, we generate

a Stark-shift compensated control signal

Ṽ ′ (t) = Ṽ (t) exp

(
−2πi

∫ t

0
dt′ χ̃

∣∣∣Ṽ (t′)∣∣∣2) . (4.29)

In chirping the pulse in frequency, the pulse the module sees will be reshaped by the

dispersion of the lines and intervening microwave components. Using the line dispersion cal-

ibration from Chapter 3.2.2 Slines [ω], we compensate for this effect through inverse filtering.

The small variance of Slines [ω] from unity over the spectral range of the pulse ensures that

this process is numerically stable. Operating on the frequency domain representation of the

chirped pulse Ṽ ′ [ω], the compensated pulse Ṽ ′′ [ω] is calculated Ṽ ′′ [ω] = S−1
lines [ω] Ṽ ′ [ω].

In practice, the measured dispersion data Slines [ω] was fit to a third-order polynomial.

Calculated g (t) was up-sampled to the sampling rate of our DACs, 500 megasamples per

second. From this, we calculated Ṽ ′ (t), converted Ṽ ′ (t) to its frequency domain represen-

tation by fast Fourier transformation, inverse filter using the polynomial representation of

Slines [ω], and finally return to the time domain with an inverse fast Fourier transformation.

4.4.2 Pulse truncation

At this point, we specialize to wavepackets of the form α sech (βt), as such wavepackets admit

analytical g (t) when no detuning is required. We expect that the small detuning necessary

should have minimal influence upon insights gleaned from examining analytical solutions. It

follows from expressions in Appendix B that the bulk of the transfer occurs during a small

portion during the middle of the overall transfer. Inspired by this, we truncate the control

pulse to play from Ṽ (−T/2) out to Ṽ (T/2). The effect of this is to reduce the quantum

efficiency of the transfer. Indeed since our protocol is robust to photon loss, an imperfect

transfer due to imperfect transfer pulses will result in a correctable error and reduced success
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Figure 4.6: Mode populations during photon transfer | We plot mode populations of
Alice qubit (red), Bob qubit (blue), Alice storage (green), and Bob storage (yellow) during
the first (upper) round of the protocol, corrected for readout contrast. We verify (lower) the
second round of the protocol through the controlled release and capture of one microwave
photon using the calibrated parametric drives and generated control envelopes. Dots denote
experimental measurements taken through the early termination of the protocol after time
t, followed by readout of qubit and storage mode populations. Lines are predictions using a
full master equation simulation, showing good agreement with experimental data.

probability. We find, through simulation of the full time-bin entanglement protocol described

in the next chapter, that transfer pulses with β = (3µs)−1 and T = 3µs optimize the fidelity

of the generated entangled state. Such pulses are expected to be 80% efficient relative to

their un-truncated version, extracted through master equations simulation.

4.5 Experimental results and analysis

We now turn to verifying the controlled release and capture of a flying photon using the

previously described parametric processes. We test combinations of processes necessary for

the time-bin entanglement process described in the next chapter: a full-pitch on Alice us-

ing the q†b + h.c. process and full-catch on Bob using q†b + h.c., and then a half-pitch
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on Alice using b†q†s + h.c. and a full-catch on Bob using b†q†s + h.c.. Each process

was verified by preparing Alice and Bob subsystems for appropriate states for the transfer

process, namely |qA = 1, sA = 0〉 ⊗ |qB = 0, sB = 0〉 for the testing of the q†b + h.c. pro-

cesses, and |qA = 0, sA = 1〉 ⊗ |qB = 1, sB = 0〉 for the b†q†s + h.c. processes. Next, we

synthesized control pulses using techniques from the previous section. For the q†b + h.c.

process, we synthesized control envelopes implementing the full transfer of an excitation;

a full pitch on Alice and a full-catch on Bob. This means that we expect a final state

|qA = 0, sA = 0〉 ⊗ |qB = 1, sB = 0〉. For the b†q†s + h.c. process, we synthesized control

envelopes that implemented an entangling operation, such that the final state of the system

is expected to be

1√
2

(|qA = 0, sA = 1〉 ⊗ |qB = 1, sB = 0〉+ |qA = 1, sA = 0〉 ⊗ |qB = 0, sB = 1〉) . (4.30)

Fig. 4.6 show the data corresponding to the mode populations of Alice and Bob dur-

ing the application of these pulses. To extract the time-dependent behavior, the transfer

process is terminated early, and the mode populations read out. Such a process only ap-

proximately extracts the mode population, as the early termination of a pulse results in

transient oscillations, an effect most significant when the control signal is at maximum am-

plitude. We expect generated pulses to be 80% efficient due to truncation. This inefficiency

affects the final state during the pitch process and again during the catch process. For the

q†b + h.c. process, we therefore expect the final qB population to be (80%)2 · η = 38%.

For the b†q†s + h.c. process, we transfer only half a photon, and therefore expect the final

sB population to be half this. The data in Fig. 4.6 agree well with these predictions. We

correct for readout contrast, calibrated through the individual preparation of each mode

in each state followed by readout. Additionally, Fig. 4.6 is overlaid with master equation

simulation data, where we use the same g (t) waveform used for the synthesis of pulses as

was used in experiment, with the data showing good agreement with simulation. No free

fitting parameters used for the curves in this plot.
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Chapter 5

Time-Bin Entanglement

In this chapter, we explain the principle of our time-bin entanglement protocol for generating

entanglement between to quantum processing modules in a photon loss robust manner.

We apply techniques for the controlled release and capture of microwave photons from the

previous chapter over two rounds, in such a way that one photon is sent, delocalized between

the two rounds. The Bob qubit functions as a round-insensitive photon detector, ensuring

the photon has made its journey successfully. Parametric processes applied to the Bob

module encode the round in which the photon was received into the Bob storage mode,

creating entanglement between Alice and Bob storage cavities. We additionally explain

how to characterize the entanglement generated between the two storage cavities. Finally,

we explain the results of applying our time-bin entanglement protocol and verify that by

detecting photon loss errors, we can enhance the fidelity of remote entanglement.

