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Real-time quantum error correction beyond 
break-even

V. V. Sivak1,2,3,6 ✉, A. Eickbusch1,2,3, B. Royer1,2,3,4,5, S. Singh1,2,3, I. Tsioutsios1,2,3, S. Ganjam1,2,3, 
A. Miano1,2,3, B. L. Brock1,2,3, A. Z. Ding1,2,3, L. Frunzio1,2,3, S. M. Girvin1,2,3, R. J. Schoelkopf1,2,3 & 
M. H. Devoret1,2,3 ✉

The ambition of harnessing the quantum for computation is at odds with the 
fundamental phenomenon of decoherence. The purpose of quantum error correction 
(QEC) is to counteract the natural tendency of a complex system to decohere. This 
cooperative process, which requires participation of multiple quantum and classical 
components, creates a special type of dissipation that removes the entropy caused by 
the errors faster than the rate at which these errors corrupt the stored quantum 
information. Previous experimental attempts to engineer such a process1–7 faced the 
generation of an excessive number of errors that overwhelmed the error-correcting 
capability of the process itself. Whether it is practically possible to utilize QEC for 
extending quantum coherence thus remains an open question. Here we answer it by 
demonstrating a fully stabilized and error-corrected logical qubit whose quantum 
coherence is substantially longer than that of all the imperfect quantum components 
involved in the QEC process, beating the best of them with a coherence gain of 
G = 2.27 ± 0.07. We achieve this performance by combining innovations in several 
domains including the fabrication of superconducting quantum circuits and 
model-free reinforcement learning.

Implementing a single correctable logical qubit requires a physical 
system with a large state space. It should accommodate the code 
subspace and its redundant replicas where the logical information will 
be transferred without distortion when physical errors occur8. This 
redundancy is inextricably associated with an additional operational 
cost of QEC, known as the control overhead. In the search for an effi-
cient way to alleviate the detrimental effects of the overhead, bosonic 
codes9–11 based on the state space of a harmonic oscillator have been 
proposed as a promising alternative to the standard approach based 
on registers of physical qubits12–14. In hybrid architectures, these two 
approaches are complementary, with qubit-register codes built on 
logical qubits dynamically protected with efficient base-layer bos-
onic QEC15,16.

Although some aspects of QEC have been demonstrated with 
superconducting circuits1–7,17, trapped ions18–20 and spins in solid-state  
systems21–23, the control overhead has prevented current-day experi-
ments from getting to the heart of what QEC promises to achieve—
extending the lifetime of quantum information stored in the system. 
This extension is quantified by the gain G, defined as the ratio between 
the coherence time of an actively error-corrected logical qubit and the 
best passive qubit encoding in the same system. The break-even point 
is reached at G = 1. A bosonic cat-code experiment17 managed to achieve 
G = 1.1, but with a code that continuously shrinks to the vacuum state. 
Other experiments with various bosonic codes1–3 and qubit-register 
codes4–7 have achieved G = 0.1−0.9.

We demonstrate full code stabilization and error correction with 
gain G = 2.27 ± 0.07 using the Gottesman–Kitaev–Preskill (GKP) encod-
ing9 of a logical qubit into grid states of an oscillator. The QEC of this 
code was previously realized in superconducting circuits3 and trapped 
ions18. In our work, similarly to ref. 3, the oscillator is an electromagnetic 
mode of a superconducting cavity whose quantum state is manipulated 
using a transmon auxiliary qubit (Fig. 1a). Our system has an average 
relaxation and dephasing time of T = 280 μst

1  and (echo) T = 240 μsE
t

2  
for the tantalum-based transmon24, and T = 610 μsc

1  and T = 980 μsc
2  

for the high-purity aluminium cavity25. We implement in this system a 
‘trickle-down’ QEC scheme based on the proposals in refs. 18,26, which 
includes real-time classical processing and measurement-based feed-
back. We train the QEC circuit parameters in situ with reinforcement 
learning (RL)27–29, ensuring their adaptation to the real error channels 
and control imperfections of our system. At peak performance, the 
achieved lifetimes of logical Pauli eigenstates are TX = TZ = 2.20 ± 0.03 ms 
and TY = 1.36 ± 0.03 ms, and the logical Pauli error probabilities per 
QEC cycle are pY = (4.3 ± 0.4) × 10−4 and pX = pZ = (1.81 ± 0.04) × 10−3. With 
such low logical error probabilities, we explore the QEC process on a 
previously inaccessible timescale of thousands of cycles, subjecting 
to scrutiny the standard assumptions of the theory of QEC, such as the 
stationarity of error rates and absence of leakage-induced correlations. 
Finally, we carry out error injection experiments to identify the main 
factors limiting logical performance and chart the path towards the 
next-generation logical qubit.
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Engineering error correction
We now explain the principles of our experiment. Its core idea is to real-
ize an artificial error-correcting dissipation that removes the entropy 
from the system in an efficient manner by prioritizing the correction 
of frequent small errors, while not neglecting rare large errors. This 
idea is illustrated in Fig. 2a for a cartoon system in which redundancy 
is achieved with only four orthogonal subspaces in total, in which 0C  is 
the code subspace and C1–C3 are the error subspaces. The error sub-
spaces of our actual infinite-dimensional system are described in Sup-
plementary Section  IV.B. In this cartoon example, the standard 
dissipation scheme, no. 1, is maximally efficient from the perspective 
of entropy removal, because it corrects any error in a single step. Such 
an approach is taken by all qubit-register stabilizer codes, for which 
measurement of the stabilizers, syndrome decoding and recovery, when 
composed, realize a dissipation channel of high Kraus rank. Although 
this approach can also be applied to the oscillator grid code (Methods), 
its implementation entails large control overhead, which in practice 
might bring more errors than it is designed to correct. By contrast, the 
trickle-down dissipation scheme, no. 2, has the capacity to correct all 
of the same errors, but it is not able to do so in a single step. Impor-
tantly, the most probable small errors, corresponding to the error space 
C1, are still corrected in a single step. Owing to this simplification, such 
an approach reduces control overhead in the grid code, and therefore 
it was adopted in our work. The continuous-time version of approach 
no. 2 was also demonstrated for other bosonic codes in refs. 2,30.

The stabilizer generators of an ideal square grid code are S D l= ( )X
S0  

and S D il= ( )Z
S0 , in which l = 2πS  is the length of a grid unit cell, and 

D α αa α a( ) = exp( − * )†  is the displacement operator for an oscillator 
with creation and annihilation operators a† and a. Logical Pauli opera-
tors of the ideal code are defined as X S= X

L 0  and Z S= Z
L 0 . The ideal 

codewords obey perfect translation symmetry in phase space and thus 
contain an infinite amount of energy. The finite-energy code is obtained 
by applying a normalizing envelope operator N a a= exp(−Δ )Δ

2 †  to the 

ideal codewords, in which Δ parametrizes the code family that 
approaches the ideal code in the Δ → 0 limit. In phase space, this para-
meter controls the extent of the codewords and the squeezing of their 
probability peaks. Our experimental Wigner functions of the code-
words with Δ = 0.34 are shown in Fig. 1c. The operators of the finite-
energy code are obtained through the similarity transformation 
induced by the envelope operator26 (for example, S N S N=X Z X Z

Δ
/

Δ 0
/

Δ
−1).

To realize an error-correcting dissipation channel RΔ for the finite- 
energy code, there is at our disposal a single auxiliary qubit and a clas-
sical controller. In principle, with such resources, it is possible to imple-
ment arbitrary quantum channels of Kraus rank 2M by recycling the 
auxiliary qubit M times and using feedback operations conditioned on 
the state of the classical M-bit memory of the controller31,32. Here we 
construct a rank-4 error correction channel as a composition of two 
rank-2 dissipators R R R∘= X Z

Δ Δ Δ  that drive the system towards the  
+1 eigenspace of the finite-energy code stabilizers S X Z

Δ
/ . A general rank-2 

dissipation can be implemented as a unitary U∅ that entangles the sys-
tem with the auxiliary qubit, followed by a projective measurement of 
the auxiliary qubit with outcome b and a classically conditioned unitary 
Ub (Fig. 2b).

In our experiment, any unitary is compiled down to a set of primitive 
operations: qubit rotations around any equatorial axis R θ( ) =φ  

i θ φ φexp[− ( /2)(cos σ + sin σ )]x y  implemented as 32-ns Gaussian pulses 
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Fig. 1 | Experimental system. a, The sample consists of a superconducting 
aluminium cavity and a sapphire chip with a transmon circuit, readout 
resonator and Purcell filter. The electromagnetic mode of the cavity 
implements a harmonic oscillator, and ∣ ∣g e{ ⟩, ⟩} levels of the transmon are used 
as an auxiliary qubit to assist in oscillator QEC. b, The sample is cooled in a 
dilution refrigerator and controlled with microwave and digital electronics. 
The QEC process is orchestrated by a field-programmable gate array (FPGA), 
and its parameters are optimized in situ by an RL agent implemented on a 
graphics processing unit (GPU). c, Experimental Wigner functions of the Pauli 
eigenstates of a grid code with Δ = 0.34 measured after six QEC cycles. Image of 
the dilution refrigerator was adapted from ref. 37.
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Fig. 2 | QEC implementation and optimization. a, Cartoon comparison of 
error-correcting dissipation channels. The standard dissipation scheme, no. 1, 
corrects any error in a single step, whereas the ‘trickle-down’ dissipation 
approach, no. 2, can be viewed as directional hopping between error spaces 
that eventually brings the quantum state to the code space 0C . The colours of 
the arrows correspond to unique Kraus operators, whose number is equal to 
the channel rank. Higher-rank dissipation removes entropy more efficiently, 
but incurs larger control overhead. b, Implementation of a general rank-2 
channel on the oscillator using a single auxiliary (aux.) qubit. The unitary U∅ is 
approximated as a parametrized circuit consisting of N layers of qubit rotations 
and oscillator conditional displacements. Each conditional displacement gate 
utilizes a large intermediate displacement of magnitude ∣α∣ to enhance the gate 
speed. c, Evolution of reward of the RL agent during the training. The black 
arrow indicates the start performance based on independent calibrations. 
Expectations (denoted with E) of Pauli operators are taken in their respective 
eigenstates and include state preparation and measurement (SPAM) errors.  
d, One realization of the learning trajectory of the intermediate photon 
number used to execute the big conditional displacement gate (‘B’ in the SBS 
circuit). Light blue shade shows the variance of the sampled parameter values 
during the training, and dark blue line shows the mean.
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with spectral corrections33; oscillator displacements D(α) implemented 
as 40-ns Gaussian pulses; relatively slow conditional rotations θCR( ) = 

iθ a aexp( σ )z
†  implemented by waiting a certain amount of time  

under the dispersive coupling Hamiltonian Hd/ħ = χσza†a/2, with 
χ = 2π × 46.5 kHz; and virtual oscillator rotations ϑ ϑR i a a( ) = exp( )V

†  
implemented dynamically on the field-programmable gate array in 
448 ns. These primitives are used to construct a fast echoed conditional 
displacement gate ECD(β) = σxD(σz β/2) as shown in Fig. 2b, whose speed 
∂t∣β∣ = ∣α∣χ is enhanced compared to the native interaction strength χ 
by a large factor ∣α∣—the magnitude of the intermediate displacement 
in phase space3,34.

Both rank-2 dissipators are then implemented as follows: the unitary 
U∅ is decomposed as a parametrized circuit consisting of layers of qubit 
rotations Rφ(θ) and entangling ECD(β) gates, whereas the unitary Ub is 
realized as only a virtual rotation (Fig. 2b). The role of Ub is twofold: to 
implement switching between X

ΔR  and Z
ΔR  by changing the quadrature 

of the oscillator by π/2, and to compensate for a spurious rotation due 
to the always-on dispersive coupling Hd. The role of U∅ is to approximate 
the mapping of the finite-energy stabilizer onto the state of the auxil-
iary qubit together with autonomous back-action that pushes the state 
from the error spaces towards the code space. Several ansatze for the 
decomposition of U∅ were proposed in ref. 26. We adopt a modified 
version of the so-called small–big–small (SBS) protocol, named to 
reflect the relative amplitudes of the three conditional displacement 
gates that it contains: β l i i= × ( Δ /2, 1, Δ /2)S

2 2  (see Supplementary Sec-
tion IV.C for further details).

A single application of the resulting composite dissipator RΔ realizes 
a QEC cycle; we refer to applications of constituent dissipators X Z

Δ
/R  as 

even/odd cycles. In our implementation, the duration of a QEC cycle 
is tc = 2 × 4.924 μs, which includes execution of unitary gates, measure-
ments of the auxiliary qubit, and real-time processing and decision- 
making by the controller.

Learning QEC circuit parameters
Although the SBS ansatz and gate calibrations lead to a functioning 
QEC process, the highest level of performance cannot be achieved with 
a crude model of the system based on a few independently calibrated 
parameters—any such model will inevitably contain unrealistic assump-
tions. Some model inaccuracies and unknown control imperfections 
can be compensated by closed-loop optimization with direct feedback 
from the experimental setup. Previously, pulse-level optimization was 
successfully utilized to improve gate fidelities35,36, but it was never 
applied to enhance the performance of QEC. Here we apply a real-time 
RL agent to this task, as illustrated in Fig. 1b. We use the proximal policy 
optimization algorithm28,29, which was shown in simulations to out-
perform other approaches when applied to high-dimensional prob-
lems with stochastic objectives that arise in quantum control37. We 
parametrize the QEC circuit with P = 45 parameters that include the 
amplitudes of various primitive pulses in the circuit decomposition, 
parameters of the auxiliary qubit reset, and so on.

The training episodes begin with dissipative pre-cooling of the oscil-
lator followed by feedback cooling to prepare the system ground state 
g⟩ 0⟩∣ ∣  (Methods). Then, a logical Pauli eigenstate X+ ⟩∣  or ∣ Z+ ⟩  is initial-

ized with a method from ref. 34, and a candidate QEC protocol is run for 
T = 160 cycles. We chose this duration to enhance the signal-to-noise 
ratio of the reward, similar to the technique used to sample randomized 
benchmarking cost functions35,36. At the end of the episode, the reward 
for the RL agent is obtained by measuring the logical Pauli operator XL 
or ZL (depending on the initial state), which provides a proxy for the 
logical lifetime. This logical measurement is carried out with one-bit 
phase estimation of the ideal-code Pauli operators3,38, and its fidelity 
is intrinsically limited to (1 + e )/2−πΔ /42

 (ref. 16). Although there exist 
methods of logical readout adapted to the finite code envelope18,26,39, 
we use the phase estimation method to avoid biasing the RL agent 

towards a particular finite envelope size and to let it pick the optimal 
size given the error channels of our system.

By construction, the reward incentivizes the RL agent to find a QEC 
protocol that leads to the longest logical qubit lifetime. The typical 
evolution of the average reward during the training is shown in Fig. 2c. 
The performance level indicated with a black arrow is achieved with 
independent calibrations of the system and control parameters (Sup-
plementary Section II). The RL agent substantially improves on this 
baseline performance in two stages: typically, in the first hundred train-
ing epochs, the agent corrects large errors in the initial parameter 
values, and in the subsequent few hundreds of epochs, it fine-tunes 
the circuit parameters to achieve the highest performance.

Several trends in the learning trajectories showcase the benefits 
of the model-free RL approach (see Supplementary Section IV.D for 
further details). Here we highlight only a single illustrative example. In 
our implementation of the ECD gate, there exists a nontrivial tradeoff 
between coherent and incoherent errors: the gate can be implemented 
faster by displacing the oscillator further in phase space (that is, popu-
lating it with more intermediate photons), but this makes the gate more 
susceptible to high-order nonlinear effects34. Moreover, some choices 
of this intermediate photon number can result in a Stark shift of the 
auxiliary qubit into resonance with a spurious degree of freedom (for 
example, a two-level defect40). How these tradeoffs translate into logical 
qubit performance is difficult to model, but the RL agent can learn the 
optimal value of the large intermediate displacement without a model. 
As shown in Fig. 2d, it chose to reduce the intermediate photon number, 
improving the performance of QEC at the cost of a much slower gate.

Observing QEC beyond break-even
After the training is finished, we pick the best-performing QEC circuit 
for further characterization. Here we focus on the ability of QEC to 
create a good quantum memory (that is, to convert the effect of passage 
of time into an identity channel I ρ ρ: →  that preserves all qubit states).

