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Can we observe and control the quantum manifestations of an effective Hamiltonian in a

superconducting circuit submitted to a fast-oscillating driving force?

We have implemented the effective Hamiltonian of a Kerr oscillator submitted to a

squeezing drive in a Josephson tunnel junction-based quantum superconducting circuit

submitted to a microwave sinusoidal driving excitation. We experimentally measure pairwise

simultaneous degeneracies in the spectrum of this effective Hamiltonian, which models

a quantum double well. What underlies these simultaneous degeneracies is the unusual

destructive interference of tunnel paths in the classically forbidden region, an effect revealing

a hidden symmetry of the system. Not only can these degeneracies be turned on-and-off on

demand, but their number is tunable: when the detuning ∆ of the drive’s second subharmonic

from the oscillator frequency equals an even multiple of the Kerr coefficient K, ∆{K “ 2m,

the oscillator experiences m` 1 exact spectral degeneracies. Importantly, these degeneracies

are robust as they are completely independent of the drive amplitude. They also lead to

a drastic reduction of the incoherent well-switching rate leading to our realization of a

super-protected cat qubit. Our work indicates the circumstances by which the control of

parametric processes via the drive frequency can provide a practical new tool for quantum

technologies. Underlying this experiment is a calculation tool to transform—beyond the

rotating-wave approximation—a time-dependent Hamiltonian describing a superconducting

nonlinear circuit submitted to a fast-oscillating driving force to a time-independent effective

Hamiltonian governing the dynamics of our quantum double-well system.
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â, â: Bosonic annihilation, creation operators

λ Dimensionless rescaling constant of phase-space

x̂, p̂ x̂ “
b

λ
2

X̂
Xzps

, p̂ “
b

λ
2

P̂
Pzps

ϕ̂, N̂ ϕ̂ “
?
λ2π Φ̂

Φ0
, N̂ “

?
λ Q̂

2e

1



Symbol Definition

S Generating function
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Chapter 0

Preamble

0.1 Effective Hamiltonians in Physics

Submitting an ordinary Hamiltonian system to a rapid, time-periodic forcing field can

transform it into a novel system displaying dynamical properties that have no equivalent

in the class of purely static, i.e. time-independent, Hamiltonian systems. For a sufficiently

perturbative forcing field (which we shorten into “drive” in the following), this novel dynamics

is governed, after a proper frame transformation, by a static effective Hamiltonian. To be

more concrete, let us take two canonical examples of effective Hamiltonians in physics.

0.1 Kapitza pendulum

We first take as an illustration of an effective Hamiltonian system the case of a rigid pendulum

of length l and mass m in the presence of gravitational acceleration g and whose pivot is

submitted to a sinusoidal vibration of amplitude r along the vertical. This driven pendulum,

known as the Kapitza pendulum [86,95], is described by the classical Hamiltonian

Hptq “
p2
θ

2J
´ Jω2

o cos θ ´ J
r

l
ω2 cos θ cosωt, (0.1)

11



where J “ ml2 is the moment of inertia and ωo “
a

g
l

is its small oscillation frequency.

In Eq. (0.1), θ is the angle between the pendulum and the vertical and pθ is the angular

momentum so that tθ, pθu “ 1. The special property is that depending on the direction of

these vibrations, the bob can be stabilized in new configurations unlike an ordinary rigid

pendulum which can only be stabilized at the ordinary potential minimum corresponding to

θ “ 0. For instance, when the pivot is vibrated vertically, the bob can be stabilized in an

inverted configuration, at θ “ π! This gravity-defying stabilization of this system, due to and

in the presence of the rapid vibration is also referred to as dynamical stabilization.

m
lg
r

Figure 0.1: Schematic of the Kapitza pendulum, a mechanical system which is stabilized,
in the presence of a parametric drive, from a configuration which is unstable without drive.

When ωo ! ω and r ! 2l, the transformation of the undriven system to the driven one —

the dynamically stabilized one — is captured as

H “ T ppθq ` V pθq Ñ Heff “ T ppθq ` Veffpθq `O
ˆ

1

ω

˙

, (0.2)

T ppθq “
p2
θ

2J
; V pθq “ ´Jω2

o cos θ; Veffpθq “ V pθq ´ J
r2

l2
ω2

8
cos 2θ, (0.3)

where T ppθq corresponds to the the kinetic energy term, V pθq corresponds to the potential

energy function in the absence of the drive, and Veff corresponds to an effective potential

energy function with stable equilibria at θ “ 0, π; see Appendix C for details on the derivation

of Heff . This expression for Heff in Eq. (0.2) is perturbative, the perturbation parameters are

12



the amplitude of the vibration r relative to the length of the pendulum l and the frequency

of vibration ω relative to the small-oscillation frequency ωo of the pendulum.

The magic of the effective Hamiltonian (Heff) or the effective potential (Veff) in this case

may already have become clear to the reader: instead of resorting to complicated numerics,

the transformation associated with the drive is accounted for by making a trivial replacement:

V Ñ Veff
1.

After this mechanical system, we treat, in our next example, another important effective

Hamiltonian system: the Paul trap, which plays a critical role in the field of quantum

information with trapped ions.

0.2 Paul trap

It is not possible to trap a charged particle, such as an ion, in all three directions in a

static configuration of electric fields. This no-go theorem is called the Earnshaw’s theorem.

However, one can find a workaround to the Earnshaw theorem, to construct an average

confining potential in all three directions, by submitting a trap to rapidly oscillating electric

fields. In this case, the particle is still always unstable in one direction but since that direction

changes with the RF drive frequency, the particle is dynamically trapped.

The Paul trap Hamiltonian can be written as

Hp~r, ~p, tq “
|~p|2

2m
` V p~r, tq, (0.4)

where

V p~r, tq “ Ω cospωtqpx2
´ y2

q ´ βpx2
` y2

´ 2z2
q. (0.5)

1. At higher perturbation orders, the simple separation of the effective Hamiltonian as comprising potential
and kinetic energy parts does not hold as we demonstrate in Appendix C since the effective angular momentum
coordinate depends both on the undriven angular momentum (pθ) and the angle (θ)
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We have defined position and momentum coordinates of an ion-particle ~r “ px, y, zq and

~p “ ppx, py, pzq. The particle is located in an electrostatic saddle potential. The parameters

Ω and β are electric field gradients and ω is the radio-frequency of the Paul trap. After

averaging over one period, the effective Hamiltonian experienced by the particle can be

written as

Heffp~r, ~pq “ T p~pq ` Veffp~rq, (0.6)

where

Veffp~rq “
Ω
?

2ω
|~r|2 ` 2βz2. (0.7)

Remarkably, a saddle-shaped surface that is rotating and submitted to a rapidly oscillating

rf field, allows a bypass of the Earnshaw theorem, i.e., by carefully choosing the Paul trap

frequency ω, the origin can be transformed from an unstable point in a saddle configuration

to a stable point in a harmonic trap.
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0.2 Effective Hamiltonians in quantum superconduct-

ing circuits

We spot two unifying features of the model systems treated so far:

First, the effective Hamiltonian’s manifestations in both the Kapitza pendulum and the

Paul trap are completely classical in nature.

Second, in both the Kapitza pendulum and the Paul trap, the effect of the drive is

obtained, to a good approximation, by keeping the undriven kinetic energy term unchanged

and by replacing the undriven potential energy term by a transformed effective potential

energy, i.e.,

HpX,P q “
P 2

2M
` V pXq Ñ HeffpX,P q “

P 2

2Meff

` VeffpXq `Op1{ωq, (0.8)

where Meff denotes an effective mass of the particle, which gets renormalized due to the drive,

as we discuss in Chapter 1 (see also [106,154,169]).

It is natural to ask:

1. Can we control the quantum properties of a system with an engineered effective

Hamiltonian (Heff)?

2. Can the control brought about by the drive be exploited, for instance, by engineering

effective Hamiltonians with more complicated structures than just effective potentials?

The field of circuit quantum electrodynamics (cQED) is perhaps most suited to address

these questions. In circuits, Josephson tunnel junctions fulfil the wishlist of large controllable

nonlinearities and weak dissipation. Moreover, state-of-the-art microwave electronics have

enabled the control of individual quantum systems and their high-fidelity and quantum non

demolition (QND) readout.

This thesis work answers the above questions by realizing a squeeze-driven Kerr-nonlinear

oscillator (SKO) in a rapidly-driven superconducting circuit. The SKO model system that
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we have engineered is governed by the effective Hamiltonian:

Ĥ “ ∆â:â´Kâ:2â2
` ε2pâ

:2
` â2

q. (0.9)

Equation (0.9) corresponds to an elementary quantum system: a Kerr oscillator dressed by

a squeezing interaction. Here â is the bosonic annihilation operator, and ∆, K, ε2 characterize

the frequency of the oscillator, its Kerr-nonlinearity and the strength of the squeezing inter-

action respectively.2 These parameters are controlled in-situ by tuning the drive parameters

as we discuss in Chapter 3.

Just like the effective potentials of the Kapitza pendulum and the Paul trap, the simple

structure of Eq. (0.9) abstracts the fast-oscillating drive away, i.e, Eq. (0.9) corresponds to the

effective description of a a superconducting circuit oscillator submitted to a rapidly-oscillating

drive. However, unlike the effective potentials of the Kapitza pendulum and the Paul trap,

Eq. (0.9) cannot be written down as a quadratic kinetic energy + an effective potential

energy function. This can be easily seen by introducing phase space coordinate operators

â “ px̂` ip̂q{
?

2 and then looking at Ĥ in classical phase space as:

H “ ∆o

ˆ

x2 ` p2

2

˙

´K

ˆ

x2 ` p2

2

˙2

` ε2px
2
´ p2

q, (0.10)

Equation (0.10) has been obtained from Eq. (0.9) following Dirac’s mantra [41]: to transform

an operator or a q-number Ĥ to a classical phase space function or a c-number H, 1. drop

all the hats and 2. replace any non-commutative operator product by an ordinary product.3

Remarkably, Eq. (0.10) has a quartic, and not quadratic, dependence in momentum p

and position x. We see this in Fig. 0.2, which shows a representation of H, in the three

dimensions of position x, momentum p, and energy (E) for ∆{K “ 3 and ε2{K “ 0.11, and

2. The detuning parameter ∆ is not to be confused with the superconducting gap.

3. We have adapted this poor man’s way of transforming a classical expression to a quantum one (and vice
versa) here for the sake of simplicity, but will discuss rigorously the quantum, semi-classical, and classical
representations of Eq. (0.9) in Chapter 2.
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Figure 0.2: Classical phase space surface of the effective Hamiltonian of a squeeze-driven
Kerr oscillator. The parameters are taken to be ∆o{K “ 3 and ε2{K “ 0.11 in Eq. (0.10). The
black curves represent Bohr-like orbits corresponding to quantized states (see Subsection 2.3).
The arrows represent the two tunnel paths across classically forbidden regions in phase space.

the parameters were chosen to yield a double-well system in the phase space of x and p.

The two phase-space wells are connected via two saddle points, under which the system can

tunnel. At these saddle points, the momentum is non-zero. By contrast, for a massive particle

moving in an ordinary double-well potential, tunneling through the barrier is associated with

only one path under the barrier maximum, corresponding to zero momentum. In the more

elaborate situation of Figure 0.2, the two tunneling paths can interfere [103]. In this case,

oscillations accompany the decay of the wavefunction in the classically forbidden region. This

interference can even lead to the coherent cancellation of the tunneling amplitude altogether.

This is especially interesting since this may occur for finite barrier height, allowing the

tunneling to be restored when the interference is constructive. Whether the interference is

destructive or constructive is set by the Hamiltonian parameters, which are adjustable in our

experiment.

In this thesis, we present the experimental observation of the controlled cancellation of

quantum tunneling in this quantum phase-space double-well system of the SKO. We measure

the cancellation of the tunnel amplitude simultaneously in the oscillator’s ground and excited
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state manifold. This phenomenon is periodic in ∆, with the period given by 2K and occurs

due to the destructive interference of tunneling paths in the classically forbidden region. We

further identify ∆ as a knob to obtain an overall exponential reduction of tunneling in the

ground and excited state manifold of the SKO. These two effects contribute to the drastic

enhancement of the transverse relaxation lifetime of the qubit encoded in the ground state

manifold of our oscillator. The dynamical control of tunneling finds applications in quantum

information processing, quantum simulation of lattice gauge theories, molecular, and nuclear

physics.

0.1 Background: Quantum tunneling

Although quantum tunneling was discovered nearly a century ago [109] and observed since in

a variety of natural and synthetic systems, the treatment of tunneling is usually limited to the

ground states of the system and has rarely been discussed for excited states in the literature,

as we elaborate in the following survey. The phenomenology of ground state tunneling has

been studied in cold atoms [132] in three-dimensional optical lattices [48], optical tweezers [87],

ion traps [118] and in quantum dots [77]. In Josephson tunnel circuits, quantum tunneling of

the phase variable was first observed by Devoret, Martinis, and Clarke [40] and since then

exploited in several other experiments [155]. Furthermore, the tunnel effect has been involved

in quantum simulation [13], in Floquet engineering of topological phases of matter and to

generate artificial gauge fields with no static analog [58,166]. The quantum interference of

tunneling for the ground states of a large spin system was measured previously in a cluster of

eight iron atoms by Wernsdorfer and Sessoli [158] (see also [5, 6, 99]).

Weilinga and Milburn [161] first identified that the quantum optical model in Eq. (0.9)

exhibits ground state tunneling for a particular value of ∆. Marthaler and Dykman [102,103]

developed a WKB treatment for a range of the ∆ parameter, and predicted that, for this

model, the tunnel splitting of the ground state manifold crosses zero periodically and is

accompanied by oscillation of the wavefunction in the classically forbidden region.
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Our work is the first experimental realization of the longstanding theoretical proposals

of the last paragraph. It is similar, but different, to the phenomenology of the “coherent

destruction of tunneling”, discovered theoretically by Grossmann et al. [68] and observed

experimentally in cold atoms [27, 98]. Indeed, the dynamical tunneling in our experiment

is in sharp contrast with photon-assisted or suppressed tunneling in weakly driven double-

well potentials. Firstly, our tunneling is completely dynamical, i.e., the tunneling barrier

vanishes in the absence of the drive. Secondly, and most importantly, our work extends the

coherent cancellation of tunneling to all the excited states in the well. The periodic resonance

condition ∆{K “ 2m, shared for the m ` 1 first pairs of excited levels, is independent

of the drive amplitude. Remarkably, under this multi-state resonance condition, the first

2pm` 1q oscillator states have a closed-form expression in the Fock basis (see supplement).

We further emphasize that the dynamical tunneling in our work is distinct from chaos-

assisted dynamical tunneling [149] observations made in ultracold atoms over three decades

ago [75, 149]; remarkably our strongly driven nonlinear system remains integrable. To the

best of our knowledge, our work corresponds to the discovery and the first demonstration of

the exact simultaneous cancellation of the tunnel splitting for the ground and excited states.

Our data featuring the incoherent dynamics can be qualitatively modeled by a Lindbladian

treatment that we present in the supplement, yet more research on the decoherence of driven

nonlinear driven systems is needed to get a quantitative agreement (see [153]).

As a resource for quantum information, the squeeze-driven Kerr oscillator for ∆ “ 0, was

identified in theory proposals by Cochrane, Milburn, and Munro [33] and Puri, Boutin, and

Blais [126] due to its exponential resilience to low frequency noise and was proposed for a

bosonic code, called the Kerr-cat qubit which we next survey. The code was implemented for

the first time in circuits [66].
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0.2 Background: the Kerr-cat qubit

Ultimately performing useful quantum tasks is a key motivation to control the quantum

properties of our effective Hamiltonian system. After all, the double-well system renders

itself naturally to encoding a qubit, as evidenced by the flux qubit [28], the fluxonium [101],

among many other solid state double-well qubits. In this section, we summarize the quantum

information processing tasks that have been realized thus far with the SKO, and compare

them with this thesis work.

The lowest eigenstate manifold of a double-well potential contains nearly degenerate and

orthogonal, and thus naturally suggests a qubit encoding. The phenomenon of quantum

tunneling under the barrier breaks the desired degeneracy though. However, when ∆ “ 0,

the ground states are exactly degenerate. This was first identified in theory proposals by

Cochrane, Milburn, and Munro [33] and Puri, Boutin, and Blais [126]. This property can be

understood by writing Eq. (0.9) for ∆ “ 0 into the factorized form [126]

Ĥ∆“0 “ ´Kpâ
:2
´ ε2{Kqpâ

2
´ ε2{Kq, (0.11)

from which it follows that the two coherent states | ˘ αy with α “
a

ε2{K, which are the

eigenstates of the annihilation operator â, are also degenerate eigenstates of Eq. (0.11).

Since Eq. (0.11) is negative-semidefinite and Ĥ∆“0| ˘ αy “ 0, these states are the ground

states. This property motivated the proposal in [126] to use this degenerate manifold in the

double-well system as a qubit. This bosonic encoding was implemented for the first time in

quantum superconducting circuits and titled the Kerr-cat qubit [66].

The original Kerr-cat qubit encoding is shown in Fig. 0.3. The Bloch sphere on the left

hand side (LHS) corresponds to the encoding for ε2 ‰ 0 and it reduces to the Bloch sphere

on the right hand side (RHS) corresponding to ε2 “ 0. The even and odd Schrödinger cat

states are taken to be in the north and south poles of the sphere4 and they adiabatically

4. Note that in the Bloch sphere displayed here, which is adapted from [51,66], the even and odd parity
cat-states lie along the Bloch sphere Z-axis, whereas in [126], these states lie along the X-axis.
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ϵ2 → 0

Figure 0.3: Bloch sphere of the Kerr-cat qubit, first introduced in [66, 126]. The Bloch
sphere on the left hand side (LHS), which corresponds to the encoding for non-zero ε2, has
the even and odd Schrödinger cat states in the north and south poles. It reduces to the Bloch
sphere on the right hand side, where the lowest two Fock states form north and south poles,
in the absence of the squeezing interaction.

map to the |0y and |0y Fock states of the Kerr oscillator as ε2 Ñ 0. A key motivation for

proposing this qubit encoding in [126] was that the coherent state lifetime, or TX , or the

transverse relaxation lifetime in the Kerr-cat qubit is exponentially enhanced as a function of

ε2, and the cost is a linear degradation of the cat state(s) lifetime, TY Z . We will discuss these

properties in greater detail in Chapter 2 and demonstrate it experimentally in Chapter 3.

The Kerr-cat qubit marked a paradigm shift in two concrete ways:

1. The prized longest lived mode is also the most nonlinear mode of the system, it is the

weakly nonlinear bosonic oscillator. This is orthogonal to other bosonic code encodings

such as the Gottesmann-Kitaev-Preskill (GKP) [19], the binomial encoding [78], or the

dissipative-cat encoding [96] where the longest lived mode is also the most linear one,

and any nonlinear mode is relegated to the role of ancilla.

2. The Kerr-cat qubit is the first quantum bosonic code encoding in a driven hamiltonian

nonlinear system. Over the recent years coherent, time-periodic modulation has been

established as a versatile tool for realizing novel Hamiltonians. This approach, known as

Floquet engineering [46], has been employed heavily in ultracold atoms to engineer new

quantum materials [3, 58], topological phases [166], Floquet time-crystals [176], many-

body localization (MBL) [1], and other exotic physics. Effective dynamics emerging
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from “Trotterizing” drives adds a new dimension of richness [58]. However, Floquet

engineering in superconducting quantum circuits had been heavily ignored until the

discovery of the Kerr-cat qubit.

The Kerr-cat qubit focused on the parameter ∆ “ 0, and the treatment was strictly

restricted to the ground state manifold of the SKO. It is natural to thus ask:

1. What causes the degeneracy of the qubit states at ∆ “ 0 in Eq. (0.9)? Is this a special

property of ∆ “ 0 or are there degeneracies to be discovered also at non-zero ∆?

0.3 Dissertation outline

Taking quantum information processing with continuous variable systems as our motivation,

we will begin straight away and introduce the effective Hamiltonian corresponding to the

Kerr nonlinear oscillator submitted to a squeezing interaction in Chapter 1, which we will call

the squeeze-driven Kerr oscillator (SKO). Then, we will present the various representations

and properties of the SKO in Chapter 2, specifically the operator space, quantum, semi-

classical, and classical phase space representations. Different representations are convenient

to understand different experimental observations, such as the spectroscopy, tunnel-driven

Rabi, and coherent- and cat-state lifetime measurements presented later. Next, in Chapter 3,

we will introduce the experimental setup that realizes the desired SKO effective Hamiltonian

in a SNAIL transmon superconducting circuit submitted to a fast-oscillating drive. We will

also discuss the readout of the SKO here. The main experimental results of this thesis are

presented in Chapters 4 and 5. In Chapter 4, we present observations on the sharp nulling

of tunnel-driven oscillations as a function of the frequency of the squeezing drive with a

periodicity given by twice the Kerr nonlinearity. In Chapter 5, we present measurements of

excited state spectroscopy of the SKO. We find the tunnel nulls in the ground state manifold

are also present in the excited state manifold. Furthermore, we present measurements

demonstrating an overall exponential reduction of tunneling in the excited state manifold as
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Figure 0.4: Dissertation roadmap. Black boxes indicate main chapter titles and brown boxes
indicate motivating questions. Arrows point to suggested prerequisite reading. Bidirectional
arrows indicate mutual chapter dependency. The main experimental results are presented in
Chapters 4 and 5.

a function of both the drive amplitude and its frequency. These two effects contribute to the

drastic enhancement of the transverse relaxation lifetime of the logical qubit encoded in the

ground state manifold of our oscillator as we show in Chapter 5. We model these lifetime

measurements in Chapter 6 with an effective Lindbladian that requires going beyond the

rotating wave approximation, and our treatment here is a natural extension of the effective

Hamiltonian theory. We discuss future directions, present proposals and open questions in

Chapter 7. B
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Chapter 1

The squeeze-driven Kerr oscillator

(SKO) implemented in a driven

superconducting circuit

In this chapter, we introduce the driven superconducting tunnel junction circuit in which

we experimentally engineer the squeeze-driven Kerr oscillator (SKO) effective Hamiltonian.

First, we introduce the superconducting circuit in the absence of the drive. Then, we will

examine its properties when submitted to a fast-oscillating drive, thus realistically modeling

our experiment. The main result of this chapter is an effective Hamiltonian that is obtained

by going beyond the rotating wave approximation and which governs the interesting dynamics

of our driven superconducting circuit.

1.1 Introducing the SNAIL transmon superconducting circuit

The superconducting circuit we use in our setup is a SNAIL transmon [49]. The word

SNAIL is an acronym for Superconducting Nonlinear Asymmetric Inductive eLement. Before

introducing the SNAIL transmon, we introduce the ordinary transmon.

A standard transmon [89,140], a widely used superconducting qubit that predates the
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A B

Figure 1.1: Circuit schematics of an ordinary transmon (panel A) and a SNAIL transmon
(panel B). Note that the gate voltage is omitted in the SNAIL transmon, as the shunting
array of Josephson junctions provides a conducting path to null out the offset charge across
the small junction.

SNAIL transmon, consists of a Josephson junction shunted by a large capacitance. The

transmon circuit Hamiltonian can be written as

Ĥ0 “ 4ECpN̂ ´Ngq
2
´ EJ cos ϕ̂ (1.1)

with N̂ and ϕ̂ being the reduced Cooper-pair number operator and reduced phase operator

across the junction, and rϕ̂, N̂ s “ i~, and the parameter Ng “ CgVg{2e is the gate-offset

charge across the junction.

Because the Josephson potential is an even function of the superconducting phase difference

ϕ, the nonlinearity provided in an ordinary transmon, to lowest order, is ϕ4, and thus the

transmon can be thought of, to lowest order, as a dipole circuit element with fourth-rank

nonlinearity, which implements four-wave mixing. This four-wave mixing in turn gives rise to

the Kerr effect, and ac Stark shift frequency dressing of the ordinary transmon as we will

see in Subsection 1.3. See Fig. 1.1A for a circuit representation of an ordinary transmon.

The circuit system of the ordinary transmon finds an analogue in the mechanical system of a

quantum pendulum [89, 140] and the correspondence between the systems in discussed in

Appendix A. Thus, we call the term proportional to EC the kinetic energy part and the term

proportional to EJ the potential energy part of the transmon.

A SNAIL transmon [49] consists of an ordinary transmon that is further shunted by an
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array of Josephson junctions. The resultant loop comprising of N large Josephson junctions

and a single smaller junction, with Josephson energies EJ, αEJ respectively, can be threaded

by a dc magnetic field Φext. At non-zero applied magnetic flux, the potential of the SNAIL

transmon, to lowest order, is ϕ3, and thus the SNAIL transmon can be thought of, to lowest

order, as a dipole circuit element with third-rank nonlinearity, which implements three-wave

mixing. Importantly, depending on the value of the dc magnetic field, the strength of the

three-wave mixing and four-wave mixing can be independently tuned. This independent

tunability of the Kerr nonlinearity without diminishing the three-wave mixing capabilities

will prove to be critical in our experimental implementation of the SKO as we discuss in

Chapter 3. For a circuit representation of the SNAIL transmon, see Fig. 1.1B. We write the

SNAIL transmon Hamiltonian as

Ĥ0 “ 4ECN̂
2
´ αEJ cospϕ̂´ ϕextq ´ nEJ cospϕ̂{nq. (1.2)

The circuit system of the SNAIL transmon finds an analogue in the mechanical system of

two pendula suspended by rotating gears whose gear ratios is n and where the pendulum

bob mass ratios is α. Thus, we call the term 9EC the kinetic energy part and the rest the

potential energy part of the SNAIL transmon. Equation (1.2) assumes a uniform phase drop

across every junction in the array, and the absence of phase slips in the array junctions. This

is valid when the Josephson energy is much larger than the shunting capacitive energy for all

the junctions [49,107]. See Fig. 1.2 for a sample scanning electron microscope (SEM) image

of a SNAIL transmon.

Performing a Taylor expansion of the potential energy part of Eqs. (1.1) and (1.2) about

the potential minimum ϕmin, which is 0 for a standard transmon and numerically obtained

for a SNAIL transmon, and further expressing ϕ̂ and N̂ in terms of creation and annihilation

operators, â: and â, allows for the the Hamiltonian in Eqs. (1.1) and (1.2) to be written in
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5.00um

Figure 1.2: Scanning electron microscope (SEM) image of a SNAIL superconducting circuit.
For this device, n “ 3 and α « 0.1 in Eq. (1.2). Note that the device presented in this figure
was not used in the experimental work presented in Chapters 3–5. For a schematic of the
device measured in the experiment, which consists of an array of two SNAIL-transmons, see
Fig. 3.1.

the bosonic basis as,

Ĥ0 “ ωoâ
:â`

ÿ

mě3

gm
m
pâ` â:qm,

â “
1

2

˜

ϕ̂

ϕzps

` i
N̂

Nzps

¸

,

(1.3)

where ϕzpsNzps “ 1{2, with Nzps denoting the zero point spread of the charge wavefunction,

co “ sinϕmin, ce “ cosϕmin, c1o “ sinppϕmin ´ ϕextq{Mqq, and c1e “ cosppϕmin ´ ϕextq{Mq. For

expressions for ωo, gm, and ϕzps from the circuit parameters of Eqs. (1.1) and (1.2), see

Table 1.1.

Equation (1.3) models the general bosonic oscillator system, and forms the archetype of

many Josephson nonlinear circuits, which includes the driven rf-SQUID [31], c-shunt flux

qubit [171], among others.

Having gone from the circuit representation to the bosonic oscillator representation, we

are now prepared to add the driving term and perform successive frame transformations to

find the effective Hamiltonian.
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Parameter Ordinary transmon SNAIL transmon

ϕzps

´

2EC
EJ

¯1{4 ´

2EC
EJpαce`c1e{nq

¯1{4

ωo
?

8ECEJ

a

8ECEJ pαce ` c1e{nq

g2m
p´1qm`1

2p2m´1q!
ωoϕ

2m´2
zps

p´1qm`1

2p2m´1q!
αce`c1e{n

2m´2

αce`c1e{n
ωoϕ

2m´2
zps

g2m`1 0 p´1qm`1

2p2mq!
αco`c1o{n

2m´1

αce`c1e{n
ωoϕ

2m´1
zps

Table 1.1: Circuit parameters to bosonic oscillator parameters translation table.