5.1 Introduction to our time-bin entanglement protocol

Quantum error detection requires that the consequences of errors be separable from the

intended message from the sender, by the message recipient. Time-bin entanglement achieves

this by sending one photon always, and detecting if it has been absorbed in the channel,

where the quantum information is encoded in whether the photon arrives at its destination

early or late [5, 6, 7]. In the field of quantum optics, generation of a time-bin qubit has been

accomplished through the use of an unbalanced Mach-Zener interferometer [5, 6], where an
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Figure 5.1: High level schematic of protocol | Upper Panel: Simplified schematic of the
circuit QED setup implementing photon-loss robust remote entanglement. The circuit fea-
tures two modules, each including a high-Q storage cavity s buffer mode b, and a transmon
qubit bridging these two modes q. The modules are connected through superconducting
microwave coax, intersected by a microwave circulator. Central Panel: Quantum circuit im-
plementing photon-loss robust remote entanglement. Circles joined by vertical bars denote
the intended coherent addition (plus sign) and removal (minus sign) of photons in the asso-
ciated modes. The first two gates perform the controlled release and capture of a microwave
photon entangled with all six degrees of freedom of the system. The remaining photon left
in the Alice qubit if a photon had not been pitched on the first round is then pitched on the
second, ensuring one photon is always sent. The second round catch finally ensures that the
Bob transmon is left excited if and only if the one pitched photon is received successfully,
independent of which round, heralding the success of the protocol Lower Panel: The para-
metric processes in the transmon qubits activated to implement the gate above. Double line
arrows denote applied parametric drives.
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input wavepacket is split and passed through long and short paths, and the two paths joined

to provide a traveling superposition of early wavepacket and late wavepacket. Associating

the two quasi-orthogonal modes corresponding to the early wavepacket and late wavepacket

to te and tl, and writing joint states of these modes |tetl〉, we may write a time-bin state as

|ψ〉 =
1√
2

(|Early〉+ |Late〉) =
1√
2

(|10〉+ |01〉) . (5.1)

The process of spontaneous parametric downconversion then creates entangled pairs of this

state, yielding two entangled time-bin qubits, whose entanglement may be verified through

coincidence counts. In the field of circuit QED, couplings and parametric process ampli-

tudes set the timescales of the wavepackets our systems may process. For good temporal

separation, a delay line of length c/gmax = c/ (200 kHz) = 1.5 km is not practical. Instead,

the generation of time-binned states may be accomplished in two rounds.

We now describe a simplified version of the protocol we run to generate entanglement

between the Alice storage mode and a flying time-bin qubit. The discussion that follows

may be thought of a vertical segmentation of the circuit of Fig. 5.1, where we first focus on

Alice as a time-bin encoder, and separately Bob as a time-bin decoder. We begin with one

photon in the Alice qubit mode. In the first round of the protocol, a half-pitch operation

removes half an excitation from the Alice qubit mode, and moves it to the storage mode

and the buffer mode, where the excitation in the buffer mode leaks out into the channel, as

in Ch. 4.4. Using the notation |sAqA〉 |tetl〉 , with te and tl again denoting early and late

wavepacket temporal modes of the transmission line, we create a state

|ψ1st〉 =
1√
2

(|01〉 |00〉+ |10〉 |10〉) . (5.2)

We notice that in the sector where a photon was not ejected, the qubit remains excited.

In this protocol, the qubit takes the role of the delay line, retaining the photon to be sent

on the second round. Correspondingly, in the second round, a full-pitch gate transfers this

remaining photon to the buffer mode, which then occupies the tl mode corresponding to
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modes of the late ejected wavepacket, resulting in the following state

|ψ2nd〉 =
1√
2

(|00〉 |01〉+ |10〉 |10〉) . (5.3)

The protocol concludes with the Alice qubit in the ground state, uninvolved with the en-

tanglement between the Alice storage mode and time-bin flying qubit.

The decoding of a time-bin state requires two degrees of freedom, one corresponding to

a qubit we intend to transfer entanglement to, and an ancillary mode we use for detecting

photon loss. Crucially, the qubit to which we transfer the entanglement must be sensitive to

the state of the time-bin qubit. An early arriving photon must map to one state in this qubit,

and a late arriving photon must map to another. The ancillary mode, by contrast, must be

sensitive to the population of the time-bin qubit, and insensitive to its state. If the ancilla

was sensitive to the state of the time-bin qubit, the ancilla would be entangled with the

time-bin qubit, resulting in decoherence of the generated entanglement upon measurement

of the ancilla.

We now describe a simplified version of the protocol we run to capture and decode a

flying time-binned qubit. Here, the entanglement transferred by the time-bin qubit will be

exchanged into the storage mode, with the Bob qubit playing the role of the ancilla. First,

we transfer the early-arriving photon into the storage mode of Bob. Using the notation

|tetl〉 |sBqB〉, and considering two branches corresponding to an early arriving photon and

a late arriving photon, we begin the the protocol

|ψearly
initial〉 = |10〉 |00〉 ; |ψlate

initial〉 = |01〉 |00〉 (5.4)

and transfer an early arriving photon into both the Bob storage mode and Bob qubit mode

|ψearly
initial〉 = |00〉 |11〉 ; |ψlate

initial〉 = |01〉 |00〉 . (5.5)

The protocol is completed by transferring the late arriving photon into the Bob qubit mode

only
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|ψearly
initial〉 = |00〉 |11〉 ; |ψlate

initial〉 = |00〉 |01〉 . (5.6)

The final qubit state is completely insensitive to which round the photon arrived in, only

that it arrived in either of the two rounds. It therefore satisfies the stated role of the ancilla

mode. The storage mode, by contrast, is only excited by an early arriving photon, making

it sensitive to the state of the time-bin qubit.

With the essential idea of our protocol detailed, let us now explain how the protocol is

implemented.

5.2 Implementation of time-bin entanglement

We now discuss how time-bin entanglement is implemented in experiment. For ease of

implementation and to maximize the fidelity of the realized entangled state, we make mod-

ifications to the previously described protocol. We also explain some finer implementation

details that must be considered when applying the protocol on circuit QED hardware.

The protocol described in the previous section is flexible in its implementation. One may

construct variants in which squeezing instead of conversion processes are used for generation

of flying photons. One may also mix processes coupling three modes and two modes in one

round. The following factors put constraints on acceptable parametric drives.

