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We study the problem of selling information to a data-buyer who faces a decision problem under uncertainty.

We consider the classic Bayesian decision-theoretic model pioneered by Blackwell [9, 10]. Initially, the data

buyer has only partial information about the payoff-relevant state of the world. A data seller offers additional

information about the state of the world. The information is revealed through signaling schemes, also referred

to as experiments. In the single-agent setting, any mechanism can be represented as a menu of experiments. A

recent paper by Bergemann et al. [8] present a complete characterization of the revenue-optimal mechanism in

a binary state and binary action environment. By contrast, no characterization is known for the case with more

actions. In this paper, we consider more general environments and study arguably the simplest mechanism,

which only sells the fully informative experiment. In the environment with binary state and𝑚 ≥ 3 actions, we

provide an 𝑂 (𝑚)-approximation to the optimal revenue by selling only the fully informative experiment and

show that the approximation ratio is tight up to an absolute constant factor. An important corollary of our

lower bound is that the size of the optimal menu must grow at least linearly in the number of available actions,

so no universal upper bound exists for the size of the optimal menu in the general single-dimensional setting.

We also provide a sufficient condition under which selling only the fully informative experiment achieves the

optimal revenue.

For multi-dimensional environments, we prove that even in arguably the simplest matching utility en-

vironment with 3 states and 3 actions, the ratio between the optimal revenue and the revenue by selling

only the fully informative experiment can grow immediately to a polynomial of the number of agent types.

Nonetheless, if the distribution is uniform, we show that selling only the fully informative experiment is

indeed the optimal mechanism.
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1 INTRODUCTION
As large amounts of data become available and can be communicated more easily and processed

more effectively, information has come to play a central role for economic activity and welfare

in our age. In turn, markets for information have become more prominent and significant in

terms of trading volume. Bergemann and Bonatti [7] provide a recent introduction to markets for

information with a particular emphasis on data markets and data intermediation in e-commerce.

Information is a valuable commodity for any decision-makers under uncertainty. By acquiring

more information, the decision-maker can refine his initial estimates about the true state of the world

and consequently improve the expected utility of his decision. In many economically significant

situations, a decision-maker can acquire additional information from a seller who either already has

the relevant information or can generate the relevant information at little or no cost. Beyond digital

and financial markets, the value of information is particularly important for health economics

where it appears as the expected value of sample information, see [1] or more recently, [23] and

[21] with applications to COVID-19 testing. The value of additional information is also central in

the literature on A/B testing, see [3].

For the seller of information, the question is therefore how much information to sell and at

what price to sell it. A natural starting point is to make all the information available and sell the

information at a price that maximizes the revenue of the seller. The problem of selling information

at an optimal price is therefore closely related to the classic problem of the monopolist selling a

single unit of an object at an optimal price. Just as in the classic optimal monopoly problem, the

seller faces a trade-off in the choice of the price. A higher price generates a higher revenue for every

additional sale, but there might be few buyers who value the object higher than the price asked. A

lower price generates a larger volume of sales but with low marginal revenue. The optimal policy

finds the balance between the marginal revenue and the inframarginal revenue considerations. The

sale of complete information faces similar trade-offs. A high price for the complete information

will be acceptable for decision-makers with diffuse prior information, thus those who value the

additional information most, but may not be acceptable for those buyers who already have some

information.

We analyze these issues in the classic Bayesian decision-theoretic model pioneered by Black-

well [9, 10]. Here we interpret the decision-theoretic model as one where a data buyer faces a

decision problem under uncertainty. A data seller owns a database containing information about

a “state” variable that is relevant to the buyer’s decision. Initially, the data buyer has only partial

information about the state. This information is private to the data buyer and unknown to the data

seller. The precision of the buyer’s private information determines his willingness to pay for any

supplemental information. Thus, from the perspective of the data seller, there are many possible

types of data buyer.

A recent contribution by Bergemann et al. [8] analyzes the optimal selling policy with the tools of

mechanism design. Their analysis is mostly focused on the canonical decision-theoretic setting with

a binary state and a binary action space. In this setting, the type space is naturally one-dimensional

and given by the prior probability of one state, the probability of the other state being simply the

complementary probability.

As in [8], we investigate the revenue-maximizing information policy, i.e., how much information

the data seller should provide and how she should price access to the data. In order to screen the

heterogeneous data buyer types, the seller offers a menu of information products. In the present

context, these products are statistical experiments— signals that reveal information about the

payoff-relevant state. Only the information product itself is assumed to be contractible. By contrast,

payments cannot be made contingent on either the buyer’s action or the realized state and signal.
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Consequently, the value of an experiment to a buyer is determined by the buyer’s private belief

and can be computed independently of the price of the experiment. The seller’s problem is then to

design and price different versions of experiments, that is, different information products from the

same underlying database.

Indeed, Bergemann et al. [8] find that in the binary action and state setting it is often optimal

to simply sell the complete information to the buyers and identify the optimal monopoly price.

This is for example the case when the distribution of the prior beliefs, the types of the buyers, is

symmetric around the uniform prior. Yet, they find that sometimes it can be beneficial to offer two

information goods for sale, one that indeed offers complete information, but also an additional one

that offers only partial information. Thus, a menu of information goods sometimes dominates the

sale of a single object, namely the complete information.

Given the proximity of the problem of selling information to the problem of selling a divisible

good with a unit capacity, the superiority of a menu over a single choice may appear to be surprising.

After all, in the single good problem, Riley and Zeckhauser [35] have famously established that

selling the entire unit at an optimal price is always an optimal policy. When we consider the

problem of selling information, we find that the utility of the buyer is also linear in the posterior

probability, just as it is linear in the quantity in the aforementioned problem. Thus the emergence

of a menu rather than a single item appears puzzling. The difference is however that the utility of

the buyer is only piecewise linear. In particular, in the binary state binary action setting, it displays

exactly one kink in the interior of the prior probability. The kink emerges at an interior point of

the prior belief where the decision-maker is indifferent between the two actions that are at his

disposal. This particular prior indeed identifies the type of the decision-maker who has the highest

willingness-to-pay for complete information. Moving away from this point, the utility is then linear

in the prior probability. The kink is foremost an expression of the value of information for the

decision-maker. But following the utility descent away from the kink, the value of information is

decreasing linearly, and thus the seller faces not one, but two endpoints at which the participation

constraints of the buyer have to be satisfied.

Naturally, with complete information about binary states, there will be two actions, one for each

state which will lead to the highest utility of the decision-maker. Thus, we might expect that the

cardinality of the optimal menu remains at most binary when we allow the agents to have a larger

choice or action set but stay with binary state space that represents the uncertainty. In this paper

we pursue this question and find that the cardinality of the optimal menu increases at least linearly

with the number of available actions. Thus, selling information forces us to consider larger menus

even when the space of uncertainty remains binary, and thus the utility as a function of the one-

dimensional prior remains piecewise linear everywhere. Moreover, the cardinality of a set of optimal

actions will always remain at two. Thus, the nature of selling information is high-dimensional even

when the underlying state and ex-post optimal action space remains binary and thus small.

The main idea behind the revenue-maximizing mechanism for the information seller is akin to

offering “damaged goods” to low-value buyers. However, when selling information goods (see [38]),

product versioning allows for richer and more profitable distortions than with physical goods. This

is due to a peculiar property of information products: Because buyers value different dimensions

(i.e., information about specific state realizations), the buyers with the lowest willingness to pay

also have very specific preferences. For example, in the context of credit markets, very aggressive

lenders are interested in very negative information only, and are willing to grant a loan otherwise.

The seller can thus leverage the key insight that information is only valuable if it changes optimal

actions—to screen the buyer’s private information.
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1.1 Our Results and Techniques
We first study the environment when the state is binary, investigating the ratio between the optimal

revenue (denoted asOPT) and the revenue that can be attained with the sale of complete information

(denoted as FRev). [8] showed that in the environment with a binary state and a binary action space,

OPT

FRev
≤ 2. What happens when there are more actions? Since there are only two states, the agent

has a single dimensional preference. Conventional wisdom from the monopoly pricing problem

suggests that the ratio should be no more than a fixed constant. Nonetheless, in the paper we show

that the ratio
OPT

FRev
is Θ(𝑚), which is neither a fixed constant nor a function that scales with the

number of agent types. Here𝑚 is the number of actions.

Our first main result, Theorem 1, shows that the revenue obtainable with the sale of complete

information is only a fraction 1/Ω(𝑚) of the optimal revenue. Using Theorem 1 as a springboard,

our second main result, Theorem 2, shows that the cardinality of the optimal menu is at least Ω(𝑚).
The reason is that any menu with ℓ experiments can obtain no more than ℓ times the revenue

attained with the sale of complete information (Lemma 3). To prove Theorem 1, we explicitly

construct an environment with 𝑚 actions, where selling the complete information yields low

revenue. However, characterizing the optimal menu appears to be challenging for this environment,

and even providing any incentive compatible mechanism with high revenue seems to be non-

trivial. We take an indirect approach by first constructing an approximately incentive compatible

mechanism that has a revenue at least Ω(𝑚) times larger than the revenue attained with the sale

of complete information, then converting the mechanism to a menu with negligible revenue loss.

