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The potential of quantum systems for computation is challenged by decoherence, a process

in which the system interacts with its noisy, uncontrolled environment. However, with

quantum error correction (QEC), robust quantum computation in the presence of noise is

possible. In a QEC encoding, information is stored as non-local correlations in an engineered

multi-state, quantum many-body system. One promising encoding is the Gottesman-Kitaev-

Preskill (GKP) code, in which logical states are encoded as oscillator grid states. However,

ever since the code was envisioned in 2001, its experimental realization had remained out of

reach. The most important barrier for realization was the code sensitivity to nonlinearity, an

unfortunate requirement, given that a strong nonlinearity is in general favorable to control

quantum systems. Whether it is possible to control a linear oscillator such that non-local

correlations in phase space can be manipulated and stabilized is an open question. The goal

of the PhD work reported in this dissertation is to answer this question. Our main result

is the realization of universal control of a nearly-linear superconducting oscillator by weakly

coupling it to a superconducting qubit in a many-drive-photon regime that previously was

not controllable. Using this weak-coupling, large-displacement architecture, we demonstrate

the first realization of stabilized quantum information encoded in grid states of an oscillator,

ultimately leading in a follow-up experiment to a demonstration of qubit stabilized beyond

break-even, i.e. in which the quantum coherence of the protected qubit is longer than that

of all components of the system.
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Chapter 1

Introduction

1.1 Motivation and summary

In quantum science, the fundamental unit of information is called the qubit - a quantum state

| i = a |gi+ b |ei where {|gi , |ei} are labels for two possible discrete outcomes of a measure-

ment, while the values a and b are continuous (complex) numbers satisfying |a|2+|b|2 = 1 [2].

The goal of quantum computation is to perform accurate calculations using qubits that are

intractable for classical computers, which instead perform calculations on classical bits1.

The most promising examples of potential applications of quantum computation include the

simulation of quantum systems [3] and the factoring of large numbers into primes [4].

Modern classical bits have an extremely low probability of failure [5]. Modern qubits,

on the other hand, fail with a high probability; state-of-the-art multi-qubit chips have gate

failure probabilities on the order of one failure per every one-thousand two-qubit gates [6].

This failure probability is far too high to solve useful problems using a quantum computer.

For example, it is estimated that a useful quantum simulation that is intractable for a classical

computer would require, at a minimum, a failure probability of less than one per ten-million

two-qubit gates [7].2 Even more practical problems, such as simulating molecular physics or

1. consisting of two possible discrete values: {0, 1}

2. The example problem cited here is the quantum simulation of the time evolution for a spin-1/2 Heisen-
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factoring a 1024-digit number, will require orders-of-magnitude lower failure probabilities.

The main limitation causing high error rates in current hardware is the uncontrolled

entanglement of a quantum system with its environment, a process known as decoherence.

Thankfully, there is a path forward to realizing robust quantum computation even in the

presence of decoherence, called quantum error correction (QEC) [8]. The central goal of QEC

is to realize fault-tolerant quantum computation (FTQC), where the result of a quantum

computation can be accurate even in the presence of a small amount of local noise [9]. In a

QEC encoding, logical qubits are stored as non-local correlations in an engineered multi-state,

quantum many-body system. Remarkably, with QEC it is possible in principle to perform

accurate quantum computation, as long as the physical error rate per gate or per time step is

below a threshold [10]. However, such error correction requires a hardware overhead, where

many physical components must be engineered for each logical qubit encoded.

A few promising technologies exist for the potential realization of FTQC, including

trapped-ions, quantum photonics, and superconducting circuits, the latter of which is the fo-

cus of this work. In several proposals for FTQC using superconducting circuits, logical qubits

are embedded in the Hilbert space of many physical qubits, each realized as the lowest-two

energy levels of a nonlinear superconducting circuit. A popular encoding example is QEC

using the stabilizer formalism [11], such as the surface code [12–14], in which logical qubits

are stored as non-local quantum correlations of many physical qubits on a planar lattice.

As an encouraging example of this, a recent experiment [6] demonstrated an error-corrected

surface code memory in which the logical error rate slightly decreased as the number of

physical components was increased, showing errors can in principle be reduced as the system

is scaled.

An alternative to the many-qubit approach is the many-oscillator approach. In these

bosonic encodings, logical qubits are embedded into the non-local quantum correlations

of a system consisting of many physical harmonic oscillators [15]. In contrast to a physical

berg chain with 100 spins.
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qubit, each physical oscillator consists of many quantum levels, {|0i , |1i , |2i , ...}, called Fock

states. In superconducting circuits, such oscillators can be realized as linear superconducting

resonators in either a planar geometry [16] or as three-dimensional microwave cavities [17].

It is possible that using oscillators instead of qubits can lead to a lower physical overhead

due to the additional quantum levels in each oscillator. Intuitively, these additional levels

could hopefully be used to encode quantum information more redundantly, requiring less

physical components.

There are a few proposals for robustly encoding quantum information in oscillators [18].

Among these, one of the most promising candidates is called the Gottesman-Kitaev-Preskill

(GKP) code, named after the three authors who introduced the code in 2001 [1]. The

GKP code is of great interest because, among many nice properties, it is optimal for cor-

recting photon loss, one of the most important decoherence mechanics in superconducting

oscillators [19–22]. In the single-oscillator GKP code, quantum information is stored as

quantum correlations in the oscillator’s position and momentum. Errors can be measured

and corrected without disturbing the logical information encoded in these correlations. The

GKP code could also be concatenated in a multi-oscillator encoding, such as a GKP surface

code [15, 23,24].

However, ever since the GKP code was envisioned in 2001, its experimental realization

had remained out of reach. The most important barrier for realization was the code’s sen-

sitivity to nonlinearity, an unfortunate requirement, given that a strong nonlinearity is in

general favorable to control quantum systems. In superconducting circuits, the control meth-

ods developed over the past thirty years have by-and-large pushed towards realizing strong

nonlinear interactions so that gates can be performed quickly; this is inherently incompatible

with quantum states of the oscillator that are highly squeezed, such as the GKP code.

Given that nonlinearity is both a blessing and a curse, a natural question arises: can

the quantum state of a nearly-linear oscillator be controlled coherently? Here,

by ‘nearly-linear’, we mean that the oscillator nonlinearity should be weak enough as to not
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become a limiting factor for the preparation and stabilization of finite-energy GKP states

when compared with other decoherence mechanisms.

As I will show in the following chapters, the primary result of this thesis is an a�rmative

answer to the question posed above, namely, that a nearly-linear oscillator can be controlled

coherently. Our main result is the realization of universal control of a nearly-linear

superconducting oscillator by weakly coupling it to a superconducting qubit in a

many-drive-photon regime that previously was not controllable [25]. Using this,

we demonstrate the first quantum error correction of GKP states encoded in

an oscillator [26, 27]. The techniques developed for this error correction and the weak-

coupling architecture should be seen as the building blocks needed to eventually scale up to

a multi-oscillator GKP encoding.

Besides error correction, it is likely that using bosonic modes and encodings can aid

in realizing e�cient near-team quantum simulation [28], quantum communication [29], and

quantum sensing, including the search for dark matter axions [30]. The architecture, control,

and measurement methods developed in this PhD thesis could be directly applicable in these

domains, allowing control in situations where minimizing oscillator nonlinearity is crucial.

With these motivations in mind, in order to be pedagogical, research results in this thesis

are presented in logical order, rather than chronological order. First, in the remainder of

this chapter, I will outline the main ideas of this dissertation in more detail, including some

preliminaries.

In chapter 2, I give a thorough introduction to bosonic quantum control, focusing on a

gate-based approach to control an oscillator. This leads into a description of the phase-space

instruction set architecture (ISA) in section 2.4.5, one of the principal results of this thesis.

As one application, I demonstrate the numerical optimization of gates on the finite-energy

GKP code using the phase-space ISA.

Next, in chapter 3, I outline the weak-coupling dispersive architecture, consisting of

a superconducting qubit with a weak coupling to a high quality-factor superconducting
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oscillator. This description includes calibration, characterization, and oscillator tomography

methods, developed here in a regime where previous approaches fail. I also discuss pitfalls

of this approach, and the analysis of oscillator loss and dephasing in this setting.

In chapter 4, I demonstrate the phase-space ISA using the weak-coupling architecture.

In particular, we measure preparation of Fock states (Fock |1i with fidelity F = 98 ± 1%),

oscillator squeezing at 11.1 dB - the largest achieved to date in the microwave domain3 - and

unitary state preparation of finite-energy GKP states.

In chapter 5, we apply these ideas to the quantum error correction of the single-mode

GKP states. Our demonstrations include the stabilization using a measurement-based and

semi-autonomous protocol, ultimately leading to the stabilization of a quantum memory

beyond break-even, meaning the quantum coherence of the protected qubit is longer than

that of all components of the system.

Lastly, in chapter 6, I discuss proposals for future research directions, with a focus on

the GKP code.

1.2 Preliminaries

1.2.1 Quantum oscillators

A physical oscillator can be realized in many ways, such as a mass on a spring, an electrical

circuit consisting of an inductor and capacitor in parallel (often called an L-C oscillator),

or an electromagnetic mode confined by two mirrors. For a closed system, these oscillators

can be described by two properties: angular frequency ! and characteristic impedance Z.4

The mass on a spring example is easy to visualize, and classically its state is described

by two dynamical variables, its instantaneous position X and momentum P ; other physical

3. to the best of my knowledge.

4. For a mass m on a spring, the impedance is given by Z = 1/
p
km, where k is the spring constant. For

an L-C (inductor-capacitor) electrical circuit oscillator, the impedance is given by Z =
p
L/C.
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oscillators can be mathematically mapped onto this system. For instance, in an L-C oscillator

circuit, the flux through the inductor � is analogous to position, and the charge di↵erence

on the capacitor Q is analogous to momentum [31]. For this reason, I will use the language

of position (represented by the variable X) and momentum (represented by the variable P )

to describe a general oscillator, even if is not a physical mass-on-spring system.

When an oscillator is cooled such that kBT ⌧ ~!, where kB is the Boltzmann constant

and ~ = h/2⇡ is the reduced Planck constant, the thermal fluctuations are suppressed,

and quantum e↵ects become important. In such a regime, the position and momentum (or

analogous variables) are promoted to quantum operators, X ! X̂ and P ! P̂ that obey a

commutation relation,
h
X̂, P̂

i
= i~ where

h
Â, B̂

i
= ÂB̂ � B̂Â is the commutator5 of two

operators6 [32].

As a result of the Heisenberg uncertainty relation, a quantum oscillator cooled to its

ground state will still have small fluctuations of position and momentum. For an oscillator

with characteristic impedance Z, the standard deviation of ground-state fluctuations is given

by �X̂ =
p

~Z/2 ⌘ XZPF in position and �P̂ =
p

~/2Z ⌘ PZPF in momentum, where the

subscript ZPF stands for zero-point fluctuations. Notice that these ground-state fluctuations

satisfy XZPFPZPF = ~/2. For an L-C circuit oscillator in the microwave regime with a

typical frequency of !/2⇡ = 10GHz and impedance of Z = 100Ohms, ground state voltage

fluctuations are on the order of 0.3 µV [33], allowing for strong coupling between quantum

electromagnetic circuits [34].

It is often convenient to work with position and momentum operators that are scaled

by the zero-point-fluctuations, so position and momentum are set on equal footing. Here,

we write the scaled versions as q̂ = X̂/
p
2XZPF and p̂ = P̂ /

p
2PZPF. In these reduced

coordinates, the phase-space trajectory of a harmonic oscillator that is usually an oval in

5. We will say operators commute if
h
Â, B̂

i
= 0

6. Throughout this work, I will use hats for operators that could be misconstrued as variables. In many
cases, I will omit hats when it is obvious what is being represented.
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X � P phase-space is transformed into a circle in q � p phase space, and the position-

momentum commutator becomes [q̂, p̂] = i. These operators are also called quadratures, and

they form an orthonormal basis for oscillator wave functions,  (q) = hq| i and  (p) = hp| i

with

| i =
Z

dq  (q) |qi =
Z

dp (p) |pi (1.1)

related by the Fourier transform |qi = 1p
2⇡

R
dq e�ipq |pi under the convention �(x � x0) =

R
dkei(x�x0

)k/2⇡.

The quantum state of an oscillator is quantized using an infinite number of discrete levels

called Fock states, {|0i , |1i , |2i , ..}. When the oscillator is an electromagnetic mode, these

excitations are called photons. Translations in the Fock state basis can be generated by the

creation operator a† and annihilation operator a according to

a† |ni =
p
n+ 1 |n+ 1i (1.2)

a |ni =
p
n |n� 1i . (1.3)

These are related to the quadrature operators by

q̂ =
�
a+ a†

�
/
p
2 (1.4)

p̂ = �i
�
a� a†

�
/
p
2, (1.5)

and the photon number operator is given by n̂ = a†a such that n̂ |ni = n |ni.

The quadrature operators are the generators of displacements in phase-space. Specifically,

a translation in the position-momentum phase space of an oscillator is performed by the

translation operator,

T̂ (↵) = exp (�iRe(↵)p̂+ iIm(↵)q̂) , (1.6)
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where ↵ is a complex number. Such operators are also called Weyl operators [35], and they

were first used by Weyl, Wigner, Moyal, and others to develop what we now call the phase-

space formulation of quantum mechanics [36]. The translation operator is related to the

displacement operator D(↵) = exp
�
↵a† � ↵⇤a

�
by a scale factor, T (↵) = D

�
↵/
p
2
�
. When

the translation operator is applied to a state, | ̃i = T̂ | i, the resulting state | ̃i is a shifted

copy of | i in position-momentum phase-space by an amount Re (↵) in position and Im (↵)

in momentum, along with an additional phase factor. This phase factor can be found by

evaluating the group commutator7, given by

T (�)T (�) = e(��
⇤��⇤�)/2T (�)T (�) = eiAT (�)T (�), (1.7)

where A is the signed area of the parallelogram formed by the translation operators in phase-

space (see appendix A.1). This is an example of geometric phase (also called Berry phase)

in the phase-space of the oscillator [37]. From this, we see that two translation operators

commute if they enclose an area in phase space that is an even-integer multiple of ⇡, and

they will anti-commute8 if the area enclosed is an odd-integer multiple of ⇡.

The phase space of the oscillator is described by a quasi-probability distribution called

the Wigner function, W (↵) 2 R, where negative values indicate non-classical e↵ects. The

Fourier transform of the Wigner function is called the characteristic function, defining the

reciprocal space of the oscillator. Given an oscillator density matrix ⇢, the characteristic

function is given by

C (�) = hD(�)i = Tr (⇢D(�)) . (1.8)

The characteristic function is further developed in appendix A.3. The relationship between

7. The group commutator of Â, B̂ is ÂB̂Â
†
B̂

†.

8. two operators anti-commute if
n
Â, B̂

o
= 0 where

n
Â, B̂

o
= ÂB̂ + B̂Â is called the anti-commutator.
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the displacement operator (or translation operator) and the reciprocal space of the oscillator

can be seen by writing the translation operator in terms of sines and cosines. We can write

hT (↵ = kp + ikq)i = hcos (kq q̂ � kpp̂)i+ i hsin (kq q̂ � kpp̂)i , (1.9)

and hence a measurement of the translation operator is sensitive to the Fourier component

of the state at angular frequency 2⇡/ |↵| along the cut kq q̂ � kpp̂ in phase-space. Since the

operator is non-Hermitian, the real and imaginary parts must be measured separately.

1.2.2 The Gottesman-Kitaev-Preskill Code

Error channels such as photon-loss and heating of an oscillator can be thought of as small, un-

known translations of position and momentum [1], leading to a di↵usion in phase-space [38].

This type of di↵usion will suppress high-frequency components in the reciprocal space of the

oscillator more quickly than lower-frequency components, e↵ectively applying a Gaussian

filter to the characteristic function. A description of this model is given in appendix A.3.

With this type of noise in mind, it would be advantageous to encode logical qubit informa-

tion in an oscillator as low-frequency correlations of position and momentum, since di↵usion

noise will suppress the high-frequency components in reciprocal space more quickly. Fur-

thermore, we would like to be able to measure and correct small translations of the oscillator

without corrupting the logical information encoded in these low-frequency correlations.

A code with these properties was first introduced by Daniel Gottesman, Alexei Kitaev,

and John Preskill (GKP) in their seminal 2001 work [1]. Their code can be generalized to

multiple oscillators, however here we will focus on the most straightforward example of a

qubit-into-oscillator GKP code. In the position basis, the infinite-energy logical states are
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Figure 1.1: Infinite-energy GKP wavefunctions. (a.) Position and (b.) momentum
wavefunctions of the square infinite-energy GKP code states |+Zi and |�Zi. (c.) Mo-
mentum and (d.) position wavefunctions of |+Xi and |�Xi. Shaded regions represent the
+1 (light) and �1 (dark) results of an error-corrected readout of the corresponding logical
operators. Arrows in the wavefunction represent Dirac delta-functions.
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given by

|+Zi =
1X

s=�1
|q = 2s

p
⇡i (1.10)

|�Zi =
1X

s=�1
|q = (2s+ 1)

p
⇡i , (1.11)

as is shown in fig. 1.1a. These states are superpositions of infinitely-squeezed position eigen-

states (a Dirac comb). They cannot be normalized, and are thus unphysical. Realistic code

words have a finite variance for the modular position and momentum, these states will be

discussed later in section 5.1.2, as for the purposes of introducing the GKP code, it is best

to first understand the infinite-energy code, then later modify the description to account for

a finite squeezing.

The Fourier transform of these states can be taken to find the wavefunctions in the

momentum representation; since they are Dirac combs, their Fourier transforms will also be

Dirac combs. As shown in fig. 1.1b, in the momentum representation, logical information is

stored as the winding of the wavefunction phase around the momentum axis. Forming their

superpositions, the logical X eigenstates9 are shown in fig. 1.1c, are given in the momentum

basis by

|+Xi =
1X

s=�1
|p = 2s

p
⇡i (1.12)

|�Xi =
1X

s=�1
|p = (2s+ 1)

p
⇡i . (1.13)

As is evident from these wave functions, the Z logical information (the ‘bit’) and the X

logical information (the ‘phase’) encoded in these states have some protection against small

translations in position and momentum. To see this, we can define an error-robust logical Z

9. |+Xi / |+Zi+ |�Zi, |�Xi / |+Zi � |�Zi .
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and X operators for the code as the square-waves [39, 40]

ZC+E = sgn
�
cos
�p

⇡q̂
��

, (1.14)

XC+E = sgn
�
cos
�p

⇡p̂
��

. (1.15)

Here, C + E stands for ‘code plus error space’, meaning the logical operators are robust to

small displacements. These error-robust logical operators are shown as the light (= +1) and

dark (= �1) regions behind the wavefunctions in fig. 1.1. It is clear from these operators

that the value of ZC+E or XC+E will be unchanged under a small unknown translation of

the position or momentum, T̂ (�), as long as |�| <
p
⇡/2. This defines the distance of the

code (the maximum size of correctable errors) in the translation basis.10 We can now define

the logical operators for the code as

XL = T̂
�p

⇡
�

(1.16)

YL = T̂
�
(1 + i)

p
⇡
�

(1.17)

ZL = T̂
�
i
p
⇡
�
, (1.18)

where code words satisfy ZL |±Zi = ± |±Zi (with a similar relation for XL and YL).11

In order to measure and correct small displacements without revealing the logical in-

formation, we can define measurement operators that commute with the logical operators.

10. Technically, all translations such that sgn (cos (
p
⇡|�|)) = +1 are correctable. However, di↵usion in

phase space is a local process, and we would like to correct errors before they become large translations.

11. Some authors define the C + E operators as the logical operators. However, unlike the translation
operators, the ideal logical states are not the unique +1 eigenstates of the C + E operators.
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Figure 1.2: GKP logical operators and stabilizers. Phase-space representation of the
logical translation operators. According to the translation commutation area law (eq. (A.16),
the areas enclosed by the logical and stabilizer translations satisfy the commutation relations
required for a valid QEC code (eq. (1.21)).

Such operators are called the stabilizers, and for the GKP code they are given by12

Ŝq = Ẑ2 = T̂
�
i2
p
⇡
�
, (1.19)

Ŝp = X̂2 = T̂
�
2
p
⇡
�
. (1.20)

As is shown in fig. 1.2, using the geometric-phase area law introduced in eq. (A.12),

the logical operators and stabilizers satisfy the required commutation and anti-commutation

relations for a valid QEC qubit code,

[Sq, Sp] = 0 (1.21)

[Sq,p,P ] = 0 (1.22)

{XL, ZL} = 0, (1.23)

where P is one of XL, YL, ZL.

12. The full stabilizer group is generated by all products of these two operators.
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Furthermore, it is easy to see from the wavefunctions of the logical states in fig. 1.1

that translations of 2
p
⇡ (the stabilizers) will leave the states unchanged, and translations

of
p
⇡ (the logicals) along position or momentum will apply the correct bit-flip or phase-flip

operation.

Using the area commutation law, we can derive how the stabilizers can be used to measure

small translations. Defining a GKP state that has undergone a small, erroneous translation

as | �i = T̂ (�) | i, we see that13

Sq | �i = ei2
p
⇡Re(�) | �i , (1.24)

Sp | �i = e�i2
p
⇡Im(�) | �i . (1.25)

By measuring Re (Sq) = cos (2
p
⇡q̂) and Im (Sq) = sin (2

p
⇡q̂) (and the real and imag-

inary parts of Sp), the value of � can be extracted and corrected without corrupting the

logical information, as long as |�| 
p
⇡/2.

If we expect |�| to be small, a measurement of the imaginary part of the stabilizers will

be more sensitive to � than the real part, since the sine function is first-order sensitive while

the cosine is second-order sensitive to changes of small values of the argument near 0. The

experimental quantum error correction of the GKP code performed in this PhD dissertation

can be thought of as first performing measurements that extract some information about

Im (Sq) and Im (Sp), using a decoder given the noise model to guess the value of �, and

applying a small displacement of �� to correct in real time. If this process is repeated faster

than di↵usion in phase space can accumulate, the GKP code logical information can be

stabilized longer than an uncorrected code.

I will return to the GKP code in chapter 5 to describe the finite-energy GKP code and

the details of our error correction and control protocols. For a complete overview, see our

recent review article [22], as well as the other reviews, perspectives, and theses related to

13. I encourage the reader to try this exercise.
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a)

200 nm

b)

1-2 mm

sapphire

1-2 cm

c)

Al or Ta

Figure 1.3: Transmon coupled to a 3D high-Q microwave cavity a.) Scanning
electron microscope (SEM) image of a Josephson junction fabricated using the Dolan bridge
technique [46] with an approximate scale bar shown. The JJ consists of Aluminum(Al)-
Aluminum Oxide (AlOx)-Aluminum(Al) structure, with a typical oxide thickness on the
order of ⇠ 1 nm (SEM image courtesy of Luigi Frunzio). b.) A 3D transmon, consisting of
superconducting thin-film forming capacitor pads (aluminum or tantalum) connected with a
JJ. The pads couple to the electric field of the 3D microwave cavity. c.) A 3D high-quality-
factor superconducting post cavity coupled to a transmon qubit. The transmon chip also
includes a low-Q readout resonator and a Purcell filter. The cavity resonator is formed as
a �/4 resonator at the bottom of a terminated waveguide, with electric field shown [17].
Microwave drives "(t) and ⌦(t) are applied through the copper pins coupled to the cavity
and transmon.

the GKP code and its experimental realization [14,18, 41–45].

1.2.3 Superconducting qubits and cavities

Although the GKP code was proposed in 2001, it was initially too complex for direct re-

alization in a physical system, as the quantum control needed was far out of reach at the

time. The GKP code was first designed with optics in mind - the experimental physics of

light with frequencies at and near the visible regime. However, as will be discussed in depth

in section 2.2.2, the realization of non-Gaussian oscillator states requires strong non-linear

interactions. Such nonlinearities are weak in the optical domain [47], making the realiza-
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tion of optical GKP states quite di�cult. To date, and to the best of my knowledge, only

one experiment in the optical domain has achieved GKP-like states, with a low squeezing

parameter [48].

Superconducting circuits, on the other hand, are an easier platform for realizing GKP

states and error correction with current technology, since a strong and coherent nonlinearity

can be utilized. Operating in the microwave frequency regime (!/2⇡ ⇠ 1GHz to 20GHz),

cooling these circuits such that ~! << kbT will require T ⇠ 20mK.14. These circuits

can be thought of as collective excitations of a superconducting condensate of Cooper-pairs

defined by some physical circuit geometry. These collective modes have excitations that

are bosonic in nature called photons (even in the case of modes that only have a small

electric field participation in free space) and are described by the quantum mathematics of

oscillators introduced in the previous section and in appendix A. Unlike classical circuits, in

the quantum case these oscillators have quantized (discrete) energy levels.

The central building block needed for quantum experiments with microwave photons is a

low-dissipation source of nonlinearity. The Josephson junction, shown in fig. 1.3a, plays this

role. The Josephson junction is a superconductor-insulator-superconductor structure, and it

can be thought of as a nonlinear inductor shunted by a small capacitance, where the nonlinear

inductor has a current (I) -voltage (V ) relation of I(t) = I0 sin (') where I0 is the critical cur-

rent parameter and '(t) = (2⇡/�0)
R
d⌧ V (⌧)mod2⇡ is the phase di↵erence of superconduct-

ing condensates on either side of the junction [50] and �0 = h/2e = 2.067 833 848⇥10�15 Wb

is the superconducting magnetic flux quantum. Crucially, the critical current I0 can be con-

trolled in a reproducible way by the area of the junction ang/or the oxide thickness.

To build a simple nonlinear superconducting oscillator in the ⇠ 1GHz to ⇠ 10GHz range,

we can shunt the Josephson junction with a large capacitance, as shown in fig. 1.3b. The

first two levels of this nonlinear oscillator can be used as a qubit. We design and operate

14. This cooling is performed by a dilution refrigerator, making use of a phase transition between superfluid
and normal states of a helium 3 and helium 4 mixture [49].
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the circuit in a parameter regime where the charging energy Ec = e2/2C⌃ is small compared

to the Josephson energy EJ = �0Ic/2⇡. In this regime, the transition frequency of the

qubit is exponentially insensitive to charge noise, and we call this circuit a transmon [51].

Specifically, the transmon shown in fig. 1.3b and used in this work is called a fixed-frequency

3D-transmon [52].

For the realization of the GKP code, a nearly linear oscillator is needed with a high quality

factor, Q = !T1, where T1 is the timescale at which energy stored in the oscillator will decay.

Although research is progressing quickly on high-Q planar superconducting oscillators with

quality factors in the tens of million [16], in this work we will use the fundamental mode

of a three-dimensional superconducting cavity [53], as shown in fig. 1.3c. Although these

cavities are likely not practical to scale beyond hundreds of modes, they are currently the

highest quality-factor microwave cavities, and serve as a good testing ground for quantum

information experiments that could eventually be realized in a more scalable technology. In

3D aluminum post-cavities (such as is shown in the figure), typical quality factors can be on

the order of thirty million (energy decay times are on the order of T1 ⇠ 1ms at 5GHz) [17].

Recent advancements in niobium cavities have demonstrated quality factors on the order of

one billion or higher, with lifetimes of T1 ⇠ 30ms [54] to even T1 ⇠ 1 s [55].

To control and measure the quantum state of a linear oscillator, it is often coupled to a

nonlinear superconducting circuit, such as a transmon, as shown in fig. 1.3. Such a system

was first studied in the context of measuring the transmon - if the oscillator is also strongly

coupled to a microwave transmission line (not shown), the energy level of the nonlinear

circuit can be read out in a non-destructive manner [56, 57]. However, with the advent of

high-quality-factor 3D cavities, focus has shifted to using these cavities to store quantum

information in bosonic error correcting codes such as the GKP code.

The quantum state of the oscillator and transmon is controlled by applying shaped mi-

crowave drives, "(t) and ⌦(t), at frequencies resonant with the oscillator and transmon

respectively. Here, the nonlinearity of the junction is essential for quantum control. The
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topic of quantum control of this type of system is a central part of this work, and is dis-

cussed in depth in chapter 2. Finally, the setup also contains a low-Q oscillator, fabricated

as a distributed-element superconducting resonator on the same chip as the transmon. This

second resonator is strongly coupled to a transmission line and used to measure the energy

level of the transmon, a process called readout. This is the only element in the setup that

is used for measurement, and the quantum state of the high-Q oscillator is only measured

through its interaction with the transmon.

The architecture shown in fig. 1.3c - a transmon strongly coupled to a high-coherence

storage oscillator - was first developed for the realization of a di↵erent type of bosonic code,

called cat codes, where a logical qubit is encoded as superpositions of coherent states in

the phase-space of an oscillator [23]. To realize the cat encoding, a control operation called

the conditional-rotation (CR) gate is needed. The CR gate is an entangling gate between

the storage oscillator and auxiliary qubit in which the state of the storage state rotates in

phase-space by an angle that depends on the state of the qubit. This gate is, in some sense,

natural to realize in this architecture, for reasons that will be elucidated in section 2.4.3.

The GKP code, on the other hand, is arguably more di�cult to realize in cQED than

the cat code (without taking fault tolerance into account). A few reasons for this are:

• As mentioned in the introduction, the GKP code states are very sensitive to a small

amount of oscillator nonlinearity. For GKP code realization using the methods outlined

in this work, we require K/ . 10�2, where K is the self-Kerr coe�cient given the

Hamiltonian H/~ = Ka†2a2 and  = 1/T1 [19, 26]. Note that for the oscillators used

in typical cat code experiments [58], K/ ⇠ 1, and for a transmon, K/ ⇠ 105.

• The entangling operation needed for measurement of displacement operators is called

the conditional displacement interaction15 [59], and this operation is not native in the

transmon-oscillator architecture. The conditional displacement needs to be engineered

15. Also called the conditional-translation or the state-dependent-force.
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out of the native operations that are available, and it should be fast relative to the

rate of photon loss of the oscillator.

• The photon-number probability distribution of the GKP code is a thermal distribution

(a geometric distribution) with a long tail [19]. Because of this, GKP states with

typical squeezing require coherent manipulation of wave-function coe�cients up to

one-hundred or more photons in the oscillator. However, in superconducting circuits,

it has been shown in a number of experiments that populating an oscillator coupled to

a transmon with a large photon number leads to un-recoverable errors of the transmon

[60–63]. In typical coupling regimes, these e↵ects emerge when populating the oscillator

with tens of photons, and previous to this work, coherent quantum manipulation of

oscillator states with distributions up to hundreds of photons had not been achieved.

1.3 Main results

The first main result of this dissertation is the experimental and theoretical development of

a novel cQED architecture for the universal quantum control and measurement of an oscil-

lator with a Kerr coe�cient of K/2⇡ ⇠ 1Hz and relative control rate of Tgate/T1 . 10�2,

where Tgate is the typical time for operations. Our results demonstrate quantum control of

an oscillator in a linear regime that, to the best of my knowledge, had not previously been

achieved [25,26]. The theory for this development is introduced in chapter 2, and the exper-

imental demonstration and technical details are discussed in chapter 4. The architecture we

developed consists of a few essential components,

• A superconducting qubit weakly coupled to a high-quality-factor (Q = !⌧ ⇡ 107)

oscillator with a small relative-nonlinearity of K/ ⇠ 5⇥ 10�3, allowing occupation of

⇠ 1000 photons in the oscillator without major issues (section 4.2.1).

• A fast, microwave-activated qubit-oscillator entangling operation - the echoed condi-

tional displacement (ECD) gate - that can be turned on and o↵ to achieve su�cient
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Figure 1.4: Control of a nearly-linear oscillator. a) A unitary circuit constructed with
the phase-space instruction set architecture. The top rail (red) represents the oscillator,
while the bottom rail (blue) represents the auxiliary qubit. ECD gates (eq. (1.26)) and
qubit rotation gates are interleaved, and this general construction allows for the realization
of arbitrary unitaries, where the number of gates required depends on the target unitary and
the circuit parameters are found through numerical optimization. b)Measurement circuit for
the real part of a displacement operator, h�xi = hD(�)i, giving the characteristic function.
c) and d) Measured characteristic functions for state preparation of position-squeezed state
(c.) and a finite-energy GKP |+Zi logical state (d.), using the same colorbar. Data taken
from [25].
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isolation in the ‘o↵’ state (section 3.3).

• A set of calibration, characterization, and measurement routines in this novel coupling

regime where previous methods fail, including a fast open-quantum-system simulation

technique (section 3.2).

• An instruction-set-architecture (ISA) for realizing universal control and measurement

of an oscillator and qubit based on the ECD gate, and an algorithm for numerical

unitary gate synthesis (section 2.4.5).

A central result of these developments is the engineering of the echoed-conditional-

displacement (ECD) gate, first introduced in [26, 45] and further developed in [25], which

enacts the qubit-oscillator entangling operation

ECD (�) = D

✓
�

2

◆
|ei hg|+D

✓
��
2

◆
|gi he| . (1.26)

As shown in fig. 1.4a, when the ECD gate is interleaved with rotations of the auxiliary

qubit, R'(✓) = exp [�i(✓/2) (�x cos'+ �y sin')], this forms a universal gate set called the

phase-space instruction set architecture. Using this type of control, arbitrary unitaries on

the storage oscillator and auxiliary qubit can be performed.

The ECD gate can also be used to measure displacement operators through the phase

estimation circuit shown in fig. 1.4b. These measurements are used to measure the charac-

teristic function in experiment, C (�).

To demonstrate this control and measurement, we have used the phase-space ISA to

prepare a squeezed state and a finite-energy GKP logical |+Zi state in the oscillator and

measured their characteristic functions, as shown in fig. 1.4c and fig. 1.4d. To the best of

my knowledge, the squeezed state shown is the most-well-resolved position distribution (the

largest squeezing) state that has been prepared in measured in the microwave regime. These

results and others are detailed more in section 3.3.
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Figure 1.5: Quantum error correction of the GKP code. a.) The sharpen-trim
quantum error correction protocol for the finite-energy GKP code. Double lines represent
the flow of classical information, used for real-time feedback displacements. b.) Results
of the uncorrected (crosses) and corrected (open circles) square and hexagonal GKP codes
using the sharpen-trim protocol. The hexagonal code is shown in the inset. c.) Measured
characteristic functions for the finite-energy ⇡/8 states (eq. (1.27)) in the square code (left)
and hexagonal code (right) using a measurement-based gate teleportation protocol. Data
taken from [26].
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The second main result of this PhD work is the development and experimental demon-

stration of real-time quantum error correction for the finite-energy GKP code [26]. This

development was enabled by the architecture introduced in the previous section. The proto-

col introduced in this experiment has led to more optimal protocols [64, 65]. By combining

these with model-free reinforcement learning, we have achieved stabilization of a quantum

memory with coherence beyond break-even, meaning the logical qubit stabilized in the quan-

tum memory lives longer than the bare decay rate of the oscillator [27, 44].

The first QEC protocol used in 2020, called the sharpen-trim protocol, is shown in

fig. 1.5a. Consisting of two parts, the ‘sharpen’ step is a one-bit measurement of the imag-

inary part of the stabilizers. As introduced in section 1.2.2, this measurement is sensitive

to small displacements. After each measurement, a small ‘kick’ is applied to the oscillator,

stabilizing the GKP grid. The second part of the protocol, the ‘trim’ step, is used to con-

fine the energy of the GKP code, leading to stabilization of a code with finite squeezing.

As shown in the figure, the four-round protocol consists of sharpen-trim rounds for both

position and momentum. Each round is about 2.5 µs and includes a fast classical feedback

displacement depending on the result of each measurement using a field-programmable gate

array (FPGA) with latency of about 200 ns.

To measure the performance of this QEC protocol, the logical {|+Xi , |+Y i , |+Zi} states

of the GKP qubit are prepared using measurement and feedback. As shown in fig. 1.5b, after

a time t (shown on the x-axis), the expectation values {hXi (t), hY i (t), hZi (t)} are measured

without performing QEC - the results are shown as the crosses. The same measurement is

then performed when turning on the QEC sharpen-trim protocol, the results of which are

shown as the open circles. As a result of the QEC protocol, the lifetime of the corrected

GKP logical qubit is about twice as long as the uncorrected GKP qubit.

As introduced in section 1.2.2, the area-law commutation relation of translation operators

allows other grids in phase space to be defined and used as logical qubits. The code discussed

so far is called the square GKP code, where the logical X and Z operators are corners of a
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square. An alternative GKP code is called the hexagonal GKP code, where the logical X,Y ,

and Z operators define a hexagonal unit cell in the characteristic function. The hexagonal

GKP code can also be stabilized using a six-round sharpen-trim protocol, with lifetime results

shown in the inset of fig. 1.5b. In the hexagonal code, the lifetimes of all Pauli operators are

equal.

Finally, using the ECD gates and measurements, arbitrary control of the finite-energy

GKP qubit can be performed with a measurement-based gate-teleportation protocol [26,66].

As an example of this, we prepared the logical ⇡/8 state, given by

| i = cos
⇣⇡
8

⌘
|+Xi � sin

⇣⇡
8

⌘
|�Xi . (1.27)

The measured characteristic functions of the ⇡/8 states in both the square GKP code

and the hexagonal GKP code are shown in fig. 1.5c.

It is clear that grid states hold promise in realizing a quantum advantage for FTQC,

sensing, and communication [22]. The remainder of this thesis introduces and reviews the

experimental and theoretical results that could hopefully be used to eventually scale up to

a multi-oscillator GKP encoding.
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Chapter 2

Bosonic quantum control

2.1 The goal of quantum control

Any transformation that a quantum system can physically undergo is described by a completely-

positive trace-preserving map E : ⇢ ! E (⇢) called a quantum channel [2]. The goal of

quantum control, from an experimentally-motivated point of view, is to realize a quantum

channel E in the presence of noise that is as close as possible to a target channel Etarget under

a relevant metric.

In many contexts, the target channel is unitary, Etarget (⇢) = U⇢U †. Here, the closeness

is quantified by the average channel fidelity,1

F̄ (E , U) =

Z
d h |U †E ( )U | i , (2.1)

where the integral is taken over the uniform measure in state space called the Harr measure.

Nielsen gives a simple formula for measuring the average channel fidelity for a qudit [67], and

we use this formula later in this dissertation for measuring the performance of QEC against

the target identity channel.

1. Also called the gate fidelity.
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In many cases, we are instead interested in preparing an engineered quantum system in

some target density matrix, �. Given that we actually prepare our system in state ⇢, the

quantity of interest is the state fidelity,

F (�, ⇢) =

✓
Tr

✓qp
⇢�
p
⇢

◆◆2

. (2.2)

In the case where the target state is pure, � = | ti h t|, the state fidelity reduces to the

overlap,

F (| ti h t| , ⇢) = h t|⇢| ti . (2.3)

One simple interpretation of this formula is: if you prepare a classical mixture of the

target state | ti with probability p, and some other orthogonal state | ?i with probability

1� p such that ⇢ = p | ti h t|+ (1� p) | ?i h ?|, the state fidelity will be F = p. Finally, if

the state you prepare is pure, ⇢ = | i h |, then the fidelity reduces to the overlap squared,

F = | h t| i |2. In all these cases, the goal of quantum control is to maximize the fidelity in

experiment in the presence of systematic and stochastic noise.

2.2 Universality

The concept of universality originates from classical computer science, and it is best first un-

derstood in that context; I will first cover classical computational universality in section 2.2.1.

Next, in section 2.2.2, I will discuss universality in discrete-variable and continuous-variable

systems.

2.2.1 Classical computational universality

In the circuit model of classical computation, primitive operations called gates (OR, NOT,

AND, etc...) act on bits and are strung together to realize a computation. A classical set of
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gates is said to be universal if a circuit exists using only gates from that set to perform any

desired boolean function2. For example, the NAND gate on its own is universal, and so is

the NOR gate3.

If a classical gate set is universal, we may wonder how many gates it takes to compute

a given boolean function? This is the question of classical circuit complexity. Interestingly,

as shown using a simple counting argument by Claude Shannon in 1949, almost all Boolean

functions on n bits require exponentially large circuits of at least ⇠ 2n/n gates to com-

pute [68]. Only a minority of boolean functions require polynomaly many gates, and these

are said to be ‘feasible’ or ‘e�cient’.4

To compare with the quantum case, it is also worth mentioning an alternative model of

classical computation, called the artificial neural network. In a neural network, primitive

units called neurons are strung together in a tree-like fashion acting on continuously-valued

inputs as opposed to bits, and each neuron specified by a set of values called weights and

biases. The neural network is also universal in the sense that it can approximate any function

acting on those input values [71]. Importantly, however, there often exists e�cient training

algorithms to find the proper weights and biases needed to realize a given function, and in

this sense neural networks can be programmed e�ciently.