Symmetry For simplicity of implementation, we wish to choose identical parametric drives

on Alice and Bob. Conveniently, all modes of Alice and Bob are matched to within

350 MHz, meaning that similar filtering approaches may be utilized. The microwave

circuitry required to generate the needed pumps is complex, and a great many hours

were spent finding the proper way to filter out mixer spurs. Choosing identical para-

metric drives on Alice and Bob meant that lessons learned designing the microwave

circuitry for Alice applied equally to the microwave circuitry for Bob. Indeed many of

the same amplifiers and filters were identical for Alice and Bob. The parts that were

not reused were of identical part family, and generally of a neighboring part number

to account for frequency discrepancies.
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Drive Frequency The frequencies at which the drives are applied is restricted by module

architecture and microwave components intervening between the module and the drive

generation circuitry. The dilution refrigerator our experiment resided in was wired with

SMA microwave cables. SMA connectors are standardly designed to perform well up

to 18 GHz, with specialized components extending the band to 26.5 GHz [61]. A lower

frequency drive is also advantageous due to microwave cables suffering higher losses

at higher frequencies. The frequency of our drives is, in practice, bounded below, if

a drive is to be delivered through the module’s waveguide port, which has a practical

low-frequency cut-off of 8.2 GHz due to the waveguide’s standard WR90 dimensions.

Bob Qubit Final State Differing choices of parametric pumps imply differently coupled

positive and negative frequencies, leading to differing conjugation of operators repre-

senting the pump process. The result is the same algorithm, with exchanges of |0〉 and

|1〉. It is of paramount importance that the ancilla qubit is minimally subjected to

a process which could result in an incorrect post-selection. To this end, we choose a

combination of pumps which result in the Bob qubit |1〉 state representing success of

the protocol, and the Bob qubit |0〉 representing failure. In this way, a T1 event will

lead to a false positive, rather than a false negative.

In addition to these factors, we also seek a set of processes that incorporate a spin-echo

refocusing pulse between first and second rounds. An echo pulse is of particular interest due

to the significant disparity between the Alice qubit’s T2E time (43 µs) and T2R time (5.7

µs). Focusing on the family of processes coupling three internal modes, we find that the

b†q†s+h.c is activated by a pump positioned at ω3 = ωq +ωb−ωs−χbq, occurring for Alice

at 8545.69 MHz, and at 8667.07 MHz for Bob, positioned conveniently for the modules’

waveguide port. Such drives are conveniently paired with drives stimulating a q†r + h.c.

process to realize time-bin entanglement with a spin-echo. Implementation of the q†r + h.c.

process involves a number of additional technical complications not directly relevant to the

current discussion, and so we cover its implementation in Appendix A.

We now work through the intermediate states of this modified protocol. We will use

the notation |qAsA〉 |qBsB〉, and neglect modes of the transmission line and the state of the
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buffer mode, considering only moments where these modes are in vacuum. We begin with all

modes in vacuum. In practice, this is implemented using feedback cooling. Qubit feedback

cooling locally measures a module’s qubit, applies a π pulse if the qubit is found to be in the

excited state, and then remeasures to confirm that the qubit is indeed in the ground state.

Storage mode feedback cooling starts with a previously cooled qubit, and then applies a

SWAP gate between qubit and storage modes to move any existing population into the qubit,

followed by qubit cooling. This process is repeated until the qubit is measured to be in the

ground state after the SWAP gate. Next, the Alice storage is prepared in the |1〉 state by

exciting the Alice qubit with a π pulse and applying a SWAP gate to move this excitation to

the storage. The Bob qubit is prepared in the |1〉 state by π pulse, and all remaining modes

are left in vacuum. This results in the initial state

|ψinitial〉 = |01〉 |10〉 . (5.7)

Next, we apply a half pitch operation on Alice using the b†q†s + h.c process for Alice and

a full catch operation on Bob using the corresponding b†q†s + h.c for Bob, resulting in the

following state.

|ψ1st〉 =
1√
2

(|01〉 |10〉+ |10〉 |01〉) . (5.8)

Applying π pulses on both Alice and Bob qubits implements the spin-echo, resulting in the

state

|ψechoed〉 =
1√
2

 |11〉 |00〉︸ ︷︷ ︸
Late photon arrival

+ |00〉 |11〉︸ ︷︷ ︸
Early photon arrival

 , (5.9)

where we have labeled branches of the wavefunction corresponding to early and late pho-

ton arrival. We now apply drive stimulating the q†r + h.c. process on Alice and a drive

stimulating the q†r + h.c. process on Bob, to transfer the photon in the Alice qubit to Bob,

completing the protocol. With the design of our quantum processing module, all drives are

storage population selective, as χqsq†qs†s cross-Kerr terms shift the qubit frequency as a
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function of storage population. The “late photon arrival” branch of |ψechoed〉 on which the

q†r+h.c. term acts features a single excitation in the Alice storage and no excitations in the

Bob storage. Additionally, we require that the q†r + h.c. process not act upon the “Early

photon arrival” branch, or else it will release the excitation corresponding to a first-round

successful transfer out into the lines. We therefore tune the q†r + h.c. drive on Alice to be

sA = 1 selective, and the q†r +h.c. on Bob to be sB = 0 selective. Applying these processes

for a full pitch on Alice and a full catch on Bob results in the following state

|ψ2nd〉 =
1√
2

(|01〉 |10〉+ |00〉 |11〉) , (5.10)

which may be factored

|ψ2nd〉 =
1√
2

(|sA = 1〉 |sB = 0〉+ |sA = 0〉 |sB = 1〉)⊗ |qA = 0, qB = 1〉 , (5.11)

an odd Bell state between storage modes. Let us now treat the case of photon loss. Suppose

between |ψinitial〉 and |ψechoed〉, the sent photon is known to be lost. In this case,

|ψlost,1
1st 〉 = |10〉 |10〉 −−−→

echo
|ψlost,1

echo 〉 = |00〉 |00〉 , (5.12)

and the following q†r + h.c. will fail to transfer any population to the Bob qubit, leaving it

in its ground state. Now, we suppose a second round loss. Starting from the “Late photon

arrival” branch of |ψechoed〉, as we’re presupposing a second-round transfer,

|ψlost,2
echoed〉 = |11〉 |00〉 −−−−−−−−−−−−→

failed second round
|ψlost,2

2nd 〉 = |01〉 |00〉 , (5.13)

again demonstrating that the protocol concludes with Bob in the ground state, as desired.