In Theorem 3, we show that selling the complete information can always obtain at least a fraction

1/𝑂 (𝑚) of the optimal revenue, matching the lower bound in Theorem 1 up to a constant factor.

This result is established by considering a relaxed problem for the optimal revenue maximization,

where we only keep a subset of the original incentive constraints. We show that the cardinality of

the optimal menu in the relaxed problem is always 𝑂 (𝑚), thus Theorem 3 follows from Lemma 3.

Note that we only show that the relaxed problem under which the optimal revenue can be obtained

with 𝑂 (𝑚) experiments. It remains an open question whether the cardinality of the optimal menu

in the original problem grows linearly in the number of available actions, or perhaps exceeds linear

growth in the feasible actions.

These results show that the optimal mechanism to sell information or data are likely high-

dimensional even when the underlying decision problem is low-dimensional. By tailoring the

information to different decision problems the seller can extract substantially more revenue from

the decision-maker as if he were to rely on a simple mechanism. More specifically, for any constant

𝑐 > 0 and any fixed finite menu, there exists a binary-state environment such that the revenue

attained by the menu is no more than a 𝑐-fraction of the optimal revenue (Corollary 1). Nonetheless,

we provide in Theorem 4 conditions under which it is indeed optimal to only sell the largest possible

amount of information, akin to the single unit monopoly problem. In Examples 1, 2, and 3 we apply

this condition to various parametrized classes of information problems.

Our results above provide a complete understanding of
OPT

FRev
in the binary-state environments.

What happens if there aremore than two states? In fact, we show that the ratio becomes substantially

larger when the agent has a multi-dimensional preference. We consider arguably the simplest multi-

dimensional environment, where there are 3 states and 3 actions, and the buyer receives payoff 1 if

they match their action 𝑗 with the state 𝑖 ( 𝑗 = 𝑖) and receives payoff 0 otherwise. We refer to this as

the three state matching utility environment. We show in Theorem 5 that in this multi-dimensional

environment, the ratio
OPT

FRev
can scale polynomially with the number of agent types 𝑁 . In particular,

OPT

FRev
= Ω(𝑁 1/7). With Lemma 3, the result also implies that the optimal menu contains at least

Ω(𝑁 1/7) experiments. The proof is adapted from the approach in [29], which was originally used in
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the multi-item auction problem. Their approach does not directly apply to our problem due to both

the non-linearity of the buyer’s value function and the more demanding incentive compatibility

constraints in our setting. In the proof, we construct a sequence of types placed on a sequence of

concentric thin circular sectors. [29] placed all types in a sequence of complete circles. We place

the types in these carefully picked circular sectors, so that the constructed mechanism satisfies the

more demanding incentive compatibility constraints. Then we construct a discrete distribution on

those types, so that the ratio
OPT

FRev
is large.

An alternative interpretation of the result is that: There does not exist a universal finite upper

bound on either the cardinality of the optimal menu or the ratio
OPT

FRev
that holds for all possible type

distributions. To complement this result, in Theorem 7, we show that in the same environment

– matching utility with 3 states/actions, selling the complete information is indeed optimal if

the distribution is uniform. To prove the result, we propose another relaxation of the problem

optimizing over the agent’s utility functions. We then construct a dual problem in the form of

optimal transportation [18, 36, 40]. To verify the optimality of selling complete information, we

construct a feasible dual that satisfies the complementary slackness conditions. Although Theorem 7

focuses on a special matching utility environment with 3 states, our relaxation provides a general

approach to certify the optimality of any specific menu.

The paper is organized as follows. In Section 2, we introduce the model and notations used in the

paper. In Section 3 we prove lower bounds for
OPT

FRev
and size of the optimal menu in the binary-state

case. In Section 4 we upper bound
OPT

FRev
, matching the lower bound proved in the previous section.

Then we provide a sufficient condition under which selling complete information is optimal. In

Section 5 we consider the environment with 𝑛 ≥ 3 states. In Section 6 we conclude the paper.

1.2 Additional Related Work
Unlike selling a single unit of item, the monopolist pricing problem becomes much more involved in

multi-dimensional settings. Complete characterizations are known only in several special cases [18–

20, 24–27]. A recent line of work provides simple and approximately-optimal mechanisms [4, 11, 13–

15, 22, 28, 30, 41]. Our results (Theorem 1 and Theorem 3) provide matching upper and lower bounds

for the performance of selling the complete information, arguably the simplest mechanism for

selling information, in single-dimensional settings. In sharp contrast to the monopolist pricing

problem, our Theorem 2 indicates that the optimal solution for selling information is unlikely to be

simple even in single-dimensional settings.

Babaioff et al. [5] studies a problem that is related to ours. They consider a model where a seller

knows the state of the world𝜔 and sells the information to a buyer who has a private type. However,

there are two major differences between their model and ours. Firstly, our analysis considers the

direct sale of information. Here contracting takes place at the ex ante stage: The buyer purchases an

information structure (i.e., a Blackwell experiment), as opposed to paying for specific realizations

of the seller’s informative signals. By contrast, Babaioff et al. [5] studies a model of data lists

(i.e., pricing conditional on signal realizations). Secondly, their paper considers a different model

of uncertainty and information. In particular, the ex-post payoff function of the buyer depends

on two random variables, namely 𝜔 , which is the state of the world about which the seller has

information, and 𝜃 which is payoff type that the buyer has information about. This two-dimensional

representation of the uncertainty differs from our setting. In our setting, the payoff function of

the buyer depends only on the state of the world, and both the buyer and the seller have some,

partial or complete, information about the state. In our view this is the canonical model of decision

making under uncertainty where the buyer seeks to complement (or augment) his information by

additional information from the seller. Finally, our model assumes that the buyer’s private type
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𝜃 is his private prior belief about the underlying state 𝜔 . Babaioff et al. [5] shows that when the

correlation between 𝜃 and 𝜔 is complex enough, the optimal mechanism can extract all surplus, as

in Crémer and McLean [17]. However, their result does not seem to apply to the specific type of

correlation between 𝜔 and 𝜃 in our model. To sum up, the models of [5] and ours are not nested,

and neither is a special case of the other. Chen et al. [16] study a similar setting to Babaioff et

al. [5] where the buyer has budget constraints. Bergemann and Bonatti [7] consider the trade of

information bits (“cookies”) that are an input to a decision problem.

Moreover, there are some recent works studying the revenue-optimal mechanism in different

information-selling models. Liu et al. [32] characterizes the revenue-optimal mechanism when the

buyer has a linear value function on the scalar-valued state and action. A recent paper by Li [31]

studies the case where the agent has endogenous information, meaning that she can perform her

own experiment at a certain cost after receiving the signal. Finally, Cai and Velegkas [12] study the

same problem as ours but focus on efficient algorithms to compute the optimal menu for discrete

type distributions. We consider general type distributions and study the cardinality of the optimal

menu as well as the performance of selling the complete information.

2 PRELIMINARIES
Model and Notation. A data buyer (also referred to as the agent) faces a decision problem under

uncertainty. The state of the world𝜔 is drawn from a state space Ω = {𝜔1, . . . , 𝜔𝑛}. For each 𝑖 ∈ [𝑛],
we refer to state 𝜔𝑖 as state 𝑖 for simplicity.

1
The buyer chooses an action 𝑎 from a finite action

space 𝐴. We use𝑚 to denote the size of 𝐴 and let 𝐴 = [𝑚]. For every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], the buyer’s
payoff for choosing action 𝑗 under state 𝑖 is defined to be 𝑢𝑖 𝑗 . DenoteU the 𝑛 ×𝑚 payoff matrix

that contains all 𝑢𝑖 𝑗 ’s. The buyer has matching utility payoff if 𝑛 =𝑚 andU is an identity matrix

(𝑢𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise).

The buyer has some prior information about the state of the world, which is captured by a

distribution that represents the probability that the buyer assigns to each of the states. We call this

piece of prior information the type of the buyer, denoted by 𝜃 = (𝜃1, . . . , 𝜃𝑛−1), where 𝜃𝑖 represents
the probability that the buyer assigns to the state of the world 𝜔𝑖 for each 𝑖 ∈ [𝑛 − 1] (and a

probability of 1 − ∑𝑛−1

𝑖=1
𝜃𝑖 for state 𝜔𝑛). Denote Θ = {𝜃 = (𝜃1, . . . , 𝜃𝑛−1) ∈ [0, 1]𝑛−1 | ∑𝑛−1

𝑖=1
𝜃𝑖 ≤ 1}

the space of 𝜃 . When the state space is binary, 𝜃 is a scalar in [0, 1]. For ease of notation, denote
𝜃𝑛 = 1 − ∑𝑛−1

𝑖=1
𝜃𝑖 throughout the paper.

The type 𝜃 is distributed according to some known probability distribution function 𝐹 . We use

Supp(𝐹 ) to denote the support of distribution 𝐹 . When 𝐹 is a continuous probability distribution

(or discrete probability distribution), we use 𝑓 to denote its probability density function (or its

probability mass function). Apart from the buyer, there is also a seller who observes the state of the

world and is willing to sell supplemental information to the buyer.
2
We refer to the buyer as he

and to the seller as she.