1.2 A SNAIL transmon circuit submitted to a rapid drive

To compute the static effective squeeze-driven Kerr oscillator Hamiltonian, we consider the

Hamiltonian of a periodically driven SNAIL transmon oscillator,

Ĥptq “ Ĥ0 ` Ĥdptq,

“ ωoâ
:â`

ÿ

mě3

gm
m
pâ` â:qm ´ iNzpsΩd cosωdtpâ´ â

:
q,

(1.4)

where the oscillator is characterized by Ĥ0 given by Eq. (1.3) with the SNAIL transmon

coefficients provided in Table 1.1. The periodic drive is characterized by Ĥdptq with the

parameters Ωd and ωd characterizing the drive amplitude and frequency. Note that the

drive coupling to the charge operator N̂ “ ´iNzpspâ ´ â:q is motivated to model the

engineered capacitive coupling in the experiment. We focus on the case of a periodic drive

for simplicity but we note that our treatment can be generalized to include quasiperiodic or

non-monochromatic drives. Furthermore, to generate the desired squeezing interaction in the

SKO, the second subharmonic of the drive at frequency ωd{2 has to lie in the vicinity of the

oscillator resonance, i.e., ωd{2 « ωo.

In general, a driven nonlinear system, such as the periodically driven SNAIL transmon
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Eq. (1.4), does not admit closed form solutions for its time evolution. But remarkably, under

a rapid drive, the dynamics can be mapped to that generated by a time-independent effective

Hamiltonian. This “Kamiltonian” [59] describes a slow dynamics of the system, corrected

only perturbatively by a fast micromotion. Over the last century, different perturbation

methods have been developed to construct such effective Hamiltonians and have succeeded

in explaining several important nonlinear dynamical phenomena [10, 44, 45, 69, 116, 174].

However, these perturbation methods can hardly be carried out beyond the lowest orders

in practice and a clear understanding of the connection between many of these methods is

missing [17, 130]. The differences are exacerbated by the wide disparity in starting points of

the classical [15,91,116] and quantum methods [23,45,46,111,114,121,170,174].

In Appendix B, we construct a time-independent Kamiltonian K̂ perturbatively by seeking

a pertinent canonical transformation. The small parameter of the expansion is the ratio

of the typical rate of evolution of the driven system to the frequency of the driving force.

We present a recursive formula for the Kamiltonian that allows its calculation to arbitrary

order and is well-suited for symbolic manipulation. It can be applied indifferently to the

classical and quantum cases, the change involving only a low-level subroutine of the symbolic

algorithm. Our result unifies existing methods that have been developed solely in either the

classical or quantum regimes.

We illustrate our formulation by applying our recursive formula Eq. (B.9a) to the rapidly

driven SNAIL circuit Hamiltonian in Subsection 1.3.

Preparatory frame transformations

Before performing the perturbative analysis presented in Appendix B to find the effective

Hamiltonian, we perform two preparatory frame transformations on the Hamiltonian Eq. (1.4)

of the SNAIL circuit Hamiltonian. These frame transformations will yield a Hamiltonian

whose typical rate of evolution is much smaller than the frequency of the driving force.
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Displacement transformation

The first is a displacement unitary transformation. Specifically, the oscillator oscillates in phase

with the drive, at the drive frequency. We reference the oscillator to the trivial linear response

by doing âÑ â` αlinptq, thus bringing the concerned nonlinear dynamics of the oscillator

into focus. This displacement is achieved by the unitary operator Ûptq “ exppαlinâ
: ´ α˚linâq,

where αlin is a time-dependent function that is to be determined. Under the time-dependent

unitary, from Eq. (B.5), we have, up to coordinate-independent terms:

Ĥ Ñ Û :pĤ ´ iBtqÛ

ωoâ
:â`

ÿ

mě3

gm
m
pâ` â:qm

´ iNzpsΩd cosωdtpâ´ â
:
q Ñ

ωopâ
:
` α˚linqpâ` αlinq `

ÿ

mě3

gm
m
pâ` â: ` αlin ` α

˚
linq

m

´ iNzpsΩd cosωdtpâ´ â
:
q ` ip 9αâ: ´ α˚âq.

(1.5a)

Now, to find the linear response, we set gm “ 0, collect the coefficients of â:, and solve for

αlin as

9αlin “ `iωoαlin ´NzpsΩd cosωdt, (1.5b)

which yields

αlin “
iΩdNzps

2pωd ´ ωoq
e´iωdt ´

iΩdNzps

2pωd ` ωoq
eiωdt, (1.5c)

and furthermore, we define

αlin ` α
˚
lin “

2iΩdNzpsωd
ω2
d ´ ω

2
o

e´iωdt ´
2iΩdNzpsωd
ω2
d ´ ω

2
o

eiωdt

“ Πe´iωdt ´ Π˚eiωdt,

(1.5d)
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where in the last line of Eq. (1.5d), we use the condition ωd « 2ωo, and further defined

Π “ iΩdNzpsωd{pω
2
d ´ ω

2
oq « 2iΩdNzps{p3ωoq, the drive amplitude in the displaced frame.

With this, we write the rapidly drive SNAIL Hamiltonian Eq. (1.4), after the displacement

unitary transformation as

Ĥptq “ ωoâ
:â`

ÿ

mě3

gm
m
pâ` â: ` Πe´iωdt ` Π˚eiωdtqm. (1.5e)

Rotating frame transformation

The second unitary transformation is a rotating frame transformation of the oscillator at ωd{2.

We emphasize that to perform this rotating frame transformation, one needs to know apriori

that the interesting dynamics occurs at the second subharmonic of the drive frequency, which

corresponds to a vicinity of the oscillator’s plasma frequency ωo. As we discuss in Chapter 2,

this nontrivial dynamics corresponds classically to the period doubling bifurcation that the

oscillator undergoes. The associated unitary operator is Û “ expp´ipωd{2qtâ
:âq transforms

the displaced-frame Hamiltonian as

Ĥptq “ ∆bareâ:â`
ÿ

mě3

gm
m
pâe´iωdt{2 ` â:eiωdt{2 ` Πe´iωdt ` Π˚eiωdtqm, (1.6a)

where ∆o :“ ωo ´ ωd{2 corresponds to the detuning between the oscillator plasma frequency

and the second subharmonic of the drive. As we will see next, in the effective Hamiltonian,

this bare detuning will have a dressing contribution from the mixing of nonlinear terms in

Eq. (1.6a).

1.3 The effective Hamiltonian of a rapidly driven SNAIL transmon

circuit oscillator

After the preparatory steps introduced in Subsections 1.1–1.2 and Appendix B, we will now

apply the recursive formula presented in Appendix B and find the static effective Hamiltonian
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of a rapidly driven SNAIL circuit oscillator. Importantly, after the preparatory frame

transformations, the typical rate of evolution of Eq. (1.6a), which is controlled by ∆o and

gm{m is much smaller than the second subharmonic of the drive ωd{2 « ωo. This condition

translates to demanding ϕzps ! 1, which forms the small parameter of our expansion. We

recall from Table 1.1 the perturbative hierarchy of our circuit nonlinearities as gm “ Opϕm´2
zps q.

We further take ∆o “ Opϕzpsq.

Order 1—

At order 1 in ϕzps, we apply the recursive formula Eq. (B.9a) or equivalently the grid Fig. B.2,

to find

K̂p1q “ Ĥp1q
` 9̂Sp1q. (1.7a)

By demanding Ŝp1q to be a primitive of ´oscpĤq, i.e.

Ŝp1q “ ´

ż

dtoscpĤq, ùñ
Ŝp1q

i
“

ÿ

m‰0

Hm

mωd{2
eimωdt{2. (1.7b)

We find K̂p1q to be simply the time-average of Ĥ over one period T “ 4π{ωd:

K̂p1q “ Ĥp1q

“ ∆oâ
:â` ε2â

:2
` ε2â

2,

(1.7c)

where we recall ∆o “ ωo ´ ωd{2, ε2 “ g3Π. In Eq. (1.7c), we have taken ε2 to be real without

loss of generality: the absolute phase of the drive is an arbitrary choice and determines

the phase of ε2. Note that taking the ordinary rotating wave approximation (RWA) over

Eq. (1.4) will yield the order 1 Kamiltonian Eq. (1.7c). In this sense the RWA corresponds

to the lowest order result of our recursive formula Eq. (B.9a), which when carried out to all

orders corresponds to a canonical transformation. Note that, for simplicity, we have set the

integration constant of Sp1q to be zero and so we shall do for higher orders.
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It is important to remark that the operators â:â, â:2, and â2 form a Lie algebra, which

gives rise to important mathematical applications [81].

Order 2—

Continuing the calculation, at order 2 in ϕzps, using the grid Fig. B.2, we have:

K̂p2q “ Ĥp2q
` Ŝp2q `

1

i
rŜp1q, Ĥp1q

s `
1

2!

1

i
rŜp1q, 9̂Sp1qs. (1.8a)

By plugging in the expression of Ŝp1q found from Eq. (1.7b) into Eq. (1.8a) and de-

manding that Ŝp2q “ ´
ş

dtoscpĤp2q ` 1
i
rŜp1q, Ĥp1qs ` 1

2!i
rŜp1q, 9̂Sp1qsq we find the following

time-independent expression for K̂p2q as:

K̂p2q “ ∆p2qâ:â´Kp2qâ:2â2

“ p∆
p2q
Lamb `∆p2q

ac qâ
:â´Kp2qâ:2â2,

, (1.8b)

where

∆
p2q
Lamb “ 3g4 ´

20g2
3

3ωo

∆p2q
ac “

ˆ

6g4 ´
9g2

3

ωo

˙

|Π|2

Kp2q
“

10g2
3

3ωo
´

3g4

2
.

(1.8c)

In Eq. (1.8c), ∆
p2q
Lamb corresponds to the Lamb shift dressing at order 2, i.e., dressing of the

plasma frequency of the oscillator due to the non-commutativity of â and â:. To distinguish

the Lamb-shifted frequency of the oscillator from the plasma frequency ωo, we introduce

ωa “ ωo `∆Lamb, and this corresponds to the measured transition frequency between the

lowest eigenstates of the SNAIL circuit oscillator. The parameter ∆ac is the ac Stark shift

frequency dressing, i.e., the drive-power dependent frequency shift of the oscillator. At

order 2, this term is linear in the drive power but acquires nonlinear corrections at higher

orders in perturbation theory as we will see next. The parameter K corresponds to the Kerr
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nonlinearity of the oscillator. We have taken the sign to be negative because in transmon-like

superconducting circuits g3 “ 0, and g4 ă 0, thus by the chosen convention K conveniently

takes a positive value. However as is evident in Eq. (1.8c), for the SNAIL transmon, the

relative signs of g4 and g2
3{ωo determines the sign of K.

Equation (1.8c) already highlights why it is critical to go beyond the RWA to find the

effective Hamiltonian of the rapidly driven SNAIL transmon, and why simply expanding

the Josphson junction potential to a high Taylor series order is insufficient. By only Taylor

expanding the potential and performing the RWA, the term
10g23
3ωo

contributing towards the

Kerr nonlinear coefficient would be missed out, and an attempt of extracting the Kerr

nonlinear coefficient of the SNAIL transmon would yield incorrect results [144]. In this sense,

to capture the correct coefficients in the effective Hamiltonian, one needs to both Taylor

expand the potential to high enough order and account for the beyond RWA terms from

lower orders [154,169]. Apart from the method presented in Appendix B, we have developed

a diagrammatic approach to compute the effective Hamiltonian of drive Josephson oscillators.

A discussion on this is beyond the scope of this dissertation, but will be exhaustively covered

in [169].

Order 3—

Applying the recursive formula Eq. (B.9a) at order 3, we find

K̂p3q “ ∆p3qâ:â´Kp3qâ:2â2
` â:2ε̂

p3q
2 ` ε̂

:p3q
2 â2

“ ∆p3qâ:â´Kp3qâ:2â2
` â:2pε

p3q
2,Π ` ε

p3q
2,n̂â

:âq ` pε
˚p3q
2,Π â

2
` ε

˚p3q
2,n̂ â

:âqâ2

(1.9a)
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with ∆p3q “ ∆
p3q
Lamb `∆

p3q
ac , where

∆
p3q
Lamb “

20

3

∆og
2
3

ω2
o

∆p3q
ac “

17

2

∆og
2
3

ω2
o

|Π|2

Kp3q
“ ´

10

3

∆og
2
3

ω2
o

ε
p3q
2,Π “

ˆ

6g5 ´
141

10

g3g4

ωo
`

221

180

g3
3

ω2
o

˙

|Π|2Π`

ˆ

6g5 ´
63

4

g3g4

ωo
`

1

3

g3
3

ω2
o

˙

Π

ε
p3q
2,n̂ “

ˆ

4g5 ´
21

2

g3g4

ωo
`

2

9

g3
3

ω2
o

˙

Π.

(1.9b)

In Eq. (1.9a), we have introduced an operator-valued squeezing-drive amplitude ε̂
p2q
2 . It

includes a photon number-independent part and a photon-number dependent part, i.e.,

ε̂
p2q
2 “ ε

p2q
2,Π ` ε

p2q
2,n̂â

:â. With this notation, it is clear that the effective Hamiltonian up to

the third order contains only three types of terms: harmonic-type proportional to â:â,

Kerr-type proportional to â:2â2, or squeezing-type proportional to pâ:2 ` â2q.1 It is worth

stressing on this point because the main challenge with engineering parametric interactions

by driving a superconducting circuit is that unwanted interactions accompany and often

proliferate uncontrollably along with the desired interaction as soon as one goes beyond the

RWA [138,169]. But remarkably, in the SKO, these uncontrolled interactions are absent even

beyond the RWA. The first occurrence of a term that is neither a squeezing, nor a harmonic,

nor a Kerr-type term, will appear at order 4 as we see next.

Order 4—

At order 4, we find

K̂p4q “ ∆p4qâ:â´Kp4qâ:2â2
`K

p4q
6 â:3â3

` â:2pε
p4q
2,Π ` ε

p4q
2,n̂â

:âq ` pε
˚p4q
2,Π ` ε

˚p4q
2,n̂ â

:âqâ2
` ε

p4q
4 â:4 ` ε

˚p4q
4 â4,

(1.10a)

1. Note that the term proportional to pâ:2 ` â2q is also referred to as a pairing interaction/two-photon
drive in the condensed matter physics/nuclear physics communities [79] in contrast with pâ:âq2, which is
referred to as the photon-photon interaction.
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with ∆p4q “ ∆
p4q
Lamb `∆

p4q
ac , where

∆
p4q
Lamb “ 15g6 ´

220

3

g3g5

ωo
´ 18

g2
4

ωo
` 188

g2
3g4

ω2
o

´
20

3

∆2
og

2
3

ω3
o

(1.10b)

∆p4q
ac “

ˆ

30g6 ´
644

5

g3g5

ωo
` 9

g2
4

ωo
`

15113

150

g2
3g4

ω2
o

`
297947

4050

g4
3

ω3
o

˙

|Π|4 (1.10c)

`

ˆ

60g6 ´ 232
g3g5

ωo
´

108

5

g2
4

ωo
`

1342

5

g2
3g4

ω2
o

´
113

45

g4
3

ω3
o

´
33

4

∆2
og

2
3

ω3
o

˙

|Π|2 (1.10d)

Kp4q
“ p´30g6 ` 116

g3g5

ωo
`

54

5

g2
4

ωo
´

671

5

g2
3g4

ω2
o

`
113

90

g4
3

ω3
o

q|Π|2 (1.10e)

` p´15g6 ` 84
g3g5

ωo
`

153

8

g2
4

ωo
´ 225

g2
3g4

ω2
o

`
10

3

∆2
og

2
3

ω3
o

q (1.10f)

K
p4q
6 “

10

3
g6 ´

56

3

g3g5

ωo
´

17

4

g2
4

ωo
` 50

g2
3g4

ω2
o

(1.10g)

ε
p4q
2,Π “

ˆ

10669

600

∆og3g4

ω2
o

`
46313

5400

∆og
3
3

ω3
o

˙

|Π|2Π`

ˆ

353

16

∆og3g4

ω2
o

`
521

36

∆og
3
3

ω3
o

˙

Π (1.10h)

ε
p4q
2,n̂ “

ˆ

353

24

∆og3g4

ω2
o

`
521

54

∆og
3
3

ω3
o

˙

Π (1.10i)

ε
p4q
4 “

5

2
g6 `

2

15

g3g5

ωo
´

33

4

g2
4

ωo
´

101

24

g2
3g4

ω2
o

`
2009

162

g4
3

ω3
o

. (1.10j)

At order 4, we see the first terms proportional to pâ:4 ` â4q. Indeed, these would occur

for strong drives and are undesirable terms in the SKO effective Hamiltonian Eq. (0.9).

Yet the coefficient of this term has a nontrivial dependence on the circuit oscillator’s bare

nonlinearities. By smartly engineering the bare nonlinearities of the circuit or introducing

more knobs other than the external flux to tune them, one may null the effect of these terms.

This level of circuit engineering is beyond the scope of the current work. With the recursive

formula Eq. (B.9a) and the grid Fig. B.2, one has the tools to make informed decisions

for circuit design. We used a computer algebra system [146] to automate the calculation

displayed above. Although we will stop the calculation here, one can in principle continue

to higher orders. Our formulation [154] overcomes limitations of existing time-dependent

perturbation methods [130] allowing computations beyond the RWA that were impossible

before.
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In conclusion, we have theoretically examined in detail, how rapidly driving a SNAIL

transmon superconducting circuit yields an effective Hamiltonian of the squeeze-driven Kerr

oscillator (SKO) Eq. (0.9), the main object of interest. Treating the driven circuit beyond

the RWA, we saw the emergence of terms which simply dressed the coefficients ∆, K, and

ε2 in Eq. (0.9). By going to even higher order, we saw terms proportional to â:3â3, and

pâ:4 ` â4q. We expect the contribution from these terms to be negligible for weak drives

since g6 is proportional to ωoϕ
4
zps ! 1, yet for sufficiently strong drives the effects of these

terms may be important to consider, but this is beyond the scope of the current work. In a

different work [169], we provide a comprehensive characterization of beyond-RWA phenomena,

specifically multiphoton resonances, which are responsible for anamolous state transitions

and play a major role in qubit readout limiting fidelities [10,138,142,177].

Before discussing how we experimentally engineer and control the effective Hamiltonian

Eq. (0.9), we next discuss some of its unique properties and representations. These properties

will be important to understand the experimental results presented in Chapter 3.

.
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Chapter 2

Representations and properties of the

SKO

In this chapter, we will discuss in detail the classical, semi-classical, and quantum represen-

tations of the effective Hamiltonian of the squeeze-driven Kerr oscillator (SKO), obtained

by rapidly driving the SNAIL transmon superconducting circuit (see detailed modeling in

Chapter 1). As we will see, different representations are convenient to understand different

propertie. There are two properties we will investigate as a function of the drive frequency

and the drive amplitude: spectral degeneracies, and the inter-well tunneling amplitude. As

we uncover the SKO’s tunneling properties, we will also contrast them with the tunneling

properties of an ordinary double-well potential. Relevant literature is surveyed along the way.

Let us reintroduce the effective Hamiltonian of the squeezed-driven Kerr oscillator Eq. (0.9),

the main object of our interest as

Ĥ “ ∆â:â´Kâ:2â2
` ε2pâ

:2
` â2

q, (2.1)

where without loss of generality (WLOG) we have taken ε2 to be real-valued.
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2.1 Phase space representations of the SKO effective Hamiltonian

We obtain the phase space formulation of Eq. (2.1) by taking the invertible Wigner transform

[35] W as

x̂ÑWtx̂u “ x; p̂ÑWtp̂u “ p;

âÑWtâu “ a “ px` ipq{
?

2λ; â: ÑWtâ:u “ a˚;

â:âÑ a˚ ‹ a “ a˚a´
1

2
“
x2 ` p2

2λ
´

1

2
;

â:2â2
Ñ a˚2

‹ a2
“ a˚2a2

´ 2a˚a`
1

2

“
px2 ` p2q2

4λ2
´
px2 ` p2q

λ
`

1

2
;

â:2 ` â2
Ñ a˚2

` a2
“
px2 ´ p2q

λ
,

(2.2)

where the Groenewold star product [67] is given by

WtÂB̂u “ A ‹B “ A exp

ˆ

1

2
p
ÐÝ
B a
ÝÑ
B a˚ ´

ÐÝ
B a˚

ÝÑ
B aq

˙

B. (2.3)

At this point, λ is a dimensionless rescaling parameter. We will connect it with the Hamiltonian

parameters later, while discussing the classical limit (λÑ 0) of our system, and thereby give

it physical significance. The Moyal bracket [35, 115] over a and a˚ is defined as ttA,Buua,a˚ “

A ‹B ´B ‹ A so that we have tta, a˚uu “ 1. For a pedagogical exposition on the phase space

formulation of quantum mechanics, we refer the reader to Appendix E and [24, 35, 76]. With

Eq. (2.2), we write Eq. (2.1) in the phase space formulation of quantum mechanics, up-to

coordinate-independent terms, as

H “ p∆` 2Kq

ˆ

x2 ` p2

2λ

˙

´K

ˆ

x2 ` p2

2λ

˙2

` ε2

ˆ

x2 ´ p2

λ

˙

“ ∆o

ˆ

x2 ` p2

2λ

˙

´K

ˆ

x2 ` p2

2λ

˙2

` ε2

ˆ

x2 ´ p2

λ

˙

,

(2.4a)
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where we recall that ∆o “ ∆` 2K “ ωo´ωd{2 is the detuning between the oscillator plasma

frequency and half the drive frequency. We further rescale Eq. (2.4a) by ´K{λ2 so as to have

a coefficient of order 1 for the nonlinear term and rearrange Eq. (2.4a) as

´Hλ2

K
“

ˆ

x2 ` p2

2

˙2

´
2ε2λ

K

x2

2

ˆ

1`
p∆` 2Kq

2ε2

˙

`
2ε2λ

K

p2

2

ˆ

1´
p∆` 2Kq

2ε2

˙

. (2.4b)

By choosing the scale of phase space λ “ K{2ε2 Eq. (2.4b) becomes

´Hλ2

K
“

ˆ

x2 ` p2

2

˙2

´
x2

2

ˆ

1`
∆

2ε2
` 2λ

˙

`
p2

2

ˆ

1´
∆

2ε2
´ 2λ

˙

. (2.4c)

2.2 Classical limit

The term proportional to λ in Eq. (2.4c) involves a commutator, and corresponds to the

Lamb shift. The classical limit then consist in dropping this term. This is valid for λ !

minp∆{2ε2, 1q and translates to ∆{K, ε2{K " 1. The classical limit equivalently corresponds

to equating ∆ “ ωa ´ ωd{2 to ∆o “ ωo ´ ωd{2, thus neglecting the Lamb shift correction to

the oscillator frequency. We thus write the classical limit1 of Eq. (2.4c) as

Hcl “ ´
K

λ2

«

ˆ

x2 ` p2

2

˙2

´
x2

2

ˆ

1`
∆

2ε2

˙

`
p2

2

ˆ

1´
∆

2ε2

˙

ff

. (2.4d)

For λ “ 1, we get

Hcl

K
“ ´

ˆ

x2 ` p2

2

˙2

`
x2

2

ˆ

∆

K
´

2ε2
K

˙

´
p2

2

ˆ

´
∆

K
`

2ε2
K

˙

(2.4e)

“
∆

K
a˚a´ a˚2a2

`
ε2
K
pa˚2

` a2
q, (2.4f)

1. In the absence of dissipation, the metapotential acquires two wells as soon as ε2, ∆ ą 0, i.e. there is no
threshold for bifurcation of the driven oscillator. In the presence of dissipation, this threshold is finite and set
by ε2{K ą γ{p4Kq as derived in Eq. (2.6d).
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Figure 2.1: Classical period doubling phase diagram in the parameter space of ∆{K and
ε2{K. Note that the classical limit corresponds to taking ∆ “ ∆o “ ωo´ωd{2, thus neglecting
the Lamb shift correction to the oscillator frequency. Different phases marked by color are
characterized by the number of nodes in the classical metapotential and we refer to them
as the single-, double-, and triple-node phases. Each phase is associated with characteristic
metapotential surfaces, the constant energy contour lines of which are shown as insets. The
nodes and saddle points are marked in green and red respectively in Fig. 2.1. The phases
containing insets with more than one node correspond to regions in parameter space where
the oscillator has bifurcated.

We call the surface for H in Eq. (2.4a) the metapotential of the squeeze-driven Kerr

oscillator (SKO), and the surface obtained by taking the classical limit for H, Hcl in Eq. (2.4e),

as the classical metapotential.

The classical metapotential corresponding to Eq. (2.4e) is spanned by two parameters

∆{K and ε2{K. The parameter space of ∆{K and ε2{K is divided by two phase transitions

located at ∆ “ ˘2ε2. Different phases are characterized by the number of nodes in the

classical metapotential and we refer to them as the single-, double-, and triple-node phases.

These phases correspond to different metapotential topologies. We show them as contour line

insets in Fig. 2.1A, representing classical orbits. The single-node phase occurs for ∆ ă ´2ε2,

and presents only one metapotential well. For ∆ ě ´2ε2, the oscillator has bifurcated and

the metapotential acquires two wells. In the presence of dissipation, these wells house stable

nodes (attractors). The emergent ground state manifold has been exploited, for ∆ “ 0, in

the Kerr-cat qubit [51, 66]. In the interval ´2ε2 ď ∆ ă 2ε2, an unstable node (saddle point)

appears at the origin. For ∆ ě 2ε2, the saddle point at the origin splits into two saddle points

and an attractor reappears at the origin. The barrier height of the classical metapotential is

given by p∆` 2ε2q
2{4K in the double-node phase and by 2ε2∆{K phase.
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Classical limit in the presence of dissipation

In Fig. 2.2, we present the modification of the period doubling phase diagram under dissipation.

In the absence of dissipation, motion on the classical metapotential surface would simply

form closed contours as indicated with the insets in Fig. 2.1. In the presence of dissipation,

the decay towards the origin of phase space is captured to leading order by making the

Hamiltonian complex-valued as:

Hcl “

´

∆´ i
γ

2

¯

a˚a´Ka˚2a2
` ε2pa

˚2
` a2

q, (2.5)

and γ represents the damping rate. We sketch the procedure to obtain Eq. (2.5) from

first principles here but leave the detailed derivation as an exercise. Consider a nonlinear

oscillator and write down its equations of motion with Eq. (2.4f) being the Hamiltonian and

an additional velocity-dependent damping term with coefficient γ. Using complex-coordinates

(a, a˚), symmetrizing the dissipation, and further performing a rotating wave approximation

(RWA) yields Eq. (2.5). This treatment also holds to capture the “quantum trajectory”

Lindblad dynamics in the absence of quantum jumps. For a more elaborate treatment of

the dissipative evolution of our experimental system, see Chapter 6. Similar classical period

doubling phase diagrams can be found in [144,167,178].

To find the location of the attractors in the presence of dissipation, we find the derivative

of the complex-Hamiltonian in steady state and set it to zero as

i 9a “ Ba˚Hcl “ 0

ùñ

´

∆´ i
γ

2

¯

a´ 2Ka˚a2
` 2ε2a

˚
“ 0.

(2.6a)

Defining a “ reiθ, and ρ “ r2, we solve for r as

´

∆´ i
γ

2

¯

r ` 2ε2re
´2iθ

“ 2Kr3. (2.6b)
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Figure 2.2: A Schematic representation of Eq. (2.6c) in the ∆{K, and ε2{K parameter
space for single-node, double-node, and triple-node phases. The left-hand-side of Eq. (2.6c)
represents a parabola in ρ and the right-hand-side of Eq. (2.6c) represents a constant line.
B Classical period doubling phase diagram in the parameter space of ∆{K and ε2{K for
γ{K “ 1. The phase marked I represents the single-node phase where the associated classical
metapotential has a single extremum. The phase marked II represents the double-node phase
where the oscillator has bifurcated and the classical metapotential has two nodes, with the
origin being a saddle point. The phase marked III represents the triple-node phase where
the associated classical metapotential has three nodes and two saddle points, with the origin
being a node. The nodes and saddle points are marked in green and red respectively in
Fig. 2.1.