A metric quantifying the deviation of any quantum channel E  from 
the identity is the average channel fidelity, F E E∣ ∣ ∣ ∣∫ ψ ψ ψ ψ ψ[ ] = d ⟨ ( ⟩⟨ ) ⟩,  
in which the integral is over the uniform measure on the qubit state 
space, normalized so that ∫ ψd = 1. In general, this fidelity decays over 
time in a nontrivial way, but to leading order it evolves as t Γt( ) ≈ 1 − 1

2F , 
in which the decay rate Γ is equivalent to an average decoherence rate 
of all pure states on the qubit Bloch sphere. Conveniently, it suffices 
to average across the six Pauli eigenstates alone41, leading to an exper-
imental procedure for extracting Γ that can be applied to any kind of 
qubit irrespective of its error channel. In Fig. 3, we show the results of 
such an experiment, conducted for three different qubit encodings in 
our system: the g e{ ⟩, ⟩}∣ ∣  subspace of the transmon, the { 0⟩, 1⟩}∣ ∣  sub-
space of the oscillator, and the grid code of the oscillator (with and 
without QEC).

Both the ∣ ∣{ 0⟩, 1⟩} and g e{ ⟩, ⟩}∣ ∣  qubits are subject to amplitude damp-
ing and white-noise dephasing channels, captured by their respective 
T1 and T2 times, with a fidelity decay constant given by Γ = (1/T1 + 2/T2)/3. 
From the perspective of a quantum memory, the best uncorrectable 
physical qubit in our system is ∣ ∣{ 0⟩, 1⟩}, shown in Fig. 3b, which achieves 
Γ{01} = (800 μs)−1. The g e{ ⟩, ⟩}∣ ∣  qubit, shown for completeness in Fig. 3a, 
achieves only Γ{ge} = (250 μs)−1.

Higher excited states of the oscillator have a shorter lifetime due to 
bosonic enhancement of spontaneous emission. Therefore, as with 
any QEC code, encoding a qubit using grid states incurs an immediate 
penalty in the fidelity decay rate. Moreover, this natural decay, shown 
in Fig. 3c with open circles, takes the grid states outside the logical 
manifold and eventually towards the vacuum state 0⟩∣ .

Our error-correcting dissipation stabilizes the grid-code manifold 
and, together with naturally occurring dissipation, leads to a logical Pauli 
channel within this manifold, with the lifetimes of logical Pauli eigen-
states of TX = TZ = 2.20 ± 0.03 ms and TY = 1.36 ± 0.03 ms. Under the Pauli 
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channel, the fidelity decay constant is given by Γ = (1/TX + 1/TY + 1/TZ)/3, 
which in our experiment amounts to ΓGKP = (1.82 ms)−1.

The principal metric characterizing the quality of QEC from the 
perspective of quantum memory is the coherence gain of an actively 
error-corrected logical qubit over the best passive qubit encoding. In 
our experiment, the highest achieved gain is G = Γ{01}/ΓGKP = 2.27 ± 0.07, 
confidently beyond break-even.

QEC process characterization
Having characterized the logical qubit as a quantum memory, we next 
examine the properties of the QEC process. Auxiliary qubit measure-
ment outcomes, referred to as syndromes, inform us which stochastic 
path the QEC process has taken in each cycle. In Fig. 4a we show a (sta-
tistically unrepresentative) sample of these outcomes that comprise 
trajectories of different experimental shots. Such a dataset contains an 
immense amount of information about the QEC process, not available 
in previous experiments with the grid-code QEC3,18.

To interpret this dataset, we adopt here a simplified model of 
trickle-down dissipation such as depicted in Fig. 2a, which captures 
the essence of our QEC process. The caveats of this model and the exact 
Kraus decomposition of our QEC circuit are provided in Supplementary 
Section IV.B. In this simplified model, the g outcome indicates that the 
state was projected onto the code space, whereas an e outcome indi-
cates that the state was transferred one level down the error hierarchy, 
partially or completely correcting an error.

From the dataset in Fig. 4a, we observe that most outcomes are g 
(green), which means that errors are rare. The stochastic pattern of e 
outcomes (yellow) reflects randomly occurring errors. Most errors are 
small and, when corrected, leave single isolated e outcomes. An exam-
ple syndrome string probably generated by a large error in one quad-
rature is indicated with an arrow: it has a characteristic eg/eg/... pattern. 
We also observe isolated auxiliary qubit leakage events (red). Leakage 
to ∣ f ⟩ is reset in the same cycle with high probability. Sometimes,  

leakage persists for multiple cycles (streak of red), owing to the trans-
mon escaping to a state higher than f ⟩∣ , which is not addressed in our 
reset scheme.

The average probability of each outcome as a function of time is 
shown Fig. 4b, in which the process starts from a ∣ X+ ⟩ state. After about 
10 cycles of initial state correction, the process settles into a dynamical 
equilibrium that persists for at least a hundred thousand cycles  
(the longest measured here) without any notable increase of the error 
rates over time. Detailed analysis reveals that the QEC process is nearly 
stationary, with residual deviations from stationarity caused by the 
transmon leakage to states higher than ∣ f ⟩ at a rate 1.3 × 10−4 per cycle 
(Supplementary Section IV.F).

In this dynamical equilibrium, physical errors excite the quantum 
state out of the code space with probability perr = 0.13 ± 0.02 per QEC 
cycle, as deduced from the statistics of syndrome outcomes. The com-
petition between physical errors and error-correcting dissipation 
results in a ‘thermal’ distribution across the subspaces with probabil-
ity ⟨Π ⟩ = 0.82 ± 0.020  of occupying the code space (Methods). Having 
perr ≪ 1 justifies the use of low-rank error-correcting dissipation in our 
system, which is sufficient to prevent physical errors from accumulat-
ing and causing logical errors. At the highest achieved QEC gain, the 
logical Pauli error probabilities per QEC cycle are pY = (4.3 ± 0.4) × 10−4 
and pX = pZ = (1.81 ± 0.04) × 10−3. By comparing the total logical error 
probability, pX + pY + pZ, to the physical error probability, perr, we con-
clude that 97% of the errors are successfully corrected by our process.

As rare large errors require several cycles to be corrected, the QEC 
process is weakly time-correlated with a correlation length of 3.9 ± 0.1 
cycles (Supplementary Section IV.F). To understand these correlations, 
in Fig. 4c we inject displacement errors along the position quadrature 
and monitor the syndromes that they produce as a function of time. 
Such errors leave traces of e outcomes in proportion to their distance to 
the closest logical operation. For example, a displacement of length 0,  
equivalent to a logical identity, leaves no syndrome trace; a displace-
ment of length lS/2 is close to a logical bit flip of the finite-energy code, 
and hence it leaves only a small syndrome trace; on the other hand, a 
midway displacement of length lS/4 makes a large-distance error that 
takes the longest time to correct with a low-rank dissipator, generating 
a lasting trace of e outcomes.

This displacement error injection experiment confirms that errors 
indeed generate the e syndromes. To verify whether these syndromes 
herald the occurrence of errors, we carry out post-selection of trajec-
tories with different syndrome patterns. In particular, we discard tra-
jectories that have ≥d consecutive e outcomes in the same-quadrature 
cycles, with resulting post-selected decay of Pauli eigenstates shown in 
Fig. 4d. In the case d = 5, post-selection eliminates rare large-distance 
errors and improves the fidelity lifetime only by a factor 1.2, but at the 
cost of rejection probability of 7 × 10−4 per cycle. On the other hand, 
in the case d = 1, post-selection eliminates relatively frequent small 
errors that are close to identity, as well as rare large uncorrectable 
errors that are close to a logical operation. It is because of the latter that 
the fidelity lifetime in this setting improves by a factor 6.3, but with a 
more severe rejection probability of 6 × 10−2 per cycle. These favour-
able post-selection results indicate that such a method can be used 
for probabilistic preparation of high-fidelity logical states, including 
the magic states required for universal quantum computing42, which 
is left for future investigation.

Conclusion and outlook
In this work, we used real-time error correction to realize a fully stabi-
lized logical qubit whose lifetime is more than doubled compared to 
the best passive qubit encoding in the system, marking the transition 
of QEC from proof-of-principle studies to a practical tool for enhancing 
quantum memories. Our work improves on previous QEC experiments, 
which do not protect the logical identity operator IL (ref. 17), protect only 
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under QEC for a variable amount of time, and measure the respective Pauli 
operators. The data for ∣ ∣g e{ ⟩, ⟩} and { 0⟩, 1⟩}∣ ∣  qubits are fitted to amplitude 
damping and white-noise dephasing channels, and the data for the error- 
corrected GKP qubit are fitted to a Pauli channel. In c, the X+ ⟩∣  data are 
symmetrically reflected with respect to 0 for better visibility. Open circles 
represent evolution in the absence of QEC, when grid states decay towards 
vacuum. d, Lifetime of average channel fidelity for these three qubits.
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one of the logical Pauli operators XL or ZL (refs. 30,43,44), implement cor-
rection in post-processing4,5,7, require post-selection45 and do not reach 
break-even1–7. Instrumental for this achievement, among other fac-
tors, was the adoption of a model-free learning framework, improved 
fabrication techniques for the transmon auxiliary qubit and a new 
grid-code QEC protocol.

Carrying out additional experiments, we identified the core chal-
lenges that need to be addressed to ensure future progress of grid-code 
QEC. In particular, by studying long-time system stability, we found that 
occasional collapses of the logical performance are strongly correlated 
with appearance of spurious degrees of freedom in the system. Their 
resonant interaction with the Stark-shifted transmon qubit degrades the 
fidelity of our operations (Supplementary Section IV.J). In the short term, 
this effect could be mitigated by adopting a tunable auxiliary qubit and 
periodically re-training the QEC circuit to find better spectral locations. 
In the long term, the behaviour of these defects needs to be understood, 
as they pose even greater danger for scaled-up quantum devices4,5,7.

In addition, we expect that considerable enhancement can be gained 
by tailoring the QEC process not only to error channels of the oscillator, 
but also to those of the auxiliary qubit. Our QEC circuit is fault-tolerant 
with respect to auxiliary qubit phase-flip errors by design26. With the 
transmon qubit used here, the sensitivity of the logical lifetime to aux-
iliary qubit phase flips is 65 times smaller than to auxiliary qubit bit 
flips, as found with noise injection experiments (Supplementary Sec-
tion IV.I). Future development should incorporate robustness against 
auxiliary qubit bit flips, either through path-independent control46,47 
or by adopting an auxiliary qubit with biased noise48.

Note added in proof: In parallel with our work, a gain G = 1.16 was 
demonstrated with a binomial code realized in a microwave cavity49.
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Methods

QEC of the ideal grid code
To understand the error-correcting properties of the ideal code,  
consider an error channel E  decomposed in the displacement  
basis. An ideal grid code with code projector Π0 satisfies the Knill– 
Laflamme conditions8 Π0D†(εα)D(εβ)Π0 ∝ δ(εα − εβ)Π0 for all errors in a 
correctable set E D ε ε ε l= { ( ) : Re( ) , Im( ) < /4}S+ . A displacement error 
of amplitude ε creates an error state ∣ ∣ψ D ε ψ⟩ = ( ) ⟩ε , in which ∣ψ⟩ is any 
state from the code space. As a displaced grid state is still translation-
ally invariant, it remains an eigenstate of the ideal-code stabilizers, and 
the phase of its eigenvalue encodes a continuous error syndrome: 
S ψ il ε ψ⟩ = exp(2 Re[ ]) ⟩Z

ε S ε0 ∣ ∣  and S ψ il ε ψ⟩ = exp(−2 Im[ ]) ⟩X
ε S ε0 ∣ ∣ . Error cor-

rection of an ideal grid code can be carried out in a similar manner to 
that for any stabilizer code: first, measure the stabilizers to obtain the 
error syndrome, which here corresponds to phase estimation of S X Z

0
/  

that yields the error amplitude ε. This step projects the state onto one 
of the orthogonal error spaces. Then, apply the recovery operation, 
here a simple displacement D(−ε), to correct the error. This procedure 
realizes an artificial dissipation R of an infinite rank that corrects any 
error from E+ in a single cycle, R E ρ ρ( )( ) ∝∘ , analogously to the cartoon 
high-rank dissipation in Fig. 2a. In contrast to this approach, our exper-
iment realizes low-rank dissipation that asymptotically satisfies 

ρ ρ([ ] )( ) ∝n→∞ ∘R E .

Dissipative cooling to vacuum
We utilize the dissipation engineering framework50 to design fast cool-
ing of the oscillator to the vacuum state in the weak-coupling regime 
for which previous known cooling methods51 fail. We also expect this 
new method to be applicable to cooling of trapped ions, for which 
conditional displacement can be realized through sideband driving, 
and auxiliary qubit reset through internal state repumping18. As in 
error-correcting dissipation, we realize this cooling as a composition 
of two rank-2 channels that shrink the oscillator state in the orthog-
onal quadratures. The unitary U∅ in this case is realized as a three- 
layer circuit obtained from the first-order Trotter decomposition of 
U iε a a= exp[− ( σ + σ )]+

†
− , in which ε ≪ 1 controls the cooling rate. This 

unitary swaps the excitations of the oscillator into the auxiliary qubit, 
which is reset in every cycle. The duration of one full cooling cycle 
(including both quadratures) is tc = 2 × 3.38 μs. With ε = 0.4, we achieve 
cooling at a rate 20 times faster than the natural energy damping rate 
of the oscillator. In our experiment, 25 full cycles of such a dissipative 
cooling are then followed with a feedback cooling protocol adapted 
from ref. 17 to remove any residual thermal population. See Supplemen-
tary Section II.F for more details.

RL implementation
The QEC circuit is parametrized with a vector p. Instead of optimizing 
p directly, the RL agent learns parameters of the probability distribu-
tion from which p is stochastically sampled during the training to 
ensure adequate exploration of parameter space. To this end, we use 
a factorized multivariate Gaussian distribution N( , )µ σ  with mean μ 
and covariance matrix σdiag[ ]2 . To capture the pattern of relations 
between different components of p, the mean and covariance are rep-
resented as parametrized functions θ( )µ  and θ( )σ  of common hidden 
variables θ. In this work, μ and σ are produced at the output of a neural 
network with two fully connected layers of 50 and 20 rectifier linear 
unit neurons. Starting with the initial vector of parameters iµ  found 
with independent calibrations, during the course of learning the agent 
gradually deforms the distribution and localizes it on the new vector 

fμ , the final result of the optimization. Typically, as it proceeds, the 
agent also reduces the entropy of the distribution to have a finer con-
trol over the mean. These features of learning are observed in the exam-
ple evolution of one component of p in Fig. 2d. During one training 
epoch, we evaluate 10 QEC circuit candidates with 300 episodes (that 

is, experimental shots) per candidate. The collected information is 
used to update the neural network parameters θ according to the 
proximal policy optimization algorithm, which completes the epoch. 
One epoch takes approximately 16 s, with most time spent on recom-
pilation of instruction sequences for the field-programmable gate 
array, and its reinitialization. See Supplementary Section III.B for more 
details.

Steady state of the QEC process
We carry out Wigner tomography of the logical states after a varying 
duration of the QEC process, reconstruct the density matrix, and from 
its spectral decomposition extract the expectation value of the code 
projector ⟨Π ⟩ = 0.825 ± 0.0030 , in which the uncertainty represents 
the standard deviation with respect to different process durations of 
100, 200, 400 and 800 cycles. In addition to the code space, only one 
error space is occupied in the steady state with an appreciable prob-
ability of 0.170 ± 0.005. The logical decoherence within this error space 
happens at the same rate as within the code space. For more details, 
see Supplementary Section IV.H.

The expectation value of the code projector in the steady state can 
be estimated independently, using the statistics of syndrome out-
comes. Under the approximations discussed in Supplementary  
Section IV.E, the probability that a syndrome string of length 2n con-
sists only of g outcomes asymptotically approaches p⟨Π ⟩(1 − )n

0 err
−1   

for large n. Using this method, we extract ⟨Π ⟩ = 0.81 ± 0.020  and 
perr = 0.13 ± 0.02. The uncertainty in this case represents the inaccuracy 
of the model for the string probability, which is valid to first order in 
perr. The value of ⟨Π ⟩0  quoted in the main text is the average of the  
two methods. Constructing a detailed error budget of the aggregate 
error probability perr based on the system-level simulation of the known 
error processes is an avenue left for future work.
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2

I. EXPERIMENTAL SETUP AND SAMPLE PARAMETERS

Assembly. Our system design follows the hybrid planar-3D circuit QED architecture developed in [1]. The storage
oscillator is realized as an electromagnetic mode hosted by a seamless superconducting coaxial stub cavity made of
high-purity aluminum and treated with a chemical etch to improve surface quality. This is the same physical cavity
as used in [2], although with lower coherence time due to aging during the storage time of ∼ 2 years. The cavity is
anchored to a copper bracket inside a cryoperm shield. The auxiliary qubit chip is inserted in a tunnel waveguide
that connects to the storage cavity, and is secured at one end with a copper clamp. Thermalizing copper braids run
from the clamp to the base plate of the dilution refrigerator, see Supp. Fig. 1.
Auxiliary qubit chip fabrication. The auxiliary qubit chip contains a transmon qubit, a stripline readout

resonator, and a stripline bandpass Purcell filter. The resonators and transmon are tantalum-based devices, with
Josephson junction of the transmon made of a small aluminum section; they are fabricated with a process similar to
[3]. Adopting a tantalum-based platform results in improved qubit coherence relative to an all-aluminum platform;
however, the reasons for this are still under active investigation. Possible explanations include, but are not limited to:
1) The corrosion resistance allows for the use of rigorous acid-based cleaning techniques to be employed during the
fabrication process that improves surface dielectric quality and minimizes the presence of organic residues; 2) The high
melting point of tantalum allows for deposition to occur at higher temperatures, where atomic mobility is high enough
to enable epitaxial film growth with a high degree of crystalline order; 3) Tantalum has a higher superconducting
transition temperature than aluminum, which may lead to increased resistance to quasiparticle loss.