Experiment. The seller provides supplemental information to the buyer via a signaling scheme

which we call experiment. A signaling scheme is a commitment to 𝑛 probability distributions over a

finite set of signals 𝑆 , such that when the state of the world is realized, the seller draws a signal

from the corresponding distribution and sends it to the buyer. According to [8], we can without

loss of generality restrict our attention to the experiments whose signal set is the same as the

action space [𝑚] (see Lemma 14 in Appendix A). One can think of every signal 𝑗 as the seller

recommending the buyer to choose action 𝑗 . We denote such an experiment 𝐸 by a 𝑛 ×𝑚 matrix.

1
Throughout the paper, we denote [𝑘 ] = {1, 2, ..., 𝑘 } for any integer 𝑘 ≥ 1.

2
It is not crucial to assume that the seller knows the state of the world, and it suffices to assume that the seller can send

signals that are correlated with the state of the world.
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For every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], the (𝑖, 𝑗)-th entry, denoted as 𝜋𝑖 𝑗 (𝐸) or 𝜋𝑖 𝑗 if the experiment is clear

from context, is the probability that experiment 𝐸 sends signal 𝑗 when the state of the world is 𝜔𝑖 .

It satisfies that

∑
𝑗 ∈[𝑚] 𝜋𝑖 𝑗 (𝐸) = 1,∀𝑖 ∈ [𝑛].

We call an experiment 𝐸 fully informative if the seller completely reveals the state of the world

by sending signals according to 𝐸. This means that for every state of the world the experiment

recommends the action that yields the highest payoff under this state, i.e. for every 𝑖 ∈ [𝑛],
𝜋𝑖 𝑗 (𝐸) = 1 if 𝑗 = arg max𝑘 𝑢𝑖𝑘 and 0 otherwise.

3

The Value of an Experiment. To understand the behavior of the buyer, we first explain how

the buyer evaluates an experiment. Without receiving any additional information from the seller,

the buyer’s best action is 𝑎(𝜃 ) ∈ arg max𝑗 ∈[𝑚]{
∑

𝑖∈[𝑛] 𝜃𝑖𝑢𝑖 𝑗 }, and his maximum expected pay-

off is 𝑢 (𝜃 ) = max𝑗 ∈[𝑚]{
∑

𝑖∈[𝑛] 𝜃𝑖𝑢𝑖 𝑗 }. If he receives extra information from the seller, he up-

dates his beliefs and may choose a new action that induces higher expected payoff. After re-

ceiving signal 𝑘 ∈ [𝑚] from experiment 𝐸 his posterior belief about the state of the world

is: Pr[𝜔𝑖 |𝑘, 𝜃 ] =
𝜃𝑖𝜋𝑖𝑘∑

ℓ∈[𝑛] 𝜃ℓ𝜋ℓ𝑘
,∀𝑖 ∈ [𝑛]. The best action is 𝑎(𝑘 |𝜃 ) = arg max𝑗 ∈[𝑚]

{∑
𝑖∈[𝑛] 𝜃𝑖𝜋𝑖𝑘𝑢𝑖 𝑗∑
𝑖∈[𝑛] 𝜃𝑖𝜋𝑖𝑘

}
,

which yields maximum expected payoff 𝑢 (𝑘 |𝜃 ) = max𝑗 ∈[𝑚]
{∑

𝑖∈[𝑛] 𝜃𝑖𝜋𝑖𝑘𝑢𝑖 𝑗∑
𝑖∈[𝑛] 𝜃𝑖𝜋𝑖𝑘

}
. Taking the expectation

over the signal the buyer will receive, we define the value of the experiment 𝐸 for type 𝜃 to be

𝑉𝜃 (𝐸) =
∑

𝑘∈[𝑚] max𝑗 ∈[𝑚]
{∑

𝑖∈[𝑛] 𝜃𝑖𝜋𝑖𝑘𝑢𝑖 𝑗
}
.

Mechanism. Any mechanismM can be described as {(𝐸 (𝜃 ), 𝑡 (𝜃 ))}𝜃 ∈Θ, where 𝐸 (𝜃 ) is the experi-
ment type 𝜃 purchases and 𝑡 (𝜃 ) is the payment. The interaction between the seller and the buyer

in any mechanism works as follows:

(1) The seller commits to a mechanismM = {𝐸 (𝜃 ), 𝑡 (𝜃 )}𝜃 ∈Θ.
(2) The state of the world 𝜔𝑖 (𝑖 ∈ [𝑛]) and the type of the buyer 𝜃 are realized.

(3) The buyer reports his type 𝜃 to the mechanism.

(4) The seller sends the buyer a signal 𝑘 ∈ [𝑚] with probability 𝜋𝑖𝑘 (𝐸 (𝜃 )).
(5) The buyer chooses an action 𝑗 ∈ [𝑚], based on his type 𝜃 and the signal 𝑘 . He receives payoff

𝑢𝑖 𝑗 , and pays 𝑡 (𝜃 ) to the seller.

In subsequent sections, sometimes we abuse the notation and denote the experiment 𝐸 (𝜃 ) asM(𝜃 ).
We assume that the buyer is quasilinear, i.e. he wants to maximize his utility – the maximum

expected payoff minus the payment.

Incentive Compatibility. Amechanism is Incentive Compatible (IC) if reporting his type 𝜃 truthfully

maximizes his expected utility: 𝑉𝜃 (𝐸 (𝜃 )) − 𝑡 (𝜃 ) ≥ 𝑉𝜃 (𝐸 (𝜃 ′)) − 𝑡 (𝜃 ′),∀𝜃, 𝜃 ′ ∈ Θ. For any 𝜀 > 0, a

mechanism is 𝜀-IC if the inequality is violated by at most 𝜀. Given any mapping 𝜎 : [𝑚] → [𝑚],
denote𝑉

(𝜎)
𝜃

(𝐸) the value of the experiment 𝐸, if the buyer chooses action 𝜎 ( 𝑗) whenever he receives
signal 𝑗 . Formally,𝑉

(𝜎)
𝜃

(𝐸) = ∑
𝑖∈[𝑛]

∑
𝑗 ∈[𝑚] 𝜃𝑖𝜋𝑖 𝑗 (𝐸) ·𝑢𝑖,𝜎 ( 𝑗) . Hence we have𝑉𝜃 (𝐸) = max𝜎 𝑉

(𝜎)
𝜃

(𝐸).
Denote 𝑉 ∗

𝜃
(𝐸) the value of the experiment 𝐸, if the buyer follows the recommendation of the seller,

i.e.,𝜎 is an identitymapping. According to [8], we canwithout loss of generality restrict our attention

to the mechanisms such that if the buyer reports truthfully, following the recommendation from the

seller maximizes his expected payoff (see Lemma 14). In those mechanisms, 𝑉𝜃 (𝐸 (𝜃 )) = 𝑉 ∗
𝜃
(𝐸 (𝜃 )).

Then IC constraints are equivalent to:

𝑉 ∗
𝜃
(𝐸 (𝜃 )) − 𝑡 (𝜃 ) ≥ 𝑉

(𝜎)
𝜃

(𝐸 (𝜃 ′)) − 𝑡 (𝜃 ′),∀𝜃, 𝜃 ′ ∈ Θ, 𝜎 : [𝑚] → [𝑚] (1)

3
We break ties lexicographically.
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Individually Rationality. A mechanism is Individual Rational (IR) if reporting his type 𝜃 truthfully

induces expected utility at least𝑢 (𝜃 ):𝑉𝜃 (𝐸 (𝜃 )) −𝑡 (𝜃 ) ≥ 𝑢 (𝜃 ),∀𝜃 ∈ Θ. We remark that the agent has

expected payoff 𝑢 (𝜃 ) before receiving any additional information. Thus IR constraints guarantee

that the agent has a non-negative utility surplus by participating in the mechanism. Any IC and IR

mechanism can be described as a menuM = {(𝐸, 𝑡 (𝐸))}𝐸∈E . The buyer with any type 𝜃 chooses

the experiment 𝐸 that maximizes 𝑉𝜃 (𝐸) − 𝑡 (𝐸). The pair (𝐸, 𝑡 (𝐸)) consisting of an experiment 𝐸

and its price 𝑡 (𝐸) is called an option. The option enables the data-buyer to improve his information

and consequently improve his decision. A menu is called fully informative if it only contains the

fully informative experiment. We also refer to it as “selling complete information”.

Revenue. An environment is a particular choice of parameters of the model (i.e. the payoff matrix

and type distribution). Fix an environment, we denote by Rev(M) the revenue that mechanismM
generates and by OPT the optimal revenue among all IC, IR mechanisms. We denote by FRev the

maximum revenue achievable by any fully informative menu.