The solution r “ 0 corresponding to the origin is one solution for Eq. (2.6b). The other

nontrivial solution is given by solving

ˆ

∆

K
´ 2ρ

˙2

`

ˆ

γ{2

K

˙2

“

ˆ

2|ε2|

K

˙2

, (2.6c)

The nontrivial solutions for ρ is given as

ρ “
∆

K
¯

d

ˆ

2ε2
K

˙2

´

´ γ

2K

¯2

(2.6d)

Nontrivial solutions to ρ will exist iff the nonlinear squeezing drive amplitude counteracts

the dissipation strength, i.e.,

4|ε2| ě γ. (2.6e)
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Equation (2.6c) and Fig. 2.2 clarify the meaning of the classical limit in the presence of

dissipation γ. The left hand side (LHS) of Eq. (2.6c) is a parabola in ρ in the ∆{K, ε2{K

plane, whose X-offset is dictated by ∆{K2, and Y-offset is dictated by the damping relative to

the nonlinearity: ppγ{2q{Kq2. The right hand side (RHS) represents a constant line, Y-offset

by p2|ε2|{Kq
2.

A B C

Figure 2.3: A Real, B imaginary components, and C total velocity field representing the
full nonlinear dynamics on the classical metapotential surface Eq. (2.7) of the SKO. The
parameters are taken to be ∆{K “ 11, γ{K “ 0.1, and ε2{K “ 4. From A-C, the color
corresponds to the magnitude of the velocity vector and the arrows show its flow lines. The
coordinates x and p correspond to the position and momentum in a time-averaged displaced
frame rotating at half the drive frequency. A Flow lines of the velocity field attributed to the
real part of the classical metapotential. In the absence of dissipation, the flow lines reduce
to stationary orbits, with the arrow representing the direction of flow along the orbit. The
positions of the nontrivial nodes and saddles are marked in green and red respectively. B
Flow lines of the velocity component attributed to the imaginary part of the metapotential.
Under the driving modeled Chapter 1, to leading order, the bifurcation only occurs in the real
part of the metapotential, and thus the imaginary part only has an extremum at x “ 0, p “ 0,
however, there are driven-dissipative operations that create bifurcations in this component
as well [96]. (c) Vectorial sum of A and B according to Eq. (2.7) that puts the real and
imaginary parts of the metapotential on equal footing. Dissipation causes the nodes (saddle)
to attract (repel) neighboring trajectories in phase space, and to leading order only causes
them to acquire a phase given by θ “ 1

2
arctan´γ{p2p∆´ 2Kρqq.

To formally obtain the motion on the metapotential surface, it is convenient to decompose

Hcl into its constituent real and imaginary parts, i.e., Hcl “ RpHclq ` IpHclq. The velocity

2. The only change in this analysis when the ac Stark shift into account is that ∆ undergoes a dressing.
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vector ~v of any point px, pq on such a surface is thus given by

~v “ p 9x, 9pq “

ˆ

BRpHclq

Bp
,´
BRpHclq

Bx

˙

`

ˆ

BIpHclq

Bp
,
BIpHclq

Bp

˙

“ ∇RpHclq ˆ n̂`∇IpHclq

(2.7)

where n̂ represents a unit vector normal to the px, pq plane and x, p, and n̂ form a right-handed

three-dimensional coordinate system.

In Fig. 2.3, we draw the velocity field under Eq. (2.5) for the period-doubling bifurcation,

in the triple-node phase for ∆{K “ 11, γ{K “ 0.1, and ε2{K “ 4. The coordinates

x “ pa ` a˚q{
?

2 and p “ ´ipa ´ a˚q{
?

2 represent the position and momentum in a time-

averaged displaced frame rotating at the second subharmonic of the drive, ωd{2. The color

represents the magnitude of the velocity vector and arrows represent flow lines. The velocity

vector ~v “ p 9x, 9pq of any point within the metapotential Hcl can be broken down as the sum

of two velocity components as shown in Eq. (2.7). In A, we show the component of the

velocity field that is attributed to the real part of Hcl: ∇RpHclqˆ n̂ where n̂ represents a unit

vector perpendicular to the direction of flow. This component, which informs about the non-

dissipative flow, yields stationary orbits around the nodes and saddles, marked in green and

red respectively. B Component of the velocity field that is attributed to the imaginary part

of Hcl: ∇IpHclq. To leading order here, dissipation counteracts the bifurcation, causing the

velocity vectors to point radially inward; however it is possible to create nontrivial bifurcated

steady states, not only in RpHclq but also in IpHclq by dissipation engineering [96,113]. In

Fig. 2.3C, we show the total velocity field obtained by vector addition of Fig. 2.3A and

Fig. 2.3B. When dissipation is accounted for, the node transforms to an attractor, since

neighboring points in phase space are drawn towards it. Moreover, the vectorial addition

dresses the points of the nodes and saddles so that the nodes on the X-axis in Fig. 2.3A ,

now acquire a phase given as tan 2θ “ ´γ{2p∆´ 2Kρq.

To summarize, the metapotential governs the effective dynamics of the driven-(dissipative)-
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nonlinear quantum system. Furthermore, as customary, we plot ´H rather than H to respect

the familiar notion that in the presence of dissipation, stable equilibria correspond to well-

bottoms rather than hill-tops.

The name metapotential warrants a special name because unlike a true potential whose

gradient yields a force, the gradient of the metapotential yields a velocity as we discuss

next. Hence, counter-intuitively, both its maximum and minimum extremal points could

attract neighboring points in phase space unlike a true potential function. Although this

object has been used in previous nonlinear dynamics literature [44, 116, 167,168], to our best

knowledge, tools to compute the metapotential and its classical limit have been developed

for the simplest nonlinear dynamics phenomena to the lowest orders such as the period

doubling bifurcation, but these methods are too tedious to be generalized. The value of

the treatment in Appendix B is its ease of extension to higher order bifurcations that occur

in a driven-dissipative nonlinear oscillator. This object not only reveals intuition about

these novel dynamical phenomena, but computing the metapotential is also of practical

value; constructing the metapotential forms the first step to be accomplished before actively

controlling/engineering it in experimental systems [51,152]. In [169], we have developed an

alternate Feynman diagram-like approach to compute the effective Hamiltonian of driven

bosonic oscillators.

2.3 Action quantization of the SKO metapotential: a semiclassical

treatment

With the classical analysis presented so far, we have explored in depth the properties of the

metapotential surface in the classical limit. It is natural to ask, how do the surface properties

inform the quantum behaviour of the oscillator? In this section, we present a semi-classical

phase diagram of the squeeze-driven Kerr oscillator, to count the number of excited states

that have sunk under the barrier. Following the Einstein-Brillouin-Keller method [70], which

generalizes the notion of Bohr orbits, we quantize the action enclosed in the well below the
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height of the barrier and obtain the number of in-well excited states. The picture from Bohr

quantization will be useful to understand the excited state spectrum and tunneling properties

that we measure in the experiment. Another semiclassical result that we will present is

a WKB calculation of the tunnel splitting in the quantum double-well system modeling

the SKO. This WKB analysis of the SKO is an adaptation of the result of Marthaler and

Dykman [102,103], which is itself an extension of the WKB calculation of the tunnel splitting

between the lowest eigenstates of an ordinary double well potential.

Action quantization via Einstein-Brillouin-Keller (EBK) method

In this section, we present the semiclassical method of obtaining the number of in-well states

via action quantization, following the Einstein-Brillouin-Keller method, which generalizes

the notion of Bohr orbits. The main result of this analysis is Fig. 2.4, a semiclassical period

doubling phase diagram, where we plot contours of constant number of well-states obtained

by quantizing the action enclosed per well. The results of the calculation are summarized in

Subsection 2.3.

Properties of the metapotential surface for γ{K ! 1

In the table below, we examine the properties of the metapotential surface given by Eq. (2.4a)

in the double-well regime. For details on the number of levels inside the well, which we obtain

via action quantization following the prescription of Einstein-Brillouin-Keller (EBK) [70], see

Subsection 2.3.

First, we introduce a polar-coordinate representation of Eq. (2.17), which exploits its

radial symmetry, as

Hcl “
∆or

2

2
´
Kr4

4
` ε2r

2 cos 2θ, (2.8)

where x “ r cos θ and p “ r sin θ, for r ě 0 and θ P r0, 2πq.
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Phase Ñ Double-node Triple-node
Ó Parameter ´2ε2 ď ∆o ď 2ε2 ∆o ą 2ε2

(x, p phase space)

Area ∆o

K
arccos

´

´∆o

2ε2

¯

` 2ε2
K

c

1´
´

∆o

2ε2

¯2
4ε2
K

b

∆o

2ε2
´ 1` 2∆o

K
arcsin

´b

2ε2
∆o

¯

Levels in well (#) area{2π ´ 1{2 area{2π ´ 1{2

Approximation of # ∆o{K
2
`

ε2{K
π
´ 1

2

?
8ε2∆o

Kπ
´ 1

2

Distance b/w nodes 2
b

∆o`2ε2
2K

2
b

∆o`2ε2
2K

Distance b/w saddles 0 2
b

∆o´2ε2
2K

Depth of nodes p∆o`2ε2q2

4K
p∆o`2ε2q2

4K

Depth of saddles 0 p∆o´2ε2q2

4K

Depth of barrier p∆o`2ε2q2

4K
2∆oε2
K

Table 2.1: Summary of metapotential properties, where the metapotential is defined by
Eq. (2.4a). We recall that ∆o “ ωo ´ ωd{2.

-----

Figure 2.4: A Semiclassical period-doubling phase diagram of the metapotential for γ{K ! 1.
Equi-state contours in parameter space are shown in color. B Characteristic metapotentials
with Bohr-like orbits in black for points in the ∆{K, ε2{K, where the points are marked by
colored stars. In B ∆{K is kept constant at 0 and ε2{K is increased. This corresponds to the
condition under which the original Kerr-cat qubit was proposed [126] and operated [51,66]. In
C ε2{K is kept constant at 2.17 and ∆{K is increased. This corresponds to the experimental
parameters chosed in [152]. Increasing ∆{K and ε2{K simultaneously is key for fastest growth
in barrier depth.

In a semiclassical treatment, a classical orbit Cj satisfying the following Einstein-Brillouin-
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Keller (EBK) quantization condition [70]:

ż

Cj
dx dp “ ~

ˆ

Nj `
βj
4

˙

, (2.9)

plays a special role. On the left hand side of Eq. (2.9), the action integral corresponds to

the area enclosed by the contour Cj. On the right hand side of Eq. (2.9), the non-negative

integer Nj ě 0 represents a quantum number and βj is called a Maslov index; it counts the

number of caustics encountered by the contour Cj . For an orbit in the Kerr-cat metapotential,

we have βj “ 2. Thus the condition in Equation (2.9) states that only those orbits whose

enclosed area satisfy a condition given by non-negative integers nj and βj “ 2 correspond to

allowed quantum orbits.

With this condition stated, one can ask a simple question: given a set of ∆, ε2, how many

in-well or bound states exist in the classical metapotential surface? This will be obtained by

computing the number of allowed states below the separatrix, which separates bound and

unbound states.

From the calculations detailed below, we find the number of bound states as

N „

$

’

’

&

’

’

%

p∆`2Kq{K
2

`
ε2{K
π
´ 1

2
´2ε2 ď ∆ ă 2ε2

?
8ε2p∆`2Kq

Kπ
´ 1

2
∆ ě 2ε2.

(2.10)

We demonstrate in Fig. 2.11 the value of the semi-classical action quantization condition

in predicting the locality in phase space of even the excited states of the squeeze-driven Kerr

oscillator.
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Separatrix area in the double-node phase: ´2ε2 ď ∆o ă 2ε2

In the double-node phase, the separatrix has a special name called the Bernoulli’s lemniscate

and its equation is given as

r2
“

2∆o

K
`

4ε2
K

cos 2θ, (2.11)

and ´θc ď θ ď θc, where θc “
1
2

arccos ´∆o

2ε2
. We compute the area of a half the lemniscate as

ż

Cj
dx p “

1

2

ż θc

´θc

dθ r2

“

ż θc

0

dθ
2∆o

K
`

4ε2
K

cos 2θ

“
∆o

K
arccos

ˆ

´∆o

2ε2

˙

`
2ε2
K

d

1´

ˆ

∆o

2ε2

˙2

„
∆o

K

ˆ

π

2
`

∆o

2ε2

˙

`
2ε2
K

˜

1´
1

2

ˆ

∆o

2ε2

˙2
¸

|∆o{2ε2| ! 1

“
π

2

∆o

K
` 2

ε2
K

“ π `
π

2

∆

K
` 2

ε2
K
.

(2.12)

Note that for ∆ “ 0, Eq. (2.12) reduces to π ` 2ε2{K.

Separatrix area in the triple-node phase: ∆o ě 2ε2

The separatrix in the triple-node phase is given as

r2
˘ “

∆o

K
`

2ε2
K

cos 2θ ˘
4ε2 cos θ

K

c

∆o

2ε2
´ sin2 θ (2.13)

and ´θc ď θ ď θc, where θc “
π
2
. When plotted, this separatrix carves a bean-like shape.
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Remarkably, we find an exact analytic expression for the area of this surface as

ż

Cj
dx p “

1

2

ż θc

´θc

dθ pr2
` ´ r

2
´q

“

ż π{2

´π{2

dθ
4ε2 cos θ

K

c

∆o

2ε2
´ sin2 θ “

4ε2
K

ż 1

0

dt

c

∆o

2ε2
´ t2

“
4ε2
K

c

∆o

2ε2
´ 1`

2∆o

K
arcsin

ˆ

c

2ε2
∆o

˙

„
2
?

8ε2∆o

K
, ∆o{2ε2 " 1

„
2
a

8ε2p∆` 2Kq

K
, ∆o{2ε2 " 1.

(2.14)

Indeed the effective Hamiltonian of the squeezed Kerr oscillator (SKO) Eq. (2.1) can be

diagonalized in its operator-valued form. In the following section, we will examine in detail

the spectrum of the SKO as a function of ∆{K and ε2{K, the only free parameters of the

Hamiltonian. We will then examine the wave functions of the SKO in this parameter space

to better understand their structure and tunneling properties.

2.4 Operator space representation

Spectral kissing as a function of ε2

We present the spectrum of Eq. (2.1) in Fig. 2.6A as a function of the squeezing drive

amplitude ε2{K for ∆ “ 0. The eigenstates of effective Hamiltonian of the SKO Eq. (2.1)

have well-defined parity. For ε2{K “ 0, the Fock states which have well-defined parity are

the eigenstates. Since the squeezing interaction is itself parity-conserving, when ε2 ‰ 0, only

states with the same parity are coupled. In Fig. 2.6A, we color the energy levels by their

parity, and further reference them to the ground state energy, which due to the choice of

the rotating frame at ωd{2, happens to be the highest energy eigenstate. For ε2{K Ñ 0,

the spectrum corresponds to the expected Kerr anharmonic spectrum of the SNAIL circuit

oscillator. As the squeezing interaction ε2 grows, the spectrum becomes pairwise degenerate

with levels of different photon-number parity approaching each other in an exponential fashion.
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We refer to this exponential approach of energy levels as spectral kissing.

A

B

Figure 2.5: Spectrum of Eq. (2.1) versus ε2 in panel A shows pairwise kissing and vesus ∆
for ε2{K “ 2 in panel B shows multilevel degeneracies. The spectrum is colored by parity. In
B dashed grey lines correspond to even integer values of ∆{K. The red circle marks an exact
degeneracy between an odd and an even parity state.

We provide an intuitive way to understand the spectrum following the semiclassical

analysis introduced in Subsection 2.3. For ∆ “ 0, according to the the action quantization

result Eq. (2.10), the excited state manifold N gets ensconced inside the quantum double

well, whenever ε2{K “
`

N ` 1
2

˘

π for ∆ “ 0. As the squeezing amplitude ε2 increases, excited

states are ensconced into the metapotential well and, coupled only by quantum tunneling,

exponential level kissing takes place. The second X-axis in Fig. 2.5A corresponds to the
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number of quantized bound states obtained by applying this semiclassical condition. This

simple argument gets more nuanced in the presence of dissipation, but plays an important

role in understanding the decoherence properties of the SKO as a function of ε2. Both the

spectral kissing and the decoherence properties of this quantum double well system were

measured for the first time in [51].

Multi-level degeneracies as a function of ∆

We present the spectrum of Eq. (2.1) in Fig. 2.6B as a function of the squeezing drive

detuning ∆{K for ε2{K “ 2. Remarkably, the oscillator experiences multi-level degeneracies

in the spectrum: when the detuning ∆ of the drive from the oscillator frequency equals an

even multiple of the Kerr coefficient K, ∆{K “ 2m, the oscillator experiences m` 1 exact

spectral degeneracies. Not only can these degeneracies be turned on-and-off on demand, but

their number is tunable. Importantly, these degeneracies are robust as they are completely

independent of the drive amplitude ε2{K.

Hidden symmetries typically manifest as unexpected, exact spectral degeneracies. Estab-

lishing the connection between symmetries and degeneracies in a system is of fundamental

importance for the understanding and control of its structural and dynamical properties.

Unexpectedly, the SKO has multiple tunable spectral degeneracies that always occur when

∆{K “ 2m, and are independent of ε2. An open question is what is the tunable hidden

symmetry underlying these degeneracies? An obvious, yet incorrect answer is parity symmetry.

We discuss this important property next.

The SKO has the remarkable property: for ∆{K “ 2m, the first m ` 1 pairs of levels

become decoupled from the rest of the oscillator’s Hilbert space. Their eigenenergies and

eigenstates become exactly solvable and present m` 1 robust degeneracies in between states

of different photon-number parity. Critically, note that the resonance condition for these

degeneracies is independent of the value of the squeezing drive amplitude ε2.

First, to show this, we begin by considering the squeezing drive as a perturbation to the
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A B

Figure 2.6: Robust spectral degeneracies and parity symmetry. Spectrum of A the squeeze-
driven Kerr oscillator, with Eq. (2.1), and B a different member of the Kerr parametric
oscillator family with parity symmetry, with Ĥ “ ∆â:â´Kâ:2â2`ε4pâ

:4`â4q, as a function of
∆{K for different values of ε2{K and ε4{K respectively. Dashed lines mark ∆{K corresponding
to even integers. Left panel indicates that even for non-perturbative values of ε2{K, the
locations of crossings of even (blue) and odd (orange) parity eigenstates occur at even values
of ∆{K. Right panel indicates that even for the parity preserving perturbation controlled
by ε4{K, the locations of the crossings of even and odd parity states get renormalized. Red
circle tracks one such crossing.
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Kerr oscillator described by the Hamiltonian ĤK{~ “ ∆â:â´Kâ:2â2 which is exactly solvable:

its eigenstates are Fock states |ny and their energies are E
p0q
n “ ∆n´Knpn´ 1q, which, as a

function of ∆, are lines with integer slope that we plot in the top row of Figure 2.6A. The

even(n)-odd(l) degeneracies read En “ El and imply ∆{K “ 2m where m “ pn` l´1q{2 ě 0

is any nonnegative integer. In the second row, we plot the transition spectrum with respect

to the ground state at ε2 “ 0, which, due to the choice of rotating frame, corresponds to the

highest energy eigenstate. This is the directly experimentally observable transition spectrum

from the ground state. We further note that the ground state changes with ∆; remarkably,

for ε2 “ 0, at ∆{K “ 2m, the ground state is p|my ` |m` 1yq{
?

2. This special property of

the squeeze-driven Kerr oscillator has technological applications [176]. In the following rows,

we plot the transition spectrum for increasing values of squeezing drive amplitude ε2.

Indeed, it is clear that the squeezing drive renormalizes the energies of the Kerr oscillator.

Level crossings of the Kerr oscillator with different parity remain exact crossings in the presence

of the squeezing drive, since the interaction preserves parity. However, the remarkable feature

is that these crossings are locked to where ∆ equals an even multiple of K. In the following

text, we justify this property, first via a perturbative and then provide a to-all-order proof.

Perturbative analysis of degeneracies

To first order in perturbation theory, we see that this even and odd Fock states remain

decoupled (energy level crossings) under the parity conserving squeezing drive: E
p1q
n “

xn|pâ:2` â2q|n` 1y “ 0. The condition for crossings of consecutive levels with different parity

(En “ En`2) reads instead ∆{K “ p2n`1q. To first order in perturbation theory, the avoided

crossing amplitude is E
p1q
n “ ε2

a

pn` 1qpn` 2q.

As a next approximation to the problem, we see the robustness of the crossings of

consecutive levels with different parity (at ∆ “ 2nK) by computing the second order

correction to the nth energy levels E
p2q
n and comparing it to the correction for the pn` 1qth
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energy level

E
p2q
n`1 “ ε22

ˆ

pn` 3qpn` 2q

´2∆` 2Kp2n` 3q
`

pn` 1qn

2∆´ 2Kp2n` 1q

˙

,

to find that E
p2q
n “ E

p2q
n`1 for ∆{K “ 2n. This robustness can be seen in Figure 2.6A (all

panels), where we see that the crossing shifts in energy but remains locked to ∆{K equal to

even non-negative integers. The perturbation theory argument is easily generalized to non-

consecutive level crossings and anti-crossings to this order. A similar perturbative argument

was made in [176].

Non-perturbative analysis of degeneracies

To prove that the location of the degeneracies in ∆ is independent of the squeezing drive

amplitude to all orders we observe that we can write the Hamiltonian in Eq. (1) as

Ĥ “ λ1pâ
:2
´ α2

qpâ2
´ α2

q ` λ2pâ
2
´ α2

qpâ:2 ´ α2
q, (2.15)

where, for ∆{K “ 2m (m non-negative integer), we have λ1 “ ´Kp1 `m{2q, λ2 “ mK{2

and α “ ˘
a

ε2{K, and which is a generalization of the factorization condition proposed

in [126] for ∆ “ 0. We next consider the displaced Hamiltonian Ĥ` “ D̂p`αqĤD̂:p`αq,

which brings one of the wells to the origin of phase space. In this frame, the Hamiltonian

operator can be written as3

Ĥ`
“´K

`

â:2â2
` p4α2

` 2mqâ:â
˘

´ 2Kαrâ:â´ pm` 1qsâ:

´ 2Kαrâ:â´msâ.

3. Note that, without specializing ∆, one can directly write from Eq. (1) in the main text, or equivalently
from Eq. (2.15): Ĥ` “ ´K

`

â:2â2 ` p4α2 `∆{Kqâ:â
˘

´ 2Kαrâ:â´ p∆{2K ` 1qsâ: ´ 2Kαrâ:â´∆{2Ksâ.
From this expression one can directly derive the sub-space decoupling condition to be ∆{K “ 2m, in an exact
manner, without relying in perturbative calculation or any previous knowledge existence of the resonance.
The independence of the sub-space decoupling condition with respect to ε2 is explicit.
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While the first line is number conserving, the next two lines couple only consecutive Fock

states. In matrix form, it is tridiagonal in the Fock basis |ny. By examining the square brackets

in the above expression, we see that the off-diagonal elements are exactly zero for n “ m

and n “ m` 1. Thus, the first m` 1 states decouple from the rest of the oscillator’s Hilbert

space. The finite matrix is Hermitian, negative-semidefinite, and tridiagonal so it is exactly

diagonalizable. Finally, we note that in phase space, a displacement of the metapotential

surface, which is mirror-symmetric about x “ 0, is identical to an opposite displacement

composed with a rotation of 180˝ around the origin. Since the photon-number parity operator

Π̂ “ eiπâ
:â commutes with the Hamiltonian (rΠ̂, Ĥs “ 0) the rotation is a symmetry of the

system. Specifically; Ĥ´ “ D̂p´αqĤD̂:p´αq ñ Π̂Ĥ´Π̂ “ Ĥ`. We thus have two sets of

equivalent4 m` 1 exactly solvable eigenenergies, and 2pm` 1q linearly independent equations

5, which imply the existence of m ` 1 degeneracies in the spectrum for ∆{K “ 2m. The

2pm ` 1q eigenstates |ψ˘kďm`1y “ D̂p˘αq|φ˘kďm`1y of Ĥ, where |φ´kďm`1y “ Π̂|φ`kďm`1y and

Ĥ`|φ`kďm`1y “ Ekďm`1|φ
`
kďm`1y, found in this way are not orthogonal, but thanks to the

two-fold degeneracy condition we can take the superposition of the right (`) and left (´) kth

displaced state to get an orthogonal basis in each of the m` 1 two-fold degenerate sub-spaces:

|C˘kďm`1y9Dp`αq|φ
`
kďm`1y˘Dp´αq|φ

´
kďm`1y. These 2pm`1q pairwise-degenerate eigenstates

of energy are also eigenstates of parity6. In this work we name these pairs of degenerate

4. Note that for the off-diagonal elements the parity transformation produces a minus sign (Π̂|nyxn˘ 1|Π̂ “
´|nyxn˘ 1|) that manifests in αÑ ´α: H`n,n˘1 “ ´H

´
n,n˘1. This leaves the finite characteristic polynomial

invariant.

5. The elements of the finite set of eigenvectors of Ĥ`, t|φ`kďm`1yuk, are linearly independent from the

finite set of eigenvectors of Ĥ´, t|φ´kďm`1yuk, since they are spanned by the first m` 1 displaced Fock states
in different directions (˘, see text). Indeed, any Fock state i that is displaced has support in all (undisplaced)

Fock states j’s [?]: for j ą i the formula reads |xj|D̂p˘2αq|iy| “
´

i!
j!

¯1{2

|2α|j´ie´2|α|2 |L
pj´iq
i p4|α|2q| ą 0,

where L
pj´iq
i is an associated Laguerre polynomial (note that the matrix element tends to zero rapidly as

|α|, or equivalently |ε2|, grows, while the decoupled subspace condition, and ultimately the proof itself,
is independent of these values for as long as they are non zero. If ε2 “ 0, the proof is trivial and is
given in the previous subsection). In other words, the linear independence manifests here explicitly in
that |φ˘kďm`1y have no defined parity, yet |φ`kďm`1y “ Π̂|φ´kďm`1y (note that rΠ̂, Ĥ˘s ‰ 0). Ultimately,

|xφ´kďm`1|D̂
:p´αqD̂p`αq|φ`kďm`1y| “ |xφ

`
kďm`1|D̂p2αq|φ

`
kďm`1y| ă 1 if |α| ą 0.

6. Specifically Π̂|C˘kďm`1y “ ˘|C
˘
kďm`1y and are thus orthogonal. We used D̂p`αqΠ̂ “ Π̂D̂p´αq.
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states the ∆-cats.

Note, that the robustness of the resonance condition is a peculiar symmetry property of

the squeeze-driven Kerr oscillator and not a property of generic Kerr parametric oscillators.

The existence of this robust degeneracies begs the question: what are the hidden symmetries

associated with these degeneracies, if any? We show in Figure 2.6B, as an example, the

spectrum of Ĥ “ ∆â:â´Kâ:2â2 ` ε4pâ
:4 ` â4q, where the location in ∆ of the super-parity

resonances depend on the value of the parametric drive amplitude ε4. Note, also, that even

if the multilevel resonances in Figure 2.6B are displaced with the value of the parametric

drive amplitude (red circles), they are locked together to a running resonance condition: the

point of exact solvability is changed by the drive. The phenomenon corresponds to deep

symmetries [79,82] of these type of, as of now, engineerable bosonic Hamiltonians and will be

discussed in detail in a separate publication.

To provide greater insight into these spectral degeneracies, we examine the Wigner

functions and the wave functions of the associated ground and excited states next.

2.5 Oscillations in the classically forbidden region in the localized

wavefunctions of the SKO

The SKO is modeled by a quantum double-well in phase space wherein the tunnelling of the

ground and excited states can simultaneously be nulled, at finite barrier height, due to an

unexpected destructive interference of tunneling paths in the classically forbidden region.

This phenomenology was discovered for the ground state manifold in the double-node phase

by [102,103] using a semiclassical WKB analysis.

