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bandit problems

bandit probiems

The multi-armed bandit problem, originally described by
Robbins (1952), is a statistical decision model of an agent
trying to optimize his decisions while improving his
information at the same time. In the multi-arm bandit
problem, the gambler has to decide which arm of §
different slot machines to play in a sequence of trials so as
to maximize his reward. This classical problem has
received much attention because of the simple model it
provides of the trade-off between exploration (trying out
each arm to find the best one) and exploitation (playing
the arm believed to give the best payoff). Each choice of
an arm results in an immediate random payoff, but the
process determining these payoffs evolves during the play
of the bandit. The distinguishing feature of bandit prob-
lems is that the distribution of returns from one arm only
changes when that arm is chosen. Hence the rewards
from an arm do not depend on the rewards obtained
from other arms. This feature also implies-that the dis-
tributions of returns do not depend explicitly on calendar
time. )

The bandit framework found early applications in the
area of clinical trials where different treatments need to
be experimented with while minimizing patient losses
and in adaptive routing efforts for minimizing delays in a
network. In economics, experimental consumption is a
leading example of an intertemporal allocation problem
where the trade-off between current payoff and value of
information plays a key role.

Basic model

It is easiest to formulate the bandit problem as an infinite
horizon Markov decision problem in discrete time with
time index t=0,1,... At each t, the decision maker
chooses amongst K arms and we denote this choice by
a; € {1,...,K}. If a, = k, a random payoff x* is realized
and we denote the associated random variable by X*. The
state variable of the Markovian decision problem is given
by s,. We can then write the distribution of x* as FX(; 5:)1
The state transition function ¢ depends on the choice of
the arm and the realized payoff:

Sty = ¢(fo st)

Let S, denote the set of all possible states in period & A
feasible Markov policy a = {a;};%, selects an available
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alternative for each conceivable state s, that is,

a8 — {1l K}

The following two assumptions must be met for the
problem to qualify as a bandit problem.

1. Payoffs are evaluated according to the discounted
’ expected payoff criterion where the discount factor 6
satisfies 0 < 6<1.

2. The payoff from each k depends only on outcomes of
periods with @, = k. In other words, we can decom-
pose the state variable s into K components
(s,...,s5) such that for all k:

St = 5t if

Slr(+1 = d)(si‘,xt)

ar#k,
if a; =k,

and
Fi(ys0) = FE(359).

Notice that when the second assumption holds, the
alternatives must be statistically independent.

It is easy to see that many situations of economic
interest are special cases of the above formulation. First,
it could be that Fk( 0% is a fixed distribution with an
unknown parameter 0%, The state variable is then the
posterior probability distribution on 6*. Alternatively,
F(- 35 could denote the random yield per period from a
resource k after extracting s* units.

The value function V(s) of the bandit problem can be
written as follows. Let X*(s¥) denote the random variable
with distribution F*(-;s¥). Then the problem of find-
ing an optimal allocation policy is the solution to the
following intertemporal optimization problem:

V(s) = sup{ E i X () }

t=0

The celebrated index theorem due to Gittins and Jones
(1974) transforms the problem of finding the optimal
policy into a collection of k stopping problems. For each
alternative k, we calculate the following index y*(sf),
which depends only on the state variable of alternative k:

T tyk( k
) - ap{ AL

where 7 is a stopping time with respect to {s*}. The idea
1s to find for each k the stopping time 7 that results in the
highest discounted expected return per discounted
expected number of periods in operation. The Gittins
index theorem then states that the optimal way of choos-
Ing arms in a bandit problem is to select in each period
]tahe arm with the highest Gittins index, 7" (s¥), as defined

y (1)

Theorem 1 Gittins-Jones (1974)

The optimal policy satisfies a, = k for some k such that
mk(sk) > m’(s’,) for all je{1,...,K}.

To understand the economic intuition behind this
theorem, consider the following variation on the original
problem. This reasoning follows the lines suggested in
Weber (1992). The arms are owned and operated by
separate risk-neutral agents. The owner can rent a single
arm at a time to the operators and there is a competitive
market of potential operators. As time is discounted, it is
clearly optimal to obtain high rental incomes in early
periods of the model. The rental market is operated as a
descending price auction where the fee for operating an
arbitrary arm is lowered until an operator accepts the
price. At the accepted price, the operator is allowed to
operate the arm as long as it is profitable. Since the
market for operators is competitive, the price is such
that, under an optimal stopping rule, the operator breaks
even. Hence the hikghest acceptable price for arm k is the
Gittins index m*(sf), and the operator operates the arm
until its Gittins index falls below the price, that is, its
original Gittins index. Once an arm is abandoned, the
process of lowering the price offer is restarted. Since the
operators get zero surplus and they are operating under
optimal rules, this method of allocating arms results in
the maximal surplus to the owner and thus the largest
sum of expected discounted payoffs.

The optimality of the index policy reduces the dimen-
sionality of the optimization problem. It says that the
original K-dimensional problem can be split into K
independent components, and then be knitted together
after the solutions of the indices for the individual prob-
lems have been computed, as in eq. (1). In particular,
in each period of time, at most one index has to be
re-evaluated; the other indices remain frozen.