Payoff Matrix in Binary States. When the state space is binary, we can without loss of generality

make some assumptions on the payoff matrix. For any action 𝑗 , we say the action is redundant,

if there exists a set of actions 𝑆 ⊆ [𝑚]\{ 𝑗} and a distribution 𝑑 = {𝑑𝑘 }𝑘∈𝑆 such that: 𝑢𝑖 𝑗 ≤∑
𝑘∈𝑆 𝑑𝑘𝑢𝑖𝑘 ,∀𝑖 ∈ {1, 2}. In this scenario, the buyer will never choose action 𝑗 as it is dominated by

choosing an action according to distribution 𝑑 regardless of the underlying state. Without loss of

generality, we assume that none of the actions is redundant, which clearly implies that there does

not exist 𝑘 ≠ 𝑗 such that 𝑢1𝑘 ≥ 𝑢1𝑗 , 𝑢2𝑘 ≥ 𝑢2𝑗 . Thus we can assume that

𝑢11 > 𝑢12 > ... > 𝑢1𝑚 = 0 and 0 = 𝑢21 < 𝑢22 < ... < 𝑢2𝑚,

otherwise we can change the action indexes, or modify every 𝑢1𝑗 (or 𝑢2𝑗 ) by the same amount. We

further assume 𝑢11 ≥ 𝑢2𝑚 = 1, otherwise we can scale all payoffs or swap the states. Under the

assumption above, the fully informative experiment 𝐸 satisfies that 𝜋11 (𝐸) = 𝜋2𝑚 (𝐸) = 1.

(a) Payoff Matrix

𝑢 1 · · · 𝑗 · · · 𝑚

𝜔1 𝑢11 · · · 𝑢1𝑗 · · · 0

𝜔2 0 · · · 𝑢2𝑗 · · · 𝑢2𝑚 = 1

(b) Experiment

𝐸 1 · · · 𝑗 · · · 𝑚

𝜔1 𝜋11 · · · 𝜋1𝑗 · · · 𝜋1𝑚

𝜔2 𝜋21 · · · 𝜋2𝑗 · · · 𝜋2𝑚

3 BINARY STATE: A LOWER BOUND FOR SELLING COMPLETE INFORMATION
We focus on the binary-state case (𝑛 = 2) in Section 3 and Section 4. In this section, we show

that for any𝑚, there exists some environment with 2 states and𝑚 actions such that selling the

complete information is only an
1

Ω (𝑚) -fraction of the optimal revenue OPT. Proofs in this section

are postponed to Appendix B.

In fact, we prove a stronger statement that in this environment, FRev is an
1

Ω (𝑚) -fraction of

the maximum revenue among a special class of menus called semi-informative menu. In particular,

an experiment 𝐸 is semi-informative if it satisfies: (i) It only recommends the fully informative

actions (Action 1 and𝑚), i.e., 𝜋𝑖 𝑗 (𝐸) = 0, for all 𝑖 ∈ {1, 2}, 2 ≤ 𝑗 ≤ 𝑚 − 1; (ii) Either 𝜋11(𝐸) = 1 or

𝜋2𝑚 (𝐸) = 1. Since

∑
𝑗 ∈[𝑚] 𝜋1𝑗 (𝐸) =

∑
𝑗 ∈[𝑚] 𝜋2𝑗 (𝐸) = 1, any experiment 𝐸 that satisfies both of the

above properties has one of the following patterns:

A mechanism (or menu) is called semi-informative if every experiment in the mechanism (or

menu) is semi-informative. Denote SIRev the optimal revenue achieved by any semi-informative

menu. ClearlyOPT ≥ SIRev ≥ FRev since the fully informative experiment is also semi-informative.

The class of semi-informative menus is also useful in Section 4.
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(a) Pattern 1: 𝜋2𝑚 (𝐸) = 1

𝐸 1 · · · 𝑗 · · · 𝑚

𝜔1 𝜋11 · · · 0 · · · 1 − 𝜋11

𝜔2 0 · · · 0 · · · 1

(b) Pattern 2: 𝜋11 (𝐸) = 1

𝐸 1 · · · 𝑗 · · · 𝑚

𝜔1 1 · · · 0 · · · 0

𝜔2 1 − 𝜋2𝑚 · · · 0 · · · 𝜋2𝑚

Table 2. Two Specific Patterns of the Semi-informative Experiment

Theorem 1. For every𝑚, there exists a payoff matrix with 2 states and𝑚 actions, together with a

type distribution 𝐹 of the agent, such that SIRev = Ω(𝑚) ·FRev, which implies thatOPT = Ω(𝑚) ·FRev.

To prove the theorem, we first introduce the concept of IR curve in the binary-state case.

IR Curve. In binary-state case, 𝑢 (·) can be viewed as a function in [0, 1], which we refer to as the

IR curve. By definition, 𝑢 (·) is a maximum over𝑚 linear functions. Thus, it is a continuous, convex

and piecewise linear function. Since none of the actions is redundant, the IR curve 𝑢 (·) contains
exactly𝑚 pieces. We show in Table 3 an example with 4 actions and in Figure 1 the corresponding

IR curve.

𝑢 1 2 3 4

𝜔1 1 0.8 0.6 0

𝜔2 0 0.5 0.8 1

Table 3. The payoff matrix of an example
with 2 states and 4 actions Fig. 1. The IR curve 𝑢 (·). The slopes of the 4 pieces are

−1,−0.2, 0.3 and 1 respectively.

Lemma 1. Given any 𝑎, 𝑏 ∈ (0, 1) such that 𝑎 < 𝑏, let ℎ : [𝑎, 𝑏] → (0, 1) be any piecewise linear

function that is strictly decreasing and convex. Consider any environment with IR curve ℎ. 4 Then there

exists a continuous distribution 𝐹 over support [𝑎, 𝑏], such that FRev = 1 − ℎ(𝑎), and∫ 𝑏

𝑎
𝑓 (𝜃 ) · (1 − ℎ(𝜃 ))𝑑𝜃

FRev

= log

(
1 − ℎ(𝑏)
1 − ℎ(𝑎)

)
,

where 𝑓 is the pdf of 𝐹 . When 𝑢11 = 𝑢2𝑚 = 1, the highest expected payoff an agent can achieve is 1, so∫ 𝑏

𝑎
𝑓 (𝜃 ) · (1 − ℎ(𝜃 ))𝑑𝜃 is also the expected full surplus under distribution 𝐹 .

We provide a sketch of the proof of Theorem 1 here. In the first step, we construct an environment

with 2 states and𝑚 actions by constructing an IR curve then apply Lemma 1 to create a distribution

𝐹 over the agent types to show that the ratio between the full expected surplus and FRev is Ω(𝑚).
In the second step, we indirectly construct a semi-informative menu whose revenue is a constant

fraction of the total expected surplus, which implies that SIRev = Ω(𝑚) · FRev. In our construction,

the payoffs satisfy 𝑢11 = 𝑢2𝑚 = 1.

Construction of the IR curve: Given𝑚 − 1 types 0 < 𝜃1 < 𝜃2 < ... < 𝜃𝑚−1 < 1 which will be

determined later, we consider the following IR curve 𝑢 (·) on [𝜃1, 𝜃𝑚−1]. The IR curve is a piecewise

4
When the type distribution has support [𝑎,𝑏 ], we can restrict our attention to the IR curve at range [𝑎,𝑏 ]. In our

construction, we construct a payoff matrix that implements the IR curve.
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linear function with𝑚 − 2 pieces. For simplicity, for every 1 ≤ 𝑖 ≤ 𝑚 − 2, we will refer to piece 𝐿𝑖
as the piece for the corresponding action𝑚 − 𝑖 .5 Fix any 𝜀 less than 1

2
𝑚 .

Let 𝑑0 := 𝜀2
𝑚

. For every 1 ≤ 𝑖 ≤ 𝑚−2, let𝑑𝑖 := 2
𝑖 ·𝜀2

𝑚−2
𝑖

. For every 1 ≤ 𝑖 ≤ 𝑚−1, let 𝜃𝑖 :=
∑𝑖−1

𝑗=0
𝑑 𝑗 .

Then when 𝜀 < 1

2
𝑚 ,

𝜃𝑖 = 𝜀2
𝑚 +

𝑖−1∑
𝑗=1

2
𝑗 · 𝜀2

𝑚−2
𝑗

< 𝜀2
𝑚−2

𝑖−1−1
(2)

For every 1 ≤ 𝑖 ≤ 𝑚 − 2, piece 𝐿𝑖 is in the range 𝜃 ∈ [𝜃𝑖 , 𝜃𝑖+1]. The slope of piece 𝐿𝑖 is 𝑙𝑖 := −𝜀2
𝑖

.

Thus the height of piece 𝐿𝑖 is ℎ𝑖 := 𝑢 (𝜃𝑖+1) − 𝑢 (𝜃𝑖 ) = −𝑙𝑖𝑑𝑖 = 2
𝑖 · 𝜀2

𝑚

. Let 𝑢 (𝜃1) := 1 − 𝜃1 and

ℎ0 := 𝜃1 = 𝑑0 = 𝜀2
𝑚

. Then for every 1 ≤ 𝑖 ≤ 𝑚 − 1, we have 𝑢 (𝜃𝑖 ) = 1 − ∑𝑖−1

𝑗=0
ℎ 𝑗 . Since 𝜀 < 1

2
𝑚 ,

𝑢 (𝜃𝑖 ) > 0,∀𝑖 . See Figure 2 for an illustration of notations.