Having explained the protocol we apply in experiment, we now turn our focus towards

characterizing the entanglement generated by this protocol.
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Alice Bob

Figure 5.2: Joint readout for a cascaded circuit QED system | Two cavities with em-
bedded dispersively coupled qubits are connected by a unidirectional channel. A microwave
pulse is delivered to the Alice input port, where we show the phase-space representation
of the integrated pulse plotted in the upper right corner. The two axes representing the
in-phase (I) and quadrature (Q) components. The pulse then impinges on the Alice cavity,
and acquires a qubit state dependent phase shift, shown in the central phase space plot.
The pulse then continues along the channel to eventually impinge on Bob, where the pulse
finally acquires an additional state dependent phase shift, resulting in four independent
measurement outcome distributions corresponding to the joint qubit states |00〉, |01〉, |10〉,
and |11〉.

5.3 Experimental verification of time-bin entanglement

5.3.1 Joint qubit readout and tomography

A necessary ingredient for characterizing the entanglement generated between Alice and Bob

quantum processing modules is a way to extract the joint state of the two-qubit system in

which the entanglement resides. While the final entanglement generated is between storage

modes, we use the qubit-storage SWAP gate to transfer entanglement into the qubits, and then

jointly read out the Alice and Bob qubits. To jointly read out Alice and Bob qubits, we apply

a pulse to the Alice buffer input port. The flying pulse acquires a phase shift corresponding

to the Alice qubit state, travels along the channel, and then acquires an additional phase

shift corresponding to the Bob qubit state. The amplified and downconverted signal contains

information about the state of the two-qubit system, given by the four measurement outcome

distributions for each of the four two-qubit states |00〉, |01〉, |10〉, and |11〉, as shown in Fig.

5.2.
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Extracting the joint two-qubit state from a single measurement by discriminating be-

tween each outcome distribution is possible, but has a number of caveats. For one, such a

measurement will be skewed towards less-excited outcome distributions as T1 during mea-

surement will result in decay. Additionally, discriminating between all four outcome distri-

butions can be somewhat technically challenging. Most importantly, such a measurement

risks introducing additional correlations between each system; for instance, an error in ex-

tracting |01〉 population, such that it is corrupted by |10〉 population. Such a readout would

not extract qubit populations in an independent manner.

We instead differentiate only between measurement outcomes corresponding to |00〉 and

all other outcomes, acquiring one bit of information per readout. Such a measurement is

sufficient for extracting all two-qubit information. We start by extracting the probability

of measuring each |00〉, |01〉, |10〉, and |11〉. Our measurement accesses the probability of

measuring |00〉 for a particular state ρ, or ρ00 = tr (|00〉 〈00|ρ). By applying single-qubit pre-

rotations to ρ, U = UA ⊗UB, resulting in a new state ρ′ = UρU†, whose |00〉 component

we write

ρ′00 = tr
(
|00〉 〈00|ρ′

)
= tr

(
U† |00〉 〈00|Uρ

)
. (5.14)

By picking appropriate gates for UA and UB we extract probabilities

ρ00 = tr [|00〉 〈00|ρ] = tr [(I ⊗ I) |00〉 〈00| (I ⊗ I)ρ] (5.15)

ρ01 = tr [|01〉 〈01|ρ] = tr [(I ⊗X) |00〉 〈00| (I ⊗ I)ρ] (5.16)

ρ10 = tr [|10〉 〈10|ρ] = tr [(X ⊗ I) |00〉 〈00| (X ⊗ I)ρ] (5.17)

ρ11 = tr [|11〉 〈11|ρ] = tr [(X ⊗X) |00〉 〈00| (X ⊗X)ρ] . (5.18)

Decomposing IZ, ZI, and ZZ into components we can write their expectation values in
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NOT

Figure 5.3: Joint readout verification | In the left panel, we histogram the measurement
outcomes Im/σ and Qm/σ, corresponding to different preparations of the Alice and Bob
qubits resultant from applying our joint measurement. On the left panel, we prepare Alice
and Bob qubits at angles θA and θB respectively, apply our joint measurement, apply a
threshold to the measured data (left panel: vertical black dotted line), and plot the de-
pendence of measurement on preparation angle. We note that the histogram here is the
result not of driving Alice in reflection as discussed in the main text, but from driving Alice
in transmission, whose output field then bounces off Bob in reflection. This only has the
consequence of moving the outcome distributions in phase space.

terms of measured quantities

〈IZ〉 = tr [(|00〉 〈00| − |01〉 〈01|+ |10〉 〈10| − |11〉 〈11|) ρ]

= ρ00 − ρ01 + ρ10 − ρ11 (5.19)

〈ZI〉 = ρ00 − ρ10 + ρ01 − ρ11 (5.20)

〈ZZ〉 = ρ00 + ρ11 − ρ10 − ρ01. (5.21)

Further pre-rotations on ρ provide access to remaining two-qubit Pauli components 〈IX〉,

〈IY 〉, 〈XI〉, 〈Y I〉, 〈ZX〉, ...

Having shown that this readout is sufficient for two-qubit tomography, we now character-

ize its implementation in our experiment. We use a 1.5 µs pulse, chosen to be comparable to

1/κ for each buffer mode. We begin by cooling both qubits by feedback, apply variable rota-

tions RAlice
x (θA) and RBob

x (θB), apply our joint readout, and plot the averaged measurement

outcome as a function of the rotation angles in Fig. 5.3.
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Figure 5.4: Postselection readout | In the left panel, we histogram the measurement
outcomes Im/σ and Qm/σ of our postselection readout applied to the Bob qubit subsystem
being prepared in the 2−1/2 (|g〉+ |e〉) state. A vertical dotted line corresponds to the
threshold dividing measurement outcomes which may correspond to Bob qubit state |g〉,
and measurement outcomes corresponding to states we trust to correspond to |e〉. On the
left panel, we measure Rabi oscillations of the Bob qubit with the postselection readout,
extracting the readout contrast. When no π pulse is applied (corresponding to Bob Qubit
rotation angle of 0), we find 16 out of the 17,000 repetitions signaling the excited state.
This corresponds to a postselection failure probability of one part in a thousand. The Rabi
contrast extracts that using this readout for post-selection will result in a hit of 30% to our
protocol’s success probability in comparison to one which perfectly distinguishes |e〉 and |g〉.