The multi-armed bandit problem and many variations
are presented in detail in Gittins (1989) and Berry and
Fristedt (1985). An alternative proof of the main theo-
rem, based on dynamic programming can be found in
Whittle (1982). The basic idea is to find for every arm a
retirement value M¥, and then to choose in every period
the arm with the highest retirement value. Formally, for
every arm k and retirement value M, we can compute the
optimal retirement policy given by:

VE(sF M) & max{ EIX*(s5) + SVA(sHH!, M), M1}
(2)

The auxiliary decision problem given by (2) compares in
every period the trade-off between continuation with the
reward process generated by arm k or stopping with a
fixed retirement value M. The index of arm k in the state
sk is the highest retirement value at which the decision is
just indifferent between continuing with arm k or retiring
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with M = M(s5):
M*(sf) = V(sf, M¥(s1)).

The resulting index M*(s¥) is equal to the discounted
sum of flow index m*(s¥), or M¥*(s¥) = m*(s) /(1 — 5).

Extensions

Even though it is easy to write down the formula for the
Gittins index and to give it an economic interpretation, it
is normally impossible to obtain analytical solutions for
the problem. One of the few settings where such solu-
tions are possible is the continuous-time bandit model
where the drift of a Brownian motion process is initially
unknown and learned through observations of the proc-
ess. Karatzas (1984) provides an analysis of this case
when the volatility parameter of the process is known.

From an analytical standpoint, the key property of
bandit problems is that they allow for an optimal policy
that is defined in terms of indices that are calculated for
the individual arms. It turns out that this property does
not generalize easily beyond the bandit problem setting.
One instance where such a generalization is possible is
the branching bandit problem where new arms are born
to replace the arm that was chosen in the previous period
(see Whittle 1981).

An index characterization of the optimal allocation
policy can still be obtained without the Markovian struc-
ture. Varaiya, Walrand and Buyukkoc (1985) give a gen-
eral characterization in discrete time, and Karoui and
Karatzas (1997) provide a similar result in a continuous
time setting. In either case, the essential ideais that the
evolution of each arm depends only on the (possibly
entire) history and running time of the arm under con-
sideration, but not on the realization nor the running
time of the other arms. Banks and Sundaram (1992)
show that the index characterization remains valid under
some weak additional condition even if the number of
indices is countable, but not necessarily finite.

On the other hand, it is well known that an index
characterization is not possible when the decision maker
must or can select more than a single arm at each t.
Banks and Sundaram (1994) also show further that an
index characterization is not possible when an extra cost
must be paid to switch between arms in consecutive
periods. Bergemann and Valimiki (2001) consider a sta-
tionary setting in which there is an infinite supply of
ex ante identical arms available. Within the stationary
setting, they show that an optimal policy follows the
index characterization even when many arms can be
selected at the same time or when a switching cost has to
be paid to move from one arm to another.

Market learning
In economics, bandit problems were first used to model
search processes. The first paper that used a one-armed

bandit problem in economics is Rothschild (1974), iy
which a single firm is facing a market with unknowy,
demand. The true market demand is given by a specific
probability distribution over consumer valuations. Hoyy.
ever, the firm initially has a prior probability over severa]
possible market demands. The problem for the firm is ¢,
find an optimal sequence of prices to learn more about
the true demand while maximizing its expected dj;.
counted profits. In particular, Rothschild shows that ey
ante optimal pricing rules may well end up using prices
that are ex post suboptimal (that is, suboptimal if the trye
distribution were to be known). If several firms were to
experiment independently in the same market, they
might offer different prices in the long run. Optimal
experimentation may therefore lead to price dispersion i
the long run as shown formally in McLennan (1984),

In an extension of Rothschild, Keller and Rady (1999)
consider the problem of the monopolist facing an
unknown demand that is subject to random changes
over time. In a continuous time model, they identify
conditions on the probability of regime switch and dis-
count rate under which either very low or very high
intensity of experimentation is optimal. With a low-
intensity policy, the tracking of the actual demand is .
poor and the decision maker eventually becomes trapped,
in contrast with a high-intensity policy demand, which is
tracked almost perfectly. Rustichini and Wolinsky (1995)
examine the possibility of mis-pricing in a two-armed
bandit problem when the frequency of change is small.
Nonetheless, they show that it is possible that learning
will cease even though the state of demand continues to
change.

The choice between various research projects often
takes the form of a bandit problem. In Weitzman (1979)
each arm represents a distinct research project with a
random prize associated with it. The issue is to charac-
terize the optimal sequencing over time in which the
projects should be undertaken. It shows that as novel
projects provide an option value to the research, the
optimal sequence is not necessarily the sequence of
decreasing expected rewards (even when there is dis-
counting). Roberts and Weitzman (1981) consider a
richer model of choice between R&D processes.