Now we compute the payoff matrix according to the constructed IR curve 𝑢 (·). 𝑢11 = 𝑢2𝑚 = 1,

𝑢1𝑚 = 𝑢21 = 0. For every 1 ≤ 𝑖 ≤ 𝑚−2, before receiving any additional information, choosing action

𝑚− 𝑖 induces expected payoff 𝜃 ·𝑢1,𝑚−𝑖 + (1−𝜃 ) ·𝑢2,𝑚−𝑖 . By the definition of the IR curve, it must go

through the two points (𝜃𝑖 , 𝑢 (𝜃𝑖 )) and (𝜃𝑖+1, 𝑢 (𝜃𝑖+1)). Thus we have 𝜃𝑖 · 𝑢1,𝑚−𝑖 + (1 − 𝜃𝑖 ) · 𝑢2,𝑚−𝑖 =
1 − ∑𝑖−1

𝑗=0
ℎ 𝑗 and 𝜃𝑖+1 · 𝑢1,𝑚−𝑖 + (1 − 𝜃𝑖+1) · 𝑢2,𝑚−𝑖 = 1 − ∑𝑖

𝑗=0
ℎ 𝑗 . Thus 𝑢2,𝑚−𝑖 = 1 − ∑𝑖−1

𝑗=0
ℎ 𝑗 − 𝜃𝑖𝑙𝑖 ,

𝑢1,𝑚−𝑖 = 1 − ∑𝑖−1

𝑗=0
ℎ 𝑗 − 𝜃𝑖𝑙𝑖 + 𝑙𝑖 .

By Lemma 1, there exists a distribution 𝐹 under support [𝜃1, 𝜃𝑚−1], such that FRev = 1−𝑢 (𝜃1) =
𝜃1 = 𝜀2

𝑚

, and∫ 𝜃𝑚−1

𝜃1

𝑓 (𝜃 ) · (1 − 𝑢 (𝜃 ))𝑑𝜃 ≥ log

(
1 − 𝑢 (𝜃𝑚−1)

1 − 𝑢 (𝜃1)

)
· FRev = FRev · log

(∑𝑚−2

𝑖=0
ℎ𝑖

ℎ0

)
=FRev · log

(∑𝑚−2

𝑖=0
2
𝑖 · 𝜀2

𝑚

𝜀2
𝑚

)
= FRev · log

(
2
𝑚−1 − 1

)
≥ FRev · log(2) · (𝑚 − 2)

(3)

Next, we present a semi-informative mechanismM whose revenue is comparable to the integral∫ 𝜃𝑚−1

𝜃1

𝑓 (𝜃 ) · (1 − 𝑢 (𝜃 ))𝑑𝜃 .

Construction of the mechanism: Consider the following𝑚 − 2 semi-informative experiments. For

every 1 ≤ 𝑖 ≤ 𝑚 − 2, we design experiment 𝐸𝑖 and its price 𝑝𝑖 so that the buyer’s utility after

purchasing experiment 𝐸𝑖 coincides with the piece 𝐿𝑖 of 𝑢 (·) for 𝜃 ∈ [𝜃𝑖 , 𝜃𝑖+1], when the buyer

follows the recommendation. Formally, experiment 𝐸𝑖 is as follows:

Fig. 2. Notations in the construction of IR curve

𝐸𝑖 1 · · · 𝑚

𝜔1 1 + 𝑙𝑖 0 −𝑙𝑖
𝜔2 0 0 1

Table 4. Experiment 𝐸𝑖

The price for experiment 𝐸𝑖 is 𝑝𝑖 =
∑𝑖−1

𝑗=0
ℎ 𝑗 +𝜃𝑖𝑙𝑖 . By definition ofℎ 𝑗 and 𝑙 𝑗 , 𝑝𝑖 =

∑𝑖−1

𝑗=0
𝑑 𝑗 · (𝜀2

𝑗 −𝜀2
𝑖 ) >

0. It is not hard to verify that the buyer’s utility for buying experiment 𝐸𝑖 is 𝑢 (𝜃𝑖 ) at 𝜃𝑖 and 𝑢 (𝜃𝑖+1)
at 𝜃𝑖+1.

5
We choose the subscript this way so that the IR curve goes from a piece with smaller index to a piece with larger index as

𝜃 increases.
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Consider the following mechanism M. For every 𝜃 ∈ [𝜃1, 𝜃𝑚−1], let 𝑖 be the unique number

such that 𝜃𝑖 < 𝜃 ≤ 𝜃𝑖+1.
6
The outcome and payment ofM under input 𝜃 are defined as follows: It

computes the buyer’s utilities for (𝐸𝑖 , 𝑝𝑖 ), (𝐸𝑖−1, 𝑝𝑖−1) (when 𝑖 ≥ 2), and (𝐸𝑖−2, 𝑝𝑖−2) (when 𝑖 ≥ 3)

under type 𝜃 , and chooses the option with the highest utility as the experiment and payment.

We prove in Lemma 2 that M is IR and 𝛿-IC for some 𝛿 = 𝑜 (𝜀2
𝑚 ). Moreover, Rev(M) is

comparable to the integral

∫ 𝜃𝑚−1

𝜃1

𝑓 (𝜃 ) · (1−𝑢 (𝜃 ))𝑑𝜃 .M can then be converted to a semi-informative

menu by losing no more than a constant fraction of the total revenue (see Lemma 16 in Appendix B).

Since FRev = 𝜀2
𝑚

, Theorem 1 then follows from Inequality (3). The proofs of Lemma 2 and

Theorem 1 are postponed to Appendix B.

Lemma 2. For any 𝜀 ∈ (0, 2−𝑚), M is IR and 𝛿-IC where 𝛿 = 7 · 𝜀2
𝑚+1

. Moreover, Rev(M) ≥
1

9
·
∫ 𝜃𝑚−1

𝜃1

𝑓 (𝜃 ) · (1 − 𝑢 (𝜃 ))𝑑𝜃 .

An important application of Theorem 1 is that, there is an Ω(𝑚) lower bound of the size of the

optimal menu. The main takeaway of this theorem is that, in our model where there is a single

agent whose type is single-dimensional, the optimal menu, however, can be complex.

Theorem 2. For every𝑚, there exists a payoff matrix with 2 states and𝑚 actions, together with a

type distribution 𝐹 , such that any optimal menuM∗
consists of at least Ω(𝑚) different experiments.

To prove Theorem 2, it suffices to show that: Given any menuM with ℓ experiments, we can

sell the complete information at an appropriate price to achieve revenue at least Rev(M)/ℓ . In
Lemma 3, we prove a more general result that applies to any IR (not necessarily IC) mechanism,

which is useful in Section 4. A similar lemma also appears in [29] for the bundling mechanism in

multi-item auctions.

Definition 1. For any finite integer ℓ > 0, we say that a mechanismM = {(𝐸 (𝜃 ), 𝑡 (𝜃 ))}𝜃 ∈[0,1]
(not necessarily IC nor IR) has option size ℓ , if there exists ℓ different options {(𝐸 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[ℓ ] such that:

For every 𝜃 ∈ [0, 1], there exists some 𝑗 ∈ [ℓ] that satisfies 𝐸 (𝜃 ) = 𝐸 𝑗 and 𝑡 (𝜃 ) = 𝑡 𝑗 .

Lemma 3. For any positive integer ℓ , let M be any IR mechanism of option size ℓ that generates

revenue Rev(M). Then there exists a menuM ′
that contains only the fully informative experiment

and generates revenue at least
Rev(M)

ℓ
.

Another important implication of Theorem 1 is shown in Corollary 1. It states that there is no

menu with finite cardinality that achieves any finite approximation to the optimal revenue for all

single-dimensional environments. The proof directly follows from Theorem 1 and Lemma 3.

Corollary 1. For any finite ℓ > 0, any menuM with size at most ℓ , and any 𝑐 > 0, there exists

an finite integer𝑚, a payoff matrix with 2 states and𝑚 actions, together with a distribution 𝐹 , such

that Rev(M) is at most a 𝑐-fraction of the optimal revenue in this environment.

4 BINARY STATE: AN UPPER BOUND FOR SELLING COMPLETE INFORMATION
In this section, we provide upper bounds for the gap between the optimal revenue OPT and the

revenue by selling complete information FRev. In Section 4.1, we prove an 𝑂 (𝑚)-approximation to

the optimal menu using only the fully informative experiment, where𝑚 is the number of actions.

In Section 4.2, we provide conditions under which selling complete information is the optimal

menu. Proofs in this section are postponed to Appendix C and Appendix D.

6
Choose 𝑖 = 1 when 𝜃 = 𝜃1. It’s a point with 0 measure, so it won’t affect the revenue of the mechanism.
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4.1 An Upper Bound for Selling Complete Information
The main result of this section is stated in Theorem 3. Together with Theorem 1, we know that the

𝑂 (𝑚) approximation ratio is tight up to an absolute constant factor.

Theorem 3. For any environment with 2 states and𝑚 actions, there is a menu that contains only the

fully informative experiment, whose revenue is at least Ω( OPT
𝑚

). In other words, OPT = 𝑂 (𝑚) · FRev.

To prove Theorem 3, a natural idea is to first show that the optimal menu contains 𝑂 (𝑚)
experiments, then use Lemma 3 to argue that we can sell the full information at an appropriate

price to achieve revenue at least Ω
(
Rev(M)

𝑚

)
. Unfortunately, we are not aware of such an upper

bound on the size of the optimal menu, and it is not clear if the size of the optimal menu is indeed

linear in𝑚. Instead, we drop some of the IC constraints and consider the maximum revenue of a

relaxed problem.