At their core, each neuron in a neural network is a primitive nonlinear function acting

on inputs to produce an output. Such nonlinearity is essential for the neural network to be

a universal function approximator. This is closely related to quantum universality; as we

will see in the case of quantum control of continuous-variable systems, nonlinearity is also

essential to realize all operations. Interestingly, in the neural network, the specific nonlinear

2. This property is also called functional completeness.

3. Assuming the FANOUT operation is also available.

4. An interesting property of classical computation is universal gate sets exist which consist of only re-
versible gates. As an example, the To↵oli gate on its own is universal and reversible. Given this, classical
computation can, in principle, be performed in a reversible way [69]. However, it takes energy to erase
information; Landauer’s principle states that the erasure of one bit of information necessarily requires an
energy of at least kbT ln 2, where T is the temperature of the environment of the computer [70].
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function used in each neuron is not important, and in some sense it is not di�cult to build

a universal classical model of computation by stringing together nonlinear primitive gates.

A similar situation is true for quantum bosonic systems, where in principle any nonlinear

interaction can be used to realize universality. However, some nonlinear interactions are

easier to implement than others in superconducting circuits.

2.2.2 Quantum universality

Preliminaries

In the next two subsections, I will focus on quantum control of both finite-dimensional and

continuous-variable5 systems, using the language of either Hamiltonian-level control or gate-

level control. Hamiltonian-level control (sometimes called pulse-level control) can be thought

of as the problem of realizing a target quantum operation by manipulating time-dependent

parameters in the Hamiltonian of an engineered quantum system. Gate-level control, on

the other hand, is the problem of realizing a quantum operation from a set of well-defined

quantum gates. One of the central messages of this dissertation is that designing a well-

parameterized gate-set in a continuous-variable quantum system, where each gate is realized

by pulse-level optimization, is essential for scaling up control of bosonic modes.

In the case of Hamiltonian control, we are interested in closed quantum systems that

obey the Schrödinger equation6. That is, working in units such that the Hamiltonian is

expressed in multiples of ~, the Schrödinger equation in operator form is

i@tU(t) = H(t)U(t), (2.4)

5. Continuous-variable, or CV for short, is referencing the position and momentum of an oscillator, which
are continuous. We will often refer to bosonic modes as continuous-variable quantum systems, even though
they can also be expressed in a basis with a countably infinite number of discrete energy levels (Fock states).

6. It’s a bit paradoxical to even discuss control of closed quantum systems, since the ability to control the
system necessarily exposes it to an external environment. However, for now, we will consider the influence of
this environment to be negligible. Later, we will extend our discussion to open quantum systems, focusing
on control in the presence of decoherence.
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with initial condition U(0) = I and system Hamiltonian H(t). For engineered pulse-level

control of a quantum system, we have H(t) = H (u(t)) where u(t) = (u1(t), u2(t), ..., uN(t)),

{ui(t) 2 R} is the set of control signals.

To understand quantum universality, it is useful to first note the following two product

formulas (also called Trotter formulas) [72]: given two Hamiltonians, {HA, HB}, the identities

e�iHA�te�iHB�teiHA�teiHB�t = e[HA,HB ]�t2 +O(�t3), (2.5)

eiHA�t/2eiHB�t/2eiHB�t/2eiHA�t = ei(HA+HB)�t +O(�t3), (2.6)

can be used to generate the action of the Hamiltonian �i [HA, HB] and the Hamiltonian

HA +HB in the limit �t3 ! 0 with finite �t2 and �t [73]. 7 By repeated application of the

identities above, we can generate evolution which is any superposition of nested commutators

of the original set of generators. This relation is the key to gaining an intuition about

quantum control - the more steps in a control process, the higher and higher order nested

commutators we can generate. In the language of nonlinear bosonic systems, the longer a

control pulse (or the stronger a control pulse), the higher-order nonlinear interactions we

can generate from nested commutators of the control Hamiltonians. This is quite similar to

the problem of realizing time-dependent quantum simulation with Trotter techniques [75].

In the next three sections, I will discuss quantum universality in three di↵erent cases:

finite-dimensional systems, continuous-variable systems, and the realization of arbitrary

quantum channels on an oscillator.

Finite-dimensional universality

Before moving to control of continuous-variable systems, I will discuss control of a finite-

dimensional system. Examples include a qubit, high-dimensional spin, or set of many qubits.

Understanding quantum control in this context is important to contrast it with continuous

7. The first of these identities is sometimes called the parallel parking theorem with analogy to the classical
task of parallel parking a car [74].
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variable systems in the next subsection. For readers unfamiliar with basic single-qubit and

two-qubit gates (such as T ,S,CNOT ,...), I recommend the introduction in [76]. In the

finite-dimensional case, we define Hamiltonian-level universality in the following way:

An n⇥ n Hamiltonian H (u(t)) is universal if for every n⇥ n unitary matrix

U with det (U) = 1 there exists a set of control pulses u(t) for which the solution

of eq. (2.4) at some time t = T > 0 is U .8

Given a finite-dimensional Hamiltonian, a procedure called the Lie algebra rank condi-

tion can be used to determine if it is universal [77]. This procedure is carried out in the

following way: we first find set of operators S0 = {A1, A2, ...} that form a basis for the space

spanned by �iH(u), where the control fields u take on all possible values9. Next, we use

a iterative process: at each step k, we find a new set Sk consisting of all linearly indepen-

dent operators formed by commutators [X, Y ] where X, Y 2 Sk�1. In this way, we build up

all possible linearly independent operators that can be generated with nested commutators

([A, [B, [..., [C,D]]]]) of the original set A,B,C, ..., D 2 S0. Once we find that Sk = Sk�1,

the procedure stops. If dim (Sk) = n2 or dim (Sk) = n2 � 1, the set generated is equivalent

to the Lie algebra u(n) (or su(n)), and the Hamiltonian is universal [77].

As a simple pedagogical example, consider the case of a qubit described by the Hamil-

tonian Hq = !�z/2 + ⌦(t)�x/2, where we can control ⌦(t) 2 R. A basis set for the control

is S0 = {�i�z,�i�x}. Clearly, S1 = {�i�z,�i�x,�i�y}. Since dim (S1) = 3 = n2 � 1, the

Hamiltonian is universal; any state on the qubit Bloch sphere can be reached, and any uni-

tary can be performed. However, in this case the time it takes to perform a given unitary on

the qubit will be limited by ! and the maximum value of ⌦. This type of limit on evolution

8. H is said to be operator-controllable if all n ⇥ n unitaries can be performed. The Hamiltonian is
said to be state-controllable for unitaries with determinant unity (the special unitary group). Operator-
controllable Hamiltonians can perform any pure state transformation | ii ! e

i� | f i, where the phase � can
be controlled. State-controllable Hamiltonians can not control this global phase. For this dissertation, the
distinction is not important (see [77]).

9. Here we’re interested in Lie algebras of Skew-Hermitian operators, hence the �i.
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is often called the quantum speed limit [78–81]. Furthermore, note that the universality

condition does not mean we can have full control of the state for all times t, it instead means

we can find the pulse to generate a desired unitary after some time T . For example, in the

case of the qubit Hq, realizing the identity operation U = I could be performed by ⌦(t) = 0

for a time T = 2⇡/!,10 however we cannot ‘stop’ the evolution.

Instead of working with Hamiltonian control directly, we often define a set of quantum

gates and use those to build up unitaries, similar to the case of classical computation. Such

a gate set can be either a continuously-parameterized family of gates (a set which includes

at least one gate parameterized by a real number) or a discrete set. For example, for a

single qubit, the set {exp (�i✓z�z/2) , exp (�i✓x�x/2)} is a continuous family while {H, T}

is a discrete family. Compared to Hamiltonian-level control, in an experimental context, a

gate set is easier to calibrate, optimize, and error-budget than full Hamiltonian control, and

it is of course needed to scale up to multiple qubits. Although the discussion here is focused

on control of physical qubits, it should be noted that for logical qubits in quantum error

correction, we instead work with a discrete set of logical gates; the discreteness of the gate

set is important for fault-tolerant constructions [2,11], and the same concept of universality

also applies.

A continuously-parameterized finite-dimensional gate set can be universal in a similar

sense as Hamiltonian control: if the gates can be strung together to realize any unitary

on the space exactly, we call the set universal. For a set of qubits, the first universal gate

set given by Deutsch in 1989 with the controlled-controlled-rotation gate, which was also

the introduction of the circuit model of quantum computation [82]. Later, in 1995, it was

shown that arbitrary single-qubit rotations along with the CNOT gate is universal in this

sense [83, 84]. It is not hard to find a universal gate set; in 1995 it was shown that almost

all quantum gates involving two or more qubits are universal [85, 86].

The case of a finite-dimensional discrete gate set is slightly di↵erent. Since there are an

10. This would give a global phase of �1. We could also use 4⇡/! for a true identity.
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uncountable number of possible n⇥n unitaries, and a countable number of possible circuits

from a discrete gate set, the best we can do is hope to realize every unitary approximately.

In this case, a discrete n⇥n quantum gate set is said to be universal if gates from the set can

be strung together to approximate any n⇥n unitary operation U with det(U) = 1 to within

a desired accuracy ✏. Here, the accuracy of the unitary implemented by the approximate

circuit U 0 is quantified by the operator norm11, ✏ = max| i||(U � U 0) | i ||2.12

An important example of a discrete gate set acting on qubits that is not universal is the

Cli↵ord group, generated by C = {H,S, CNOT}. Quantum circuits generated using the

Cli↵ord group (along with state preparation and measurements in the computational basis)

are called stabilizer circuits, and these circuits are important for quantum error correction as

discussed in [11]. Importantly, the Gottesman-Knill theorem states that these circuits can

be simulated e�ciently using classical computation [88, 89]. Thus, circuits made using only

the Cli↵ord group can not be used for a quantum computational advantage. Interestingly,

any single non-Cli↵ord gate can be added to the Cli↵ord group for a universal gate set. Out

of these, an discrete gate set that is important for QEC is the set C[{T} (the Cli↵ord group

along with the T gate) [90].

Besides the Gottesman-Knill theorem, there is another important theorem related to

quantum control called the Solovay-Kitaev theorem. Given that a discrete universal gate

set acting on n qubits, the Solovay-Kitaev theorem states that an arbitrary unitary can

be realized up to an error ✏ (in the operator norm) using O (4npolylog (1/✏)) gates [91,

92], and an explicit algorithm is given to realize this approximation. This is quite useful

for low-dimensional cases, such as a single qubit or a few qubits, however it still requires

an exponential number of gates in the number of qubits to realize a general unitary. In

section 2.2.1 it was pointed out that, for classical computation, most boolean functions

11. the operator norm is useful because any measurement performed after applying U or U 0 has probabilities
that di↵er by at most 2✏ [2]

12. If we wish to perform a circuit UkUk�1...U1 and approximate each unitary Uk with error ✏, the errors
add linearly, with a total error bounded by k✏ [87].
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require an exponential number of gates. Perhaps unsurprisingly, the same holds for quantum

circuits as well: almost all 2n⇥2n unitaries acting on n qubits require an exponential number

(⇠ 2n) of gates [93]. The circuits that require a number of gates that is polynomial in

the number of qubits are said to be e�cient, and finding these is the topic of quantum

algorithms [2, 94].

Continuous-variable universality

We are now in a position to discuss universality in continuous-variable (CV) bosonic systems.

A basic understanding of quantum oscillators (bosonic modes) is needed for this section; for

readers unfamiliar with these concepts, please see the introduction in section 1.2.3 and the

more detailed description in appendix A. In these systems, we will often call a description

of a specific gate set along with an associated list of possible measurements an instruction-

set-architecture (ISA); it contains all the fundamental operations available in a hardware

platform needed to communicate between quantum hardware engineers and computer scien-

tists [95].

For oscillators, we must modify our notion of universality, as their continuous-variable

nature makes the notion of universality di↵erent from the finite-dimensional spaces discussed

in the previous section [73,96]. For both Hamiltonian-level control and gate-level control, we

have two options to define CV universality. In a first definition, a CV gate set is universal if

the set can approximately13 generate all unitaries on a subspace defined by the first N Fock

states, where N can be as large as desired. This is the type of universality taken by a gate-set

called the SNAP and displacement gate set [97] (also called the Fock-space ISA), and it will

be discussed in more depth in section 2.4.3. A second approach to defining universality for

CV systems is to show that a Hamiltonian or gate set can approximately generate unitary

13. In the sense of the operator norm.
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transformations of the type

U = exp

 
�i
 

kX

m,n=0

cmna
†man + h.c.

!!
, (2.7)

that is, unitaries generated by polynomial Hamiltonians up to order k where cmn 2 C. If k

can be as large as desired, the control scheme is universal.

The polynomial-Hamiltonian definition of universality (the latter definition in the previ-

ous paragraph) can also be expanded to universality over multiple modes, including hybrid

bosonic-qubit systems. For example, universality in a two-mode bosonic system can be

defined as the ability to realize arbitrary unitaries of the type

U = exp

 
�i
 

kX

m,n,u,v=0

cmnuva
†manb†ubv + h.c.

!!
, (2.8)

and universality in a hybrid bosonic-qubit system is the ability to realize all unitaries of the

type

U = exp

0

@�i

0

@
X

�i2{I,��,�+}

kX

m,n=0

cmnia
†man�i + h.c.

1

A

1

A . (2.9)

This is the approach to universality taken by the ECD gate set [25] (also called the phase-

space ISA) introduced as part of this dissertation work and discussed in section 2.4.5.

In both definitions of CV universality, proving that a Hamiltonian or gate-set is universal

follows the same procedure as outlined in section 2.2.2: nested commutators can be used

to find the Lie algebra associated with a control scheme. In the Fock-space definition of

universality, if the Lie algebra spans su(N),14 and N can be chosen as large as needed, the

scheme is universal. In the phase-space case, if the Lie algebra can be used to generate

Hamiltonians polynomial in a and a† up to order k, and k can be chosen as large as needed,

14. The special unitary algebra of dimension N , given by the set of traceless anti-Hermitian n⇥n complex
matrices.
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the scheme is universal.

Channel universality

There is one final notion of universality, and that is quantum channel universality, defined as

the ability to realize any completely-positive trace-preserving map E : ⇢ ! E (⇢) (including

those which are non-unitary). Any quantum channel can be written in the operator sum

representation,

E (⇢) =
NX

k

Ek⇢E
†
k, (2.10)

where the operators Ek are sometimes called Kraus operators, and the number of Kraus

operators, N , is called the rank of the channel.

In the setting of a hybrid qubit-oscillator system, it was shown in [98] that any channel

acting on the oscillator with rank N can be realized in log
2
N steps by using an auxiliary

qubit. This scheme requires a universal hybrid qubit-oscillator gate set, measurement, and

feed-forward. For example, the phase-space ISA in section 2.4.5 could be used with measure-

ment and feed-forward to realize any arbitrary quantum channel on the oscillator. When

the target channel is non-unitary, this construction is an example of quantum dissipation-

engineering. The experimental quantum error correction of the GKP code demonstrated later

in this dissertation (chapter 5) can be thought of as a realization of dissipation-engineering

with the phase-space ISA using rank-2 quantum channels [26, 64, 99].

2.3 Gate-based quantum control of oscillators

In an eventual FTQC using oscillators, a discrete and fault-tolerant gate set acting on the

error-corrected logical qubits (encoded in the quantum correlations across multiple oscilla-

tors) will be used to perform quantum algorithms. However, for near-term NISQ applications,

it is likely that using the bosonic nature of oscillators will lead to some advantage for quantum
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simulation compared with the case of using multiple qubits [95]. In both cases, a model for

control will be needed that extrapolates between the desired quantum algorithm/application

and the actual pulse sequences played on the hardware.

Often when dealing with control of a single oscillator (or a small number of oscillators),

full Hamiltonian-level control is used to realize all desired unitary operations and state

preparation. In these cases, a model of the system Hamiltonian is produced, and optimal

control theory (OCT) [100] (including GRadient Ascent Pulse Engineering (GRAPE)) or

other related optimization techniques are used to find the desired pulse sequence [101–105].

However, full pulse-level control will be di�cult to scale up to multiple oscillators, especially

when practical experimental considerations are taken into account. A central message of

this dissertation is that it is best to define a CV gate-set (either continuously parameterized

or discretely parameterized), and such a gate-set will be helpful when scaling, especially in

a NISQ setting.

The gate-set for continuous-variable systems should be chosen in a well-parameterized

way such that it is expressive enough to realize complex unitaries, however it should not over-

parameterized. Furthermore, it is advantageous to pick a set of fundamental gate operations

that have some symmetries built in, such as the dynamical decoupling of low-frequency noise

in the hardware. As discussed later in chapter 4, this is the case for the ECD gate set. Once

the gate set is well-defined, the experimental pulses used for each gate can be optimized at

the hardware level, and individually for each module in a multi-oscillator system. For this,

an attractive choice is closed-loop model-free optimization [103]. Here, pulse-level controls

for each gate can be routinely adjusted to account for small drifts in system parameters

over time and account other hardware-level nonidealities that cannot be easily included in a

model.

In the following sections, I will discuss the primitive gate operations for continuous-

variable systems. These include Gaussian operations (section 2.3.1), non-Gaussian oper-

ations (section 2.3.2), and hybrid qubit-oscillator entangling operations (section 2.4). Al-
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though our experimental work is focused on the realization of the phase-space ISA, a basic

understanding of these other operations is needed to put our work in context and for the

realization of logical gates on GKP codes. With that in mind, throughout the following

sections I will give context of how operations are related to the GKP encoding.

2.3.1 Gaussian operations

Single- and multi-mode bosonic Hamiltonian terms that are polynomial in the annihilation

and creation operators can be grouped into two categories: those which are quadratic order

or lower (such as H / a2+ a†2), called Gaussian, and those which are degree three or higher

(such as H / a3 + a†3), called non-linear or non-Gaussian15. The reason for this distinction

is that all Gaussian Hamiltonians lead to linear equations of motion for the annihilation

operator in the Heisenberg picture, â(t). For two oscillators A and B, with annihilation

operators â and b̂, the common Gaussian Hamiltonians that have names are:

• ‘linear drive’ or ’displacement’: H / g⇤a+ ga† ;

• ‘rotation’ or ‘detuning’: H / a†a;

• ‘single-mode squeezing’: H / g⇤a2 + ga†2;

• ‘beam-splitting’, ‘conversion’ or ‘linear coupling’: H / g⇤ab† + ga†b

• ‘two-mode squeezing’: H / g⇤ab+ ga†b†

• ‘quadrature-quadrature coupling’: H / (g⇤aa+ gaa†)(g⇤b b+ gbb†)

As indicated by eq. (2.5) and the discussion in previous sections, the control associated

with a given Hamiltonian is the Lie algebra spanned by nested commutators of those control

15. Gaussian Hamiltonians are sometimes called linear Hamiltonians (even though they could be quadratic
in the creation and annihilation operators) because the Hamilton equations of motion corresponding to Gaus-
sian Hamiltonians are linear. They are also sometimes called classical since they represent transformations
for which the equations governing classical physics and quantum physics are the same [106].
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operations. By evaluating nested commutators of Gaussian bosonic Hamiltonians, it is easily

seen that the Lie algebra generated is closed, and no polynomial Hamiltonians of higher than

quadratic order can be generated. For this reason, Gaussian transformations alone are not

universal. The set of operations given above is also overcomplete for realizing Gaussian evo-

lution; by evaluating nested commutators, it is easy to show that the single-mode Gaussians

(displacement, rotation, single-mode squeezing) along with only one of either beam-splitting

or two-mode squeezing is enough to realize all Gaussian operations on a multi-mode bosonic

system.

The unitary transformations generated by Gaussian Hamiltonians also have a special

property: they transform Gaussian quasi-probability distributions (characteristic functions

and Wigner functions) into other Gaussians (hence the name). For bosonic modes initial-

ized in a Gaussian state16, evolution under Gaussian Hamiltonians can be simulated e�-

ciently with classical computation by tracking how the mean and variance of each mode

changes [107]. Additionally, Gaussian operations cannot introduce negativity into positive-

valued Wigner functions.

There are also non-unitary transformations that preserve Gaussianity. The general class

of quantum transformations E (⇢) that preserve the Gaussian nature of the (possibly multi-

mode) characteristic and Wigner function are called Gaussian channels, and these include

photon loss and amplification. For more info, I recommend the useful 2012 review article

from Weedbrook et al. [107], our review on recent progress in GKP codes [22], or Kyungjoo

Noh’s thesis [43]. A few of these Gaussian channels are described in appendix A.3, and their

e↵ect on the characteristic function is analyzed.

If we represent the position and momentum of an N-mode bosonic system by the vector

16. Note that the vacuum state, |0i, is a Gaussian with zero mean hq̂i = hp̂i = 0 and variance governed
by the Heisenberg uncertainty relation, (�q̂)2 = (�p̂)2 = 1/2.
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Name Definition â, b̂ transformation

Displacement
D(↵) = exp

�
↵a† � ↵⇤a

�
,

↵ 2 C D†(↵)aD(↵) = a+ ↵

Rotation
R(✓) = exp

�
�i✓a†a

�
,

✓ 2 R R†(✓)aR(✓) = e�i✓a

Single-Mode
Squeezing

S(⇣) = exp
��
⇣⇤a2 � ⇣a†2

�
/2
�
,

⇣ = rei✓ 2 C S†(⇣)aS(⇣) = a cosh(⇣)� ei✓a† sinh(⇣)

Beam-Splitter BS(✓,') = exp
�
�i ✓

2

�
ei'a†b+ e�i'ab†

�� BS†(✓,') aBS(✓,') = cos ✓
2
a� i sin ✓

2
e+i'b

BS†(✓,') bBS(✓,') = cos ✓
2
b� i sin ✓

2
e�i'a

Two-Mode
Squeezing

TMS(r,') = exp
��
rei'a†b† � re�i'ab

�� TMS†(r,')aTMS(r,') = cosh(r)a+ ei' sinh(r)b†

TMS†(r,')bTMS(r,') = cosh(r)b+ ei' sinh(r)a†

Two-Mode SUM SUM(�) = e�i�x̂ap̂b
q̂a ! q̂a p̂a ! p̂a � �p̂b

q̂b ! q̂b + �q̂a p̂b ! p̂b

Table 2.1: Single-mode and two-mode Gaussian unitary transformations The
gate definitions, parameters, and transformations acting on one (a) or two (a and b) mode
annihilation operators are shown.

x = (q̂1, p̂1, q̂2, p̂2, ..., q̂N , p̂N), then all Gaussian channels apply a transformation of the form

x! Sx+ d (2.11)

where S is a symplectic matrix, and d is a vector representing the change of the mean

value [107]. This description is powerful, as it allows us to write a unitary transformation

(such as U †aU) in the form of a simple matrix multiplication. For the case of two bosonic

modes, a fundamental generating set of parameterized Gaussian unitaries is given in table 2.1,

along with their transformations on the mode operators, which are realizations of eq. (2.11)

cast into the language of the annihilation and creation operators.

Figure 2.1 shows the action of the single-mode Gaussian transformations on the phase-

space representations of the oscillator. The two-mode operations such as the beam-splitter

and two-mode squeezing are more di�cult to visualize. The (possibly detuned) beam-splitter

is well represented by its action on the so-called operator-valued Bloch sphere, with more

details found in [108]. The two-mode squeezing transformation, on the other hand, reduces

the variance in the q̂a � q̂b and p̂a + p̂b plane of the four-dimensional, two-mode Wigner

function. In particular, the variance in these two operators is reduced by the two mode

squeezing factor e�2r.
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a.) b.) c.)

displacement squeezingrotation

Figure 2.1: Single-mode Gaussian operations acting on vacuum Wigner functions
a) Displacement operation shifts the state in phase space. b) Rotation operation rotates
phase space by an angle ✓. c) Squeezing reduces the variance in one quadrature at the
expense of an increased variance in the orthogonal quadrature.

Finally, it should be noted that in the infinite-dimensional GKP code, the Gaussian

unitary operations realize the Cli↵ord group operations [1]. Compilation of general Gaussian

unitaries into these primitive operations can be done e�ciently by means of the Bloch-

Messiah decomposition and other standard techniques [107]. As an example, the two-mode

SUM gate SUM(�) = e�i�x̂ap̂b with � = 1 acts as the infinite-dimensional CNOT on the

square-lattice qubit-into-oscillator GKP code. These gates must be modified when realized

on finite-energy GKP encodings (section 5.1.2).

The Gaussian operations of displacement, squeezing, and two-mode-squeezing can be

combined with nonlinear interactions to enhance the e↵ective nonlinear coupling rate, a

procedure called Hamiltonian amplification. This e↵ect is essential to realizing control of an

oscillator in the weak-coupling regime, and it is covered in detail in section 2.4.4.

2.3.2 Non-Gaussian operations

As shown in the previous section, Gaussian Hamiltonians and unitaries on their own are not

su�cient for universal control. However, as first shown by Lloyd in 1999 [96], the addition of a

single non-linear Hamiltonian is enough for continuous-variable universality, even in a multi-

mode setting! For example, the unitary generated by the Kerr Hamiltonian HK = Ka†2a2
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Name Parameters Definition
Cubic phase r 2 R C(r) = exp (�irx̂3)
Self-Kerr ✓ 2 R K(✓) = exp

�
�i✓a†2a2

�

Cross-Kerr ✓ 2 R �(✓) = exp
�
�i✓a†ab†b

�

Generalized squeezing z 2 C, N � 3 UN(z) = exp
�
za†N � z⇤aN

�

SNAP ~' = {'n},'n 2 [0, 2⇡) SNAP(~') =
P

n e
�i'n |ni hn|

Table 2.2: Common nonlinear oscillator operations. All operations listed require an
external nonlinearity to be coupled to an otherwise linear oscillator for their realization. In
addition, SNAP explicitly requires an auxiliary qubit.

(Kerr gate UK(✓) = exp
�
�i✓a†2a2

�
), together with the Gaussian operations, is su�cient for

universal control, so the gateset K = G[{UK (✓)} could be used alone for realizing arbitrary

unitaries on the oscillator. In table 2.2, I have listed some of the most common oscillator-

only non-Gaussian operations. The lowest order nonlinearity that can be used to realize a

non-Gaussian gate is a cubic nonlinearity, H / q̂3, and the operation associated with this

Hamiltonian is called the cubic-phase gate. This particular gate is important because it

can be used, along with a SUM interaction, to realize a non-Cli↵ord logical T gate on the

infinite-energy GKP code [1].

In order to perform these gates, a source of nonlinearity is required, however such non-

linearity does not necessarily need to be an auxiliary qubit (this case is treated explicitly

in the next section). For example, it was recently shown that by flux-pumping a SNAIL

[109] (superconducting nonlinear asymmetric inductive element) coupled to an oscillator, a

cubic-phase interaction can be generated, without Kerr nonlinearity [110, 111]. In the case

of the Selective Number-dependent Arbitrary Phase (SNAP) gate [97], defined in table 2.2

and discussed in section 2.4.3, an auxiliary qubit is required.

Finally, an alternative approach to realizing non-Gaussian operations is to use non-

Gaussian resource states instead of non-linear Hamiltonians. As an example, the cubic

phase state, defined as |�i =
R
dqei�q

2 |qi, can be used along with Gaussian operations to

realize a logical T gate in the GKP encoding using gate teleportation [1].
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2.4 Qubit-oscillator entangling gates

The most common way to realize a nonlinear interaction and control the quantum state of

a superconducting high-quality-factor oscillator is to couple it to a superconducting qubit

(see section 1.2.3 for an introduction). For the sake of brevity, I will not discuss the de-

tailed modeling of superconducting qubits here, as those details can be found in a number

reviews [34,76]. I will instead treat the auxiliary qubit as a two-level-system. In later chap-

ters focused on the experimental realization, and where necessary throughout this chapter, I

will discuss the implications of this assumption, and where it breaks down. Note that as of

writing, the methods I will discuss and propose here have been demonstrated experimentally

to di↵erent degrees; I will include experimental references where applicable.

Additionally, I will keep the discussion as general as possible, without specifying the exact

qubit-oscillator system. This is because many hybrid bosonic systems share the same control

mathematics and principles, with slight adjustments of each for various other e↵ects. For

example, in addition to their use in superconducting circuits, the conditional displacement

and sideband interactions can be realized to control the motional state of a trapped ion [66,

112].

I will also discuss ISAs for realizing universal control of an oscillator and qubit, each

consisting of a set of gates. A summary of the named gates in these ISAs is discussed

is given in table 2.3. For each gate set, a desired unitary operation can be realized by

interleaving the gates in the set, and optimizing the parameters of the circuit. Examples

of these circuit constructions are shown in fig. 2.2. Additionally, the optimization of circuit

parameters will be discussed in section 2.6.

Many physical systems consisting of a two-level-system (such as a superconducting qubit

or Rydberg atom) coupled to a bosonic mode are described by the Rabi model [113]. This

is a good starting point to discuss hybrid qubit-oscillator control. In the lab frame, and
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Name Parameters Definition
Conditional rotation ✓ 2 R CR(✓) = exp

�
�i ✓

2
�za†a

�

Selective Qubit Rotation 'n, ✓n 2 R SQR(~✓, ~') =
P

n R'n(✓n)⌦ |ni hn|
Jaynes-Cummings ✓,' 2 R JC (✓,') = exp

�
�i✓

�
a†��ei' + a�+e�i'

��

Anti-Jaynes-Cummings ✓,' 2 R AJC (✓,') = exp
�
�i✓

�
a†�+ei' + a��e�i'

��

Conditional displacement ↵ 2 C CD(↵) = exp
⇥�
↵a† � ↵⇤a

�
�z
⇤

Rabi interaction ✓ 2 R RB(✓) = exp
⇥
�i(✓a† + ✓⇤a)�x

⇤

Conditional squeezing ⇣ 2 C CS (⇣) = exp
⇥
1

2
(⇣⇤a2 � ⇣a†2)�z

⇤

Table 2.3: Hybrid Qubit-Oscillator entangling gates

ignoring constant terms, the driven Rabi Hamiltonian is given by

H = HRabi +Hdrive, (2.12)

HRabi/~ = !aa
†a� !q

�z
2

+ g
�
a+ a†

�
�x, (2.13)

Hdrive/~ = "lab(t)(a+ a†) + ⌦lab(t)�x. (2.14)

The derivation of the Rabi Hamiltonian for the case of a superconducting qubit (approx-

imated as a two level system) coupled to an oscillator can be found in [34]. Here, "lab(t) 2 R

and ⌦lab(t) 2 R are the lab-frame oscillator and qubit drives, respectively. I will denote the

detuning between oscillator and qubit as � = !a � !q. Also, by coupling the Rabi drive to

�x, I am assuming a qubit with ‘x � y’ control, and not ‘z’ control. This is motivated by

the experiments using fixed-frequency transmons (see section 1.2.3), where there is no flux

tunablility of the frequency. Some flux-tunable qubits have the additional ability of a �z

drive, !q(t)�z, which could be included in the gate set if desired [6].

As shown in appendix D, the classical oscillator and Rabi drives can be written as "lab(t) =

"⇤(t)ei!at + "(t)e�i!at and ⌦lab(t) = ⌦⇤(t)ei!qt + ⌦(t)e�i!⌦t where {"(t),⌦(t)} 2 C are the

baseband envelopes modulating the carrier frequencies. Here, we have assumed the oscillator

and qubit drive frequencies are near resonant with the the oscillator and qubit, respectively.

Any additional drive detunings can be captured in the time-dependence of the phasors "(t)

and ⌦(t).
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In the regime where !a+!q � g, which is typical in cQED, the rotating-wave approxima-

tion (RWA) can be invoked. In this approximation, fast rotating terms in the Hamiltonian

are dropped. In this regime the Rabi Hamiltonian is reduced to the Jaynes-Cummings (JC)

Hamiltonian,17

HJC/~ = !aa
†a� !q

�z
2

+ g(a†�� + a�+). (2.15)

We note that the interaction term (a†�� + a�+) is often called the Jaynes-Cummings in-

teraction, while the term that was dropped (a†�++a��) is called the anti-Jaynes-Cummings

interaction. A similar RWA can be performed on the drive terms, as shown in appendix D.

Under these approximations, and applying a rotating-frame transformation at the oscillator

and qubit frequencies, the model Hamiltonian in the rotating-frame can be written as

H̃/~ = g
�
a†��e

i�t + a�+e
�i�t

�
+ "⇤(t)a+ "(t)a† + ⌦⇤(t)�� + ⌦(t)�+. (2.16)

This Hamiltonian is the starting point for a general discussion of control of an oscillator

using an auxiliary qubit. In the following sections, I will focus on using H̃ in di↵erent regimes

to realize quantum control with a gate-based approach. These gates can be can be performed

by modulating "(t) and ⌦(t).

For the qubit, by modulating ⌦(t), we can realize a qubit rotation gate by angle ✓ around

the cos(')�x + sin(')�y axis of the Bloch sphere, with a unitary given by

R' (✓) = exp

✓
�i✓

2
(cos (') �x + sin (') �y)

◆
. (2.17)

Such a gate can be realized with the qubit drive term in eq. (2.16) by letting ⌦(t) =

⌦̃(t)ei' with constant ' and real-valued envelope ⌦̃(t) such that ✓ = 2
R Tgate

0
d⌧ ⌦̃(t). Often,

the envelope is chosen to be a truncated-Gaussian or cosine waveform. Each qubit rotation

gate should be performed quickly relative to the other e↵ective Hamiltonian terms, with

17. �� = (�x + i�y) /2,�+ = (�x � i�y) /2 are the qubit raising and lowering operators.
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storage oscillator

auxiliary qubit

R
JC

R
JC

R
JC

R
AJC

R

a.) Law and Eberly ISA b.) Sideband ISA

c.) Fock-Space ISA

D
SQR

D
SQR

d.) Extended Fock-Space ISA

D
CRSQR

R

D

R

D

R

c.) Phase-Space ISA

R
ECD

R
ECD

c.) SNAP oscillator control

D SNAP D SNAP

Figure 2.2: Hybrid gate sets. For each gate set shown, a single ‘layer’ of a circuit
constructed using the gate set is outlined with a dotted line. The extended Fock-space
gate set (part d) is an example of an overcomplete construction, where additional gates
available in the hardware are included in a layer definition to aid in circuit optimization (see
section 2.6)

di↵erent specific conditions discussed below. Note that the R'(✓) gate alone is su�cient for

universal control of a single qubit.

2.4.1 Control in the resonant regime (Law and Eberly)

I will first consider the resonant regime, � = 0. Specifically, I will consider the case where

the JC interaction strength can be tuned or turned on and o↵ in the resonant regime, with
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Name Gates Comments
Gaussian G = {D(↵), S(⇣),BS(✓,'),TMS(r,')} Not universal
Cubic G + {C(r)} Implemented in [111]
Quartic G + {K(✓)} Used in [114]
SNAP {D(↵), SNAP (~')} Implemented in [115]
Law and Eberly LE = {R' (✓) , JC ()} Implemented in [116]
Sideband SB = LE + {AJC (✓)} Implemented in [117]
Dispersive D = {D(↵), R'(✓),CR(✓), } Related to [118]
Fock-Space FS = {SQR (✓) , D(↵)} related to [119]
Phase-Space PS = {ECD (�) , R' (✓)} Theory and implementation in [25]

Hamiltonian H =
n
T exp

⇣
�i
R Tstep

0
Ĥ (u (⌧)) d⌧

⌘o
similar to GRAPE

Table 2.4: Universal hybrid qubit-oscillator gate sets discussed in this thesis. with
references to implementations given. Any gateset defined here for a qubit and oscillator can
be combined with a beam-splitter operation to realize universal multi-mode control.

an additional controllable phase, such that g(t) 2 R ! g(t) 2 C.18 Here, the Hamiltonian

in the rotating frame of the qubit and oscillator takes the form

H̃LE/~ =
�
g(t)a†�� + g⇤(t)a�+

�
+ ⌦⇤(t)�� + ⌦(t)�+, (2.18)

where I have purposefully omitted the oscillator drive19, and LE stands for ‘Law and Eberly’

after their seminal 1996 article [120]. In superconducting circuits, this Hamiltonian could be

achieved in a few ways:

• A tunable coupler between the qubit and oscillator, driven to realize a parametric

beam-splitting interaction with either four-wave (such as in [121]) or three-wave (such

as in [122]) mixing. The strength and phase of the parametric drive allow a controllable

g(t).

• A flux-tunable superconducting qubit or oscillator where low-frequency (DC) flux con-

trol can be used to quickly bring the two systems on-resonance (� = 0) or o↵-resonance

18. Even in situations where g 2 R, if the oscillator rotation gate is available R(✓), then a phase can be
realized since R

†(✓)aR(✓) = e
�i✓

a.

19. A cavity drive could of course be used to aid with control, but is unneeded in this model for universality.
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(� >> |g|) quickly relative to 1/|g| (see [6] and references therein).

• An e↵ective resonant Jaynes-Cummings interaction realized in the dispersive regime

(g ⌧ �) using sideband driving, such as in [123, 124]. I will cover this method in sec-

tion 2.5.3. The sideband method can also be used to realize an anti-Jaynes-Cummings

type interaction and conditional displacements.

In this setting, a controllable Jaynes-Cummings unitary gate can be realized, defined as

JC (✓,') = exp
�
�i✓

�
a†��e

i' + a�+e
�i'
��

, (2.19)

where ✓ =
R T

0
d⌧ |g(⌧)|, ' = angle (g(t)),20 assuming the phase is constant throughout the

pulse.

In [120], Law and Eberly proposed a method to prepare arbitrary quantum states of an

oscillator starting from vacuum using the gate set LE = {JC (✓,') , R' (✓)}. Their particular

method can roughly be thought of as shu✏ing quanta, one-by-one, between the qubit and

oscillator, such that the qubit is disentangled after each step. Remarkably, they were able

to derive the speed limit at which this state preparation can be done given a maximum JC

interaction strength and qubit drive amplitude.21 In 2009, the Law and Eberly method was

first used for a demonstration of arbitrary control of a superconducting oscillator by Hofheinz

et al. [125]. 22

However, the Law and Eberly method can be extended beyond state preparation. As is

shown in appendix E.1, by evaluating nested commutators, the LE gate set is universal for

20. defined as angle
�
ae

i'
�
= '.

21. the total state preparation time is bounded by T >
M⇡

2⌦max
+ ⇡

2gmax

P
M

j=1
1p
j
where M is the maximum

photon number in the oscillator state to be prepared [120]. It is interesting to note the bosonic enhancement

factor
P

M

j=1
1p
j
, which comes from the matrix elements associated with the JC interaction which scale like

p
a†a.

22. Also see the 2007 paper from Houck et al. [116], demonstrating control of the |0i,|1i subspace of a
superconducting oscillator.

47



hybrid oscillator and qubit control. An example circuit construction using this gate set is

shown in fig. 2.2a. Since the qubit rotation gates R can be performed when the e↵ective

g(t) = 0, there is no restriction on the bandwidth or speed of ⌦(t).

2.4.2 Sideband instruction set

In some settings, a tunable on-resonance anti-Jaynes-Cummings interaction H̃ =
�
g(t)a†�+ + g⇤(t)a��

�

can be realized (here written in the rotating frame of the qubit and oscillator). I will discuss

how this Hamiltonian can be accomplished in the dispersive regime in section 2.5.3. This

corresponds to the unitary operation

AJC (✓,') = exp
�
�i✓

�
a†�+e

i' + a��e
�i'
��

. (2.20)

Since this gate along with the JC (✓) can be realized in trapped-ions [66,112] or supercon-

ducting circuits (see section 2.5.3) using sideband interactions, the set SB = {R'(✓), JC (✓) ,AJC (✓)}

is called the sideband ISA. Clearly LE ⇢ SB, so the sideband ISA is universal, and the in-

clusion of the AJC gate can help realize certain unitaries and states using circuits with fewer

layers than LE alone. The circuit construction is shown in fig. 2.2b.

2.4.3 Control in the dispersive regime

As can be found in [34, 57, 76], in the dispersive regime the oscillator and qubit weakly

hybridize, and eq. (2.15) can be approximated to realize the e↵ective Hamiltonian

Hdispersive/~ = !̃aa
†a� !̃q

�z
2

+ �a†a
�z
2

+O

 ✓
g2

�

◆2
!
, (2.21)

with dispersive shift � = 2g2/� and renormalized frequencies !̃a = !a + g2/� and

!̃q = !q � g2/� to first order in g2/�. Note that for a transmon (or other superconducting

circuit) coupled to an oscillator, these formulas must be modified to account for the finite
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anharmonicity and other e↵ects [34]; the resulting terms can di↵er by a large percentage

from the values predicted by the two-level-system approximation.