We use a C-plane sapphire wafer produced using the heat exchanger method (HEM), as it was shown to have
smaller dielectric loss [4]. The wafer was initially cleaned with a piranha solution (2 : 1 H2SO4 : H2O2) for 20
minutes and rinsed with DI water. The wafer was then annealed at 1200 ◦C in an oxygen-rich environment for 1 hour.
After cooling down to room temperature, the wafer was immediately transferred to a sputtering system for tantalum
deposition. 150 nm of tantalum was deposited by DC magnetron sputtering with the substrate temperature being
held at 800 ◦C. The Purcell filter, readout resonator, and transmon pads were subtractively patterned using a positive
photoresist mask and reactive ion etching. After tantalum patterning, the Josephson junction was patterned using
electron-beam lithography and defined using the Dolan bridge method. The junction was deposited using electron-
beam evaporation of aluminum at 2 angles with an interleaved static oxidation step to construct the tunnel barrier.
Liftoff was performed in NMP heated to 90 ◦C, followed by sonication in acetone, isopropanol, and DI water. Finally,
the wafer was protected with a layer of photoresist before dicing into individual chips, followed by additional cleaning
with NMP, acetone, and isopropanol to remove the protective photoresist.
System parameters. The measured parameters of this system are summarized in Supp. Table I.

Cavity mode

Frequency ωc = 2π × 4.479 GHz
1st order dispersive shift χ = 2π × 46.5 kHz
2nd order dispersive shift χ′ = 2π × 5.8 Hz
Kerr nonlinearity K = −2π × 4.8 Hz

Relaxation T
c
1 = 606± 10 us

Dephasing T
c
2 = 980± 30 us

Auxiliary transmon

Frequency ωt = 2π × 5.921 GHz
Anharmonicity α = −2π × 222 MHz

Relaxation T
t
1 = 280± 30 us

Equilibrium population n tth = 0.043± 0.008

Dephasing (Ramsey) T
t
2R = 62± 5 us

Dephasing (Echo) T
t
2E = 238± 8 us

Readout resonator

Frequency ωr = 2π × 9.107 GHz
Dispersive shift χqr = 2π × 0.60 MHz
Coupling strength κr(c) = 2π × 0.47 MHz
Internal loss κr(i) = 2π × 0.03 MHz

Supplementary Table I.Measured system parameters. For transmon parameters (T t
1 , T

t
2R, T

t
2E , ntth) and cavity parameters

(T c
1 , T

c
2 ) that appreciably fluctuate in time, we provide the mean and standard deviation over a week-long period. The definition

of the Hamiltonian parameters can be found in Section II B.

Control wiring. As shown in Supp. Fig. 2, the quantum system is controlled by a classical computer (VPXI-
ePC) that hosts two control cards (X6-1000M) from Innovative Integration. Each card integrates digital-to-analog
converters (DAC), analog-to-digital converters (ADC), digital inputs and outputs (DIO), and a Xilinx VIRTEX-6 field-
programmable gate array (FPGA). This controller was developed in [5] and used in prior bosonic QEC experiments [5,
6]. The baseband control signals are sampled from the DACs at 500 MS/s rate with 16-bit resolution and upconverted
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Supplementary Figure 1. Sample assembly. (a) Clamped auxiliary qubit chip. (b) Thermalization. (c) Shielding.

to the oscillator, qubit, and readout frequencies through single-sideband modulation of the local oscillators (Agilent
N5183A). After amplification, the signals are gated with fast RF switches (9 ns rise time, 5 ns fall time) and filtered
before entering the dilution refrigerator. The signals are further attenuated and filtered in the cryogenic environment.
A crucial component of the filtering is the eccosorb CR-110 infrared absorber filter [7] located inside the cryoperm
shield, and the copper plate, painted with stycast epoxy mixed with black carbon powder, that wraps around the
sample. On the output side, the reflected readout signal is amplified at 30 mK stage with a near-quantum-limited
Josephson array-mode parametric amplifier (JAMPA) [8], followed at 4 K stage by a low-noise HEMT amplifier. Upon
further amplification at 300 K stage and down-conversion to 50 MHz, the readout signal is digitized, demodulated, and
integrated with a filter function to obtain I and Q quadratures. Their values are compared to the decision boundaries
Ith and Qth to obtain two bits of information s0 = Θ(I − Ith) and s1 = Θ(Q − Qth), where Θ is the Heaviside
step function. This allows to classify the measurement outcome as “g” if s0 = 0, “e” if (s0, s1) = (1, 0), and “f” if
(s0, s1) = (1, 1). The bits s0 and s1 are redistributed to all control cards which run independent but synchronized
control flows that include conditional branching on these bits. Further details of the readout subroutine are described
in Section IIC.

II. CALIBRATION AND CHARACTERIZATION EXPERIMENTS

A. Primitive pulses

Qubit rotation. The waveform for transmon g ↔ e and e↔ f rotations is a Gaussian with σ = 8 ns and symmetric
chop at 2σ. The pulse amplitude is calibrated with a standard amplitude Rabi experiment, shown in Supp. Fig. 3(a).
We find that finite negative detuning of a few MHz is needed to maximize the Rabi contrast in both cases. In a similar
manner, we calibrate a selective square pulse of duration 2π/χ ≈ 22µs that performs g ↔ e rotations conditioned on
the oscillator in |0〉.

Oscillator displacement. The waveform for oscillator displacements is a Gaussian with σ = 10 ns and symmetric
chop at 2σ. It is calibrated in several steps, refining the accuracy at each step. First, before the precise value of χ is
known, we use a rough calibration by creating a coherent state of unknown amplitude α and measuring the probability
of |0〉 via a selective qubit pulse, with the results shown in Supp. Fig. 3(b). Fitting the data to P (0) = e−|α|

2

allows
us to calibrate the DAC amplitude for displacement of |α| = 1. This first-stage calibration enables us to use active
oscillator cooling, see Section II F, which is important for the next calibration step that relies on a vacuum state.
Next, after determining the value of χ (using number-resolved qubit spectroscopy, see Section II B), we measure the
Wigner function of vacuum W (α) = (2/π)e−2|α|2 and adjust the DAC amplitude calibration to obtain the variance
of 1/4, with the results shown in Supp. Fig. 3(c). We find that these two calibrations typically agree within 2%.
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Supplementary Figure 2. Experimental setup. For simplicity, the diagram omits DC ground connections of all active
components, and attenuators placed at different locations at 300 K stage to ensure power levels within specs for amplifiers and
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(a) (b) (c)

Supplementary Figure 3. Calibration of primitive pulses. (a) Amplitude Rabi experiment to calibrate qubit rotations.
(b) First-step calibration of displacement: probability of |0〉 in a coherent state, P (0) = e−|α|

2

. (c) Second-step calibration of
displacement: Wigner function of vacuum, W (α) = (2/π)e−2|α|2 .
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out-and-back
experiment

(a) (b)

(c)

(d)

Supplementary Figure 4. Calibration of Hamiltonian parameters. (a) Number-resolved qubit spectroscopy with a
selective square pulse of duration ∼ 50µs when the oscillator is in the vacuum state (blue) and a coherent state (red). (b)
Optimal return phase in the out-and-back experiment (inset) with the qubit in |g〉 and |e〉. As seen from the phase dispersion
with n, the effective oscillator nonlinearity is larger when the qubit is in |e〉. (c) Average oscillator rotation frequency (ωg+ωe)/2,
and a linear fit to extract ∆ and K. (d) Relative oscillator rotation frequency ωg − ωe, and a linear fit to extract χ and χ′.
The star indicates χ obtained in (a).

B. Hamiltonian parameters

Our system is well described with the following Hamiltonian

H/~ = ∆ (a†a) +
1

2
χ (a†a)σz +

1

2
K (a†a)2 +

1

4
χ′ (a†a)2 σz, (1)

where ∆ is the oscillator frequency detuning in the chosen rotating frame, χ is the dispersive shift, χ′ is the second-
order dispersive shift, and K is the Kerr nonlinearity.

We calibrate χ with number-resolved qubit spectroscopy [9] in the presence of a coherent state of small amplitude
α ≈ 0.6 in the oscillator. The spectroscopy data, shown in Supp. Fig. 4(a) in red, is fitted to a 5-component
equal-spacing mixture of the spectroscopy lineshapes with the oscillator in vacuum, shown in blue, which results in
χ = 46.6 kHz. After additionally performing the cavity mode spectroscopy (data not shown), we set the LO frequency
to work in the rotating frame with ∆ = 0.

After calibrating the displacement amplitude, as described in Section IIA, we perform an out-and-back experiment
[10] to determine the higher order nonlinearities K and χ′. In this experiment, shown in the inset of Supp. Fig. 4(b),
we create a coherent state |α〉 with an average number of n = |α|2 photons, wait for some time while it rotates in
phase space, and attempt to return it back to the origin with a displacement of variable phase. The optimal return
phase for qubit in |g〉 and |e〉 is shown in Supp. Fig. 4(b). Performing this experiment for different wait times allows
to extract the effective oscillator rotation frequencies ωg(n) and ωe(n). The linear fit of the average rotation frequency
(ωg + ωe)/2 = ∆ + K n yields the values of the detuning ∆ and Kerr nonlinearity K, as shown in Supp. Fig. 4(c).
The linear fit of the relative rotation frequency ωg − ωe = χ+ χ′ n yields the values of the dispersive shift χ and the
second-order dispersive shift χ′, as shown in Supp. Fig. 4(d). We find that the value of χ predicted with this method
typically agrees with the value obtained via number-resolved spectroscopy to within 1%.

C. Readout and reset

The transmon measurement consists of a readout pulse of duration 700 ns with 40 ns ramp-up and ramp-down.
The reflected microwave signal is acquired (after 300 ns delay to account for signal travel time) for the duration of
1400 ns. After acquiring the readout signal, FPGA performs digital signal processing, which consists of demodulation,
integration of the signal with a filter function, and thresholding, all of which takes 332 ns. Next, the bits s0 and s1

that encode the measurement outcome [“g” if s0 = 0, “e” if (s0, s1) = (1, 0), and “f” if (s0, s1) = (1, 1)] are distributed
to all control cards, which takes 100 ns. For a schematic of this measurement process, see Supp. Fig. 5(a). When the
readout is used to realize the reset of the auxiliary qubit, additional time is spent on branching on the s0 and s1 signals
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Supplementary Figure 5. Auxiliary qubit measurement. (a) Timing of different components of readout and reset. (b)
Logarithmic histogram of the integrated readout signal for different transmon initial states. (c) Markov transition matrix
derived from the histogram in (b). It shows the probability of transition from any initial state to any final state during
the measurement. (d) Time trace of |e〉-state lifetime (color coded). The resonator field amplitude in the steady state is
proportional to the DAC amplitude (horizontal axis). The amplitude used for the actual readout corresponds to

√
n = 0.22.

When a spurious resonance around
√
n = 0.1 reappears, the readout fidelity significantly reduces.

to apply appropriate feedback pulses. The branching is done as shown in Supp. Fig. 8(a), taking additional 200 ns to
complete the reset. Due to the slow ringdown of the readout photons on a time scale of 1/(κr(c) + κr(i)) ≈ 320 ns,
the readout resonator is not fully empty when the feedback pulses are applied, partly limiting their fidelity through
measurement-induced dephasing mechanism [11]. This limitation could be addressed in the future by using a strongly
coupled readout resonator with photon lifetime on the order of ten nanoseconds [12], or, alternatively, by using an
active resonator depletion protocol [13] as was done in the grid-code experiment [14].

To characterize the readout, we perform a two-measurement experiment in which the transmon state is prepared
with post-selection on the outcome of the first measurement [15]. The second measurement follows with a 500 ns
delay after the first one. Its outcome is histogrammed, as shown in Supp. Fig. 5(b) for |g〉, |e〉 and |f〉 initial states.
The SNR of our readout is large enough to not be a dominant cause of the readout infidelity. Instead, the fidelity is
limited by state transitions during the finite readout time. Some transitions are expected due to the finite lifetime of
the transmon excited states, and the excess is induced by the readout pulse itself [16].

The Markov matrix in Supp. Fig. 5(c) describes the transition probabilities in this characterization experiment. It
is obtained by integrating the parts of a histogram on various sides of two thresholds. The diagonal elements of this
matrix can be interpreted as readout fidelities of different transmon states, with precision of about ∼ 10−3 for |e〉
and |f〉 states due to possible decay during the 500 ns delay between the two measurements. The readout fidelity of
the ground state F (g)

r = 0.9997 is significantly better than that of the excited state F (e)
r = 0.9914 – a crucial feature

exploited in our QEC protocol, where the dominant “no error” syndrome is mapped to the g outcome
The readout fidelity of |g〉 is also more stable over time, see Section IV J. The readout fidelity of |e〉 fluctuates over

time due to fluctuations of T t
1 (n) (qubit lifetime in the presence of n readout photons). A sample drift of T t

1 (n) is
shown in Supp. Fig. 5(d). The exact reason for this effect is still not well understood. It is possible that the dependence
T t

1 (n) comes from drive-induced hybridization of the transmon energy levels [17]. Higher levels are sensitive to offset
charge, and thus fluctuations of environmental charges can affect the hybridization strength and lead to fluctuations
of T t

1 (n). Another possible explanation is that fluctuating T t
1 (n) dependence comes from a spectral overlap of the

Stark-shifted qubit frequency with a spurious degree of freedom (not necessarily charged), e.g. a two-level defect,
which itself fluctuates [18]. The correlation between the logical qubit performance, the readout infidelity of |e〉 state,
and the fluctuating T t

1 (n) is further discussed in Section IV J.
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D. Conditional displacement

We create an echoed conditional displacement gate ECD(β) = σxD(σz β/2) using the approach described in
Ref. [10]. As illustrated in Supp. Fig. 6(a), this gate consists of the following steps: (i) the oscillator is displaced out
in phase space by large amplitude α; (ii) the conditional rotation is accumulated during the time interval τ along the
arc of a large radius |α| – this is equivalent to accumulation of the conditional displacement in the direction orthogonal
to α at an enhanced rate χ|α|; (iii) the oscillator is returned back towards the origin of phase space with displacement
of amplitude −α cos(χτ/2); (iv) the qubit state is flipped with an echo π-pulse; (v) an analogous large displacement
sequence is repeated in the symmetrically opposite direction in phase space. Under the dispersive coupling model and
in the limit of instantaneous rotation and displacement pulses, this protocol results in a net conditional displacement
of amplitude β = −2iα sin(χτ). Due to deviations from this idealized scenario, such as finite pulse durations and
higher order Hamiltonian terms, we need to experimentally calibrate the amplitude α(β) of the large displacement
required to achieve a desired conditional displacement.
Calibration of amplitude. Starting with qubit in |g〉 (or |e〉, with similar results) and oscillator in |0〉, we apply

the ECD gate with fixed delay τ in the displaced state and varying amplitude α, and then attempt to undo the effect
of the gate and return the oscillator to vacuum with a simple displacement D(−β/2). This out-and-back sequence
is repeated N times to increase the resolution. At the end of the experiment, the qubit is probed with a selective
pulse conditioned on oscillator in |0〉. The complete sequence is illustrated in Supp. Fig. 6(b), and the experimental
data for the gate with delay τ = 600 ns is shown in Supp. Fig. 6(c). From this calibration measurement, we fit the
dependence α(β|τ), and we perform this calibration for a set of different wait times τ .

During the optimization of the QEC performance, our RL agent is asked to pick the optimal values of the large
displacement amplitude α and of the conditional displacement amplitude β. Therefore, we need to have a calibrated
inversion function τ(α, β) that predicts the wait time τ to realize a gate with these parameters. We find that the
empirical relation

τe(α, β) = β
(
p0 +

p1

2α

)
− p2, (2)

with fit parameters ~p = {p0, p1, p2}, is able to simultaneously fit all ECD calibration datasets, such as the one shown
in Supp. Fig. 6(c), sufficiently well to be used with the training of the RL agent. Note that in the idealized model, we
would have ~p = {0, 1/χ, 0}. The empirical fit results are shown in Supp. Fig. 6(d), where the shaded region indicates
the prohibited parameter values, including the limited dynamic range of the DAC that allows α ∈ [0, 26] given our
choice of fixed-duration displacement pulses.
Calibration of qubit phase. As explained in Ref. [10], this experimental implementation of the ECD(β) gate

results in additional qubit phase accumulation Θ[β] = ξ|β|2, i.e. we implement ECD(β) = exp(−iσz Θ[β]/2) ECD(β).
The amplitude calibration experiment described above is not sensitive to this phase, because the qubit always remains
in the eigenstate of σz. However, this phase is important when conditional displacements are concatenated, e.g. in
the ECD control unitaries, as described in Section IIIA.