We first introduce the concept of responsive-IC and 𝜎-IC constraints. Recall the IC constraint:

𝑉 ∗
𝜃
(𝐸 (𝜃 )) − 𝑡 (𝜃 ) ≥ 𝑉

(𝜎)
𝜃

(𝐸 (𝜃 ′)) − 𝑡 (𝜃 ′),∀𝜃, 𝜃 ′ ∈ Θ, 𝜎 : [𝑚] → [𝑚] where 𝑉 ∗
𝜃
(𝐸 (𝜃 )) is the agent’s

utility for receiving experiment 𝐸 (𝜃 ) and following the recommendation. We distinguish the IC

constraints by the mapping 𝜎 . When 𝜎 is the identity mapping, we refer to the constraint as the

responsive-IC constraint, and when 𝜎 is any non-identity mapping, we refer to the constraint as the

𝜎-IC constraint. A mechanism is responsive-IC if it satisfies all responsive-IC constraints.

As Lemma 3 applies to any IR mechanism, we drop the 𝜎-IC constraints and bound the number

of experiments offered by the optimal responsive-IC and IR mechanism by 𝑂 (𝑚), which suffices

to prove Theorem 3. An important component of our proof is Lemma 4. Denote C′
2
the set of all

semi-informative, responsive-IC and IR mechanisms. We prove in Lemma 4 that the maximum

revenue achievable by any responsive-IC and IR mechanism (denoted as OPT
∗
) can be achieved by

a semi-informative mechanism.

Lemma 4. There existsM∗ ∈ C′
2
such that Rev(M∗) = OPT

∗
.

By [8], any semi-informative experiment is determined by a single-dimensional variable 𝑞(𝐸) =
𝜋11 · 𝑢11 − 𝜋2𝑚 · 𝑢2𝑚 (see also Observation 3). Given a mechanismM where every experiment is

semi-informative, for any 𝜃 ∈ [0, 1], we slightly abuse the notation and let 𝑞(𝜃 ) := 𝑞(M(𝜃 )).M
can also be described as the tuple (q = {𝑞(𝜃 )}𝜃 ∈[0,1], t = {𝑡 (𝜃 )}𝜃 ∈[0,1]). In Lemma 5, we present a

characterization of all {𝑞(𝜃 )}𝜃 ∈[0,1] that can be implementedwith a responsive-IC and IRmechanism.

The proof uses the payment identity and it is similar to Lemma 1 in [8], where there are only

two actions (Action 1 and𝑚) in their setting. The main difference is that in our lemma, the IR

constraints are not implied by the monotonicity of 𝑞(·).

Lemma 5. Given q = {𝑞(𝜃 )}𝜃 ∈[0,1] , there exists non-negative payment rule t such thatM = (q, t)
is a responsive-IC and IR mechanism if and only if

(1) 𝑞(𝜃 ) ∈ [−𝑢2𝑚, 𝑢11] is non-decreasing in 𝜃 .
(2)

∫
1

0
𝑞(𝑥)𝑑𝑥 = 𝑢11 − 𝑢2𝑚 .

(3) For every 𝜃 ∈ [0, 1], 𝑢2𝑚 +
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 ≥ 𝑢 (𝜃 ). Recall that 𝑢 (𝜃 ) is the value of the agent with

type 𝜃 without receiving any experiment.

Moreover, the payment rule t must satisfy that for every 𝜃 ,

𝑡 (𝜃 ) = 𝜃 · 𝑞(𝜃 ) + min{𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 ), 0} −
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 (4)

By Lemma 5, for any q that can be implemented with some responsive-IC and IR mechanismM,

the revenue ofM can be written as an integral of 𝑞(·) using Equation (4) (see the objective of the
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program in Figure 3). We notice that for continuous distribution 𝐹 , Property 3 of Lemma 5 corre-

sponds to uncountably many inequality constraints. To bound the size of the optimal responsive-IC

and IR mechanism, another important component is to show that all (IR) constraints in Property

3 can be captured by 𝑂 (𝑚) constraints (Constraint (4) in Figure 3). By Lemma 5, the optimal

semi-informative, responsive-IC and IR mechanism is captured by the optimization problem in

Figure 3. A formal argument is shown in Lemma 6.

sup
∫

1

0

[(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 ) + min{(𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 )) 𝑓 (𝜃 ), 0}]𝑑𝜃

s.t. (1) 𝑞(𝜃 ) is non-decreasing in 𝜃 ∈ [0, 1]
(2) 𝑞(0) ≥ −𝑢2𝑚, 𝑞(1) ≤ 𝑢11

(3)
∫

1

0

𝑞(𝜃 )𝑑𝜃 = 𝑢11 − 𝑢2𝑚

(4)
∫

1

0

(𝑞(𝑥) − ℓ𝑘 ) · 1[𝑞(𝑥) ≤ ℓ𝑘 ]𝑑𝑥 ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚, ∀𝑘 ∈ {2, 3, ...,𝑚 − 1}

Fig. 3. Maximizing Revenue over Responsive-IC and IR Mechanisms

Lemma 6. For any optimal solution q∗ to the program in Figure 3, the mechanismM∗
that imple-

ments q∗ (Lemma 5) achieves the maximum revenue among all responsive-IC and IR mechanisms.
7

In Lemma 7, we show that there exists an optimal responsive-IC and IR mechanism whose option

size is 𝑂 (𝑚). By Lemma 6, it’s equivalent to prove that there is an optimal solution q∗ that takes
only𝑂 (𝑚) different values. When 𝐹 is a discrete distribution, we turn the program into a collection

of LPs (see Figure 8 in Appendix C.4), so that the highest optimum among the collection of LPs

corresponds to the optimum of the program in Figure 3. Each LP has variables that represent the

difference of the 𝑞-value between two adjacent 𝜃s (as the types are discrete). The LP has only

𝑂 (𝑚) constraints. By the Fundamental Theorem of linear programming, each LP has an optimal

solution where at most 𝑂 (𝑚) variables are strictly positive, which corresponds to a q that takes

only 𝑂 (𝑚) different values. For continuous distribution 𝐹 , we prove the claim by approximating

the continuous program with an infinite sequence of discrete programs. Theorem 3 then follows

from Lemmas 3, 4 and 7.

Lemma 7. There exists a semi-informative, responsive-IC and IR mechanism that has option size at

most 3𝑚 − 1 (Definition 1) and obtains revenue Rev(M∗) = OPT
∗
.

4.2 When is Selling Complete Information Optimal?
We have proved a tight approximation ratio of Θ(𝑚) for selling complete information that applies

to all binary-state environments. A natural follow-up question is whether the approximation ratio

becomes significantly smaller for special environments. In this section, we provide a sufficient

condition for the environment, under which selling complete information achieves revenue equal

to OPT
∗
, the maximum revenue achievable by any responsive-IC and IR mechanisms.

8
Note that it

immediately implies that selling complete information is the optimal menu in this environment.

7
There is a feasible solution that achieves the supremum of the program. See Claim 3.

8
In the paper, we indeed prove a necessary and sufficient condition under which selling complete information is optimal

among all responsive-IC and IR mechanisms (Theorem 9). However, the conditions are in abstract terms and requires further

definitions. For the purpose of presentation, we state here the sufficient condition that is easy to verify.
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Throughout this section, we consider continuous distributions and assume that the pdf 𝑓 (·) of
the agent’s type distribution is strictly positive on [0, 1] and differentiable on (0, 1).
Theorem 4. For every 𝜃 ∈ [0, 1], let 𝜑− (𝜃 ) = 𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ) and 𝜑+ (𝜃 ) = (𝜃 − 1) 𝑓 (𝜃 ) + 𝐹 (𝜃 ).

Suppose 𝜑− (·) and 𝜑+ (·) are both monotonically non-decreasing. Suppose the payoff matrix satisfies

that 𝜑− ( 𝑝

𝑢11

) ≥ 𝜑+ (1 − 𝑝

𝑢2𝑚
), where 𝑝 = min

{
(𝑢11−𝑢12)𝑢2𝑚

𝑢11−𝑢12+𝑢22

,
(𝑢2𝑚−𝑢2,𝑚−1)𝑢11

𝑢2𝑚+𝑢1,𝑚−1−𝑢2,𝑚−1

}
. Then selling complete

information at any price 𝑝 such that 𝜑− ( 𝑝

𝑢11

) = 𝜑+ (1− 𝑝

𝑢2𝑚
) achieves the maximum revenue achievable

by any responsive-IC and IR mechanisms.

Here is an interpretation of Theorem 4: Both𝜑− (·) and𝜑+ (·) are also considered in [8]. Intuitively,
they can be viewed as the agent’s “virtual value” when 𝑞(𝜃 ) ≤ 𝑢11 − 𝑢2𝑚 and when 𝑞(𝜃 ) >

𝑢11 − 𝑢2𝑚 respectively, in a semi-informative mechanism. Both virtual value functions being non-

decreasing is a standard regularity condition on the type distribution. The theorem applies to

stardard distributions such as uniform, exponential and Gaussian distributions. See Appendix D.2

for several examples.