The dispersive approximation also results in higher-order nonlinear interactions that scale

with (g2/�)2 or and higher powers. For the present discussion, we will ignore this higher

order terms. However, they become quite important for realization of the GKP code and

other highly-squeezed states with a large photon-number distribution. This will be discussed

explicitly in chapter 4 and chapter 5. Ignoring these terms, and including the oscillator and

qubit drive, here we will be considering this Hamiltonian in the rotating frame of the qubit

and oscillator at their renormalized frequencies,

H̃dispersive/~ = �a†a
�z
2

+ "⇤(t)a+ "(t)a† + ⌦⇤(t)�� + ⌦(t)�+. (2.22)

The dispersive interaction (Hint/~ = �a†a�z/2) can be thought of in two ways. Written in

the basis of qubit eigenstates, Hint/~ = �
2
a†a |gi hg|� �

2
a†a |ei he|, the coupling is interpreted

as a shift in the oscillator’s frequency depending on the state of the qubit by an amount

�. Similarly, written in the oscillator number basis, Hint/~ = �
P1

n=0
|ni hn| �z

2
, we see the

frequency of the qubit will be shifted according to the photon-number distribution of the

cavity. As a result of the interaction, the oscillator and qubit will entangle if they are not in

states that are eigenstates of �z or n̂ = a†a.

The driven dispersive Hamiltonian eq. (2.22) is universal for the oscillator and qubit, using

the Hamiltonian definition of universality as defined in section 2.2.2. This has been exploited,

using optimal control theory, to control the oscillator in a number of cQED experiments,

most notably [101]. Here, I will focus on gate-based control using the dispersive Hamiltonian,

with a short discussion of OCT methods in section 2.6. Using a gate approach, there are a

few gates that are, in some sense, natural to realize in the dispersive regime.

The first question we can ask is: what happens if we do nothing (⌦(t) = "(t) = 0)?

Importantly, we do not realize the identity operation. Instead, we realize an entangling gate
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called the conditional-rotation23 gate, given by

CR (✓) =

✓
�i✓

2
�za

†a

◆
, (2.23)

which causes the oscillator to rotate by ±✓/2 conditioned on the qubit state |gi or |ei where

✓ = �T .

If the qubit is not in an eigenstate of �z, this gate will entangle the qubit and oscillator

for ✓ 6= 2⇡m,m 2 Z. The special case of ✓ = ⇡ is called the conditional-parity gate,

C⇧ = exp
�
�i⇡a†a�z/2

�
. This gate (and other controlled-rotation gates) is important in the

context of rotationally-symmetric bosonic codes [23], as it can be used to measure the error

syndrome (parity) [126].

Given evolution under eq. (2.21), the controlled-parity gate requires a wait time of

⌧parity = ⇡/�, and a full 2⇡ controlled-rotation takes a time ⌧ = 2⇡/�. It is for this reason

that we sometimes say that the typical gate time of the dispersive gate set (and related oper-

ations) is ⌧ ⇠ 2⇡/� or longer. This typical speed limit has also been found to be held when

using pulse-level optimal control theory for realizing unitaries [101, 104]. For this reason,

typical dispersive control, including the gate sets described in this section, are performed in

a regime where � is engineered to be as large as possible (often on the order of � ⇠ 1MHz)

before other unwanted e↵ects become important. In our work, this regime is called the

strong-coupling regime.

Finding the quantum speed limit of a bosonic operation can be di�cult, due to the un-

bounded Hilbert space. For example, using the dispersive Hamiltonian, control solutions for

state preparation of a state with maximum Fock level Nstate exist that utilize the higher Fock

levels Ncontrol > Nstate. These solutions are often aided by the so-called bosonic-enhancement

23. Note that some authors will write this gate as C̃R (✓) = exp
�
�i✓a†a |ei he|

�
, which is equivalent

to CR (✓) by a oscillator rotation. I find it useful to call CR (✓) the conditional-rotation and C̃R (✓) the
controlled-rotation, where the word ‘conditional’ vs ‘controlled’ indicates if the operation is conditioned on
�z directly, or if it is controlled on the qubit being in state |ei. Note that in multi-qubit algorithms, we often
work with controlled-gates, however in bosonic systems, it is often useful to instead use conditional gates,
as they are more symmetric. This designation also applies for controlled vs. conditional displacements.
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factor, a name given to the fact that the operators a and a† have matrix elements in the

Fock basis that scale with
p
n, and control schemes that utilize the higher Fock states can be

enhanced by this factor. This bosonic enhancement is often not fully exploited in numerical

optimization solutions, since the numerics will often impose an unphysical Fock level cuto↵

in the simulation, hence why previous studies have found optimal control solutions to follow

the same scaling of 2⇡/� for typical gate times. In our work, we fully exploit this bosonic

enhancement for faster gates using an e↵ect called Hamiltonian amplification, discussed in

section 2.4.4. This will be expanded on in later sections.

An interesting question we can ask is: if the dispersive coupling is always on, how can

we avoid entanglement between the qubit and oscillator? By analyzing the interaction term

in eq. (2.21), we can intuit that if the value of �z were rapidly changed from +1 to �1,

the interaction would cancel when evaluating the time-ordered unitary. In particular, the

Hamiltonian

H/~ = �a†a
�z
2

+ ⌦
�x
2

(2.24)

will result in the identity operation after a time T when ⌦� � ha†ai and ⌦T = 2⇡m,m 2 Z.

This is a form of dynamical decoupling [127]; other dynamical decoupling techniques could

also be used, such as a sequence of equally spaced qubit R0 (⇡) pulses.

The controlled parity gate, along with displacements and qubit rotations should be

thought of as the most fundamental gate set arising from the dispersive Hamiltonian, (D =

{CR (✓) , D(↵), R'(✓)}), and this forms a minimum universal gate set (proof in appendix E.2)

called the dispersive gate set. The echoed conditional displacement gate discussed in sec-

tion 2.4.5 is built from these fundamental operations.

However, a more powerful entangling gate can be activated by driving the system. By

driving the qubit with a frequency comb of Rabi drives ⌦(t) at detuned frequencies !q � k�

where k 2 Z, qubit rotations can be performed conditioned on oscillator Fock state |ki.
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This gate is called a number-Selective Qubit Rotation (SQR). With a derivation given in

appendix B, the unitary is given by

SQR(~✓, ~') =
X

n

R'n(✓n)⌦ |ni hn| (2.25)

parameterized by a vector of rotation angles ~✓ = (✓0, ✓1, ..., ✓k) and phases ~' = ('0,'1, ..., ✓k)

corresponding to the rotation applied to each independent qubit Bloch sphere entangled with

each qubit Fock level |ni up to level k, chosen by the extent of the frequency comb. The

bandwidth of the pulse must be small compared to �, requiring the drive to be su�ciently

slow, typically on the order of T > 2⇡/� or slower. E↵ects of faster pulses and mitigation

strategies when this condition breaks down are discussed in [99, 128,129].24

The SQR gate can be used to define a powerful gate set called the Fock-Space ISA,

the name indicating that the control operations are generally best understood in the Fock

basis, given by FS = {SQR (✓) , D(↵)}. The unselective qubit rotation R'(✓) could also

be explicitly included in FS, however in the strong-coupling regime, these unconditional

rotations must be performed with a bandwidth that is large compared to � ha†ai. This can

be di�cult in some situations where the oscillator states have a large photon-number extent.

In such situations, the unselective qubit rotation can be realized by using the SQR gate.

Finally, in cases where ✓ = m⇡,m 2 Z, the qubit and oscillator are disentangled after the

SQR gate. In this special case, the SQR gate reduces to the Selective Number-dependent

Arbitrary Phase (SNAP) gate [97,115]. Parameterized by the phases ~', the SNAP gate can

be used to apply phases to each Fock state,

SNAP (~') =
kX

n=0

e�i' |ni hn| . (2.26)

The SNAP gate, together with an oscillator displacement, is universal for control of the

24. Discussed in these references in the context of SNAP.

52



oscillator [97], defining the SNAP ISA, given in table 2.4.25

2.4.4 Hamiltonian amplification

In bosonic systems, Gaussian operations can be combined with non-linear operations to

achieve faster control than the rate of the native nonlinear coupling alone. This technique is

called Hamiltonian amplification, and the two most basic examples use the displacement and

squeezing operations. In particular, notice that the displacement and squeezing operations

transform the annihilation and quadrature operators according to

D†(↵)âD(↵) = a+ ↵ (2.27)

D†(↵)â†D(↵) = a† + ↵⇤ (2.28)

S†(r)q̂S(r) = qe�r (2.29)

S†(r)p̂S(r) = qer. (2.30)

These transformations allows terms in a Hamiltonian to be amplified (or suppressed) when

that Hamiltonian is conjugated with displacement or squeezing, as shown in as shown in

fig. 2.3. The phase of the squeezing can be varied to amplify/suppress the desired quadra-

tures.

As a relevant example, when a displacement of ↵ and �↵ is applied before and after

the dispersive interaction Hamiltonian H� = �a†a�z/2, it is transformed to the displaced-

dispersive Hamiltonian,

H̃� = D†(↵)H�D(↵) = �
�
↵a† + ↵⇤a

� �z
2

+ �a†a
�z
2

+ �|↵(t)|2�z
2
, (2.31)

corresponding to a conditional displacement term, a dispersive term, and a qubit stark-shift

25. Unlike the full Dispersive, Fock-Space, or Phase-Space ISA, the SNAP ISA does not allow for entangling
operations between the qubit and oscillator. It is universal for unitaries on the oscillator, but not entangling
unitaries between the oscillator and qubit.
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a) displacement

=

b) squeezing

=

oscillator

auxiliary qubit

c) displaced dispersive

Figure 2.3: Hamiltonian amplification using a) displacement transformation and b)
single-mode-squeezing. In c), an example of Hamiltonian amplification using a large dis-
placement is shown, acting on the dispersive interaction. The usual dispersive interaction
(a rotation of the oscillator depending on the state of the qubit) shown on the left is trans-
formed by the large displacement to a conditional displacement, as shown on the right. The
large displacement can be thought of as a lever arm, amplifying the e↵ect of the conditional
rotation.
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term. Importantly, the rate of the conditional displacement term is amplified by |↵|. The

action of the displacement on the dispersive interaction is shown in fig. 2.3c. It is important

to notice that the displacement operation â! â+↵ will take a polynomial Hamiltonian in the

annihilation and creation operators H / a†man and generate an e↵ective Hamiltonian where

the amplified terms are of one order lower, H̃ = D†(↵)HD(↵) / ↵⇤a†(m�1)an+↵a†a(n�1)+ ....

This means that the generation of amplified non-linear terms will require starting with, at

a minimum, a Hamiltonian that is at least fourth-order polynomial in a and a† for a single

mode. A similar statement holds for multi-mode nonlinear couplings, where a fourth order

polynomial is required.26 Squeezing Hamiltonian amplification [130], on the other hand, does

not have this requirement; a cubic nonlinearity such as H / q̂3 can be amplified with the

squeezing transformation to H̃ = S†(�r)HS(�r) / e3rq̂3, resulting in an amplified nonlinear

interaction that could be used for faster universal control within the cubic ISA.

It should be noted that when Hamiltonian amplification is performed, noise can also

be amplified. Fortunately, Hamiltonian amplification with displacements does not increase

photon loss or photon gain. However, dephasing-type noise can be amplified, and other

higher-than-linear order (in a and a†) Lindbladians. This is covered explicitly in section 3.2.1.

2.4.5 Echoed conditional displacement and the phase-space ISA

Since displacements can be used to amplify the dispersive Hamiltonian (eq. (2.31)), a natural

question arises: can this e↵ect be incorporated into a gate-based approach to control the

oscillator?

The answer to this question is subtle, since in theory, the Hamiltonian amplification e↵ect

could be included already in the dispersive gate set, D, as defined in table 2.4. In particular,

by incorporating large displacements into the compilation of a target unitary using D, gate-

26. Note that when the qubit is realized as the first two levels of a bosonic mode (such as a transmon),
�z = 1 � 2b̂†b̂, where b̂ is the annihilation operator of the transmon mode. In this sense, the dispersive
coupling a

†
a�z/2 / a

†
ab

†
b is fourth order (four-wave mixing), and the conditional-displacement coupling

(↵a† + ↵
⇤
a)�z / (↵a† + ↵

⇤
a)b̂†b̂ is third-order (three-wave mixing).
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speed enhancement using Hamiltonian amplification could be used. However, this method

is sub-optimal for two important reasons:

• Attempting to compile an operation using Hamiltonian amplification at the level of

D would require the compiler to have intricate knowledge about the time it takes to

perform gates and limitations of the physical system.

• Using Hamiltonian amplification requires large displacements. However, in practice

these displacements are not instantaneous; the rate of change of | hai | is limited by

the maximum drive strength through the equation @t| hâi (t)| = |✏(t)|. The non-

instantaneous nature of the displacements means that the always-on dispersive inter-

action causes curved trajectories through phase-space, along with controlled-rotations,

causing an unwanted oscillator-qubit entanglement to occur during an otherwise ideal

displacement operation.27

Clearly, what is needed is a clever primitive gate that has Hamiltonian amplification

built in, such that a higher-level compiler can abstract away these hardware-level details,

and all compiled circuits can be performed at the maximum speed possible. One potential

option for this primitive is a unitary gate defined as the displaced dispersive Hamiltonian

H̃� (eq. (2.31)) acting for some time T . However, the full H̃� is a complicated operation,

and it would be di�cult to design algorithms using it.

A more clever primitive gate that makes use of Hamiltonian amplification and is simple

enough to be used in a compilation is called the Echoed Conditional Displacement (ECD)

gate, shown in fig. 2.4. We first introduced this gate as the ‘Swiss-army-knife’ for stabilizing

and measuring GKP codes [26] (chapter 5), and we later extended its use for universal

control [25], both of which are central results of this dissertation.

First, in the present section, I will discuss the ideal ECD gate, assuming instantaneous

displacements, and a lossless quantum system. However, as mentioned above, the e↵ects of

27. See fig. 3.6 for trajectories with an example of this e↵ect.
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finite-duration displacements are important, as are the e↵ects of loss and dephasing; these

details are included in the pulse-level optimization of the ECD gate and are covered in

section 3.3.2. In particular, the finite duration of the displacements leads to a geometric

phase imparted on the qubit during the ECD gate, and the loss must be transformed into

the displaced frame; both these e↵ects are taken into account in the next chapter.

The goal of the ECD gate is to perform a conditional displacement using Hamiltonian

amplification. The ECD gate is best visualized in terms of the oscillator’s phase-space

trajectories coupled to qubit states |gi and |ei, as shown in fig. 2.4b. By inspecting the

displaced-dispersive Hamiltonian H̃� in eq. (2.31), it’s clear that the conditional displace-

ment term is included in the displaced frame, however the other two terms (the dispersive

interaction and qubit stark-shift) are unwanted. These terms can be echoed away by a pulse

sequence for the ECD gate that includes a qubit ⇡ pulse at time T/2, flipping �z ! ��z and

canceling these unwanted terms. To keep the desired conditional displacement term, we can

perform a phase-space echo, and simultaneously flip the value of ↵! �↵ half way through

the gate, such that the product �z↵ in H̃� has the same phase throughout the gate. With

this description in mind, the ideal ECD gate unitary is defined as

ECD (�) = D(�/2) |ei hg|+D(��/2) |gi he| = �xCD (�) , (2.32)

CD (�) = exp
⇣�
�a† � �⇤a

� �z
2

⌘
. (2.33)

ECD applies a displacement of the oscillator by +�/2 or ��/2 conditioned on qubit state

|gi or |ei respectively, followed by an additional qubit �x rotation. In particular, as shown in

fig. 2.4a, the ECD gate is a sequence of displacement, qubit rotation, and controlled-rotation
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gates compiled from the dispersive gate set (D) as:

ECD (�) = D(↵3)CR (�T/2)D(�↵2)R0 (⇡)D(�↵2)CR (�T/2)D(↵1), (2.34)

↵1 = ↵0 (2.35)

↵2 = ↵0 cos (�T/4) (2.36)

↵3 = ↵0 cos (�T/2) , (2.37)

� = 2i↵0 sin (�T/2) . (2.38)

The specific displacements are chosen such that the trajectory of the oscillator’s center-

of-mass in phase space lies on a uniform circle during the conditional rotations as shown in

fig. 2.4b. Inverting the equation for �, the total gate time is

T =
2 arcsin

⇣
|�|

2|↵0|

⌘

2�
⇡ |�|
�|↵0|

, (2.39)

the second equation holding in the small-angle approximation, |↵0|� |�|. The speed of the

gate is enhanced by the bosonic enhancement factor |↵0| due to Hamiltonian amplification

via displacements.

The ECD gate, along with the qubit rotation R' (✓) forms a universal gate set, with

a proof given in appendix E.3. The name given to this gate set is the phase-space ISA,

PS = {ECD (�) , R' (✓)}, since the operations are best understood in the phase-space basis

(the Wigner function).28

For experimental reasons that will be discussed in depth in the next chapter, the ECD

gate with large displacements is best performed in systems where the dispersive shift �

is relatively small, on the order of �/2⇡ ⇠ 20 kHz to ⇠ 100 kHz. However, for hybrid

qubit-oscillator systems in the strong-coupling regime, there is a simple way to realize the

28. The gate set can be written in terms of (non-echoed) conditional-displacements PS = {CD(�) , R' (✓)},
which is equivalent.
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conditional displacement. Recall that the conditional-parity operation is given by C⇧ =

CR (⇡). Using this operation, it can be shown that

(C⇧) â (C⇧)† = i�zâ (2.40)

which is sometimes called the exponentiation gadget. This is powerful when combined with

Gaussian operations. For example, Chapman et al. used the exponentiation gadget to realize

a controlled beamsplitter operation [131]. When used with a displacement operator,

(C⇧)D

✓
i↵

2

◆
(C⇧)† = CD(↵) , (2.41)

providing a simple path to realize the phase-space ISA in strong-coupling architectures.

Such a gate sequence is the essential element in an earlier protocol, called the qubit cavity

mapping protocol (qcMAP), used to prepare oscillator cat states and other coherent-state

superpositions [118]. However, unlike the ECD gate, the conditional-parity approach to

conditional displacement is limited to Tgate = 2⇡/�, assuming instantaneous displacements.

Besides the ECD gate, two other implementations of conditional displacements have been

performed in cQED, to the best of my knowledge. The first was used for readout by Touzard

et al. [132] in 2019 by driving a transmon at the readout resonator frequency and applying a

simultaneous cancellation drive to the readout. In chapter 6, I discuss how this protocol could

be applied using a high-quality-factor oscillator, as additional echoing is required than what

is needed for readout. Finally, Wang et al. recently demonstrated conditional displacements

using sideband driving in [117], adapting an earlier protocol first demonstrated for dissipation

engineering in [123]. In section 2.5.3, I expand upon this method.

59



oscillator

qubit

(x2)

a)

b)

Figure 2.4: Ideal Echoed Conditional Displacement (ECD) gate sequence a) The
ECD unitary acting on the oscillator and qubit (left) is realized in the ideal limit as the
pulse sequence shown on the right, where the instantaneous oscillator displacement ("(t))
and qubit rotation (⌦(t)) pulses are represented as delta functions. b.) The phase-space
trajectory (in Wigner units) of the ideal ECD gate, represented as the gate’s action on a
squeezed state initialized at the origin and qubit initialized in state |+i. The oscillator state
entangled with |gi and |ei is shown as the solid and dotted distributions, respectively.
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2.5 Hamiltonian-level bosonic quantum control

The dispersive Hamiltonian eq. (2.21) is universal in the sense introduced in section 2.2.2.

With this in mind, and alternative approach to controlling the hybrid qubit-oscillator system

is to use optimal control theory (OCT) to find the drives "(t) and ⌦(t) needed to perform a

desired quantum operation [101,102].

In reality, the model Hamiltonian of the system is not typically accurate enough to reach

decoherence-limited fidelities with model-based OCT alone. However, if OCT is used in com-

bination with model-free closed-loop optimization, it can be a powerful tool. That is, the

pulses optimized with a model can be used as a seed for closed-loop optimization in experi-

ment. This is another reason why a gate-based approach is powerful; each well-parameterized

gate can be optimized individually in an experiment with closed-loop techniques, and the

optimization can occur routinely between shots of an experiment.

In the next two sections, I outline two pulse-level Hamiltonian optimization techniques

developed during the research for this dissertation. First, in section 2.5.1, I discuss how

Hamiltonian amplification with large displacements can be used for pulse-level optimization

of arbitrary unitaries using the dispersive Hamiltonian. Next, in section 2.5.2, I simplify

this method by requiring that the oscillator’s phase-space trajectory live on a circle. This

is later connected to previously developed sideband control techniques, rounding out the

pedagogical chapter on hybrid bosonic control.

2.5.1 Displaced-frame optimal control

Using the driven dispersive Hamiltonian (eq. (2.22)), "(t) and ⌦(t) are usually optimized

directly (I will outline some techniques in section 2.6). However, the model can break down

given restrictions placed on the simulation. In particular, if the oscillator is simulated with

a finite-dimensional Fock space with some cuto↵ Nmax, the optimizer will not be able to

explore solutions that use large photon numbers than Nmax. This is of particular relevance
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in the weak-coupling regime, where large photon numbers are useful for speeding up control.

The solution to the problem of a finite Hilbert space cuto↵ is to instead perform the

pulse-level optimization in the time-dependent displaced frame of the oscillator. The time-

dependent displaced frame transformation is derived in section C.2.1 in the time-dependent

displaced frame the dispersive Hamiltonian in eq. (2.21) takes the form

H̃/~ = �a†a
�z
2

+ �(↵(t)a† + ↵⇤(t)a)
�z
2

+ �|↵(t)|2�z
2

+ ⌦⇤(t)�� + ⌦(t)�+, (2.42)

@t↵(t) = �i"(t)� (/2)↵(t). (2.43)

Note that this is similar to the displaced-dispersive Hamiltonian, H̃� in eq. (2.31), however

now ↵(t) is time-dependent. In particular, in eq. (2.43), the complex-valued center-of-mass29

↵(t) = ha(t)i = (hq̂i (t) + i hp̂i (t)) /
p
2 is related to the baseband drive "(t), here including

oscillator photon loss at rate . Other e↵ects, such has higher order nonlinearities like

self-Kerr, can also be accounted for in this frame, as shown in section C.2.1.

By tracking the center of mass, governed by eq. (2.43), we have e↵ectively eliminated

all classical (Gaussian) dynamics from the problem, and the photon number required for

the simulation and optimization is minimized. This procedure of a time-dependent frame

transformation can also be carried out for other Gaussian Hamiltonian terms, such as de-

tuning or squeezing, with the general idea that eliminating classical dynamics by solving

coupled di↵erential equations leads to more e�cient quantum simulation. This method is

useful even if large displacements are not used during the control, such as is often the case

in strong-coupling architectures.

To perform optimal control, the center of mass trajectory ↵(t) can be optimized using

standard techniques (see section 2.6) under the constraint ↵(0) = ↵(T ) = 0 and @t|↵(t)| <

"max (and other possible constraints such as a maximum ↵ if desired). Once ↵(t) and ⌦(t)

29. If the initial oscillator state has a hâi = 0. Otherwise, ↵(t) is the change of the center-of-mass relative
to the initial state. Also, note that here ‘center-of-mass’ is a misnomer for obvious reasons.
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have been optimized, the pulse "(t) can be found from solving eq. (2.43) with finite-di↵erence

methods.

2.5.2 Circle-trajectory optimal control

In a 2012 experiment, Murch et al. used a clever method of sideband driving to cool and

stabilize a superconducting qubit in the |+i = (|gi+ |ei) /
p
2 state by driving a readout

cavity with a detuned drive (a ‘sideband’) and simultaneously Rabi-driving the qubit with a

Rabi rate equal to the drive detuning. In the Murch work, the oscillator was strongly coupled

to a transmission line (a readout cavity). Here, and in the next section, we use intuition

from this work to derive a similar method for high-quality-factor universal oscillator control

with optimization (this section) and sideband driving (next section) [95].

This circle-trajectory introduced here can be seen as a simplification to the displaced-

frame optimal control method of section 2.5.1. Starting from the time-dependent displaced-

frame Hamiltonian, eq. (2.42), instead of optimizing the center of mass trajectory ↵(t), we

can pick a circle trajectory,

↵(t) = ↵0(t)e
�i�̃t (2.44)

where ↵0(t) is a real-valued envelope function with a ring-up and ring-down satisfying ↵0(0) =

↵0(T ) = 0 (for example, a smoothed-trapezoidal envelope). The drive "(t) is found according

to eq. (2.43) to be "(t) = exp
⇣
�i�̃t+ ⇡/2

⌘⇣
@t↵0(t) + ↵0(t)

⇣
�i�̃+ /2

⌘⌘
, a detuned

sideband with in-quadrature ring-up and ring-down component. The linear component of

higher-order nonlinearities in the displaced-frame could be included as in section C.2.1.

Under such a condition, the displaced-frame Hamiltonian is written as

H̃/~ = �a†a
�z
2

+ �↵0(t)(e
�i�̃ta† + ei�̃ta)

�z
2

+ �↵0(t)
2
�z
2

+ ⌦⇤(t)�+ + ⌦(t)�+. (2.45)

Two additional frame transformations can be applied - an oscillator rotating frame trans-

63



formation at frequency �̃ and a time-dependent qubit rotating frame at frequency �|↵(t)|2

to eliminate the Stark-shift term30. In this new frame,

H̃/~ = �a†a
�z
2

+ �̃a†a+ �↵0(t)(a
† + a)

�z
2

+ ⌦⇤(t)�+ + ⌦(t)�+. (2.46)

Equation (2.46) gives universal control, as is shown in the next section. With this ‘circle

trajectory’ simplification, the drive ⌦(t) can be optimized without optimizing ↵(t). The

circle drive on the oscillator can be calibrated in experiment independent of the specific

problem in mind. For example, when using a transmon as the auxiliary qubit, e↵ects such

as photon-induced state transitions of the transmon as discussed in the next chapter could

be navigated by picking the envelope ↵0(t) wisely.

2.5.3 E↵ective resonant regime (sideband driving)

An additional and powerful simplification can be made to eq. (2.46). With a detailed deriva-

tion given in the supplement of [123] and [117], if the qubit is driven with a Rabi drive

with Rabi rate equal to the detuning of the oscillator drive ⌦(t) = ±�̃, an e↵ective tunable

Jaynes-Cummings or Anti-Jaynes-Cummings Hamiltonian can be engineered,

H̃sideband = �↵0(t)
�
g⇤
JC
(t)�̃�a

† + gJC(t)�̃+a+ g⇤
AJC

(t)�̃+a
† + gAJC(t)�̃�a

�
. (2.47)

Here, the raising and lowering operators are in the Hadamard frame31: �̃� = |�i h+| and

�̃+ = |+i |�i. Importantly, the strength of the interaction is amplified by the large displace-

ment ↵0. The JC or AJC terms correspond to the Rabi driving with a positive or negative

Rabi rate. Alternatively, they can be engineered by picking either a red- or blue-sideband

drive on the oscillator (±�̃). This Hamiltonian can be used to engineer the sideband ISA.

30. These additional transformations are not strictly necessary but can be helpful for optimization

31. The Hadamard frame is found by applying a Hadamard unitary transformation to the Hamiltonian.
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If both the red- and blue- sideband are played together, the resonant Rabi interaction is

realized, given by

H̃/~ = �↵0(t)g(t)
�
ei'a+ e�i'a†

�
�x. (2.48)

The phase factor ' that can be tuned using the phase between the sideband interactions.

Similar to the goal of the ECD construction, this simultaneous red- and blue- sideband

driving realizes a conditional displacement, here conditioned on �x. It is thus an alternative

way to engineer conditional displacements in cQED, as shown in [117].

2.6 Numerical compilation

A target algorithm or quantum simulation running on bosonic modes must be compiled

down to a sequence of gates using an ISA. In most useful cases, this will mean running

an algorithm on many bosonic modes and qubits on a hybrid CV-DV processor with some

connectivity defined by the hardware. Similar to algorithms with multiple qubits (such

as Shor’s algorithm [4]), this will often be engineered by a human using intuition. Other

techniques, such as a variational quantum eigensolver (VQE) [133] can be used in conjunction

with a bosonic ISA for quantum simulation. These techniques are needed because a full

quantum algorithm acting on N bosonic modes cannot typically be ‘optimized’ since, the

whole point of the algorithm, is that it is di�cult to simulate with a classical computer. In

these cases, each gate needed should be optimized on each module in the physical system

using closed-loop model-free optimization techniques, such as in Sivak et al. [99].

With that in mind, the present section will instead focus on numerical compilation of a

target unitary operation into a bosonic ISA in cases where the full dynamics can be simulated.

This is the case with one or a few oscillators, such as the experimental demonstrations of the

phase-space ISA shown in chapter 4. For this, it is advantageous to make use of methods

and tools developed by the computer science community, particularly in the field of machine
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learning, to e�ciently solve these non-convex problems.

One may wonder, if we have a numerical technique for compilation of a target unitary into

a specified gate-set, can we use the same techniques for realizing a unitary with Hamiltonian-

level control? Thankfully, the answer is yes, and the method is somewhat simple. First,

notice that a universal Hamiltonian itself defines a gate set. That is, we can define a gate

set H where each gate is defined as action under a universal Hamiltonian H for some time

Tstep,

H = {U = T exp (.)} , (2.49)

parameterized by the control signal values u acting for some time ⌧ .32 The control signals

do not necessarily need to be constant during this time, allowing additional freedom in their

parameterization33. In this sense, the only di↵erence between usual Hamiltonian-level control

optimization (for example, using GRAPE [101, 102]) and an ISA is that in Hamiltonian-

level control, we typically impose some smoothness condition on the control values u(⌧)

when stringing gates together to make a circuit due to the finite-bandwidth constraints in

experiment; such a constraint is not necessary when using the other gate sets such as the

phase-space or Fock-space ISA. Given that Hamiltonian-level control can be cast in the

language of an ISA, we now proceed to discuss general numerical compilation of a target

operation using a desired gate set.

In [25], methods were developed for numerical compilation of a target unitary that make

use of parallel processing, automatic di↵erentiation, back-propagation, graphical-processing-

units, and e�cient calculation of parameterized bosonic operations to find the gate param-

eters for a given target operation. Here, we extend these methods to any ISA, and give

32. T exp
⇣
�i
R
Tstep

0 Ĥ (u(⌧)) d⌧
⌘
is the time-ordered exponential, meaning it’s the solution to the time-

dependent Schrödinger equation. It can be solved in a number of ways, however the Magnus expansion is
useful for control applications, as the solution is unitary at all levels of approximation.

33. For example, the control signals could be parameterized in frequency space, allowing easy implemen-
tation of bandwidth constraints.
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example operations.

Constructing a circuit layer

To define the optimization problem, we first define the fundamental unit of each hybrid

bosonic circuit called a layer. In fig. 2.2, each layer is outlined in a dotted box. The circuit

depth N is the number of layers in the total circuit. Each layer, at a minimum, should

consist of at least one application of each gate in the ISA on every qubit and oscillator. This

ensures that the circuit is expressive enough to perfectly compile any target unitary with

enough layers.

Assuming each layer consists of k unitary gates Ui from the gate set, let b
⇣
~✓
⌘

=

UkUk�1...U2U1 be the unitary operation defined by a single layer, parameterized by all the

parameters entering into the gates in the unitaries
⇣
~✓
⌘
.

Parallel cost function

The phenomenon of barren plateaus, in which the gradient of the fidelity vanishes, makes

numerical optimization di�cult. This is studied using the phase-space ISA with ECD gates

in [134]. To help optimize circuits in the case of a vanishing gradient, we realize a parallel

optimization of a batch of B circuits.

Let bjk denote the kth layer of the jth circuit in the parallel optimization. We can write

the unitary generated by the jth circuit as

Uj = bjN . . . bj1bj0. (2.50)

Given a target quantum operation (such as state preparation, or a full unitary), the

relevant fidelity metric can be used (defined in chapter 2). Let Fj denote the fidelity of the
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jth circuit. To optimize B circuits in parallel, we construct the total cost function

C =
BX

j=1

log(1� Fj). (2.51)

Since C function is a simple sum of independent logarithmic cost functions, gradient de-

scent of C realizes independent gradient descent of each circuit realization in parallel. The

logarithm of 1 � Fj is taken to aid with the problem of vanishing gradients as the solution

infidelity approaches 0.

Once the parameterized cost function is defined, it is optimized using gradient-descent

with back-propagation. These techniques are well established, and numerical solvers from

the field of machine learning can be used. The optimization is stopped when any Fj reaches

the target fidelity, and the parameters from the jth circuit are selected.

In the following two sections, I give two relevant examples of this type of optimization

taken from [25]. In section 2.7.1, I give the example of optimizing Fock state preparation

using the phase-space gate set. Finally, in section 2.7.2, I give examples of optimizing logical

gates on finite-energy GKP codes.

2.7 Optimization of ECD circuit parameters

2.7.1 Fock State preparation

For state preparation using ECD control, the quantum control problem we aim to solve is

UECD = D(�N+1/2)R'N+1 (✓N+1) ECD(�N)R'N (✓N) ...ECD(�2)R'2 (✓2) ECD(�1)R'1 (✓1)

(2.52)

F = | h t|UECD| ii |2 (2.53)
n
~�, ~', ~✓

o
= argmax{~�,~',~✓}(F) (2.54)
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with initial state | ii and target state | ti. The circuit depth N should be chosen such

that F at its maximum is above an acceptable value with experimental considerations in

mind. Although we focus on state preparation in this section, the optimization method

described can also be used to realize a general unitary Utarget by replacing the Fidelity

function with F =
��� 1

Tr(P )
Tr
⇣
PU †

targetUECD

⌘���
2

, where P is a projector onto a possible subspace

of interest [105]; this is the approach taken in the next section. Here, we include a final qubit

rotation R'N+1 (✓N+1) and displacement D(�N+1/2) after the last ECD gate in the optimizer.

Often, the optimizer converges to protocols with �N+1 = 0. These gates are implemented

quickly with respect to typical ECD gates and are not included in the quoted circuit depths

N which only counts the total number of ECD gates.

We realize a multi-start method to solve this non-convex problem by optimizing B in-

dependent variations of UECD in a parallel manner. Denoting the jth variation of the ECD

unitary as UECD,j with circuit parameters
n
~�j, ~'j, ~✓j

o
and fidelity Fj = | h t|UECD,j| ii |2,

we perform gradient descent on all 4BN real parameters using the total cost function

C =
PB

j=1
log(1� Fj).

We realize gradient descent of the cost function using Adam [135] implemented in Ten-

sorFlow. To construct this cost function and its gradient, we represent the batch of circuit

parameters by the tensors �, ' and ✓ of dimensions B ⇥N such that �ji is the ith param-

eter appearing in circuit j. Given a tensor-product structure of H = C2 ⌦ CNo where No

is the truncation of the oscillator’s Hilbert space, the ECD unitaries and cost function are

represented in the block-matrix form

UECD,j = bjN ...bj2bj1 (2.55)

bji = ECD(�ji)R'ji(✓ji) =

0

B@
D†(Bji)ei�ji sin⇥ji D†(Bji) cos⇥ji

D(Bji) cos⇥ji �D(Bji)e�i�ji sin⇥ji

1

CA (2.56)

C =
NX

j=1

log
�
1� | h t| bjN ...bj2bj1 | ii |2

�
(2.57)
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Figure 2.5: Numerical circuit optimization using backpropagation Examples of
optimization curves for Fock 5 state preparation. Each line represents a circuit fidelity Fj,
and 500 randomly initialized circuits are optimized in parallel. In the case of small circuit
depth N = 3 (left panel), the best infidelity reached is ⇠ 0.3. With a larger circuit depth
N = 9 (right panel), one circuit out of the 500 reaches an infidelity of ⇠ 0.003, demonstrating
the need for multi-start optimization.

with reduced parameters B = �
2
, ⇥ = ✓

2
and � = '� ⇡

2
, and D is the displacement operator

defined on the oscillator’s Hilbert space truncated to No. To construct each block operator

bji, we first compute the displacement operators. For this, we use the batched displacement

operator implementation in [99], which uses pre-diagonalization of the truncated position

and momentum operators to e�ciently construct the displacement matrices. With this, we

compute all B ⇥N displacement operators D(B) in parallel, then build the block matrices

bji block-by-block while reusing computed functions to minimize the total number of com-

putations. Once these blocks are computed, the cost function is implemented by contracting

along the i index, taking the logarithm, then contracting along the j index. To compute

the gradient of the cost function with respect to �, ', and ✓, we use TensorFlow to realize

reverse-accumulation automatic di↵erentiation.

In fig. 2.6 we show an example by plotting the infidelities of each circuit in the batch

as a function of optimization epoch for Fock |5i state preparation (|0i |gi ! |5i |gi) using

two di↵erent circuit depths, N = 3 and N = 9. For these examples, we use a batch size of

B = 500 circuits, with each epoch representing 100 steps of gradient descent using Adam

with a learning rate of 0.001 carried out using an Nvidia Tesla v100 GPU. The typical wall
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Figure 2.6: Fock state optimization results. Best state transfer infidelity found when
optimizing ECD circuit parameters to prepare oscillator Fock state |ni from vacuum as a
function of circuit depth N . Here, F = |hg| hn|UECD |0i |gi|2. Note that this figure has been
slightly updated with respect to [25], here using an updated optimizer.

clock time for circuit optimization with a batch size of B ⇠ 500 is in the range of 10 to 100

seconds, depending on circuit depth and Hilbert space size.

In fig. 4.8, we show an example of the pulse parameters found using this procedure for

state preparation of the GKP |+Zi logical state. The magnitude of the echoed conditional

displacements found in this example is typical of most demonstrations in this work - the

largest |�| found is |�| ⇡ 2.75. We note the optimization procedure does not include a

constraint on |�|, but generally the scale of |�|s found is set by the phase-space extent of

the target state. As shown in this example, the optimizer often converges to pulses with

interpretable values of qubit rotation angles and phases: values in that pulse are close to

⇡/4, ⇡/2, etc, and this is a common feature for the demonstrations in this work.

2.7.2 Optimization of logical gates on a finite energy GKP code

As mentioned previously, Gaussian unitaries can be used to realize Cli↵ord gates on the

GKP code. However, any logical gate (Cli↵ord or non-Cli↵ord) that does not commute with

the number operator n̂ = a†a must be modified to account for finite-squeezing e↵ects. This
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modification is introduced and described in section 5.1.2.

In this section, we focus on the implementation of finite-energy GKP logical gates using

ECD control. In particular, we demonstrate numerical optimization of the phase and T

gates for a finite-energy square GKP encoding. For these gates, the target state maps

{| ii}! {| ti} acting on the finite energy logical subspace are given by

S : {|+Zi
�
|gi , |�Zi

�
|gi}! {|+Zi

�
|gi , ei⇡/2 |�Zi

�
|gi}

T : {|+Zi
�
|gi , |�Zi

�
|gi}! {|+Zi

�
|gi , ei⇡/4 |�Zi

�
|gi}

(2.58)

where we have also included the condition that the ancilla qubit starts and ends in |gi. To

optimize these logical gates, we modify the cost function in section 3.3.2 to be

C = �
X

j

Re (h t,j|UECD | i,ji) (2.59)

where the sum is carried out over a logical state map, such as the state map for the S and

T gates given in eq. (2.58). Here, we only optimize the gate over the logical subspace, and

in future work, the optimization could be modified to focus on error transparent gates [136].

To quantify the quality of the optimized logical gates, we numerically calculate their

average fidelity [67], defined as

F =
1

6
Tr
�
RT [Utarget]R[E ]

�
+

1

3
(2.60)

where Rij[E ] = 1

2
Tr (�iE [�j]) is the Pauli transfer matrix (PTM) associated to a quantum

channel E . Here, we define the finite energy logical Pauli operators using the numerically com-

puted logical states as described in section 4.5.2 to beX� = (|+Zi
�
h�Z|

�
+ |�Zi

�
h+Z|

�
) |gi hg|

and analogous definitions for I�, Y�, and Z�. For these operations, the target unitary chan-

nel is defined as Utarget [⇢] = Utarget⇢U
†
target and the applied channel is E [⇢] = UECD⇢U

†
ECD

,

where UECD is the result of the optimization.

The optimization results for the finite energy S and T gates are shown in fig. 2.7 at
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Figure 2.7: Optimized finite-energy GKP S and T logical gates. Plotted is the
average fidelity for optimized ECD circuits at di↵erent values of � and circuit depth N . S
gate results are shown with circles, T gate results are indicated with triangles, and the color
indicates the squeezing. Also shown (insets) are the Pauli transfer matrices for the ECD S
and T gates optimized at N = 3,� = 0.25. Di↵erences in Fidelity at di↵erent values of �
are likely caused by the small finite overlap of the finite-energy logical states.

three di↵erent squeezing values � = {0.25, 0.31, 0.35}. Remarkably, these gates can be

performed with a low circuit depth, only requiring N = 3 ECD gates to reach a channel

fidelity F ⇡ 0.99 for the T gate and N = 4 for the S gate. These results indicate that the

ECD gate set is especially well-suited for control over the GKP code, however we note that

these gate implementations are not fault tolerant with respect to ancilla qubit errors.