To calibrate this phase Θ[β], we perform the following “cat-and-back” experiment

ECD(−β)Rx(π) ECD(β), (3)

also shown in Supp. Fig. 6(e), which is ideally equivalent to σx exp(iΘ[β]σz). Starting with a qubit in |+〉, the final
state will satisfy 〈σy〉 = sin(2ξ|β|2) and 〈σx〉 = cos(2ξ|β|2) irrespective of the initial oscillator state.

However, due to decoherence and control imperfections in the ECD implementation, we find that the auxiliary
qubit also experiences loss of purity. Under the assumption that the losses of purity during the two conditional
displacement gates ECD(β) and ECD(−β) are uncorrelated and independent of the direction in phase space, we
model it as a uniform contraction of the Bloch vector by

√
1− p[β] per ECD gate, where p[β] = η0 + η2 |β|2 + η4 |β|4.

Hence, we fit the cat-and-back experiment to the following model:(
〈σx〉
〈σy〉

)
= (1− p[β])

(
cos(2Θ[β])
sin(2Θ[β])

)
, (4)

with fit parameters {η0, η2, η4, ξ}, of which only ξ is used in the ECD control compilation method, see Section IIIA.
The results of qubit state tomography together with the fit to the model in Eq. (4) are shown in Supp. Fig. 6(f)

for the same ECD gate as in Supp. Fig. 6(c). As explained in Ref. [10], the value of ξ depends on the shape of the
phase space trajectory during the ECD gate, and thus we calibrate it independently for every choice of delay time τ .
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Supplementary Figure 6. Calibration of the ECD gate. (a) Realization of ECD gate using the approach from [10]. (b)
Variation of the out-and-back experiment for calibration of the amplitude α of the large displacement required to achieve a
conditional displacement amplitude β. For a fixed delay τ between out and back displacements, and a given value of β, we
sweep α to find the optimum. The out-and-back sequence is repeated N times to increase the resolution. At the end of the
experiment, the qubit is probed with a selective pulse conditioned on oscillator in |0〉. (c) Data from the amplitude calibration
experiment shown in (b), using τ = 600 ns and N = 4. (d) Simultaneous fit of the collection of fixed-τ datasets, such as
the one shown in (c), to the empirical function in Eq. (2). The shaded region indicates the prohibited parameter values. (e)
Cat-and-back experiment. Starting with a pure qubit state |+〉 and arbitrary oscillator state, this experiment results in a phase
accumulation in the equatorial plane on a qubit Bloch sphere, which is detected with qubit state tomography. (f) Results of
the qubit state tomography in cat-and-back experiment with the ECD gate with wait time τ = 600 ns. In this experiment, the
oscillator was initially prepared in the |+Z〉 grid state. The data is fitted to the model in Eq. (4), shown with black solid lines.

E. Oscillator error channels

Relaxation and excitation. To measure the oscillator relaxation rate γ c1 = γ c↓ + γ c↑ , we first prepare Fock state
|1〉 using a unitary control circuit with 5 layers, see Section IIIA. After a time delay of varying length, we measure
the remaining occupation of |1〉 and fit it to an exponential decay with time constant T c

1 = 1/γ c1 . To measure this
occupation, we apply a spectrally selective auxiliary qubit pulse which flips the qubit conditioned on one photon
in the oscillator. Monitoring the oscillator over a week-long period, we find the mean and standard deviation of
T
c

1 = 606± 10µs. As seen from the histogram in Supp. Fig. 7(a), the relative fluctuations of T c
1 are small compared

to the relative fluctuations of other error channels in the same time frame. We attribute this stability to the fact that
most of the electromagnetic field of this mode resides in the vacuum of the cavity.

To bound the rate of thermal excitation γ c↑ , we apply the feedback cooling technique described in Section II F, to
the oscillator in its steady state. Since we find no detectable difference in the qubit number-resolved spectroscopy
contrast of the zeroth peak after feedback cooling, the resolution of this measurement of ∼ 1 % provides a bound on
the oscillator excitation rate of γ c↑ < 1/(60 ms). This rate is negligible compared to all other rates in the system and
is ignored in the rest of the analysis.
Dephasing. To measure the rate of dephasing γ c2 within the {|0〉, |1〉} manifold, we prepare a superposition |0〉+|1〉

using the Y 90 gate realized with a unitary control circuit with 8 layers, see Supp. Table II. After a time delay of
varying length we apply the Y 90 gate again and measure the occupation of |0〉. In the reference frame of the LO,
the oscillator state rotates with angular frequency χ/2 during the time delay, which results in Ramsey oscillations
modulating the exponential decay with decay time constant T c

2 = 1/γ c2 . We adjust the sampling rate to make the
oscillations appear slow. We find the one-week mean and standard deviation of T

c

2 = 980± 30µs.
One possible source of oscillator dephasing is stochastic rotations acquired due to dispersive coupling with the

transmon combined with transmon stochastic excitation and relaxation events [19]. The dephasing rate due to this
effect was predicted to be γ c,tϕ ≈ n tthγ t↓ in the limit χ� γ t1 and γ t↓ � γ t↑ , where n

t
th is the steady-state population of

|e〉. In our system, the correlation between γ cϕ = γ c2 − γ c1 /2 and γ c,tϕ is difficult to measure because these rates are
small and their estimators are subject to strong relative fluctuations. By comparing the medians of their marginal
distributions, γ c,tϕ = 1/(6.5 ms) and γ cϕ = 1/(5.1 ms), shown in Supp. Fig. 7(b), we find the remaining unexplained
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(a) (b)

Supplementary Figure 7. Fluctuating error channels. (a) Histogram of T1 and T2 times of the transmon and the
oscillator, and logical lifetimes of error-corrected grid states. The histogram is derived from a week-long scan described in
Chapter IV J. (b) Oscillator pure dephasing time extracted from the measured oscillator parameters and predicted from the
dispersive coupling model.

contribution to dephasing at a rate γ c? = 1/(24 ms) whose source is not yet identified. It is plausibly related to
second-order excitations from |e〉 to |f〉 [2].

F. Active oscillator cooling

Given the long relaxation time T
c

1 = 606µs of our oscillator, passive cooling that relies on the natural interaction
with the cold environment is impractically long. For example, starting with a Fock state |1〉, it would take
approximately 4.6T

c

1 = 2.8 ms to reduce the average population to 0.01 photons. In practice, since we work
with the grid states, the required cooling time is even longer. Therefore, the goal of our active cooling routine is to
reduce the experimental duty cycle time and also to remove any residual thermal population. We achieve these goals
via a two-step procedure which consists of an engineered dissipative pre-cooling and subsequent feedback cooling.
Dissipative pre-cooling. We introduce a novel oscillator cooling method based on the conditional displacements,

auxiliary qubit rotations, and auxiliary qubit resets. This protocol can also be realized in trapped ions, as was hinted
in Ref. [20].

To derive this protocol, we apply the same dissipation engineering framework [21] as used in Ref. [22] to derive
the SBS stabilization of the GKP manifold. The dissipator γD[a] can be approximated with a sequence of discrete
entangling interactions U(t) between the auxiliary qubit and the oscillator, and auxiliary qubit resets. For γD[a],
the interaction should be of the form U(t) = exp[−i

√
γt(aσ+ + a†σ−)], where the constraint 〈a†a〉γt� 1 controls the

validity of this discrete approximation. To further approximate this unitary as a multi-layer circuit with gates from
our gate set, we perform the first order Trotter decomposition:

U = exp

(
−i
√
γt

2
(xσx + pσy)

)
(5)

= exp

(
−i
√
γt

2
xσx

)
exp

(
−i
√
γt

2
pσy

)
+O(γt) (6)

≈ R†y(π/2) ECD(−iε)R†x(π/2) ECD(ε)Ry(π/2)Rz(π/2), (7)

where we defined the “trimming amplitude” ε =
√
γt. Furthermore, since the auxiliary qubit is assumed to always

start in |g〉, we can omit the first gate Rz(π/2). The resulting unitary part of the dissipative cooling circuit is:

R†y(π/2) ECD(−iε)R†x(π/2) ECD(ε)Ry(π/2), (8)

also summarized in Supp. Table II. To achieve uniform cooling in all directions in phase space, the orientation of the
ECD gates needs to cycle between position and momentum quadratures. A single cycle, including the pulse sequence
in (8), auxiliary qubit reset, and subsequent virtual rotation gate on the FPGA, has a duration of 3.38µs.

To demonstrate the performance of this cooling protocol, we start with a | + Z〉 grid state with ∆ = 0.3 and
apply varying number of cooling cycles, monitoring the population of |0〉 with a selective qubit pulse. As seen in
Supp. Fig. 8(c), dissipative cooling allows the state to shrink towards vacuum significantly faster than passive cooling.
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Supplementary Figure 8. System cooling. (a) Transmon reset subroutine with measurement-based three-state feedback.
(b) Oscillator feedback cooling subroutine adapted from Ref. [5]. (c) Demonstration of dissipative cooling of the oscillator
starting from GKP | + Z〉 state with ∆ = 0.3. A single cooling cycle consists of a pulse sequence in Eq. (8), auxiliary qubit
reset as in (a), and virtual rotation gate to the orthogonal quadrature for the next cycle. The duration of a single such cycle is
3.38µs. The case ε = 0 is equivalent to passive cooling. Dashed lines represent the contrast of the zeroth photon number peak
in qubit spectroscopy after passive cooling of 5 ms and after feedback cooling with Y = 3.

With ε = 0.4, the cooling rate is 20 times faster than energy relaxation time of the oscillator. For small ε ≤ 0.3 the
steady-state thermal occupation after dissipative cooling is similar to passive cooling of this state of duration 5 ms.
Larger ε allows for faster cooling, but at the expense of significant residual thermal occupation.
Feedback cooling. To remove the residual thermal photons, we further apply the feedback cooling protocol

introduced in Ref. [5] and shown in Supp. Fig. 8(b). With the help of a selective qubit pulse conditioned on |0〉
and qubit measurement, the protocol repetitively asks the question “Is the oscillator in vacuum?” and terminates
only when it receives Y consecutive “yes” answers. It would be inefficient to run this feedback protocol starting with
an arbitrary initial oscillator state, since the probability py of obtaining “yes” can be very small. The dissipative
pre-cooling quickly boosts this probability to a level essentially limited by the fidelity of the selective qubit pulse,
and thereby decreases the run time of the subsequent feedback cooling step. The run time of feedback cooling is
non-deterministic, but the expected number of rounds in a model with constant py is

Nfc(py, Y ) =
p−Yy − 1

1− py
(9)

Our final routine, called “active cooling” throughout this work, consists of 25 cycles of dissipative pre-cooling
(50 cycles, if counting each quadrature individually) with ε = 0.4 followed by the feedback cooling with Y = 3.
We estimate that with py = 0.87, achieved after the pre-cooling, the expected run time of the whole routine is
approximately 50 × 3.38µs + Nfc(0.87, 3) × 25µs = 270µs, which in our system corresponds to 0.45T c

1 (and could
potentially be reduced further).

From the contrast of the zeroth photon number peak in the qubit spectroscopy [dashed lines in Supp. Fig. 8(c)], we
see that passive cooling of duration 5 ms starting from the |+ Z〉 grid state still leaves a residual thermal population
larger than what our protocol achieves in a much shorter time. However, when active cooling is applied to an oscillator
in its steady state (nominally, vacuum) we find no resolvable improvement of the spectroscopy contrast, which leads
us to conclude that the residual thermal population after active cooling is at the sub-percent level where it cannot be
resolved with our spectroscopy. This observation is used in Section II E to derive an upper bound on the oscillator
thermal excitation rate.
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III. QUANTUM CONTROL OPTIMIZATION

A. Model-based optimization of control circuits

Circuit decomposition. Our control gate set consists of two parametrized gates: (i) echoed conditional
displacement of the oscillator ECD(β) = σxD(σz β/2), where D(α) = exp[αa† − α∗a] is the displacement operator,
and (ii) rotation of the qubit R(ϕ, θ) = exp [−i(θ/2)(σx cosϕ+ σy sinϕ)]. Recently, it was shown that this gate set
is well suited for the universal control of an oscillator with weak dispersive coupling to a qubit [10]. Most unitary
operations in our experiment are decomposed as parametrized multilayer circuits of the form

circuit(β,ϕ,θ) = ECD(βT )R(ϕT , θT )︸ ︷︷ ︸
layer T

· · · ECD(β1)R(ϕ1, θ1)︸ ︷︷ ︸
layer 1

, (10)

where β ∈ CT is a vector of conditional displacement amplitudes, and ϕ,θ ∈ RT are vectors of qubit rotation phases
and angles respectively. For example, we utilize this decomposition as part of the following operations:

− Dissipative cooling of the oscillator, see Section II F.

− Preparation of the GKP states, see Section IVH.

− Small-Big-Small protocol, see Section IVC.

− Preparation of the Fock state |1〉, see Section II E.

− Y 90 gate on Fock {|0〉, |1〉} encoding, see Section II E.

Circuit optimization. A circuit optimization method for this gate set was developed in Ref. [10]. Here, we
present a simplified modular framework based on the Keras library [23], which allows to optimize circuit parameters
in a manner similar to training of the neural networks. The parametrized control circuits (10) are created as
instances of the tf.keras.Sequential class which is commonly used to concatenate multiple neural network
layers. Here, we instead use custom layers that represent the parametrized gates ECD(β) and R(ϕ, θ) as subclasses of
tf.keras.layers.Layer. This allows us to exploit flexible and user-friendly application-programming interface
of the Keras library to optimize the circuit parameters and automatically monitor various aspects of the optimization
progress. To illustrate the accessibility of such an approach, in Supp. Fig. 9 we provide an example code for
optimization of the Y 90 gate on the {|0〉, |1〉} qubit. Complete code with dependencies and further examples is
available in Ref. [24]. Such optimization, which is performed for a batch of B = 300 circuit candidates in parallel
on a graphics processing unit (GPU), takes about 10 minutes to finish. In Supp. Table II, we list circuit parameters
for some of the control operations in our experiment. Curiously, some of the numerically optimized parameter values
are clearly interpretable, e.g. in GKP state preparation circuit the rotations at steps t = 1, 6, 10, 11 seem to be by
an angle π. Detailed inspection of these circuits can lead to improved analytic constructions, which is left for future
research.

Dissipative cooling SBS protocol |+ Z〉 grid state prep. Y 90 gate for {|0〉, |1〉} qubit
t β ϕ θ β ϕ θ β ϕ θ β ϕ θ
1 +0.4 +π/2 +π/2 +0.2i +π/2 +π/2 +0.52 + 2.54i −1.28 +1.57 +0.64 + 0.11i −1.06 +1.58

2 −0.4i 0 −π/2 +
√

2π 0 −π/2 −0.83− 0.36i +2.85 −2.76 −0.15− 1.00i +2.64 −1.44
3 0 +π/2 −π/2 +0.2i 0 +π/2 −0.36 + 0.85i +0.29 +0.55 +1.02 + 0.05i +0.58 −1.97
4 0 +π/2 −π/2 −0.86 + 1.61i −0.29 +1.43 +1.55 + 1.02i −1.84 −1.55
5 −2.16 + 0.12i +0.29 +0.92 +0.34 + 1.06i +2.74 +0.26
6 −0.09 + 1.73i +2.85 −1.56 −0.26− 0.92i −0.01 −1.25
7 +2.05 + 0.73i +0.29 +1.08 −0.61− 0.05i −2.91 −1.75
8 +0.22− 0.66i −0.29 −2.71 +0.02 + 0.05i −1.79 −1.67
9 −0.08− 1.56i +0.29 +2.06
10 +0.19 + 0.04i +2.85 +1.60
11 0 +1.86 +1.57

Supplementary Table II. Circuit parameters. Parameters for dissipative cooling and SBS protocol are created based on the
models described in Section II F and Ref. [22] respectively. Parameters for |+Z〉 grid state preparation and Fock Y 90 gate on
{|0〉, |1〉} qubit are numerically optimized with Keras.
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Supplementary Figure 9. Circuit optimization. Example of a Python script for optimization of the circuit parameters for
Y 90 gate on the {|0〉, |1〉} qubit. Gates are represented as custom Keras layers, and the circuit is compiled as sequential model.
Optimization utilizes TensorFlow backend for automatic differentiation of the model.