To model and ultimately correct for readout error, we suppose that the actual qubit states

are corrupted by a readout infidelity transfer matrix T mapping actual qubit populations

to probabilities of measurement outcomes P00 and P!00, where P00 = 1− P!00

 P00

P!00

 = T diag(ρ)=

 0.996 0.06 0.04 0.002

0.004 0.94 0.96 0.998




ρ00

ρ01

ρ10

ρ11


(5.22)

5.3.2 Postselection errors

To make this protocol work well, a high quality post-selecting measurement is crucial. Any

infidelity due to poor postselection will be drastically magnified by the inverse of the success

probability. A post-selection readout acting only on the Bob system is implemented by

driving through the Bob waveguide input port, and allowing the dispersively-shifted field to

leak out the Bob output port. This readout will completely bypass the Alice subsystem due
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to the connectivity of the modules.

To avoid false positives, we choose an aggressive threshold for estimating the Bob qubit

state. By placing the threshold on top of the outcome distribution for the Bob |e〉 state,

we obtain two measurement outcomes: the first corresponding to Bob being in either |g〉 or

|e〉, and the second corresponding to states for which we are certain that Bob is in the |e〉

state. Such aggressive thresholding sacrifices readout contrast and thus success probability

of the protocol, as states which may in fact correspond to |e〉 (successful transfer), but our

skeptical readout discards, are discarded.

To extract the readout contrast and false-positive probability, we measured Rabi os-

cillations of the Bob qubit with this postselection readout, with the data shown in Fig.

5.4.

5.3.3 Two-qubit tomography

While calculating the overall two-qubit state by inversion of Born’s rule 〈O〉 = tr (ρO), is

a simple, appealing way to construct a density matrix from measured data, it can result

in density matrices which are unphysical. Noise on measured Pauli components may result

in the reconstruction of a density matrix which is not positive-definite. We turn to the

process of maximum likelihood estimation to reconstruct a physical density matrix from N

measurements performed on identically prepared copies of a given system. We follow the

explanation of Banaszek et al. [62]. Quantum mechanically, each measurement is described

by a positive operator-valued measure (POVM). The outcome of the ith measurment cor-

responds to the realization of a specific element of the POVM used in the corresponding

run. We shall denote this element by F i. The likelihood functional L (ρ) describes the

probability of obtaining the set of outcomes for a given density matrix ρ. For measurements

performed on repeated preparations of the system, it is given by the product

L (ρ) =

N∏
i=1

tr (ρF i) . (5.23)

After the experiment is performed, the operators F i are determined by the outcomes of the

measurements. The unknown element of the above expression, which we want to infer from
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our data, is the density matrix describing the measured ensemble. The general estimation

strategy of the maximum likelihood technique is to maximize the likelihood functional over

the set of the density matrices. We introduce a parameterization of the set of density

matrices which provides an efficient algorithm for maximization of the likelihood function.

We represent the density matrix in the form

ρ = T†T, (5.24)

which automatically guarantees that ρ is positive and Hermitian. The remaining condition

of unit trace trρ = 1 will be taken into account using the method of Lagrange multipliers.

In order to achieve the minimal parameterization, we assume that T is a complex lower

triangular matrix, with real elements on the diagonal, resulting in a total of 16 free param-

eters. In numerical calculations, it is convenient to replace the likelihood functional by its

natural logarithm, which of course does not change the location of the maximum. Thus, the

function subjected to numerical maximization is given by

L (T) =
N∑
i=1

ln tr
(
T†TF i

)
−N tr

(
T†T

)
, (5.25)

where the second term ensures that ρ satisfies trρ = 1. To constrain ρ, we wish for F i =

|µi〉 〈µi| where µi is an orthonormal basis in the Hilbert space of the two qubits. Continuing

from the previous section, in lab we measure

ρ′00 = tr
(
U† |00〉 〈00|Uρ

)
, (5.26)

where U = UA ⊗UB corresponds local two-qubit rotations on Alice and Bob. In this case,

we can write a projection operators for the measurement protocol

F i,j = U†i,j |00〉 〈00|Ui,j =
(
Ui
A ⊗Uj

B

)†
|00〉 〈00|Ui

A ⊗Uj
B, (5.27)

where we choose the set of Ui,j to be all two qubit Clifford gates, leading to trivial con-

struction of F i = |µi〉 〈µi| as desired.
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Maximum likelihood estimation is additionally very useful for correcting for readout er-

ror. Intuitively, the process of maximum likelihood estimation fits a physical density matrix

to a set of measurements. If we parameterize our density matrix to be one uncorrupted by

error, we may fit this density matrix, after application of our error model, to our measured

data. This corresponds to the altered projection operator

F i,j = U†i,j



T11 0 0 0

0 T12 0 0

0 0 T13 0

0 0 0 T14


Ui,j , (5.28)

where Tmn are elements of the readout infidelity transfer matrix. We use these projection

operators to recover the qubit states at the end of our entanglement protocol.

An additional useful tool maximum likelihood estimation provides is sampling error esti-

mation. We quote the result from Banaszek et al. [62] establishing that, for the parameters

of T in the vector form as t, the covariance matrix for the parameters t is given by

V = G−1 − G−1uuTG−1

uTG−1u
, (5.29)

with the matrix G = −∂2L/∂t∂t′ and the gradient u = ∂tr
(
T†T

)
/∂t. We use this covari-

ance matrix, propagated to the reported Pauli components, to report error on the measured

density matrix.