73



Chapter 3

The weak-coupling dispersive

architecture

A number of previous experiments involving bosonic control and error correction of a high-

quality-factor oscillator have been carried out in a regime where the dispersive shift was on

the order of or larger than �/2⇡ ⇠ 1MHz (for example, [58, 101] ). In our work, we are

instead interested in using a dispersive coupling that is over an order-of-magnitude weaker,

on the order of �/2⇡ ⇠ 30 kHz. As discussed in the introduction of this dissertation, this

weak coupling can minimize the inherited nonlinearity of the oscillator, allowing for the

preparation and control of highly squeezed states that are sensitive to nonlinearity such as

GKP states. However, while the coupling is weak, the e↵ective operation speed can remain

decent by using large displacements.

In this chapter, I will discuss the technical details of the so-called weak-coupling dispersive

architecture developed as part of this PhD work. This consists of:

• A transmon coupled to a high-Q oscillator with dispersive coupling on the order of

�/2⇡ ⇠ 30 kHz, discussed in section 3.1. The transmon is also coupled to a readout

resonator with possible Purcell filter as in fig. 1.3c.

• A set of calibration and characterization techniques for tuning up the system, where
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previous approaches designed for a strong coupling would fail. This is discussed in

section 3.2.

• An e�cient entangling gate between the transmon and oscillator, called the Echoed

Conditional Displacement (ECD) gate, discussed in section 3.3. The ECD gate, to-

gether with transmon rotations, forms a universal gate set, as discussed previously in

section 2.4.5.

• A method for performing e�cient tomography of the oscillator, called the Charac-

teristic function, in a regime where the widely-used Wigner function would give low

contrast. This is discussed in section 3.4.

The control and error correction results, covered in chapter 4 and chapter 5, can be seen

as applications of this architecture. In a few places in this chapter, I will include some

experimental data as an example. The experimental parameters for the data shown can be

found in table 4.2.

Besides the reduced oscillator nonlinearity, the weak-coupling architecture is motivated

for two other important reasons. First, the limit of the oscillator lifetime due to its coupling to

the transmon (called the reverse Purcell e↵ect) is increased. Second, the transmon Stark-shift

associated with oscillator states that have large photon distributions (often with long tails in

photon number) is reduced. This, along with the reduced nonlinearity, allows the preparation

of oscillator states with large photon numbers without Stark shifting the transmon into

unwanted e↵ects in frequency space, such as two-level systems. To better motivate these

ideas, in the next section I review the details of a transmon with dispersive coupling to an

oscillator, including a few unwanted side-e↵ects of such a coupling.

3.1 Coupling a transmon to an oscillator

Here we will focus on the specific platform shown in fig. 1.3c, consisting of a fixed-frequency

3D transmon [51,52] coupled to a superconducting high-quality-factor post-cavity [17]. How-
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ever, recent advancements in the materials science and fabrication have led to similarly high-

quality-factor planar superconducting oscillators [16]; it is likely that a planar architecture

is more feasible for scaling up to many modes, and the results of this section can also apply

in that setting. It is for this reason that I will often refer to the ‘cavity’ by the more generic

name ‘oscillator’. The typical frequency of this mode is around 5GHz.

In such a setting, the model Hamiltonian of the transmon (charging energy EC and

Josephson energy EJ) with capacitive coupling to the oscillator can be written as

H = 4Ec(N̂ �Ng)
2 � EJ cos ('̂) + ~!bare

a ã†ã+ ~g(N̂ �Ng)
�
ã+ ã†

�
(3.1)

where 2g is the vacuum Rabi rate, N̂ is the Cooper-pair number operator, '̂ is the conjugate

Josephson phase, Ng is the o↵set charge in units of 2e, and ã (ã†) is the bare cavity mode

annihilation (creation) operator. For a derivation of this model, please see [34, 51]. By

applying the dispersive transformation, and moving to the rotating frame at the oscillator

and transmon Lamb-shifted (hybridized) frequencies, we arrive at the e↵ective Hamiltonian

in the dispersive regime (g ⌧ � = !b � !a),

Hdispersive/~ = �̃a†a� �a†ab†b� �0a†2a2b†2b2 �Kaa
†2a2 �Kbb

†2b2 +Hd/~ (3.2)

Hd/~ = "⇤(t)a+ "(t)a† + ⌦⇤(t)�� + ⌦(t)�+ (3.3)

In the hybridized frame, a is now the annihilation operator of the oscillator-like mode, and b

is the annihilation operator of the transmon-like mode. Unlike the previous chapter, where

the transmon is treated as a two-level-system, it is here treated as a nonlinear bosonic mode

(a more accurate description). The Hamiltonian is written in the frame of the oscillator and

transmon drives, detuned by ��̃ from the |gi frequency at low power. �̃ can be chosen

arbitrarily, and for experiments involving conditional displacements, we often use �̃ = �/2.
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The coe�cients are approximately1 given by

� ⇡ g2EC/~
� (�� EC/~)

(3.4)

Ka ⇡
EC/~
4

⇣ g

�

⌘4
(3.5)

Kb ⇡
EC/~
2

(3.6)

�0 ⇡ �
⇣ g

�

⌘2
(3.7)

with more accurate expressions given in [137]. To get a sense for the order-of-magnitude

of these coe�cients, I’ve included typical values for both the strong-coupling regime and

weak-coupling regime in table 3.1. Note that the transmon anharmonicity ⇡ EC sets the

speed of transmon rotations; it is bounded from below by the need to do fast transmon gates

(typically EC/2⇡ > 100MHz), and it is bounded from above from the need to remain in

the transmon regime, EJ/EC ' 50, where EJ is set by the design parameters including the

transmon frequency, !b ⇡
p
8EJEC � EC .2 As shown in the table, reducing the value of g

by an order-of-magnitude leads to a three-order-of-magnitude reduction in Ka.

When the oscillator and transmon hybridize, they also inherit loss from one another. In

the dispersive regime, if the uncoupled transmon and oscillator have photon-loss rates �̃ and

̃, the hybridized transmon-like and oscillator-like modes will have modified loss rates �,

approximately given by

 ⇡ ̃+
⇣ g

�

⌘2
�̃ (3.8)

� ⇡ �̃ +
⇣ g

�

⌘2
̃ (3.9)

where the approximation holds to second order in
�

g
�

�
, and assumes the transmon and

oscillator are coupled to independent white baths [138]. The additional loss inherited due

1. The expression for �0 here is within the two-level system approximation. See [137].

2. Typical transmon frequency is around 6GHz.
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Parameter Strong-coupling Weak-coupling
Coupling rate g/2⇡ ⇡ 100MHz g/2⇡ ⇡ 10MHz
Transmon-oscillator detuning �/2⇡ ⇡ 1GHz �/2⇡ ⇡ 1GHz
Transmon anharmonicity EC/2⇡ ⇡ 200MHz EC/2⇡ ⇡ 200MHz
Dispersive shift �/2⇡ ⇡ 2.5MHz �/2⇡ ⇡ 25 kHz
Oscillator Kerr Ka/2⇡ ⇡ 5 kHz Ka/2⇡ ⇡ 0.5Hz
Second-order shift �0/2⇡ ⇡ 25 kHz �0/2⇡ ⇡ 2.5Hz
Reverse Purcell limit T1a . 10ms T1a . 1 s

Table 3.1: Typical values for the strong and weak coupling regimes. The Purcell
limits are calculated assuming a transmon with T1 = 100 µs. The reduction of coupling
rate g by an order of magnitude results in a two orders-of-magnitude reduction in � with a
favorable four orders-of-magnitude reduction in Ka and �0. The increase in reverse Purcell
limit has enabled the control of an ultra-high quality-factor oscillator in [54]. Note that
the Kerr coe�cient is sometimes read as an oscillator frequency shift of Ka/2⇡ ⇡ 0.5Hz
per photon, emphasizing that the e↵ect can be amplified and measured by displacing the
oscillator.

to the hybridization is called the Purcell e↵ect [139]. Usually, this e↵ect is discussed in the

context of a transmon coupled to a readout resonator where ̃ � �̃. In this setting, the

transmon’s spontaneous emission rate will increase when it is coupled to a lossy readout

resonator; it can be mitigated by engineering a Purcell filters [60, 140, 141]. However, in

the context of a transmon coupled to a high-quality-factor superconducting oscillator, it is

typically in the opposite regime, where ̃ ⌧ �̃. In this case, the cavity e↵ective loss rate

 will increase due to its coupling to the transmon. This is sometimes called the reverse

Purcell e↵ect.

Besides the reduced nonlinearity, a secondary motivation for the weak-coupling architec-

ture is a lowering of the reverse Purcell e↵ect. As shown in table 3.1, the limit on oscillator T1

assuming a state-of-the-art transmon with T1 = 100 µs is increased from ⇠ 30ms to ⇠ 1 s in

the weak coupling regime. This can be important for the control of ultra-high-quality-factor

cavities, such as the SRF (superconducting radio frequency) cavities recently demonstrated

by Fermilab to have a single photon lifetime on the order of ⇠ 1 s [55]. The weak coupling

architecture has been used, for example, to control a cavity with a single photon lifetime of

30ms [54]. Using the weak coupling, we can also reduce the participation of the oscillator
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field in the lossy interfaces associated with the transmon chip. In other words, in a weak-

coupling architecture, the transmon ‘dips’ into the cavity tunnel less. This can also help to

avoid cross-talk between modes with driving the system.

In practice, these approximations for evaluating e↵ective Hamiltonian coe�cients and

the Purcell rate are only used as a first order approximation for designing an experiment.

To predict more accurate values, finite-element microwave simulations are used to evaluate

the e↵ective Hamiltonian of the system, often with the High Frequency Structure Simulator

(HFSS) software from Ansys. Using the energy-participation ratio approach [142], which is a

modification of the earlier black-box quantization approach [143], the e↵ective Hamiltonian

and loss can be predicted with higher accuracy. However, for a full description of the

coupled system, numerical diagonalization can be used; I discuss this approach and give

an example using our experimental parameters in section 3.2.3. Once an experiment is built

and measured, the simulation can be slightly modified to better model other non-idealities

in the experiment.

Besides inherited loss, a few other e↵ects should be taken into account when coupling

the transmon and oscillator, especially when we intend to populate the oscillator with large

photon numbers.

• Thermal shot-noise dephasing

Thermal fluctuations of any mode dispersively coupled to the oscillator will cause

frequency fluctuations of the oscillator. In the case of a bosonic mode (such as a

transmon) at frequency !b and in thermal equilibrium with a bath at T , the average

occupation will be determined by the Bose-Einstein distribution,

nth = hb†bi = 1

e
~!q
kBT � 1

. (3.10)

Typically, the filtering of the microwave lines between room-temperature and the

device-under-test anchored at 20mK is designed so that the e↵ective thermal pop-
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ulation of the transmon mode will be on the order of nth . 10�3. However, the

transmon is sometimes measured to have a larger nth, on the order of nth ⇠ 10�2 to

10�1, due to poor thermal anchoring through the substrate, and anomalous excitation

from quasiparticle poisoning [144–146]. If this mode has dispersive coupling � to the

high-quality-factor oscillator, the oscillator will dephase at an e↵ective rate [17]

' =
�

2
Re

0

@
s✓

1 +
2i�

�

◆2

+
8i�nth

�
� 1

1

A . (3.11)

When �� �, this can be approximated as ' ⇡ nth�. In other words, every time the

transmon state jumps (at rate �), the oscillator is completely dephased.

• Dressed dephasing

Transmon dephasing will be dominated by noise coupled to b†b at low frequency,

�' (! ! 0) [76]. However, noise coupled to b†b with spectral components at the dif-

ference frequency between the oscillator and qubit, ±�, will be up-converted, causing

correlated loss and gain of the oscillator and transmon [138]. In the dispersive limit,

this can be written as an e↵ective master equation

@t⇢ = ��D
⇥
a†b
⇤
⇢+ ���D

⇥
ab†
⇤
⇢ (3.12)

where �±� = 2 (g/�)2 �' (±�) is the transmon’s dephasing rate due to noise coupled

to b†b with spectral density components around ±�. This e↵ect has been measured

explicitly using noise injection in [147]. However, for fixed-frequency 3D transmons

with typical di↵erence frequencies on the order of � & 1GHz, it is likely that noise

coupled to the transmon at � is strongly suppressed. For example, in [148], it was

shown that by proper filtering and thermalization of the readout resonator, a 3D fixed-

frequency transmon can reach T2E = 2T1.
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• Breakdown of the dispersive approximation

The approximations leading to the e↵ective dispersive Hamiltonian no longer hold when

ha†ai & ncrit, where ncrit is called the critical photon number of the oscillator. This

critical number depends on the state of the transmon. From [34] the critical oscillator

photon number for the jth transmon state is

nj
crit

=
1

2j + 1

✓
|�� jEC |2

4g2
� j

◆
. (3.13)

In the case where � � EC , the critical photon number for |gi , |ei is roughly the

photon number point at which the transmon Stark-shifts by one-half and one-sixth of

its anharmonicity ncrit ⇡
n

EC
2� ,

EC
6�

o
, respectively.

The critical photon number should be thought of as a rule-of-thumb for when higher-

order nonlinearities become important. However, for high-fidelity control of the os-

cillator with large displacements, they must be accounted for at values much lower

than ncrit, see section 3.2.3 for an example. Additionally, because of e↵ects such as

multi-photon nonlinear resonances and two-level systems (discussed below), the pho-

ton number at which bad e↵ects occur can be quite di↵erent (lower and higher) than

the critical photon number.

• Multi-photon nonlinear resonances

When populating an oscillator with dispersive coupling to a transmon, the transmon

will sometimes be excited outside of the {|gi , |ei} manifold. This is commonly ob-

served for transmon readout, and has been shown to occur due to both non-RWA [61]

and RWA [63] terms, depending on the frequencies of the transmon and oscillator.

The most extreme example of this is called transmon ionization3, when the oscillator

is driven with so many photons that the transmon is excited outside of the cosine

3. Sometimes called ‘bright-stating’
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potential well [37, 149, 150]. At lower drive powers, the transmon will be excited to

higher states, and sometimes these transitions are well-resolved at particular oscillator

photon numbers. These e↵ects can fluctuate with the transmon’s o↵set gate charge,

since the higher excited states of the transmon can have a large dispersion with o↵set

charge. It is possible that adding an inductive shut to the transmon can help mitigate

this e↵ect [151]. Research is ongoing to better understand this problem for transmon

readout, and developments made on that front should also be applicable to the case of

a high-quality-factor oscillator coupled to a transmon.

• Two-level systems

In superconducting circuits, anomalous two-level systems (TLS) are believed to be a

dominant source of loss. The TLS heuristic model can be used to explain the power-

dependence and temperature-dependence of the quality-factor of superconducting os-

cillators [16,152]. It is believed that TLSs may be localized in insulating materials and

oxides on the surface, including amorphous aluminum oxide (used in the junction4)

and silicon oxide [153, 155–159]. When TLSs are resonant with the transmon, they

can couple strongly, and manifest as discrete e↵ects in the frequency spectrum. The

defects can fluctuate in time [160], and some redistribution of TLSs are believed to

occur with background ionizing radiation, such as �-rays and cosmic ray muons that

cannot easily be shielded [161].

In the case of an oscillator5 coupled to a transmon, when the oscillator is driven, it

can Stark-shift the transmon into resonance with these defects, causing a change of the

transmon’s T1 [25,99]. The transmon can also be broadened due to the photon-number

distribution in the oscillator, or it can be broadened due to measurement-induced de-

phasing in the case of readout, modifying the TLS noise it’s coupled to. We believe

4. The TLS density has been measured to be around 0.5 um�2GHz�1 [153, 154] in Josephson junctions.
However, this is likely highly dependent on fabrication details.

5. High-Q or readout.
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these e↵ects are one of the main limiting factors in realizing high-fidelity control and

error correction using large displacements of the oscillator, with a supporting measure-

ment shown in fig. 3.4 and [25, 27]. The use of an in-situ frequency-tunable transmon

could help to better navigate the unpredictable landscape of TLSs in frequency space,

however, this can also introduce other unwanted noise sources such as low-frequency

flux noise. Additionally, if flux-tunable transmon gates require the flux-tuning over a

large frequency range, it becomes likely the transmon must be tuned through TLSs,

resulting in loss.

With the weak-coupling dispersive architecture discussed in this chapter, the transmon

Stark shift associated with a large photon-number state idling in the oscillator (not

when displaced) is reduced. This lowers the probability that the transmon is resonant

with a discrete two-level-system defect when the oscillator is populated with a GKP

or highly-squeezed state. Note that this argument does not hold when driving the

system; the transmon will Stark shift by roughly the same amount in both the strong

coupling and weak coupling regime when performing gates. The weak coupling regime,

however, allows a larger ON-OFF ratio, measured in units of transmon Stark shift when

performing gates and when idling.

• Readout and reset induced dephasing of the high-Q oscillator

In addition to the transmon and high-Q oscillator, an additional low-Q oscillator called

the readout is needed to measure and reset the transmon. The readout and high-Q

storage will couple due to their individual couplings to the transmon, leading to a

dispersive coupling term �rsr†ra†a.

When the readout is populated with photons to measure or reset the transmon, the

storage oscillator may be dephased. This e↵ect is discussed in more detail and measured

in [126].

• Coupling to other modes
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Finally, the transmon can also be coupled to other, uncontrolled degrees of freedom.

As an example, the cavity will have higher harmonics that also couple to the transmon

(and hence couple to the fundamental high-Q storage mode) dispersively. These modes,

if not thermalized properly, can dephase the transmon, and cause other unwanted

couplings and transitions when driving the system. Simulation and proper design can

help to avoid these couplings.

Finally, besides the motivations for weak coupling given above, I note one additional

motivation: it is an interesting physics question, in itself, if it is even possible in principle

to control a nearly-linear oscillator. The results of the next chapter show that it is indeed

possible, with many nuances that lower the fidelity.

3.2 Simulation, calibration, and characterization

In this section, we outline techniques to characterize an oscillator and qubit coupled with

�/2⇡ on the order of or smaller than qubit decoherence rates. In this regime, methods for

calibration of control and Hamiltonian parameters which rely on large number-splitting are

ine�cient. For these calibrations, we rely on semi-classical phase-space trajectories as derived

in section 3.2.2. In section 3.2.3, we describe the out-and-back method, which uses large

displacements of the oscillator mode to realize a measurement of Hamiltonian parameters.

Finally in section 3.2.6 we describe a simple geometric phase measurement which is used to

calibrate the oscillator drive strength |"|.

3.2.1 Oscillator relaxation and dephasing in the displaced frame

When large oscillator displacements are used to enhance the e↵ective rate of control, we

are also populating the oscillator with many more photons. Given this, one may wonder:

won’t the likelihood to lose a photon be much greater, e↵ectively canceling the gain we

might achieve by using a large displacement? Fortunately, this is not the case. As is shown
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a) photon loss

b) dephasing

Figure 3.1: Loss and dephasing in the displaced frame. Here, the e↵ect is depicted
as acting on a |+Zi GKP state, however the results apply to any oscillator state. a) Photon
loss at rate  acts as a drift and di↵usion in phase-space, as indicated with the blue arrows
acting on a state centered at the origin (left). When a displaced-frame transformation is made
(D(↵)), (right), photon loss is transformed into two components: loss at rate , equivalent
to when the state is at the center of phase-space, as well as a deterministic force at rate /2
towards the origin (green arrow). This deterministic force can be accounted for in the drive
equation for "(t), so photon loss does not lead to additional noise in the displaced frame.
b) Dephasing, on the other hand, acts as random rotations in phase space, as shown by the
blue arrows on a centered state (left). When the state is displaced, the dephasing noise is
amplified, and is converted to di↵usion-like noise at an enhanced rate |↵|2�.
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below, when the oscillator is displaced, linear error channels (such as loss and gain) do not

cause enhanced noise, as long as the deterministic part of the evolution is accounted for.

Higher order error channels however, such as dephasing, do lead to enhanced noise under a

displacement.

With photon loss at a rate , the oscillator’s density matrix evolves according to the

quantum master equation in Lindblad form

@t⇢ = �i [H, ⇢] + D [a] ⇢, (3.14)

H = Hs + "a† + h.c., (3.15)

were D[L] = L⇢L† � (1/2)
�
L†L, ⇢

 
, Hs is the system Hamiltonian (given in eq. (3.2) for

the dispersive case), and we have included a time-dependent oscillator drive "(t), working in

units such that ~ = 1. Evolution of the density matrix in a time-dependent displaced frame

⇢̃ = D† (↵) ⇢D (↵) is given by the equivalent master equation

@t⇢̃ = �i
h
H̃, ⇢̃

i
+ D [a+ ↵] ⇢̃ (3.16)

H̃ = D† (↵)HsD (↵) + (�i@t↵ + ") a† + h.c. (3.17)

In particular, the displaced frame Lindbladian can be recast as

D [a+ ↵] ⇢̃ = D [a] ⇢̃� i
h
i


2

�
↵⇤a� ↵a†

�
, ⇢̃
i
, (3.18)

corresponding to photon loss at a rate , and a Hermitian re-centering force at a rate 
2
|↵|.

This deterministic force can be lumped into the e↵ective displaced-frame Hamiltonian, giving

@t⇢̃ = �i
h
˜̃H, ⇢̃
i
+ D [a] ⇢̃ (3.19)

˜̃H = D† (↵)HsD (↵) +
⇣
�i@t↵� i



2
↵ + "

⌘
a† + h.c. (3.20)
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Given a desired ↵(t), "(t) can be chosen such that the term in parentheses is zero, satisfying

the equation @t↵(t) = �i"(t)� (/2)↵(t) and counteracting the re-centering force. Higher-

order nonlinear terms such as Kerr can also result in linear Hamiltonians in the displaced

frame and can be included in this equation, as is done in section 3.2.2. For photon loss,

the state dynamics under a displacement is depicted in fig. 3.1a. With this choice of drive,

the deterministic evolution is accounted for, and relaxation in the displaced frame is not

enhanced compared to relaxation at the origin of phase space. The same procedure can be

carried out for photon gain at rate ", described by the dissipator @t⇢ = "D
⇥
a†
⇤
⇢.

White-noise oscillator dephasing is given by the master equation @t⇢ = 2�D
⇥
a†a
⇤
⇢.

Defining the superoperator S [X, Y ] ⇢ = X⇢Y † �
�
Y †X, ⇢

 
, oscillator dephasing is trans-

formed in the displaced frame to

@t⇢̃ = 2�D[(a† + ↵⇤)(a+ ↵)]⇢̃

= 2�
�
D[a†a]⇢̃+ |↵|2

�
D[a]⇢̃+D[a†]⇢̃

�

+ ↵2S
⇥
a†, a

⇤
⇢̃+ ↵⇤2S

⇥
a, a†

⇤
⇢̃

+ ↵
�
S
⇥
a†a, a

⇤
⇢̃+ S

⇥
a†, a†a

⇤
⇢̃
�

+↵⇤ �S
⇥
a†a, a†

⇤
⇢̃+ S

⇥
a, a†a

⇤
⇢̃
� 

.

(3.21)

In the displaced frame, the noise is dominated by di↵usion-like terms at rate 2�|↵|2, and

unlike the relaxation case, there is no deterministic part that can be counteracted with a

simple displacement. This e↵ect is depicted in fig. 3.1b. However, this master equation is

only valid in the Markovian regime; the spectral density of oscillator frequency fluctuations

can instead be non-uniform due to e↵ects such as two-level-system defects [162]. In such a

colored noise case, it is possible that part of the enhanced dephasing noise could be echoed

away using symmetric pulse constructions [105], including ECD. Finally, it is possible that

an alternative ECD gate could be implemented that does not have amplified dephasing noise;

this is proposed in chapter 6.
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The enhanced dephasing noise leads to a trade-o↵ between faster gates and enhanced

di↵usion in phase-space. This trade-o↵ is analyzed explicitly for state preparation in sec-

tion 4.6.4, and a model for the fidelity of a single ECD gate including this e↵ect is derived

in section 3.3.3.

3.2.2 Dynamics of a lossy displaced oscillator with dispersive cou-

pling to a transmon

Here we apply the results of the previous section to the case of the dispersive Hamiltonian

in eq. (3.2). The resulting equations are used for simulation, characterization, and pulse

optimization, as outlined in the later sections.

Starting from Hdispersive in eq. (4.1), we perform a time-dependent displaced frame trans-

formation using the unitary U = D†(↵(t)) = exp
�
↵⇤(t)a� ↵(t)a†

 
. This modifies the state

according to ⇢̃(t) = D†(↵(t))⇢(t)D(↵(t)), and the Hamiltonian according to H ! H̃ =

UHU † + (i~) (@tU)U † = D† (↵(t))HD (↵(t)) + (i~)
�
a@t↵⇤(t)� a†@t↵(t)

�
, giving

H̃

~ = �̃a†a� (�+ 4�0|↵|2)a†aq†q � �0a†2a2q†q �Kca
†2a2 �Kqq

†2q2 � (�+ 2|↵|2�0)(↵⇤a+ ↵a†)q†q

� (�|↵|2 + �0|↵|4)q†q � 4Kc|↵|2a†a+
⇣
�̃↵⇤ � 2Kc|↵|2↵⇤ + i(@t↵

⇤) + i


2
↵⇤ + "⇤

⌘
a+ h.c.

�Kc

�
2↵a†2a+ ↵2a†2 + h.c.

�
� �0 �2↵a†2a+ ↵2a†2 + h.c.

�
q†q + ⌦⇤(t)q + h.c.

(3.22)

We have also included the deterministic part of oscillator relaxation at a rate /2 as described

in the section 3.2.1.

Simulating in the displaced frame

Given an oscillator drive "(t), it is numerically advantageous to cancel the classical part of

the oscillator’s phase-space trajectory by picking a time-dependent frame ↵(t) which cancels
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the displacement term in H̃. This is done by solving

@t↵(t) = �i�̃↵(t) + 2iKc|↵(t)|2↵(t)�


2
↵(t)� i"(t)

↵(0) = 0,

(3.23)

for ↵(t). In practice, we first pick a desired ↵(t), and solve eq. (3.23) for the "(t) that produces

it. The trajectory must be picked such that bandwidth and amplitude constraints on "(t)

are satisfied, meaning ↵(t) should not rise or fall too quickly. Once this is known, H̃ without

the linear terms in a and a† is used to e�ciently simulate a cavity and transmon evolution

in the displaced frame using a truncated Hilbert space. This displaced frame Hamiltonian

is used for master equation simulations in section 4.6.

Semiclassical trajectories

During a period where the qubit populations stay constant (⌦(t) = 0), we can instead

determine the oscillator’s phase-space trajectories conditioned on the qubit’s ground or ex-

cited state. This semiclassical approximation is done by replacing q†q in H̃ with {0, 1} for

transmon states {|gi , |ei}. This replacement gives the two Hamiltonian sectors

H̃g

~ = (�̃� 4Kc|↵|2)a†a�Kca
†2a2 +

⇣
�̃↵⇤ � 2Kc|↵|2↵⇤ + i(@t↵

⇤) + i


2
↵⇤ + "⇤

⌘
a+ h.c.

�Kc

�
2↵a†2a+ ↵2a†2 + h.c.

�
,

H̃e

~ = (�̃� �� 4�0|↵|2 � 4Kc|↵|2)a†a� (�0 +Kc)a
†2a2

+
⇣
�̃↵⇤ � 2Kc|↵|2↵⇤ + i(@t↵

⇤) + i


2
↵⇤ + "⇤ � (�+ 2|↵|2�0)↵⇤

⌘
a+ h.c.

� (Kc + �0)
�
2↵a†2a+ ↵2a†2 + h.c.

�

(3.24)

describing the dynamics of the driven oscillator when the transmon is in the ground or excited

state. Similar to the displaced-frame simulation, the linear part of these Hamiltonians can
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be individually cancelled, resulting in the two equations

@t↵g(t) = �i�̃↵g(t) + 2iKc|↵g(t)|2↵g(t)�


2
↵g(t)� i"(t)

@t↵e(t) = �i�̃↵e(t) + 2iKc|↵e(t)|2↵e(t)�


2
↵e(t)� i"(t) + i(�+ 2�0|↵e(t)|2)↵e(t)

(3.25)

which can be used to calculate the semiclassical trajectories for the ground or excited states

during periods when ⌦(t) = 0. In the case of a conditional displacement, after each ⇡ pulse,

the Hamiltonians are swapped, and the result from the previous part of the trajectory is

used to seed the next initial value problem. In our simulations, we solve these nonlinear

initial value problems using a central-di↵erence method with trajectories sampled at 1 ns.

These trajectories are used in section 3.2.3 for Hamiltonian parameter calibration and in

section 3.3.2 for optimization of the cavity and qubit drives to produce ECD gates.

3.2.3 E↵ective Hamiltonian characterization: out-and-back mea-

surement

In a typical strong-dispersive coupling system, the Hamiltonian can be characterized by dis-

placing the oscillator and performing spectroscopy of the transmon. The strong number-split

peaks can be fit to find the e↵ective dispersion. However, in a system where the dispersive

shift is weak, these number-split peaks can be di�cult to resolve, with a low contrast. In

this section, we apply the semiclassical trajectories derived in the previous section in or-

der to characterize the oscillator in the weak-dispersive regime, using a measurement called

‘out-and-back’, developed as part of this PhD work.

Although many of the Hamiltonian terms are small relative to the rate of transmon

decoherence, they can be estimated in experiment using large displacements to enhance

their e↵ective strength, similar to Hamiltonian amplification used to derive the ECD gate.

Here, we make use of this enhancement through the measurement sequence shown in fig. 3.2a.

We first prepare the qubit in the ground or excited state then displace the oscillator out by
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↵0. After a time t, the oscillator is displaced back by �ei�↵0, where � is swept. The second

displacement serves as an attempt to displace the oscillator’s state back to the origin of

phase-space. If the attempt is successful, � encodes the oscillator’s coherent-state phase

accumulation at a displacement ↵0 after a time t. A narrow-bandwidth ⇡ pulse (� = 200 ns)

is then used as a probe, only flipping the transmon’s state measured by m2 if the oscillator’s

state is close to the origin of phase space. Finally, we post-select the results of m2 on the

condition m1 = | ii, where | ii is the initial transmon state, in order to remove the influence

of transmon relaxation or heating.

In fig. 3.2b, we show the results of this experiment with t = 1 µs and N = 5 repetitions

of out and back, used to enhance the sensitivity. In initial state |ei, the signal is lost above

hni & 2500 photons, and in initial state |gi, the signal is lost above hni & 7500 photons.

These values represent the oscillator photon numbers at which the qubit is excited outside of

the |gi , |ei manifold due to higher-order nonlinear transitions, a process sometimes referred

to as transmon ionization that has been observed in previous experiments using readout

resonators [61,62,149]. Such an e↵ect could potentially be suppressed by using an inductive

shunt, proving a path forward to engineering faster gates [151]. Figure 3.2b also indicates the

critical photon number for which the e↵ective Hamiltonian, calculated using the dispersive

approximation expressions from section 3.1, begins to deviate from the exact calculation of

these terms. In this system, ng
crit
⇡ 2740 and ne

crit
⇡ 910.

To extract the e↵ective Hamiltonian values, we fit the frequency shift of the oscillator as a

function of oscillator photon number, determined by the return angle and the wait time. At

each hni below the bright-stating point, the relative oscillator frequency when the transmon is

in the ground or excited state is obtained by fitting h�zi to a Gaussian function and dividing

its mean phase accumulation by the wait time t. The resulting relative frequency dispersion

as a function of average cavity photon number hni = ↵2

0
for transmon states |gi and |ei is

shown in fig. 3.3 by the open circles. Note that the finite duration of the displacement pulses

will also influence the result, and as a secondary check, the experiment can be repeated at
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Figure 3.2: Out-and-back measurement. a) Experimental sequence to measure the
phase accumulation of a coherent state with radius ↵0 after a time t when the transmon is
in the ground or excited state. b) Measurement result with initial transmon state |gi (top
panel) and |ei (bottom panel) with a fixed wait time of t = 1 µs and N = 5 repetitions
post-selected on measurement m1 matching the prepared state. Colored data shown is the
probability of the readout signal indicating |gi. Also shown is the critical photon number
for transmon states |gi and |ei (white dotted lines).
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di↵erent wait times t.

We fit the measured dispersion (open circles in fig. 3.3) to that expected from Hdispersive in

eq. (3.2). In particular, the semiclassical trajectories in eq. (3.25) which govern the evolution

of coherent states predict the e↵ective cavity rotation frequencies to be

�g = �̃� 2Kc↵
2

0
(3.26)

�e = �̃� �� (2Kc + 2�0)↵2

0
(3.27)

as a function of the average number of photons in the cavity ↵2

0
when the transmon is in the

ground and excited states respectively. By fitting the sum and di↵erence of two dispersion

curves to the sum and di↵erence of these linear functions, we can extract the four unknown

Hamiltonian parameters �, �0, K, and �̃. The dispersion fits well to a linear function in

the range of interest for control, for photon numbers up to ↵2

0
< 2000, with results given in

table 4.2. For experiments using echoed conditional displacements, we use this experiment

to calibrate the cavity drive frequency such that it is driven half-way between the |gi and

|ei frequencies at low power, �̃ = �/2.

3.2.4 Predicting the e↵ective Hamiltonian with numerical diago-

nalization

When using large displacements for high-fidelity control, the ability to predict the Hamilto-

nian before device fabrication is essential. In this section, I show that brute-force numerical

diagonalization of the coupled transmon-oscillator system can predict the measured Hamilto-

nian with accuracy up to thousands of photons. Additionally, the transmon ionization point

can be predicted, matching measurements. These methods can be compared to the analysis

shown in [150] and [163]. Higher-order perturbation theory can also be used to predict an

analytic e↵ective Hamiltonian at large photon numbers in the cavity, as shown in [164].

Here, we perform numerical diagonalization of the coupled transmon-oscillator Hamilto-
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Figure 3.3: E↵ective Hamiltonian prediction and measurement. Measured relative
cavity frequency shift (open circles) compared to numerical diagonalization prediction (solid
lines). The open circles is a fit of the data shown in fig. 3.2. The red X indicates the
predicted ionization in |ei using diagonalization. The measured ionization point is indicated
as the last open circle fit to the data (note that the ionization point can slightly fluctuate
with changing o↵set gate charge). The diagonalization was performed at Ng = 0, however
other values could be used. The ground state ionizes around 7000 photons (fig. 3.2), beyond
the maximum Fock number used in the diagonalization.

nian
H

~ = 4Ec(N̂ �Ng)
2 � EJ cos ('̂) + !bare

c a†a+ g(N̂ �Ng)
�
a+ a†

�
(3.28)

where N̂ is the Cooper-pair number operator, '̂ is the conjugate Josephson phase, Ng is the

o↵set charge in units of 2e, and â is the bare cavity mode annihilation operator [51].

The numerical diagonalization is carried out in two steps. First, we diagonalize the

transmon in the charge basis, using 40 charge states. The transmon-oscillator coupling term

is then transformed into the basis of transmon eigenstates, after which it is truncated to

the first 12 transmon eigenstates. The full Hamiltonian is then diagonalized, keeping 12

transmon eigenstates and 2800 bare oscillator Fock states, following the method outlined

in [165].

For photon numbers up to hni ⇡ 1000, we have confirmed that the oscillator’s dispersion
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for qubit states |gi and |ei does not depend on o↵set charge, so we set Ng = 0. With this

choice, we use second-order perturbation theory to find the bare Hamiltonian parameters

which fit the measured hybridized mode frequencies, transmon anharmonicity, and dispersion

at low hni ⇡ 0, resulting in the bare parameters g/2⇡ = 9.12MHz, Ej/2⇡ = 32.33GHz,

Ec/2⇡ = 181MHz and !bare

c = 5.26GHz. Using these parameters, we numerically diagonalize

eq. (3.28) using the method outlined above. The resulting dispersion is shown by the solid

lines in fig. 3.3, which have excellent agreement with the measured dispersion.

When performing this diagonalization, each eigenstate in the hybridized basis should

be matched to an eigenstate in the bare basis that would adiabatically transform into it

under a slow ramp of the oscillator photon number. Such a mapping is sometimes called

quantum number assignment, and it is needed to produce the solid lines in fig. 3.3. However,

it is sometimes di�cult to assign a unique bare state to a given hybridized state since the

hybridized state has amplitudes spread across many di↵erent bare states. In the setting

studied here, this is evidence that the transmon state has left the manifold of well-defined

states in the cosine potential (|gi , |ei , |fi , ...), and we call this process ionization. In our

system, the diagonalization algorithm predicts a breakdown of quantum number assignment

for transmon state |ei at 2500 photons in the oscillator, closely matching the measured

transmon ionization, as is shown in fig. 3.3.

Finally, the e↵ective Hamiltonian can also be predicted using higher-order RWA meth-

ods. As an example, the Stark-shift data shown in fig. 3.3 is explicitly compared with a

recursive higher-order RWA perturbation theory in [164], showing an excellent agreement.

This method is more e�cient than the brute force diagonalization shown here.

3.2.5 Characterizing transmon relaxation with large oscillator dis-

placements

As discussed in section 3.1, e↵ects such as two-level-system defects cause the transmon

relaxation rate to increase due to the Purcell e↵ect when the transmon is Stark-shifted onto
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resonance with them. Here, we probe this e↵ect using large displacements.

We use a similar out-and-back measurement to probe the transmon relaxation and heating

rate while the cavity is displaced to a large coherent state, since a reduction in transmon

lifetime has been observed when displacing readout resonators [166]. For this, we use the out-

and-back sequence in fig. 3.2a, except we sweep t, and fix �(t) close to phases that displace the

oscillator’s state back to the origin of phase-space at each hni given the measured dispersion.

In this case, we focus on the result of m1. We find that, up to 2000 oscillator photons,

there is no appreciable heating out of |gi when displacing the cavity state, indicating that

the dressed dephasing rate is small [138]. However, when preparing the transmon in |ei, we

measure that the transmon’s relaxation rate shows a dependence on cavity photon number.

In fig. 3.4 we plot the measured probability of the transmon remaining in |ei after a wait

time t up to 4 µs when displacing the cavity to hni = ↵2

0
, with experiments run on three

consecutive days.

We suspect this time-dependent T̃1,q vs n̄cav e↵ect is caused by fluctuating two-level-

systems (TLS) which come into resonance with the transmon as it is Stark-shifted by cavity

photons [160, 167, 168]. Although the T1 vs n̄ changes with time, we find an average value

of T̃1,q ⇡ 30 µs for n̄ = 900 over the data plotted in fig. 3.4, and we use this value when

performing master equation simulations in section 4.6.

3.2.6 Oscillator drive strength calibration with geometric phase

In this section, we discuss a simple experiment which can be used to calibrate a linear

oscillator drive amplitude in the weak-� regime. Starting with the qubit prepared in | ii =
1p
2
(|gi+ |ei), we construct an oscillator drive sequence which encloses an area in phase space

for both |gi and |ei trajectories. By disentangling the qubit and oscillator at the end of the

sequence, the qubit will be left in the state | fi = 1p
2

�
|gi+ ei� |ei

�
where � encodes the

enclosed area [169–172]. Given an arbitrary displacement pulse shape g(t) with a length tp,
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Figure 3.4: Fluctuating transmon relaxation when populating the cavity. Mea-
sured transmon relaxation as a function of ↵2

0
= hni found by analyzing m1 measurement

results in an out-and-back measurement similar to fig. 3.2 with initial transmon state |ei
and sweeping t. For this measurement, the transmon is initialized in |ei, and the oscillator is
displaced. After a time t (y-axis), the oscillator is displaced back to the origin, assuming the
transmon was in |ei throughout the delay. The resulting transmon state is then measured.
Measurement results shown for three consecutive days with each experiment averaging for
around 1 hour. It is possible that the observed fluctuations of T1 when displacing the oscil-
lator are caused by the transmon Stark-shifting into fluctuating two-level-systems, as here
we do not observe excitations outside the |gi,|ei manifold, so it is unlikely that the e↵ect is
caused by nonlinear photon-induced transitions outside the ground and excited state man-
ifold. These e↵ects need further investigation as they are likely a limiting factor in GKP
error correction and control using large displacements.
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a simple pulse sequence that accomplishes this is

"(t) = "0 [g(t)� rg(t� (tp + tw))� rg(t� (2tp + tw)) + g(t� (2tp + 2tw))] (3.29)

as shown in fig. 3.5a with a phase-space trajectory shown in fig. 3.5b. This drive is similar

to a conditional displacement without a qubit ⇡ pulse, and the goal here is to calibrate the

pulse scale "0.