Oscillator
Qubit

Supplementary Figure 10. Waveform for |+ Z〉 grid state preparation. The parametrized control circuit is decomposed
into primitive gates: qubit rotations, oscillator displacements, and conditional rotations. The waveform is compiled from
this sequence of gates using experimental calibrations. Each qubit rotation and oscillator displacement is replaced with a
corresponding Gaussian pulse, and the conditional rotation is replaced with a delay of certain length during which the system
freely evolves under the dispersive coupling Hamiltonian.

Pulse compilation. Having obtained the circuit parameters, we compile the waveforms to be played on the qubit
and oscillator control lines. Such compilation requires prior calibration of the rotation R(ϕ, θ) gate, described in
Section IIA, and the ECD(β) gate, described in Section IID.

As explained in Ref. [10] and in Section IID, our experimental implementation of the ECD(β) gate results in
additional qubit phase accumulation Θ[β] ∝ |β|2, i.e. we implement ECD(β) = exp(−iσz Θ[β]/2) ECD(β). We use
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the experimental calibration of this phase to adjust the numerically optimized vector ϕ according to the rule

ϕt ← ϕt −
t−1∑
τ=1

(−1)t−τΘ[βτ ], t > 1. (11)

In addition, in many cases of interest the auxiliary qubit at the end of the circuit returns to |g〉 and disentangles
from the oscillator. In such cases, the last conditional displacement ECD(βT ) can be realized as a simple displacement
D(βT /2). We use this simplification in state preparation circuits and in the SBS protocol.

In Supp. Fig. 10, we show an example waveform for unitary preparation of the |+Z〉 grid state using a parametrized
circuit with T = 11 layers. Each ECD gate is decomposed via large displacements and conditional rotations. For
clarity, in this example all conditional rotations are implemented with a constant wait time τ = 200 ns; hence, the
whole compiled waveform has a duration of 6.4µs. Faster implementations are possible if the wait time is adapted to
the magnitude of the conditional displacement, as described in Section IID. For example, in our system the conditional
displacement of amplitude |β| < 0.5 could, in principle, be implemented with zero wait time, see Supp. Fig. 6(d).

B. Model-free reinforcement learning for QEC

While most quantum operations in our experiment are optimized with a model-based approach described above, for
quantum error correction we deploy a more powerful framework of model-free optimization. We use a reinforcement
learning algorithm called proximal policy optimization (PPO) [25, 26]. For a detailed description of this algorithm in
the context of quantum control we refer to Ref. [8]; here, we only provide a basic high-level picture. The complete
training loop of our experiment is illustrated in Supp. Fig. 11; it is structured as follows:
Step 1. On training epoch t, neural network produces a probability distribution N (~µt, ~σt), where ~µt = ~µ(θt),

~σt = ~σ(θt), and θt summarizes the values of all weights and biases of the neural network in the current epoch.
Step 2. We sample a batch of B = 10 parameter vectors from this distribution. They correspond to different QEC

circuit candidates that should be evaluated in experiment. The neural network and sampling are implemented on
NVIDIA 2080Ti graphics processing unit (GPU) in a separate computer. The sampled vectors are sent to the control
computer via a local area network with negligible communication time.
Step 3. Based on these parameter vectors, we compile QEC circuit candidates, translated into FPGA instructions

and DAC waveforms. All circuit candidates follow the same program execution flow, but the control waveforms and
the content of FPGA registers is different for every candidate. The FPGA is reset and its wave memory is updated.
This time-consuming step is the bottleneck of the training loop.

Step #2
Sample policy
candidates

Steps #1
Neural net outputs mean 
and diagonal covariance 
for stochastic policy with 
Gaussian action distribution • Compile FPGA instructions

• Create pulse waveforms 

• Upload to FPGA and reset

Step #4 
Run QEC training 
episodes

Step #3
Update FPGA settings

Step #5 
Collect rewards:
proxy for logical 
lifetime

Step #6 
Compute gradients according
to PPO algorithm and update
neural net parameters 

Param. 1

Param. 2

......

Supplementary Figure 11. Reinforcement learning. (a) Experimental training loop. (b) Training time budget per epoch.
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Step 4. Each candidate is evaluated in experiment. To this end, we initialize logical Pauli eigenstates |+ Z〉 and
|+X〉, run the QEC for T = 160 cycles, and then perform one-bit phase estimation of the corresponding logical Pauli
operators. To suppress the sampling noise, we repeat this Navg = 150 times per Pauli and per circuit candidate. In
total, one epoch of training consists of Ntot = 2BNavg = 3000 experimental shots.
Step 5. To produce the reward, we treat the measurement of a Pauli operator after T cycles as a proxy for logical

lifetime. While averaging the measurement outcomes, we mask the experimental shots that started with incorrect
state initialization, as flagged by a verification transmon measurement after the state initialization.
Step 6. Once the rewards are available, PPO algorithm updates the neural network parameters θt → θt+1 for the

next epoch. The gradients of these parameters are computed with automatic differentiation via back-propagation.
After updating the neural network, the new training epoch begins.

The time budget of this training is shown in Supp. Fig. 11. All steps outlined above amount to 15.6 s per epoch.
In the current implementation, the major bottleneck is Python-to-FPGA transition (step 3). Because of this, the
implementation is less optimal in terms of sample efficiency than the proposal in Ref. [8]. The optimal approach would
be to spend the total sample budget per epoch to evaluate more circuit candidates with minimal accuracy, instead
of evaluation only a few candidates with high accuracy (achieved through averaging). In other words, based on the
results of Ref. [8], we expect that a training with (B,Navg) = (1000, 1) would require fewer experimental shots to
reach a given performance level than a training with (B,Navg) = (10, 100). However, considering the total run time
of the training, we had to compromise between bare sample efficiency (number of shots) and the overhead in step 3
of the pipeline. The overhead is independent of Navg but increases with B, and due to a limited FPGA instruction
sequence length we can only evaluate B ≤ 10 candidates per compilation. After paying the compilation overhead in
step 3, a certain amount of averaging comes essentially for free and does not considerably affect the run time, hence
the choices made here.

In Section IVD, we describe the QEC circuit parametrization, show the evolution of parameter values during the
course of training, and provide interpretation of the observed trends.

IV. QUANTUM ERROR CORRECTION OF THE GRID CODE

A. Brief introduction to grid code

Qubit-register stabilizer codes are based on the group of Pauli operators; consider instead a stabilizer code based
on the group of oscillator displacement operators. By definition, the +1 eigenstates of a displacement operator D(α)
are displacement-invariant in phase space along the direction of α with a period |α|. Having two code stabilizers
SX0 = D(αX) and SZ0 = D(αZ) imposes displacement invariance along two non-equivalent directions, which means
that all codewords are grids in phase space with a unit cell defined by {αX , αZ}. The requirement of commutativity

(a) (b) (c) (d)

Supplementary Figure 12. Wigner functions (numerical) of grid states.
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of SX0 and SZ0 imposes a constraint

α∗XαZ − αXα∗Z = 2l2sni, n ∈ Z, (12)

where lS =
√

2π. Here, we consider encoding a single logical qubit into an oscillator, which corresponds to n = 1. By
parametrizing the complex-valued displacement amplitudes as αX = lS [M22 − iM12] and αZ = lS [iM11 −M21], we
obtain a grid code with the following stabilizers:

SZ0 = D(lS [iM11 −M21]), (13)
SX0 = D(lS [M22 − iM12]). (14)

From the constraint (12) we derive a single requirement that a real matrix M =

[
M11 M12

M21 M22

]
has a determinant

detM = 1. This matrix defines the structure of the grid in phase space. Here, we only consider the square grid code,

which is obtained with M =

[
1 0
0 1

]
. The hexagonal code with M =

√
2√
3

[
1 1/2

0
√

3/2

]
was realized in Ref. [14].

The Pauli operators of the logical qubit are defined as

XL =
√
SX0 = D(lS [M22 − iM12]/2), (15)

ZL =
√
SZ0 = D(lS [iM11 −M21]/2). (16)

They satisfy the standard algebraic properties X2
L = I, Z2

L = I, and XLZL = −ZLXL, inside the code space. Using
the identity YL = −iZLXL, we find the third Pauli operator YL = −iD(lS [iM11 − iM12 +M22 −M21]/2).

The eigenstates of Pauli ZL of the ideal grid code are shown in Supp. Fig. 12(a). Finite-energy code families
can be obtained by regularizing the ideal code through application of an envelope operator [22, 27], with a common
choice being N∆ = exp(−∆2n). We show several members of this code family in Supp. Fig. 12(b-d). Note that
such a regularization leads to non-orthogonal states, with fidelity loss due to the finite state overlap that scales as
exp(−π/4∆2) [see Eq. S28 in Ref. [22]], which is negligible for our choice of ∆ = 0.34.

B. Small-Big-Small (SBS) protocol

Here, we describe the SBS protocol, first proposed in Ref. [20, 22] from a new angle. The full QEC circuit in this
protocol is shown in Supp. Fig. 13(a) with nominal parameter values listed in Supp. Table II; it implements a channel
R∆(ρ) = (RZ

∆ ◦RX

∆)(ρ). Let (K
X/Z
g ,K

X/Z
e ) denote the Kraus operators of the constituent rank-2 channels RX/Z

∆ (we
omit the ∆ subscript from the Kraus operators for simplicity). These operators read:

KX

g = cos(
√
πp) cos(

√
π∆2x) + sin(π∆2/2) cos(

√
πp), (17)

KX

e = − cos(π∆2/2) sin(
√
πp) + i cos(

√
πp) sin(

√
π∆2x), (18)

where x = (a+ a†)/
√

2 and p = i(a†− a)/
√

2, and (KZ
g ,K

Z
e ) are obtained with a substitution (x, p)→ (−p, x). Then,

the Kraus operators of a composite rank-4 channel are:

Kgg = KZ

gK
X

g , Kge = KZ

gK
X

e , Keg = KZ

eK
X

g , Kee = KZ

eK
X

e . (19)

For ∆ = 0.34, these Kraus operators are shown as matrices in the truncated eigenbasis ofK†ggKgg in Supp. Fig. 13(b).
This eigenbasis splits into pairs of states Ci = {|0Li 〉, |1Li 〉}, i ∈ N, that define orthogonal replicas of the logical
subspace C0 generated by the errors. We show the Wigner functions of the projectors Π0, Π1, and Π2 onto the first
three subspaces in Supp. Fig. 13(d). Note that Π1 ≈ aΠ0 a

† and Π2 ≈ a†Π0 a, hence the errors in the first level
of hierarchy resemble photon loss (a) and gain (a†) errors. While a and a† only approximately satisfy the Knill-
Laflamme conditions [28] for the finite-energy grid code, the actual error operators that define the subspaces C1 and
C2 satisfy these conditions exactly (since the eigenspaces of a Hermitian operator K†ggKgg are orthogonal). Similarly,
by inspecting the Wigner functions of the projectors onto higher subspaces, we find that the second level of error
hierarchy resembles a2, a†a and a†2. The number of error subspaces in each level is given by the number of unique
combinations of a an a†: two subspaces (a and a†) in the first level, and three subspaces (a2, a†a and a†2) in the second
level, leading to the blocks of size 4× 4 and 6× 6 in the Kraus matrices in Supp. Fig. 13(b). Further understanding
the structure of the error hierarchy is the subject of ongoing research.
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Supplementary Figure 13. SBS protocol. (a) Circuit structure of one QEC cycle. (b) Kraus operators of the QEC cycle with
∆ = 0.34, written in the eigenbasis of K†ggKgg. This eigenbasis splits into pairs of states Ci = {|0Li 〉, |1Li 〉}, i ∈ N, that define
replicas of the logical subspace C0. Color encodes the absolute value of the matrix elements. (c) Flow diagram corresponding
to each Kraus operator. Circles represent error spaces, and arrows show the most relevant matrix elements. The dynamics
within the subspaces is discarded in this representation. (d) Numerical Wigner functions of the projectors onto the subspaces
C0, C1, and C2. Comparison to the subspaces generated from the code space by the errors a and a† reveals that the errors in
the first level of hierarchy approximately correspond to a and a†. (e) Quantum state trajectories with errors and QEC. The
state is represented in the same basis as in (b); color encodes the absolute value of the state components in this basis. Red
dotted lines are guides to the eye that separate the error subspaces. The occurrence of errors is indicated with red arrows at
the top. The time axis is measured in QEC cycles. The Kraus operators are applied between the time steps, and the syndrome
string encodes which Kraus operator was applied on every step. The state transfer fidelity, shown at the bottom, measures the
squared overlap of the final and initial state vectors.
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Unlike in the standard stabilizer formalism of QEC [29], Kraus operators here do not correspond to a projection of
a state onto a single error subspace and its subsequent transfer to the code space. Instead, the transfer here is realized
gradually, following an error hierarchy imposed by the QEC circuit. To clarify the action of the Kraus operators, their
reduced representation using directional flow of a quantum state between error subspaces is shown in Supp. Fig. 13(c)
[this representation ignores the dynamics within each subspace]. We now briefly discuss the interpretation of the
processes corresponding to each of the gg, ge, eg, ee outcomes of a QEC cycle. Outcome gg heralds a process in
which the state has remained in the same subspace. The probability of emitting gg from within the code space is
nearly 1. This property is exploited in Section IVE to extract the expectation value of the code projector 〈Π0〉 from
the statistics of long strings of the gg/gg/... type. Both ge and eg outcomes herald the process in which the quantum
state was transferred one level down the error hierarchy. Strings like eg/eg/eg/... therefore correspond to processes
in which the state directionally hops level by level towards the code space. Finally, the ee outcome heralds a transfer
two levels down the error hierarchy.

Besides the transfer between the error spaces, the Kraus operators apply a deterministic logical flip: XL in the
RX

∆ cycles, and ZL in the RZ

∆ cycles. This flip is visible in the off-diagonal structure of the sub-blocks in the Kraus
matrices, see Supp. Fig. 13(b). For example, the lower right 2 × 2 block in Kgg represents the code subspace, and
the off-diagonal structure represents the combined effect of XLZL = −iYL on the codewords. Due to this effect, the
lifetime of +1 and −1 logical Pauli eigenstates in our QEC protocol are exactly equal. We track the Pauli frame in
software, and undo its change in the data reported in Fig. 3 of the main text.

To demonstrate how the errors are corrected by this QEC scheme, we show several examples of quantum state
trajectories in Supp. Fig. 13(e). In the first trajectory, the state is initialized as one of the logical basis states, and
then evolved for several QEC cycles without any errors. The Pauli frame switching is apparent here from the oscillating
pattern within the code space (in this picture, the phase information is not shown, but the QEC process also protects
the phase of the logical qubit). In the second trajectory, an error a† was applied to the state prior to QEC, and then
it was almost perfectly corrected, accompanied by the emission of eg/gg/... syndrome string. In the third trajectory,
this error was instead corrected during the third QEC cycle, and the quantum state spent extra time in the error
space C2. This example explicitly demonstrates that the Pauli frame update is applied correctly irrespective of the
subspace, hence Pauli gates done in this manner are transversal. The subsequent trajectories demonstrate that even
higher-order errors, such as a†2 or a†4, can be corrected with high fidelity. Moreover, as seen in the fifth trajectory,
the state can be recovered even if additional errors happen while the previous errors have not yet been fully corrected.
The latter example highlights that the “slowness” of the low-rank error-correction dissipation is not a problem, as long
as the error rate is sufficiently small compared to the correction rate.

A few remarks with regards to the simplified interpretation of the QEC process in the main text are in order: (i)
The correct interpretation of the action of a QEC cycle requires considering pairs of outcomes, like ge, instead of
isolated outcomes, like g or e. We adopted the latter approach in the main text for simplicity of exposition. (ii) The
gg outcome does not herald the projection onto the code space, as mentioned in the main text, but rather a process in
which “no error was corrected”. Conditioned on the state residing in the code subspace, this outcome will be emitted
with probability nearly 1. However, if the state is in one of the error spaces this outcome can still occur with smaller
probability starting from about 0.47 at the lowest level in the error hierarchy and reducing for higher levels. (iii)
When one of the outcome eg, ge or ee is obtained, there is a small chance that the QEC process has added an error,
leading to a random walk among the error spaces that is heavily biased towards the code space.