Before looking at this phase-space double well model system, let us recap the tunneling

properties of the ordinary double-well potential. We define the ordinary double-well model

system as:
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H “
p2

2
` V pxq, with V pxq “ ´

k2

2
x2
`
k4

4
x4,

where k2, k4 ą 0. This potential has a saddle at xs “ 0, with V pxsq “ 0 and nodes at

xn “ ˘
a

k2{k4 with the left and right well depth given by V pxnq “ ´k
2
2{p4k4q. The barrier

height is given by V pxnq ´ V pxsq “ k2
2{p4k4q.

The study of tunneling usually begins by considering a localized wave packet in one well,

which is written as the superposition of the wavefunctions of the two lowest laying energy

states ψ` and ψ´.7 Their energy difference is denoted by δE “ E` ´ E´ and the left- and

right-localized wavefunctions read

ψl “
ψ` ` ψ´
?

2
ψr “

ψ` ´ ψ´
?

2
. (2.16)

On the left column of Figure 2.7, we plot the left and right-localized wavefunctions in red

and blue respectively for A k2 “ 3, k4 “ 1, B k2 “ 2, k4 “ 1, and B k2 “ 4, k4 “ 2 respec-

tively. The wavefunctions are computed by numerical diagonalization of the Hamiltonian. In

the classically forbidden region, as one should expect, the wavefunctions display evanescent

decay [64].

In the right column of Figure 2.7, we contrast the exact localized wavefunctions of the

ordinary double-well potential with those of the squeeze-driven Kerr oscillator, both of which

have been obtained numerically. The parameters ∆, K, and ε2 were chosen so that a cut

of the effective Hamiltonian surface at p “ 0 yields an identical double-well potential as

the left column. The wavefunctions of the full squeeze-driven Kerr oscillator are computed

numerically. Importantly, B, D, and F show the localized wavefunctions for ∆{K “ 2, 1, and

0 respectively, corresponding to the coherent destructive, constructive, and again destructive

7. From a perturbation theory point of view this corresponds to the bonding and anti-bonding of the
decoupled well states [94]. The zero point energy of the individual wells, in the absence of tunneling, is
E0 “

?
k2{2. In the presence of tunneling the system’s energies can be approximated by E˘ “ E0 ˘ δE.
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interference. Interestingly, in the classically forbidden region, in B and D, oscillations

accompany decay in the wavefunction [102,103]. This is due to the underlying driven nature

of our system, providing a quartic term in momentum, which here reflects in the oscillatory

nature of the wavefucntions in the classically forbidden region (see next page).
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C

A

D

E F

Figure 2.7: Localized position wavefunctions of the ground state manifold for A,C,E
an ordinary double well potential and B, D, F for a squeeze-driven Kerr oscillator. The
Hamiltonian parameters in A, C, and E have been chosen to produce a double-well with the
same depth and the well separation as those of B, D, and F respectively. The value of ∆{K
is chosen to be B ∆{K “ 2, D ∆{K “ 1, and F ∆{K “ 0 corresponding to the destructive,
constructive, and destructive interference of tunneling respectively in Eq. (2.4a). In the right
panel, oscillations accompany decay of the wavefunction in the classically forbidden region,
marked in grey. In the left panel, the wavefunction exhibits pure decay in the classically
forbidden region. Tthe cancellation of the tunnel-splitting at even multiples of K in Fig. 2.5B
can be understood as the destructive interference of the wavefunction in the classically
forbidden region of the squeeze-driven Kerr oscillator. In [103], Marthaler and Dykman found
an analytical expression for the WKB tunnel splitting of the ground state manifold. See ??
for comparisons of the extracted tunnel splitting from experiment with the predictions from
the WKB calculation.
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WKB approximation of tunnel splitting for the ground state manifold of the SKO

Marthaler and Dykman predicted this oscillatory behaviour of the wave functions of a

parametrically modulated oscillator in the classically forbidden region. To connect our result

with theirs, we take λ “ K{2ε2 in Eq. (2.4a) to obtain

Hcl “ ´
K

λ2

«

ˆ

x2 ` p2

2

˙2

´
x2

2

ˆ

1`
∆` 2K

2ε2

˙

`
p2

2

ˆ

1´
∆` 2K

2ε2

˙

ff

, (2.17)

which resembles Equation 5 of Marthaler and Dykman [103], with their parameter µ is

taken to be p∆` 2Kq{2ε2. Note that their effective Hamiltonian seems to contain only one

parameter µ “ p∆` 2Kq{2ε2. But in actuality the other parameter λ “ K{2ε2 is implicit in

the analysis. The parameter λ in the phase space defined by x and p must be much smaller

than the typical dimensionless action of the system determined by the well-size parameters:

∆{K and ε2{K. Thus, under the condition ∆{K, ε2{K " 1, the wells of the Hamiltonian

are large in the sense that they encompass many action quanta λ. Finally, note that for

λ « 1 the classical treatment should not hold. Thus in the limit ∆{K, ε2{K " 1, the WKB

approximation is valid to treat Eq. (2.1).

The expression for the tunnel splitting in the ground state manifold, following the

treatment of [102,103], applied to our system is given as

δE “ f cos θ expp´Aq, (2.18)

where

f “ 2

ˆ

4ε2
K

˙2 ˆ
K

πp∆` 2Kq

˙1{2 ˆ

1`
∆` 2K

2ε2

˙5{4

θ “
π

2

ˆ

∆` 2K

K
´ 1

˙

A “
2ε2
K

ˆ

∆` 2K

2ε2
` 1

˙1{2

´
∆` 2K

K
log

˜

ˆ

2ε2
∆` 2K

˙1{2

`

ˆ

1`
2ε2

∆` 2K

˙1{2
¸

,

(2.19)
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where, the above expression is only valid for ∆{K " 1.

As a function of ∆, δE from Eq. (2.18) is nulled whenever the cosine argument is an

odd multiple of π{2 and this corresponds to the condition ∆
K
“ 2m, for m ě 0. Beyond the

tunneling nulls under this condition, the expp´Aq factor yields an exponential suppression of

tunneling as a function of both ∆ and ε2. We examine the tunneling properties in the ground

state manifold as a function of ∆ and ε2 in Fig. 2.8C and Fig. 2.8D.

There are two failure modes for the WKB approximation. The first condition corresponds

to the condition ∆{K À 1, and the other corresponds to the condition ε2{K ! 1. In

Fig. 2.8, we compare the tunnel splitting between the lowest eigenstates obtained by an exact

diagonalization of Eq. (2.1) with the semiclassical result Eq. (2.18). Note that WKB works

remarkably well even outside its domain of validity (ε2{K ă 1). In [152], we measured this

tunnel splitting for the ground state manifold, and compared the experimentally extracted

tunnel splitting with the results of [103]. The comparison between our experiment and this

theory is presented in Chapter 4.

Wigner functions of ground and excited state manifolds

Not only in a semiclassical picture, but even in a quantum picture, increasing ∆{K and ε2{K

yields states that are increasingly localized in phase space, thereby validating the semiclassical

picture introduced here. The Wigner functions of the lowest eigen-manifold of Eq. (2.24) is

plotted in Figure 2.9 while the excited state manifold of Eq. (2.24) is plotted in Figure 2.10.

These plots indeed confirm the semiclassical picture introduced with action quantization in

Subsection 2.3. Specifically, increasing ∆ and ε2 yields the fastest rate of ensconcement of

excited states into the double-well barrier.
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B

exact,
exact,

exact,
exact,
WKB,
WKB,

WKB,
WKB,

Figure 2.8: Comparing two different theoretical models’ predictions of the tunnel-splitting
between the lowest pair of eigenstates of the SKO: WKB analysis (see Subsection 2.5)
and exact numerical diagonalization of Eq. (2.1). A Tunnel-splitting as a function of
∆{K and B as a function of ε2{K. In A solid pink lines represent the result from exact
numerical diagonalization and dashed blue lines represent the WKB result presented in
Subsection 2.5, which is itself adapted from [103]. Both calculations indicate that the ground-
state tunnel-splitting is nulled when ∆{K “ 2m and that increasing ∆{K further lowers the
tunnel-splitting. The condition ∆{K “ 2m corresponds to the condition for the destructive
interference of tunnel-paths (see Fig. 0.2), whereas ∆{K “ 2m ` 1 corresponds to their
constructive interference. By comparing the light pink line with the dark pink line, it is
clear that increasing ε2{K for fixed ∆ causes a further reduction in the tunneling. This is
better demonstrated in B where the tunnel-splitting is plotted as a function of ε2{K keeping
the value of ∆{K fixed to conditions of the constructive interference of tunneling. This plot
shows that the tunnel-splitting is suppressed exponentially in ε2{K, and larger the value of
∆{K, faster the tunneling suppression. A and B also demonstrate the remarkable agreeement
between WKB analysis and exact diagonalization for ∆{K Á 1 and ε2{K Á 1. Note that the
spectral degeneracies in the excited state correspond to the extension of this WKB argument
to the excited state manifold.
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increasing 
C

A

B

Figure 2.9: Ground state Wigner functions of the SKO for increasing values of ∆{K and
fixed ε2{K. In A ∆{K “ ´6, B ∆{K “ 0, and C ∆{K “ 6 respectively. When ∆{K ! 0,
the eigenstates are squeezed Fock states. For ∆{K ą 0, increasing ∆{K yields Schrödinger
cat states with increasing photon number. Following Subsection 2.3, the mean photon number
of the cat state is given by ∆{p2Kq ` ε2{K. Thus, panel B corresponds to a 2 photon cat
and panel C corresponds to a 5 photon cat.
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increasing 

increasing excitation number

CA B

Figure 2.10: Ground and excited states; Wigner functions of the SKO Eq. (2.1) for ε2{K “ 2
and A ∆{K “ ´6, B ∆{K “ 0, and C ∆{K “ 6 respectively. To highlight the ground state
Wigner functions, we isolated the top row of this plot and presented it in Fig. 2.9. Note
that the Wigner functions of higher excited eigenstates become increasingly wrinkled and
delocalized in phase space.

2.6 Literature survey: the relationships between different squeeze-

driven Kerr oscillator models

Before we present our experimental results, we survey different SKO models treated in the

literature and examine the relationships between them.
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B C

A

D

Figure 2.11: Wigner functions of localized-well states comprising the ground and excited
state manifolds of the SKO.A Semiclassical period-doubling phase diagram Fig. 2.4 with equi-
state contours. B - E. Wigner functions of exact eigenstates’ superpositions, corresponding
to localized states, for ε2{K “ 4, and B ∆{K “ 1, C ∆{K “ 4, D ∆{K “ 7. The action
quantization formulation, detailed in Subsection 2.3 and summarized by Eq. (2.10), predicts
B 1,D 2, and E 3 excited states respectively. The Wigner functions of states outside this
window are seen to have support in the other well too, and larger ∆ helps localize them, thus
validating the semiclassical picture discussed in Subsection 2.3 quantum mechanically.
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In 1993, Wielinga and Milburn [161] proposed a quantum optical model that they called

the dynamical equivalent of the double-well potential. The interest of the problem, to them,

was that their model exhibited a double-well structure in classical phase space, and quantum

mechanical ground state tunneling between them. The Hamiltonian they addressed is

ĤWM “ ´Kpâ
:âq2 ` ε2pâ

:2
` â2

q. (2.20)

In 2017, the theoretical discovery of the Kerr-cat qubit by Puri, Boutin, and Blais [126]

relied on the fact that the ground states of

ĤPBB “ ´Kâ
:2â2

` ε2pâ
:2
` â2

q (2.21)

are fundamentally degenerate and exhibit no tunneling between two wells found in the

classical limit (see also [33]). This property can be understood by writing Eq. (2.21) into the

factorized form [126]

ĤPBB “ ´Kpâ
:2
´ ε2{Kqpâ

2
´ ε2{Kq, (2.22)

from which it is evident that the two coherent states | ˘ αy with α “
a

ε2{K, which are the

eigenstates of the annihilation operator â, are also degenerate eigenstates of Eq. (2.22). Since

Eq. (2.22) is negative-semidefinite and ĤPBB| ˘ αy “ 0, these states are the ground states.

Note that the Hamiltonians ĤWM and ĤPBB differ only by an operator-valued commutator

since â:2â2 ´ pâ:âq2 “ â:â. Taking the classical limit loses track of this reordering. Their

shared classical limit can be written as

Hcl “ ´Ka
˚2a2

` ε2pa
˚2
` a2

q

“ ´K

ˆ

x2 ` p2

2

˙2

` ε2px
2
´ p2

q.

(2.23)
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By introducing the more general Hamiltonian

Ĥ “ ∆â:â´Kâ:2â2
` ε2pâ

:2
` â2

q, (2.24)

we identify that ĤPBB and ĤWM are specific instances of Eq. (2.24) with ĤPBB “ Ĥ|∆“0

and ĤWM “ Ĥ|∆“´K . Note that taking ∆ ‰ 0 breaks the simple factorization condition

of Eq. (2.22). Indeed, the presence of the â:â term is the cause of ground state tunneling

in ĤWM, and its absence is the cause of the complete coherent cancellation of tunneling in

ĤPBB.

In 2007, Marthaler and Dykman [103] treated a Hamiltonian analogous to Eq. (2.17), and

varied a parameter analogous to ∆ for a fixed ε2. This led to their prediction of periodic

cancellation of tunneling amplitude for the ground state manifold as a function of ∆.

In conclusion, we have introduced in this chapter classical, semiclassical, and quantum

analyses to understand properties of our quantum double-well system, the squeeze-driven

Kerr oscillator. We uncovered the exponential reduction of tunneling as a function of both ε2

and ∆ and multi-level robust spectral degeneracies as a function of ∆. A physical picture

to understand the spectral degeneracies in the ground state manifold—as the interference

between oscillating wave functions in the classically forbidden region—was developed by

Marthaler and Dykman [102, 103]. We are now led to four questions: 1) Can the WKB

treatment developed in [102,103] be extended the excited state manifold? 2) What are the

hidden symmetries, if any, that explain the spectral degeneracies as a function of ∆{K? 3)

Can such an effective Hamiltonian be engineered in the lab? 4) Can its properties, such as

the spectral kissing as a function ε2{K and multi-level degeneracies as a function of ∆{K be

observed? While the first two remain open questions, answering the last two questions will

be the focus of the rest of this dissertation.

In the next chapter, we introduce and describe in detail our experimental setup.
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Chapter 3

Experimental setup

In this chapter, we present the superconducting package and quantum circuit where we have

engineered a quantum double-well model system of the squeezed Kerr oscillator (SKO).

First, we describe the package design, then we describe readout in our quantum double-

well, and finally the calibration of parameters constituting the effective Hamiltonian Eq. (0.9).

In Fig. 3.1, we present a schematic of the superconducting package design. The overarching

design goal was to incorporate two capacitively coupled SNAIL-transmon circuits that could

each be individually stabilized with a squeezing drive and independently read out. The

package consists of a half-aluminum, half-copper package containing two sapphire chips, each

with a SNAIL- transmon, readout resonator and Purcell filter. For the work presented here,

a summary of the results of [51,152], we address only one of the two chips with microwave

drives and the modes from the other chip play the role of spectators.

Table 3.1 lists a few key design parameters.

Each sapphire chip is clamped to two copper posts with beryllium copper clips, and hosts

three electromagnetic modes of interest: SNAIL-transmon, readout resonator, and Purcell

filter. A beryllium copper pin inserted into the cavity defines the readout port and sets the

linewidth of the readout resonator and Purcell filter; a second weakly coupled pin serves for

the application of all microwave drives.
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A

B C

Figure 3.1: Schematic of the experimental superconducting package. A Rendering of
the half-aluminum, half-copper sample package containing two sapphire chips, each with
a SNAIL- transmon, readout resonator and Purcell filter. Only one chip is used in the
experiments reported here, first presented in [51,152]. Applying a strong microwave drive
at ωd{2 « 2ωa yields an effective Hamiltonian system of the SKO out of the rapidly driven
SNAIL superconducting circuit. B Schematic of the SNAIL-transmon superconducting circuit:
the array of two SNAILs serves as the nonlinear element. C Scanning electron micrograph
(SEM) of the two-SNAIL array. The SNAIL loops are biased with an external magnetic flux
Φext{Φ0 “ 0.33, where Φ0 is the magnetic flux quantum.

Focusing on the design of the addressed SNAIL-transmon, the design change compared

to previous work [66], where the coherent state lifetime saturated at |α|2 “ 2.6, is a twenty-

fold reduction in self-Kerr nonlinearity. We actuated this reduction by moving to a series

array of M “ 2 SNAILs, reducing the SNAIL junction asymmetry parameter [49], and

working at a larger magnetic flux bias ϕext “ 0.33 in Eq. (1.2), closer to but not at the

Kerr-free flux point [52]. These changes resulted in coherent state lifetime saturation around

|α|2 “ ε2{K “ 10 in the current device (for ∆ “ 0) as we show in Fig. 5.2.
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Parameter Value Method of estimate
Oscillator dipole capacitance EC{h 60 MHz Design simulation
Oscillator number of SNAILs 2 Design
Oscillator SNAIL asymmetry α 0.1 Resistance msmt.
Oscillator of 1 large junction 0.6 nH Resistance msmt.
Oscillator inductance of 1 small junction 6 nH Resistance msmt.
Oscillator frequency at Φ{Φ0 “ 0 6.668 GHz Two-tone spec.
Oscillator frequency at Φ{Φ0 “ 0.5 5.815 GHz Two-tone spec.
External flux bias point Φ{Φ0 0.33 Two-tone spec.
Oscillator frequency ωa{2π 6.079 GHz Two-tone spec.
Oscillator cubic nonlinearity g3{3{2π « 10 MHz Design sim.
Oscillator self-Kerr nonlinearity K{2π 316.8 kHz Two-tone spec. (Fig. 3.3)
Oscillator single-photon decay time T1 20 µs Std. coherence msmt.
Oscillator Ramsey decay time T2R 3.86 µs Std. Ramsey coherence msmt.
Oscillator Hahn echo decay time T2E 13 µs Std. echo coherence msmt.
Readout resonator frequency ωr{2π 8.506 GHz Direct RF reflection msmt.
Readout resonator linewidth κr{2π 0.40 MHz Direct RF reflection msmt.
Readout resonator internal linewidth ă 0.04 MHz Direct RF reflection msmt.
Readout to oscillator cross-Kerr χab{2π „ 10 kHz Design sim.
Purcell filter frequency 8.703 GHz Direct RF reflection msmt.
Purcell filter linewidth 25 MHz Direct RF reflection msmt.
Lowest box mode frequency 12.46 GHz Design sim.

Table 3.1: Summary of parameters of experimental device. All design simulations (sims.)
were performed with Ansys HFSS and black box quantization [112,117] including corrections
to Kerr from cubic nonlinearities [50], which follow from similar corrections in lumped-element
calculations [52]. The experiments presented here were performed in the particular flux bias
point ϕext “ 0.33. The package details are reproduced here from [50, 51] for the sake of
completeness.

3.1 Calibrating the squeezing drive amplitude ε2

In this section, we present a measurement that provides an independent calibration of the

squeezing drive amplitude ε2. The pulse sequence is the following: We turn on the squeezing

drive at ∆ “ 0, for a variable amount of time t during which we also turn on a Rabi drive at

amplitude εx and frequency ωd{2 “ ωa. The squeezing drive stabilizes the Schrödinger cat

states with well-defined parity, and the Rabi drive induces an oscillation in this cat-qubit.

We perform this experiment for different values of ε2 and measure X̂ “ |C`yxC´| ` |C´yxC`|,

where |C˘y are the Schrödinger cat states. This protocol was introduced in [51,66] and we
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BA

Figure 3.2: Calibrating ε2 with cat-Rabi oscillations. A Color plot of xXy as a function of
the the digital control amplitude (DAC) controlling the squeezing drive ε2 and duration of
the Rabi drive. We find εx{2π “ 144.93 kHz using the relation between the Rabi amplitude
and Rabi frequency for ε2 “ 0, εx “ Ωxpε2 “ 0q{2. A plot of |α|20 “ ε2{K “ Ω2

x{16ε2x [51,66]
as a function of ε2 in DAC units. A line fit gives us a calibration of |α|20 “ ε2{K as a function
of the digital control amplitude (DAC) controlling the squeezing drive.

refer the reader to these works for further details. The result of our experiment is shown in

Figure 3.2A. From this experimental data, we extract a Rabi oscillation frequency Ωx that

is related to the amplitude of the Rabi drive as εx “ Ωxpε2 “ 0q{2. The photon-number at

∆ “ 0 |α|20 is related to εx and Ωx as |α|20 “ Ω2
x{16ε2x [51, 66]. In Figure 3.2B, we plot the

experimental data and fit for the extracted photon-number as a function of the digital control

amplitude (DAC). With this result, we have a calibration of ε2 as a function of the digital

control amplitude (DAC) controlling the squeezing drive.

3.2 Measuring the Kerr coefficient K

In this section, we detail a measurement of the Kerr coefficient K via saturation spectroscopy

of the SNAIL transmon. This measurement is performed in the absence of the squeezing drive.

In the following text, the letters g, e, and f index the ground, first excited, and second-excited

states of the SNAIL transmon oscillator. In Figure 3.3, we plot the response of the readout as

a function of a probe tone, whose frequency is ωpr, and which we vary around the ge transition

frequency of the SNAIL transmon oscillator ωa corresponding to ε2 “ 0. When the probe tone

excites the oscillator, the readout signal due to the dispersive coupling [10] changes. The two
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dips in Figure 3.3, from left to right, correspond to a two-photon transition that excites the

oscillator from g to f and to a resonant excitation of the oscillator from g to e respectively.

The gf{2 and ge resonances are located at pωa ´Kq{2π and ωa{2π respectively. Fitting the

peaks and subtracting their locations yields a value of K{2π “ p329.73 ˘ 4.30q kHz. This

value is consistent with the value of K{2π “ 316.83 kHz, where the latter is extracted from

Figure 1E in the main text and is the value for K used throughout the article.

experimental
data

fit

Figure 3.3: Measurement of K with two-tone saturation spectroscopy. Readout response as
a function of the frequency of the saturation (probe) tone. The two readout signal dips in
black correspond, from left to right, to the gf{2 transition, which is expected to occur at
pωa ´Kq{2π and to the ge transition of the SNAIL transmon, which is expected to occur at
pωaq{2π. Here, gf{2 refers to a transition induced by two photons from the probe. By fitting
the experimental data, we find K{2π “ p329.73˘ 4.30q kHz.

Keeping in mind that gate speeds are limited by the gap in the excited state spectrum

4K|α|2 and that K91{M2, gate speeds are independent of the Kerr nonlinearity if the

expected |α|2 increase is simultaneously achieved. The exception to this is the Kerr-refocusing

gate, which takes time π{2K irrespective of |α|2. Generally, the gate fidelity however will

decrease under this optimization since the cat-state lifetime TY Z “ 1{2|α|2T1. As such,

we expect there to be an optimum Kerr nonlinearity for a given application depending on

the tradeoff between achievable gate speed and noise bias. Improvements in gate design

and control techniques will help increase gate speed for a given gap in the excited state

spectrum [169], and thereby will allow designs with less nonlinearity to further increase

coherent state lifetime and noise bias.
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3.3 Which-well readout of the SKO

Measurements of the oscillator state were performed through a separate on-chip readout

resonator with frequency ωr{2π “ 8.5 GHz and coupling rate κr{2π “ 0.40 MHz to the

quantum-limited measurement chain (see Table 3.1 for device details). In order to activate a

frequency-converting beam splitter interaction between the SKO and the readout resonator,

we apply an additional drive at ωBS “ ωr´ωd{2. This transfers photons from the SKO to the

readout resonator, which are subsequently collected by the measurement chain. The strong

squeezing drive (ε2 ą K) replenishes these radiated photons, thereby maintaining a steady

oscillation amplitude. This is a necessary condition for a quantum nondemolition (QND)

measurement of the which-well observable X̂ « | ` αyx`α| ´ | ´ αyx´α| [66]. In effect, the

readout resonator state is displaced, conditioned on which of the two metapotential wells is

occupied.

It is critical for our implementation that we do not rely on the ordinary dispersive readout

of the superconducting circuit platform. This means that our Kerr-cats are prepared, evolved,

and detected without relying on standard Fock qubit operations or measurements. This

ensures the high performance of a system with a weak bare nonlinearity. Instead of using the

dispersive coupling of the SNAIL-transmon to the readout resonator we use a parametrically

activated readout scheme with a large on-off ratio. The readout is enacted by playing a

microwave pulse at the frequency difference in between the squeezed Kerr oscillator frame ωd{2

and readout resonator at ωr while the stabilization drive is on. The nonlinear term providing

the interaction originates from the SNAIL array that, when activated by a microwave tone of

displacement amplitude ξBS and frequency ωBS “ ωr ´ ωd{2, transforms as

g3

ˆ

â`
gba
∆ba

b̂` h.c.

˙3

Ñ g3

ˆ

âe´iωdt{2 ` ξBSe
´iωBSt `

gba
∆ba

b̂e´iωrt ` h.c.

˙3

« 6g3
gba
∆ba

´

ξBS âb̂
:
` ξ˚BS â

:b̂
¯

.

(3.1)

Here, we have used the RWA to get rid of rapidly rotating terms in a displaced and rotating
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frame for â, g3 is the third order nonlinearity of the SNAILs, gba is the bare capacitive coupling

in between the Kerr-oscillator and the readout resonator, b̂ is the annihilation operator of the

resonator, and ∆ba “ ωr ´ ωa. The hybridization is given in the dispersive approximation for

simplicity. Note, however, that the RWA approximation is unjustified—the detuning of the

readout drive is of order the oscillator frequencies—and higher orders need to be considered.

To leading order, their effect is a renormalization of the beamsplitter coupling rate gBS in

the effective interaction

gBS âb̂
:
` g˚BS â

:b̂, (3.2)

which is the announced frequency-converting beamsplitter interaction.

In Fig. 3.4A, we show a histogram of X̂ measurements. The single shot readout infidelity

is 0.46%. Correlation measurements determined that the QND infidelity in our experiment is

1.5%. These values mean that we can continuously monitor our system and reconstruct the

trajectories associated with the quantum jumps of the well occupation.

In Fig. 3.4B, we show the experimental protocol for measuring the quantum trajectories.

After the squeezing drive is turned on, a waiting time equal to 5T1 is imposed to let the system

adopt a steady-state and a series of measurements is then performed. The sequence of their

outcomes constitutes a quantum trajectory record. Two examples of quantum trajectories

are shown in shades of grey in Figure 3.4C. The green and orange data points correspond

to averages of 5 ˆ 105 trajectories, each conditioned on the initial measurement falling on

the positive or negative side of a threshold defined by the demodulated field quadrature

I “ 0. The decay curve is fitted by a single exponential (black), yielding an incoherent

environment-induced activation time of T jumps
˘X “ p485 ˘ 1q µs. We next compare these

measurements to the free decay of the coherent states | ˘ αy. This is obtained by performing

only two measurements spaced by a variable idling time, in absence of continuous monitoring;

the results are shown in Fig. 3.4D. The decay is also fitted by an exponential whose lifetime

is found to be T˘X “ p482 ˘ 4q µs, thus showing that continuous monitoring does not

significantly modify the coherent state timescale TX in the metapotential.
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Figure 3.4: High-fidelity and quantum non demolition (QND) which-well readout of the
SKO. A Top and middle: histogram of the readout resonator output field while performing
2.5ˆ 108 measurements after preparation in |˘αy with a previous, stringently thresholded
measurement with a bias of 6.5 standard deviations (σ). Bottom: corresponding probability
distribution along the I quadrature, and Gaussian fits (solid lines) with standard deviation
used to scale the axes. Applying a fair (unbiased) threshold represented by the dashed
vertical line yields a readout infidelity of 0.46%. B, Pulse sequence to performing repeated
measurements, each with a duration of 4.44µs. C, Example quantum jump trajectories
(grey) under repeated measurements for ε2{K “ 10.7. Averages of trajectories conditioned
on the first measurement of | ˘ αy (green/orange) fit with single exponentials (black) with
decay time T jumps

X “ p485 ˘ 1qµs. D, State lifetime for | ˘ αy (green/orange) with no
intermediate measurements (free decay). Black lines are single-exponential fits with decay
time TX “ p482˘ 4qµs. Note that the which-well readout characterization is reproduced here
from [50,51] for the sake of completeness.