To analyze this sequence, we note that for low photon numbers, the Hamiltonian is well

described by only the dispersive term. With this approximation, the semiclassical trajectories

in eq. (3.25) can be solved with initial value ↵g
e
(0) = 0 giving

↵g
e
(t) = e�

1
2 (±i�+)t

✓
e

1
2 (±i�+)t0↵g

e
(t0)� i

Z t

t0

e
1
2 (±i�+)⌧"(⌧)d⌧

◆
. (3.30)

Substituting "(t) into eq. (3.30), we solve for the ratio of the middle-two pulses, r, such

that the condition ↵g
e
= 0 is satisfied at the end of the entire sequence, and the qubit

and oscillator are disentangled. Remarkably, this ratio is independent of the shape of the

displacement pulse g(t), and is found to be

r =
1 + e

1
2 (±i�+)(3tp+2tw)

e
1
2 (±i�+)(tp+tw) + e

1
2 (±i�+)(2tp+tw)

(3.31)

where tp is the length of the displacement pulses g(t) and tw is the wait time. By Taylor

expanding this ratio in orders of , we find in the limit (tp + tw) << 1/,

r = cos
⇣�
4
(3tp + 2tw)

⌘
sec
⇣�
4
tp
⌘

(3.32)

independent of the qubit state. In the high-Q oscillator limit, this sequence disentangles

the oscillator and qubit and can be used to measure the geometric area enclosed by the

trajectory.
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Figure 3.5: Geometric phase measurement. a. Geometric phase measurement drive
sequence and drive parameterization. b. Phase space trajectories for ↵g and ↵e. c Measured
h�xi and h�yi compared to expected phase found by solving the semiclassical trajectories in
eq. (3.25) (solid lines) as a function of phase space radius ↵0.

Using eq. (3.30), we numerically integrate the sequence with displacement pulses g(t)

chosen as truncated Gaussians with standard deviation � = 11 ns and total pulse duration

tp = 44 ns to find the phase-space trajectories for ↵g
e
, including the maximum phase-space

radius ↵0, and the associated geometric phase di↵erence. By measuring h�xi and h�yi while

sweeping the drive scale, this phase di↵erence is fit to the experiment, allowing a calibration

of "0 in terms of DAC amplitude. In fig. 3.5c we show an example of the measured phase

accumulation as "0 is linearly scaled (tw = 200 ns), along with the phase predicted using the

integrated geometric area. If desired, nonlinear e↵ects can be included by using eq. (3.25)

when calculating the trajectories, however in this case it is no longer guaranteed that r

given by eq. (3.31) will exactly disentangle the oscillator and qubit. Using this, we find a

maximum drive amplitude of |"|max/2⇡ ⇡ 400MHz before saturating our room-temperature

amplification chain.

3.3 Realizing the echoed conditional displacement gate

In section 3.3.1 we derive the echoed conditional displacement unitary assuming an ideal

dispersive Hamiltonian. Next, in section 3.3.2, we optimize the ECD gate considering drive

constraints and higher-order nonlinearities.
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3.3.1 Derivation of the ECD gate

Here, "(t) is a complex-valued function representing the envelope of an I-Q modulated drive

with a carrier frequency (!g + !e)/2, where !g (!e) is the oscillator’s frequency when the

qubit is in the ground (excited) state. In the co-rotating frame at the drive frequency and

qubit frequency, the ideal Hamiltonian is

H

~ = �a†a
�z
2

+ "⇤(t)a+ "(t)a† (3.33)

where we have neglected terms rotating at twice the drive frequency.

The echoed conditional displacement gate consists of two driving steps with a qubit ⇡

pulse between, here assumed instantaneous. In this case, the general solution to the time-

dependent Schrödinger equation i~@tU = HU is

U = T e�
i
~
R T
t1

H(⌧)d⌧�xT e�
i
~
R t1
0 H(⌧)d⌧ (3.34)

where t1 is the time of the ⇡ pulse, T is the total time of the gate, and T is the time-ordering

operator.

To represent the action of the ⇡ pulse flipping the sign of �z between the two trajecto-

ries, we instead modify the dispersive Hamiltonian to include a function z(t) = ±1 which

represents the sign of �z, giving

H

~ = �a†a
�zz(t)

2
+ "⇤(t)a+ "(t)a†. (3.35)

Using this modified Hamiltonian, we take as an ansatz for the solution of the Schrödinger

equation

U = ei✓
�z
2 ea

†
(�+��z)�a(�⇤+�⇤�z)ei�a

†a�z (3.36)

where ✓ represents an ancilla qubit phase, � and � represent a displacement and conditional
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displacement, � represents a qubit state-dependent rotation of the oscillator, and these

variables are time-dependent.

Ignoring a global phase, the Schrödinger equation gives

@t✓ = �2Re [�"⇤] (3.37)

@t� = �i�
2
z(t)� � i" (3.38)

@t� = �i
�

2
z(t)� (3.39)

@t� = ��
2
z(t). (3.40)

These equations can be solved, giving

✓(t) = �2
Z t

0

d⌧Re ["⇤(⌧)�(⌧)] (3.41)

�(t) = �i
Z t

0

d⌧ cos [�(⌧)� �(t)] "(⌧) (3.42)

�(t) = �
Z t

0

d⌧ sin [�(⌧)� �(t)] "(⌧) (3.43)

�(t) = ��
2

Z t

0

d⌧z(⌧). (3.44)

The state-dependent rotation of the oscillator can be canceled by setting �(T ) = 0. For

the echoed conditional displacements in this work, this is done by applying a single qubit ⇡

pulse at time T/2. If desired, more qubit echoes can be included, subject to the condition
R T

0
d⌧z(⌧) = 0.

Using the Baker-Campbell-Hausdor↵ formula, the conditional displacement and displace-

ment can be separated, giving the overall unitary

U = �xe
i✓0 �z2 D(�)CD(�) (3.45)

corresponding to a conditional displacement CD(�) = D(�/2) |gi hg| + D(��/2) |ei he|, a
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displacement, and an additional qubit phase with the parameters � = 2�(T ), � = �(T ), and

✓0 = ✓(T ) + 2Im [�(T )�(T )]. We have also explicitly included a �x operator to represent the

action of the single ⇡ pulse (here ECD (�) = �xCD(�)).

To realize an ECD gate, we aim to null the qubit phase and oscillator displacement. In the

limit of instantaneous displacements and motivated by the geometry of rotating phase-space,

this can be perfectly achieved by choosing the drive

"(t) = ↵ [�(t)� 2�(t� T/2) cos (�T/4) + �(t� T ) cos (�T/2)] (3.46)

where �(t) is the Dirac delta function. This drive corresponds to the displacement sequence

described in fig. 2.4 of the previous chapter with � = 2i↵ei� sin (�T/2) and |↵| = ↵0.

The drive in eq. (3.46) cannot be realized in experiment due to bandwidth and ampli-

tude limits of a realistic microwave drive. Also, e↵ects such as photon loss, higher-order

nonlinearities, and the finite duration of the qubit ⇡ pulse are not taken into account in

Equations (3.41) to (3.44). To realize a high-fidelity ECD gate in the presence of these ef-

fects, we optimize "(t) using semiclassical trajectories as described in the next section 3.3.2.

3.3.2 Optimization of the ECD gate

In our experiment, the dynamics can slightly di↵er from those described by eqs. (3.41)

to (3.44) due to the second-order dispersive shift �0 and the oscillator Kerr Kc which become

relevant at large phase-space displacements. These e↵ects can be studied by examining

the displaced-frame Hamiltonian in eq. (3.22). In H̃, nonlinear terms proportional to �0 or

Kc can generally cause distortions to the state. However, simulations indicate that these

terms do not significantly decrease the fidelity of ECD control protocols given our system

parameters in table 4.2. This is partially because the deleterious e↵ect of terms which are

proportional to sign(↵) or sign(�z) are significantly reduced due to the phase-space echo

↵ ! �↵ and qubit echo |gi $ |ei at time T/2 during the ECD gate, which cancels part
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of their on-average e↵ect to the state distortion in the same way the qubit-state dependent

oscillator rotation is canceled during the ideal ECD gate.

With this in mind, we optimize ECD gates using semiclassical trajectories (section 3.2.2)

which account for the linear displaced-frame terms (proportional to a), including those caused

by the second-order disperse shift, Kerr, and photon loss. We assume a form of the unitary

still given by eq. (3.45), with the values of �, � and ✓0 calculated using the trajectories ↵g
e
(t)

for the ground and excited qubit states. We note that ECD(�) can be generated with any

↵0 or � as long as �T < 2⇡ and the qubit rotation pulse bandwidth is su�ciently large

compared to �. In particular, a large ↵0 is not required.

To construct each ECD gate, we start by imposing the drive to be of the form shown

in fig. 3.6a, which replaces the Dirac �-functions in eq. (3.46) with fixed-length Gaussian

waveforms, chosen in our experiment with a standard deviation of � = 11 ns and a total

length of 4� = 44 ns. This simplification is chosen so that the drive strength required to

realize the large displacements used in this work remains in the linear regime of our room

temperature amplification chain, and so the displacements take the exact same form as

those used to calibrate the drive amplitude using the geometric phase measurement shown

in section 3.2.6. The amplitude ratio of the second, third, and fourth Gaussian to the first

are given by r2, r3, and r4, and the wait time between the displacements is given by tw.

Using a simple optimization strategy, we find the values of {"0, r2, r3, r4} which realize a

target conditional displacement � with intermediate phase-space radius ↵0 in the shortest

time tw. Starting with a large guess time tw, the parameters are optimized with a Nelder-

Mead method using the cost function

C = |↵g(T/2) + ↵e(T/2)|2 + |↵g(T ) + ↵e(T )|2 + (3.47)
✓
|↵g(T/4) + ↵e(T/4)|

2
� ↵0

◆2

+

✓
|↵g(3T/4) + ↵e(3T/4)|

2
� ↵0

◆2

(3.48)

where ↵g
e
(t) is calculated using eq. (3.25) including the second-order dispersive shift, Kerr,
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and photon loss. This cost function minimizes the final and midpoint net displacement,

and ensures an intermediate phase space radius of ↵0 for the first and third displacements.

Once {"0, r2, r3, r4} have converged at a given tw, � is calculated as ↵e(T ) � ↵g(T ), and tw

is stepped down until the target � is realized. If tw reaches 0, and the target � has not been

reached, then ↵0 is reduced until the target � is realized. We note that shorter pulses could

instead be used in this small-� case, however in our proof of principle example, we keep the

displacement duration fixed such that the pulses do not occupy a larger bandwidth than

those used in the calibration.

The form of the resulting conditional displacement strongly depends on � and the choice

of ↵0. In fig. 3.6b and fig. 3.6c we illustrate the result of this optimization using our system

parameters for � = 1 in two di↵erent regimes, ↵0 = 10 and ↵0 = 50. In the first case, a

majority of the conditional displacement is accumulated during the wait times tw. In the

second case, tw is reduced to 0, resulting in ↵0 being further lowered to ⇡ 45 to realize the

gate. In this regime, the conditional displacement is accumulated during the driving periods,

and increasing the target ↵0 does not result in a faster gate after optimization. This is the

reason for the drive-constraint limit shown in fig. 4.1a in the next chapter.
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Figure 3.6: Echoed conditional displacement optimization and trajectories. a.
Parameterization of the drive "(t) for the echoed conditional displacement. b. and c.
Echoed conditional displacement gate for � = 1 optimized with target ↵0 = 10 (b) and
↵0 = 50 (c). Top panels show the resulting drives, and bottom panels show the semi-
classical phase space trajectories at a large aspect ratio.
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3.3.3 Fidelity model of a single ECD gate

The relative contribution of qubit and oscillator errors to the infidelity of each ECD operation

depends on ↵0 and |�|. Here we develop a simple model to study decoherence due to these

e↵ects, and our model could be used in future investigations to optimize the choice of these

parameters. Suppose we perform an operation to create a cat state using a single ECD (�)

gate, namely
1p
2
(|gi+ |ei) |0i ! 1p

2
(|ei |�/2i+ |gi |��/2i) , (3.49)

with a gate time T ⇡ |�|
�↵0

. If a qubit error (bit-flip or phase-flip) occurs during the ECD

gate, the joint state is left orthogonal to the target state above. The final state infidelity

to the target state will be equal to the probability of such a qubit error occurring. With

the ECD construction, this is given by 1 � Fqubit ⇡ �T ⇡ �|�|/�↵0 where � is the qubit

error rate assumed to be small compared to the inverse gate time. For our system, � = �2E.

Post-selection after an ECD sequence on the target qubit state can help mitigate this error

in the state-preparation case as is done in our experimental demonstrations.

Oscillator relaxation increases the state infidelity proportionally to |�|3. Similar to the

cat code, the rate of phase decoherence due to photon loss in a coherent state superposition

will increase linearly with the number of photons in the cat [173], and the final density matrix

will be approximately

⇢(T ) ⇡ 1

2
[|��/2i h��/2| |gi hg|+ |�/2i h�/2| |ei he|+ (3.50)

exp

 
�2

Z T

0

����
�(t)

2

����
2

dt

!
(|��/2i h�/2| |gi he|+ |�/2i h��/2| |ei hg|)

#
(3.51)

The integral can be approximated giving an infidelity

1� Fphoton loss ⇡ (1/2)
�
1� exp

�
� |�|2 T/4

��
⇡  |�|3 / (8�↵0) . (3.52)
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Oscillator dephasing will be enhanced by the large displacements during the ECD gates as

discussed in section 3.2.1, resulting in an e↵ective oscillator di↵usion-like terms proportional

to 2'|↵0|2. The e↵ect of these terms on the state fidelity will depend on the particular

target state, however in the case of a single ECD gate we numerically find they result in an

e↵ective infidelity modeled well by 1 � Fdephasing ⇡ 2'↵2

0
T ⇡ 2'|�|↵0/�. With this, the

total state infidelity of a single ECD gate used for cat-state preparation is

1� F ⇡ 1

�

�
�2E|�|/↵0 +  |�|3 / (8↵0) + 2'|�|↵0

�
. (3.53)

The e↵ective model here also e↵ects tomography. In particular, the characteristic function

tomography will have a radially-dependent reduction in contrast given by the scaling in the

above equation. In [99], we explicitly measured this contrast reduction, and fit it to a

heuristic model.

3.4 Measuring an oscillator in the weak-coupling regime

The goal of this section is to describe how the oscillator’s state can be measured using

an auxiliary transmon. A central development of this work is the characteristic function

measurement in cQED, which can be used to measure the oscillator’s state in a weak-coupling

regime.

3.4.1 Phase estimation

To measure the state of a high-quality-factor oscillator in cQED, a circuit such as the one

shown in fig. 3.7 is employed. This circuit is sometimes called a quantum phase-estimation

circuit,6 or a ‘Hadamard-test’. First, the qubit is prepared in the |+i state. Next, a

controlled-unitary of the form U = eiÔ/2 is performed, where Ô is a Hermitian operator

6. since it can be used to measure the phase of heiÔi
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qubit

oscillator

Figure 3.7: The oscillator phase-estimation circuit. This circuit is used to measure
the expectation value of U = e�iÔ where Ô is a Hermitian operator on the oscillator Hilbert
space. The final qubit measurement is performed in a basis defined by a variable angle '
along the equatorial plane of the Bloch sphere be written as |±i' = (|gi± ei' |ei) (' = 0
corresponds to a �x measurement while ' = ⇡/2 corresponds to a �y measurement), usually
performed by applying the appropriate ⇡/2 rotation then measuring �z. In cases where U is
unitary but not Hermitian, its eigenvalues will lie on the unit-circle in the complex plane, and
a measurement of both �x and �y is required (hence the name ‘phase-estimation’). When U
is also Hermitian, the only possible eigenvalues are ±1, and only �x is required. Note that
when the oscillator is not in an eigenstate of U (which is most often the case, considering
eigenstates of U can be non-normalizable), the magnitude of the expectation value will be
less than unity. In this cases, both the phase and the magnitude can be extracted, however
we often still call the circuit ‘phase-estimation’.

on the oscillator. It can be easily shown that after this interaction, the expectation value of

h�+i = h�x � i�yi on the qubit is the same as the expectation value of heiÔi on the oscilla-

tor. From this, the real and imaginary part of heiÔi can be measured with a measurement

of either �x or �y, respectively. These measurements can be carried out by applying the

R⇡/2(⇡/2) or R0(⇡/2) gate to the auxiliary qubit and finally performing a �z measurement.

By varying Ô, di↵erent expectation values can be measured, and the oscillator’s state can

be reconstructed.

As an example, the Wigner function can be measured using a phase-estimation cir-

cuit of this type [173]. The Wigner function is related to the displaced-parity operator by

W (↵) = hD(↵)ei⇡a
†aD†(↵)i [174]. A controlled-displaced-parity can be implemented from

a controlled-parity operator (see section 2.4.3) by D(↵)ei⇡a
†a�z/2D†(↵) = ei⇡D(↵)a†aD†

(↵)�z/2.

The displaced-parity operator is Hermitian and unitary, so the only two possible eigenvalues
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are real and ±1. The expectation value of �x while varying ↵ can be used to measure the

oscillator’s Wigner function.

However, as discussed in section 2.4.3, the controlled-parity operation requires waiting

for a time Tparity = ⇡/�. In the weak-coupling regime, this can be prohibitively long, and

the contrast of the measured data can be low due to transmon decay and dephasing during

the measurement.

3.4.2 Characteristic function tomography

An alternative approach to measuring the oscillator’s density matrix is to measure the Char-

acteristic function, defined as C = hD(↵)i, with more details given in appendix A.3. The

characteristic function is the Fourier transform of the Wigner function, and therefore defines

the oscillator’s reciprocal space.

The tomographic sequence used to measure the characteristic function after each ECD

sequence is shown in fig. 3.8a. As shown in previous works ( [26, 66, 175]), the oscillator’s

characteristic function defined as C(�) = Tr (D(�)⇢) can be measured using a conditional

displacement embedded within a qubit Ramsey sequence resulting in h�x � i�yi = hD(�)i

before the second ⇡/2 pulse. By varying the phase of the second ⇡/2 pulse, we can measure

either the real or imaginary part of C(�) by measuring either h�xi or h�yi respectively.

We also include a first measurement m1 to disentangle the qubit and oscillator before the

tomography, and post-select the results of the characteristic function (m2) on m1 = |gi. We

note that the pulses in this work are designed to realize state preparation sequences of the

form |0i |gi ! | i |gi which disentangle the oscillator and qubit after the pulse. However, due

to decoherence during the pulse, there is small residual entanglement between the oscillator

and qubit, hence the need for m1.

To simplify tomography, the ECD gate used to measure the characteristic function is

realized using the optimization method in section 3.3.2 for � = 1.0 using ↵0 = 2.0. The

amplitude and phase of this ECD gate is swept in experiment to sample the characteristic
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Figure 3.8: Characteristic function tomography method. a. Characteristic function
measurement sequence b. Measured qubit phase accumulation (open circles) after the cat-
and-back sequence (depicted in the inset). Data matches the phase predicted by eq. (3.44)
(solid line). c. Example of characteristic function post-processing using the measured GKP
|+Zi state.

function. This low ↵0 is chosen so the second-order dispersive shift and Kerr have a negligible

e↵ect on the tomography, and the applied gate is well described by eq. (3.45). From this,

the additional qubit phase ✓0 can be easily predicted and corrected in post-processing.

To verify the validity of eq. (3.41) in predicting this phase, we measure the phase ✓0 by

using a cat-and-back ECD sequence depicted in the inset of fig. 3.8b: We prepare the qubit in

|+xi = 1p
2
(|gi+ |ei), then apply two conditional displacements: ECD(�),ECD(��), with

a qubit ⇡ pulse between, after which the qubit phase is measured (by measuring h�xi and

h�yi). Here, the ECD gates are the same as those used for characteristic function tomography

(↵0 = 2 at � = 1, and amplitude is swept). The resulting phase ✓0 in fig. 3.8b shows excellent

agreement with the prediction from eq. (3.41).

With this, the post-processing of the tomographic h�xi and h�yi is depicted in fig. 3.8c,

using the measured data for the |+Zi
GKP

state as an example. In experiment, we alternate

between ±⇡/2 for the first ⇡/2 pulse to symmetrize the transmon’s T1 error channel during

readout. Since the characteristic function obeys the property C(��) = C⇤(�), we only
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measure half of the real and imaginary parts, then mirror about the Re(�) = 0 axis. The

characteristic function is found by applying a phase correction C(�)! ei|�|
2✓00C(�) where ✓0

0
is

the phase predicted by eq. (3.41) for � = 1 using the ECD pulse optimized for tomography

(↵0 = 2). We note that this phase is slightly di↵erent than the phase found using the

cat-and-back experiment described above, which is only verifying the validity of eq. (3.41).

Finally, the data is scaled such that C(0) = 1, e↵ectively accounting for qubit decoherence

(T2E) during the tomography.

3.5 Speed limit of control

Finally, given the results of the characterization shown in this chapter, it is useful to analyze

the fastest possible speed limit of universal oscillator control. For this, as an estimate, we

will use the critical photon number in |ei as a rule-of-thumb for the maximum displacement

of the oscillator. However, in practice, other e↵ects such as two-level-systems and enhanced

dephasing noise will limit the speed of gates. The latter of these is optimized explicitly in

section 4.6.4.

Using the critical photon number given in eq. (3.13), the maximum conditional displace-

ment rate is gmax

e↵
= ↵max

0
� ⇡ pne

crit
� using the critical photon number for the first excited

state of the transmon. From perturbation theory, the transmon-oscillator dispersive cou-

pling is � ⇡ (2g2EC) / (�(�� EC)) and the transmon anharmonicity is K ⇡ EC [34]. In

the regime � � EC we can approximate � � EC ⇡ � and combine the above expressions

to find

gmax

e↵
⇡
r
�K

6
(3.54)

We note other experiments using sideband three-wave-mixing interactions are similarly lim-

ited by a bound /
p
�K [132,176,177]. This suggests that at a fixed dispersive shift, increas-

ing transmon anharmonicity could lead to faster interaction rates, giving a path forward for
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engineering higher-fidelity gates with enhanced e↵ective three-wave interactions.
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Chapter 4

Demonstrating universal control of a

nearly-linear oscillator

In this chapter, we combine results of the previous two chapters to work to answer the ques-

tion: is it possible to control the quantum state of a nearly-linear oscillator? In particular,

here we demonstrate the use of a weak-coupling architecture (chapter 3) with the phase-space

universal gate set (section 2.4.5) to realize arbitrary control of the oscillator.

4.1 Summary of results

To introduce our demonstrations, recall that the full manipulation of a quantum system

requires controlled evolution generated by strong nonlinear interactions. Such nonlinear

control is most often coherent when the rate of nonlinearity is large compared with the rate

of decoherence [106, 178]. As a result, engineered quantum systems typically rely on a bare

nonlinearity much stronger than decoherence rates, and this hierarchy is usually assumed to

be necessary.

Here we challenge this assumption by demonstrating the universal control of a quantum

system where the rate of bare nonlinear interaction (quantified here by �/2⇡, the inverse of

the typical gate time using previous methods [104]) is comparable to the fastest rate of de-
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coherence (�2, the transmon dephasing rate). We do this by demonstrating a noise-resilient

protocol - the phase-space instruction set architecture (section 2.4.5) using the Echoed Con-

ditional Displacement (ECD) gate - for the universal quantum control of a nearly harmonic

oscillator that takes advantage of an in situ enhanced nonlinearity instead of harnessing a bare

nonlinearity, i.e., by using the Hamiltonian amplification ideas introduced in section 2.4.4.

Our demonstrations include the preparation of a single-photon state with high fidelity

(section 4.3), the generation of squeezed vacuum with large intracavity squeezing (11.1

dB) (section 4.4), and measurement-free preparation of logical states for the binomial and

Gottesman-Kitaev-Preskill quantum error-correcting codes (section 4.5). To the best of our

knowledge, the squeezed state demonstrated here is the largest squeezing to date of a high-

quality-oscillator in the microwave regime, demonstrating the power of our approach. The

summary of results of these demonstrations is given in table 4.1, including the measured and

simulated state preparation fidelities.

State Fexp (%) Fsim (%) F�
sim

(%)
|1i 98 99 98
|2i 92 97 94
|3i 88 97 93
|4i 87 97 92
|5i 82 94 83

|+Zi
bin

92 98 95
|+Xi

bin
89 97 94

|+Y i
bin

91 97 93
|+Zi

GKP
85 93 85

|+Y i
GKP

83 92 87
|�Zi

GKP
80 93 85

Table 4.1: Measured and simulated state preparation fidelities. Fexp is the measured
fidelity found from density matrix reconstruction, Fsim is the simulated fidelity including all
independently measured decoherence rates, and F�

sim
is the simulated fidelity including ad-

ditional cavity dephasing at a rate � = (150ms)�1. Fidelity is defined as F = h t| ⇢g | ti
where ⇢g is the oscillator state after projecting the qubit in |gi and | ti is the oscillator
target state. We estimate the quoted fidelities are accurate within 1% using bootstrap-
ping. The average probability of measuring |gi after the state preparation sequences are
{0.96, 0.93, 0.96, 0.92} for the Fock, squeezed, binomial, and GKP states respectively.
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4.2 Experimental design

Our experiment consists of a high-quality-factor microwave cavity with weak dispersive cou-

pling to a superconducting qubit with much lower quality. The details of modeling such a

system are outlined in section 3.1.

The sample consists of two coaxial microwave cavities machined out of aluminum 6061

alloy anchored at the base stage of a dilution refrigerator operating at 20mK. The lower-

frequency cavity is used as a high-Q storage oscillator, while the other is overcoupled to a

transmission line and used for readout of a fixed-frequency transmon qubit bridging the two

cavities. The transmon includes a double-angle-evaporated Al/AlOx/Al Josephson-junction

fabricated on a sapphire substrate. An FPGA system is used to control the transmon and

cavity with a DAC sampling rate of 1GS/s. The package and transmon used here is the

same as was used in [26], with device parameters that have aged since that publication. We

refer the reader to [26] and associated supplementary material for more details, as well as

the wiring diagram, for which the only major di↵erence here is the lowering of amplification

power and addition of room-temperature microwave switches on the storage and readout line

for better noise properties.

Single-shot readout is performed using a SNAIL parametric amplifier operating with 20

dB of gain in phase-preserving mode [109]. We use a square readout pulse of length 100 ns and

acquire signal for 824 ns. With additional FPGA delays, the total readout time is 1.176 µs,

leading to a readout fidelity greater than 98% as inferred by the measured average contrast

of thresholded Rabi fringes. A measurement based feedback routine is used to prepare the

transmon in |gi before each experimental iteration.

In equilibrium, the transmon’s excited state population is nth,q ⇠ 0.0092, corresponding

to a temperature of ⇠ 68mK. We rely on a wait time longer than 5T1,c between each

experiment for the cavity to relax to near-equilibrium. As a conservative estimate, we assume

the cavity mode is at the same temperature as the transmon when estimating error sources

in section 4.6, corresponding to a cavity excited state population of nth,c ⇠ 0.025 before the
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start of each experiment.

4.2.1 System Hamiltonian and parameters

Given the range of displacements used in this work, our system is well described by the

e↵ective HamiltonianHdispersive introduced in the previous chapter. To clarify our results, it is

repeated here. In particular, the system dynamics are generated by the e↵ective Hamiltonian

[34,143,179]

H

~ = �̃a†a� �a†ab†b� �0a†2a2b†b�Kaa
†2a2 �Kbb

†2b2 + "⇤(t)a+ ⌦⇤(t)b+ h.c. (4.1)

where a (b) are bosonic annihilation operators for the hybridized oscillator-like (transmon-

like) modes. ⌦(t) and "(t) are complex-valued drives generated by IQ modulation, and

we have ignored terms rotating at twice the drive frequencies. H is written in the co-

rotating frame of the qubit and cavity drives, and in this work we use �̃ = �/2 when

performing ECD gates, representing a cavity drive at frequency (!g+!e)/2, where !g (!e) is

the cavity frequency with the transmon in the ground (excited) state. Under this choice, the

Hamiltonian discussed in section 2.4.3 using a two-level system corresponds to projecting

eq. (4.1) onto the ground and excited state transmon manifold using the mapping �z =

1� 2b†b and only keeping the dispersive interaction term. Hamiltonian parameters, as well

as measured decoherence rates and mode frequencies, are given in table 4.2, and measurement

techniques for these some of these values are described in the previous chapter, section 3.2.

Given these measured parameters, a two-step process is used to optimize control of the

system. In the first step, outlined in section 2.6, the gate parameters
n
~�, ~�, ~✓

o
are optimized

to realize a target unitary. This step is independent of the system parameters, allowing the

same unitary ECD circuit to be performed on di↵erent experimental systems.

In the second optimization step, the cavity drive "(t) and qubit drive Hq/~ = ⌦⇤(t)�� +

⌦(t)�+ are compiled from a set of ECD circuit parameters found in the first step. This
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parameter value
transmon g-e transition frequency !ge = 2⇡ ⇥ 6.65GHz
transmon anharmonicity K = 2Kb = 2⇡ ⇥ 193MHz
transmon Ramsey coherence T2R,q = 30 µs
transmon echo coherence T2E,q = 65 µs
bare transmon relaxation T1,q = 50 µs
transmon relaxation with n̄cav = 900 T̃1,q = 30 µs
transmon equilibrium population nth = 0.0092
readout frequency !r = 2⇡ ⇥ 8.22GHz
readout dispersive shift �qr = 2⇡ ⇥ 0.96MHz
readout relaxation rate r = 1.7MHz
storage cavity frequency !a = 2⇡ ⇥ 5.26GHz
storage dispersive shift � = 2⇡ ⇥ 32.8 kHz
storage second-order dispersive shift �0 = 2⇡ ⇥ 1.5Hz
storage cavity Kerr 2Ka = 2⇡ ⇥ 1Hz
storage cavity relaxation T1,c = 436 µs
storage cavity Ramsey coherence T2R,c < 2T1,c = 872 µs

Table 4.2: Measured system parameters and loss rates. Measurement of the dispersive
shift, the second order dispersive shift, and Kerr is described in section 3.2.3. The Cavity
relaxation time T1,c is measured by preparing a coherent state ↵0 = 3.6 and measuring
hâ†âi (t) using time-dependent transmon spectroscopy. The limit on the cavity Ramsey
coherence time T2,c is inferred from the cavity relaxation time.

optimization is done with realistic constraints to realize the ECD sequence in the shortest

time given bandwidth and amplitude limits.

A full ECD sequence specified by the parameters
n
~�, ~�, ~✓

o
is compiled into drives "(t) and

⌦(t) by first optimizing the drives for each ECD gate given a target ↵0. These are interleaved

with qubit rotations, which are performed by modifying the phase and amplitude of fixed-

length Gaussian pulses with � = 6ns and total length 4� = 24 ns independently calibrated in

experiment. We note that pulse shaping techniques such as derivative reduction by adiabatic

gate (DRAG) could also be incorporated to realize shorter transmon pulses [180,181]. Finally,

the phase of each qubit pulse is updated to account for the additional phases associated with

each ECD gate (✓0) calculated by eq. (3.41). This correction is done by keeping track of the

qubit frame given all preceding ECD gates and updating the phase ' of each qubit rotation

gate accordingly. As an example, in fig. 4.8 we show the compiled ECD pulse sequence used

to prepare |+Zi
GKP

in the cavity. Here, we use ↵0 = 30, however some ECD gates are
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performed at a smaller ↵0
0
< ↵0 resulting from the finite displacement pulse duration and

the ECD optimization procedure described above.

4.2.2 Optimization of GRAPE and SNAP pulses

In this section, we outline numerical methods used to generate the GRAPE and SNAP pulses

for comparison against the ECD pulses. For these examples, we optimize the fidelity of the

quantum control problem |0i |gi ! |ni |gi for the Fock states n = 1 through n = 5.

Optimization of GRAPE

We use the methods described in [101] to optimize GRAPE pulses for the cavity and qubit

using our measured �. The driven dispersive Hamiltonian is used with piecewise-constant

pulses sampled every 33 ns and an oscillator Hilbert space truncation of N = 50. To find the

numerical quantum speed limit (QSL) associated with each Fock state preparation, we sweep

the length of the pulse and pick the shortest pulse with an optimized Fidelity F > 0.99. We

also employ typical bandwidth and amplitude constraints when optimizing these pulses. We

note that the cavity drive amplitudes used in our ECD gates are over an order-of-magnitude

larger than typical cavity drive amplitudes used in optimized GRAPE pulses [101]. Our

results confirm that GRAPE pulses optimized in the usual way take a time greater than 2⇡/�

as also observed in many state-of-the art bosonic control experiments [28,29,58,101,182–186].

Optimization of SNAP

The SNAP-displacement control sequence is parameterized as D†(↵)SNAP(')D(↵) as in

[128]. For each target Fock state |ni with n = 1...5 and circuit depth T = 1...5, we op-

timize the parameters of this control sequence with reinforcement learning [99]. For each

configuration (n, T ), we repeat the training 10 times with di↵erent random initial seeds.

The results show that to achieve fidelity > 99%, the circuit depth has to be T � 2 for Fock

states n = 1, 2, 3, and T � 3 for n = 4, 5. The best performing protocols are compared
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Figure 4.1: Fock state preparation pulse duration comparison and optimized
drives. a) Total pulse sequence duration using the protocols from section 2.7.1 with min-
imum circuit depth such that F � 0.99 (solid lines). Colored long-dashed lines are the
instantaneous displacement scaling Ttotal = (�↵0)

�1
PN

i=1
|�i|. Colored dotted lines are the

drive constraint limits Ttotal = 2Ntq +4NtD. We use ↵0 = 30 in our experiment as indicated
by the stars. Also included are durations for independently optimized GRAPE (triangles)
and SNAP (crosses) protocols using our system parameters where the x-coordinate indicates
the simulated largest displacement used (max | hai (t)|). b) Cavity drive "(t) (upper panel)
and transmon drive ⌦(t) (middle panel) for preparation of Fock state |1i (real and imagi-
nary parts shown in solid and dotted lines) and simulated average photon number during
the sequence (lower panel).

against ECD control in fig. 4.1. For SNAP, we assume a gate time of 2⇡/�, however SNAP

is typically implemented with longer gate times [115].

4.3 Fock state preparation

Previously in section 2.7.1, I outlined the procedure for optimizing circuits using the phase-

space ISA. Additionally, in section 3.3.2, I discussed how ECD gates can be optimized in

an experiment. By combining these, we can compare the resulting pulse durations assuming

our dispersive shift of �/2⇡ = 33 kHz with pulses optimized using the Fock-space ISA (the

SNAP and displacement gate) along with optimal control pulses.

The resulting sequence duration for preparation of Fock states |1i through |5i as a func-

tion of the displacement used during the ECD gates ↵0 is shown in fig. 4.1a. For this plot,
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we use the circuits with the shortest depth such that the optimized fidelity from fig. 2.6a is

greater than 99%. This choice represents an optimum fidelity in the presence of decoherence

as verified by master equation simulations.

As shown in the figure, at intermediate values of ↵0, the sequence duration follows the

instantaneous-displacement limit Ttotal / (�↵0)
�1. As ↵0 increases, the amplitude and band-

width constraints result in sequences limited by the total duration of the constituent pulses,

Ttotal = 2Ntq+4NtD, where the duration of qubit rotation pulse and oscillator displacement

pulses used in our experiment are tq = 24 ns and tD = 44 ns. In our experimental demonstra-

tions, we use ↵0 = 30 (as shown by the stars in fig. 4.1a) and operate close to the predicted

maximum conditional displacement rate gmax

e↵
/2⇡ ⇡ 1MHz. The shortest lifetime in our ex-

periment is the transmon Ramsey coherence time T2 ⇡ 30 µs realizing �/2⇡ . �2 ⌧ ge↵/2⇡

and allowing high-fidelity control in a regime where the bare nonlinearity is comparable to

the fastest decoherence rate.

In fig. 4.1a, the duration of ECD pulse sequences are also compared to independently

optimized GRAPE and SNAP sequences for Fock state preparation with our system param-

eters. Here, ECD sequences have over an order-of-magnitude enhancement in gate speed.

Note that the GRAPE pulses used implement a typical Fock-space cuto↵. The displaced-

frame GRAPE method introduced in section 2.5.1 could instead be used to find fast protocols

that make use of large displacements.

As an example of a full compiled pulse sequence, single-photon state preparation using

↵0 = 30 is shown in fig. 4.1b. This gate is realized about 30 times faster than 2⇡/�,

with compiled drives and simulated intracavity average photon number shown in fig. 4.1b,

demonstrating the ability to utilize the oscillator’s vast Hilbert space to enhance gate speed

with a displaced-field of max|↵|2 = 900 photons during the gates.

We can also simulate the sensitivity of the compiled pulses for Fock prep to various

coherent error channels, including a transmon detuning, oscillator detuning, drive amplitude

miscalibration, and a miscalibration of the dispersive shift �. The simulated sensitivities to
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Figure 4.2: Fock state preparation sensitivity to coherent errors. Simulated
drop in fidelity of Fock preparation sequences under di↵erent coherent error channels of
qubit/oscillator detuning, drive amplitude miscalibration, and dispersive shift � miscalibra-
tion. Dashed line indicates a drop of 1%. ECD control and GRAPE control are similar
in their sensitivities, except for qubit detuning, where the dynamical decoupling built into
ECD sequences decreases the sensitivity for ECD pulses.
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these error channels are shown in fig. 4.2. In particular, the pulses are designed to be robust

to low-frequency noise coupled to b†b / �z. As shown, simulation results for ECD Fock state

preparation pulse sequences with an additional qubit detuning H/~ = ��z/2 show resilience

at the level of 1�F ⇠ 0.01 to static detuning on the order of �/~ ⇠ 1MHz, indicating they

are much more insensitive than the optimized GRAPE pulses.

In the experiment we measure the complex-valued characteristic function C(�) = Tr (D(�)⇢)

by using an ECD gate to perform phase estimation of the displacement operator D(�) con-

ditioned on a disentangling transmon measurement [26,66,175]. This method is outlined in

section 3.4. Importantly, this tomography can be performed in a time much faster than 2⇡/�

using large displacements (we note that direct Wigner tomography using typical circuit-QED

parity measurements would be impractical, taking a time ⇡/� ⇡ 15 µs.) The real parts of the

measured characteristic functions for Fock states |1i through |5i are shown in fig. 4.3. From

the real and imaginary parts (not shown) of the characteristic functions we reconstruct the

density matrices using maximum likelihood estimation leading to the results summarized in

table 4.1 and reaching a best fidelity of Fexp = 0.98± 0.01 for Fock state |1i.

The experimental fidelities in table 4.1 are compared to master equation simulations

Fsim including all independently measured decoherence mechanisms. Out of the measured

decoherence sources, qubit relaxation during the ECD gates is the largest error contribution.

The simulated fidelities are higher than the measured fidelity for most demonstrations, and

a likely cause is additional coherent error sources arising from unknown microwave trans-

fer functions, calibration drifts, and other forms of model bias. Closed-loop optimization

strategies such as reinforcement learning could be used to mitigate these e↵ects [99,187], but

in this work we did not perform such an optimization. An additional possible decoherence

mechanism is pure oscillator dephasing that could arise from coupling to other uncontrolled

modes such as two-level-systems [162]. Although we do not have an exact measurement of

the pure oscillator dephasing rate in this experiment, we have simulated the influence of rel-

atively slow pure oscillator dephasing at a rate � = (150ms)�1, resulting in sequences with
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Figure 4.3: Tomography of Fock states prepared with the phase-space ISA. Mea-
sured real part of the characteristic functions for the first five excited Fock states in the
cavity. The imaginary part is also measured (not shown) and used to reconstruct the den-
sity matrix (section 4.5.3). The resulting state fidelities are given in table 4.1, with a best
fidelity of F = 98± 1% for Fock |1i preparation.

fidelities given by F�
sim

in table 4.1. These results reveal that even a small pure dephasing

rate of the oscillator can significantly lower the fidelity when using large displacements.

4.4 Squeezed state preparation

As a second demonstration, we prepare squeezed vacuum states |⇣i = exp
�
1

2
(⇣⇤a2 � ⇣a†2)

�
|0i

with a squeezing level in dB defined as 20 log
10

�
e|⇣|
�
. Highly squeezed states of an oscillator

can allow sensing beyond the standard quantum limit, as was recently used to enhance the

search for dark matter axions [30]. However, the presence of a large oscillator self-Kerr

degrades the quality by distorting the squeezed state and increasing the variance of the

squeezed quadrature [188]. In our experiment, the small inherited oscillator self-Kerr of

⇡ 1Hz, over three orders of magnitude smaller than is typically used [101], minimizes the

state distortion during preparation and idling periods.

In fig. 4.4a we show ECD optimization results for squeezed state preparation starting

from vacuum. Plotted is the minimum circuit depth needed to reach a fidelity F � 99%. A

related method for squeezed state creation was introduced in [189], and the protocols here

have fewer conditional displacements, demonstrating the ability of our optimization method

to find novel control circuits.
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Figure 4.4: Squeezed state and GKP state preparation optimization results.
Numerically optimized minimum circuit depth to reach state transfer fidelity F � 0.99 for
preparation of squeezed states (part a) and F � 0.98 for preparation of logical GKP states
(part b)

In our experiment, we apply the optimized squeezed state preparation ECD sequences for

target squeezing levels of {6, 8, 10, 12, 14} dB using a large displacement magnitude of ↵0 =

30. The measured characteristic functions are shown in fig. 4.5a, with achieved squeezing

levels of {4.8, 6.7, 8.2, 9.8, 11.1} dB calculated from a fit to the reconstructed probability

distribution along the squeezed quadrature, shown in fig. 4.5b.