C. QEC cycle: implementation details

In this section, we detail the implementation of a QEC cycle, whose schematic is shown in Supp. Fig. 13. The
various datasets in this work were taken with several different versions of the QEC circuit. All these versions have the
same overall structure, but different parameter values obtained from re-training after the system drift has appreciably
affected the logical performance (this happens on a time scale of 1-2 weeks, see Section IV J). Below, the quoted
durations of various components of a QEC cycle refer to the circuit version that we used to collect the system
lifetimes dataset and that achieved the highest reported QEC gain.
SBS unitary. We refer to the unitary part of the circuit U∅ prior to auxiliary qubit measurement as the “SBS

unitary” since it is based on the ansatz from Ref. [22]. The SBS unitary is compiled as a four-layer parametrized
circuit with nominal parameters shown in Supp. Table II, and is further translated into the pulse sequence with the
method described in Section IIIA. The last circuit layer does not contain an ECD gate, and instead only contains a
qubit rotation and oscillator displacement. Since the qubit is reset after the SBS, the function of the latter rotation
is to choose the “reset axis”, which can be an arbitrary axis on the qubit Bloch sphere.

As shown in Ref. [22], without any special asymmetries between |g〉 and |e〉 it would not matter along which axis the
auxiliary qubit reset is done – all choices result in the same completely positive trace-preserving map after averaging
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over the measurement outcomes. However, in practice the asymmetry comes from the auxiliary qubit relaxation
channel that degrades the readout fidelity of the |e〉 state. Hence, it is advantageous to choose the reset axis that
preferentially returns the |g〉 outcome. The parameter sequence for the SBS unitary in Supp. Table II takes this choice
into account. The choice of reset axis also results in a different unraveling of state trajectories and different Kraus
operators. The choice made here enabled the interpretation of e outcomes as syndromes that signal the occurrence and
correction of errors, which is utilized in the post-selection experiments described in Section IVG. This is in contrast
with Ref. [14], where g and e outcomes are interpreted as left or right displacements of the grid.

The duration of the SBS unitary is not fixed, because its constituent ECD gates can be implemented with different
choices of the speed enhancement factor α (amplitude of the intermediate displacement). Since α is included in the
action space of the RL agent, all circuit candidates during the training have different durations of the SBS unitary
(we will soon comment on how this affects the reward comparison among them). In the final circuit that achieved the
highest reported QEC gain, the duration of SBS unitary is tSBS = 1546 ns.
Auxiliary qubit reset. In principle, error correction with the SBS protocol could be fully autonomous (without

a classical feedback loop) as was envisioned in the proposal [22] and realized in a trapped ion system [20]. The
autonomous scheme has an advantage of significantly simplifying the demands on the classical co-processor (in our
case, the FPGA). Moreover, there exist various dissipative reset protocols for the transmon [30–32]. However, the
disadvantage of a fully autonomous implementation in our system is that it is not able to compensate for a spurious
rotation of the oscillator due to the always-on dispersive coupling with the transmon. The back-action of discarding
the transmon state during the reset is the dephasing of the oscillator – a particularly harmful error channel for
the GKP code [22]. Partly because of this reason, we chose to implement transmon reset through measurement and
classical feedback, as described in Section IIC, with the total duration of transmon reset subroutine of treset = 2332 ns.
Virtual rotation. Due to the always-on dispersive coupling, the oscillator acquires a spurious rotation during the

auxiliary qubit readout time. In experiment [14], a simple echo sequence was used to cancel this rotation. With such
an approach, transmon spends half of the time in |g〉 and half in |e〉 regardless of the actual syndrome measurement
outcome, which is detrimental to the code due to additional error sources associated with the |e〉 state. Here, we
instead chose the reset axis which results in 0.9 probability of detecting |g〉. Therefore, the ability to compensate for
the spurious oscillator rotation without echoing the state back to |e〉 is crucial to maintain this advantage.

We achieve this by dynamically tracking the oscillator phase that stochastically changes due to random transmon
measurement outcomes, and compensating for it with a virtual counter-rotation. The spurious oscillator rotation
angle accumulates during the reset time treset, during the time tVR that it takes to execute the virtual rotation on
the FPGA, and during the idle time tidle when the transmon is nominally in |g〉 (the latter will be explained shortly).
Therefore, in the idealistic dispersive coupling model, the oscillator would rotate by ϑg = χ(tVR + tidle + treset)/2 if
the transmon is found in |g〉, and ϑe = χ(tVR + tidle − treset)/2 if it is found in |e〉. Although the |f〉 state is not
computational, our controller is able to reset it with an accompanying virtual rotation by angle ϑf . Instead of relying
on the simple dispersive coupling model, in experiment we independently calibrate the angles ϑg/e/f with a variation
of the out-and-back experiment [10] to account for additional minor timing contributions related to FPGA program
entering or exiting a subroutine. These calibrated angles are used to initialize the QEC circuit for training.

Another important aspect of the virtual rotation is the switching between momentum and position quadratures of
the oscillator to realize RX

∆ and RZ

∆ dissipators. Such switching can be achieved with a rotation of the SBS unitary
by π/2 in phase space. This results in an additional deterministic contribution of ϑSBS to every virtual rotation gate.
The value of ϑSBS is π/2 for the square grid code, and π/3 for hexagonal grid code. Note that this is the only change
in the protocol that would be required to stabilize the hexagonal code.

The virtual rotation gate utilizes a floating point register ϑ on the FPGA. During this gate, the FPGA performs
the calculation ϑ← ϑ+ ϑg/e/f + ϑSBS with subsequent reconfiguration of the dynamic mixer matrix which applies a
rotation transformation to the oscillator pulses before they are being streamed at the DAC. The total duration of the
virtual rotation gate that includes all these steps is independent of ϑ and is equal to tVR = 448 ns.
Idle section. During the agent training, the reward is measured after a fixed number of T = 160 cycles. Therefore,

if our goal is to optimize for the logical lifetime, it is necessary to keep the duration of a QEC cycle constant across
different protocol candidates to ensure a fair reward comparison (i.e. for all candidates the reward should be measured
after the same physical duration of time). However, the agent is able to affect the physical duration of the SBS unitary
by changing the speed enhancement factor α in the ECD gates. To reconcile these two requirements, after the virtual
rotation gate we add a section of idle time that is calculated based on the duration of the SBS unitary in each circuit
candidate. We constrain the combined duration of SBS unitary and the idle section to be 2µs. In the circuit that
achieved the highest reported QEC gain, the duration of the idle section was tidle = 452 ns. Note that in the previous
QEC experiments that tried to create a long-lived quantum memory [5, 6], the idle section was inserted intentionally
to avoid frequently entangling the high-quality oscillator with low-quality auxiliary qubit. Here, we find that inserting
any additional idle time degrades the performance, hence we kept it nearly to a minimum while still leaving some
room for change of the SBS duration by the RL agent.
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Component Subcomponent Duration (ns)
Enter cycle 24

SBS

Enter SBS 24
Circuit layer 1 502
Circuit layer 2 708
Circuit layer 3 262
Circuit layer 4 76

Exit SBS 24

Reset

Enter reset 24
Roundtrip delay 300

Acquisition 1400
Signal processing 332

Distribution of s0 and s1 100
Branching and feedback 200

Exit reset 24

Virtual rotation Mixer matrix calculation 400
Mixer update 48

Idle Delay 452
Exit cycle 24

Supplementary Table III. Timing of the cycle components.

In Supp. Table III, we provide a detailed timing breakdown of all components of the cycle.

D. Learned and scripted parameters

Our QEC protocol has multiple parameters which could be optimized to improve its performance. Some of these
parameters are difficult to incorporate into our optimization framework in its current form, and therefore their values
are chosen as an approximate compromise between various tradeoffs and then held constant. The remaining P = 45
of them are optimized with reinforcement learning, given a reasonable starting point obtained from independent
calibrations. Here, we briefly explain the meaning of these parameters.
Scripted parameters:
◦ Duration, shape, and amplitude of the readout pulse.
◦ State classification thresholds.
◦ Timing of all components of the reset subroutine.
◦ Durations of primitive pulses (qubit rotations and oscillator displacements).
◦ Combined duration of the SBS unitary and the idle section.
Learned parameters:
◦ Virtual rotation angle (ϑg, ϑe, ϑf ) for each measurement outcome. It is initialized with a result of independent

calibration using a variation of the out-and-back experiment.
◦ Detuning of the transmon |g〉 ↔ |e〉 and |e〉 ↔ |f〉 pulses (same parameter for all pulses). It is initialized with a

result of independent calibration, when the oscillator is in the vacuum state (i.e. when there is no Stark shift).
◦ Spectral corrections to the |g〉 ↔ |e〉 and |e〉 ↔ |f〉 pulses based on derivative reduction by adiabatic gate (DRAG)

scheme [33] (same parameter for all pulses). It is initialized with 0.
◦ Complex-valued amplitudes of the conditional displacement gates in the first three layers of the SBS unitary,

and a complex-valued amplitude of the unconditional displacement in the fourth layer. Two small amplitudes are
initialized with βS1 = βS2 = 0.2i, and the big amplitude is initialized with βB =

√
2π. The unconditional displacement

is initialized with 0.
◦ Magnitudes of the intermediate large displacements used to execute the ECD gates in the first three layers of the

SBS unitary. They are initialized with αS1 = αS2 = 6 for small conditional displacements and αB = 16 for the big
conditional displacement. Note that changing these parameters also influences the duration of the ECD gates.
◦ Angular corrections to intermediate large displacements in the first three layers of the SBS unitary. These

heuristic parameters compensate for the effect of the second-order dispersive shift and for the fact that the conditional
displacement accumulates along an arc of small curvature instead of a straight line. These corrections are initialized
with 0.
◦ Phases and angles of all auxiliary qubit rotations in the SBS circuit layers (including the echo pulses inside the

ECD gates), and in the reset subroutine. These parameters are initialized with nominal values from Supp. Table II.
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Supplementary Figure 14. Evolution of QEC circuit parameters during the training. Top row: example from one
particular training run. The shaded region bounds the minimal and maximal sampled parameter values. Solid lines indicate the
mean. Bottom row: evolution of the mean parameter values in several independent training runs performed during a two-day
period, showcasing the reproducibility of the training results.

◦ Detuning of the local oscillator (LO) frequency for the cavity mode. This LO is calibrated with spectroscopy
and set to be half-way between the number-split oscillator frequencies when the qubit is in the states |g〉 and |e〉,
corresponding to ∆ = 0 in Eq. (1).
Evolution of parameters during training. In Supp. Fig. 14, we show the evolution of several QEC circuit

parameters during the training. Most parameters, when initialized well, merely exhibit small fluctuations around the
mean. However, some parameters undergo systematic and reproducible changes, as observed in the provided examples.
For instance, in Supp. Fig. 14(a), the big conditional displacement amplitude Re[βB ], which we expect to be equal
to the size of the grid unit cell, changes from a calibrated value of

√
2π by about 8%, likely indicating the presence

of a miscalibration error (the last calibration was done several weeks prior to this training). Similarly, the trend in
Supp. Fig. 14(e) towards the negative detuning of the |e〉 ↔ |f〉 pulses could be compensating for an additional Stark
shift that was not present at the initial calibration stage (calibration was performed with the oscillator in its vacuum
state). In Supp. Fig. 14(b), the trend in amplitudes βS1 and βS2 of the two small conditional displacements in the SBS
unitary is particularly insightful, as it helped us identify a limitation of the proposal in Ref. [22], according to which
the amplitudes βS1 and βS2 should be identical and equal to i∆2/2, while the RL agent systematically converges to
|βS2| > |βS1|. Using simulations, we verified that in the presence of error channels that act during the execution of
the SBS unitary, this is indeed a correct inequality. The optimal ratio of these two amplitudes is found in simulations
to be strongly dependent on the error channel. The agent adapts this ratio to the real error channel of our system.

In Ref. [8], it was shown that a similar RL agent is able to converge to correct solutions even starting from completely
random parameter initializations. Here, we initialize the parameters close to their expected optimal values through
various calibrations, but the compounded effect of small errors (at the level of a few percent) in multiple parameters
results in a QEC protocol which, although fully functional, is far from optimal. In particular, we were not able to reach
break-even with only the independent calibrations and educated guesses, hence model-free RL can be acknowledged
as one of the most crucial factors in the success of this project.

E. Syndrome measurement statistics

A sample of 600 experimental QEC shots is shown in Supp. Fig. 15, where QEC is run for T = 1000 cycles in each
shot. Consider a string of measurement outcomes going from any chosen time step ti to a time step ti+2n (it contains n
QEC cycles). The probability P ([gg]n) that this string contains only gg outcomes is shown in Supp. Fig. 16(a), where
it is averaged over the experimental shots and over initial times ti (the averaging over ti is done with a sliding window
method which is applicable due to process stationarity). While in the most general case the functional form of P ([gg]n)
is a sum of multiple decaying exponentials, we clearly observe only a single dominant exponential contribution. Hence,
we fit this probability to P ([gg]n) = aλn, obtaining a = 0.936 ± 0.003 and λ = 0.86517 ± 0.00013. By adopting a
model for the error process and for the QEC process, we can link the fit parameters {a, λ} to model parameters. In
general, such a model would be quite complex. However, here we are interested in only two characteristic parameters
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Supplementary Figure 15. Syndrome measurement outcomes. A sample of 600 experimental QEC shots of duration
T = 1000 cycles each. The “g” outcome (green) is prevalent, heralding the no-error process, while occasional “e” outcomes
(yellow) indicate correction of errors, and “≥ f ” outcomes (red) indicate leakage. When transmon escapes to a state higher
than |f〉, which is not addressed by our reset scheme, the leakage outcome persists for multiple cycles (streaks of red). In the
readout IQ plane such states occur above the Q threshold, and therefore they are conveniently classified as leakage, but without
further identification of the exact leakage state. After transmon stochastically drops back to |f〉, the controller is able to reset
it and return the transmon to the computational manifold. However, during the cycles when transmon is effectively inactive,
the code is not stabilized. Hence, leakage streaks are often followed by streaks of e outcomes where QEC re-stabilizes the code
manifold.

(a) (b) (c)

d=1

d=2-5

Supplementary Figure 16. Analysis of syndrome measurement outcomes. (a) Probability of a string gg/gg/... as
a function of its length, together with the fit to a single exponential decay. (b) Histogram of durations of leakage events.
Events of duration 1 or 2 cycles are predominantly |f〉 state; longer duration events are likely |h〉 or higher excited states. The
exponential fit gives the effective lifetime of these leakage states. (c) Fraction of shots that experienced a leakage event of
duration d up to a given time. Dotted lines are fits to a constant-rate model, see Section IVF.

of the process: the probability 〈Π0〉 of occupying the code space in the dynamical equilibrium of the QEC process,
and the probability perr of having an error that transfers the state out of the code space. These parameters can be
extracted with minimal model assumptions.

Using the transfer matrix approach, it can be shown that perr ≈ 1−λ and 〈Π0〉 ≈ aλ under the following assumptions:
1) The error probability is small perr � 1, which is justified since the cycle duration is small compared to all relevant
error rates in the system, and is confirmed by the fit results; 2) The conditional probability P C0gg of emitting gg
when the quantum state is in the code space is nearly 1. This is justified, since in the error-free model of the SBS
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Supplementary Figure 17. Correlation of syndrome measurement outcomes. (a) Correlation matrix rij for the first 30
cycles, computed from the dataset in Supp. Fig. 16(a). (b) rij for the full QEC duration of 1200 cycles with zoomed-in color
scale to resolve small numbers. (c) rij after removing leakage events of duration ≥ 2 cycles. (d, e) Cuts of the correlation
matrices from (b) and (c) at different locations in the QEC trajectory. In a stationary process, rij would only depend on |i− j|,
which is clearly not satisfied in (d). After removing length ≥ 2 leakage events, the deviation from stationarity is not resolvable.

protocol described in Section IVB this probability is 0.999; 3) The conditional probability P err
gg of emitting gg when

the quantum state is in any of the error spaces is small P err
gg � 1. This assumption is partially justified, since

in the error-free model of the SBS protocol this probability is smaller than 0.5 for the first error space, and then
monotonously reduces for the higher levels of the error hierarchy; 4) The probability P corr

gg of correcting an error and
emitting gg is small P corr

gg � 1. In the error-free model of the SBS protocol this probability is exactly zero, while in
practice it is limited to ∼ 10−2 due to the readout infidelity of the |e〉 state.

This result can be intuitively understood as follows: the two most probable system trajectories that generate the
string of all gg’s correspond to (i) starting in the code space and remaining there for n steps, which happens with
probability 〈Π0〉(1 − perr)

n, and (ii) starting in the code space, remaining there for n − 1 steps, and transitioning
out on the very last step, which happens with probability 〈Π0〉(1− perr)

n−1perr. The sum of these two contributions
equals 〈Π0〉(1− perr)

n−1 ≡ aλn, leading to perr ≈ 1− λ and 〈Π0〉 ≈ aλ. The corrections to these formulas are of the
second order in parameters {p err, 1−P C0gg , P err

gg , P
corr
gg }. From the fit in Supp. Fig. 16(b), we extract perr = 0.13±0.02

and 〈Π0〉 = 0.81 ± 0.02. Note that this result for 〈Π0〉 agrees within the error margin with the result obtained by
an independent method based on the reconstruction of the density matrix from the measured Wigner functions in
Section IVH. Here, the error of the fit is negligible compared to the model approximations, hence the quoted error
bars are obtained from an estimate of the second-order corrections ∼ p2

err ≈ 0.02.
Here, we only considered the string of a special type gg/gg/...; an important avenue of future research would include

learning the error channel from the full statistics of syndrome outcomes, using the dataset in Supp. Fig. 15.