Many-agent experimentation

The multi-armed bandit models have recently been used
as a canonical model of experimentation in teams. In
Bolton and Harris (1999) and Keller, Rady and Cripps
(2005) a set of players choose independently between the
different arms. The reward distributions are fixed, but
characterized by parameters that are initially unknown to
the players. The model is one of common values in the
sense that all players receive independent draws from
the same distribution when choosing the same arm. It
is assumed that outcomes in all periods are pubhd}’
observable, and as a result a free riding problem 1
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ted. Information is a public good and each individual
prefer to choose the current payoff maxi-
mizing arm and let other players perform costly experi-
mentation with _currently inferior arms. These papers
characterize equilibrium experimentation under different
assumptions on the reward distributions. In Bolton and
Harris (1999) the model of uncertainty is a continuous
time model with unknown drift and know variance,
whereas in Keller, Rady and Cripps (2005) the underlying
uncertainty is modelled by an unknown Poisson parameter.

crea
player would

Experimentation and matching

The bandit framework has been successfully applied to
Jearning in matching markets such as labour and con-
sumer good markets. An early example of this is given in
the job-market matching model of Jovanovic (1979), who
applies a bandit problem to a competitive labour market.
Suppose that a worker must choose employment in one of
K firms and her (random) productivity in firm k is para-
metrized by a real variable 6%, The bandit problem is then a
natural framework for the study of learning about the
match-specific productivities. For each k, sf is then simplz
the prior on 6% and s* is the posterior distribution given g
and x* for s<t. Over time, a worker’s productivity in a
specific job becomes known more precisely. In the event of
a poor match, separation occurs in equilibrium and job
turnover arises as a natural by-product of the learning
process. On the other hand, over time the likelihood of
separation eventually decreases as, conditional on being
still on the job, the likelihood of a good match increases.
The model hence generates a number of interesting empir-
ical implications which have since been investigated exten-
sively. Miller (1984) enriches the above setting by allowing
for a priori different occupations, and hence the sequence
in which a worker is matched over time to different
occupations is determined as part of the equilibrium.

Experimentation and pricing

In a related literature, bandit problems have been taken
as a starting point for the analysis of division of surplus
In an uncertain environment. In the context of a differ-
entiated product market and a labour market respec-
tively, Bergemann and Vilimiki (1996) and Felli and
Harris (1996) consider a model with a single operator
and a separate owner for each arm. The owners compete
for the operator’s services by offering rental prices. These
models are interested in the efficiency and the division of
the surplus resulting from the equilibrium of the model.
Ig both models, arms are operated according to the
Gittins index rule, and the resulting division of surplus
leaves the owners of the arms as well as the operator with
positive surpluses. In Bergemann and Vilimaki (1996),
the mode] is set in discrete time and a general model of
uncertainty is considered. The authors interpret the
experiment as the problem of choosing between two

competing experience goods, in which both seller and
buyer are uncertain about the quality of the match
between the product and the preferences of the buyer. In
contrast, Felli and Harris (1996) consider a continuous
model with uncertainty represented by a Brownian
motion and interpret the model in the context of a
labour market. Both models show that, even though the
models allow for a genuine sharing of the surplus, allo-
cation decisions are surplus maximizing in all Markovian
equilibria, and each competing seller receives his
marginal contribution to the social surplus in the unique
cautious Markovian equilibrium. Bergemann and
Vilimaki (2006) generalize the above efficiency and equi-
librium characterization from two sellers to an arbitrary
finite number of sellers in a deterministic setting. Their
proof uses some of the techniques first introduced in
Karoui and Karatzas (1997). On the other hand, if the
market consists of many buyers and each one of them is
facing the same experimentation problem, then the issue
of free-riding arises again. Bergemann and Vilimaki
(2000} analyse a continuous time model as in Bolton and
Harris (1999), but with strategic sellers. Surprisingly, the
inefficiency observed in the earlier paper is now reversed
and the market equilibrium displays too much informa-
tion. As information is a public good, the seller has to
compensate an individual buyer only for the impact his
purchasing decision has on his own continuation value,
and not for its impact on the change in continuation
value of the remaining buyers. As experimentation leads
in expectation to more differentiation, and hence less
price competition, the sellers prefer more differentiation,
and hence more experimentation to less. As each seller
has to compensate only the individual buyers, not all
buyers, the social price of the experiment is above the
equilibrium price, leading to excess experimentation in
equilibrium.

Experimentation in finance
Recently, the paradigm of the bandit model has also
been applied in corporate finance and asset pricing.
Bergemann and Hege (1998; 2005) mode] a new venture
or innovation as a Poisson bandit model with variable
learning intensity. The investor controls the flow of
funding allocated to the new project and hence the rate at
which information -about the new project arrives. The
optimal funding decision is subject to a moral hazard
problem in which the entrepreneur controls the unob-
servable decision to allocate the funds to the project.
Hong and Rady (2002) introduce experimentation in an
asset pricing model with uncertain liquidity supply. In
contrast to the standard noise trader model, the strategic
seller can learn about liquidity from past prices and
trading. volume. This learning implies that strategic
trades and market statistics such as informational
efficiency are path-dependent on past market outcomes.
DIRK BERGEMANN AND JUUSO VALIMAKI
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See also competition; diffusion of technology.
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