We find a ρ that maximizes the likelihood function numerically using the tensorflow

library. The training of artificial neural networks involves finding the minimum of a nonlin-

ear functional much the same as maximum likelihood estimation does, and the automatic

differentiation capabilities of the tensorflow library neatly provides gradient and Hessian

information for use in the calculation of V .

5.3.4 Gate verification

As a sanity test, we apply all possible local two-qubit Clifford gates to Alice and Bob qubits,

prepared in their ground states by feedback cooling, and perform two-qubit tomography. The
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Alice Gate Bob Gate FTarget Alice Gate Bob Gate FTarget

I I 0.97 RY (π/2) I 0.99
I RX (π) 0.99 RY (π/2) RX (π) 0.99
I RX (π/2) 0.99 RY (π/2) RX (π/2) 0.99
I RY (π/2) 0.99 RY (π/2) RY (π/2) 0.99
I RX (−π/2) 0.99 RY (π/2) RX (−π/2) 0.99
I RY (−π/2) 0.99 RY (π/2) RY (−π/2) 0.99

RX (π) I 0.98 RX (−π/2) I 0.99
RX (π) RX (π) 0.99 RX (−π/2) RX (π) 0.98
RX (π) RX (π/2) 0.99 RX (−π/2) RX (π/2) 0.99
RX (π) RY (π/2) 0.98 RX (−π/2) RY (π/2) 0.99
RX (π) RX (−π/2) 0.99 RX (−π/2) RX (−π/2) 0.99
RX (π) RY (−π/2) 0.99 RX (−π/2) RY (−π/2) 0.99
RX (π/2) I 0.99 RY (−π/2) I 0.98
RX (π/2) RX (π) 0.99 RY (−π/2) RX (π) 0.99
RX (π/2) RX (π/2) 0.99 RY (−π/2) RX (π/2) 0.99
RX (π/2) RY (π/2) 0.99 RY (−π/2) RY (π/2) 0.99
RX (π/2) RX (−π/2) 0.99 RY (−π/2) RX (−π/2) 0.98
RX (π/2) RY (−π/2) 0.99 RY (−π/2) RY (−π/2) 0.98

Table 5.1: Fidelity of Two-Qubit Clifford Gates | After preparing each qubit in the
ground state through feedback cooling, we apply each two-qubit Clifford gate and test the fi-
delity to the expected state. States are estimated from acquired data by maximum likelihood
estimation.
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Figure 5.5: Entanglement verification protocol | We show the detailed experimental
pulse sequence for the verification of photon loss robust remote entanglement through our
time-bin protocol. Alice and Bob qubit and storage modes are first prepared in the ground
state through feedback cooling. We then apply drives activating the s†q†b+h.c. processes on
Alice and Bob. Photon number unselective π pulses are then applied to Alice and Bob qubits
to implement an echo, making the protocol insensitive to low frequency fluctuations in the
qubit ωge transition energy. Next, drives activate the q†b+h.c. ensure one photon in total is
sent. We next read out only on the Bob qubit mode to herald the successful entanglement of
the Alice storage and Bob storage modes. Finally, drives activate the q†s+h.c. SWAPing the
entanglement from storage modes to qubit modes, where we apply two-qubit tomography
to characterize the generated entanglement.

data corresponding to two-qubit rotation is fed through our maximum likelihood estimation

procedure, and the resultant density matrix is compared to the density matrix expected for

ideal rotations and state preparation. Fidelity generally better than 98% assures that both

our qubit rotations and state estimation procedure are well calibrated.

5.3.5 Entanglement verification protocol: Experimental results

Now that we trust our qubit tomography, we may now run the full time-bin entanglement

protocol on our system. The detailed series of gates we apply in experiment is shown in

Fig. 5.5. The experiment is repeated over 137,000 times, with 36 rotations rotations per

instance of the experiment for a total of 4.9 million measurement outcomes. We compare

reconstructed density matrices to data simulated using the master equation outlined in Ch.
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Figure 5.6: State tomography of heralded and unheralded protocol | Full state
tomography of Alice and Bob qubits after the experimental protocol (left), as well as the
results of a master equation simulation (right). Density matrix reconstruction yields a
sampling error of 1% on each Pauli component. Upper panels correspond to the measured
and simulated state without post-selecting on photon loss, and demonstrate poor coherence.
Lower panels correspond to post-selecting for no photon loss, and yield demonstrably higher
coherence. The depicted state has a concurrence of 68%± 2%.

87



4.3, with parameters identical to those used in the simulation of the capture and release

processes in isolation in Ch. 4.5. We find an ultimate success probability (before adjusting

for post-selection readout contrast) of 27%, which compares favorably to the simulated

success probability of 23%. To characterize the amount of generated entanglement, we

use the measure of concurrence [63], an entanglement monotone. For states generated by

the experiment in the absence of post-selection on Bob being in the entangled state, we

find no concurrence whatsoever. While the channel has a quantum efficiency supporting

entanglement through single-round protocols [21, 22, 23, 24], we trade success probability

for enhanced entangled state fidelity through aggressive pulse truncation, resulting in poor

correlations without postselection.

When post-selection is enabled, however, we find an entangled state concurrence between

Alice and Bob qubits of 68% ± 2%. Master equation simulations attribute 17% of this

to decoherence and decay during the time-bin entanglement protocol. We attribute an

additional 5% of this to the T2R times of the qubits, causing dephasing during the qubit-

storage SWAP process. We attribute 1.7% of the error budget to decay processes during

the qubit-storage SWAP process, and finally we attribute the 0.1% postselection error to

0.2% of the total error budget. Ultimately our model accounts for a total of 24% of the

lost concurrence, leaving a remaining 8% unexplained. Potential experiments to find the

origin of this 8% are: unselectivity of π pulses, interactions between simultaneously applied

parametric pumps, and transient effects from the pulse edges.
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Chapter 6

Perspectives of This Work Towards

Future Entanglement Experiments

In conclusion, we entangled two distant circuit QED systems in a manner robust to pho-

ton loss using time-binning. We explored the design and characterization of a quantum

processing module capable of running this type of entanglement experiment. This explo-

ration involved controlling the parametric processes required for the release and capture of

microwave photons from and to these modules. We then implemented a pitch-and-catch

protocol that utilized these processes to remotely entangle the modules, devoting the redun-

dant time-bin information to reject entanglement attempts in which the pitched photon was

lost, and finally characterized the generated entangled state. We found that the entangled

state was predominantly limited by the coherence times of the qubits, and not the losses of

the lines.