F. Analysis of transmon leakage

To quantify transmon leakage, we histogram its duration in Supp. Fig. 16(b). The most likely leakage duration is 1
cycle, since the controller resets |f〉 to |g〉 with high probability. However, because of the finite readout fidelity of |f〉,
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shown in Supp. Fig. 5(b), the controller sometimes fails to reset this state, resulting in the next most probable leakage
duration of 2 cycles. After that, the histogram follows an exponential distribution with decay constant of 17.2 cycles,
corresponding to 85µs, which we attribute to the effective lifetime of higher leakage states that are not addressed by
our reset scheme. This time scale is consistent with our estimate ∼ 280µs/3 = 93µs of the |h〉 state lifetime, derived
from the bosonic statistics and the average measured lifetime of the |e〉 state.

To extract the leakage rate, in Supp. Fig. 16(c) we plot the fraction of shots that experienced a leakage event of
a certain duration up to a given cycle. We fit the data to a constant-rate model L(t) = 1 − exp(−t/τl) where t is
the cycle index and pl = 1/τl is the leakage rate (i.e. leakage probability per cycle). We find τl = 1480 ± 10 cycles,
corresponding to a leakage rate of pl = (6.76± 0.04)× 10−4. Similar analysis can be done for leakage events of length
≥ 2; with the fit to the same model, we find the time scale of τl,≥2 = 7820 ± 10 cycles, and the corresponding rate
of pl,≥2 = (1.280 ± 0.002) × 10−4. Note that this measurement was performed at the time of slightly sub-optimal
performance, and therefore the leakage rate at the maximal achieved QEC gain might have been smaller.

Next, we study the correlation of syndrome measurement outcomes across time. The correlation matrix is given by

rij =
E[mimj ]− E[mi]E[mj ]√

(E[m2
i ]− E[mi]2)(E[m2

j ]− E[mj ]2)
, (20)

wheremk is the measurement outcome obtained at cycle k, and empirical expectation values are obtained by averaging
across experimental shots. For the dataset of Supp. Fig. 15 this correlation matrix is shown in Supp. Fig. 17(a), where
we consider only the first 30 cycles. Overall, the correlation is weak, and the correlation between RX

∆ and RZ

∆ channels
(separated by odd numbers of cycles) is weaker than the correlation between the same-quadrature channels (separated
by even numbers of cycles).

By zooming in the color scale to visually resolve small numbers and considering the full duration of the trajectory
of 1200 cycles, as shown in Supp. Fig. 17(b), it becomes evident that the process is not perfectly stationary. To
emphasize this, we show in Supp. Fig. 17(d) the correlation coefficient rij as a function of |i − j| for several choices
of j. Further along the QEC trajectory the process acquires a correlation tail. Although quite weak, this correlation
stretches over hundreds of cycles.

Previously, it was demonstrated that leakage removal helps to reduce correlated errors in the arrays of transmons
[34]. Our QEC protocol already contains a mechanism for leakage removal from the |f〉 state through measurement-
based feedback in every cycle. However, leakage states higher than |f〉 are not cleared by our reset. The signature of
such leakage events to higher states is two or more consecutive leakage syndrome outcomes. To check the hypothesis
that this residual leakage to states higher than |f〉 is responsible for increase of correlation, we post-select trajectories
that do not have any length-two or longer leakage events. In the post-selected dataset, the correlation matrix does
not display any detectable non-stationarity, as seen in Supp. Fig. 17(c,e), confirming the hypothesis. By fitting the
remaining short-time correlations in Supp. Fig. 17(e) to an exponential decay, we conclude that it takes 3.9 ± 0.1
cycles (approximately 2 QEC cycles) to lose the memory of a typical large error. However, the most probable small
errors are corrected in a single QEC cycle.

NP L d ≥ 5 d ≥ 4 d ≥ 3 d ≥ 2 d ≥ 1

Survival prob.
per cycle 1.0000 0.9985 0.9993 0.9986 0.9972 0.9907 0.9396

Improvement
of ΓGKP

1.00 1.10 1.18 1.36 1.68 2.44 6.31

Lifetime of
|+ Z〉 (ms) 1.874± 0.004 2.11± 0.01 2.23± 0.01 2.55± 0.01 3.13± 0.02 4.60± 0.02 10.0± 0.6

Lifetime of
|+ Y 〉 (ms) 1.147± 0.004 1.23± 0.01 1.36± 0.01 1.56± 0.01 1.93± 0.01 2.80± 0.02 9.4± 1.0

Lifetime of
|+ Z〉 (cycles) 381± 1 427± 1 452± 2 518± 2 636± 4 934± 4 2000± 100

Lifetime of
|+ Z〉 (cycles) 233± 1 250± 1 275± 2 317± 2 393± 3 567± 5 1900± 200

Supplementary Table IV. Post-selection results. Top row labels the post-selection schemes. NP stands for “no post-selection”;
L stands for “leakage”; d ≥ N means post-selection that discards trajectories containing strings of N or more consecutive e
outcomes in the same-quadrature cycles.
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G. Post-selection of errors

Here, we provide additional details about the the post-selection experiment that verifies the ability of our QEC
scheme to faithfully identify the errors. The post-selection results are summarized in Supp. Table IV. Note that this
experiment was performed at the time of slightly sub-optimal system performance, hence the baseline results with no
post-selection are lower than in some other experiments reported here, e.g. in Section IV J. The main conclusion of
this post-selection experiment is that it enables significant improvement of the error probability at a cost of only a
modest rejection probability.

The saturation of lifetimes in the most stringent post-selection scheme (which preserves only the all-g trajectories)
can be related to the following mechanisms: (i) Direct logical errors, which are undetectable in any QEC scheme.
(ii) Misclassification of e as g (due to transmon decay during the measurement), which means that some of the all-g
trajectories that survived the post-selection actually contained errors, and some of those errors might have been close
to a logical operation instead of the identity operation. (iii) The non-orthogonality of logical states, which in our case
is not a limiting factor.

H. Wigner tomography of logical states

Tomography and its calibration. Wigner tomography is derived from the expression for the Wigner function
W (α) = (2/π)〈Πα〉, where Πα = D(α)ΠD†(α) is the displaced parity operator, and Π = exp(iπa†a) is the photon
number parity operator. The displaced parity operator is unitary and can be measured with phase estimation. It
is also Hermitian, and hence its eigenvalues are constrained to be ±1. Therefore, it is particularly convenient to
measure displaced parity by mapping it onto the qubit observable [35], which is achieved in our system with a circuit
shown in Supp. Fig. 18(a). The conditional rotation gate CR(π) is realized with a delay of duration π/χ under the
dispersive coupling Hamiltonian, which amounts to approximately 10µs. Because of such long duration, previous
GKP experiments with similarly small χ chose to perform state tomography using the characteristic function instead
[10, 14]. However, the long coherence of our system allows us to measure the Wigner function with reasonably high
fidelity.

We use several calibration techniques to improve the quality of the subsequent state reconstruction from the
tomographic data. First, to symmetrize the effect of transmon relaxation during the readout, we map the +1
eigenvalue of Πα to the g outcome in half of the phase estimation runs and to the e outcome in the other half.
This technique eliminates any finite offset in W (α), but maintains the reduced contrast due to transmon relaxation
and decoherence. Next, to calibrate the contrast reduction, we perform an experiment with a similar circuit in

Experimental data Reconstruction
(c) (d) (e) (f)

(a) (b)
aux. qubit,

oscillator

state tomo.

aux. qubit,

oscillator

Supplementary Figure 18. State reconstruction. (a) Wigner tomography experiment. (b) Calibration experiment to
extract α-dependent contrast of the Wigner tomography. This calibration relies on the assumption that the loss of contrast in
tomography is primarily due to incoherent errors during the parity mapping gate CR(π). (c) Results of the qubit state
tomography in the calibration experiment shown in (b). The measurement of 〈σx〉 is fit to a quadratic function of |α|
(black dashed line), and its square root (black dotted line) is used as a Wigner function measurement contrast in the state
reconstruction. (d) Experimental Wigner function of the |+ Z〉 state immediately after initialization. (e) Wigner function of
the reconstructed state. (f) Real part of the density matrix of the reconstructed state in the photon number basis.
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Supplementary Figure 19. Wigner tomography after QEC. Evolution of |+Z〉 state (1st row) and | −Z〉 state (2nd row)
is followed for 800 cycles. Color scheme is the same as in Supp. Fig. 18, with the range scaled to [−0.63, 0.63]. Marginal of the
Wigner function along momentum (position) quadrature, which gives probability density of the oscillator position (momentum),
is shown in the 3rd (4th) row in blue for |+ Z〉 state, and orange for | − Z〉 state. The probability density is not normalized.

which CR(π) is replaced with [CR(π)]2 = I, see Supp. Fig. 18(b). We fit the result of this experiment, shown in
Supp. Fig. 18(c), to 〈σx〉 = 1−p[α], where p[α] = η0 +η2|α|2 is the purity loss per CR(π) gate. Under the assumption
that reduction in tomography contrast is primarily due to incoherent processes (transmon relaxation and dephasing,
and oscillator photon loss), the inferred tomography contrast is P (α) =

√
1− p[α]. At α = 0, this inferred contrast

is equal to 0.8, which matches the measured contrast of the Wigner function of vacuum in Supp. Fig. 3(c), justifying
the assumptions of this calibration method.

The phase space points αi for Wigner tomography are chosen on a square 81×81 grid in a complex plane restricted
to |Re[αi]|, |Im[αi]| ≤ 3.2. We acquire 2400 shots per point in 6 separate acquisition time frames. Between the time
frames we perform system performance checks; data acquisition is put on hold if the spurious resonance in T t

1 (n)
reappears [see Supp. Fig. 5(d)]. A single state tomography dataset consists of 15.7 million shots, and takes a long
time to acquire – from 6 hours in the case of T = 0 cycles, to 26 hours in the case of T = 800 cycles. Therefore,
conclusions derived from the analysis of tomography data apply to long-time average system performance.
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Supplementary Figure 20. QEC subspaces.
(a) Spectrum of the reconstructed density
matrices of the | + Z〉 state evolving under the
QEC process. The spectrum separates into two
pairs of eigenvalues: one pair corresponds to the
code space C0, and another pair corresponds to
an error space obtained from the code space by
application of an error operator E. Dashed lines
show the sum of the eigenvalues within each
pair, which gives the probability of occupying
the code space and the error space. (b) Wigner
function of the projector Π0 onto the first pair
of eigenvectors (taken at T = 800), defining the
code space. (c)Wigner function of the projector
EΠ0E

† onto the second pair of eigenvectors,
defining the error space. This error space
corresponds to C2 subspace in Section IVB.

State reconstruction. Tomographic data is used to produce a best guess for the density matrix of the state. We
parametrize the density matrix as ρ = C†C/Tr[C†C], where C = A+ iB, and A and B are real-valued matrices. Such
parametrization ensures that ρ is positive semi-definite with trace 1. We truncate the density matrix to dimension
N = 32 in the photon number basis. Coefficients of the matrices A and B are optimized using the least squares fit of
the Wigner tomography and contrast data, with the cost function given by

cost =

Nα∑
i=1

(
2

π
Tr[ρD(αi)ΠD

†(αi)] · P (αi)−W (αi)

)2

. (21)

An example Wigner tomography of the |+Z〉 grid state together with its reconstruction is shown in Supp. Fig. 18(d-
f). As will be described shortly, using the reconstructed density matrix we extract various parameters of the state:
its purity, mean photon number, and envelope size.
Evolution of logical states. We visualize the evolution of logical |+ Z〉 and | − Z〉 grid states during the QEC

by taking Wigner tomography snapshots after 0, 100, 200, 400, and 800 cycles, with results shown in Supp. Fig. 19.
The marginal of the Wigner function along the momentum quadrature gives the probability density of the oscillator

position, shown in the third row of Supp. Fig. 19. The |+ Z〉 and | − Z〉 states have non-overlapping support in the
position representation, clearly observed in the data at T = 0 cycles. During the QEC process these basis states mix
under the logical Pauli channel, which manifests in the appearance of position peaks of the opposite state, until finally
they become almost (but not completely) indistinguishable after T = 800 cycles.

On the other hand, the marginal of the Wigner function along position quadrature gives the probability density of
the oscillator momentum, shown in the last row of Supp. Fig. 19. In the momentum representation, |+Z〉 and | −Z〉
states share the same support, but have a different pattern of phases associated with the peaks of the wavefunction.
The phase information is discarded in the probability density function, which looks identical for both states.
Spectral analysis of reconstructed states. Focusing on the time evolution of the | + Z〉 state, we perform

spectral decomposition of its reconstructed density matrices at T = 100, 200, 400, 800. We find that the eigenvalues
of the density matrix are arranged in pairs corresponding to the images of this state and of its complement | − Z〉 in
different subspaces of the QEC, see Supp. Fig. 20(a). In particular, we identify only two subspaces with a substantial
presence of the state during the QEC process: the code space C0, shown in Supp. Fig. 20(b), and the error space C2
corresponding to an error E that most closely resembles a†, see Supp. Fig. 20(c) and Section IVB.

While the QEC circuit imposes the structure of the error subspaces, as described in Section IVB, the properties
of the “thermal” distribution across these subspaces in the dynamical equilibrium is defined by the strength of the
various error mechanisms in our system as well as the rate at which these errors are corrected. The probability of
occupying the code space, given by the sum of the first two eigenvalues, remains constant over time and equal to
〈Π0〉 = 0.825±0.003, where error bar represents the standard deviation with respect to different durations of the QEC
process. This value agrees well with an independent analysis in Section IVE. Having only one relevant error subspace
in the steady-state distribution also qualitatively agrees with an observation in Section IVE that errors are rare. We
believe that other error subspaces are populated with probability < 1%, which is beyond the resolution power of this
method. Developing a more accurate and sample-efficient reconstruction technique for characterizing the distribution
across the error spaces is an important direction left for the future.
Extracting the code envelope size. For each QEC duration T , the reconstructed density matrix is used to find

the fidelity of the experimental states to the family of finite-energy codewords {|±Z∆〉} parametrized by the envelope



27

0

100
200
400
800

0
100
200
400
800

cycles(a) (b) (c)

Supplementary Figure 21. Analysis of | + Z〉 evolution. (a) Expectation value F±∆ of the state projectors | ± Z∆〉〈±Z∆|
for a range of values of ∆ and for different durations of the QEC process. The fidelity F+

∆ decreases, while F−∆ increases as a
function of time, as expected for a logical Pauli channel. The expectation value of the code projector 〈Π∆〉 = F+

∆ +F−∆ (black
dotted lines) remains nearly time-independent for T > 0. (b) Purity of the reconstructed state ρ and of its projection onto the
code space ρ∆ as a function of time. (c) Average photon number as a function of time.

size ∆. For T > 0, we additionally displace the target codewords by (0.08− 0.12i)
√
π/2 to account for a small shift

visible in the tomography. Since these target states are pure, the fidelity is given by F+
∆ = Tr [|+ Z∆〉〈+Z∆| ρ] and

F−∆ = Tr [| − Z∆〉〈−Z∆| ρ]. For experiments that start with a preparation of | + Z〉, these fidelities are shown in
Supp. Fig. 21(a) for each QEC duration from the dataset in Supp. Fig. 19. Immediately after the initialization, the
fidelity F+

∆ is maximized for ∆ = 0.36, where it reaches 0.85. During the QEC process, F+
∆ gradually reduces while

F−∆ increases, consistent with the logical Pauli channel. The sum 〈Π∆〉 = F−∆ +F+
∆ , which is equal to the expectation

value of the code projector, remains nearly constant for T > 0. It is maximized at ∆ = 0.34 (9.4 dB), where it is equal
to 〈Π∆〉 = 0.817 ± 0.003. This value is close to 〈Π0〉 = 0.825 ± 0.003 extracted from the density matrix spectrum,
which indicates that the code C0 stabilized in the experiment is indeed the one defined by the envelope operator
exp(−∆2n) with ∆ = 0.34.

The purity of the | + Z〉 grid state is shown in Supp. Fig. 21(b). During the QEC process, it reduces below 0.5,
since the steady state contains a mixture of the codewords with their images in the error spaces. However, the part of
this mixed state that resides within the code space should approach a purity of 0.5. To confirm that this is the case,
for every state ρ we define its projection onto the code space as ρ∆ = Π∆ ρΠ∆/Tr[Π∆ ρΠ∆], where we only consider
the code with the optimal envelope ∆ = 0.34. As seen in Supp. Fig. 21(b), the purity of ρ∆ after initialization is close
to 1, and after hundreds of cycles it approaches 0.5, as expected for the logical Pauli channel.