Having discussed the experimental setup and its readout, we are ready to present the

experimental demonstration of the coherent nulling of the tunnel splitting in the ground state

manifold in Chapter 4.
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Chapter 4

Quantum tunneling observations in

the ground state manifold of the SKO

4.1 Discrete cancellation as a function of ∆{K

We first experimentally demonstrate the cancellation of tunneling in the ground state manifold

via tunnel-driven time-domain Rabi oscillation measurements as a function of ∆. In Figure 4.1

we present the first of our measurements.

In Figure 4.1A, we show the classical limit of the metapotential surface for ∆{K “

3, ε2{K “ 0.11, as a function of phase-space coordinates. The arrows indicate the two WKB

tunneling paths [102]. Furthermore, we show in Figure 4.1B, the wavefunctions corresponding

to the ground state manifold. Note that these are not the energy eigenstates but their even

and odd superpositions, which are localized in the left and right wells. Importantly, in

the classically forbidden region, marked in grey, oscillations accompany the expected decay

of the wavefunctions [103]. To observe coherent cancellation of tunneling in the ground

state manifold, we prepare a localized well state and measure its tunneling probability as

a function of time for different values of ∆ and ε2. We present the measurement protocol

in Figure 4.1C. The preparation is done by rapidly turning on the squeezing drive until

an amplitude of ε2{K “ 8.7 is reached. We subsequently wait for 5T1 for the system to
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relax to its steady state in the presence of the squeezing drive and measure, in a quantum

nondemolition (QND) manner, the quadrature containing the which-well information. This

measurement projects the system into one of the wells. It is done by the microwave activation

of a parametric beam splitter interaction between the squeeze-driven Kerr oscillator and a

readout resonator strongly coupled to a quantum-limited amplifier chain. We refer the reader

to [51] for experimental details, where the preparation-by-measurement procedure for our

system was introduced. This readout protocol yields a stabilized fluorescence signal revealing

the quadrature measurement outcome, while the squeezing drive sustains the circuit oscillation.

After the preparation, we adiabatically lower the squeezing drive amplitude in a duration

1.6 µs Á π{K.1 The depth of the wells, which increases with ε2{K (see Subsection 2.3),

is then reduced so that the tunnel effect becomes observable. We then wait for a variable

amount of time before adiabatically raising the squeezing drive amplitude to its initial value.

Finally, we measure which well the system has adopted.

The data for this tunneling measurement is shown in Figure 4.1D, where we interpret

the oscillating color pattern as tunnel-driven Rabi oscillations. The periodic cancellation of

tunneling at ∆{K “ 2m, where m is a non-negative integer, is clearly visible as a divergence

of the Rabi period. We extract the tunneling amplitude |δE| from our data by fitting the

oscillation frequency with an exponentially decaying sinusoid and plot this frequency in

Figure 4.1E, where the data-point color corresponds to the value of ε2 (see Chapter 3 for

calibration of ε2). The black lines, obtained from an exact diagonalization of the static

effective Hamiltonian Eq. (2.1), correspond to the energy difference between levels in the

ground state manifold. The cancellation of tunneling for the ground state manifold in a

parametrically modulated oscillator was predicted by [103] where, using a semiclassical WKB

method, the authors found that this multi-path interference effect is due to, and accompanied

by, oscillations of the wavefunction crossing zero in the classically forbidden region. Here, we

1. Note that this adiabaticity condition pertains to the gap between the ground and first excited pair of
states. We do not need to be adiabatic with respect to the two tunnel split states within the ground state
manifold since they have opposite parity and the parity preserving squeezing drive will not couple them.
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Figure 4.1: Tunnel-driven Rabi oscillations in the ground state manifold and their periodic
nulling. A Metapotential surface in the classical limit for ∆{K “ 3 and ε2{K “ 0.11. The
orbits shown with black lines are obtained by semiclassical action quantization and represent
the ground states (see Chapter 2). Bidirectional arrows represent the two interfering WKB
tunneling paths. B Cut of the classical metapotential surface in A at p “ 0. The classically
forbidden region is marked in grey. The left and right localized wavefunctions are indicated
in red and blue. C Pulse sequence for D. The pink line represents the squeezing drive at
frequency ωd and the purple lines represent the preparation and readout drives at frequency
ωd{2´ ωr. D Time-domain Rabi oscillation measurement of inter-well tunneling probability
(color) as a function of ∆bare, taken here as ∆ (see text), for ε2{K “ 0.11, 0.22, 0.44, and
0.88. The extracted tunneling amplitudes from D are shown as open circles in E. The black
lines in E correspond to the transition energy between the lowest eigenstates obtained from
an exact diagonalization of Eq. (2.1). A comparison of the extracted tunneling rate with a
semiclassical WKB calculation is presented in the supplement. Green arrows in E denote
the condition for constructive interference of tunneling and correspond to the measurements
shown in Figure 4.2. We extract the value of the Kerr coefficient K from this data and
note that it is consistent, within experimental inaccuracies, with an independent saturation
spectroscopy measurement of the Fock qubit in the absence of the squeezing drive (). F
Decay time of the tunnel-driven Rabi oscillations for different values of ∆ and ε2 in D. Sharp
peaks in the decay time are clearly visible for ∆{K “ 2m, m being a non-negative integer.

find good agreement between our experiment and their WKB prediction. Note that, across

the zero of the tunneling amplitude, the bonding and anti-bonding superposition of well
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states alternate as the ground state. Specifically, for ∆{K “ 4m` 1, the ground state is the

bonding superposition of well states. In Fig. 4.1F, we further plot the extracted decay time of

the tunneling oscillations as a function of ∆, and find sharp peaks when ∆{K “ 2m, besides

an overall continuous increase of the decay time with ∆ and ε2. The peaks at ∆{K “ 2m

arise from the degeneracies in the excited state spectrum at this condition and are discussed

later in the text.

Importantly, the dynamics of the two-level system in Figure 4.1D suggest a new type of

bosonic encoding of information that we call the ∆-Kerr-cat qubit. The north and south

poles of the corresponding Bloch sphere, a generalization of the ∆ “ 0 one [51, 66, 126], is

defined by the cat states formed by the lowest pair of eigenstates of Eq. (2.1). In this picture,

a tunnel-Rabi cycle in Figure 4.1D for a fixed ∆{K ‰ 2m corresponds to a travel along the

equator. For ∆{K “ 2m, this travel is prohibited. Note that when ∆{K “ 2m ` 1, the

tunneling amplitude is maximum and is first-order insensitive to fluctuations of ∆.

4.2 Continuous reduction as a function of ε2{K

From Figure 4.1E, we also see that, besides the discrete cancellation of tunneling at ∆{K “ 2m,

tunneling in the ground state manifold is overall continuously reduced with both ∆ and ε2.

This reflects the well-known symmetry of the double well, which is broken by tunnel coupling.

The approximate symmetry is restored with increasing ∆ and ε2 because both parameters

explicitly control the barrier height and thus exponentially control the tunneling amplitude

|δE|. Theory predicts that the larger the detuning ∆, the faster the tunneling reduction with

the squeezing drive amplitude ε2. We have measured this effect by measuring the tunneling

amplitude as a function of ε2 for different constructive tunneling conditions corresponding to

∆{K “ 2m` 1. The data is presented in Figure 4.2. The exponential insensitivity, around

∆ “ 0, to fluctuations of ∆ due to a noisy ωa, as a function of ε2, was predicted by [126] and

thus proposed as a resource for quantum information. This insensitivity was a key motivation

for realizing the Kerr-cat qubit experimentally [66]. The insensitivity of the ground state
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manifold to detuning as a function of ε2 is directly observed here for the first time. Note

from Figure 4.1E that for ∆ ă 0, in the parameter regime ε2{K ă 1, the tunneling amplitude

|δE| is weakly dependent on ε2, whereas for ∆ ą 0, it is strongly dependent on ε2. This weak

dependence for ∆ ă 0 is expected since the barrier height vanishes for small values of ε2{K.2

Our finding shows that new operating points at even, positive values of ∆{K will increase

the resilience of ground-state qubit encoding to detuning-like noise.
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Figure 4.2: Exponential reduction of tunnel splitting as a function of ε2 in the ground
state manifold. Extracted tunnel splitting (open circles) for the first five local maxima in
Figure 4.1E as marked by the color coded arrows. Experimental sequence as in Figure 4.1E.
For the raw color data, see Figure 3 in the supplement. Black lines are obtained from a
Hamiltonian diagonalization of Eq. (2.1) with no adjustable parameters. For comparison
with a semiclassical WKB calculation, see Fig. 4.3. Note that for small tunneling amplitude,
dissipation plays a relevant role and the Hamiltonian model used here is insufficient.

2. In the absence of dissipation, the metapotential acquires two wells as soon as ε2, ∆ ą 0, i.e. there is no
threshold for bifurcation of the driven oscillator. In our quantum experiment, this threshold is finite but is,
relatively speaking, extremely small since and is set by ε22 ą p∆

2 ` T´2
1 {4q{4 (see Chapter 2).
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Figure 4.3: Measurements of tunneling amplitude in the ground state manifold compared
to two different models: exact diagonalization of Eq. (2.1) and WKB approximation. The
dots in A, B, C, D is the same data presented in Fig. 4.1E. Solid lines in black in A and B
are obtained via exact numerical diagonalization. Solid blue lines in C and D are obtained
via a semi-classical WKB treatment presented in Chapter 2, which is itself adapted from
results of Marthaler and Dykman in [102,103]. Tunnel amplitude in A and C are plotted as a
function of ∆ and in B and D as a function of ε2 respectively. As expected, the semi-classical
Hamiltonian model, in the domain of its validity ∆{K " 1 and ε2{K „ 1, agrees well with
the measured data.
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In conclusion, in this chapter we presented our experimental observation of the degeneracies

in the ground state manifold with time-domain measurements. Next, in Chapter 5, we will

present our experimental observation of multilevel degeneracies in the excited states, but with

frequency domain measurements.
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Chapter 5

Excited state manifold: spectral

kissing, multilevel degeneracies, and

their fingerprint on the qubit lifetime

Moving to the pairs of excited states above the ground state manifold, do they also present

observable degeneracies as a function of ∆{K? In order to deepen our understanding

of this problem, we first examine the classical metapotential surface via the period dou-

bling phase diagram [168] shown in Fig. 2.1. In the classical limit (see Chapter 2), the

parameter space spanned by ∆{K and ε2{K is divided by two phase transitions located

at ∆ “ ˘2ε2. The different phases are characterized by the number of stable nodes (at-

tractors) in the classical metapotential and we refer to them as the single-, double-, and

triple-node phases. These phases correspond to different metapotential topologies. We show

them as contour line insets in Fig. 2.1 representing classical orbits. The single-node phase

occurs for ∆ ă ´2ε2, and presents only one well. For ∆ ě ´2ε2, the oscillator has bifurcated

and the classical metapotential acquires two wells. In the presence of dissipation, these wells

house stable nodes. The emergent ground state manifold has been exploited, for ∆ “ 0, in

the Kerr-cat qubit [51,66]. In the interval ´2ε2 ď ∆ ă 2ε2, an unstable extremum (saddle
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point) appears at the origin. For ∆ ě 2ε2, the saddle point at the origin splits into two

saddle points and an attractor reappears at the origin. The barrier height of the classical

metapotential is given by p∆ ` 2ε2q
2{4K in the double-node phase and by 2ε2∆{K in the

triple-node phase (see Subsection 2.3). To count the number of excited states that have

sunk under the barrier, we further introduce in Fig. 2.4 a semi-classical phase diagram of

the squeeze-driven Kerr oscillator. Following the Einstein-Brillouin-Keller method, which

generalizes the notion of Bohr orbits, we quantize the action enclosed in the metapotential

well below the height of the barrier and obtain the number of in-well excited states. In

Fig. 2.4C, we present the corresponding orbits in the metapotential surface for a fixed value

of ε2{K, and four values of ∆{K. We validate this simple, semiclassical picture with a fully

quantum mechanical calculation of the Wigner functions of localized states in the ground

and excited state manifold (see Figs. 2.9 and 2.11). It is clear from this analysis that, by

increasing ε2 and ∆, and therefore the barrier height, not only the ground state manifold but

even the excited state manifolds become progressively ensconced in the wells, and we thus

expect the tunneling between the wells to be drastically reduced.

5.1 Spectral kissing as a function of ε2{K

To observe the energy levels’ dependence on the barrier height [176], we perform spectroscopy

of discrete quantum energy levels as a function of the squeezing amplitude. This is achieved

by interrupting the idling time, now kept constant, between the readout pulses by a microwave

probe tone at frequency ωpr. If ωpr coincides with the energy difference between the ground

state and an excited state close to or above the metapotential barrier, an interwell transition

becomes likely. In Fig. 5.1A-B we show the measurement of the well transition probability

for an initial state localized in one well as a function of squeezing amplitude ε2{K and probe

frequency ωpr. In Fig. 5.1C we show the fitted location of the spectroscopic lines as open

purple dots. In the same figure, with dashed lines, we also show a numerical diagonalization

with no adjustable parameters of the static-effective Hamiltonian Eq. (2.1) with ∆ “ 0. The
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Figure 5.1: A Excited state spectroscopy of the SKO Hamiltonian Eq. (2.1) as a function
of ε2 with ∆ “ 0, which models a quantum double-well model system. Color represents
the well-flip transition probability. B Experimental data in A superposed with theoretical
simulation of the tunnel splitting obtained by an exact diagonalization of Eq. (2.1) with
no adjustable parameters. Circles and vertical lines mark values of ε2{K where a new pair
of excited states become ensconced inside the double-well following a Bohr quantization
argument detailed in Subsection 2.3. The vertical axis on the left marks the spacing between
consecutive lines for ε2 “ 0 given by integer multiples of 2K. C Pulse sequence for the
measurement presented in A. We note that this figure is an adaptation from [50].
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agreement between theory and experiment is remarkable given the simplicity of the model.

For |α|2 Ñ 0, we extrapolate the spectrum to that of the bare SNAIL-transmon exhibiting

the expected Kerr anharmonic ladder. As the squeezing amplitude– and therefore |α|2– grows,

the spectrum becomes pairwise degenerate with levels of different photon-number parity

approaching each other in an exponential fashion. We refer to this exponential approach of

energy levels as spectral kissing. This is, to the best of our knowledge, the first observation of

the spectrum of a double-well Hamiltonian as a function of its single control parameter.

To understand the observed spectrum, we employ the semiclassical action quantization

argument developed in Subsection 2.3. Following the Bohr-like quantization argument, the

area enclosed in units of Planck’s constant h counts the a half-integer N ` 1{2 number of

quantum states in the wells. Analytically, we find N “ ε2{πK “ |α|2{π (see Subsection 2.3).

Every time N coincides with an integer value, a new pair of excited semiclassical orbits is

captured by the wells. The vertical dashed lines in Fig. 5.1 A, C and D correspond to this

semiclassical condition. As the squeezing amplitude ε2 increases, the captured levels sink

under the metapotential barrier and, coupled only by quantum tunneling, exponential level

kissing takes place.

Besides the overall continuous reduction of tunneling, the excited state manifold of

the squeeze-driven Kerr oscillator experiences a discrete cancellation of tunneling when

∆{K “ 2m. Since the squeezing interaction preserves photon parity, levels belonging to the

even and odd sector of the Kerr Hamiltonian remain decoupled and repeatedly cross at values

of ∆{K corresponding to even integers. This braiding induces m ` 1 perfect degeneracies

at ∆{K “ 2m. Moreover, the corresponding eigenstates have a closed-form expression in

the Fock basis. Remarkably, these features are independent of the value of ε2, reflecting a

particular, unappreciated symmetry of our Hamiltonian Eq. (2.1) (see Subsection 2.4).
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Figure 5.2: Measured well-flip time of the SKO aka the coherent state lifetime (TX) of the
Kerr-cat qubit as a function of photon-number ε2{K “ n̄0. The value of TX for each value of
n̄0 is obtained by fitting a decaying exponent to the measurement data obtained by following
the pulse sequence shown in D. A quantitative model to explain the staircase structure is
presented in Chapter 6. Qualitatively, the first step occurs due to the exponentially reducing
overlap between the exactly degenerate coherent states. Subsequent steps occur when a pair
of excited states become ensconced in the well and further get quasidegenerate. When the
excited states become quasidegenerate, thermal-assisted tunneling through excited states
get suppressed adding an extra layer of protection to the Kerr-cat qubit. This qualitative
argument is confirmed by the coinciding locations of the steps in the staircase in A, the
spectral kissing marked as circles in B and the semiclassical Bohr quantization condition
marked as the top X-axis in A. The colors in A mark the number of excited states in the
well following the semiclassical period-doubling phase diagram in C. We note that panels A
and B have been adapted from [50].
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5.2 Staircase in TX as a function of ε2{K

The most remarkable consequence of the pairwise level kissing is the staircase-shaped increase

of the lifetime TX as a function of the squeezing amplitude ε2{K, as shown in Fig. 5.2.

This step-wise increase can be understood, to a first approximation, using Bohr’s action

quantization. For ε2 ! K, TX corresponds to loss of coherence of the superposition between the

ground state and the first excited state of a Kerr oscillator (T2R), but increases exponentially

as each of the two metapotential barrier becomes deep enough to host one quantum each

(ε2{πK „ 1. The exponential increase stops when excitations to the first pair of excited states

(â:-like events) become the limiting factor. An excitation into these states will allow the

transition between wells. The incoherent environment-induced activation time thus plateaus

at „250 µs until Bohr’s quantization condition is met again and the first pair of excited states

is captured by the metapotential wells (ε2{πK „ 2, second vertical dashed line). At this

point, the tunnel splitting between the first pair of excited states vanishes and the increase of

lifetime resumes. This cycle repeats itself for the next pair of excited states as shown by the

third rising slope in lifetime at ε2{πK „ 3 (third vertical dashed line). We thus interpret the

experimental data in Fig. 5.2 as a second manifestation of the pairwise kissing spectrum. In

Chapter 6, we go beyond a Hamiltonian reasoning, by providing a Lindblad master equation

model that takes into accoung single-photon heating and loss, which models the experimental

data. In Fig. 5.3, we present a measurement of the lifetime TY Z of the Schrödinger cat

superpositions of | ˘ αy, which are all degenerate ground states of Eq. (2.1) for |α| ą 0. The

experimental sequence used for this measurement is shown in Fig. 5.3B. The lifetime TY Z is

measured as the decay time of oscillation between cat states.

In this section we presented the spectroscopy of the excited states in the quantum double-

well as a function of ε2{K. Note that this corresponds to the experimental validation of

Fig. 2.5A. We further presented measurements of the stepped variation TX as a function

of ε2{K, a fingerprint of the excited state spectrum. We will next present spectroscopy

measurements as a function of ∆{K for a fixed value of ε2{K corresponding to the experimental
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Figure 5.3: A Cat state lifetime TY Z of the Kerr-cat qubit as a function of photon-number
ε2{K “ |α|2. B Ramsey-like pulse sequence for the measurement result presented in A. We
note that panels A and B have been adapted from [50].

validation of Fig. 2.5B.

5.3 Multilevel spectral degeneracies as a function of ∆{K

Both the discrete cancellation and the overall continuous reduction of tunneling now in

the excited state manifold of the squeeze-driven Kerr oscillator is accessed by performing

spectroscopy measurements as a function of ∆, which we show in Fig. 5.4 for ε2{K “ 2.17.

The measurement protocol is shown in Fig. 5.1C. We prepare a localized well state in a manner

that is similar to the protocols of Figs. 4.1 and 4.2. To locate the frequency of the excited

states, we apply a probe tone at variable frequency in the vicinity of the SNAIL transmon

resonance ωa and measure the well-switching probability. When the probe is resonant with

a transition to a state close to the barrier maximum, this probability is increased. The

experimental results are shown in Fig. 5.4. The colored dashed lines (orange and blue) in the

lower panel are obtained from an exact diagonalization of the static effective Hamiltonian

Eq. (2.1) with no adjustable parameters. The crossings of levels are marked with circles.

The data also shows that the level crossings are accompanied by a continuous reduction
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of the braiding amplitude with ∆. The corresponding reduction of the tunnel splitting

is the manifestation associated with a generic double-well Hamiltonian while the braiding

reflects interference specific to our particular Hamiltonian, resulting from its underlying

driven character. The level of experimental control achieved allows us to observe in this data

the joint presence of the exact discrete symmetry and the approximate continuous symmetry

in our bosonic system.

5.4 Peaks in TX as a function of ∆{K

An important consequence of the cancellation of tunneling in the excited state spectrum is

the periodic enhancement of the well-switching time under incoherent environment-induced

evolution. This time scale corresponds to the transverse relaxation time, TX , of a new bosonic

qubit: a ∆-variant of the Kerr-cat qubit [50,126] as mentioned earlier. To measure TX , we

prepare a localized well state by measurement, and wait for a variable amount of time before

measuring the which-well information. We show the pulse sequence in Fig. 5.3B. We obtain

TX by fitting a decaying exponential function to the measured well-transition probability for

each value of ∆ and plot the result in Fig. 5.5A. Note that we have chosen the squeezing

drive amplitude, identical to that of Fig. 5.4A, as ε2{K “ 2.17. Around values of ∆{K

corresponding to even integers, the variation of TX presents sharp peaks. The location of the

peaks corresponds to the degeneracy condition in the excited state spectrum, associated with

coherent cancellation of tunneling and the blocking of noise-induced well-switching pathways

via the excited states. The systematic right-offset δ̃{K of each peak from an even integer, is

15%. About 5% can be attributed to the ac Stark shift δac for this photon number, given the

accuracy of our knowledge of the experimental parameters. We do not have an explanation

for the remaining 10%, but we suspect it could be explained by higher-order terms in our

static effective Hamiltonian. Note that this explanation is still compatible with the perfect

alignment of the cancellation points with even integers in Fig. 4.1F for ε2{K ă 1, since for

that case the ac Stark shift is negligible. Note also that this offset could provide access,
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Figure 5.4: Frequency-domain measurement of well-transition probability (color) via excited
states as a function of ∆{K for ε2{K “ 2.17. The pulse sequence is shown in Fig. 5.1C. The
power of the perturbative spectroscopic probe is increased as ωpr is decreased to compensate
for the lower matrix element connecting the ground state with the higher excited levels, yet
is kept weak enough to preserve the parity conservation rules of Eq. (2.1). F (lower panel)
Dashed lines plotted on top of experimental data (same as in upper panel) correspond to
transition energies obtained by performing an exact diagonalization of Eq. (2.1) with no
adjustable parameters. The Kerr coefficient is calibrated via time-domain measurements in
Fig. 4.1E.
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within experimental accuracy, via the ac Stark shift, to the nonlinear parameters of Eq. (1.3).

The data in Fig. 5.5A also shows that the discrete peaks are accompanied by a monotonic

baseline increase, a direct manifestation of the overall continuous tunneling reduction in

the spectrum as a function of ∆. The background colored stripes represent the number

of in-well excited states found via the action quantization method discussed above and in

Subsection 2.3. Continuing with this semiclassical picture, we interpret the slowdown in the

growth of TX for ∆{K Á 5 as the slowdown in the growth of the barrier height as one crosses

over from the double-node, where the barrier height 9p∆` 2ε2q
2, to the triple-node phase,

where the barrier height 9∆ε2. Indeed, this is the quantum manifestation of the classical

phase transition from the double-node to the triple-node phase.

Thus, whether the theoretical framework is classical, semiclassical, or quantum, the

predicted TX will increase with both ε2 and ∆. While ε2 and ∆ contribute via the overall

continuous reduction of tunneling [51], only ∆ controls the discrete cancellation of tunneling.

We verify this prediction by measuring TX while varying simultaneously both Hamiltonian

parameters. We present the result of this experiment in Fig. 5.6. We further plot contours of

constant barrier height in black, and the expected separation between the double-node and

triple-node metapotential as a white line. The system lying deeply in the quantum regime,

we do not expect any sharp features along this line. As expected, following the gradient of

the barrier height, one observes the fastest gain in TX , with a maximum of TX “ 1.3 ms for

∆{K “ 6 and ε2{K “ 4. Increasing the lifetime by increasing ε2 presents limitations, since

strong drives are known to cause undesired effects in driven nonlinear systems (see [153, 169]

and Chapter 6).

Bistability for non-zero ∆ was predicted by Roberts and Clerk in [133]. Our work demon-

strates this bistability experimentally through the lifetime peaks in Fig. 5.5A and explains

the peaks as a fingerprint of the observed spectral degeneracies in Fig. 5.4. Furthermore, the

resilience to noise in the non-zero ∆ case is demonstrated through Fig. 4.1E and Fig. 4.2.

One could argue that ∆ “ 0 provides an important factorization condition that guarantees
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Figure 5.5: A Measured well-flip time of the SKO aka the coherent state lifetime (TX)
of the ∆-Kerr-cat qubit as a function of ∆{K for ε2{K “ 2.17. At ∆{K “ 2m ` 1, m ` 1
degeneracies occur in the spectrum as shown in B. Thus, the Kerr-cat qubit is mth order
protected to tunneling through excited states, which manifests as increasing peaks in the
lifetime. Background color in A marks the number of excited states per well following
semiclassical orbit quantization. A detailed modeling of the decoherence of the SKO is done
in Chapter 6. C Semiclassical period-doubling phase diagram.
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well-flip time (ms)

Figure 5.6: Color map of TX in the parameter space of ∆{K and ε2{K. White line, given
by ∆{K ` 2 “ 2ε2{K, marks the transition from a two-node to a three-node metapotential.
Black solid lines mark contours of constant barrier height of the metapotential. Increasing
both ∆{K and ε2{K yields fastest enhancement in TX as predicted by the semiclassical phase
diagram Fig. 5.5B. The additional enhancement by the coherent cancellation of excited state
tunneling at ∆{K “ 2m stands out. The pulse sequence for the measurement is shown in
Fig. 5.5C.

96



that the ground state manifold is spanned by exact coherent states (see [126] and Fig. 2.10).

Indeed, this is an asset for quantum information, since these states are eigenstates of the single-

photon loss operator â [113]. However, this desirable property is traded for the advantages

discussed earlier when ∆{K “ 2m, m ě 1. Even if the ∆-variant of the Kerr-cat qubit suffers

from quantum heating and quantum diffusion [44, 102, 120] at zero temperature resulting

from the squeezed nature of its ground states, these effects are small and, as we show in the

experiments reported here and in [51], the well-states of the Kerr-cat live longer than its

∆ “ 0 parent, even at finite temperature.

In the discussion thus far, we have provided an intuitive picture with which to think about

the well-flip lifetime, which corresponds to the coherent-state lifetime of the ∆-variant of the

Kerr-cat qubit. Next, we derive a model to quantiatively explain the experimental data. For

the sake of concreteness, we will model the data presented in Fig. 5.2A corresponding to the

coherent state lifetime of the Kerr-cat qubit (∆ “ 0).
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Chapter 6

A decoherence model for the SKO: an

RWA model and treating effects

beyond the RWA

Static effective Hamiltonians can be engineered in circuit quantum electrodynamics [10] by

coherently driving parametric processes. Such techniques have been put to use in creating

qubits [96, 97, 126,156], gates between them [8,55, 92, 134], readout schemes [47, 90, 150], and

quantum simulations [7, 14,85,157]. Similar techniques are employed in quantum simulation

with atomic systems [58, 104, 166]. Effective Hamiltonians resulting from complex pulse

sequences in Trotterization schemes applied to a system [19,104,136] can be also viewed as

belonging to the above class.

Since physical systems are inevitably open, the nonlinear mixing processes associated

with the Hamiltonian parametric terms of interest are also driven incoherently by fluctuations

of the environment. These environmental fluctuations can be thermal in origin, in which

case the process can be understood as a classical nonlinear mixing of noise that is down- or

up-converted to the frequency of the nonlinear oscillator, or have an origin in the vacuum

fluctuations of the environment. These vacuum fluctuations can be amplified by the drive and
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give rise to heating even in a zero temperature environment, a phenomenon known as Unruh

heating when the driving force produces a simple time-independent acceleration [12,151,165].