The reconstructed states show some non-Gaussian features as decoherence during the

pulse causes distortion, similar to the Fock preparation case, leading to a lower e↵ective

squeezing. To the best of our knowledge, the measured squeezing of 11.1 dB demonstrated

here is larger than any intraresonator squeezing demonstration in the microwave regime to

date, with other demonstrations achieving steady-state intracavity squeezing at the level of

8.2 dB [188] and a post-selected state-preparation method demonstrating 5.7 dB [190]. The

echoed conditional displacements realized here could also be used to sense small displace-

ments of a squeezed state using phase estimation [191].
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Figure 4.5: Squeezed state tomography and reconstructed quadrature probability
distributions. a) Real part of measured characteristic functions for vacuum and squeezed
states. Note that for characteristic functions, the squeezing corresponds to the elongation,
not the width of the waist. b) Reconstructed position quadrature probability distributions
and squeezing values found by a fit to Gaussian functions. Also shown are purities calculated
as p = Tr(⇢2).
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4.4.1 E↵ective squeezing measurement

To find the e↵ective squeezing of prepared states, the reconstructed density matrices are

used to calculate the position quadrature probability distributions, P (x) = Tr (⇢ |xi hx|),

with results shown in fig. 4.5b, including the measured cavity equilibrium thermal state for

comparison. Here, a small rotation is applied to the reconstructed density matrices before

calculating the probability distributions to align the squeezed quadrature. Also shown is

the purity (p = Tr (⇢2)) of each reconstructed density matrix. These distributions are fit to

Gaussian functions to extract the squeezing in each state. We compare these results to a

calculation of the Fisher information using the full reconstructed probability distributions,

Ic = 2

Z
dx (@x logP (x))2 P (x). (4.2)

The Fisher information is a measure of the ability to sense small displacements along the

position quadrature using the state with respect to homodyne detection [189,192]. For ideal

squeezed states, Ic = 2/ h�x2i. Although the calculated purity of the squeezed states de-

creases with larger target squeezing, the states can still be used to sense small displacements,

since only the probability distribution P (x) = Tr (⇢ |xi hx|) enters into the Fisher informa-

tion. In fig. 4.6, we compare the calculated IC for each state to the target value. Finally, we

also compare to Ic = 2/�2

x, where �
2

x is the variance of the Gaussian fit, indicating that the

squeezed quadrature distributions are well approximated by a Gaussian, even though the

full topographies show some non-Gaussian features.

4.5 Binomial and GKP code word preparation

To further characterize the method, we implement logical state preparation for two di↵erent

quantum error correcting bosonic codes, the binomial code [193] and the square GKP code [1].

For the binomial code, we focus on the smallest code for which the loss of a single photon is
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Figure 4.6: Fisher information of measured squeezed states. Calculated Fisher
information from the probability distributions (orange), compared to that expected from a
Gaussian fit (blue).

correctable, with code words |+Zi
bin

= (|0i+ |4i) /
p
2 and |�Zi

bin
= |2i. The GKP code,

on the other hand, is defined as the mutual +1 eigenspace of the displacement stabilizers

Sp = D(
p
2⇡) and Sq = D(i

p
2⇡) with logical operators given by X = D(

p
⇡/2) and

Z = D(i
p
⇡/2). The ideal GKP code has infinite energy, and a finite energy code can

be defined by modifying the stabilizers and logical operators using the envelope operator

E� = exp
�
��2a†a

 
under the transformation O� = E�OE�1

�
, leading to code states that

are superpositions of squeezed states with squeezing parameter ⇣ = ln� [20, 64].

For the binomial code, previous experiments have demonstrated logical state preparation

using GRAPE, relying on a large bare nonlinearity �/2⇡ compared to decoherence rates

[29, 101, 182, 183, 185]. With ECD control, optimization results in protocols that prepare

all cardinal points of the Bloch sphere to a fidelity F = 99% with a circuit depth at most

N = 5. Applying these circuits in experiment using ↵0 = 30 results in the measured

characteristic functions shown in fig. 4.7 with fidelity given in table 4.1. The average pulse

time for binomial state preparation is 3.27 µs - about 9 times faster than 2⇡/�. In principle,

fast logical operations, measurement, and stabilization of the binomial code could also be

achieved using ECD control.
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Figure 4.7: Tomography of binomial code logical states. Measured characteris-
tic functions for logical state preparation of binomial code words, where the logical state
|�ZLi = |2i is included in fig. 4.3. All other cardinal points on the Bloch sphere can be
obtained by phase space rotations. Fidelities are given in table 4.1.

For GKP states, fig. 4.4b shows the circuit depth required for ECD protocols to prepare

|+Zi
GKP

, |+Y i
GKP

, and |�Zi
GKP

optimized to a state transfer fidelity of F = 98% at

di↵erent squeezing levels. For a target squeezing of �target = 0.306, the optimized phase-

space ISA pulse for GKP |+Zi state preparation from vacuum is shown in fig. 4.8.

The protocols found here represent a unitary protocol for GKP state creation, as opposed

to the non-unitary protocols recently demonstrated in both trapped ions [66] and supercon-

ducting circuits [26] that require multiple measurements with feedback or many rounds of

dissipative pumping. A related measurement-free GKP state preparation protocol has been

proposed [194] and implemented in trapped-ions [65], however it requires an initial squeezed

state.

In fig. 4.9, we plot the measured characteristic functions found using these circuits with

↵0 = 30 achieving fidelities given in table 4.1. For the GKP states, we use a target squeezing

level of 10.3 dB and experimentally achieve a squeezing level of 9.1 dB. Our pulse sequences

are about 15 times faster than the state preparation method using measurements and feed-

back demonstrated in [26] with similar experimental parameters. This order-of-magnitude

reduction in initialization time can reduce the hardware overhead of error correction pro-
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Figure 4.8: GKP state preparation ECD pulse sequence used to prepare |+Zi
GKP

in the cavity starting from vacuum using a circuit depth N = 9. Here, �target = 0.306 as

described in section 4.5.2 and the ECD control parameters
n
~�, ~�, ~✓

o
are found using the

procedure described in section 3.3.2. "(t) is the cavity drive and ⌦(t) is the transmon drive.
Solid and dotted lines denote the real and imaginary parts of these drives, respectively.

tocols requiring GKP resource states, such as teleported error correction [23] or the GKP

surface code [195,196].

4.5.1 Binomial code analysis

The binomial kitten code is the smallest binomial code for which the loss of a single pho-

ton is correctable [23, 29, 183, 185, 193], with logical states given by |+Zi = (|0i+ |4i) /
p
2

and |�Zi = |2i. In table 4.3 we give the estimated expectation values of the logical Pauli

operators of the prepared states found numerically using the reconstructed density ma-

trices. We also quantify how errors in the prepared states could be corrected by ideal

error correction, as some errors during the state preparation are in principle correctable.

In particular, the correctable code space includes the normalized error states |+Zi
e
=
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a |+Zi /| h+Z|a†a|+ Zi |2 = |3i and |�Zi
e
= a |�Zi /| h�Z|a†a|� Zi |2 = |1i. From these,

we can define the logical operators corresponding to applying ideal error correction then

performing a logical measurement, given by

Xc = |+Zi h�Z|+ |+Zi
e
h�Z|

e
+ |�Zi h+Z|+ |�Zie h+Z|e

Yc = i |�Zi h+Z|+ i |�Zie h+Z|e � i |+Zi h�Z|� i |+Zie h�Z|e

Zc = |+Zi h+Z|+ |+Zi
e
h+Z|

e
� |�Zi h�Z|� |�Zie h�Z|e

Ic = |+Zi h+Z|+ |+Zi
e
h+Z|

e
+ |�Zi h�Z|+ |�Zie h�Z|e .

(4.3)

The expectation values of these operators quantify the logical information encoded in the

prepared states after ideal error correction assuming a photon loss error channel. We calcu-

late these expectation values using the reconstructed density matrices with results shown in

table 4.3. If these prepared states were to be used in an error correction setting, the error

decoding model should instead be adapted to fit the actual errors encountered during state

preparation.

State hIi hXi hY i hZi hIci hXci hYci hZci
|+Xi

bin
0.90 0.98 0.08 -0.05 0.95 0.92 0.09 -0.08

|+Y i
bin

0.92 -0.06 0.90 -0.10 0.98 -0.06 0.96 -0.13
|+Zi

bin
0.92 0.03 -0.05 0.92 0.97 0.04 -0.04 0.96

|�Zi
bin

0.93 -0.01 -0.10 -0.93 0.99 -0.02 -0.10 -0.98

Table 4.3: Binomial code Pauli expectation values found numerically using the recon-
structed density matrices.

4.5.2 GKP code analysis

The finite energy square GKP code stabilizers and logical Pauli operators are defined as

[1, 15, 20, 23,64,197]

Sq,� = e��
2a†aD

⇣
i
p
2⇡
⌘
e�

2a†a Sp,� = e��
2a†aD

⇣p
2⇡
⌘
e�

2a†a (4.4)

X� = e��
2a†aD

⇣p
⇡/2
⌘
e�

2a†a Z� = e��
2a†aD

⇣
i
p
⇡/2
⌘
e�

2a†a (4.5)
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Figure 4.9: Tomography of GKP code words using measurement-free preparation.
Measured characteristic functions for logical state preparation of the GKP code. All other
cardinal points on the Bloch sphere can be obtained by phase space rotations. Fidelities are
given in table 4.1.

with Y� = iX�Z�. The target GKP states are found numerically by letting |+Z�i be the

ground state of a fictitious Hamiltonian H = �Sq,� � Sp,� � Z�, then by applying the

appropriate finite energy logical operators and normalizing. The GKP Hamiltonian method

described in appendix G can also be used to define these states.

Here, we use a target state squeezing of �target = 0.306 (10.3 dB). To estimate the

e↵ective squeezing of the prepared GKP states in experiment, we find the value of � that

maximizes the expectation value of the projector onto the finite-energy code space P� =

|+Z�i h+Z�|+ |�Z�i h�Z�| using the reconstructed density matrices. We find a squeezing

of �exp = 0.35 (9.1 dB) for all prepared states within the precision of the reconstruction. In

addition to the fidelities given in table 4.1, we quantify the quality of the prepared states

here by numerically estimating the expectation values of the finite-energy Pauli operators

and stabilizers with results given in table 4.4.

In addition, we quantify the prepared GKP states by the logical expectation values

that would result from an ideal homodyne detection. In fig. 4.10, we plot the reconstructed

marginal probability distributions for the prepared GKP states along the generalized quadra-

ture coordinate x✓ =
�
ei✓a† + e�i✓a

�
/
p
2 with ✓ = {0, ⇡/2, ⇡/4} (x0 = x and x⇡

2
= p). From
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Figure 4.10: Reconstructed GKP state marginal probability distributions. Blue
and white bins represent the integration zones corresponding to assigning the associated
logical Pauli operator ±1 respectively.

these, we can define the corresponding homodyne expectation values (XH , YH , and ZH) re-

sulting from integrating the probability distributions and assigning a logical value. These are

given by the total probability of finding a homodyne measurement result in sectors closest

to x0 mod 2
p
⇡ = 0 or x0 mod 2

p
⇡ =
p
⇡ for ZH = ±1, with analogous definitions for XH

and YH [1]. The results are given in table 4.4.

State Re (hSq,�i) Re (hSp,�i) Re (hX�i) Re (hY�i) Re (hZ�i) hXHi hYHi hZHi
|+Zi

GKP
0.75 0.88 0.01 -0.02 0.94 0.00 -0.01 0.94

|+Y i
GKP

0.78 0.78 0.02 0.87 0.05 0.01 0.87 0.06
|�Zi

GKP
0.81 0.71 0.02 0.03 -0.85 0.02 0.02 -0.91

Table 4.4: GKP code stabilizer and Pauli expectation values. For the finite energy
stabilizers and Pauli operators, we use � = �exp = 0.35.

Finally, we note that the ECD gate set is designed to be well suited in the weak-�

regime since it requires fast unselective qubit rotations, an important operation that can

become challenging at large dispersive shifts. With independent experiments on a di↵erent

sample not presented in this work, we have confirmed the validity of the ECD approach
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for �/2⇡ ⇠ 200 kHz. To realize faster gates using a larger dispersive shift on the order

of �/2⇡ & 1MHz, the gate set could be modified to take the partially selective nature of

the finite-bandwidth qubit rotations into account, or GRAPE based techniques could be

incorporated.

4.5.3 Density matrix reconstruction

To estimate the fidelity and purity of the oscillator state in experiment, we employ density

matrix reconstruction using maximum likelihood estimation. For this, we use the measured

real and imaginary parts of the characteristic functions, taken with 1,280 averages per point

and use a numerical, iterative, convex optimization algorithm. For all demonstrations, the

measured imaginary parts are close to zero, as is expected for states with symmetric Wigner

functions. Any small deviations away from zero in the imaginary part are captured by the

reconstruction.

For the Fock states, binomial states, and GKP states, the reconstruction is done in

the Fock basis. For the squeezed states, reconstruction is performed in the squeezed-Fock

basis |ni⇣ = S(⇣) |ni with a basis squeezing ⇣ equal to the target squeezing to reduce the

computer memory needed. The reconstruction Hilbert space size is swept, and a Hilbert

space truncation is chosen such that increasing or decreasing the truncation does not change

the fidelity or purity within the quoted error bars. For the binomial,GKP, and squeezed

states, some states display a small phase-space rotation in the tomography. For these, a

small inverse rotation is applied to the reconstructed density matrix. The maximum change

in fidelity from this rotation is 1(%) for the |�Zi
GKP

state.

4.6 Sources of infidelity

In this section, we use simulations to estimate the sources of infidelity for the Fock state,

binomial state, and GKP state preparation.
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4.6.1 Decoherence-free error budget

First, we estimate how accurately our pulse compilation procedure, described in section 3.3.2,

can realize ideal ECD control unitaries, UECD in eq. (2.52), especially in the presence of

Kerr and the second-order dispersive shift. In the open red circles of fig. 4.11, we show

simulated oscillator state preparation fidelities of the ideal ECD unitaries, defined as Fg =

| h target| gi |2 where | gi is the oscillator’s state after post-selecting the qubit in |gi.

Next, we use the pulse compilation procedure described in section 3.3.2 with our system

parameters, except we set Ks = 0 and �0 = 0 to construct oscillator and qubit pulses

which realize the ECD sequences without these higher order nonlinearities. These pulses

are simulated with Ks = 0 and �0 = 0, and the resulting fidelities are shown by the blue

triangles in fig. 4.11. These fidelities are close to the ideal unitary fidelities, demonstrating

our ability to realize ECD sequences with the ideal dispersive Hamiltonian. These pulses are

then simulated using eq. (3.22) with all nonlinear terms included using the measured system

parameters, and the results are shown by the green crosses in fig. 4.11. These infidelities are

significantly higher, demonstrating the need to account for higher order nonlinearities in the

pulse construction.

In addition, we include the measured values of Kc and �0 in the pulse construction,

following the procedure outlined in section 3.3.2 which corrects for the linear contributions

of Kerr and the second-order dispersive shift in the displaced frame. The resulting pulses are

simulated with the full Hamiltonian, resulting in the infidelities given by purple diamonds

in fig. 4.11. These infidelities are close to the pulses optimized and simulated with K = 0

and �0 = 0, indicating that correcting for the linear contributions of these terms is enough

to significantly reduce their deleterious impact on the overall gate fidelity.

Additional coherent sources of infidelity can arise from unknown microwave distortions

and drifts of calibrations during the measurements. In our experiment, drive strengths and

phases are first independently calibrated, and we do not use in-situ optimization of these

parameters since a fast, direct measurement of fidelity is not easily available. However, in
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future implementations the characteristic function can be e�ciently sampled to estimate the

fidelity, and this could be used with with a Nelder-Mead or reinforcement learning approach

for in-situ parameter optimization [99].

fock 1 fock 2 fock 3 fock 4 fock 5 bin +X bin +Y bin +Z GKP +Z GKP +Y GKP -Z

10
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dispersive only

Kerr and Chi’
Linear Correction

unitary ECD
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Figure 4.11: Decoherence free error budget. Simulated fidelity of constructed ECD
sequences under di↵erent conditions. Red circles: result from unitary ECD parameter opti-
mization. Blue triangles: pulses constructed and simulated with K = �0 = 0. Green crosses:
pulses optimized with K = �0 = 0 and simulated with measured K and �0 (nonzero). Purple
diamonds: pulses optimized and simulated with measured K and �0 (nonzero)f.

4.6.2 Impact of decoherence

Next, we study the impact of transmon and cavity decoherence on the state preparation

fidelity. In particular, we perform master equation simulations in the time-dependent dis-

placed frame. Under a unitary frame transformation ⇢ ! ⇢̃ = U⇢U †, the master equa-

tion @t⇢ = �(i/~) [H, ⇢] +
P

i D[Li]⇢ becomes @t⇢̃ = �(i/~)
h
H̃, ⇢

i
+
P

i D[ULiU †]⇢̃ with

H̃ = UHU †+ i~ (@tU). Using the time-dependent displaced frame in section 3.2.2, we evolve

the joint transmon-cavity density matrix according to

@t⇢̃ = �
i

~

h
H̃(t), ⇢̃

i
+ �#D[q]⇢̃+ �"D[q†]⇢̃+ 2��D[q†q]⇢̃

+ #D[a]⇢̃+ "D[a† + ↵⇤(t)]⇢̃+ 2�D[(a† + ↵⇤(t))(a+ ↵(t))]⇢̃

(4.6)

where H̃(t) is the displaced frame Hamiltonian in eq. (3.22) and ↵(t) is the nonlinear response

to the drive given by solving eq. (3.23). By simulating in the displaced frame which tracks the
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Figure 4.12: Full error budget compared to measured fidelities and purities.
For each state preparation example, black dots indicate infidelities found from maximum
likelihood reconstruction using the measured characteristic functions after post-selecting the
transmon in |gi. Also shown is the purity of the reconstructed states p = Tr (⇢2). For each
state, we include the baseline infidelity (labeled decoherence-free) which is equivalent to the
purple diamonds in fig. 4.11. On top of this baseline, contributions to the total simulated
infidelity using the measured decoherence rates are shown by the colored bars. Here, other
(bars not visible) includes contributions from transmon dephasing, transmon heating, and
cavity heating at the quoted rates. Also included is simulated contribution due to intrinsic
cavity dephasing at a rate � = (150ms)�1.

classical trajectory of the state’s center-of-probability in phase space, we reduce the Hilbert

space truncation required to accurately capture the dynamics. This is especially important

considering our pulses drive the oscillator to photon numbers of ⇠ 103.

We first simulate the impact of transmon relaxation, heating, and dephasing, as well

as cavity relaxation and heating, given the measured rates in table 4.2. When simulating

transmon relaxation, we use the averaged measured relaxation rate with hni
cav

= 900 photons

in the cavity T̃1,q ⇡ 30 µs, however we note this changes with time as shown in fig. 3.2, and the

contribution from this error channel is also expected to change depending on the particular

T̃1,q at the time of averaging. In addition, we approximate the qubit dephasing rate to be

�� = �2E � �1/2, which assumes the echoing of low-frequency noise during the ECD gates

results in an e↵ective white noise dephasing.

The results are summarized by the colored bars in fig. 4.12, where each contribution to the
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error budget is simulated by only including a single decoherence mechanism. Also included is

infidelity associated to an initial cavity thermal state (nth = 0.025) since we do not employ

active cavity cooling before each experiment. Independent simulations have verified that

adding the infidelities of individual error channels is a good predictor of the total infidelity

when simulating with all error channels combined. Out of these error channels, transmon

relaxation has the biggest overall impact on the infidelity as ancilla relaxation during the

conditional displacements can result in large oscillator displacements [26].

4.6.3 Error budget discussion

As shown in fig. 4.12, these decoherence mechanisms alone under-predict the infidelity found

in experiment. Possible additional sources of infidelity include unknown transfer functions

[198–200], drifts in parameters and calibrations, additional cavity heating due to the strong

drives, and cavity dephasing. Out of these mechanisms, we simulate the e↵ect of cavity

dephasing using the displaced-frame dephasing term in eq. (4.6).

In this experiment, we do not have a direct measurement of the small intrinsic cavity

dephasing rate, and such a measurement is an ongoing topic of investigation. We instead

use master equation simulations to study the impact of cavity dephasing. In fig. 4.12 we

include a contribution to the infidelity by simulating the pulses with a cavity dephasing rate

of � = (150ms)�1, shown by the light grey bars. For some state preparation experiments,

such as Fock |5i and GKP |+Zi, this rate roughly matches the measured infidelity. This is

evidence that the dephasing rate is likely smaller than 1Hz.

The simulated infidelities with all error contributions do not exactly follow the trend of

measured infidelities. This is likely due to the fluctuating relaxation rate of the transmon

as shown in fig. 3.4. All data was taken over the time span of about a week, and each

measurement over the time span of a few hours, during which time the relaxation rate of the

transmon with photons in the oscillator fluctuates, making the exact error budget di�cult

to establish.
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4.6.4 Dephasing and gate speed trade-o↵

Large displacements increase gate speed to reduce the impact of transmon errors and oscil-

lator relaxation. However they amplify oscillator dephasing, resulting in decoherence scaling

with photon number. Here, we use a simple model verified numerically to investigate this

trade-o↵.

If a single transmon error (bit-flip or phase-flip) spoils the fidelity of a state-preparation

sequence of duration T =
P

i |�|i/�↵0, the infidelity will scale as 1 � F / �2ET / �2E/↵0.

If a single oscillator photon loss spoils the fidelity, it will scale as 1�F / hniT / hni/↵0

where hni is the average photon number in the displaced frame during the gate sequence.

Oscillator dephasing will cause errors at a rate 1 � F / �↵2

0
T / �↵0, amplified by the

photon number during ECD gates. Together, these rates suggest the optimal choice in ↵0

will be ↵optimal

0
= c(�)�1/2 with a proportionality factor c that can be found numerically and

depends on �2E,, hni, drive constraints, and higher-order nonlinearities. As an example, in

fig. 4.13 we simulate state preparation with our experimental parameters while varying �

and ↵0.

4.7 Discussion of experimental results

With these proof-of-principle results, we demonstrate the counter-intuitive result that high-

fidelity universal control can be carried out in a regime where the relevant rate of bare

nonlinear evolution is comparable to the fastest decoherence rate. In particular, a large

on-o↵ ratio between the rate of control and the bare oscillator-qubit hybridization can be

achieved without the need for additional hardware such as a tunable coupler. Importantly,

the approach still requires a large ancilla qubit nonlinearity K, reflected by the enhanced

interaction speed limit /
p
�K.

Although our examples are specific to the oscillator and qubit system, similar displaced-

field type control schemes could be designed and performed in other bosonic systems with
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Figure 4.13: Optimal ECD displacement with oscillator dephasing included. a.)
Simulated infidelity of |+Zi
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bare nonlinearity of fourth order or greater, such as the recently proposed scheme to enhance

the rate of Fock state preparation in a Kerr oscillator [201]. The phase-space ISA and

parameter optimizations shown in this work could also be applied to realize universal control

of the motional state of a trapped-ion. In such systems, spin-dependent forces can be used

to realize a conditional displacement [202], and circuits similar to those presented here have

been demonstrated for application-specific control [65, 66].

Finally, a weak bare nonlinearity has many benefits in the context of quantum information

processing - for example, by su�ciently reducing the dispersive coupling �, oscillator non-

linearity and loss inherited from the qubit can be minimized while retaining controllability,

realizing a modular architecture where the qubit and oscillator can be more independently

optimized. This is important in applications where these spurious couplings can cause de-

coherence and distortion of encoded states, especially during idling periods [19]. Also, the

approach could allow for control of oscillators with measured relaxation times on the order

of seconds [55] without reducing their lifetimes from the coupling to a lossy qubit through

the Purcell e↵ect [34].
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It is worth noting that the ECD control method is designed for the weak-dispersive

setting and performs best in this limit. At larger values of �, the fidelity will be limited

by higher order nonlinearities (such as Kerr) and the inability to perform unselective qubit

rotations due to the limited bandwidth of qubit pulses. The point at which these e↵ects

become important will depend on the particular ECD sequence, transmon anharmonicity,

and drive constraints. As an estimate of these e↵ects, we simulated ECD pulse sequences for

state preparation while increasing � and higher-order nonlinearities as expected [142] using

↵0 =
p
ne
crit

=
p

K/(6�) and keeping all other parameters fixed to match our experiment.

We find that for �/2⇡ > 200 kHz, the total pulse duration saturates to the lower bound set

by our drive constraints. At larger dispersive shifts on the order of �/2⇡ & 500 kHz, the

additional infidelity due to higher-order nonlinearities and finite-bandwidth e↵ects becomes

important relative to other decoherence mechanisms. These e↵ects could be mitigated by

using more complex pulse sequences optimized to account for higher order nonlinearity and

finite-bandwidth e↵ects while still maintaining the speed enhancement of large displacements.

Finally, when the ECD method fails, the controlled parity gadget given in section 2.4.5 can

instead be used to realize conditional displacements with a large dispersive coupling.
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Chapter 5

Error correction of grid states

encoded in an oscillator

5.1 A brief introduction to bosonic quantum error cor-

rection

Physical qubits and oscillators are engineered to minimize noise such as unwanted couplings

with the environment, cross talk, and control distortion. However, realistic levels of physical

noise are too large for reliable quantum computation, even with an optimistic outlook. For

example, in a quantum circuit with G independent operations, each with failure probability

pfail, the success probability of the full circuit in the worst case is (1� pfail)
G - exponentially

small - so a quantum circuit with G gates will require a per-gate error rate of roughly

pfail <⇠ 1/G. It is estimated that on the order of 107 two-qubit gates will be needed to

realize a quantum advantage, with much longer circuits (orders-of-magnitude longer) needed

for factoring [7]. This should be compared with the best physical two-qubit gate error rates,

currently on the order of 10�3 for multi-qubit processors [6]. Clearly, error correction is

needed to bridge this large gap, as it is unlikely that physical qubits will reach these error

rates in the near-term.
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To overcome such noise, in quantum error correcting codes, logical quantum information

(the information on which a quantum computation is performed) is encoded redundantly as

non-local correlations in the large state space of a many-level physical quantum system, often

comprised itself of many distinct physical units. This encoding is done such that operations

on the logical information (including the identity operation in the case of a quantum memory)

are una↵ected by small local perturbations. Furthermore, these small local perturbations

can be measured and corrected (in some cases autonomously) before they build up enough

to cause a logical error.

The first theoretical proposals for quantum error correcting codes use many-qubit ap-

proach to encode quantum information non-locally came around 1996 [8, 10, 11, 203–208],

and these were also the first class of codes realized in superconducting circuits in 2012 [60].

Today, topological quantum error correcting codes such as the surface code [12–14, 90, 209]

are the leading candidates for realizing FTQC, and recent experiments have shown that

scaling these codes can lead to a decrease in error rates [6]. These error correcting codes can

be thought of as the realization of an artificial phase of matter that has intrinsic topological

protection against local perturbations. This is made explicit by the connection with lattice

gauge theories [210]. I will not cover multi-qubit QEC here, and I refer the reader to one of

the many great reviews or textbooks on the subject [2, 13, 14, 90, 211], and the online error

correction zoo is also a wonderful resource.

Although the many-qubits approach is promising, it is likely that using oscillators for

realizing FTQC will lead to an advantage in resource e�ciency. This is the domain of bosonic

quantum error correction, in which logical qubits are encoded into one or many oscillators.

There are a number of bosonic codes that have been proposed and realized; I refer the reader

to the many current reviews on the subject for a more in-depth introduction [18, 19, 22, 41,

43,212–214].

One of these bosonic codes, the Gottesman-Kitaev-Preskill (GKP) code, is the focus

of this PhD work and was introduced in section 1.2.2; For the GKP code, there has been
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a recent surge of interest in understanding the properties and performance of multimode

GKP qubit codes [215–219]. Intuitively, we anticipate that a multimode GKP qubit code

will outperform a single-mode GKP qubit simply due to “di↵usion” of logical information

across a larger space—the 2N -dimensional phase of N bosonic modes—as opposed to the

smaller 2-dimensional phase space for single mode codes. Of course, it is also important to

consider the trade-o↵s associated with multimode encoding, such as the potential increase

in susceptibility to certain types of errors, e.g., cross-talk between neighboring modes. See

our recent review [22] for an in-depth discussion.

It is important to emphasize that the multi-mode GKP encoding is the ultimate goal

of our research. However, in our current work, we first realize the single-oscillator GKP

QEC code as a quantum memory, and this should be seen as a stepping stone towards an

eventual multi-mode or concatenated encoding, such as a GKP surface code [41, 196, 220].

Our realization is a fundamental module in a future multi-mode code, requiring additional

engineering and more advancements to scale up.

In this chapter, I will focus on the experimental realization of the single-mode GKP code.

First in section 5.1.1, I will give a brief technical introduction to quantum error correction

by reviewing the Knill-Laflamme conditions, specifying the requirements for any QEC code.

Next, in section 5.1.2, I will introduce the finite-energy GKP code as a modification to the

infinite-energy GKP code that was already introduced. Following this, in section 5.2.2 and

section 5.2.3, I will discuss the QEC protocols we used to stabilize the single-mode GKP

code. Finally, in section 5.3 and section 5.4, I will review and compare our 2020 [26] and

our 2023 [99] quantum error correction experiments, ultimately leading to a demonstration

of an error-corrected quantum memory beyond break-even.

5.1.1 The Knill-Laflamme Conditions

A d-dimensional error correcting code can be specified by its logical code words, {|µLi}{µ=0,1,...,d�1},

forming a subspace of some larger Hilbert space H. These code words define a projector
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onto the code space, given by ⇧c =
P

µ |µLi hµL|.

Given a QEC code, the Knill-Laflamme conditions (introduced in [221]) can be used to

determine if a set of errors, {Ek}, is correctable [14]. Typically, these errors are the Kraus

operators of a quantum channel, acting as

⇢!
X

k

Ek⇢E
†
k (5.1)

under the condition
P

k E
†
kEk = 1.

Explicitly, the Knill-Laflamme error correcting conditions are

⇧cE
†
kEk0⇧c = ↵kk0⇧c (5.2)

for all k, k0, where ↵k,k0 are the elements of a complex Hermitian matrix.

The conditions can also be written as

hµL|E†
kEk0 |vLi = ↵kk0�µv (5.3)

for all k, k0, µ, v where |µLi , |vLi are code words.

For many codes, including most bosonic codes, the Knill-Laflamme conditions are only

satisfied approximately (see for example, the calculation for the binomial code given in [193]).

They are part of a class of codes known as approximate error correcting codes [222].

For the GKP code, the Knill-Laflamme conditions can be di�cult to calculate; such

a calculation requires evaluating the errors in the displacement basis (the characteristic

function, see appendix A.3), however error operators such as â are unbounded and hence do

not have a valid characteristic function. However, by applying the conditions instead to the

Kraus operators of the photon-loss channel, the conditions for the finite-energy code have

been calculated approximately by Albert et al. [18, 19, 43].

Alternatively, an intuitive approach can also be taken to understand the GKP code’s

143



protection to photon loss. As discussed in table A.1, the photon loss channel at rate #

acting for a time t applies a very simple transformation to the characteristic function of

the oscillator. In the case of pure photon loss (no photon gain " = 0) after a time t, an

initial characteristic function C(↵) is transformed into a new characteristic function C(↵, t)

according to

C (↵, t) = C(↵e�#t/2) exp
✓�

e�#t � 1
� |↵|2

2

◆
#t⌧1

⇡ C (↵ (1� #t/2)) exp
✓
�#t

|↵|2
2

◆
.

(5.4)

Equation (5.4) shows that photon loss causes the characteristic function to grow and a

Gaussian filter is applied. In the limit of small #t, the variance of the Gaussian filter is

(#t)
�1. This should be interpreted as high-frequency correlations of the Wigner function

being filtered out under photon loss, along with a directional di↵usion term, evident from

the stochastic Fokker-Planck equation under photon loss.

With this in mind, the GKP logical information is stored as low-frequency correlations

in phase space. Explicitly, the logical operators are points in the reciprocal space (the

characteristic function) that are as close to the origin as is allowed by the commutation law

for displacement operators, while still satisfying the required commutation laws for a qubit

stabilizer code (eq. (1.21)). As long as error correction is carried out quickly relative to the

rate of photon loss, this information is only marginally a↵ected by the Gaussian filter applied

to the characteristic function.

5.1.2 The finite-energy GKP code

The single-mode infinite-energy GKP code was introduced in section 1.2.2; readers should

become familiar with that introduction before proceeding. Here, I will discuss the finite-

energy GKP code.

As introduced in [20,24,64,223], the finite-energy GKP code can be defined as a modifi-
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cation of the infinite energy GKP code by using the (non-unitary) envelope operator, defined

as

E� = exp
�
��2a†a

�
. (5.5)

The finite-energy GKP code words are given by applying the envelope operator to the

infinite-energy code words

|±Zi
�
= N�E� |±Zi (5.6)

where N� is a normalization factor [64]. This formalism is powerful, as it allows us to define

finite-energy logical operators: any infinite-energy logical operator, Ô, can be transformed

into the finite-energy version Ô� using the similarity transformation, Ô� = E�ÔE�1

�
. As

shown in [64], this applies the following transformations to the oscillator position and mo-

mentum operators,

E�q̂E
�1

�
= cosh

�
�2
�
q̂ + i sinh

�
�2
�
p̂ (5.7)

E�p̂E
�1

�
= cosh

�
�2
�
p̂� i sinh

�
�2
�
q̂. (5.8)

From these relations, in the limit of small � such that cosh (�2) ⇡ 1 and sinh (�2) ⇡ �2,

the finite energy logical operators and stabilizers can be written as

Sq,� ⇡ exp
�
i2
p
⇡q̂ � 2

p
⇡�2p̂

�
Z� ⇡ exp

�
i
p
⇡q̂ �

p
⇡�2p̂

�
(5.9)

Sp,� ⇡ exp
�
�i2
p
⇡p̂� 2

p
⇡�2q̂

�
X� ⇡ exp

�
�i
p
⇡p̂�

p
⇡�2q̂

�
(5.10)

The finite-energy GKP states are the +1 eigenstates of the finite-energy stabilizers. These

finite energy logical states have a finite-overlap. However, in practice, this overlap is negli-

gible given current measurement capabilities; for a squeezing of 9 dB, the overlap of finite-

energy logical states is on the order of 10�6 [224].

An alternative approach to define the finite-energy GKP states is to diagonalize the
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Figure 5.1: Quantum error correction circuits: a.) feedback vs b.) autonomous.
In the ensemble sense, these two circuits enact the same channel on the oscillator. The ‘trash
can’ symbol represents the partial trace over the qubit mode. In reality, the circuit in b is
usually followed by a qubit reset, however this is not strictly necessary to write the Kraus
map.

confined GKP Hamiltonian, given by

HGKP,� =
!0

2

�
p̂2 + q̂2

�
� Ep cos

 p
2⇡d

⌘
p̂

!
� Eq cos

⇣
⌘
p
2⇡d q̂

⌘
. (5.11)

The finite-energy GKP manifold is given as the quasi degenerate +1 eigenstates of HGKP,�. I

cover this method in depth in appendix G and also in [22], along with the related Zak basis in

appendix F. The Hamiltonian approach will be a powerful tool for future Floquet-engineering

approaches to realizing the GKP code [39,40,225–227].

5.2 Stabilization of the finite-energy GKP code using

an auxiliary qubit

In this section, I will review methods to perform quantum error correction of a single-mode

GKP encoding using an auxiliary qubit.
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5.2.1 The Kraus operator approach

The circuits we use for stabilization of finite-energy GKP states are all of the same type

shown in fig. 5.1. Before discussing the details of GKP error correction, I will introduce

the approach to understanding these circuits using the Kraus formalism. Importantly, I

will show that the transformation applied by the circuit in fig. 5.1a using classical feedback

is equivalent to the circuit on the right, using a ‘quantum-controlled’ unitary, where the

equivalence is taken in the ensemble sense.

Let us first focus in the circuit shown in fig. 5.1a. Here, the auxiliary qubit is prepared

in pure state |gi, it interacts with the oscillator via a unitary U , and is then measured in

the �z basis. Finally, the information used for classical feedback, and the unitary Ug or Ue

is applied to the oscillator conditioned on the measurement result.

The initial state in the circuit is given by ⇢ = ⇢o⌦ |gi hg|, where ⇢o is the initial oscillator

density matrix. After the entangling unitary U is applied, but before the classical feedback

is applied, the state of the oscillator is given by the partial trace,

⇢̃o = Trq
�
U (⇢o ⌦ |gi hg|)U †� (5.12)

= hg|U (⇢o ⌦ |gi hg|)U † |gi+ he|U (⇢o ⌦ |gi hg|)U † |ei (5.13)

= hg|U |gi ⇢o hg|U †|gi+ he|U |gi ⇢o hg|U †|ei (5.14)

= Kg⇢oK
†
g +Ke⇢oK

†
e . (5.15)

Here Kg = hg|U |gi and Ke = he|U |gi are called the Kraus operators of the quantum channel

associated with the circuit (before the feedback is applied). They satisfy
P

n K
†
nKn = 1,

and any quantum channel can be written as ⇢ !
P

n Kn⇢K†
n. The action of these Kraus

operators on the oscillator is also called the ‘back-action’ of the circuit.

When the measurement is applied, the oscillator density matrix after the measurement

result is given by the POVM (positive operator-valued measure) formalism [2]. Written in
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terms of the Kraus operators,

⇢g =
Kg⇢oK†

g

pg
(5.16)

⇢e =
Ke⇢oK†

e

pe
(5.17)

pg = Tr
�
Kg⇢oK

†
g

�
(5.18)

pe = Tr
�
Ke⇢oK

†
e

�
(5.19)

where pg and pe are the probabilities of measuring |gi and |ei. The classical feedback can

then be applied, resulting in the final density matrices of the circuit ⇢g,f = Ug⇢gU †
g and

⇢e,f = Ue⇢eU †
e , where the f here stands for ‘final’.

The measurement results can tell us which feedback was applied. However, we can also

take an ensemble approach to the circuit. If we don’t record the measurement, the ensemble

result of the circuit will be given by

⇢f = pg⇢g,f + pe⇢e,f (5.20)

= UgKg⇢oK
†
gU

†
g + UeKe⇢oK

†
eU

†
e (5.21)

= K̃g⇢oK̃
†
g + K̃e⇢oK̃

†
e (5.22)

where K̃g = hg|UgU |gi and K̃e = he|UeU |gi.

We can now examine the autonomous circuit, shown in fig. 5.1b. Here, the start of

the circuit is the same. However, instead of a measurement and classical feedback, a qubit-

controlled unitary Ug |gi hg|+Ue |ei he| is performed. Finally, the ‘trash can’ symbol indicates

that we ignore the qubit after this gate - it is traced out. In practice, another circuit will

follow this one, and the qubit will be reset.

The Kraus operators of the autonomous circuit can also be computed using the method

shown above, considering that Ug and Ue act on the oscillator alone. Interestingly, the

Kraus operators for this circuit are K̃g and K̃e - exactly the same as the circuit with classical
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feedback when the measurement was ignored! From this result, circuits discussed in this

chapter can be realized either using classical feedback or ‘quantum’ feedback, by replacing

the classically-conditioned unitary with a qubit-controlled unitary. If desired, the qubit in

the autonomous circuit can be measured after the circuit, and the result of such a measure-

ment will reveal which error was corrected (in the language of quantum trajectories, which

trajectory was taken).

5.2.2 Stabilization of finite energy GKP states with the sharpen-

trim protocol

As shown by Terhal and Weigand in 2016 [59], phase estimation circuits of the type intro-

duced in section 3.4 can be used to prepare and measure GKP states. Here, we now derive a

QEC protocol called the sharpen-trim protocol, based on the ideas in [59], but importantly

modified to stabilize the finite-energy code.

The sharpen-trim protocol is shown in fig. 5.2b. It employs the phase space ISA described

in section 2.4.5 and chapter 4 to protect finite-energy grid states. This protocol was derived

in [26] and was used for the first demonstration of QEC for GKP states. Here, we describe

the protocol using the language of Kraus operators derived in the previous section. Later, in

section 5.2.3, we review the work of Royer et al. [64], where the sharpen-trim protocol was

further explained using the language of engineered dissipation, and additional stabilization

protocols were introduced.

Both the sharpen and trim steps use the same circuit, with di↵erent parameter values.