Lastly, in Supp. Fig. 21(c) we plot the evolution of the average photon number 〈n〉 = Tr[a†a ρ] during the QEC
process. The extracted steady-state photon number is 〈n〉 = 4.67± 0.02.

I. Sensitivity to auxiliary qubit errors

Auxiliary qubit phase flips. Our QEC circuit is fault-tolerant with respect to auxiliary qubit phase flips by
design [22]. Consider the effect of a σz error. It it happens during the auxiliary qubit readout, it would have no effect
because the readout projects the auxiliary qubit onto an eigenstate of σz. Likewise, during the virtual rotation gate
or the idle time the auxiliary qubit is nominally in the |g〉 state, which is an eigenstate of σz. Finally, the effect of
a σz error on the SBS unitary can be understood by propagating it through the circuit layers. For example, if such
an error happens during the big conditional displacement, it is equivalent to changing the circuit parameters from
~β = lS × (i∆2/2, 1, i∆2/2) to ~β = lS × (i∆2/2, 1,−i∆2/2). Since ∆2 � 1, this change is equivalent to a small error
that will be corrected in the following QEC cycles.
Auxiliary qubit bit flips. In contrast, auxiliary qubit bit flips can detrimentally affect the logical qubit in several

ways. If such an error happens during the middle half of the big conditional displacement of amplitude lS , it will with
high probability generate a logical error. This mechanism accounts for a significant fraction of logical errors in the
experiment. For example, its contribution to the Pauli error probability pX = 1.8×10−3 (per QEC cycle), is estimated
to be ∼ 0.5×0.5×0.5× (700 ns/280µs) ≈ 0.3×10−3, where the factors of 0.5 account for (i) half of the superposition
state being sensitive to auxiliary qubit decay, (ii) half of the QEC cycle is devoted to position quadrature, (iii) half of
the big conditional displacement gate. In practice, the relaxation time of the auxiliary qubit is likely degraded during
the execution of the conditional displacement due to the large number of intermediate photons in the oscillator, see
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aux. qubit bit flips,

aux. qubit phase flips,

Supplementary Figure 22. Effect of auxiliary qubit errors.
Logical error rates γZ and γY as a function of physical error
rates γtϕ and γt1 of the transmon (γX is expected to behave
identically to γZ). Physical error rates are varied with noise
injection. The error sensitivities dγZ/dγt1 = 0.17, dγY /dγt1 =
0.25, dγZ/dγtϕ = 0.0027, and dγY /dγ

t
ϕ = 0.0050 are extracted

by linear fits in the low-error region. The derived sensitivity of
ΓGKP = (γX +γY +γZ)/3 to phase flips is 65 times smaller than
to bit flips.

(a) (b) (c)

(a) (b)

Supplementary Figure 23. Noise verification experiments. (a) Component error rates as a function of the root mean
square (RMS) voltage of the injected noise (at the generator plane). Here, noise is up-converted to the qubit frequency to
increase γ t1 . (b) Same as in (a), but with the baseband noise that increases γ tϕ. (c) Readout infidelity of the transmon |g〉 and
|e〉 states in these two noise injection settings.

[10] and evidence in Section IV J. Hence, this estimate provides an optimistic lower bound. Auxiliary qubit bit flips
can also create detrimental back-action on the oscillator if they happen during the readout time. Since the readout
outcome is used in a feedback loop to implement a virtual rotation gate, misclassification of the auxiliary qubit
state generates rotational errors that the GKP code is not well suited to correct. These erroneous rotation angles
are distributed in the range 0.0 − 0.6 radians. To estimate the contribution of such errors to the logical error rate,
consider that a rotation by ∼ ∆/(lS/2) ≈ 0.3 radians would diminish the overlap of the blobs in the Wigner function;
therefore, a significant fraction of misclassification-induced rotation errors cause a large disturbance of the stabilized
code space. The transmon |e〉 state is the most prone to misclassification. Since readout fidelity of the |e〉 state is
close to 99%, and this outcome is generated 10% of the time, we estimate an additional ∼ 0.5× 10−3 contribution to
logical error probability per QEC cycle from this mechanism. The two contributions described here account for half
of the logical error probability pX ; the remaining half is not yet well understood.
Transmon noise injection. To investigate the effect of auxiliary qubit errors on the logical performance in a

controllable way, we perform noise injection experiments that selectively increase the transmon phase-flip rate γ tϕ or
bit-flip rate γ t1 , the results of which are shown in Supp. Fig. 22. With noise injection, we are able to increase γ t1 by a
factor of 14 (spoiling T t

1 from 290µs to 20µs), and γ tϕ by a factor of 140 (spoiling T t
ϕ from 430µs to 3µs). Using linear

fits in the low-error region, we extract the error sensitivities dγZ/dγt1 = 0.17, dγY /dγt1 = 0.25, dγZ/dγtϕ = 0.0027,
and dγY /dγ

t
ϕ = 0.0050. The derived sensitivity of ΓGKP = (γX + γY + γZ)/3 to auxiliary qubit phase flips is 65

times smaller than the sensitivity to auxiliary qubit bit flips, confirming the qualitative arguments provided above.
Mitigating the effect of auxiliary qubit bit flips on the logical performance is one of the most important future
directions in grid-code QEC.
Verifying noise injection. In the following, we explain how the noise injection experiments were conducted

and how we verified that the noise affects the system as intended, i.e. selectively tunes γ tϕ or γ t1 . We are able to
achieve a high degree of selectivity, with negligibly small spurious effects. To spoil γ t1 , we inject noise at the transmon
frequency, and to spoil γ tϕ, we inject noise at low frequency [36]. The baseband white noise with flat spectral density
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up to 80 MHz is sourced from an Agilent 33250A arbitrary waveform generator. In the γ t1 tuning experiment, it is
upconverted to the qubit frequency using a double-balanced mixer with an LO blue-detuned by 30 MHz from the
qubit frequency. After this pre-processing, the noise is filtered and combined with the qubit control line after the
switch (in contrast to all control pulses, the noise is not gated).

In Supp. Fig. 23(a), we inject resonant noise to tune γ t1 . This noise couples to the σx operator and therefore
changes γ t↓ and γ t↑ symmetrically, which results in increased steady-state population of the qubit, approaching 0.5

at the largest applied noise power. Note that this noise also affects the dephasing rate γ t2E , but the changes in γ t2E
are explained by changes in γ t1 : the extracted pure dephasing rate γ tϕ = γ t2E − γ t1/2 remains independent of the
noise power, as intended in this experiment. The error bars on γ tϕ increase at large noise power, because this small
rate is extracted as a difference of two large rates. The oscillator dephasing rate γ c2 is also affected by the noise,
which is explained by the increased rate of qubit up- and down-transitions that dephase the oscillator through the
dispersive coupling [19]. The pure dephasing rate γ cϕ = γ c2 − γ c1 /2 of the oscillator agrees reasonably well with the
prediction γ c,tϕ = n tthγ

t
↓ derived from this mechanism (black dotted line). The disagreement at high noise power is

under investigation; it likely comes from the breakdown of the simple formula for γ c,tϕ in the limit where n tth is not
small.

In Supp. Fig. 23(b), we inject baseband noise to tune γ tϕ. In addition to this desired effect, within the same dynamic
range of the noise we observe an undesired increase of the qubit excited state population by a factor of 2 (data not
shown), likely due to the heating of the attenuators by the dissipated noise power. Since γ t↑/γ

t
1 � 1, the qubit lifetime

is not significantly affected by this heating. The lifetime and coherence of the oscillator also remain independent of
the noise power. The increase of the error bars on γ c1 and γ c2 with the noise power is related to strong degradation
of the fidelity of the transmon selective pulse used to read out the population of the oscillator |0〉 and |1〉 states as
described in Section II E. This pulse has a duration of ∼ 20µs and it is directly sensitive to the transmon coherence;
at the highest injected noise power, where coherence time is spoiled down to 3µs, the fidelity of this selective pulse is
only a few percent.

In Supp. Fig. 23(c), we show the effect of the noise on the readout fidelity of the transmon |g〉 and |e〉 states. In
principle, the noise that induces phase flips (σz errors) should not affect the readout of σz. However, due to the
aforementioned heating of the qubit, we observe a weak degradation of F (g)

r . On the other hand, noise at the qubit
frequency couples to σx and results in significant degradation of both F (g)

r and F (e)
r .

J. Long-time system stability

We next investigate the stability of our quantum system over time with repetitive measurements of the lifetimes
of the {|0〉, |1〉} qubit, {|g〉, |e〉} qubit, and error-corrected GKP qubit. The results of a week-long scan are shown in
Supp. Fig. 24. We find that the {|0〉, |1〉} qubit is the most stable. In contrast, the {|g〉, |e〉} qubit exhibits notable
fluctuations of the |e〉 state lifetime. Such fluctuations are often observed in transmons [18, 37], and although they are
typically attributed to two-level defects in the amorphous dielectric, their source in our system is not yet understood.

We also find significant fluctuations of the lifetime of the error-corrected GKP qubit. Periods of relative stability
are regularly interrupted with sudden drops and resurgences of performance, correlated with the appearance and
disappearance of a resonant feature in the T t

1 (n) dependence, see Supp. Fig. 24(c). The behavior of the readout
infidelity of the |e〉 state is also correlated with this feature, see Supp. Fig. 24(b). We find that the correlation
coefficient between the logical error rate and the readout infidelity is r = 0.81. However, preliminary simulations
indicate that the degradation of the readout fidelity alone is not sufficient to explain the collapses of the logical
performance. We therefore believe that the presence of the spurious resonance affects not only the readout fidelity,
but also the fidelity of the SBS unitary.

A plausible causal chain is the following: 1) for unknown reasons, the spurious degrees of freedom (defects) appear
and disappear; 2) when the transmon |g〉 ↔ |e〉 transition frequency is resonant with the defect, their interaction
strength is enhanced, which reduces the lifetime of the |e〉 state; 3) during readout, the transmon is Stark-shifted into
resonance with the defects by the readout photons, which increases the probability of readout errors; 4) when the
transmon state is misclassified, the virtual rotation gate is executed with an incorrect angle, inducing a phase-space
rotation error on the oscillator; 5) during the conditional displacement gates, the transmon is also Stark-shifted into
resonance with the defects by the intermediate photons of the cavity mode; 6) when transmon decay happens during
the big conditional displacement gate, it has a significant chance of inducing a logical error. This proposed connection
between spurious defects and fluctuations of the logical performance could be verified with detailed system-level
simulations that take into account time-dependent Stark shift of the transmon and Stark-shift-dependent degradation
of T t

1 , which is left for future analysis.
Apart from the stochastic fluctuations, we observe a systematic drift that warrants periodic retraining of the QEC
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(a)

(b)

(c)

Supplementary Figure 24. Quantum system stability. (a) Lifetimes of Pauli Y and Z eigenstates of {|0〉, |1〉} qubit,
{|g〉, |e〉} qubit, and an error-corrected GKP qubit. (b) Inverse readout infidelity of the transmon |g〉 and |e〉 states. Logical
lifetime is strongly correlated with (1 − F (e)

r )−1. (c) Transmon lifetime T t
1 as a function of the number n of the steady-state

photons in the readout resonator. The dashed line denotes the DAC amplitude used for the actual readout. The correlated
degradation of the system performance and appearance of a spurious resonance that degrades T t

1 (n) around
√
n = 0.1 is

indicated with purple arrows.

circuit. This drift can be seen by comparing the initial and final data points of the scan in Supp. Fig. 24, where all
the monitored physical error sources are similar in magnitude, but the logical lifetime is reduced in the final point
as compared to the initial point. Due to this effect, the various datasets reported in our work were acquired with
different versions of the QEC circuit that were retrained every 1-2 weeks.

K. Average channel fidelity

The average channel fidelity of a quantum channel E : ρ→ E(ρ) to a target unitary channel U : ρ→ UρU† is

F(E ,U) =

∫
dψ〈ψ|U†E(|ψ〉〈ψ|)U |ψ〉, (22)

where the integral is over the uniform measure on the state space, normalized so that
∫
dψ = 1. Henceforth, we refer

to this metric simply as the fidelity.
To derive an equivalent but experimentally-compatible expression, we make use of the Pauli transfer matrix (PTM)

representation of a channel Rij [E ] = 1
2Tr(σiE [σj ]), where {σk, k = I,X, Y, Z} are Pauli matrices. This representation

has several useful properties, e.g. that the composition of channels corresponds to a product of their PTMs [38]. In
terms of the PTM, we have the following expression for fidelity:

F =
2Fe + 1

3
, Fe =

1

4
Tr
(
RT [U ]R[E ]

)
, (23)

where Fe is often called the entanglement fidelity.
To benchmark a quantum error correction channel, we compare it to an identity channel I : ρ→ ρ with Rij [I] = δij .
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In this case, Eq. (23) can be further simplified to

F =
1

12

∑
P=X,Y,Z

(
Tr[P E(|+ P 〉〈+P |)]− Tr[P E(| − P 〉〈−P |)]

)
+

1

2
, (24)

where we made use of the identities Tr[σPE(σP )] = Tr[P E(| + P 〉〈+P |)] − Tr[P E(| − P 〉〈−P |)] for P ∈ {X,Y, Z},
and Tr(E [I]) = 2. The complete derivation of this formula starting from Eq. (22) can be found in Ref. [39]. In
experiment, the right-hand side of Eq. (24) is measured by preparing ±1 Pauli eigenstates, passing them through the
channel E , and then measuring the corresponding Pauli operator, as cartooned in Supp. Fig. 25(a). Such a procedure
is applicable to an arbitrary duration t of the channel E(t).

We focus on the comparison of three different qubits in our system: {|0〉, |1〉}, {|g〉, |e〉}, and the error-corrected
GKP qubit. The free evolution of the two passive qubits is modeled using a composite amplitude damping and
white-noise dephasing channel, while the evolution of an error-corrected GKP qubit is modeled using a logical Pauli
channel. Given these well-justified assumptions on the error channels, from Eq. (24) we find:

F{01}(t) =
1

6
e−γ

c
1t +

1

3
e−γ

c
2t +

1

2
, (25)

F{ge}(t) =
1

6
e−γ

t
1t +

1

3
e−γ

t
2Et +

1

2
, (26)

FGKP(t) =
1

6
e−γXt +

1

6
e−γY t +

1

6
e−γZt +

1

2
. (27)

We show the time evolution of the fidelity given by Eqs. (25−27) in Supp. Fig. 25(b), using experimentally extracted
decay rates at the highest QEC gain measured in our experiment.

As seen above, in general the fidelity decays to its steady-state value in a way that cannot be characterized by a
single time constant even in the simplest error models such as Pauli noise or amplitude damping. Therefore, fitting
the fidelity decay to a single exponential is not strictly valid, although this heuristic approach was adopted in previous
works on bosonic QEC [5, 6, 40]. To avoid such an inconsistency, we consider the channel E acting for only a short
time δt. Any time dependence of the fidelity, even if it contains multiple exponentially decaying contributions, at
short times is equivalent to a linear decay:

F(δt) = 1− 1

2
Γ δt, (28)

where Γ is an effective depolarization rate, and 1/Γ is the fidelity lifetime. For a depolarizing channel Edep(ρ) =

(1− p)ρ+ p I2 with a depolarization probability p = 1− e−γt, we have Γ = γ, motivating the name and the coefficient
1/2 in Eq. (28). For qubits considered here, the effective depolarization rates are:

Γ{01} =
2γ c2 + γ c1

3
, Γ{ge} =

2γ t2E + γ t1
3

, ΓGKP =
γX + γY + γZ

3
. (29)

We define the coherence gain G as the improvement of the effective depolarization rate of an error-corrected logical
qubit over the best physical qubit in the same system (with the break-even point corresponding to G = 1). In a
bosonic circuit QED system, the latter is typically the {|0〉, |1〉} qubit, hence G = Γ{01}/ΓGKP. The highest gain
achieved in our experiment is Gmax = 2.27 ± 0.07. During a scan discussed in Section IV J, gain remained above
break-even 100% of this week-long time window, with a median of G = 2.0.

Lastly, we acknowledge that the decay constant of the average channel fidelity is not the only relevant metric that
we expect to be correlated with the future ability of such systems to participate in quantum computations. Other
metrics, such as the SPAM fidelity and the fidelity of gates, are important as well, and we leave their optimization
and detailed characterization for future work.
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(a) (b) Supplementary Figure 25. Average
channel fidelity. (a) Illustration
of channel action on the Pauli
eigenstates. By linearity, the
evolution of these six cardinal
points is sufficient to predict the
average effect across the whole Bloch
sphere. (b) Expected time evolution
of average channel fidelity for three
different qubits, calculated using
experimentally extracted lifetimes of
Pauli eigenstates.
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