A recent work [121] studied these effects in an attempt to explain drive-induced lifetime

reduction in transmon circuits during readout. But in transmons, these effects tend to be

masked by multiphoton nonlinear resonances limiting readout and parametric operations

[10, 34, 138, 142]. However, the recent implementation of a SKO giving rise to the Kerr-

cat qubit [51, 66, 126] provides an ideal platform to uncover the effect of drive-enhanced

environmental fluctuations, since unwanted nonlinear resonances of the transmon qubit are

largely absent in this new system. Mixing of the environmental fluctuations is captured

by beyond rotating wave approximation (RWA) in corrections to the system-bath coupling,

giving rise to modified Lindbladian dynamics. In this chapter, we compute the static

effective dissipators for the Kerr-cat system and discuss possible new effects that may explain

experimental data in [51]. Our systematic method, based on [154], can be extended to

arbitrary order and can be applied to other controllable driven systems with a residual

coupling to a bath. For the sake of concreteness, we will model the measurements of the

coherent state lifetime of the Kerr-cat qubit as a function of ε2{K presented in Fig. 5.2A

corresponding to taking ∆ “ 0.

6.1 Decoherence in a rapidly driven nonlinear system

The starting point of the calculation is the driven system-bath Hamiltonian

Ĥtotptq “ Ĥs ` Ĥb ` Ĥsb ` Ĥdptq. (6.1)

The system is a weakly nonlinear oscillator whose Hamiltonian Ĥs is given by Eq. (1.3). Here,

â is the bosonic annihilation operator. The parameters ωo and gn ! ωo are the bare oscillator

frequency and the n-th rank nonlinearity coefficients of the oscillator. We specialize our

calculation to the case of the Josephson cosine potential as a source of oscillator nonlinearity
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and thus take the nonlinear coefficient gn of the Hamiltonian expansion to be of order

ϕn´2
zps [154], where ϕzps is the zero point spread of the phase across the Josephson junction

ϕ̂ “ ϕzpspâ ` â:q. The system is driven by Ĥdptq “ ´i~F ptq
`

â´ â:
˘

, where F ptq is the

waveform of the drive. At this time, we limit our analysis to the modeling of experiments in

which the time dependence of the Hamiltonian corresponds to a monochromatic drive F ptq “

Ωd cospωdtq. The environment is taken to be a bath of linear oscillators with Hamiltonian

Ĥb “
ř

j ~ωj b̂
:

j b̂j , which couples to the system by Ĥsb “ ´
`

â´ â:
˘
ř

j hj

´

b̂j ´ b̂
:

j

¯

. In these

expressions b̂j is the annihilation operator of a bath mode at frequency ωj.

6.2 Effective Lindbladian at order ϕ0
zps: the RWA Lindbladian

Motivated by the SKO (see Chapter 1, [25,51,66,126,127,133,161]) and quantum information

processing with cat-qubits [25, 56, 66, 93, 96, 97, 126, 127, 129], we look now for the static

effective description of Ĥtot under the condition ωd « 2ωo. The construction of this effective

description involves successive unitary transformations followed by averaging out the rapidly

oscillating terms in the new frame. First, following [154], we rewrite Ĥtot in a new frame

comprising (i) a displaced frame relative to the linear resonance of the oscillator to the drive

so that

â Ñ â ` iΩd
2pωd´ωoq

e´iωdt ´ iΩd
2pωd`ωoq

eiωdt, (ii) a rotating frame of â mode at ωd{2 so that

â Ñ âe´iωdt{2, and then (iii) a rotating frame of each b̂j mode at frequency ωj so that

b̂j Ñ b̂je
´iωjt. The Hamiltonian now reads

Ĥtot “ Ĥsptq ` Ĥsbptq (6.2a)

Ĥsptq{~ “ δâ:â`
ÿ

n

gn
n

´

âe´iωdt{2 ` â:eiωdt{2

` Πe´iωdt ` Π˚eiωdt
¯n

(6.2b)

Ĥsbptq “ i
`

âe´iωdt{2 ´ â:eiωdt{2
˘

B̂ptq, (6.2c)
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where δ “ ωo ´ ωd{2, Π « 4iΩd{3ωd, and B̂ptq “
ř

j ihωj

´

b̂je
´iωjt ´ b̂:je

iωjt
¯

. Averaging out

the fast oscillation arising in Ĥsptq, one finds the system Hamiltonian and its coupling to

the environment under the RWA (order ϕ0
zps). We further replace the sum

ř

j over the bath

modes with an integral introducing a density of modes λω such that λωdω gives the number of

oscillators with frequencies in the interval from ω to ω ` dω. Tracing out the environment at

this point under the usual Born-Markov approximation in a thermal bath provides the ordinary

Lindbladian [25, 56, 129], which involves the usual dissipators corresponding to single photon

loss Drâs and gain Drâ:s [16,21], where DrÔs‚ :“ Ô‚Ô:´pÔ:Ô‚`‚Ô:Ôq{2. The effect of the

bath under the Markov approximation is equivalent to a stochastic force coupled to the system

by if̂ptqpâ´ â:q with spectral density Sff rωs “ 2πλω|hω|
2n̄ω, Sff r´ωs “ 2πλω|hω|

2p1` n̄ωq,

where n̄ω is the average photon number of the mode b̂ω at frequency ω ą 0 [32].

The key to obtaining our main result is to take into account terms beyond the RWA in the

system-bath coupling and get an averaged description of Ĥtot. We follow our generalization

of the Schrieffer-Wolff transformation procedure [154] to construct a near-identity canonical

transformation generated by Ŝptq “ Opϕzpsq so that the transformed Hamiltonian is time-

independent to order ϕkzps for some arbitrarily large k of interest. Under Ŝ, Ĥtotptq Ñ Ĥeff ,

which is given as

Ĥeff ” eŜ{i~Ĥtotptqe
´Ŝ{i~

´ i~eŜ{i~Bte´Ŝ{i~

“ Ĥs ` Ĥsb,

(6.3)

where, by construction [154], Ĥeff is the static effective approximation of Ĥtotptq, and the

computation of Ŝptq is detailed in Subsection 6.8. The first summand in Eq. (6.3) reads

Ĥs{~ “ ∆â:â´Kâ:2â2
` ε2pâ

:2
` â2

q `Opϕ3
zpsq, (6.4)

where ∆ “ δ ` 6g4|Π|
2 ´ 18g2

3|Π|
2{ωd ` 2K is the Stark- and Lamb-shifted detuning, K “

´3g4{2` 20g2
3{3ωd is the Kerr coefficient, and ε2 “ g3Π is the squeezing amplitude.
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6.3 Effective Lindbladian at order ϕ1
zps: first order beyond the

RWA

The canonical transformation generated by Ŝptq can be viewed as describing the system in

an accelerated frame. In this frame, the system effectively experiences the static Hamiltonian

Eq. (6.4); meanwhile, the system-bath coupling develops nonlinear components. Keeping terms

to order ϕ1
zps, the perturbation parameter in the expansion of Ŝptq, the system-environment

coupling reads

Ĥp1q
sb « i

`

âe´iωdt{2 ´ â:eiωdt{2
˘

B̂ptq

` i
´

´
3ε2
ωd
â:ei3ωdt{2 ´

8g3

3ωd
â:2ei2ωdt{2

´
2ε2
ωd
âeiωdt{2 `

2ε2
ωd
â:e´iωdt{2

`
8g3

ωd
â2e´i2ωdt{2 `

3ε2
ωd
âe´i3ωdt{2

¯

B̂ptq,

(6.5)

where the first line, at order ϕ0
zps, is identical to the coupling term Eq. (6.2c).

Following a standard Lindbladian derivation [16,21,22], but now with the renormalized

system-bath Hamiltonian, we obtain the effective Lindblad master equation for the system

up to order ϕ1
zps as

Btρ̂s “
1

i~
rĤs, ρ̂ss ` κωd{2n̄ωd{2Drâ

:
`

2ε2
ωd
âsρ̂s

` κωd{2
`

1` n̄ωd{2
˘

Drâ` 2ε2
ωd
â:sρ̂s

` κωdn̄ωd

ˆ

8g3

3ωd

˙2

D
“

â:2
‰

ρ̂s

` κωd p1` n̄ωdq

ˆ

8g3

3ωd

˙2

D
“

â2
‰

ρ̂s

` κ3ωd{2n̄3ωd{2

ˆ

3ε2
ωd

˙2

D
“

â:
‰

ρ̂s

` κ3ωd{2

`

1` n̄3ωd{2

˘

ˆ

3ε2
ωd

˙2

Drâsρ̂s.

(6.6)
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Here, κω “ 2πλω|hω|
2{~2 “ pSff r´ωs ´ Sff rωsq{~2 is the system-bath coupling rate at

frequency ω.

As our first observation, we note that one can expand the dissipator Drâ ` 2ε2
ωd
â:s in

Eq. (6.6) to find a heating term that remains finite even at zero temperature: κωd{2

´

2ε2
ωd

¯2

Drâ:s.

Its physical origin is a drive photon at frequency ωd being converted to an oscillator excitation

and an environment excitation, both at ωd{2. The associated effective Unruh-like temperature

grows with the squeezing amplitude.

The dominant correction for the situation that interests us, however, is the parity-

preserving two-photon heating term Drâ:2s. Its physical origin is in the thermal fluctuation

at frequency ωd driving incoherently the parametric process engineered to generate squeezing

[51,66].

With the Lindbladian at order ϕ1
zps, we can compute the decoherence time TX of the ground

coherent states, otherwise known as Glauber states, of the system
ˇ

ˇα “ ˘
a

ε2{K
D

« | ˘X
D

,

where X stands for a Bloch sphere axis [51,66]. This quantity is the smallest non-zero real part

of the Lindbladian eigenspectrum [4,51]. In Fig. 6.1, we plot this quantity as a function of the

squeezing amplitude. For our simulation parameters, we take κωd “ 5 µs´1 and temperature

Tωd “ 350 mK, which are reasonable values for a drive port considering standard couplings

and the noise temperature of the electronics controlling the microwave signals in quantum

circuit experiments. In addition, we choose κωd{2 “ κ3ωd{2 “ 0.05 µs´1 and temperature

Tωd{2 “ T3ωd{2 “ 50 mK, which are also based on experimental conditions of interest for

this note. The nonlinear coefficients are taken to be g3{6π “ 20 MHz, g4{8π “ 280 kHz,

and consequently K{2π “ 320 kHz, which are standard values for the SNAIL transmon [53]

used in the experiments [51]. The drive frequency is ωd{2π “ 12 GHz and the renormalized

detuning in Eq. (6.4) is taken to be ∆ “ 0.

In Fig. 6.1, we show the Lindbladian prediction for the ordinary dissipators (order ϕ0
zps,

blue) and that for dissipators to order ϕ1
zps (orange). The two predictions disagree by several

orders of magnitude, and thus the former, being incomplete, is unfit to describe state-of-
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order 0, full Lindbladian
order 1, full Lindbladian
order 2, full Lindbladian
order 1, 2-photon only

Figure 6.1: Theoretical simulation of TX vs ε2{K for different orders of perturbation theory
and considering experimentally relevant system and bath parameters. Predictions to order
ϕ0

zps in the coupling to the environment, corresponding to the ordinary Lindbladian treatment
(containing only single photon loss and gain at ω “ ωd{2), to order ϕ1

zps, and to order ϕ2
zps

are shown in blue, orange, and green respectively. Also shown is the effect of keeping only
the two-photon terms at order ϕ1

zps (see Eq. (6.7), black).

the-art experiments [51]. The prediction to order ϕ2
zps (green), which we discuss in detail

next, adds negligible corrections and shows the convergence of the method for the chosen

parameter values. We note that the ratio of the prefactors of two-photon heating at order

ϕ1
zps and single photon heating at order ϕ0

zps is 17 Hz{12 Hz „ 1. Yet the two-photon process

becomes dominant for ε2{K ą 2 because its strength scales as xpâ:âq2y „ |α|4 while that of

the single photon process scales as xâ:ây „ |α|2 . We also plot the Lindbladian prediction

(black), computed from

Btρ̂s “
1

i~
rĤs, ρ̂ss ` κωd{2n̄ωd{2Drâ

:
sρ̂s

` κωd{2
`

1` n̄ωd{2
˘

Drâsρ̂s

` κωdn̄ωd

ˆ

8g3

3ωd

˙2

D
“

â:2
‰

ρ̂s

` κωd p1` n̄ωdq

ˆ

8g3

3ωd

˙2

D
“

â2
‰

ρ̂s,

(6.7)

which only adds to the linear dissipators the term 9 Drâ:2s (and its conjugate). Its close

similarity with the full Lindbladian prediction confirms that two-photon heating constitutes
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the dominant corrections to the ordinary Lindbladian. Note, though, that this decoherence

process has only a marginal effect on the lifetime of large Schrödinger cat states (9 |αy˘|´αy),

since it conserves the parity of the state. Despite the failure of the ordinary Lindbladian to

predict the lifetime of the coherent states, the lifetime of the Schrödinger cat states measured

in [51] is still accounted for by the ordinary linear dissipation because of its inherent fragility

to single photon loss events.

6.4 Effective Lindbladian at order ϕ2
zps: second order beyond the

RWA

Similarly to the computation done at order ϕ1
zps, we also compute Ŝptq generating the unitary

transformation Eq. (6.3) to order ϕ2
zps, as well as the effective Lindbladian to this order.

The full expression is given in Eq. (6.16) in the appendix. The correction to this order may

become relevant depending on the choice of parameters in the model, as we now discuss.

The second order Lindbladian samples the noise spectrum at 5ωd{2, 2ωd and near zero

frequency in addition to those sampled at the lower orders. For the noise spectrum at

these frequencies, we chose κ5ωd{2 “ κ2ωd{2 “ 50 ms´1 and T5ωd{2 “ T2ωd “ 50 mK. For zero

frequency, we take κ0 “ 0. These parameter assignations were used also for the calculation

to order ϕ2
zps in Fig. 6.1. We remark that the assignation for κ0 is an important assumption,

justified for the decoherence model proposed here. For a thermal bath of linear oscillators,

the number of photons diverges near DC as n̄th „ kBT {~ω while the density of modes (and

thus κω) goes to zero as a polynomial in ω (9ω2 for a resistance coupled to the circuit by a

capacitance). Thus, the noise spectral density at near-DC frequency goes to zero as ω Ñ 0 in

this model. However, for other noise models better suited to describe the low-frequency band

including, for example quasi-particle loss and inductive loss [105,123,145], the noise near DC

could become dominant and Eq. (6.2c) should also be extended to capture the corresponding

coupling terms.

In Fig. 6.2, we show the effect of increasing the Kerr nonlinearity in the lifetime prediction
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1 millisecond

Figure 6.2: Theoretical predictions for the coherent state lifetime TX of the Kerr-cat qubit
to order ϕ2

zps as a function of its mean photon number for several values of the Kerr constant
K. The third rank nonlinearity is kept constant for all curves at g3{6π “ 20 MHz. The
bath parameters are identical to Fig. 6.1. The brown curve corresponds to the prediction for
parameters within 10% of those in [66], whereas the blue curve corresponds to the prediction
for parameters within 10% of those in [51].

at order ϕ2
zps while keeping the rank-three nonlinearity constant to g3{6π “ 20 MHz as

in [51,66]. The Kerr coefficient is varied by varying g4 [53]. The dominant dissipator appearing

at this order is Drâ:âs, which on the coherent states acts as a single photon gain enhanced

by a factor |α|2. The magnitude of this dissipator scales as |K|4|Π|2xpâ:âq2y9|K|4|α|8 (see

Eq. (6.16)) and its prefactor ranges between 10´6 and 2 times that of the dissipator Drâ:2s at

order ϕ1
zps when K{2π is varied from 0.25 MHz to 8 MHz for a coherent state with |α|2 “ 20.

Consequently, this term becomes dominant for K{2π ą 2 MHz and for sufficiently large

coherent state amplitudes. This is in qualitative agreement with the fact that the device

in [66], characterized by K{2π “ 6.7 MHz, has a TX lifetime considerably lower than the one

achieved in [51] where the device was operated at K{2π “ 320 kHz.1

1. Note that in order to achieve a given large Kerr (" κωd{2), and thus fast gates in the Kerr-cat qubit,
one should reduce as much as possible the decoherence induced by g3 and g4. One sees from the analytical
expression in Eq. (6.16) that the prefactors of some dissipators can be minimized or even cancelled, at constant
Kerr, by the proper choice of the oscillator’s nonlinearities.
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Figure 6.3: Comparing the staircase experimental data versus predictions of the beyond
RWA model. The experimental points correspond to the data in [51]. The bath parameters
in the model are identical to Fig. 6.1.

The main point of the exploration presented in this chapter is to showcase that an in-depth

theoretical understanding of the dissipative processes at various orders is necessary for the

experimental activity on parametric processes, like amplification, driven qubits, and quantum

gates.

6.5 Comparison between theoretical predictions and experimental

results

We have found that an ordinary Lindbladian treatment is incomplete by several orders of

magnitude when the beyond-RWA terms are examined for the Kerr-cat qubit. Consequently,

to account for experimental observations, higher orders in the Lindbladian need to be

considered. With the analytical expression presented here, we are able to account for the

order of magnitude of the observations presented in [51], which are reproduced as maroon dots

in Fig. 6.3. Note that for |α|2 ă 2, where there is a discrepancy between the experimental

results and the predictions presented here, the data has been explained in [51], by the inclusion

of non-Markovian low-frequency noise which is not included here. The results presented in

this chapter emphasise the need for further experiments that will in turn lead to detailed

107



modeling of possible noise sources affecting particularly driven qubits.

6.6 Modeling TX for ∆ ‰ 0

So far, we only analyzed TX only as a function of ε2{K for ∆ “ 0. In this section, we model

the transverse relaxation lifetime measurements TX of the ∆-Kerr-cat qubit for ∆ ‰ 0. For

the sake of simplicity, we only perform simulations over the RWA Lindblad master equation

Btρ̂ “
1

i~
rĤ, ρ̂s ` κp1` n̄thqDrâsρ̂` κn̄thDrâ:sρ̂, (6.8)

where ρ̂ describes the state of the system, n̄th “ 1{pexpp~ωa{kBT q ´ 1q corresponds to the

temperature of the environment and κ corresponds to the coupling between system and

environment. The Hamiltonian Ĥ is given by Eq. (2.24) and the dissipator D of the operator

Ô is given by DrÔs‚ :“ Ô ‚ Ô:´pÔ:Ô ‚`‚ Ô:Ôq{2. In Eq. (6.8), these operators correspond

to single photon loss Drâs and gain Drâ:s [16, 21, 22]. In Figure 6.4, we compare the data

presented in Figure 3 of the main text with the lifetime extracted from Eq. (6.8) for different

values of nth. The value of κ has been set to κ “ 1{T1 “ 1{20 µs´1. The current model seems

insufficient to accurately predict the observations and more research is needed to understand

the decoherence of nonlinear driven systems (see, for example, [153]). Figure 6.4 emphasizes

the need for further measurements and a detailed modeling of possible noise sources affecting

particularly driven qubits. We also present, in Figure 6.5, the expected TX as a function of

ε2{K for different values of ∆. This plot indicates that a ∆-Kerr-cat, in general, gives larger

TX lifetimes than a Kerr-cat (∆ “ 0).

6.7 Mitigating lifetime reduction by adding two-photon cooling

We identify that the dominant decoherence mechanisms are two-photon heating Drâ:2s and

dephasing Drâ:âs9|α|2Drâ:s. To counteract this, we include, in our computation, a small

amount of engineered two-photon dissipation [42, 96, 97, 114, 127] (κ2ph “ 0.003 µs´1). We
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dataexperimental data

Figure 6.4: Ordinary Lindblad simulations of TX as a function of ∆ for different thermal
populations, corresponding to Eq. (6.8). Black dots correspond to experimental data presented
in Fig. 5.5. The value of κ has been taken to be κ “ 1{T1 “ 1{20 µs´1. The solid curves
take the experimentally observed ac Stark shift into account. An ordinary Lindbladian at
non-zero temperature is insufficient to predict the experimental data. Beyond-RWA effects
may be important to consider [153].

A B

Figure 6.5: Ordinary Lindblad simulations of TX as a function of ε2{K for different values of
∆{K, corresponding to Eq. (6.8). For both A and B, the value of κ{K “ 1{50 and n̄th “ 0.05.
In B for ε2{K ă 2 the lifetime is limited by ground state tunneling and is this not well
captured by our simplified method.
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1 second

1 millisecond

RWA beyond RWA
beyond RWA w/ 2-photon cooling

Figure 6.6: Effect of additional two-photon cooling on TX . Adding an artificial two-photon
dissipation term with a relatively small prefactor to the Kerr-cat system largely compensates
the effect of the higher-order dissipators computed here. System and bath parameters have
been chosen to be identical to those in Fig. 6.1.

show the outcome of the calculation in Fig. 6.6 for system and bath parameters as in Figs. 6.1

and 6.3. Experimentally, this should be easily achievable since much larger two-photon

cooling rates have been demonstrated [97, 150], albeit in absence of a Kerr nonlinearity.

Note, however, that a correct understanding is likely to require a higher-order analysis of

engineered dissipation [56,129] like the one presented here. It is likely that the combination of

Hamiltonian stabilization and reservoir engineering will provide the agility and fast universal

gates for cat-qubits and high coherent state lifetimes [127].

6.8 Deriving the static effective Hamiltonian of the system-bath

Hamiltonian

Here we follow [154] to compute Ŝ that generates the sought-after canonical transformation.

First we expand Eq. (6.3) as

Ĥeff ” eŜ{i~Ĥtotptqe
´Ŝ{i~

´ i~eŜ{i~Bte´Ŝ{i~ (6.9a)
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“ Ĥs `
1

i~
rŜ, Ĥss `

1

2!pi~q2
rŜ, rŜ, Ĥsss ` ¨ ¨ ¨

` Ĥsb `
1

i~
rŜ, Ĥsbs `

1

2!pi~q2
rŜ, rŜ, Ĥsbss ` ¨ ¨ ¨

` BtŜ `
1

2!i~
rŜ, BtŜs ` ¨ ¨ ¨

(6.9b)

“ Ĥs ` Ĥsb, (6.9c)

where in Eq. (6.9b) we have plugged in Ĥtot “ Ĥs` Ĥsb as defined in Eq. (6.2) and employed

the Baker-Campbell-Hausdorff formula; in Eq. (6.9c) Ĥsb corresponds to the second line of

Eq. (6.9b) and Ĥs consists of the rest of Eq. (6.9b), which contains no bath modes.

Our goal is to perturbatively find Ŝ so that in the correponding frame Ĥs is time-

independent to some desired order of ϕzps. We therefore write Ĥs and Ŝ each as a series

Ĥs “
ÿ

ką0

Ĥpkq
s , Ŝ “

ÿ

ką0

Ŝpkq (6.10)

where Ĥ
pkq
s and Ŝpkq are the order ϕkzps components in the corresponding series.

Demanding Ĥs to be time-independent at order ϕ1
zps [154], we obtain the first order

generator of the static effective transformation as

Ŝp1q

~
“ ´

ż

dt osc
´

Ĥs

¯

(6.11)

“
2

5
i
g3

ωd
a:Π˚2ei5ωdt{2 `

1

2
i
g3

ωd
a:2Π˚ei4ωdt{2

`

ˆ

2

3
i
g3

ωd
aΠ˚2

`
2

9
i
g3

ωd
a:3

˙

ei3ωdt{2

` 2i
g3

ωd
a:aΠ˚ei2ωdt{2

`

´

4i
g3

ωd
|Π|2a: ` 2i

g3

ωd
a:2a` 2i

g3

ωd
a:
¯

eiωdt{2

` h.c.

(6.12)

where oscpfq “ f ´
şT

0
dt f extracts the oscillating part of f with T being its periodicity.
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At this order, the transformed system-bath coupling is

Ĥp1q
sb “

rŜp1q, Ĥsbs

i~
, (6.13)

where Ĥsb is taken to be of order ϕ0
zps. Carrying out the calculation explicitly, one then

obtains Ĥp1q
sb in Eq. (6.5).

At order ϕ2
zps, the generator of the canonical transformation is accordingly given by

Ŝp2q

~
“´

ż t

0

dt osc
´

Ĥp2q
s `

rŜp1q, Ĥ
p1q
s s

i~
`
rŜp1q, BtŜ

p1qs

2!i~

¯

, (6.14)

the system-bath coupling is

Ĥ
p2q
sb “

1

i~

”

Sp2q, Ĥsbptq
ı

`
1

2!

ˆ

1

i~

˙2
”

Sp1q,
”

Sp1q, Ĥsbptq
ıı

,

(6.15)
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and the full Lindbladian master equation up to this order is

Btρ̂s “
1

i~

”

Ĥp2q
s , ρ̂s

ı

` κ0 p1` n̄0qD
„

32
g2

3

ω2
d

â2Π˚


` κ0n̄0 D
„

32
g2

3

ω2
d

â:2Π



` κωd{2
`

1` n̄ωd{2
˘

ˆ

D
„

â`
2g3

ωd
a:Π´

ˆ

35

2

g2
3

ω2
d

´ 6
g4

ωd

˙

â|Π|2

´

ˆ

152

9

g2
3

ω2
d

´ 3
g4

ωd

˙

â:â2
´

ˆ

152

9

g2
3

ω2
d

´ 3
g4

ωd

˙

â



ρ̂s

˙

` κωd{2n̄ωd{2

ˆ

D
„

â: `
2g3

ωd
âΠ˚ ´

ˆ

35

2

g2
3

ω2
d

´ 6
g4

ωd

˙

â:|Π|2

´

ˆ

152

9

g2
3

ω2
d

´ 3
g4

ωd

˙

â:2â´

ˆ

152

9

g2
3

ω2
d

´ 3
g4

ωd

˙

â:


ρ̂s

˙

` κωd p1` n̄ωdqD
„

8g3

3ωd
â2
´

ˆ

592

9

g2
3

ω2
d

´ 16
g4

ωd

˙

â:âΠ



ρ̂s

` κωdn̄ωdD
„

8g3

3ωd
â:2 ´

ˆ

592

9

g2
3

ω2
d

´ 16
g4

ωd

˙

â:âΠ˚


ρ̂s

` κ3ωd{2

`

1` n̄3ωd{2

˘

D
„

3g3

ωd
âΠ´

ˆ

51

5

g2
3

ω2
d

´
9

2

g4

ωd

˙

â:Π2
`

ˆ

4
g2

3

ω2
d

`
3

2

g4

ωd

˙

â3



ρ̂s

` κ3ωd{2n̄3ωd{2D
„

3g3

ωd
â:Π˚ ´

ˆ

51

5

g2
3

ω2
d

´
9

2

g4

ωd

˙

âΠ˚2
`

ˆ

4
g2

3

ω2
d

`
3

2

g4

ωd

˙

â:3


ρ̂s

` κ2ωd p1` n̄2ωdqD
„ˆ

224

45

g2
3

ω2
d

`
16

5

g4

ωd

˙

â2



ρ̂s

` κ2ωdn̄2ωdD
„ˆ

224

45

g2
3

ω2
d

`
16

5

g4

ωd

˙

â:2


ρ̂s

` κ5ωd{2

`

1` n̄5ωd{2

˘

D
„ˆ

19

9

g2
3

ω2
d

`
5

2

g4

ωd

˙

â2



ρ̂s

` κ5ωd{2n̄5ωd{2D
„ˆ

19

9

g2
3

ω2
d

`
5

2

g4

ωd

˙

â:2


ρ̂s.

(6.16)

One can also obtain the photon-number-dependence and Kerr-dependence of relevant

terms above using the relationship g3Π “ K|α|2 and K “ ´3g4{2` 20g2
3{3ωd. With this, one

sees that the prefactor of Drâ:âs at frequency ωd is 9|K|4. Such strong dependence on K

explains the drastic drop in TX for K{2π ą 2 MHz in Fig. 6.2, while for K{2π ă 2 MHz, the

effect of Drâ:âs, which is of order ϕ2
zps, is much weaker than the effect of dissipators at lower

orders and thus the change of the former is masked by that of the latter when K varies in

this regime. Note that by engineering the Hamiltonian nonlinearities g3 and g4, one may be
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able to mitigate the effect of these dissipators even for a system with large K.

6.9 Refinement of the model and further topics

When deriving the effective Lindbladian, we have made a few important assumptions.