This circuit was first introduced in section 3.4, where the goal was to measure the hD(↵)i

(the characteristic function of the oscillator) using phase estimation. Here, it is no surprise

the circuits are similar; given the GKP stabilizers and logical operators are displacement

operators. However, in this case, the goal is to use the back-action on the oscillator to

stabilize a manifold of grid states.

First, note that there exists an optimal width of the envelope �, resulting from a trade-
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Figure 5.2: GKP sharpen-trim error correction protocol from [26]. a) Wigner
representation of engineered dissipation for stabilizing the finite-energy GKP code, here
shown as acting on the maximally-mixed state in the code. The protocol has two goals:
first, to stabilize the grid (blue arrows, the ‘sharpen’ step), and second, to stabilize the
envelope (purple arrows, the ‘trim’ step). b) The sharpen trim circuit, with timings shown
as realized in [26]. The qubit feedback is such that the qubit is prepared in |+i before each
ECD gate.
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o↵: more extended grid states have better resolved peaks and are thus more robust against

shifts, but are more sensitive to dissipation. Therefore, our protocol is designed with two

objectives in mind:

• Sharpen first, to keep the oscillator state probability distribution peaked in phase-

space at q, p = 0 mod
p
⇡,
p
⇡. Shown by the blue arrows in fig. 5.2a.

• Trim second, to prevent the overall envelope from drifting or expanding more than

necessary. Shown by the purple arrows in fig. 5.2a.

Let us first re-examine the general phase-estimation circuit shown in fig. 3.7. To remind

the reader, the qubit is initialized in the |+i state. Next, a conditional displacement of �

is applied. Finally, the qubit can be measured in some basis at angle ' along the �x � �y

equatorial plane of the Bloch sphere (by applying the appropriate ⇡/2 qubit rotation before

a �z measurement). Let us examine this circuit, but now using the Kraus operator approach

to examine the back-action on the oscillator.

Let the measurement basis of the qubit at angle ' along the equatorial plane of the Bloch

sphere be written as |±i' = (|gi± ei' |ei) (' = 0 corresponds to a �x measurement while

' = ⇡/2 corresponds to a �y measurement). The Kraus operators are evaluated to be

K(')
± = ' h±|

✓
D

✓
�

2

◆
|gi hg|+D

✓
��
2

◆
|ei he|

◆
|+i

0
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2

⌘◆
, (5.26)

where we have defined the perpendicular quadrature q? = cos(⇥)p̂ � sin(⇥)q̂ with ⇥ =

angle (�) (see appendix A.1).
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It is useful to examine the specific case of a conditional displacement along either the

momentum direction � = ib or position direction � = b and a measurement in the �y

basis (' = ⇡/2). The �y basis is chosen using the intuition introduced in the introduction

section 1.2.2: a measurement of �y corresponds to a measurement of the imaginary part of

the displacement operator, which is more sensitive to small displacements than the real part

if we expect the displacement to be small. The Kraus map can be written in the basis of q̂?

to show the probability distribution P (q?) is transformed according to

P (q?)! P (q?) cos
2

✓
1

2

⇣
�
p
2|�|q? ⌥

⇡

2

⌘◆
. (5.27)

With this transformation, the back-action acts by multiplication, transforming the prob-

ability distribution by multiplication with a squared cosine function with period 2⇡/
p
2|�|.

The cosine is shifted to the left or right corresponding to the measurement result. With this

description, we can now examine the sharpen and trim circuits shown in fig. 5.2b.

We first examine the sharpen circuit. Here, � =
p
2⇡, corresponding to a stabilizer. In

fig. 5.3, I show the action of the Kraus operator back-action on the oscillator q probability

distribution for a q sharpen round. In the left panel, the initial probability distribution is

shown, which has been broadened due to dissipation acting since the previous sharpen round.

Such a broadening can be understood as a di↵usion in phase space, or equivalently, as the

multiplication of the characteristic function by a Gaussian filter (given in eq. (5.4)).

The result of the sharpen circuit when measuring either |±yi is shown in the upper and

lower right panel of fig. 5.3. The initial distribution (black) is multiplied by a shifted cosine

(dotted line) corresponding to the measurement result. The result of such a multiplication

is shown as the solid colored lines. Clearly, the peaks are sharpened! However, they are

slightly shifted to the right or left, depending on the measurement outcome. This is where

the classical feedback comes into play: by applying a small ‘kick’ in position, depending

on the measurement result, the resulting distribution can be centered. The net result of
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Figure 5.3: Back-action of the sharpen circuit. Modified and reproduced from the
supplement of [26]. Left: an initial GKP probability distribution that has been broad-
ened. Right: Conditioned on the measurement result, multiplication by the shifted cosines
(dotted) results in sharpened distributions. These distributions are centered after the mea-
surement with small kicks using low-latency classical feedback.
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post- post- 

Figure 5.4: Back-action of trim circuit, reproduced from [26]. Back action associated
with a trimming step in position. The initial position probability distribution (black line) is
multiplied by the shifted cosine. The resulting distributions are trimmed but not centered.
A feedback displacement conditioned on the measurement result is then used to center the
envelope,

the sharpen circuit, when averaged over both Kraus operators as discussed in the previous

section (the measurement probabilities are roughly p+ = p� = 0.5 under photon loss), results

in a centered and sharpened distribution. This circuit is applied along both position and

momentum to sharpen peaks in both directions.

However, if only the sharpen circuit were applied, the envelope would not be properly

contained; each sharpen round adds energy to the oscillator through the conditional dis-

placement, resulting in a broader envelope. Given typical loss rates, photon loss alone is not

enough to contain the state from growing.

To solve this problem, we introduced the trim round in [26]. The trim circuit, shown

in fig. 5.2, uses the same sequence of gates as the sharpen circuit, however with di↵erent

values for the conditional displacement and feedback. For these trimming rounds, a small

conditional displacement of size |�| = "/
p
2 is applied. As shown in fig. 5.4, the back-action

applied to the oscillator probability distribution is the same: multiplication by a shifted

cosine squared. However, here the cosine with has a much larger period of 2⇡/
p
2", resulting

in a trimmed envelope and shifted envelope; after measurement of |±yi, the envelope is

centered at ±
p
⇡. To recenter the envelope, a feedback kick of ±

p
⇡ is applied to the state,

154



conditioned on the result of the measurement.

The full protocol, shown in fig. 5.2b, consists of 4 alternating rounds: sharpen position,

trim position, sharpen momentum, trim momentum. Finally, the sharpen-trim circuit can

also be performed autonomously by replacing the final measurement, feedback, and classical

displacements with a conditional displacement followed by a qubit reset, as shown in fig. 5.9

and discussed in the previous section.

5.2.3 The engineered dissipation approach

In Royer et al., [64] the sharpen-trim circuit was further examined using an engineered

dissipation approach, and other stabilization circuits were derived. Here, I will briefly review

their method, with more details given in [64].

An alternative to measuring the stabilizers of the quantum codes is engineering a system-

bath interaction,

H =
p
�(d̂b̂(t)† + d̂†b̂(t)), (5.28)

which relaxes the system to states satisfying d̂ | i = 0, where d̂ is known as the dissi-

pator. Any excitation in the system due to d̂† are transferred to the zero-temperature

bath, autonomously cooling the system to the desired state | i. A Markovian model of

dissipation is realized by the above Hamiltonian where the field operators (bath) obey

[b̂(t), b̂(t0)†] = �(t� t0), with �(t) being the Dirac-delta distribution.

There are multiple ways to design dissipators into the codespace. In Ref. [64], the au-

thors defined dissipators to the GKP codespace as the natural logarithm of the finite-energy

stabilizers S, since lnS� | i = 0.1. The two finite-energy stabilizers Sq,� and Sp,� (approxi-

mations given in eq. (5.9)) define two target dissipators, d̂x = lnSq,� and d̂p = lnSp,�. Given

this, after tracing out the Markovian bath (assuming a zero-temperature bath), the system

bath interaction in eq. (5.28) under system bath coupling rates
p
�q and

p
�p gives results

1. We note an alternative definition of the dissipators was introduced in Ref. [39]
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in the master equation

@t⇢ = �qD[d̂q]⇢+ �pD[d̂p]⇢, (5.29)

where D[O]⇢ = O⇢O† � {O†O, ⇢}/2 is the standard dissipation superoperator.

However, actually realizing a system bath coupling of this type would be challenging,

involving many high-weight, non-local couplings [39]. Instead, we can make use of repeated

interactions with the qubit, each followed by a qubit reset, in order to e↵ectively realize the

master equation of eq. (5.29) in a ‘stroboscopic’ approach.

With details shown in [64], this stroboscopic approach gives rise to a few di↵erent finite-

energy GKP stabilization protocols, including the exact sharpen-trim method discussed in

section 5.2.2 and derived using di↵erent considerations!. Furthermore, the e↵ective stabiliza-

tion rate and envelope size can now be derived from the e↵ective dissipation rate (assuming

no additional loss; oscillator photon loss can modify the stabilized envelope size.)

Two additional protocols were derived in [64], each using a second-order trotter approx-

imation to the e↵ective unitary interaction needed to realize the master equation eq. (4.6)

with repeated qubit interactions. These two protocols, named the ‘small-Big-small’ protocol

and ‘Big-small-Big’ protocol after the relative magnitude of conditional displacements used,

combine the sharpen and trim step into one circuit. The small-Big-small circuit is less sen-

sitive to ancilla errors than the Big-small-Big circuit, and it is shown in fig. 5.5. This is the

circuit used as a seed in the 2023 GKP QEC experiment, as discussed in section 5.4.

5.3 Realizing quantum error correction of the GKP

code

In this section, I review our results from year 2020 demonstrating quantum error correction

of the GKP code for the first time [26]. The weak-coupling architecture, as introduced

in chapter 3, was used for this realization, with explicit experimental parameters given in
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qubit

oscillator

reset

Figure 5.5: small-Big-small circuit for the single-mode square GKP qubit, from [64] and
independently introduced in [65]. Here, written explicitly in terms of the envelope size �.
The angle ✓j is varied as ✓j = {0, ⇡/2, ⇡, 3⇡/2} to make a symmetric protocol, stabilizing
along position and momentum.

Storage oscillator single-photon lifetime Ts 245 µs
Storage oscillator frequency !s/2⇡ 5.26GHz

Storage oscillator Kerr anharmonicity Ks/2⇡ 1Hz
Transmon energy lifetime T1 50 µs

Transmon coherence lifetime (echo) T2E 60 µs
Transmon coherence lifetime (Ramsey) T2R 8 µs

Transmon resonance frequency !t/2⇡ 6.71GHz
Transmon anharmonicity Kt/2⇡ 193MHz

Readout oscillator single-photon lifetime Tr 65 ns
Readout oscillator frequency !r/2⇡ 8.2GHz

Storage-transmon dispersive shift �/2⇡ 28 kHz
Readout-transmon dispersive shift �r/2pi 1MHz

Jump rate to higher transmon levels during error-correction �!f 3ms�1

Table 5.1: Measured system parameters for the 2020 GKP experiment
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table 5.1.

In this experiment, we used the measurement-based sharpen-trim protocol introduced in

section 5.2.2. This circuit implements engineered dissipation to the GKP code manifold as

discussed in the previous section. By utilizing fast FPGA electronics with a latency on the

order of 200 ns, the transmon was measured and fast feedback displacements were employed

to correct for small shift errors in real time in a four-round QEC cycle. As a verification

experiment, the QEC cycle was repeated starting from the vacuum state of the oscillator,

and the expectation values of stabilizers were measured after each step. The results of this

experiment are shown in Figure 5.6a, with a convergence to the quasi-steady state after

about 20 rounds (here, a round is defined as a single sharpen or trim step). The pattern in

the measured stabilizers is clear: during each four round cycle, the measured position (or

momentum) stabilizer value increases after the corresponding sharpen round, and slightly

decreases during the next 3 rounds, matching simulation. Also shown in Fig. 5.6b is the

convergence of the oscillator to a mixed state in the code manifold after 200 rounds of

stabilization, longer than the decay constant of logical information.

To measure the performance of the quantum error correction protocol, Pauli eigenstates

of the GKP code were prepared with a measurement-based protocol [26,66]. In this protocol,

the code is first stabilized to an arbitrary (mixed) state in the code manifold by many rounds

of stabilization. Next, the GKP code is projected into one of the |±Zi logical eigenstates by

an infinite-energy Z logical measurement. For this measurement, the transmon is initialized

in the |+xi state, a conditional displacement corresponding to a Z logical Pauli is applied,

and the transmon is measured in the x basis. A real-time feedback displacement conditioned

on the measurement result was then applied to prepare the desired logical state. The same

procedure was used to prepare X and Y logical states by measuring the corresponding logical

displacements. The measured characteristic functions resulting from this state preparation

method is shown in fig. 5.7b. It is interesting to note that visually, these states are of higher

quality than the states prepared using a full unitary approach in section 4.5.
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Figure 5.6: Measured and simulated results for measurement and feedback
based error correction of the single mode square GKP code. a) Measurement
based sharpen-trim protocol. b) Left: Evolution of the square-code position and momentum
stabilizers under repeated QEC cycles starting from vacuum. Right: Measured characteristic
function after 200 rounds. c) Lifetimes of the uncorrected (crosses) and corrected (circles)
square GKP qubit. Inset: Hexagonal lifetimes.
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a)

b)

Figure 5.7: Tomography of measurement-based GKP logical state preparation.a.)
Unit cell in characteristic function space for the square (left) and hexagonal (right) single-
mode GKP code GKP code. b.) Measured characteristic functions for state-preparation of
X logical states, Y logical states, and the logical ⇡/8 state, given by | i = cos

�
⇡
8

�
|+Xi �

sin
�
⇡
8

�
|�Xi. The ⇡/8 state was prepared using a gate-teleportation protocol, see [26]. Top

row: square code. Bottom row: hexagonal code.
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After state preparation, decay of the Pauli expectation values are measured in two cases:

during free evolution and with repeated QEC cycles applied via the sharpen-trim protocol.

The results for the square GKP code are shown in Figure 5.6b. The lifetime of the error-

corrected GKP Pauli expectation values is longer than the unstabilized counterparts by about

a factor of two. As shown by the characteristic function unit cells in fig. 5.7a, the square

code has a natural noise bias: Because the displacement corresponding to the Y logical

stabilizer is
p
2 times larger in phase-space than the X and Z stabilizers (see section 1.2.2),

the code distance along the Y direction is reduced, leading to a reduction in the lifetime of

Y eigenstates.

To realize a logical qubit with a depolarizing error channel, a similar 6-round sharpen-trim

protocol was used to stabilize the hexagonal GKP code, with details given in Ref. [26] and

results shown in the inset of Figure 5.6b. As expected, for the hexagonal code, the lifetimes

of X, Y and Z are equal, due to the equal lengths of each displacement stabilizer (and

hence equal code distance) as shown by the unit cell in fig. 5.7a. Finally, arbitrary rotations

within the code manifold can be performed by a measurement-based gate teleportation

protocol [26, 66]. With details given in Ref. [26], the gate-teleportation protocol is similar

to the logical measurement protocol, except the transmon is prepared in an arbitrary state

on the x � y plane of the Bloch sphere to perform a logical rotation within the manifold.

This procedure was used to prepare Hadamard eigenstates in both the square and hexagonal

codes, as shown in Figure 5.6d.

Although we realized stabilized GKP states with lifetimes longer than their unstabilized

counterparts in [26], the experiment did not realize error correction beyond break-even. In

particular, for a quantum channel E : ⇢ ! E(⇢), we can define the average channel fidelity

relative to a target unitary channel U : ⇢! U⇢U † given by F̄ =
R
d h |U †E (| i h |)U | i

where the integral is over the uniform measure in state space. Using the Pauli transfer matrix

approach, the experimental decay of Pauli expectation values can be used to compute the

channel fidelity to the target identity channel U = I [228]. At small times �t, this fidelity
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can be expanded as F̄ (�t) = 1� 1

2
��t, allowing the short-time decay rate of di↵erent qubits

and channels (which generally have non-exponential decay curves) to be compared through

a single decay rate, � [27]. With this, the quantum error correction gain is defined as

G =
�physical

�logical

(5.30)

where �physical is the fidelity decay constant of the best physical qubit in an experiment and

�logical is the decay constant of the error-corrected logical qubit. G = 1 corresponds to the

break-even point. To the best of our knowledge, only three experiments to date have achieved

beyond break-even QEC (G > 1) of a quantum memory given this metric, all using bosonic

codes [27, 58, 229]. We note that this definition is in the context of a quantum memory

experiment, where a long-lived stabilized manifold is the target application, i.e. the identity

is the target unitary U = I. A more careful definition involving SPAM (state preparation

and measurement) errors as well as logical gate errors will be needed in future works to

compare error-corrected logical qubits for use in quantum computation.

Using these definitions, for the 2020 GKP error correction experiment [26], the average

channel lifetimes of the stabilized logical qubits were ��1

square, 2020
= 222 µs for the square

encoding and ��1

hex, 2020
= 205 µs for the hexagonal. This should be compared to the the

best physical qubit in the system, the {|0i , |1i} Fock encoding of the high quality-factor

microwave cavity, with decay constant ��1

Fock, 2020
= 368 µs (for the cavity, T1 = 245 µs, and

we are assuming here that T2 = 2T1, as the measured cavity intrinsic dephasing rate was

negligible). From this, the realized QEC gain was Gsquare, 2020 = 0.6 and Ghex, 2020 = 0.56.

As confirmed by master equation simulations, a limiting factor in realizing a larger gain

was bit flips of the auxiliary transmon during the large conditional displacements. Since bit

flips do not commute with the interaction Hamiltonian eq. (3.22), they can lead to large

displacement errors of the GKP state, causing logical errors. The stabilization rounds were

spaced optimally in time so the contribution from auxiliary qubit errors was on par with the
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contribution from cavity errors.

5.4 Optimizing QEC to realize an error corrected quan-

tum memory beyond break-even

In a more recent 2023 experiment [27], we made advancements to reach quantum error cor-

rection beyond break-even. In this section, I will briefly review our results of this experiment;

a more detailed overview can be found in the PhD dissertation of Volodymyr Sivak [44].

The incorporation of three main innovations led to this improvement in gain compared

to the 2020 experiment. First, by using recently development fabrication techniques for

realizing a 3D transmon with tantalum pads [230], a relatively long-lived auxiliary transmon

was used with an average lifetime of T1 = 280 µs, close to a six-time improvement over

the auxiliary transmon used in 2020 [26]. Secondly, the measurement-based sharpen trim

protocol used in 2020 was replaced with a semi-autonomous version of the small-Big-small

(sBs) protocol, as introduced in section 5.2.3 and shown in fig. 5.5. Here, we call the protocol

semi-autonomous since the final oscillator displacement in each sBs round is performed with

a conditional displacement, however the auxiliary qubit and oscillator phase was still reset

between QEC rounds using measurement and feedback (now incorporating reset of the |fi

transmon state). The reset could be replaced with an autonomous transmon reset to make

the protocol fully autonomous. The third major advancement was incorporating online

optimization of the QEC protocol using model-free reinforcement learning [99]. This sBs

protocol was used as an ansatz for the QEC cycle, and a proximal policy optimization

(PPO) reinforcement learning algorithm was used to train 45 real-valued parameters of the

QEC cycle in-situ to optimize the lifetime. Such training was essential to realizing the large

QEC gain.

Together, these improvements led to the square GKP code logical decay curves shown

in Figure 5.8a, with logical lifetimes of TX, 2023 = TZ, 2023 = 2.20ms and TY , 2023 = 1.36ms
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Figure 5.8: Demonstrating an error corrected quantum memory beyond break-
even. Figures reproduced from [27]. a) Lifetimes of the uncorrected (open circles) and
corrected (filled circles) square GKP code. b) Measured logical error rate sensitivity to
increasing auxiliary qubit bit-flip or phase-flip rate. c) Measured Wigner functions of an
error corrected |+Zi logical state, taken as snapshots after varying number of rounds.

with decay time constant of the average channel fidelity of 1/�square, 2023 = 1.82ms. In

contrast with the 2020 experiment, here the GKP states were prepared using ECD control [25]

following the methods outlined in section 4.5. Given the Fock encoding {|0i , |1i} lifetime of

�{|0i,|1i},2023 = 0.8ms, the achieved QEC gain was Gsquare, 2023 = �{|0i,|1i},2023/�square, 2023 =

2.27±0.07, well beyond break-even. Snapshots of the Wigner functions at di↵erent points in

the logical decay curve with QEC starting from |+Zi is shown in Figure 5.8c, indicating the

decay of the logical information encoded in the interference fringes. Finally, we note that the

logical Pauli measurements used in Refs. [27] and [26] were the infinite-energy versions, which

lowers the contrast of the decay curves. In future applications, these measurements could be

replaced with measurements of the finite-energy Pauli operators, as discussed in [64,224], to

increase the contrast.

In [99] we also experimentally studied the stabilized GKP qubit’s sensitivity to auxiliary

qubit noise. For this, they injected noise to selectively increase the auxiliary qubit’s bit-flip
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rate �1 or phase-flip rate �'. The results of this experiment are shown in Figure 5.8b. Fitting

these slopes in the low physical error rate regime, the authors found that the QEC logical

error rate is 65-times more sensitive to auxiliary qubit bit flips than auxiliary phase flip.

To better understand the error correction protocol, we analyzed the Kraus maps for the

small-Big-small protocol, with more detail to be found in Volodymyr Sivak’s thesis [99]. In

particular, the sBs protocol repeatedly implements a composite channelR� (⇢) =
�
RZ

�
�RX

�

�
(⇢)

where ⇢ is the oscillator’s density matrix and
�
RX

�
,RZ

�

 
are the rank-2 channels associated

with sBs rounds in the position and momentum directions. These channels can be written

as Kraus maps, RX
�
(⇢) =

P
i={g,e} K

X
i

†
⇢KX

i where
P

i K
X
i

†
KX

i = I and a similar definition

for Z. Here, KX
{g,e} are the Kraus operators corresponding to measuring the auxiliary qubit

in {|gi , |ei}, explicitly given by

KX
g = hg|UX

sBs |gi (5.31)

KX
e = he|UX

sBs |gi , (5.32)

where UX
sBs is the unitary corresponding to an X- sBs round.

To understand these Kraus maps, the authors of Ref. [27] analyzed the four Kraus oper-

ators for the composite channel R� given by Kgg = KZ
g K

X
g , Kge = KZ

g K
X
e , Kef = KZ

e K
X
g ,

and Kee = KZ
e K

X
e corresponding to the two auxiliary qubit measurement outcomes of each

full QEC cycle consisting of X and Z QEC rounds. For � = 0.34, these Kraus operators

are plotted as matrices in the truncated eigenbasis of K†
ggKgg in Figure 5.9. The eigenbasis

splits into pairs of states Ci that define the various error spaces and are each orthogonal to

the code space C0. These matrices shed a new light onto the sBs protocol by revealing a

trickle-down approach to error correction: measuring |ei in either the X or Y sBs round

signals that an error has been corrected, and the corresponding Kraus matrix applied shifts

the state down to the next lower error space. Similar code and error spaces can be defined

as the quasi-degenerate pairs of eigenstates of the confined GKP Hamiltonian discussed in
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Figure 5.9: Kraus map of the two-round sBs protocol. Figures reproduced from [27].
a) Kraus operators for the composite QEC channel, plotted in the basis for which K†

ggKgg

is diagonal (absolute values of matrix entries is shown). The code and error spaces are
labeled, each consisting of two states forming a logical Bloch sphere. b) Wigner functions
of projectors onto the code and error spaces, along with comparisons to a single photon loss
or gain error applied to C0.

appendix G.

The authors of Ref. [27] also plotted these spaces explicitly, as reproduced in Figure 5.9b,

displaying the Wigner functions of the projectors ⇧0, ⇧1, and ⇧2 onto the codespace and first

two error spaces. As shown in the figure, the first two error spaces are well approximated

by ⇧1 ⇡ a⇧0a† and ⇧2 ⇡ a†⇧0a, indicating that the hierarchy closely resembles photon loss

a and photon gain a† type errors. The higher error spaces can also be studied this way,

with more details in Ref. [27]. The Kraus operators can also be written in the position or

momentum basis, as done in Ref. [26] for the case of the sharpen-trim protocol.

Besides the approaches to mitigate auxiliary qubit noise discussed in section 6.1, using

the error corrected GKP qubits for quantum computation and other applications will require

high-fidelity single-qubit and multi-qubit gates. For realistic GKP qubits, the gates must

be engineered to suppress leakage out of the finite energy manifold. For Cli↵ord gates, one

simple approach is to apply the infinite-energy version of the gate (a Gaussian unitary)

followed by many cycles of finite-energy QEC to project the states back onto the finite-

energy manifold. An alternative is to engineer gates that directly respect the finite-energy
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condition, with one approach proposed in [231]. In superconducting circuits, purpose-built

couplers must be used to achieve these Gaussian operations without introducing spurious

nonlinearities, as discussed in section 6.1. Some promising approaches include using Kerr-

free parametric three-wave mixing with a SNAIL (Superconducting Nonlinear Asymmetric

Inductive eLement) mixer [109, 232, 233] or other couplers that could be engineered in a

Kerr-free regime [234–236].
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Chapter 6

Outlook and conclusion

6.1 Outlook

Below, I give a list of some near-term research directions that I believe would be beneficial

for scaling up the GKP code and demonstrating useful applications.

Finite-energy readout

The observant reader will notice that the measured decay of the logical Pauli operators,

shown in fig. 5.6 and fig. 5.8, have a low contrast; the initial measured hZi point is around

0.8 for these experiments. Although part of this contrast reduction is due to auxiliary

qubit errors during the measurement circuit, and part is due to the finite-fidelity state

preparation, a large portion comes from our use of an infinite-energy measurement circuit

(phase estimation shown in fig. 3.7) on the finite-energy code.

In [64,224], a circuit for realizing readout of the finite-energy GKP logical operators was

introduced. This circuit is similar to the sBs circuit, and could be easily implemented in our

hardware. Once implemented, the finite-energy logicals can be used in the cost function for

model-free optimization.

168



A better conditional displacement

As discussed in section 3.2.1 and section 4.6.4, large displacements amplify dephasing noise,

causing e↵ective di↵usion-like noise at rate �|↵|2, where |↵| is the size of the displacement.

This type of noise, however, can be avoided. In particular, an alternative style of con-

ditional displacement for readout was shown in [132]. In this protocol, the qubit is driven

at the oscillator frequency to resonantly activate an ab†b+ h.c. interaction term, where a is

the oscillator annihilation operator and b is the transmon annihilation operator. However, if

only this drive is applied, the cavity would displace due to leakage of the drive to the cavity

field. This e↵ect can be avoided by employing a cancellation drive on the cavity pin, to

cancel the net displacement of the oscillator while maintaining the conditional displacement

term. The same idea has been employed to realizing qubit ‘cloaking’, where the conditional

drive was instead tuned to cancel the conditional displacement [237].

However, the technique in [132] was developed for readout, and needs modification if

it is employed for realizing conditional displacements of a high-quality-factor oscillator. In

particular, the always-on dispersive interaction �a†ab†b, must still be echoed out, similar to

the ECD gate. This can be achieved, however, by using drives inspired by the ECD gate:

by driving the transmon at the oscillator frequency for a time T with amplitude ⇠, applying

an echo ⇡ pulse, then driving the transmon with amplitude �⇠ for a time T , the dispersive

interaction and Stark-shift can be echoed out while realizing a conditional displacement.

While driving the transmon, a cancellation drive can be applied to the oscillator (also flipping

its phase after a time T ) in order to avoid displacement of the mean-field. The gate should

still allow faster-than-� interactions, with an interaction speed limit scaling as /
p
�EC .

Surprisingly, the protocol I propose here is very similar to the echoed-cross-resonance

gate commonly employed by IBM to realize qubit-qubit interactions [238]. In this sense,

the ‘ECD with cancellation’ proposed above is equivalent to an echoed-cross-resonance gate

between a qubit and an oscillator. Note that other e↵ects, such as nonlinear resonances

and the Stark-shifting of the transmon into two-level systems (discussed in chapter 3) will,
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unfortunately, likely remain when using the ECD with cancellation gate. For this reason,

the main purpose of the gate is to avoid amplified dephasing noise of the oscillator.

Flagging transmon errors

An alternative conditional displacement (that could be combined with the ideas of the previ-

ous paragraphs) is to displace the oscillator conditioned on the |gi , |fi levels of the transmon.

Such a gate could be performed by driving the usual ECD gate on resonance with the oscil-

lator |ei frequency. With this, similar to the gates developed in [239,240], decay from the |fi

state can be flagged by the |ei state. However, this will need to be analyzed in more detail

to see if it is beneficial in a more broad context, such as in a GKP surface code, similar to

the recent work that has been done for the dual-rail surface code [240].

Squeezing for control of noise bias

The GKP code has a nice property: inherent ‘compatibility with squeezing’. Using the

squeezing transformation described in section 2.4.4, the quadratures can be transformed

according to

S†(r)q̂S(r) = qe�r (6.1)

S†(r)p̂S(r) = qer, (6.2)

allowing the code distance along one axis of the Bloch sphere to increase, at the expense

of decreasing the distance along the orthogonal axis, in a reversible way. This should be

contrasted with (single-mode) rotationally symmetric bosonic codes [23], which do not have

this property, given that phase-preserving amplification cannot be performed without adding

noise [241,242]. Applying squeezing to the GKP code has many possible uses. For example,

the squeezed GKP codes have been considered for concatenation using repetition codes and

XZZX surface codes [243,244]. Squeezing can also be used as a way to realize a noise-biased
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GKP ancilla to stabilize a target GKP qubit, as proposed in [245].

However, there are a few applications of squeezing that I believe have not yet been

explored fully. Namely, if such squeezing is done with a Kerr-free mixer (such as a SNAIL

(Superconducting Nonlinear Asymmetric eLement) or JRM (Josephson Ring Modulator)

[99,109,236]), it can occur while the auxiliary qubit(s) are in the ground state, and hence be

resistant to qubit errors. With this in mind, squeezing can be combined with GKP logical

gates and stabilization protocols in order to better avoid the propagation of auxiliary qubit

errors. For example, by squeezing before and de-squeezing after each QEC round (sharpen

trim or sBs), the conditional displacements needed to map the stabilizer to the auxiliary

qubit can be made much faster through Hamiltonian amplification. Although the ‘small’

conditional displacements will be slower, they will not cause uncorrectable errors. In this

way, a periodic code deformation can be performed to the GKP code during stabilization to

achieve a higher QEC gain.

Such periodic squeezing can also be applied in Floquet-engineering protocols that are

proposed in [39, 40, 227]. In these protocols, a high-impedance superconducting circuit is

needed with impedance greater than twice the superconducting resistance quantum; this is

the main limitation to their realization. However, if parametric squeezing is employed before

and after each stabilization round, it could e↵ectively ‘shorten’ phase-space, and lower the

impedance requirements by a significant enough margin to make these circuits feasible. With

this, I think the main application of squeezing is to lower the impedance requirements of

Floquet-engineered GKP codes.

Finally, squeezing can be combined with GKP gates in interesting ways. For example,

the realization of finite-energy gates (discussed below in section 6.1) will likely require the

use of an auxiliary qubit, and be sensitive to these errors. However, if the modes interacting

were squeezed and de-squeezed before each interaction, the gates could be done more quickly

as a result of Hamiltonian amplification. This should be seen as a general application of the

fact that a GKP lattice (such as a square lattice) can be continuously deformed into another
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lattice (such as a hexagonal lattice) using Gaussian operations. It will be interesting to see

how this can be optimized for various tasks moving forward.

GKP qudit codes and qudit surface codes

The techniques developed in this thesis can easily be extended to realize a qudit encoded in

an oscillator. A d� dimensional qudit has an algebra that follows the ‘clock-shift’ operators,

X |ji = |j + 1 (mod d)i , (6.3)

Z |ji = !j |ji (6.4)

ZX = !XZ = !Y. (6.5)

As introduced in [1], this can be realized as a grid code in phase space (of a single

oscillator) by stabilizer translations that enclose an area of 2⇡n in phase-space, for example,

Sq = ei
p
d2⇡q = T (i

p
d2⇡) (6.6)

Sp = e�i
p
d2⇡p = T (

p
d2⇡) (6.7)

Z = (Sq)
1/d = ei

p
2⇡/dq = T (i

p
2⇡/d) (6.8)

X = (Sp)
1/d = e�i

p
2⇡/dp = T (i

p
2⇡/d). (6.9)

It should first be noted that the qudit codes have a decreased code distance; shifts in

q of |�q| <
p
⇡/2d and shifts in p of |�p| <

p
⇡/2d are correctable. As expected, there

is diminishing returns when encoding a d level state space in the oscillator. However, such

codes could be used for many interesting applications, such as error-detection within a single

oscillator used in an erasure surface code [246].

One of the most promising applications of oscillator qudits encoded as GKP codes is

using them to construct a qudit-surface code [247–251] and other realizations of lattice

gauge theories that are not easily implemented with a lattice of qubits.
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A better ancilla

As shown in [26, 99] and discussed in chapter 5, the GKP error correction protocols are

limited by errors of the auxiliary qubit, and the protocol is much more sensitive to auxiliary

bit-flips than phase-flips. As suggested in [252] (and a similar idea in [253]), a biased-noise

qubit could instead be used as an ancilla. Good potential candidates for this are the Kerr-

cat bosonic qubit [114, 254], the heavy-fluxonium qubit [255], a biased-GKP / squeezed cat

qubit [245], or other pumped approaches.

Envelope-preserving non-Cli↵ord gate

In [216], it was shown that a non-Cli↵ord
p
Had (square-root-Hadamard) gate on the GKP

code can be realized with a Kerr interaction. For the single-mode square GKP code,

p
Had = exp

⇣
i
⇡

8

�
a†a
�2⌘

, (6.10)

This gate is similar to the ‘Kerr-refocusing’ gate for cat codes first demonstrated in [256];

interestingly the GKP code also refocuses under Kerr to realize a non-Cli↵ord gate.

Because [
p
Had, E�] = 0, the envelope is preserved under the action of the gate, and no

finite-energy modification is required1. For this reason, the gate is an interesting resource

to explore, however, a Kerr interaction with fast control and a large ON/OFF ratio will

be needed. This could potentially be implemented by fast flux-tuning a nonlinear mode

near-resonance with the GKP oscillator.

Finite-energy gates

The logical gates derived in [1] for the infinite-energy GKP code must be modified for the

finite-energy GKP code. This can be done using the envelope operator as discussed in

section 5.1.2. For example, a modification of the CNOT gate to its finite-energy version was

1. This is the case for all gates that commute with the number operator.
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discussed in [231]. The finite-energy gates modified this way are non-Hermitian, requiring

an auxiliary mode (such as a qubit) for their realization. However, there may be unitary

alternatives.

Hamiltonian engineering

The Hamiltonian approach to GKP is discussed in appendix G. The Hamiltonian approach

has not yet been fully analyzed. In particular, GKP codes can be described in terms of a

gapped spectrum, and by using the Zak basis techniques (see appendix F), this spectrum and

the energy splittings can be well understood. Other lattices in phase space can be realized,

such as Moiré lattices similar to the magic-angle ideas used in bi-layer graphene, to construct

Hamiltonians with non-trivial gapped spectrums2. Such Hamiltonians could be be realized

though Floquet engineering, similar to the Kerr-cat.

In addition, it will be interesting to construct gates for finite-energy GKP codes using a

Hamiltonian approach. For example, by modifying the impedance of the GKP Hamiltonian

adiabatically with respect to the gap, finite-energy gates can be performed. These ideas

could be extended to multiple modes for two-qubit gates.

Quantum sensing and communication

In 2017, Duivenvoorden et al. showed the sensing capabilities of the single-mode GKP code

[191]. By measuring both modular position and modular momentum, small displacements

can be sensed without prior knowledge of the phase (in contrast to a squeezed-state sensor,

where the squeezing must align with the signal to be measured). The finite-energy error

correction we performed can also be seen as a realization of these ideas. By combining error

correction with sensing, the record of measurements could be used to reconstruct a signal.

The GKP code will also be useful in quantum communication. For example, error-

2. The sharpen-trim protocol (and sBs protocol) can be seen as a stabilization of two lattices that don’t
quite commute, giving rise to a gapped Hamiltonian spectrum.
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correctable quantum repeaters can be used in a quantum network along with GKP codes to

correct for loss along a communication channel [257]. More ideas are discussed in-depth in

[22].

Concatenated GKP codes

Finally, more research is needed to investigate the technical aspects of a hybrid concate-

nated code architecture in superconducting circuits. For example, linear oscillators with

GKP states can be employed as the data qubits, while the measure qubits can be of a

di↵erent variety, perhaps transmons or Kerr-cats. More analysis is needed to investigate

noise propagation and thresholds for these hybrid architectures, as they are a promising

path forward in the near term. This was suggested in Ref. [42], however to the best of my

knowledge, a full analysis of noise in such a hybrid concatenated code architecture has not

yet been published.

Additionally, it was shown in Ref. [27] that post-selection on outcome strings in sBs type

error correction significantly increased the lifetime of the stabilized quantum memory, at

the cost of a lower success probability. We anticipate that some classical post-processing

on these output strings of sBs could yield better lifetimes even without post-selection. Fur-

thermore, it would be intriguing to explore whether these measurement strings could be

e↵ectively employed for erasure conversions of GKP data qubit errors when combined with

DV(discrete-variable) codes (e.g., surface codes), which then could be used to leverage the

improved threshold with erasure noise. This feature has already been put to use for re-

source reduction of fault-tolerant quantum computing with surface code architectures real-

ized in neutral atoms, trapped ions and superconducting circuits (via transmon and dual-rail

codes) [240, 258–262].
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6.2 Conclusion

In this dissertation, I have comprehensively introduced theoretical and experimental ad-

vances carried out as part of my PhD work in bosonic quantum control and quantum error

correction using GKP codes, with a focus on the weak-coupling architecture. With the de-

velopment of quantum engineering in such microwave cQED systems, multimode GKP qubit

codes and GKP oscillators-to-oscillators codes provide many opportunities in quantum in-

formation processing such quantum computing, communication, and sensing. Yet many

research directions have yet to be fully explored and open problems remain, as outlined in

the previous section.

Bosonic QEC opens up a wide array of application spaces beyond the goal of fault-tolerant

quantum computing, with quantum communication and sensing being prominent examples.

Additionally, universal unitary engineering using near-linear oscillators with the phase-space

ISA holds the potential to open up opportunities in quantum simulation, o↵ering a pathway

to tackle fundamental problems crucial to condensed matter and high-energy physics.

In order to fully leverage the capabilities of bosonic QEC with GKP codes, it is essential to

address the open problems outlined earlier and actively search for new challenges to overcome.

As research continues in this rapidly evolving field, I anticipate unforeseen breakthroughs

that will not only enhance our understanding of quantum error correction but also lead to

the practical realization of quantum information processing applications.
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Appendix A

Quantum harmonic oscillators:

selected topics

A.1 The displacement and translation operators

The displacement operator is defined as

D(↵) = exp
�
↵a† � ↵⇤a

�
= exp

⇣p
2 (�iRe(↵)p̂+ iIm(↵)q̂)

⌘
(A.1)

= exp
⇣
�i
p
2|�|q̂?

⌘
(A.2)

where ↵ 2 C. In the last relation we have defined the perpendicular quadrature q? =

cos(⇥)p̂� sin(⇥)q̂ with ⇥ = angle (�). The displacement operator D (↵ = Re (↵) + iIm (↵))

can be thought of as ‘moving a state around’ in optical phase-space (Wigner units) by Re (↵)

along the ha+ a†i /2 axis (parallel to position) and an amount Im (↵) along the �i ha� a†i /2

axis (parallel to momentum) as shown in fig. A.1. In other words, for any state ⇢ with

mean value Tr (⇢a) = ↵0, the displacement operator will transform the mean value of a to

Tr
�
D(↵)⇢D†(↵)a

�
= ↵0 +↵, without changing any higher-order central-moments of a (such

as the variance)! Besides the action of moving a state’s phase-space distribution around, the
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a.)

b.)

c.)

optical phase space 
(Wigner units)

position-momentum phase space
(q-p units)

Figure A.1: Geometric phase from a displacement trajectory. a.) The group
commutation relation for displacements. b.) A trajectory in phase space will cause any
oscillator state | i to pick up a geometric phase.

displacement is also associated with a geometric phase, as discussed later in this section.