To understand the condition on the payoff matrix, we point out that if selling complete infor-

mation at some price 𝑝 is the optimal responsive-IC and IR mechanism, then the buyer’s utility

function must intersect with the IR curve at the first and last piece (∗). Otherwise we can add some

extra experiments to strictly increase the revenue, while maintaining the same utility function and

the responsive-IC and IR property, contradicting with the optimality (see Lemma 20 in Appendix D.2

for details). By some simple calculation, 𝑝 is exactly the largest price that satisfies (∗). The condition
guarantees the existence of such a price 𝑝 ≤ 𝑝 .

Note that although the theorem applies to arbitrary number of actions, the condition itself only

depends on the payoffs of the the first two and the last two actions. Thus if the condition is satisfied,

selling complete information is always optimal for any choice of the payoffs for other actions.

To prove the theorem, we provide an exact characterization of the optimal semi-informative,

responsive-IC and IR mechanism, i.e., the optimal solution q∗ = {𝑞∗ (𝜃 )}𝜃 ∈[0,1] of the program

in Figure 3, by Lagrangian duality (Theorem 10). It is a generalization of the characterization by

Bergemann et al. [8] to𝑚 ≥ 3 actions.

5 SELLING COMPLETE INFORMATION: MORE THAN TWO STATES
In this section, we consider the environment with 𝑛 ≥ 3 states. In Section 5.1, we prove that even in

arguably the simplest environment – matching utility environment with 3 states and 3 actions, the

optimal revenue OPT and the revenue by selling complete information FRev can have an arbitrarily

large gap, i.e. there is no universal finite upper bound of the gap that holds for all type distributions.

Nonetheless, we prove in Section 5.2 that in the same environment, if the distribution is uniform,

selling complete information is in fact the optimal mechanism. Proofs in this section are postponed

to Appendix E.

5.1 Lower Bound Example for Matching Utilities
To avoid ambiguity, throughout this section we denote Rev(M, 𝐷) the revenue of M with respect

to 𝐷 , for any (not necessarily IC or IR) mechanism M, and any distribution 𝐷 . Denote OPT(𝐷)
and FRev(𝐷) the optimal revenue and the maximum revenue by selling complete information,

respectively. The main result of this section shows that in the matching utility environment with

𝑛 = 3 states and𝑚 = 3 actions, the ratio
OPT(𝐷)
FRev(𝐷) arbitrarily large for some distribution 𝐷 . Recall

that in a matching utility environment, 𝑛 =𝑚 and the payoffs satisfy 𝑢𝑖 𝑗 = 1[𝑖 = 𝑗],∀𝑖, 𝑗 .
Theorem 5. Consider the matching utility environment with 3 states and 3 actions. For any integer

𝑁 , there exists a distribution 𝐷 with support size 𝑁 such that
OPT(𝐷)
FRev(𝐷) = Ω(𝑁 1/7).
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The following corollary directly follows from Theorem 5 and Lemma 3.

Corollary 2. Consider the matching utility environment with 3 states and 3 actions. For any

integer 𝑁 , there exists a distribution 𝐷 with support size 𝑁 such that any optimal menu has option

size Ω(𝑁 1/7).

The proof of Theorem 5 is adapted from the approach in [29], which was originally used in

problem of multi-item auctions. Their approach does not directly apply to our problem due to the

non-linearity of the buyer’s value function and the existence of the extra 𝜎-IC and more demanding

IR constraints in our problem.

For any mechanismM, denote Ratio(M) the largest ratio between Rev(M, 𝐷) and FRev(𝐷)
among all distributions, i.e.,

Ratio(M) = sup

𝐷

Rev(M, 𝐷)
FRev(𝐷)

For every 𝜃 ∈ Θ, denote 𝑈 (𝜃 ) the gain in value of a buyer with type 𝜃 , after receiving the fully

informative experiment. Formally,𝑈 (𝜃 ) = ∑𝑛
𝑖=1

𝜃𝑖 ·max𝑗 𝑢𝑖 𝑗−max𝑗

{∑
𝑖 𝜃𝑖𝑢𝑖 𝑗

}
. Here 𝜃𝑛 = 1−∑𝑛−1

𝑖=1
𝜃𝑖 .

In Theorem 6, we prove that Ratio(M) can be written as a concrete term using 𝑈 (·) and the

payment 𝑡 (·) of M.

Theorem 6. (Adapted from Theorem 5.1 of [29]) For any mechanism M = {𝐸 (𝜃 ), 𝑡 (𝜃 )}𝜃 ∈Θ (not

necessarily IC or IR), we have Ratio(M) =
∫ ∞

0

1

𝑟 (𝑥)𝑑𝑥 , where 𝑟 (𝑥) = inf{𝑈 (𝜃 ) : 𝜃 ∈ Θ ∧ 𝑡 (𝜃 ) ≥
𝑥},∀𝑥 ≥ 0.

Here is a proof sketch of Theorem 5. We first show in Lemma 8 that: Given any sequence

{𝑦𝑘 }𝑁𝑘=1
of vectors in Θ that satisfy all properties in the statement, we can construct a distribution

𝐷 with support size 𝑁 , together with an IC, IR mechanismM such that the ratio
Rev(M,𝐷)
FRev(𝐷) has a

lower bound that only depends on the sequence {𝑦𝑘 }𝑁𝑘=1
. Properties 2 and 3 in the statement are

carefully designed to guarantee that the constructed mechanism is IC and IR. Property 1 ensures

the mechanism to obtain enough revenue. With Lemma 8, we then complete the proof of Theorem 5

by constructing a valid sequence {𝑦𝑘 }𝑁𝑘=1
which induces a lower bound of Ω(𝑁 1/7).

Lemma 8. Consider the matching utility environment with 3 states and 3 actions. Given any integer

𝑁 and a sequence of types {𝑦𝑘 = (𝑦𝑘,1, 𝑦𝑘,2)}𝑁𝑘=1
in Θ such that

(1) gap𝑘 = min

0≤ 𝑗<𝑘

{
(𝑦𝑘,1 − 𝑦 𝑗,1) · 𝑦𝑘,1 + (𝑦𝑘,2 − 𝑦 𝑗,2) · 𝑦𝑘,2

}
∈ (0, 0.09). Here 𝑦0 = (0, 0, 1).

(2)
𝑦𝑘,1
𝑦𝑘,2

∈ [ 9

10
, 10

9
].

(3) | |𝑦𝑘 | |2 =
√
𝑦2

𝑘,1
+ 𝑦2

𝑘,2
∈ [0.3, 0.4].

Then for any 𝜀 > 0, there exists a distribution 𝐷 with support size 𝑁 such that

OPT(𝐷)
FRev(𝐷) ≥ (1 − 𝜀) ·

𝑁∑
𝑘=1

gap𝑘

𝑦𝑘,1 + 𝑦𝑘,2
≥ 3

2

(1 − 𝜀) ·
𝑁∑
𝑘=1

gap𝑘

To complete the proof of Theorem 5, for any integer 𝑁 , we construct a sequence of types

{𝑦𝑘 }𝑁𝑘=1
that satisfies all three properties in the statement of Lemma 8, and gap𝑘 = Θ(𝑘−6/7). Then

by Lemma 8, there exists a distribution 𝐷 with support size 𝑁 such that (by choosing 𝜀 = 1

2
)

OPT(𝐷)
FRev(𝐷) ≥ ∑𝑁

𝑘=1
gap𝑘 = Ω(∑𝑁

𝑘=1
𝑘−6/7) = Ω(𝑁 1/7). The construction is adapted from Proposition

7.5 of [29]: All points {𝑦𝑘 }𝑁𝑘=1
are placed in a sequence of shells centered at (0, 0) with radius within

the range of [0.3, 0.4] (for Property 3). All points are placed in a thin circular sector close to the 45
◦

angle so that Property 2 is satisfied. See Appendix E.1 for the complete construction and proof.
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5.2 Matching Utility Environment with Uniform Distribution
As the main result of this section, we complement the result in Section 5.1, by showing that in the

matching utility environment with 3 states and 3 actions, selling complete information is indeed

optimal if the type distribution is uniform.

Theorem 7. Consider the matching utility environment with 𝑛 = 3 states and 3 actions, where the

buyer has uniform type distribution. Then selling only the fully informative experiment at price 𝑝 = 1

3

achieves the maximum revenue among all IC, IR mechanisms.

The remaining of this section is dedicated to the proof of Theorem 7. We first provide a high-level

plan of the proof. In Section 4, we considered a relaxation of our problem, which finds the optimal

responsive-IC and IR mechanism. Here we propose another relaxed problem of finding the optimal

menu for any matching utility environment (Figure 4). Then we construct a dual problem (Figure 5)

in the form of optimal transportation [18, 36, 40]. This primal-dual framework provides a general

approach to prove the optimality of any menu M: If we can construct a feasible dual that satisfies

the complementary slackness conditions, then M is the optimal primal solution to the relaxed

problem, which implies that M is the optimal menu. We apply this framework to the matching

utility environment with 3 states and uniform type distribution, proving that selling complete

information at 𝑝 = 1

3
is optimal.