First, we note that we use the usual Born approximation which amounts to assuming

hj ! ωoϕ
2
zps. This is, the Born approximation induces an error Ophjq which needs to remain

much smaller than the perturbative corrections computed, which are of order ϕ2
zps in this

work. Under the same assumption, we demand the transformed system-bath Hamiltonian

Ĥeff “ Ĥs ` Ĥsb to be static to order ϕ2
zps. But since Ĥsb “ Ophjq, this amounts to demand

that only Ĥs be static, which provides an important but nonessential simplification.

We also remark that, in the standard Born-Markov approximation [21], one treats the

system-bath coupling term in the interaction picture, i.e. expp´Ĥs{i~qĤsb exppĤs{i~q, instead

of Ĥsb as we did in this work. The omission of this frame transformation is valid under the

assumption that the bath is white in the neighbourhood of any given frequency ωj with a

width of a few K’s wide covering the relevant portion of the spectrum of Ĥs. This assumption

holds generally for ωj " K [21, 22], but should be dealt with delicately for the near-DC

noise, which may be treated numerically. Specifically, one can numerically compute the DC

system-bath coupling in the interaction picture defined by Ĥs in Eq. (6.4). This will transform

the DC system-bath coupling to a sum of near-DC terms. One can subsequently trace out

the bath under the Born-Markov approximation and obtain the effective Lindbladian.

In conclusion, we went beyond the RWA and computed the static effective dissipators for

the Kerr-cat system (∆ “ 0) discussing possible new effects that may explain experimental

data in [51]. Our systematic method, based on [154], can be extended to arbitrary order and

can be applied to other controllable driven systems with a residual coupling to a bath.
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Chapter 7

Conclusions and future directions

In this thesis work, we presented the experimental realization of a double-well in the deep

quantum regime: a squeeze-driven Kerr oscillator (SKO). The SKO corresponds to an

effective Hamiltonian model system that is created by submitting a SNAIL superconducting

circuit to a rapidly oscillating drive. We experimentally demonstrated multiple, simultaneous

degeneracies in the spectrum as a function of the squeeze-drive frequency. Not only can we

turn these degeneracies on-and-off on demand, but their number is tunable as a function

of the frequency of the squeeze-drive: an omnipresent yet underappreciated knob in driven

systems. Importantly, these degeneracies are robust since they are completely independent of

the drive amplitude. Moreover, we find that the drive frequency knob not only controls a

discrete exact symmetry, that manifests as exact degeneracies, but also controls a continuous

approximate symmetry, that manifests as quasi-degeneracies in the ground and excited states

of our oscillator. We measured the quasidegeneracies not only as a function of the drive

frequency, but also as a function of the drive ampitude in the excited state manifold of

our oscillator. These effects combined together and led to our measurement of drastically

enhanced well-flip lifetimes culminating in the experimental realization of a super-protected

cat qubit in the ground state manifold of our oscillator.

Beyond validating for the first time several proposals from the last three decades [33, 84,
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102,103,126,133,162,176], our work has important technological applications in quantum

annealing [60, 125] and quantum computation and error-correction [60, 63, 137]. A recent

flurry of preprints based on our unique experimental setup, yet overlooking the new symmetry

we have discovered, have appeared in relation to quantum state tomography [148], excited

state phase transitions [30], quantum simulation of spins [29], and quantum simulation of

lattice gauge theories [36]. Our system also provides the simplest testbed for parametric

processes. Finally, our work connects the field of Hamiltonian engineering with quantum

circuits to the field of “Floquet engineering” [58] with trapped ions and atoms.

Beyond these broad applications, we now pose some concrete questions that are beyond

the scope, but which stem as natural extensions of this thesis work. Both theoretical and

experimental questions are posed. Questions are posed in decreasing order of concreteness.

7.1 Hidden symmetries

Question 1

In Eq. (2.1), when ∆ equals an even multiple of the Kerr coefficient K, ∆{K “ 2m, m` 1

exact degeneracies occur in the spectrum, where m P Zě0, the set of non-negative integers.

Importantly, these degeneracies are robust in location and always occur at the same location

in ∆ and are completely independent of the amplitude ε2. What are the symmetries associated

with these exact spectral degeneracies, if any?

We rule out parity symmetry in Fig. 2.6 by plotting the spectrum of another parity-

symmetric Hamiltonian Ĥ “ ∆â:â´Kâ:2â2 ` ε4pâ
:4 ` â4q, and showing that the location of

the expected degeneracies for this system depends on the value of ε4.

Hidden symmetries typically manifest as unexpected, exact spectral degeneracies. Estab-

lishing the connection between symmetries and degeneracies in a system is of fundamental

importance for the understanding and control of its structural and dynamical properties.

This relationship lies at the core of spectacular phenomena like the Jahn-Teller effect [147],

the quantum Hall effect [18], and Majorana edge modes [88]. Remarkably, to error correct a
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quantum computation, the information must be protected by a symmetry that makes the

environment blind to it [2, 119]. In this work, we present the discovery of a Kerr parametric

oscillator with multiple tunable spectral degeneracies. At the time of the writing of this

dissertation, the exact nature of the symmetries, if any, remains an open problem.

7.2 Making a 3-legged cat

The theoretical proposal in [126] relied on the fact that the ground states of Eq. (2.21) are

degenerate coherent states | ˘ αy with α “
a

ε2{K. Thus, the superpositions of the coherent

states, corresponding to the two-legged Schrödinger cat states are also the eigenstates

of Eq. (2.21). This is the fundamental idea behind the Kerr-cat qubit. This qubit was

experimentally realized in [66]. An immediate extension of the above idea is that the

three-legged cat Schrödinger cat states are the ground states of

Ĥ “ ´K6â
:3â3

` ε3pâ
:3
` â3

q, (7.1)

which can be seen by the following Hamiltonian factorization

Ĥ “ ´K6pâ
:3
´ ε3{K6qpâ

3
´ ε3{K6q, (7.2)

where in Eq. (7.2) operator-independent terms have been neglected.

From Eq. (7.2), it follows that the two coherent states| ˘ αy with α “
a

ε3{K6, which are

the eigenstates of the annihilation operator â, are also degenerate eigenstates of Eq. (7.1).

The challenge in realizing Eq. (7.1) is twofold. First, the third-order Kerr coefficient K6 needs

to be non-negligible, and of the same order as ε3. Second, to realize coherent states, Eq. (7.2)

suggests that lower-order detuning and Kerr-like terms must be perfectly cancelled. These

conditions are impossible to achieve in a SNAIL. This is clear by examining Eq. (1.2) and

Table 1.1, where K6{ωo “ Opϕ4
zpsq whereas K{ωo “ Opϕ2

zpsq. We propose two solutions to

this problem, which leads to two independent future directions.
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Question 2

Can we engineer a Josephson circuit with greater control over higher rank nonlinearities

gk, k ě 4, so that higher-order nonlinearities such as K6 are tunable independent of the

lower-order ones? In the experimental work presented in this thesis work, the starting

circuit is the SNAIL transmon (or an array of SNAIL transmons) whose only independently

controllable Hamiltonian parameters are ωa, g3, and g4. Higher rank nonlinearities are not

tunable independently and moreover become progressively weaker. Indeed, adding drives adds

an added layer of insitu tunability. By increasing the complexity at the level of circuit design,

and then further adding drives, one would add more knobs to tune these nonlinearities, thus

potentially making the parameter space of engineerable effective Hamiltonians richer. This is

an ongoing and exciting research endeavour in the lab.

Question 3

Can we realize a 3-legged cat in an effective Hamiltonian different from Eq. (7.1)?

By taking inspiration from the fact that adding ∆â:â to Eq. (2.21) still yields degenerate

ground states, we answer provide a partial answer to Subsection 7.2 by examining the ground

states of the following effective Hamiltonian

Ĥ “ ∆â:â´Kâ:2â2
` ε3pâ

:3
` â3

q. (7.3)

We provide two proposals below to realize Eq. (7.3):

1. Rapidly drive a SNAIL transmon with drive frequency ωd configured to be in the

vicinity of 3ωo{2 ,

2. Rapidly drive an ordinary transmon with drive frequency ωd configured to be in the

vicinity of 3ωo .

We elaborate on Property (1) using Appendix B to compute the effective Hamiltonian.

When the SNAIL transmon described in Chapter 1 is submitted to a drive with frequency

ωd in the vicinity of 3ωo{2, the system undergoes a period-tripling bifurcation. The effective
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Figure 7.1: The triply-degenerate ground states of Eq. (7.3)

ground state becomes triply quasi-degenerate and exhibits a three-legged Schrödinger cat

manifold (see Fig. 7.1). Under a frame transformation amounting to âÑ âe´i
2
3
ωdt ` ξe´iωdt

+Op1{ωdq where ξ « 9iΩd
5ωd

, Eq. (1.3) transforms into another time-independent Hamiltonian

capturing this effective dynamics

K̂ 2
3
ωd

~
“ ∆â:â`

´3g4

2
´

5g2
3

ωd

¯

â:2â2

`

´195g3
3

4ω2
d

´
165g3g4

8ωd

¯

ξ2â:3 ` h.c.

`O
ˆ

1

ω3
d

˙

,

(7.4)

where ∆ “ ωo´
2ωd

3
` 3g4´

10g23
ωd
`p6g4´

180g23
7ωd

q|ξ|2`Op 1
ω2
d
q. The threefold symmetry emerges

from the “beyond RWA” term ξ2â:3, which, in this condition, is resonant. The three-legged

cats emerging from Hamiltonian in the form of Eq. (7.4) maybe used as qutrit. These

three-legged cats have received theoretical and experimental attention recently for quantum

information processing [100, 175, 176]. In [169], we introduce a diagrammatic approach to

draw Feynman-like diagrams and compute the effective Hamiltonian Eq. (7.4).

We leave the simpler exercise of finding the effective Hamiltonian in the case of Property (2)

as an exercise for the reader.
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7.3 Deviations from the Floquet quasienergy spectrum and the

effective Hamiltonian spectrum

Question 4

When does the spectrum of the effective Hamiltonian diverge from the Floquet quasienergy

spectrum [65,143]? From the calculation presented in Chapter 1, we see that the effective

Hamiltonian computed at higher orders deviates from the simple form of a Kerr parametric

oscillator Eq. (2.1). Moreover, we expect the driven SNAIL transmon, for progressive drive

amplitudes, to exhibit nonlinear resonances [169], quantum diffusion [142], and eventually

chaos [34]. However, in the experimental data presented in Fig. 5.1, there is no such signature

of any impending chaos. Understanding when the driven SNAIL transmon spectrum shown

in Fig. 7.2 starts deviating from the effective Hamiltonian spectrum, may shed light on chaos

in driven superconducting circuits, the quantum to classical transition [71, 180,182], and will

form a great testbed for the future of parametric processes in cQED [10,168].

Figure 7.2: Quasienergies of a driven SNAIL transmon.
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7.4 Understanding the well-flip lifetime of the Kerr-cat qubit and

mitigating unwanted heating with engineered two-photon dis-

sipation

Question 5

Find a quantitative model to explain the peaks (see Fig. 5.5) and the staircase (see Fig. 5.2)

in the well-flip time of the Kerr-cat qubit. In Chapter 6, we developed a model to explain

the several orders of magnitude discrepancy between the observed coherent state lifetime and

the predictions of the RWA model. If these beyond RWA effects are at play, filtering the

drive lines and ensuring that they are cold will cause a dramatic increase in TX . This is an

experimentally testable prediction. Moreover, by varying the external flux, g3 can be varied

and thus the predictions shown in Fig. 6.2 can be tested too. Finally, Fig. 6.6 shows that

engineered two-photon dissipation can counteract the decoherence induced by two-photon

heating, an unfortunate circumstance of driving alone. Moreover, adding controlled two-

photon cooling provides an extra knob to play with and thus a richer parameter space to

uncover new physics.

7.5 The future of the Kerr-cat qubit?

Question 6

What sets the limit on the SNAIL transmon’s coherence properties? The decay times T1

of SNAIL transmons have been reported to be relatively independent of flux, but generally

vary between 50 and 100 microseconds in state-of-the-art devices (see Figure 9 in Appendix

I of [26]). The dephasing rates, however, exhibit an expected suppression near the flux

sweet spots at ϕext “ 0, 0.5. Improving these values, by for instance incorporating recent

materials advances to make longer-lived ordinary transmons [122], will greatly enhance

the TY Z in Fig. 5.3, and thus will ultimately dictate the viability of the Kerr-cat qubit

as an ancilla for scalable quantum technologies. Another challenge is the demonstration
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of gates on two Kerr-cat qubits. Proposals on a topological CNOT gate can be found

in refs [50, 128]. Beyond testing the viability of the Kerr-cat qubit for scalable quantum

technologies, coupling two SKOs has applications in the study of chaos [61] and the quantum

to classical transition [73,131,179–182].
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Appendix A

Notation

In this work, we note X̂ and P̂ the position-like and momentum-like coordinates with

rX̂, P̂ s “ i~. We build the dimensionless quadratures by introducing the zero point spread

of the coordinates as Xzps and Pzps, respecting XzpsPzps “ ~{2. We further introduce the

complex notation for the dimensionless quadratures as â “ pX̂{Xzps ` iP̂ {Pzpsq{2 and its

conjugate operator â:, where râ, â:s “ 1 and introduce the rescaled phase space quadratures

as x̂ “
a

λ{2X̂{Xzps “
a

λ{2pâ ` â:q and p̂ “
a

λ{2P̂ {Pzps “ ´i
a

λ{2pâ ´ â:q, where

rx̂, p̂s “ iλ. These choices induce the definitions xzps “ pzps “
a

λ{2. Conversely, we have

â “ px̂` ip̂q{
?

2λ. At this point, λ is a dimensionless rescaling parameter. We will connect

it with the Hamiltonian parameters later, while discussing the classical limit (λÑ 0) of our

system, and thereby giving it physical significance. It is also useful to compare our results

with those of [103], who have performed a WKB analysis of a driven oscillator. Thus, unless

otherwise specified, λ should be taken equal to unity λ “ 1.

For a mechanical oscillator with mass m and spring-constant k, the small-oscillation

frequency is ωo “
a

k{m and the impedance is Zo “ 1{
?
km. With this, we have Xzps “

a

~Zo{2 and Pzps “
a

~{2Zo. We further remark that there is a direct correspondence

between the mechanical harmonic oscillator and a linear LC circuit oscillator [10,39,57] under

the following relations. The mechanical position coordinate X̂ corresponds to the circuit
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flux Φ̂, the mechanical momentum P̂ corresponds to the circuit charge Q̂, where rΦ̂, Q̂s “

i~, the mechanical oscillator frequency ωo “
a

k{m corresponds to the circuit oscillator

frequency ωo “ 1{
?
LC and the mechanical oscillator impedance Zo “ 1{

?
km corresponds

to the circuit oscillator impedance Zo “
a

L{C which amounts to the identification of the

mechanical mass m with the circuit capacitance C and the spring constant k with the inverse

inductance 1{L. The expressions for the zero point spreads are given by Φzps “
a

~Zo{2

and Qzps “
a

~{2Zo. In circuits, it is customary to introduce [10,38] the reduced flux and

charge coordinates: ϕ̂ “
?
λ2πΦ̂{Φ0 and N̂ “

?
λQ̂{2e so that rϕ̂, N̂ s “ iλ, where e is the

charge quantum, and Φ0 “ h{2e is the magnetic flux quantum.1 Their respective zero point

spreads ϕzps “
?
λ2πΦzps{Φ0 and Nzps “

?
λQzps{2e, and are related to the rescaled complex

coordinate operators by ϕ̂ “ ϕzpspâ
: ` âq and N̂ “ ´iNzpspâ´ â

:q and ϕzpsNzps “ λ{2. We

summarize this notation in Table A.1 on the next page.

1. Note that in this case the non-dimensionalization of variables is done by fundamental constants and not
by linear properties of the oscillator. This comes at the price of a slight notation asymmetry over the reduced
operators the electric and mechanical oscillators.
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Mechanical oscillator Circuit oscillator

X̂; P̂ Φ̂; Q̂

rX̂, P̂ s “ i~ rΦ̂, Q̂s “ i~
ωo “

a

k{m ωo “ 1{
?
LC

Zo “ 1{
?
km Zo “

a

L{C

Xzps “
a

~Zo{2; Φzps “
a

~Zo{2;

Pzps “
a

~{2Zo Qzps “
a

~{2Zo
ñ XzpsPzps “ ~{2 ñ ΦzpsQzps “ ~{2
â “ 1

2

´

X̂
Xzps

` i P̂
Pzps

¯

â “ 1
2

´

Φ̂
Φzps

` i Q̂
Qzps

¯

X̂ “ Xzps

`

â` â:
˘

Φ̂ “ Φzps

`

â` â:
˘

P̂ “ ´iPzps

`

â´ â:
˘

Q̂ “ ´iQzps

`

â´ â:
˘

“

â, â:
‰

“ 1
“

â, â:
‰

“ 1

x̂ “
b

λ
2

X̂
Xzps

“ xzps

`

â` â:
˘

ϕ̂ “
?
λ2π Φ̂

Φ0
“ ϕzps

`

â` â:
˘

p̂ “
b

λ
2

P̂
Pzps

“ ´ipzps

`

â´ â:
˘

N̂ “
?
λ Q̂

2e
“ ´iNzps

`

â´ â:
˘

xzps “ pzps “
a

λ{2 ϕzps “ 2π
?
λΦzps

Φ0
;Nzps “

?
λQzps

2e

ñ xzpspzps “ λ{2 ñ ϕzpsNzps “ λ{2

rx̂, p̂s “ iλ rϕ̂, N̂ s “ iλ

â “ 1
2

´

x̂
xzps

` i p̂
pzps

¯

â “ 1
2

´

ϕ̂
ϕzps

` i N̂
Nzps

¯

â “ px̂` ip̂q{
?

2λ â “
´
b

λ
2

ϕ̂
ϕzps

` i
b

λ
2

N̂
Nzps

¯

{
?

2λ

Table A.1: Correspondence between a mechanical oscillator and a circuit oscillator.
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Appendix B

A recursive formula to compute the

static effective Hamiltonian of a

rapidly nonlinear system

We start with the equations governing time evolution of the classical or quantum state vector

ρ under the action of a time-dependent Hamiltonian Hptq that we write jointly as

Btρ “ ttH, ρuu, (B.1)

where the double bracket can be understood as

ttH, ρuu Ñ

$

’

’

&

’

’

%

tH, ρu classical pLiouvilleq,

1
i~rĤ, ρ̂s quantum pvon Neumannq.

(B.2)

Here, we have adopted the standard notation t˝, ˝u for the Poisson bracket over phase-

space coordinates x and p and r˝, ˝s for the Hilbert space commutator. The state vector

ρ can be taken to be either a phase-space distribution ρpx, pq or the density operator

ρ̂ “
ř

x1,x2 ρx1x2 |x
1yxx2|. Its time evolution is governed by the Hamiltonian H which is either
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the phase-space Hamiltonian Hpx, p, tq or the operator Ĥpx, p, tq. We note that one can also

interpret tt˝, ˝uu as the Moyal bracket [35, 67,115,173], in which case Eq. (B.1) describes the

dynamics of the phase-space Wigner distribution.

In this formalism agnostic to the nature of the system, we seek a canonical transformation

ρÑ% such that the time evolution of % is governed, in the transformed frame, by the sought-

after time-independent Kamiltonian. We thus consider the Lie transformation generated by

a time-dependent generator S and parametrized by ε,

% “ eεLSρ “
ÿ

k“0

εkLkS
k!

ρ;

“ ρ` εttS, ρuu `
ε2

2!
ttS, ttS, ρuuuu ` ¨ ¨ ¨ ,

(B.3)

where LS˝ “ ttS, ˝uu is the Lie derivative [20, 43, 62, 135, 141] generated by S. Here, S is

either a real phase-space function S̃pq, p, tq or an Hermitian operator Ŝpq, p, tq. Equivalently,

the transformed state % is the solution to the differential equation Bε% “ttS, %uu, with initial

condition %pε“0q“ρ.

In the transformed representation, the dynamics obeys formally (B.1) as Bt%“ttK, %uu,

with the Kamiltonian K given by

K “ eLSH `

ż 1

0

dε eεLS 9S; (B.4)

see Supplementary material Section A for the derivation. Note that in the quantum case,

Eq. (B.4) reduces to the familiar expression [164]:

K̂ “ Û :pĤ ´ i~BtqÛ (B.5)

with Û “ e´Ŝ{i~.

We now carry out a perturbative expansion generated by S, while imposing that K

is rendered time-independent. The transformation of the time evolution from ρ Ñ % is
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under

time 

Lie 
deformationphase space 

coordinates

under

Figure B.1: Time evolution of the state vector in the transformed pε “ 1q and un-transformed
pε “ 0q frames. The red curve represents the complicated time evolution of ρ under the
time-dependent H. The blue curve represents the simpler time evolution of % under the
time-independent K. The transformation is exact. Under a sufficiently fast oscillating drive,
the fast micromotion captured by S can be neglected and K can be taken to generate the
time evolution of ρ in the un-transformed frame.

represented schematically in Fig. B.1 and yields

ρ “ T e
şt
t0
dt1 LHpt1qρ0

“ eL´SptqeLKpt´t0qeLSpt0qρ0,

(B.6)

where T is the time-ordering operator and ρ0 is the initial state. The time evolution of ρ

under H (a Lie transformation generated by H and parametrized by t) can be understood

as being decomposed into three successive Lie transformations generated by Spt0q, K, and

´Sptq. Under this decomposition, the time-ordering operator drops out in the time evolution

under K, providing an important simplification.

To carry out the perturbative expansion, we consider the Hamiltonian

Hptq “
ÿ

nPN

ÿ

mPZ

Hpnq
m eimωt (B.7)

with period T “ 2π{ω, and the nth terms to be of order n in the perturbation parameter,
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here taken to be ϕzps. For the perturbative treatment to be valid, the rate of evolution under

any one H
pnq
m needs to be much smaller than ωd{2. In the case of an unbounded Hamiltonian,

either quantum or classical, the corresponding space will require truncation. We focus on the

case of a periodic drive for simplicity, but we note that our treatment can be generalized to

include quasiperiodic or non-monochromatic drives; see Supplement section B III in [154] for

a concrete example. We take the following ansatz for S and K:

S “
ÿ

nPN

Spnq, K “
ÿ

nPN

Kpnq, (B.8)

where we take Sp0q “ 0 and the nth terms to be of order n in the perturbation parameter, here

taken to be ϕzps. Substituting Eqs. (B.8) into Eq. (B.4) separates the problem into orders of

ϕzps. At each order, Kpnq can further be expressed as a sum of terms generated by a Lie series

as in Eq. (B.3), which we write as Kpnq “
ř

kK
pnq
rks . Demanding K to be time-independent to

all orders, we find, after a few lines of algebra, the following coupled recursive formulas:

Kpnq
rks “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Hpnq k “ 0

9Spnq ` LSpnqH k “ 1

n´1
ř

m“0

1
k
LSpn´mqK

pmq
rk´1s 1 ă k ď n` 1

0 otherwise,

(B.9a)

Spnq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´
ş

dtoscpHpnqq n “ 1

´
ş

dtosc
´

LSpnqH

`
n`1
ř

ką1

n´1
ř

m“0

1
k
LSpn´mqK

pmq
rk´1s

¯

n ą 1,

(B.9b)

where oscpfq :“ f ´ f , and f “ 1
T

şT

0
dt f . Note that H is taken to be of order zero in the

perturbation parameter, but this hypothesis can be relaxed in a more elaborate treatment;

see Supplement section B III in [154] for a concrete example. Note that the difference between
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Figure B.2: Colored circles represent the seeds generating the series to all orders. B As
an example, all the paths contributing to the calculation of Kp3q

r3s are highlighted. C Here,
only the subpaths contributing to the recursive expression of the aforementioned term are
highlighted.

Eq. (B.9a) and Fig. B.2 and the corresponding Eq. (8) and Figure 2 in [154] stems from the

difference in small parameter. The former is a perturbative expansion in ϕzps while the latter

is an expansion in inverse powers of the drive frequency (also called a high-frequency or 1{ω

expansion).

By construction, taking the time-derivative of Eq. (B.9b), substituting the result into

Eq. (B.9a), and summing over k yields a time-independent Kpnq. All in all, the computations

of K and S are interleaved so that the computation of Kpnq requires as an input the value

of Spmďnq. Demanding the time-independence of Kpnq fixes 9Spn`1q, allowing the recursion to

be carried out to the next order. The coupled recursive formula in Eq. (B.9) constructs, as

announced, S and K order-by-order.

The mathematical structure of the recursive formula Eq. (B.9) is shown diagrammatically

in Fig. B.2, as we now explain. The figure consists of a grid indexed by the integers n and

k. The grid supports a graph. Each node pn, kq of the graph corresponds to a summand

Kpnq
rks , and the colored ones represent the “seeds” of the calculation. The summand Kpnq

rks is
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itself a sum of terms, each corresponding to a path connecting the node pn, kq to a seed.

Evaluating a path corresponds to taking Lie derivatives over H or 9Spn`1q as dictated by the

seed color. The rule is that each Lie derivative is specified by a valid subpath, which must

start “downwards” and, when followed by m horizontal edges at row k, contributes with

LSpm`1q{k. Finally, if the considered node is itself colored, either H or 9Spn`1q must be added

to the sum. We note that our grid construction is inspired by [37], where the construction is

limited to completely classical and time-independent systems.

Let us discuss, as an example, how Kp3q
r3s is evaluated from the figure. As indicated by

panel Fig. B.2(b), Kp3q
r3s contains only four terms corresponding to the concatenations of the

valid subpaths (in blue). The sum reads

Kp3q
r3s “

LSp1q

1

LSp1q

2

LSp1q

3
H `

LSp1q

2

LSp1q

3
9Sp2q

`
LSp1q

2

LSp2q

3
9Sp1q `

LSp2q

2

LSp1q

3
9Sp1q,

where the terms are ordered as enumerated in the figure.

Alternatively, one could have expressed Kp3q
r3s recursively by directly applying Eq. (B.9a).

The computation of Kp3q
r3s then involves only the two pink subpaths shown in Fig. B.2(c) and

yields

Kp3q
r3s “

LSp2q

3
Kp1q
r2s `

LSp1q

3
Kp2q
r2s .

At this stage, once all entries of the nth column are computed, the calculation proceeds

by demanding the time-independence of Kpnq computed as their row-sum over column n and

represented by the vertical bold lines in Fig. B.2(a). This is required by Eq. (B.9b). For the

column n “ 3 the algorithm yields

Sp4q “ ´

ż

dtosc
´

LSp3qH `K
p3q
r2s `K

p3q
r3s `Kp3q

r4s

¯

,
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which is a necessary ingredient to compute Kp5q and so, the calculation proceeds.
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Appendix C

Computing the Effective Hamiltonian

of the Kapitza Pendulum

We take as an illustration of our agnostic formulation the case of a rigid pendulum of length

l and mass m whose pivot undergoes a sinusoidal motion of amplitude r along the vertical.

This driven pendulum, known as the Kapitza pendulum [86,95], serves as a model for the

dynamical stabilization of mechanical systems, and is described by the classical Hamiltonian

Hptq “
p2
ϕ

2J
´ Jω2

o cosϕ´ J
r

l
ω2 cosϕ cosωt, (C.1)

where J “ ml2 is the moment of inertia and ωo “
a

g
l

is its small oscillation frequency.

In Eq. (C.1), ϕ is the angle between the pendulum and the vertical and pϕ is the angular

momentum so that tϕ, pϕu “ 1. Decomposing the Hamiltonian following the notation in Eq.

(6) we have

H0 “
p2
ϕ

2J
´ Jω2

o cosϕ, H˘1 “ ´J
r

2l
ω2 cosϕ. (C.2)

Usual treatments of the Kapitza pendulum are performed on its equations of motion

[95, 130], which are separated into slow and fast coordinates. Averaging over the latter yields
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an effective potential in the slow coordinates. Here, we recover well-known results following

our approach that allows to extend the calculation to higher orders. To demonstrate the

coupled construction of S and K in Eq. (B.9a), we proceed order-by-order. The leading order

reads

Kp0q “ H ` 9Sp1q. (C.3)

By demanding Sp1q to be a primitive of ´oscpHq, i.e. Sp1q “ ´
ş

dtoscpHq, we find Kp0q to

be simply the time-average of H:

Kp0q “ H “
1

T

ż T

0

Hptqdt

“
p2
ϕ

2J
´ Jω2

o cosϕ.