In this chapter, we explore some potential directions for future entanglement exper-

iments. Our exploration targets two potential directions. We first propose incremental

improvements to the experiment performed in this dissertation in the interest of improv-

ing the entangled state fidelity. Next, we propose more complex experiments with an eye

towards scalability.
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6.1 Incremental improvements of the experiment

The principle contributor to entangled state infidelity in this experiment was qubit decoher-

ence induced by the drives, prompting us to ask how to increase the ratio of the coherence

times during the gates to the speed of the gates. Transmon decoherence under the pres-

ence of a strong drive is still an active area of research. The work of Sank et al. [64] and

Venkatraman, Xiao et al. (in preparation), points to non-RWA terms in the Hamiltonian,

dynamical instabilities of the of qubit-cavity system. These instabilities are dependent upon

controllable design parameters of the system. We might use the techniques developed in

these analyses to optimize the frequency layout and dispersive couplings of future quantum

processing module designs.

Alternatively, we may select a qubit which will better maintain coherence in the presence

of strong drives. The inductively shunted transmon, also proposed in the works by Verney

et al. [65] and Venkatraman, Xiao et. al., has been demonstrated to remain more stable than

similar transmons in the presence of strong pumps, potentially providing larger interaction

strengths with less induced decoherence.

We additionally suggest that experiments which obviate the circulator may be of interest.

The ferrite-based circulators used in our experiment are large, lossy, and incompatible with

superconducting circuitry due to their large magnetic fields. Schemes using delay lines [55]

may be useful if gate times are improved to be compatible with this architecture (Ch. 4.2.1.)

Such schemes additionally have the benefit of having no preferred direction of travel for flying

qubits, providing bidirectional information transfer, and potentially simplifying the design

of the router in a modular architecture.

6.2 Scaling time-bin entanglement

With a working photon-loss robust remote-entanglement scheme demonstrated between two

nodes, a next logical step is to demonstrate the scheme between n quantum processing

modules in a scheme similar to that pictured in Fig. 1.1. With a handful of experiments

demonstrating building blocks useful for a quantum router [66, 67, 68], we believe a practical

router between multiple quantum processing modules is a realistic near-term prospect. The
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demonstration of robust remote entanglement through such a router would be a the next

important milestone towards the implementation of a modular quantum computer.

We also point towards work tackling the scalability of individual quantum processing

modules. The MMIQC architecture introduced in Brecht et al. [69] integrates qubits, long

lived cavities, amplifiers, and wiring on micromachined silicon wafers. All facilities provided

by our quantum processing module may be integrated on a small subsection of a wafer, at a

fraction of the size of our module. Shrinking the volume of quantum processing modules is

of considerable interest for a modular quantum computer involving the thousands of mod-

ules required for the thousands of logical qubits needed to gain a significant computational

advantage over classical computers. While the prospect of scaling the number of qubits

by three orders of magnitude is a seemingly monumental task, we imagine the inventors of

the point-contact transistor would have been awestruck by the integration of of billions of

transistors on a single chip to form a modern central processing unit. We believe similar

engineering efforts applied to quantum processing modules could yield similar payoffs.
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Appendix A

Wiring of the Experimental Setup

This chapter describes the wiring of the experimental setup

A.1 First-round drives

We create the three mode drive tones by mixing the all associated RF sources together

through the use of a pair of mixers, as shown in Fig. A.2. To be on resonance, we require

that the pump frequency satisfy

ω3 = ωq + ωb − ωs.

To generate this tone in a phase-coherent manner, we first begin by mixing the ωb and ωs.

As these two tones are relatively close in frequency (638 MHz for Alice and 759 MHz for

Bob), generating this difference frequency is accomplished using a mixer and low pass filter.

This tone is then mixed with ωb, and then filtered using microwave cavity band-pass filters

to generate ω3. Amplitude and phase modulation of ω3 to form control tones is accomplished

using an IQ mixer with dedicated DAC channels.

A.2 Second-round drives

Activation of the q†b + h.c. processes for the coherent transfer of a photon from the Alice

module to Bob requires a total of three tones, either two qubit sideband tones and a shared
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Figure A.1: Dilution refrigerator wiring | System block diagram for the cold portion
of the experiment. Alice and Bob computre modules, and associated circulators, isolators,
and directional couplers were cooled on the base stage (< 50 mK) of a dilution refrigerator.
Input lines carrying signals to the system were attenuated and filtered using commercial
low-pass filters and homemade lossy Eccosorb filters.
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Figure A.2: System block diagram for pump generation | Microwave signal generators
provide tones for readout, storage mode control, and qubit control. These same microwave
signal generators are mixed in such a way to generate the necessary tones to activate neces-
sary parametric processes. We introduce an additional shim generator to upconvert signals
from the qubit control chain to be used as cavity sideband drive tones for the q†b process.
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cavity sideband tone, or two cavity sideband tones and a shared qubit sideband tone. Due

to the lack of a weakly coupled port on our quantum processing module, the only way to

deliver pumps in a way that minimizes leakage is to deliver them through the waveguide

port, which has the requirement that drives delivered through the port be above 8.5 GHz.

Instead, we deliver the qubit sideband tones through the strongly coupled port, and suppose

that the tone will leak. This is not at all an issue if there is only one qubit sideband tone,

shared between Alice and Bob. By injecting the drive through multiple ports and adjusting

frequency, amplitude, and phase (adjustment components not pictured in Fig. ), multipath

interference provides a mechanism for balancing the drive strength between both modules.

The cavity sideband pulses are generated through upconversion of the qubit pulses them-

selves, as shown in Fig. A.2. This dual upconversion process provides a way to economize on

DAC channels, as qubit control pulses and drive tones will never be played simultaneously.