Displacement operators are orthogonal,

Tr
�
D(↵)D† (�)

�
= ⇡�(2) (↵� �) , (A.3)

and using the Baker-Campbell-Hausdor↵ (BCH) relation can be written using normal and

anti-normal order as

D(↵) = e�
|↵|2
2 e↵a

†
e�↵

⇤a = e
|↵|2
2 e�↵

⇤ae↵a
†
, (A.4)

or, in terms of position and momentum,

D(↵) = eiRe(↵)Im(↵)e�i
p
2Re(↵)p̂ei

p
2Im(↵)q̂ = e�iRe(↵)Im(↵)ei

p
2Im(↵)q̂e�i

p
2Re(↵)p̂. (A.5)

An important use case of eq. (A.4) is calculating the derivative of the displacement
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operator with respect to ↵ and ↵⇤,1

@↵D(↵) =

✓
a† � ↵⇤

2

◆
D(↵) = D(↵)

✓
a† +

↵⇤

2

◆
, (A.6)

@↵⇤D(↵) =
⇣
�a+ ↵

2

⌘
D(↵) = D(↵)

⇣
�a� ↵

2

⌘
, (A.7)

@↵D
†(↵) =

✓
�a† � ↵⇤

2

◆
D†(↵) = D†(↵)

✓
�a† + ↵⇤

2

◆
, (A.8)

@↵⇤D†(↵) =
⇣
a+

↵

2

⌘
D†(↵) = D†(↵)

⇣
a� ↵

2

⌘
. (A.9)

These will be used for calculating the time-dependent displaced frame transformation in

section C.2.1. They also imply

D†(↵)aD(↵) = a+ ↵, (A.10)

D†(↵)a†D(↵) = a† + ↵⇤. (A.11)

As can be shown with the BCH relation, displacement operators satisfy the group com-

mutation and composition relations

D(↵)D(�) = e(↵�
⇤�↵⇤�)D(�)D(↵) = ei2AD(�)D(↵), (A.12)

D(↵)D(�) = e(↵�
⇤�↵⇤�)/2D(↵ + �) = eiAD(↵ + �), (A.13)

where A = �i(↵⇤� � �⇤↵)/2 = Im (↵⇤�) is the signed area of the parallelogram enclosed

by the vectors ↵ and � in optical phase-space (with counter-clockwise transversal being a

positive area). This is the geometric (Berry) phase factor associated with linear displace-

ments as shown in fig. A.1a. As derived in section C.2.1, a geometric phase can also arise

from a general smooth trajectory through phase space ↵(t), as shown in fig. A.1b.

The factor of 2 in eq. (A.12) can be annoying to work with. It is for this reason that we

often work with a scaled version of the displacement operator, called the translation operator,

1. Here, derivative with respect to a complex number is using the notation of Wirtinger derivatives.
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which moves a state around in position-momentum space (with axes hq̂i = ha+ a†i /
p
2 and

hp̂i = �i ha� a†i /
p
2) space, defined as

T (↵) = D

✓
↵p
2

◆
= exp

✓
1p
2

�
↵a† � ↵⇤a

�◆
= exp (�iRe(↵)p̂+ iIm(↵)q̂) (A.14)

= exp (�i|↵|q̂?) , (A.15)

along with group commutation and composition rules

T (�)T (�) = e(��
⇤��⇤�)/2T (�)T (�) = eiAT (�)T (�), (A.16)

T (�)T (�) = e(��
⇤��⇤�)/4D(� + �) = eiA/2T (� + �), (A.17)

where A is the signed area in position-momentum phase space as shown in fig. A.1c. They

also have a modified orthogonality relation,

Tr
�
T (�)T †(�)

�
= 2⇡�(2) (� � �) , (A.18)

which will modify the unit element of area in complex phase space from d2↵/⇡ for displace-

ment operators to d2�/2⇡ for translation operators in all integrals over operator space. I

use translation operators when discussing GKP states in section 1.2.2. All relations and

equations using displacement operators can be cast into translation operators with the ap-

propriate rescaling.

Finally, I note that the matrix elements of the displacement operator in the Fock (number)

basis can be written as

hm|D(↵)|ni = e
�|↵|2

2

✓
n!

m!

◆1/2

↵m�nL(m�n)
n

�
|↵|2
�
, (A.19)

where L(p)
q (x) is an associated Laguerre polynomial [263]. This form can be useful for

simulations.
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A.2 Coherent states

Coherent states are defined using the displacement operator,

|↵i = D(↵) |0i (A.20)

where |0i is the vacuum (zero-photon) state with a |0i = 0. Coherent states are eigenstates

of the annihilation operator,

a |↵i = ↵ |↵i (A.21)

with overlap

h�|↵i = exp

✓
� |↵|2

2
� |�|2

2
+ �⇤↵

◆
(A.22)

and Fock state representation

|↵i = e�
|↵|2
2

1X

n=0

↵n

p
n!

|ni (A.23)

leading to a Poissonian Fock-state probability distribution P (n) = ehni
⇣

hnin
n!

⌘
with average

photon number hni = |↵|2 and variance |↵|2.2

From eq. (A.12), the action of a displacement operator on a coherent state includes an

important geometric phase,

D(�) |↵i = e(↵�
⇤�↵⇤�)/2 |↵ + �i . (A.24)

From eq. (A.22), the coherent state basis is overcomplete. The resolution of the identity

is given by3

I =
1

⇡

Z
d2↵ |↵i h↵| . (A.25)

2. It is for this reason that Optical phase-space (Wigner units) is so useful: the radius squared in optical
phase-space represents the average photon number of a coherent state at position ↵.

3. integrals written without bounds are over all space
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From this, states and operators (including the density matrix operator) can be repre-

sented in the coherent state basis as

| i = 1

⇡

Z
d2↵ |↵i h↵| i (A.26)

Ô =
1

⇡2

Z
d2↵ d2� |↵i h�| h↵|Ô|�i (A.27)

The coherent state basis is related to the displacement operator basis (and characteristic

function) and useful for calculating characteristic functions as discussed in the next section.

It can also be helpful in some cases to calculate the trace of an operator in the coherent state

basis, Tr
⇣
Ô
⌘
= (⇡)�1

R
d2↵ h↵|Ô|↵i.

A.3 Reciprocal Phase-Space: The displacement oper-

ator basis and the Characteristic Function

As shown in [263], the displacement operator basis forms a complete basis for operators, in

the sense that and bounded operator Ô can be represented as

Ô =
1

⇡

Z
d2� C (�)D†(�), (A.28)

where the function C (�) = Tr
⇣
ÔD(�)

⌘
2 C is called the characteristic function of Ô.4

When needed, I will use the notation C[Ô] (�) to indicate the characteristic function is of the

operator Ô. For GKP states, it is often more convenient to use the translation operator, so I

will denote the characteristic function in translation units as CT (�) = Tr
⇣
ÔT (�)

⌘
= C

⇣
�p
2

⌘

4. In particular, these are the symmetric-ordered characteristic function, which I will use throughout this
thesis. Other characteristic functions exist, and that is beyond the scope of this work.
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with modified operator representation

Ô =
1

2⇡

Z
d2� CT (�)T †(�). (A.29)

Characteristic functions have a few nice properties that are easy to show. To start,

if a bounded, operator-valued function only depends on position or momentum, then the

characteristic function is the (one-dimensional) physicist’s Fourier transform,

Ô = f(q̂)$ CT (�) =

Z
dq f(q)eiIm(�)q, (A.30)

Ô = f(p̂)$ CT (�) =

Z
dp f(p)e�iRe(�)p. (A.31)

Proof. Calculating the trace in the position basis, using the cyclic property of the trace, and

using eq. (A.5),

CT (�) = Tr (f(q̂)T (�)) (A.32)

=

Z
dq hq|T (�)f(q̂)|qi (A.33)

=

Z
dq hq|eiRe(�)Im(�)/2e�iRe(�)p̂eiIm(�)q̂f(q̂)|qi (A.34)

=

Z
dq f(q)eiIm(�)qeiRe(�)Im(�)/2 hq|q + Re (�)i (A.35)

= �(2) (Re (�))

Z
dq f(q)eiIm(�)q. (A.36)

A similar proof holds when Ô = f(p̂).

This property is quite powerful. Since the trace is linear, we can use it to easily calculate

characteristic functions of operators that are linear combinations of functions of q̂ and p̂.

The following table includes some of these characteristic functions.

As shown in [264],the action of photon loss at rate # and photon gain at rate " after a
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Name definition characteristic function equation

characteristic function C (�) Tr
⇣
ÔD(�)

⌘

bounded operator Ô 1

⇡

R
d2� C (�)D†(�)

linear superposition Ô = aÂ+ bB̂ C[Ô] (�) = aC[Â] (�) + bC[B̂] (�)

Frobenius norm ||Ô||F =
p

Tr (O†O)
�
1

⇡

R
d2� |C(�)|2

�1/2

trace Tr Ô C (0)

trace overlap Tr
⇣
ÂB̂
⌘

1

⇡

R
d2� C[Â] (�) C[B̂] (��)

purity Tr (⇢2) 1

⇡

R
d2� |C (�) |2

Fidelity (to pure state) h |⇢| i 1

⇡

R
d2� C[⇢̂] (�) C[| ih |] (��)

position function Ô = f(q̂) C (�) = �(2) (Re (�))
R

dq f(q)ei
p
2Im(�)q

momentum function Ô = f(p̂) C (�) = �(2) (Im (�))
R

dp f(p)e�i
p
2Re(�)p

translated operator (or state) D(↵)ÔD†(↵) C[D(↵)ÔD†
(↵)] (�) = e↵

⇤��↵�⇤C[Ô] (�)

hermitian conjugate Ô† C[Ô†] (�) =
⇣
C[Ô] (��)

⌘⇤

Table A.1: Transformations and properties of characteristic functions. Any equa-
tions using ⇢ are assuming ⇢ is a valid density matrix (positive semi-definite, Hermitian, and
trace unity.)

Name Definition Characteristic function C(�)
identity I ⇡�(2)(�)

vacuum |0i h0| e�
|�|2
2

thermal state ⇢th e�(nth+
1
2)|�|2

displacement D(↵) ⇡�(2) (↵ + �)

cosine cos (aq̂) ⇡
2

⇣
�(2)

⇣
� + iap

2

⌘
+ �(2)

⇣
� � iap

2

⌘⌘

Table A.2: Characteristic function pairs. Note that the translation property from ta-
ble A.1 can be used to easily calculate translated versions of each state.
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time t applies the following transformation to the characteristic function,

C (↵, t) = C(↵
p
⌘, 0) exp

✓
# + "
# � "

(⌘ � 1)
|↵|2
2

◆
, (A.37)

⌘ = exp ((" � #) t) . (A.38)

It is useful to analyze this equation in a few limiting cases.

Photon loss

In the case of pure photon loss (" = 0),

C (↵, t) = C(↵e�#t/2) exp

✓�
e�#t � 1

� |↵|2
2

◆
#t⌧1

⇡ C (↵ (1� #t/2)) exp
✓
�#t

|↵|2
2

◆
.

(A.39)

Equation (A.39) shows that photon loss causes the characteristic function to grow and a

Gaussian filter is applied. In the limit of small #t, the variance of the Gaussian filter is

(t)�1. This should be interpreted as high-frequency correlations of the Wigner function

being filtered out under photon loss, along with a directional di↵usion due to the Fockker-

Planck equation.

Additive Gaussian Noise (di↵usion)

In the limit of additive Gaussian noise (pure di↵usion), # = " = . In this case, the

characteristic function is updated according to

C(↵, t) = C(↵) exp(�t|↵|2). (A.40)

That is, a Gaussian filter is applied with variance (2t)�1, half the variance for pure

photon loss or pure photon gain. However, unlike the case of photon loss or gain, the

characteristic function does not grow or shrink.
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Appendix B

Derivation of the

Selective-Qubit-Rotation (SQR) gate

Starting from the driven-dispersive Hamiltonian in the co-rotating frame of the oscillator

and qubit,

H = �a†a�z + ⌦⇤(t)�� + ⌦(t)�+, (B.1)

we =perform a unitary frame transformation (see appendix C.2) to eliminate the dy-

namics of the dispersive term [103] by using the dispersive unitary U� = exp
�
�i�ta†a�z/2

�
.

This transforms the �� and �+ = �†
� operators according to

U †
���U� = ei�ta

†a�z/2��e
�i�ta†a�z/2 (B.2)

= ei�tna
†a�z/2

1X

n=0

|ni hn| ��e�i�ta†a�z/2 (B.3)

=
1X

n=0

|ni hn| ei�nt�z/2��e�i�nt�z/2 (B.4)

=
1X

n=0

|ni hn| ��ei�nt. (B.5)
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From this, the transformed Hamiltonian H̃ = U †
�HU� + i

�
@tU †

�

�
U� is

H̃ =
1X

n=0

|ni hn|
�
⌦⇤(t)��e

i�nt + ⌦(t)�+e
�i�nt

�
(B.6)

For the SQR gate up to Fock state N , we drive the qubit resonant with each number-

shifted transition. This drive takes the form ⌦(t) =
PN�1

k=0
⌦k(t)eik�t where ⌦k(t) are

complex-valued envelopes. With this drive, the Hamiltonian becomes

H̃ =
1X

n=0

|ni hn|
NX

k=0

�
⌦⇤

k(t)��e
i�(n�k)t + ⌦k(t)�+e

�i�(n�k)t
�
. (B.7)

Under the condition of slow pulses (total time Tgate > 2⇡/�) with a small bandwidth com-

pared to �, the first-order rotating-wave-approximation can be invoked, and rotating terms

can be dropped. The implications of this approximation, along with mitigation techniques

for faster pulses, are discussed in [103]. The RWA results in

H̃RWA =
NX

n=0

|ni hn| (⌦⇤
n(t)�� + ⌦n(t)�+) . (B.8)

To realize SQR, we pick ⌦n(t) = s(t)✓nei'n where s(t) is a real-valued envelope function

with
R Tgate

0
s(⌧)d⌧ = 1. By transforming the operator back to the initial frame, the total

unitary after time Tgate is

U = U� T exp

✓
�i
Z Tgate

0

H̃RWAdt

◆
U †
� = CR (�Tgate) SQR

⇣
~✓, ~'
⌘
CR (��Tgate) (B.9)

where SQR(~✓, ~') =
P

n R'n(✓n) ⌦ |ni hn| as defined in section 2.4.3. As indicated, the

full gate includes additional conditional rotations, which account for the cavity’s pull on the

qubit during the gate. However, this can be accounted for by picking the correct phase of
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drive for each Fock state.
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Appendix C

Quantum dynamics: selected topics

C.1 derivatives of exponential operators

Calculating derivatives of exponential operators can be useful for gradient-based optimiza-

tion, and in other settings. Let Â(x) be an operator that depends on x Then,

@xe
Â =

✓Z
1

0

ds esÂ
⇣
@xÂ

⌘
e�sÂ

◆
eÂ. (C.1)

Implying1
h
@xÂ, Â

i
= 0 ! @xe

Â =
⇣
@xÂ

⌘
eÂ. (C.2)

C.2 Time-dependent frame transformations

A time-dependent unitary frame transformation is applied using

1. This is also easily seen from the Taylor series definition of eÂ
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H̃ = U †HU + i~(@tU †)U,

| ̃i = U † | i ,

i~@t | i = H | i ! i~@t | ̃i = H̃ | ̃i ,

O(t)! Õ(t) = U †(t)O(t)U(t).

C.2.1 Time-dependent displaced frame

Note the following derivative:

@tD(↵) = @↵D(↵)@t↵ + @↵⇤D(↵)@t↵
⇤ (C.3)

! @tD(↵) =

✓
a† � ↵⇤

2

◆
@t↵ +

⇣
�a+ ↵

2

⌘
@t↵

⇤
�
D(↵) (C.4)

With this, we have

U(t) = D(↵(t)) (C.5)

H
�
a, a†

�
! H̃ = U †HU + i(@tU

†)U (C.6)

H̃ = H
�
a+ ↵(t), a† + ↵⇤(t)

�
+ i

✓
�a† � ↵⇤

2

◆
@t↵ +

⇣
a+

↵

2

⌘
@t↵

⇤
�

(C.7)

As an example, we can apply these formulas to a driven oscillator to calculate the generalized

geometric phase associated with an oscillator trajectory.

Example: Driven oscillator

Let

H(t) = "⇤(t)a+ "(t)a†. (C.8)
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The displaced frame Hamiltonian is

H̃(t) = "⇤(t) (a+ ↵(t)) + "(t)
�
a† + ↵⇤(t)

�
+ i

✓✓
�a† � ↵⇤

2

◆
@t↵ +

⇣
a+

↵

2

⌘
@t↵

⇤
◆

(C.9)

= ("(t)� i@t↵(t)) a
† + h.c. + ↵(t)

✓
"⇤(t) +

i

2
@t↵

⇤(t)

◆
+ c.c. (C.10)

We can choose ↵(t) to be anything, making this transformation quite powerful to cancel

classical dynamics. One convenient choice, especially when performing numerical simula-

tions, is to cancel the terms linear in a and a† in H̃(t) by picking

i@t↵(t) = "(t) (C.11)

↵(t0) = ↵0 (C.12)

with typical initial condition ↵0 = 0. With this choice, the Hamiltonian only contains terms

proportional to the identity. These terms are often ignored. However, they can be important

in multi-oscillator systems or hybrid oscillator qubit systems. In particular, with the choice

of ↵(t) in eq. (C.11), the displaced frame Hamiltonian becomes

H̃ =
i

2
↵⇤(t)@t↵(t) + c.c. = �Im (↵⇤(t)@t↵(t)) (C.13)

The unitary associated with this displaced frame Hamiltonian is

Ũ(t) = exp

✓
i

Z T

0

Im (↵⇤(t)@t↵(t))

◆
= exp (i2A(t)) (C.14)

where A is the signed area enclosed by the ↵(t) trajectory in phase space, with trajectories

traversed counterclockwise being positive (as with the usual Green’s theorem).2 In particular,

if the trajectory is closed ↵(t0) = ↵(T ), then the oscillator’s state picks up a geometric phase

2. For a complex-valued parameterized trajectory z(t) = x(t) + iy(t) in x, y Cartesian space, the area

enclosed is given by A(t) = 1
2

R
t

0 Im (z⇤(⌧)@⌧z(⌧)).
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(Berry phase) factor

| (T )i = ei2A | (t0)i (C.15)

where A is the phase-space area enclosed by the trajectory as shown in fig. A.1.
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Appendix D

Microwave drive IQ modulation

IQ mixing using a carrier at drive frequency !d results in a classical voltage signal "lab(t) =

"I(t) cos(!dt) + "Q(t) sin(!dt). We can define a complex-valued drive "(t) = "I(t) + i"Q(t),

and write the classical-valued drive as "lab(t) = "⇤(t)ei!dt + "(t)e�i!dt. With this, the voltage

driven oscillator Hamiltonian takes the form

H

~ = !aa
†a+ "lab(t)(a+ a†) = !aa

†a+
�
"⇤(t)ei!dt + "(t)e�i!dt

� �
a+ a†

�
(D.1)

Denoting the oscillator-drive detuning to be �ad = !a � !d, The Hamiltonian can be

moved into the frame rotating at the drive frequency !d to find

H̃

~ = �ada
†a+

�
"⇤(t)ei!dt + "(t)e�i!dt

� �
ae�i!dt + a†ei!dt

�
(D.2)

= �ada
†a+

�
"⇤(t)a+ "(t)a†

�
+
�
"(t)ae�2!dt + "⇤(t)a†e2!dt

�
. (D.3)

In the regime where 2!d � |"(t)| , �ad, the rotating wave approximation can be in-

voked, and the final term in parentheses can be dropped, leading to the final drive-frame

Hamiltonian
H̃RWA

~ = �ada
†a+

�
"⇤(t)a+ "(t)a†

�
. (D.4)
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Appendix E

Universality proofs

E.1 Law and Eberly

The Law and Eberly gate set (section 2.4.1) is

L.E. = {JC (✓,') , R' (✓)} (E.1)

with generators
��

a†�� + a�+
�
, i
�
a†�� � a�+

�
, (�+ + ��) , i (�+ � ��)

 
. The generator of

conditional displacements can be found in the first level of commutators,

⇥
a†�� + a�+, �+ + ��

⇤
= (a† � a)�z, (E.2)

⇥
�i
�
a†�� � a�+

�
, �+ + ��

⇤
= (a† + a)�z. (E.3)

Because the conditional displacement gate set is universal (as shown in appendix E.3), and

the Law and Eberly generates the conditional displacement algebra, the Law and Eberly

gateset is universal.
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E.2 Dispersive gate set

The dispersive gate set is D = {CR (✓) , D(↵), R'(✓)}.

Since

⇥
a+ a†, a†a�z

⇤
= (a� a†)�z (E.4)

⇥
�i(a� a†), a†a�z

⇤
= i(a+ a†)�z, (E.5)

the dispersive gate set can simulate the conditional displacement gate set, and is thus uni-

versal.

E.3 Conditional Displacement (ECD)

Starting with the set of generators for ECD(�) and R'(✓), {q�z, p�z, �x, �y}, commutators

such as [q�z, �x] / q�y and [�x, �y] / �z can be used to expand the set to {�i, q�i, p�i}

where i 2 {x, y, z}. This shows that e↵ectively, by rotating the qubit between conditional

displacements, the ECD gate set can create more general Rabi type interactions between the

oscillator and qubit, where qubit-mediated nonlinear gates have been proposed [265,266].

By using commutators similar to [q�x, q�y] / q2�z, our set can further be expanded to all

quadratic polynomials of q�i and p�i. This process can be iterated in order to generate any

qjpk�i product, where i 2 {x, y, z}. Terms which do not contain a Pauli operator such as

qjpk can be generated from commutators such as
⇥
qj+1pk�z, p�z

⇤
/ qjpk. With this, the full

Lie algebra for polynomial operators on the qubit and oscillator Hilbert space is generated.
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Appendix F

Modular variables and the Zak basis

In this section we discuss one final approach for the representation of GKP states and oper-

ators, called the modular variables formalism or the Zak basis [267–274], which is useful for

representing oscillator wavefunctions and operators on a restricted domain of two variables

instead of an unrestricted domain of one variable. In particular, the modular wavefunc-

tion serves as an e�cient basis for representing (and simulating) GKP-like states, or more

generally, oscillator states that are close to periodic such as finite-energy GKP states. The

formalism has been used in various other contexts in physics, such as in the analysis of spatial

interference patterns and in quantum-Hall-e↵ect literature.

The (single-mode) Zak basis has been used extensively in GKP literature, with applica-

tions in analysis of the GKP Hamiltonian (see appendix G), engineering superconducting

circuits for realizing passive or active error correction (see chapter 5), and an understand-

ing of GKP error correction through the lens of a modular variable subsystem decomposi-

tion [273, 274]. In this decomposition, the oscillator’s Hilbert space is divided into two sub-

systems: one that stores logical qubit information and a second continuous-variable gauge

subsystem that carries no logical information. In this subsection, we will briefly review

the single-mode Zak basis and the Zak transform, using the notation and conventions from

Ref. [274].
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Given a position periodicity a (in GKP, typically chosen to be the length of a stabilizer

translation), the Zak kets form a complete single-mode basis and are given in the position

and momentum representation by

|u, vi :=
r

a

2⇡

X

m2Z

eiamv |u+ amiq =
r

1

a
e�iuv

X

m2Z

e�i2⇡mu/a |v + 2⇡m/aip . (F.1)

They are orthonormal in the Dirac-comb sense,

hu, v| |u0, v0i =
X

m

� (u� u0 + am)
X

n

� (v � v0 + (2⇡/a)n) . (F.2)

The Zak kets are eigenstates of displacement operators,

e�iap̂ |u, vi = e�iav |u, vi and ei
2⇡
a q̂ |u, vi = ei

2⇡
a u |u, vi , (F.3)

with quasi-periodicity in the first variable and periodicity in the second, satisfying

e�itp̂ |u, vi = |u+ t, vi , |u+ a, vi = e�iav |u, vi , (F.4)

eitq̂ |u, vi = eiut |u, v + ti , |u, v + 2⇡/ai = |u, vi . (F.5)

This leads to a restricted domain for u (of width a) and v (of width 2⇡/a), giving a total of

domain of area of 2⇡ called Zak patch P with a center that we are free to choose. One choice

of domain that is convenient for representing computational GKP states is u 2 [�a/4, 3a/4)

and v 2 [�⇡/a, ⇡/a). For example, using a = 2
p
⇡, the (single-mode) infinite-energy square

GKP computational states are represented as |+Zi = |0, 0i and |�Zi = |a/2, 0i. Arbitrary

oscillator states can be represented in the basis of modular wavefunctions living on a torus

| i =
R
P dudv  (u, v) |u, vi with boundary conditions  (u + a, v) = eiav (u, v) ,  (u, v +

2⇡/a) =  (u, v).

The power of the Zak basis is that square-integrable wavefunctions of an unbounded
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variable (such as position q) can be mapped onto quasi-periodic modular wavefunctions of

two real variables with a bounded domain. This mapping is given by the Zak transform

[267,274,275]

(Z ) (u, v) =

r
a

2⇡

X

m2Z

e�iamv (u+ am). (F.6)

Finally, operators can also be described in the context of the Zak basis and modular

wavefunctions. Explicitly, the position and momentum operators can be broken up into a

modular part and a remainder part,

q̂ = û+ am̂ p̂ = v̂ +
2⇡

a
n̂ (F.7)

where n̂ (m̂) have integer eigenvalues (interpreted as the “which-bin” information), and

û = (q̂+ cq)mod [a]� cq (v̂ = (p̂+ cp)mod [2⇡/a]� cp) are the modular position (momentum)

operators (interpreted as the relative position or momentum within the specified bin). Here,

cq (cp) are constants used to center the Zak patch [269]. In the modular wavefunction

representation these variables have a di↵erential form,

hu, v| û = u hu, v| hu, v| v̂ = v hu, v| (F.8)

hu, v| am̂ = i
@

@v
hu, v| hu, v| 2⇡

a
n̂ = �

✓
i
@

@u
+ v

◆
hu, v| , (F.9)

giving a di↵erential form for the oscillator position and momentum variables,

hu, v| q̂ =
✓
u+ i

@

@v

◆
hu, v| hu, v| p̂ = �i @

@u
hu, v| (F.10)

used to analyze the action of operators and Hamiltonians on modular wavefunctions [276], as

is done in appendix G. Also, a multimode Zak basis and modular variable approach could be

useful in the development of error correction strategies for multi-oscillator GKP codes [273].
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Appendix G

A Hamiltonian description of the

GKP code

As defined in chapter 1, q̂ =
�
a+ a†

�
/
p
2 and p̂ = �i

�
a� a†

�
/
p
2 are the position and

momentum operators of a quantum harmonic oscillator with
⇥
a, a†

⇤
= 1 (unit is chosen as

~ = 1). The infinite-energy GKP Hamiltonian for a single-mode rectangular-lattice can be

written as [1]

HGKP = �Ep cos

 p
2⇡d

⌘
p̂

!
� Eq cos

⇣
⌘
p
2⇡d q̂

⌘
. (G.1)

HGKP has a d-fold degenerate ground state manifold encoding the infinite-energy rectan-

gular d-dimensional GKP code where ⌘ sets the lattice aspect ratio in phase space; here d is

the code dimension of the single-mode GKP code.1 Analogous Hamiltonians exist for other

lattices, such as the hexagonal lattice. The spectrum of HGKP is continuous with eigenstates

given by Zak basis states [226,267,274,276–278] (see appendix F) and Eq/Ep can be used to

tune the relative dispersion along the q and p directions. We note that the GKP Hamilto-

nian is closely related to Harper’s equation [279], which is a tight binding model for motional

dynamics of noninteracting electrons in the presence of a 2D periodic potential and uniform

1. In this section, we often restrict to the qubit (d = 2 case) and use the nomenclature “2D GKP” state,
Hamiltonian etc. to refer to a single-mode GKP with d = 2 code dimension.
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magnetic field, as discussed more below [1, 226,278,280].

The usual argument behind passive QEC is to construct a Hamiltonian for which the

codespace is the degenerate ground state manifold, protected by an energy gap [12]. However,

passive QEC for continuous-variable systems is di↵erent than in multi-qubit systems such

as the toric or surface code. In both cases, the protection Hamiltonian is of the form

H = �
P

k EkSk, where {Sk} are the stabilizer generators and Ek are the energy scales

which should be positive and very large compared with typical couplings to the bath. For

multi-qubit codes, the discrete spectrum of Pauli stabilizers gives rise to a spectral gap.

For the infinite-energy GKP code, the spectrum of displacement stabilizers is continuous,

rendering HGKP gapless. As a result, the perturbation theory argument relying on a gap,

such that local perturbations of the Hamiltonain give rise to small variations in energy, does

not apply to HGKP directly [226,281].

Depending on the physical realization of HGKP, it is unclear if a continuous spectrum

is really an issue, as proper thermalization to a cold bath could still prevent uncorrectable

errors; this is highly context dependent and an active topic of research. Nonetheless, a

gapped spectrum can be engineered by including a weak confinement potential, giving rise

to the finite-energy GKP Hamiltonian HGKP,� [1,226,276,281]. The most straightforward is

a harmonic confinement2,

HGKP,� =
!0

2

�
p̂2 + q̂2

�
� Ep cos

 p
2⇡d

⌘
p̂

!
� Eq cos

⇣
⌘
p
2⇡d q̂

⌘
. (G.2)

The � notation here indicates the quasi-degenerate ground states are now finite-energy GKP

states. The ground state manifold of the HGKP,� serves as an alternative definition to the

single-mode finite-energy code manifold. We anticipate this definition can be extended to

multimode GKP encodings.

2. A general harmonic confinement of H = p̂
2
/2m + kq̂

2
/2 can cast into the form of eq. (G.2) by scaling

position and momentum as q̂ ! q̂/
p
Z, p̂ ! p̂

p
Z, where Z = 1/

p
km is the impedance of the harmonic

confinement
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To analyze the Hamiltonian, the Zak basis introduced in appendix F can be used [276].

In particular, using a Zak basis period of a =
p
2⇡d/⌘ and a Zak patch3 of P = u 2

[�a/2d, a(2d � 1)/2d), v 2 [�⇡/a, ⇡/a), the Hamiltonian can be written as a di↵erential

operator in the Zak-wavefunction basis H | i =
R
P dudv H(u, v) (u, v) |u, vi using eq. (F.10)

as

HGKP,�(u, v) =
!0

2

�
p2u + (u� pv)

2
�
� Ep cos

 p
2⇡d

⌘
v

!
� Eq cos

⇣
⌘
p
2⇡d u

⌘
(G.3)

where we have defined e↵ective momenta in the u, v directions as pu = �i @@u and pv = �i @@v
[276]. From this, the finite-energy GKP Hamiltonian HGKP,� can be thought of as describing

a particle of mass 1/!0 on a torus parameterized by u, v, coupled to a vector potential and

two cosine potentials.

In the limit of weak harmonic confinement, Eq, Ep � !0, the tunneling between cosine

minima is suppressed. In this regime, HGKP,� has a set of d nearly degenerate ground states,

each localized in di↵erent minima at positions (u, v) = (an/d, 0) with n = 0, 1, ..., d� 1. The

cosine terms can be expanded to quadratic order around a minima, leading to a local e↵ective

Hamiltonian that is well approximated by two uncoupled harmonic oscillators with frequen-

cies !u =
⇣
⌘
p
2⇡d

⌘ �p
!0Eq

�
and !v =

⇣p
2⇡d/⌘

⌘ �p
!0Ep

�
and a spectral gap between

the quasi-degenerate ground state manifold and the first excited states of approximately

E ⇡ min (!u,!v).

Expanding the cosine potentials in eq. (G.3) to quadratic order can also be used to

estimate the GKP squeezing parameters. GKP states can have di↵erent squeezings along

the position and momentum directions in cases where ⌘ 6= 1 or Eq 6= Ep, and these can be

estimated from the zero-point motion associated with the e↵ective oscillator impedances of

u and v, given by Zu =
⇣
⌘
p
2⇡d

⌘�1p
!0/Eq and Zv =

⇣p
2⇡d/⌘

⌘�1p
!0/Ep. The zero-

point motion leads to GKP squeezing parameters of �q ⇡ 1/
p
Zu and �p ⇡ 1/

p
Zp. Other

3. Any patch of of width a in u and 2⇡/a in v will do, however we find this patch to be the most convenient
for representing GKP qudit states
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quantities, such as the tunnel splitting of the ground state manifold, can be estimated by

applying di↵erent perturbation techniques to the Zak-basis Hamiltonian, see for example

Refs. [226, 276].

In the case of a square lattice with equal energy scales in q and p (⌘ = 1, Eq = Ep), the

ground states are well approximated by the finite-energy Hadamard eigenstates

 H+ (q) ⇡ cos
⇣⇡
8

⌘
 �,0(q) + sin (⇡/8) �,1 (q) , (G.4)

 H� (q) ⇡ � sin
⇣⇡
8

⌘
 �,0(q) + cos (⇡/8) �,1 (q) , (G.5)

where  �,10
(q) are the wavefunctions for the finite-energy 0 and 1 logical states. This can

be seen from the Hamiltonian’s invariance with respect to the Fourier transform (a ⇡/2

rotation in phase space). As an example, in Ref. [226], the numerically obtained lowest-

energy eigenstates are shown. Modifying the impedance of the confinement potential can

break this symmetry and lead to other ground state manifolds. Varying from one confinement

potential to another could be used to engineer transformations of the finite-energy GKP

states [281].

The GKP Hamiltonian can also arise as the low-energy Hamiltonian of a single electron

confined to a two-dimensional plane with a periodic potential and a perpendicular magnetic

field [1,226]. Although this system is likely not practical to implement, requiring unrealisti-

cally large magnetic fields, it is useful for a theoretical understanding of the GKP code. In

Ref. [226], the authors show that the e↵ective low energy Hamiltonian [the lowest Landau

level (LLL) Hamiltonian] for this system in the weak Landau-level coupling limit is

HLLL = �V0


cos
�
2
p
⇡q̂
�
+ cos

✓
t

s

p
⇡p̂

◆�
. (G.6)

Here {t, s} are coprime natural numbers describing the rational multiple of flux quantum

contained in a loop enclosed by magnetic translation operators, � = (s/t)�0 where �0 is the

(non-superconducting) flux quantum. The eigenvalue equation associated with HLLL is the
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Harper equation, resulting in an energy spectrum in the form of a Hofstadter butterfly [280].

In [226], the spectrum is plotted as a function of t/s (also see [278]). This spectrum has s

bands that are t-fold degenerate, and the two-dimensional GKP code space corresponds to

the ground state manifold at s/t = 1/2 (equivalently t/s = 2) as shown by the red star in

the figure. In Ref. [278], the authors discuss this model in the context of topological order

and introduce the notion of a phase-space interaction potential, connecting to the dynamics

of some many-body systems.
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[47] D. E. Chang, V. Vuletić, M. D. Lukin, Quantum nonlinear optics —photon by photon,

Nature Photonics 8 (9) (2014) 685–694.

[48] S. Konno, W. Asavanant, F. Hanamura, H. Nagayoshi, K. Fukui, A. Sakaguchi, R. Ide,

F. China, M. Yabuno, S. Miki, H. Terai, K. Takase, M. Endo, P. Marek, R. Filip,

P. van Loock, A. Furusawa, Propagating gottesman-kitaev-preskill states encoded in

an optical oscillator (2023). arXiv:2309.02306.

[49] O. Instruments, Principles of dilution refrigeration.

[50] M. Tinkham, Introduction to Superconductivity, Dover Books on Physics Series, Dover

Publications, 2004.

[51] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.

Devoret, S. M. Girvin, R. J. Schoelkopf, Charge-insensitive qubit design derived from

the Cooper pair box, Phys. Rev. A 76 (4) (2007) 042319. doi:10.1103/PhysRevA.76.

042319.

[52] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R.

Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, et al., Observation of High Co-

herence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED

210

http://arxiv.org/abs/2103.09445
http://arxiv.org/abs/2103.09445
http://arxiv.org/abs/2309.02306
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319


Architecture, Phys. Rev. Lett. 107 (24) (2011) 240501. doi:10.1103/PhysRevLett.

107.240501.

[53] D. Pozar, Microwave Engineering, 4th Edition, Wiley, 2011.

[54] O. Milul, B. Guttel, U. Goldblatt, S. Hazanov, L. M. Joshi, D. Chausovsky, N. Kahn,
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R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, M. H. Devoret, To catch and re-

verse a quantum jump mid-flight, Nature 570 (7760) (2019) 200–204. doi:10.1038/

s41586-019-1287-z.

[167] J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, J. Bylan-

der, Decoherence benchmarking of superconducting qubits, npj Quantum Information

5 (1) (2019) 1–8. doi:10.1038/s41534-019-0168-5.

[168] M. Carroll, S. Rosenblatt, P. Jurcevic, I. Lauer, A. Kandala, Dynamics of supercon-

ducting qubit relaxation times, arXiv:2105.15201 [cond-mat, physics:quant-ph] (May

2021).

[169] S. Chaturvedi, M. S. Sriram, V. Srinivasan, Berry’s phase for coherent states, Journal

of Physics A: Mathematical and General 20 (16) (1987) L1071–l1075. doi:10.1088/

0305-4470/20/16/007.

[170] G. Vacanti, R. Fazio, M. S. Kim, G. M. Palma, M. Paternostro, V. Vedral, Geometric-

phase backaction in a mesoscopic qubit-oscillator system, Physical Review A 85 (2)

(2012) 022129. doi:10.1103/PhysRevA.85.022129.

225

https://doi.org/10.1103/PRXQuantum.4.020312
https://doi.org/10.1103/physrevlett.129.100601
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1038/s41534-019-0168-5
https://doi.org/10.1088/0305-4470/20/16/007
https://doi.org/10.1088/0305-4470/20/16/007
https://doi.org/10.1103/PhysRevA.85.022129


[171] M. Pechal, S. Berger, A. A. Abdumalikov, J. M. Fink, J. A. Mlynek, L. Ste↵en,

A. Wallra↵, S. Filipp, Geometric Phase and Nonadiabatic E↵ects in an Electronic

Harmonic Oscillator, Physical Review Letters 108 (17) (2012) 170401. doi:10.1103/

PhysRevLett.108.170401.

[172] C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng,

K. Huang, D. Zheng, X. Zhu, H. Wang, Continuous-variable geometric phase and its

manipulation for quantum computation in a superconducting circuit, Nature Commu-

nications 8 (1) (2017) 1061. doi:10.1038/s41467-017-01156-5.

[173] S. Haroche, J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons,

Oxford Graduate Texts, OUP Oxford, 2013.

[174] L. G. Lutterbach, L. Davidovich, Method for direct measurement of the wigner function

in cavity qed and ion traps, Phys. Rev. Lett. 78 (1997) 2547–2550. doi:10.1103/

PhysRevLett.78.2547.

[175] C. Flühmann, J. P. Home, Direct Characteristic-Function Tomography of Quantum

States of the Trapped-Ion Motional Oscillator, Physical Review Letters 125 (4) (2020)

043602. doi:10.1103/PhysRevLett.125.043602.

[176] M. Pechal, L. Huthmacher, C. Eichler, S. Zeytinoğlu, A. A. Abdumalikov, S. Berger,
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F. Reiter, Two-qubit operations for finite-energy Gottesman-Kitaev-Preskill encodings

(2023). arXiv:2305.05262.

[232] V. Sivak, N. Frattini, V. Joshi, A. Lingenfelter, S. Shankar, M. Devoret, Kerr-Free

Three-Wave Mixing in Superconducting Quantum Circuits, Phys. Rev. Appl. 11 (2019)

054060. doi:10.1103/PhysRevApplied.11.054060.

[233] B. J. Chapman, S. J. de Graaf, S. H. Xue, Y. Zhang, J. Teoh, J. C. Curtis, T. Tsunoda,

A. Eickbusch, A. P. Read, A. Koottandavida, et al., A high on-o↵ ratio beamsplitter

interaction for gates on bosonically encoded qubits (2022). arXiv:2212.11929.

[234] Y. Lu, A. Maiti, J. W. O. Garmon, S. Ganjam, Y. Zhang, J. Claes, L. Frunzio,

S. M. Girvin, R. J. Schoelkopf, A high-fidelity microwave beamsplitter with a parity-

protected converter (2023). arXiv:2303.00959.

[235] Y. Ye, K. Peng, M. Naghiloo, G. Cunningham, K. P. O’Brien, Engineering Purely

Nonlinear Coupling between Superconducting Qubits Using a Quarton, Phys. Rev.

Lett. 127 (2021) 050502. doi:10.1103/PhysRevLett.127.050502.

[236] T.-C. Chien, O. Lanes, C. Liu, X. Cao, P. Lu, S. Motz, G. Liu, D. Pekker, M. Hatridge,

Multiparametric amplification and qubit measurement with a Kerr-free Josephson ring

modulator, Phys. Rev. A 101 (2020) 042336. doi:10.1103/PhysRevA.101.042336.

233

https://doi.org/10.1038/s41586-023-05784-4
https://doi.org/10.1038/s41467-021-22030-5
http://arxiv.org/abs/2305.05262
https://doi.org/10.1103/PhysRevApplied.11.054060
http://arxiv.org/abs/2212.11929
http://arxiv.org/abs/2303.00959
https://doi.org/10.1103/PhysRevLett.127.050502
https://doi.org/10.1103/PhysRevA.101.042336
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