(C.4)

Note that, for simplicity, we have set the integration constant of Sp1q to be zero and so we

shall do for higher orders.

To order one, we have

Kp1q “ 9Sp2q ` LSp1qH `
1

2
LSp1q 9S

p1q. (C.5)

By demanding Sp2q “ ´
ş

dtoscpLSp1qH `
1
2
LSp1q 9S

p1qq, we find

Kp1q “ ´
"
ż

dtoscpHq,oscpHq

*

“ 0, (C.6)

where t˝1, ˝2u in Eq. (C.6) is the Poisson bracket between phase space functions ˝1 and ˝2.

Following this procedure, we compute

Kp2q “ ´J r
2

l2
ω2

8
cos 2ϕ. (C.7)

For the perturbative treatment to be valid the typical rate of evolution under any one
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of the terms in Eq. (C.1) must be small with respect to the perturbation frequency ω. The

typical rate of evolution under H0 is naturally ωo while that under H˘1 is „
a

r
2l
ω and, thus,

the perturbative conditions read ωo ! ω and r ! 2l.

We observe that when the second order correction Eq. (C.7) becomes comparable to the

potential energy contribution of the zeroth order, the system develops a secondary stable

position at ϕ “ π [86, 95]. This happens for the well-known condition r
l
ω
ωo
ą
?

2.

Following this approach it is easy to carry the calculation further. Up to order four we

find

Kp3q “ 0

Kp4q “ r2

l2
3

8J
p2
ϕp1´ cos 2ϕq `

r2

l2
Jω2

o

4
pcosϕ´ cos 3ϕq.

(C.8)

We see that the fourth order correction introduces a nontrivial modulation to the potential

but that no interesting additional stable solution arise due to the perturbative hierarchy of

the prefactors.

The quantum calculation proceeds analogously by changing the Lie bracket, i.e., the

sub-routine in the algorithm. In this case, the Hamiltonian is given by Dirac’s canonical

quantization recipe [41] and reads

Ĥptq “
p̂2
ϕ

2J
´ Jω2

o cos ϕ̂´
r

l
Jω2 cos ϕ̂ cosωt, (C.9)

where 1
i~rϕ̂, p̂ϕs “ 1.
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To order four the Kamiltonian reads

K̂p0q “
p̂2
ϕ

2J
´ Jω2

o cos ϕ̂

K̂p1q “ 0

K̂p2q “ ´r
2

l2
Jω2

8
cos 2ϕ̂

K̂p3q “ 0

K̂p4q “ r2

l2
3

8J
p̂2
ϕp1´ cos 2ϕ̂q ` i~

r2

l2
3

4J
p̂ϕ sin 2ϕ̂

´ ~2 r
2

l2
13

32J
cos 2ϕ̂`

r2

l2
Jω2

o

4
pcos ϕ̂´ cos 3ϕ̂q,

(C.10)

where we have chosen the normal-ordered form with respect to p̂ϕ in order to expose the

corrections to the classical expression pthey are proportional to powers of ~q. A symmetrized

form displays the Hermitian character of K̂p4q more directly:

K̂p4q “r
2

l2
3

16J

`

p̂2
ϕp1´ cos 2ϕ̂q ` p1´ cos 2ϕ̂qp̂2

ϕ

˘

´ ~2 r
2

l2
13

32J
cos 2ϕ̂`

r2

l2
Jω2

o

4
pcos ϕ̂´ cos 3ϕ̂q.

(C.11)

Note that unlike the case of K̂p2q, there is no quantization procedure that allows to get K̂p4q

from Kp4q [41, 108, 159]. This is a direct consequence of Groenewold’s theorem [67, 173]. Note

that the calculation displayed in Eq. (C.10) can be easily automated with available computer

algebra systems [110].

Finally, we also remark that in the limit ωo Ñ 0 this model provides a cosp2ϕ̂q potential

that has received attention in the context of protected superconducting qubits [145].
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Appendix D

Useful identities

Without loss of generality, we assume râ, â:s “ ~ so that all the expansions can be rewritten

as series in ~. To recover the regular bosonic operators, set ~ “ 1. Normal ordering has

been privileged due to its popularity in studying quantum onlinear dynamics. Formal proofs

have been suppressed for the sake of brevity, but all of the identities below can be proven by

induction, which we encourage the reader to do.

D.1 On Hilbert space operators

1.

pâ: ` âqm “
m
ÿ

k“0

ˆ

m

k

˙min pk,m´kq
ÿ

j“0

1

2j
j!~j

ˆ

k

j

˙ˆ

m´ k

j

˙

â:k´j âm´k´j. (D.1)

2. We rewrite the above as

pâ: ` âqm “

tm
2
u

ÿ

j“0

~j
ˆ

m

2j

˙

p2j ´ 1q!!
m´2j
ÿ

k“0

ˆ

m´ 2j

k

˙

â:kâm´2j´k. (D.2)
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3. We find the normal ordered form of âsâ:m for integers s and m to be

âsâ:m “

minps,mq
ÿ

k“0

~kk!

ˆ

s

k

˙ˆ

m

k

˙

â:m´kâs´k. (D.3)

4. We find the normal ordered form of operator Ô “ pâ:âqn as

pâ:âqn “
n
ÿ

k“1

~n´kSpn, kqâ:kâk, (D.4)

where Spn, kq is the Sterling series of the second kind.

5.

râ:râs, â:mâns “ â:râsâ:mân ´ â:mânâ:râs

“

minps,mq
ÿ

k“0

~kk!

ˆ

s

k

˙ˆ

m

k

˙

â:r`m´kâs`n´k ´

min pn,rq
ÿ

k1“0

~k1k1!
ˆ

n

k1

˙ˆ

r

k1

˙

â:r`m´k
1

âs`n´k
1

.

(D.5)

6. We know that a|αy “ α|αy. What about a:|αy? We evaluate it as

a:|αy “ a:Dpαq|0y

“ DpαqD:pαqa:Dpαq|0y

“ Dpαqpa: ` α˚q|0y

“ Dpαq|1y ` α˚|αy,

(D.6)

where Dpαq corresponds to the displacement unitary operator defined as eαa
:´α˚a.

An excellent reference for more bosonic identities is [11]. Specific instances of the general

identities that occur frequently throughout this dissertation work are displayed below for
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convenience.

pâ` â:q2 “ â:2 ` 2â:â` â2
` ~

pâ` â:q3 “ â:3 ` 3â:2â` 3â:â2
` â3

` 3~pâ: ` âq

pââ:q2 “ â:2â2
` ~â:â

â2â:2 ´ â:2â2
“ 4â:â~` 2~2.

(D.7)

râ2
` â:2, â:âs “ 2~pa2

´ â:2q

râ2
` â:2, pâ:âq2s “ 4~pâ:â3

´ â:3âq ` 4~2
pâ2
´ â:2q

râ2
` â:2, â:2â2

´ ~â:âs “ 4~pâ:â3
´ â:3âq

(D.8)

D.2 On phase space functions

The ‹-product between f and g in Fourier space [35]:

f ‹ g “
1

~2π2

ż

dp1dp2dx1dx2f px1, p1q g px2, p2q

ˆ exp

ˆ

´2i

~
pp px1 ´ x2q ` p1 px2 ´ xq ` p2 px´ x1qq

˙

,

(D.9)

see proof and an alternate form of Eq. (D.9) below.

Proof of Equation (D.9)

We first write f and g as Fourier transforms as

fpx, pq “

ż 8

´8

dx1dp1 fpx1, p1q exp p´i2πpxp1 ´ px1qq,

gpx, pq “

ż 8

´8

dx2dp2 gpx2, p2q exp p´i2πpxp2 ´ px2qq.
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We use the shift identity associated with the ‹-product [35]:

fpx, pq ‹ gpx, pq “ f

ˆ

x`
i~
2
~Bp, p´

i~
2
~Bx

˙

gpx, pq, (D.10)

and rewrite f ‹ g as

fpx, pq ‹ gpx, pq “

ż 8

´8

dx1dp1dx2dp2 fpx1, p1qgpx2, p2q exp p´i2πpxp1 ´ px1qq

ˆ exp
´

π~pp1ÝÑB p ` x1
ÝÑ
B xq

¯

ˆ exp p´i2πpxp2 ´ px2qq.

(D.11)

Now, we simplify Eq. (D.11) using the following identities:

exp pA
ÝÑ
B pq exp pBpq “ exp pABq ˆ exp pBpq

exp pC
ÝÑ
B xq exp pDxq “ exp pCDq ˆ exp pDxq,

where in this case A “ π~p1, B “ i2πx2, C “ π~x1, and D “ ´i2πp2. With this, and the

substitutions x1 Ñ ´x1
?
π~, p1 Ñ p1

?
π~, x2 Ñ x2

?
π~, p2 Ñ ´p2

?
π~, Eq. (D.11) reduces

to:

fpx, pq ‹ gpx, pq “

ż 8

´8

dx1dp1dx2dp2 fpx1, p1qgpx2, p2q

ˆ exp
´2i

~
pxp1 ´ px1 ´ p1x2 ´ x1p2 ` xp2 ´ px2q,

(D.12)

which when rearranged yields

fpx, pq ‹ gpx, pq “

ż 8

´8

dx1dp1dx2dp2 fpx1, p1qgpx2, p2q

ˆ exp
´2i

~
pppx1 ´ x2q ` p1px2 ´ xq ` p2px´ x1qq,

(D.13)
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Note that by the following simple change of variables: X 1 “ x1 ´ x, P 1 “ p1 ´ p, X2 “ x2 ´ x,

P 2 “ p2 ´ p, we get an alternate form of Eq. (D.13):

fpx, pq ‹ gpx, pq “

ż 8

´8

dX 1dP 1dX2dP 2 fpX 1
` x, P 1 ` pqgpX2

` x, P 2 ` pq

ˆ exp
2i

~
pX 1P 2 ´ P 1X2

q,

(D.14)

The expectation value of an observable ĝ is given as

xĝy “ Trpρ̂ĝq (D.15)

“

ż

dxdp gpx, pq ‹ ρpx, pq (D.16)

“

ż

dxdp ρpx, pq ‹ gpx, pq (D.17)

“

ż

dxdp gpx, pqρpx, pq. (D.18)

The right hand side of Equation (D.16) is obtained by taking a Weyl transform of the cyclic

trace in Equation (D.15). But the subsequent equalities in Eqs. (D.17) and (D.18) is by

no means obvious; see proof in Appendix D.2. However, the elegant property that the

expectation value is simply the integral of the regular (and not star) product allows one to

employ the phase space formulation in quantum mechanics without knowing about the star

product at all!

Proof of Equations (D.15)–(D.18)

We consider the expectation value of ĝ:

xĝy “ Trpρ̂ĝq (D.19a)

“

ż 8

´8

dxdp gpx, pq ‹ ρpx, pq (D.19b)
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Using Eq. (D.13), we express Eq. (D.19b) as

ż 8

´8

dxdp gpx, pq ‹ ρpx, pq “

ż 8

´8

dxdpdx1dp1dx2dp2 gpx1, p1qρpx2, p2q

ˆ exp
´2i

~
pppx1 ´ x2q ` p1px2 ´ xq ` p2px´ x1qq

(D.19c)

Observing that the integral over x and p do not act on g and ρ, we evaluate them in Eq. (D.19c)

as:

ż 8

´8

dxdp gpx, pq ‹ ρpx, pq “

ż 8

´8

dx1dp1dx2dp2 gpx1, p1qρpx2, p2q ˆ exp
´2i

~
pp1x2 ´ p2x1q

ˆ

ż 8

´8

dxdp exp
´2i

~
pppx1 ´ x2q ´ xpp1 ´ p2qqq

“

ż 8

´8

dx1dp1dx2dp2 gpx1, p1qρpx2, p2q

ˆ exp
´2i

~
pp1x2 ´ p2x1qδpx1 ´ x2qδpp1 ´ p2q

“

ż 8

´8

dxdp gpx, pqρpx, pq,

(D.19d)

and this proves Eq. (D.18).
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Appendix E

Tutorial on the phase space

formulation of quantum mechanics

A full quantum mechanical treatment can be developed in phase space without incurring in

any semiclassical approximations [35, 67,115]. For the sake of completeness, here we provide

an overview on the mapping from operator-valued Hilbert space to quantum phase space and

a few elemental techniques and identities. We focus here on Wigner phase space, and showcase

that the Wigner transform is more than a visualization tool for states. We note that our

treatment can be equivalently extended to other phase space formulations [35,76,124,131,169].

E.1 From operator Hilbert space to Wigner phase space

(and back)

The Wigner transform [163] of the density matrix ρ̂ is the Wigner function W pX,P q, where

X and P are standard phase space coordinates (not operators) with dimensions of position

and momentum (see Appendix A for notation). We write this as

Wtρ̂u “ W pX,P q.
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Let us remind the reader of some crucial properties of the Wigner function. We have

żż

dXdP W pX,P q “ 1, (E.1)

where each integral runs from ´8 to 8 and we suppress the limits in the following text for

simplicity. For a pure state, we further have

h

żż

dXdP W pX,P q2 “ 1, (E.2)

where h “ 2π~.

In general, we have

0 ď hn´1

żż

dXdP W pX,P qn ď 1, (E.3)

which corresponds to the positivity of the density matrix.

Likewise, for a generic operator F̂ , we introduce the phase space function F pX,P q “

WtF̂ u.

In this framework, the average value of an Hermitian operator F̂ can be written as

xF̂ y “

żż

dXdP F pX,P qW pX,P q. (E.4)

The transformation W is invertible as appreciated by Groenewold [67]

W´1
tW pX,P qu “ ρ̂.

The inverse transformation W´1 is know as the Weyl transformation [160].

In general, the Weyl transformation is

ρ̂ “W´1
tW u “

1

h

żżżż

dXdPdkdlW pX,P qe
i
~ pkpX̂´Xq`lpP̂´P qq, (E.5)
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where the characteristic function Cpl, kq defined as

Cpl, kq “

żż

dXdP e´
i
~ pkX`lP qW pX,P q, (E.6)

is the Fourier transform of the Wigner function and C is dimensionless.

Another useful formula is

W pX,P q “
1

h

ż

dq e´iqP {~xX ` q{2|ρ̂|X ´ q{2y, (E.7)

where ρ̂ is to be understood in the continuous position basis and therefore has the dimension

of [1/position].

We now review simple operational rules to go from operator space to phase space functions

and back without performing cumbersome integrals.

The Wigner and Weyl transformation take a particularly simple form for binomial

expansions

WtpαX̂ ` βP̂ qnu “ pαX ` βP qn.

W´1
tpαX ` βP qnu “ pαX̂ ` βP̂ qn.

For non-symmetric expressions, the Wigner transform can be evaluated via a non-

commutative Wigner phase space product, the celebrated Groenwold’s star product.

E.2 An introduction to the star product

We introduce the star product as

WpF̂ Ĝq “WpF̂ q ‹WpĜq “ F pX,P q ‹GpX,P q, (E.8)
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defined as (the exponential of the Poisson bracket):

F ‹G “
8
ÿ

n“0

n
ÿ

k“0

p´1qk

n!

ˆ

i~
2

˙nˆ
n

k

˙

B
k
PB

n´k
X F ˆ Bn´kP B

k
XG

” F exp

ˆ

i~
2

´

ÐÝ
B X
ÝÑ
B P ´

ÐÝ
B P
ÝÑ
B X

¯

˙

G (E.9)

“ FG`
i~
2
tF,Gu ` ¨ ¨ ¨

Here F
ÐÝ
B XG “ pBXF qG and F

ÝÑ
B XG “ F pBXGq, and we have introduced the Poisson

bracket tF,Gu “ BXFBPG´ BPFBXG. The star product can also be conveniently expressed

in terms of complex-coordinates a and a˚ as

F ‹G ” F exp

ˆ

´
1

2

´

ÐÝ
B a˚

ÝÑ
B a ´

ÐÝ
B a
ÝÑ
B a˚

¯

˙

G.

It generalizes to a system of many particles (or many modes) as

F ‹G “ F exp

˜

i~
2

ÿ

j

´

ÐÝ
B Xj

ÝÑ
B Pj ´

ÐÝ
B Pj

ÝÑ
B Xj

¯

¸

G.

In Fourier space the star product becomes a phase factor: ‹ Ñ ei
~
2
pkXk

1
P´k

1
XkP q [172].

This phase corresponds to an oriented area in reciprocal phase space. This is the simplest

manifestation of the noncommutativity of the algebra of quantum mechanics in phase space.

Remarkably, the scalar product associated with the star product is the usual integral in

phase space. For phase space functions in the Wigner representation F and G, we have

żż

dXdP F pX,P q ‹GpX,P q “

żż

dXdP F pX,P qGpX,P q. (E.10)
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Note however that in general for any F pX,P q, GpX,P q, and HpX,P q,

żż

dXdP F pX,P q ‹GpX,P q ‹HpX,P q ‰

żż

dXdP F pX,P qGpX,P qHpX,P q. (E.11)

For non-symmetric expressions in X̂ and P̂ , the above formulae can be employed to

evaluate the Wigner transform. For example

WtX̂P̂ P̂ u “ XP 2
` i~P

WtP̂ P̂ X̂u “ XP 2
´ i~P

WtP̂ X̂P̂ u “ XP 2.

We evaluate the Weyl transform of asymmetric expressions by symmetrizing it and

replacing phase space functions by their corresponding operators. For example

W´1
tXP 2

u “
1

3
pX̂P̂ P̂ ` P̂ X̂P̂ ` P̂ P̂ X̂q.

To find the Weyl transform of a high-degree polynomial of X and P , the Weyl-symmetrized

form might be too tedious and McCoy [108] provided a shortcut to obtain polynomial

expressions in the phase space representation. We review McCoy’s formula in the next

section.

The McCoy formula for obtaining ordered operators

from phase space functions

While a fully-symmetrized representation is usually inconvenient for polynomials of large

degree, McCoy derived a set of formulae [108], each corresponding to a different representation

of a Weyl transform. Here, we present two of them that yield operators that privilege the
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ordering of X̂ (or P̂ ).

Consider a phase space function F pX,P q. Its operator-valued correspondent F̂ in normal

order with respect to X is given by the McCoy formula [108] that reads:

FpX,P q “ e´i
~
2
BXBPF pX,P q

FpX,P q “ F pX,P q ´
i~
2
BXBPF pX,P q ´

1

2!

~2

22
B

2
XB

2
PF pX,P q ` ¨ ¨ ¨

F̂ “ pNXFq|pX̂,P̂ q,

The functional (operator over real functions) NX is carried out by writing its arguments

with X factors (or P factors as indicated by the subindex of N ) to the left in each term and

replace X,P with X̂, P̂ respectively. For example, if F “ XP , we have F “ XP ´ i~
2

which

gives the correct and now ordered Hermitian expression for the operator F̂ “ X̂P̂ ´ i~
2
“

X̂P̂`P̂ X̂
2

.

The inverse transform, is simply given F pX,P q “ ei
~
2
BXBPFpX,P q.

In terms of complex coordinates, a “ 1?
2
px` ipq we adapt McCoy’s formula [108]:

Fpa, a˚q “ e
1
2
BaBa˚F pa, a˚q

F̂ “ pNa˚Fq|pâ,â:q

to get the normal ordered (with respect to a˚) result. For example, one has classically that

1
2
px2`p2q “ a˚a. The correct quantization reads F “ aa˚ Ñ F “ aa˚`1{2 Ñ F̂ “ â:â`1{2.

Application to our Hamiltonian

If the Wigner phase space Kerr Hamiltonian reads H “ ∆a˚a´Ka˚2a2 the corresponding

operator is

148



F “ a˚2a2
Ñ F “ a˚2a2

` 2a˚a`
1

2
Ñ F̂ “ â:2â2

` 2â:â`
1

2
,

Ĥ{~ “ p∆´ 2Kqâ:â´Kâ:2â2,

where the oscillator frequency is renormalized by 2K. This is the Lamb shift, and its

origin is in the non commutativity of â and â:, i.e. the vacuum fluctuations.

Groenewold’s theorem

Note that W
!

1
i~rF̂ , Ĝs

)

“ ttWpF̂ q,WpĜquu ‰ tWpF̂ q,WpĜqu. The quantum commutators

do not correspond to the Poisson brackets: the theorem [67] states that such a mapping does

not exist. We provide a practical consequence of the implications of this theorem to quantum

Hamiltonian engineering in Appendix B of [154].

Dynamics of the Wigner function: the Moyal equation

The von-Neumann equation Btρ̂ “
1
i~rĤ, ρ̂s (the density-operator version of the Schrödinger

equation) transforms as

BtW “
1

i~
pH ‹W ´W ‹Hq,

BtW “ ttH,W uu.

Here HpX,P q “WpĤq is the Hamiltonian function and we have introduced the Moyal

bracket notation [115]. We refer the reader to [24] for a derivation of the equation of motion

of the Wigner function from Schödinger’s equation for the wavefunction without referring to

the star product.
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The exponential notation of the star product induces the name “Moyal sine bracket” since

it can be written as

BtW “ H
2

~
sin

ˆ

~
2

´

ÐÝ
B X
ÝÑ
B P ´

ÐÝ
B P
ÝÑ
B X

¯

˙

W.

Note that the Moyal equation is identical to Liouville equation plus quantum corrections

coming from the expansion of the sine to higher orders of ~.

BtW “ tH,W u `Op~2
q.

Interestingly, there is no corrections to Op~q. Importantly, the quantum corrections

are proportional to ~2 and to the nonlinear terms in the Hamiltonian. For quadratic

Hamiltonians, all the quantum corrections vanish: the higher-order derivatives exterminate

low-order polynomials (see the Appendix of [51]). Specifically, Gaussian transformations, i.e.,

those generated by quadratic Hamiltonians in the phase space coordinates, are classical in

the sense that they are ruled by only the Poisson bracket. Thus, they would not develop

negativities in the Wigner distribution if none would be present at the beginning.

Phase space formulation for open quantum systems

So far, we have only discussed the phase space formulation for closed quantum systems.

Indeed, one can extend the treatment to open systems as we demonstrate below. The

Lindblad equation for single photon loss is given by

Btρ̂ “
1

i~
rĤ, ρ̂s ` κâρ̂â: ´

κ

2
pâ:âρ̂` ρ̂â:âq. (E.12)
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Using Eq. (E.8) and Eq. (E.9), we get the phase space formulation of Eq. (E.12) as

WtBtρ̂u “ BtW,

W

"

1

i~
rĤ, ρ̂s

*

“ ttWpĤq,Wpρ̂quu

“ ttH,W uu

Wtâρ̂â:u “ a ‹W ‹ a˚

“ aWa˚ `
1

2
BaW `

1

2
pBa˚pWa˚q `

1

2
B

2
aa˚W q

Wtâ:âρ̂u “

ˆ

a˚a´
1

2

˙

‹W

“ aWa˚ ´
1

2
W `

1

2
pa˚Ba˚W ´ aBaW q ´

1

4
B

2
aa˚W

Wtρ̂â:âu “ W ‹

ˆ

a˚a´
1

2

˙

“ aWa˚ ´
1

2
W ´

1

2
pa˚Ba˚W ´ aBaW q ´

1

4
B

2
aa˚W

Gathering all terms one directly gets

BtW “ ttH,W uu `
κ

2

`

B
2
aa˚ ` Baa` Ba˚a

˚
˘

W.

It is convenient to translate the above to x, p space

BtW “ ttH,W uu `
κ

2

`

B
2
x ` B

2
p ` Bxx` Bpp

˘

W. (E.13)
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By expressing the equation in x, p space in Eq. (E.13), the diffusion terms 9pB2
x`B

2
pq and the

drag terms 9pBxx` Bpp) associated to the fluctuation and the dissipation become evident.

Note, that the Moyal sine bracket has only odd derivatives: the diffusion (B2
x ` B

2
p) cannot be

canceled by Hamiltonian dynamics.

For finite temperature n̄th, the Lindblad master equation is

Btρ̂ “
1

i~
rĤ, ρ̂s ` κp1` n̄thqDrâsρ̂` κn̄thDrâ:sρ̂, (E.14)

where the dissipator D of the operator Ô is given by DrÔs‚ :“ Ô ‚ Ô: ´ pÔ:Ô ‚ ` ‚ Ô:Ôq{2.

It is straightforward to show that in the phase space formulation, Eq. (E.14) reads

BtW “ ttH,W uu `
κ

2
pBaa` Ba˚a

˚
qW ` κ

ˆ

1

2
` n̄th

˙

B
2
a˚aW, (E.15)

which reads in x, p space as

BtW “ ttH,W uu `
κ

2
pBxx` BppqW `

κ

2

ˆ

1

2
` n̄th

˙

`

B
2
x ` B

2
p

˘

W. (E.16)

Equation (E.16) is the quantum version of the Fokker-Planck equation, with the Poisson

bracket replaced by the Moyal bracket and a quantum diffusion term corresponding to the

zero point spread.

Note that for the Hamiltonian corresponding to Eq. (2.24), the solution for W from

Eq. (E.16) will not yield the Boltzmann distribution in steady state, which perhaps is not

surprising for an out-of-equilibrium driven problem [44].
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Appendix F

Hamiltonian transformation under a

canonical transformation

Claim: Under a Lie transformation of the state ρ Ñ % “ eLSρ, where Btρ “ ttH, ρuu, the

transformed state % is governed by the equation Bt% “ ttK, %uu, where

K “ eLSH `

ż 1

0

dε eεLS 9S. (F.1)

Proof: Let % “ eLSρ, so that ρ “ eL´S%. We take the equation governing the time-evolution

of ρ to be

Btρ “ ttH, ρuu, (F.2a)

implying that

Btpe
L´S%q “ ttH, eL´S%uu (F.2b)
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and using the product rule, we get

Bt% “ tte
LSH, %uu ´ eLSBtpe

L´Sq%, (F.2c)

where we have used eLSttF,Guu “ tteLSF, eLSGuu [43].

Now, Eq. (B.4) is indeed true if

eLSBtpe
L´Sq% “ ´Lş1

0 dε e
εLS 9S%, (F.3)

which we now prove. To evaluate the left hand side of Eq. (F.3), we invoke the following

identity [62,135,141,164]:

e´˝
d

dt
e˝ “

ˆ

1´ e´ad˝

ad˝

d˝

dt

˙

, (F.4a)

where the right hand side of Eq. (F.4a) can be further expanded using

1´ e´ad˝

ad˝

“

8
ÿ

k“0

p´1qk

pk ` 1q!
adk˝.

In Eq. (F.4a), we have defined ad˝1˝2 “ t˝1, ˝2u “ ˝1 ˝2 ´ ˝2 ˝1, where t˝1, ˝2u represents the

Lie bracket associated with the operators of the Lie algebra [62,135,141,164]. Comparing

Eq. (F.4a) with Eq. (F.3) and taking ˝Ð p´LSq, Eq. (F.3) becomes

eLS
B

Bt
eL´S “ ´

˜

8
ÿ

k“0

1

pk ` 1q!
adkLSL 9S

¸

“ ´

˜

L 9S `
1

2!
tLS, L 9Su`

1

3!
tLS, tLS, L 9Suu

` ¨ ¨ ¨

¸

.

(F.4b)

Note that we converted the total time-derivative in Eq. (F.4a) to a partial time-derivative in
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Eq. (F.4b) since we work in the active representation where the coordinates are static.

Now, we use an important property of the Lie bracket [20,43]:

tLF , LGu “ LttF,Guu

“ LLFG

(F.5)

to get

tLF , tLF , t¨ ¨ ¨ tLF , LGuuuu “ LLnFG. (F.6)

Equation (F.5) as written is simply the Jacobi identity and is generalized to Eq. (F.6) by

induction. Employing Eq. (F.6) in Eq. (F.4b) at each order gives

eLS
B

Bt
eL´S “ ´

´

L 9S ` L 1
2!
LS 9S ` L 1

3!
L2
S
9S ` ¨ ¨ ¨

¯

“ ´

´

Lř8
n“0

1
pn`1q!

LnS
9S

¯

“ ´

´

Lş1
0 dε e

εLS 9S

¯

.

(F.7)

This completes the proof.
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