Playing strong pumps near the readout mode is a tricky affair. If one is to tune the pump

close to the buffer cavity, it becomes difficult to filter the noise from high power amplifiers to

ensure that the amplifier noise does not populate the buffer cavity. This dual upconversion

assists in the production of pumps with large detunings from their addressed mode, as the

DAC on our FPGA is limited to a maximum sideband detuning of 150 MHz. Here, a shim

generator at ωshim is used as the local oscillator signal to upconvert Alice and Bob qubit

control tones at ωq. A band-pass filter selects the lower sideband from control tones at ωq

and ωshim, resulting in drive tones at

ωA1 = ωshim − ωAq ; ωB1 = ωshim − ωBq .

Successful transfer requires that
(
ωA1 − ωA2

)
−
(
ωB1 − ωB2

)
= ωAq − ωBq , or that the energy

provided by the combination of the two pumps on Alice and Bob corresponds to the frequency

difference between Alice and Bob. Given that we’ve picked ωA2 = ωB2 , we find that both ω2

and ωshim cancel. To ensure the photon is ejected at the buffer mode frequency, we must

choose the ωshim frequency such that

ω2 − ω1 = ω2 − ωshim + ωq = ωq − ωb =⇒ ωshim − ω2 = ωb.
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In practice, we choose ω2 = 2π · 6.5GHz.
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Appendix B

Exact Pitch-Catch Solution for the

Envelope

We start with the equations of motion coupling the buffer and qubit mode to a transmission

line Eq. 4.24-4.26

ḃ = −iδb− ig∗ (t) q − κ

2
b−
√
κbin

q̇ = −ig (t) b

√
κb = bout − bin.

We will analytically solve for a full release of a flying photon on resonance with the buffer

mode. Equivalent capture dynamics may be solved for by time reversal by arguments in Ch.

4.4. Setting δ = 0 and bin = 0, and setting g (t)→ −ig (t) we obtain the following equations

ḃ = g (t) q − κ

2
b

q̇ = −g (t) b.
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We suppose that we want to release a traveling pulse with the envelope bout = a√
κ

sech (βt).

Through input-output relations, b = α sech (βt). Plugging in, we get

q̇ (t) =− αg (t) sech (βt)

−αβ sech (βt) tanh (βt) =g (t) q (t)− κα

2
sech (βt) .

Rearranging the second line to solve for q (t) we get

q (t) = −α sech (βt)

2g (t)
(2β tanh (βt)− κ) .

We differentiate this to get

q̇ (t) =
α sech (βt)

2g2 (t)

[
βg (t)

(
2β − 4β sech2 (βt)− κ tanh (βt)

)
+ ġ (t) (2β tanh (βt)− κ)

]
.

Combining this with the first equation of motion,

2g3 (t) + αβg (t)
(
2β − 4β sech2 (βt)− κ tanh (βt)

)
+ αġ (t) (2β tanh (βt)− κ) = 0

This equation is of the form

g′ (t) +A (t) g (t) +B (t) g3 (t) = 0.

This is a Bernoulli equation with n = 3, so substituting u = g−2 will linearize it to

u̇ (t)− 2B (t)− 2A (t)u (t) = 0,

which can be solved with integrating factors. Putting this all together, we obtain the solution

g (t) = ±
√
β (2β sinh (βt)− κ cosh (βt))

cosh (βt)
√
βc1 cosh (βt)2 − 4β − 2κ sinh (2βt)

.
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with the undetermined coefficient c1. Note that the amplitude of the flying pulse α appears

nowhere in this expression. To obtain the population as a function of time, plug in to our

second equation to obtain

q (t) = −α sech (βt)√
8β

√
β (c1 + c1 cosh (2tβ)− 8)− 4κ sinh (2βt).

Now we can fix our unknown coefficient. Taking limits of q (t), we obtain

limt→±∞q (t) = −α
2

√
c1 ∓

4κ

β
.

Setting c1 = 4κOut/β + ε, with |ε| � 4κOut/β, added to regularize a divergence, we get

√
ninitial = limt→−∞q (t) = −α

2

√
8κ

β
+ ε ≈ −α

2

√
8κ

β

√
nfinal = limt→∞a (t) = −α

2

√
ε,

or,

α = −
√
βninitial

2κ

ε =
8κ

β

√
nfinal
ninitial

c1 =
4κ

β

(
1 + 2

√
nfinal
ninitial

)
.

If we want to pitch as completely as possible, we want to minimize the final population of

the q mode, ideally forcing it to zero. However, looking at the first equation of motion, we

notice that the rate at which photons leave the amode is proportional to both the modulated

coupling and the b mode population. As the tail of the flying pulse leaves the cavity, the b

mode population will drop, by our choice, exponentially. This requires that the control pulse

never reach zero, to allow the b mode population to reach zero at t → ∞. In the original

99



work by Cirac et al. [21], the control pulse is left on indefinitely, corresponding to η = 0

and a constant g, and thus exponential decay. The exponential tail of the wavepacket and

natural exponential decay of the cavity should make this a logarithmic divergence in time.

We can regularize this divergence by choosing a (+∞) nonzero but small as a compromise.

As a sanity check, we can integrate the flying field
√
κq (t) to check its energy content

∫ ∣∣∣∣∣
√
βninitial

2
sech (βt)

∣∣∣∣∣
2

dt = nInitial,

as desired. Our final control pulse, source mode field, and flying field are given by

g (t) =

√
β (2β sinh (βt)− κ cosh (βt))

cosh (βt)

√
4κOut

(
1 + 2

√
nfinal
ninitial

)
cosh (βt)2 − 4β − 2κ sinh (2βt)

.

q (t) =
1

2

√
nInitial
κ

sech (βt)

√
2κ

(
1 + 2

√
nfinal
ninitial

)
cosh2 (βt)− κ sinh (2βt)− 2β

bout =
√
κb (t) = −

√
βninitial

2
sech (βt)

Noticing that t is always contained in a trig function, we suspect there’s a way to transform

time where these equations simplify somewhat. Substitute t → β−1 arctanh (x). We then

obtain

g (x) =

√
β (2xβ − κ)

2
√

κ(x−1−2δ)
x2−1

− β

Where
√

nFinal
nInitial

= δ. Immediately we see that there’s a zero in this function at x = κ/2β.

Since −1 < x < 1, we need that κ/2β ≥ 1 so g (x) is strictly positive, or

κ ≥ 2β
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