5.2.1 Construction of the Primal and Dual Problem. By Lemma 14, we will focus on responsive

mechanisms M = {(𝐸 (𝜃 ), 𝑡 (𝜃 ))}𝜃 ∈Θ. For any 𝜃 ∈ Θ, denote 𝜋𝑖 𝑗 (𝜃 ) the (𝑖, 𝑗)-entry of experiment

𝐸 (𝜃 ). We also use 𝜋𝑖 (𝜃 ) to represent 𝜋𝑖𝑖 (𝜃 ). For every measurable set 𝑆 ⊆ Θ, denote Vol(𝑆) =∫
𝑆

1𝑑𝜃 the volume of 𝑆 . We first prove the following lemma that applies to any matching utility

environment.

Lemma 9. In any matching utility environment, there is an optimal responsive mechanismM such

that: for every 𝜃 ∈ Θ, there exists 𝑖 ∈ [𝑛] such that 𝜋𝑖 (𝜃 ) = 1.

By Lemma 9, we focus on all mechanisms that are responsive and satisfy: for every 𝜃 ∈ Θ, there
exists 𝑖 ∈ [𝑛] such that 𝜋𝑖 (𝜃 ) = 1. Recall that 𝑉𝜃 (𝐸) (or 𝑉 ∗

𝜃
(𝐸)) is the buyer’s value of experiment 𝐸

(or the value if she follows the recommendation) at type 𝜃 . For any 𝜃 , denote𝐺 (𝜃 ) = 𝑉𝜃 (𝐸 (𝜃 )) −𝑡 (𝜃 )
the buyer’s utility at type 𝜃 . Since the mechanism is responsive, we have

𝐺 (𝜃 ) = 𝑉 ∗
𝜃
(𝐸 (𝜃 )) − 𝑡 (𝜃 ) =

𝑛−1∑
𝑖=1

𝜋𝑖 (𝜃 ) · 𝜃𝑖 + 𝜋𝑛 (𝜃 ) ·
(
1 −

𝑛−1∑
𝑖=1

𝜃𝑖

)
− 𝑡 (𝜃 )

We prove the following observation using the IC constraints.

Observation 1. For any 𝑖 ∈ [𝑛 − 1], 𝜕𝐺 (𝜃 )
𝜕𝜃𝑖

= 𝜋𝑖 (𝜃 ) − 𝜋𝑛 (𝜃 ).

Let ∇𝐺 (𝜃 ) = ( 𝜕𝐺 (𝜃 )
𝜕𝜃1

, . . . ,
𝜕𝐺 (𝜃 )
𝜕𝜃𝑛−1

). By Observation 1 and the fact that max𝑖∈[𝑛]{𝜋𝑖 (𝜃 )} = 1,∀𝜃 ∈ Θ,
we have

𝑡 (𝜃 ) = −𝐺 (𝜃 ) + ∇𝐺 (𝜃 ) · 𝜃 + 𝜋𝑛 (𝜃 ) = −𝐺 (𝜃 ) + ∇𝐺 (𝜃 ) · 𝜃 + 1 − max

{
𝜕𝐺 (𝜃 )
𝜕𝜃1

, . . . ,
𝜕𝐺 (𝜃 )
𝜕𝜃𝑛−1

, 0

}
In Lemma 10, we prove a necessary condition under which a function𝐺 (·) is derived by some

IC, IR and responsive mechanism.

Definition 2. For every type 𝜃, 𝜃 ′ ∈ Θ, define 𝑐 (𝜃, 𝜃 ′) = max𝐸 {𝑉𝜃 (𝐸) −𝑉𝜃 ′ (𝐸)}, where the

maximum is taken over all possible experiments with 𝑛 states and 𝑛 actions.

Lemma 10. For any IC, IR and responsive mechanismM, let 𝐺 (·) be the buyer’s utility function.
Then 𝐺 (·) is convex and satisfies 𝐺 (𝜃 ) −𝐺 (𝜃 ′) ≤ 𝑐 (𝜃, 𝜃 ′),∀𝜃, 𝜃 ′ ∈ Θ. Moreover, 𝐺 (0) = 1.
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We notice that given any convex function 𝐺 that satisfies 𝐺 (𝜃 ) −𝐺 (𝜃 ′) ≤ 𝑐 (𝜃, 𝜃 ′),∀𝜃, 𝜃 ′. The
function 𝐺 (𝜃 ) = 𝐺 (𝜃 ) − 𝐺 (0) + 1 satisfies all properties in Lemma 10. Thus a relaxation of the

problem of finding the revenue-optimal menu can be written as the optimization problem in Figure 4.

Here we replace 𝐺 (𝜃 ) by 𝐺 (𝜃 ) −𝐺 (0) + 1 and remove the constraint 𝐺 (0) = 1.

sup

𝐺 is convex

𝐺 (𝜃 )−𝐺 (𝜃 ′) ≤𝑐 (𝜃,𝜃 ′),∀𝜃,𝜃 ′

∫
Θ

[
−𝐺 (𝜃 ) + ∇𝐺 (𝜃 ) · 𝜃 − max

{
𝜕𝐺 (𝜃 )
𝜕𝜃1

, . . . ,
𝜕𝐺 (𝜃 )
𝜕𝜃𝑛−1

, 0

}
+𝐺 (0)

]
𝑓 (𝜃 )𝑑𝜃

Fig. 4. The Relaxed Problem of the Optimal Menu

In the next step, we construct a dual problem in the form of optimal transportation. We first

introduce some useful notations in the measure theory.

• Γ(Θ) and Γ+ (Θ) denote the signed and unsigned (Radon) measures on Θ.
• Given any unsigned measure 𝛾 ∈ Γ+ (Θ × Θ), denote 𝛾1, 𝛾2 the two marginals of 𝛾 . Formally,

𝛾1 (𝐴) = 𝛾 (𝐴 × Θ) and 𝛾2 (𝐴) = 𝛾 (Θ ×𝐴) for any measurable set 𝐴 ⊆ Θ.
• Given any signed measure 𝜇 ∈ Γ(Θ), denote 𝜇+, 𝜇− the positive and negative parts of 𝜇

respectively, i.e. 𝜇 = 𝜇+ − 𝜇−.
• Given a measure 𝜇 ∈ Γ(Θ). A mean-preserving spread operation in set 𝐴 ⊆ Θ is a sequence

of the following operation: picking a positive point mass on 𝜃 ∈ 𝐴, splitting it into several

pieces, and sending these pieces to multiple points in 𝐴 while preserving the center of mass.

We define strongly convex dominance similar to the notion of convex dominance in [18, 37].

The main difference here is that only the mean-preserving spread operation is allowed during the

transformation between two measures.
9

Definition 3. Given any 𝜇, 𝜇 ′ ∈ Γ(Θ), we say that 𝜇 strongly convex dominates 𝜇 ′ (denoted
as 𝜇 ⪰𝑐𝑢𝑥 𝜇 ′) if 𝜇 ′ can be transformed to 𝜇 by performing a mean-preserving spread. By Jensen’s

inequality, if 𝜇 ⪰𝑐𝑢𝑥 𝜇 ′, then
∫
Θ
𝑔𝑑𝜇 ≥

∫
Θ
𝑔𝑑𝜇 ′ for any continuous, convex function 𝑔 on Θ.

In the following definition, we define a measure 𝜇𝑃 for any partition 𝑃 = (Θ1, . . . ,Θ𝑛) of Θ such

that every component Θ𝑖 is compact. Denote P the set of all partitions.

Definition 4. Given any partition 𝑃 = (Θ1, . . . ,Θ𝑛) of Θ such that every Θ𝑖 is compact.
10
We

define a measure 𝜇𝑃 ∈ Γ(Θ) as follows:

𝜇𝑃 (𝐴) = 1𝐴 (0) +
∫
𝜕Θ
1𝐴 (𝜃 ) 𝑓 (𝜃 ) (𝜃 · 𝒏)𝑑𝜃 − 𝑛 ·

∫
Θ
1𝐴 (𝜃 ) 𝑓 (𝜃 )𝑑𝜃 −

𝑛−1∑
𝑖=1

∫
𝜕Θ𝑖

1𝐴 (𝜃 ) 𝑓 (𝜃 ) (𝒆𝑖 · 𝒏𝑖 )𝑑𝜃

−
∫
Θ
1𝐴 (𝜃 ) · (∇𝑓 (𝜃 ) · 𝜃 )𝑑𝜃 +

𝑛−1∑
𝑖=1

∫
Θ𝑖

1𝐴 (𝜃 ) · (𝒆𝑖 · ∇𝑓 (𝜃 ))𝑑𝜃

for any measurable set 𝐴. Here 𝜕Θ (or 𝜕Θ𝑖 ) is the boundary of Θ (or Θ𝑖 ). 𝒏 (or 𝒏𝑖 ) is the outward
pointing unit normal at each point on the boundary 𝜕Θ (or 𝜕Θ𝑖 ). 𝒆𝑖 is the 𝑖-th unit vector of dimension

𝑛 − 1. 1𝐴 (𝜃 ) = 1[𝜃 ∈ 𝐴].
9
In [18, 37], the notion of convex dominance is less restricted: 𝜇 convex dominates 𝜇′ if

∫
Θ
𝑔𝑑𝜇 ≥

∫
Θ
𝑔𝑑𝜇′ for any continuous,

non-decreasing, convex function 𝑔 on Θ. Under this notion, 𝜇′ can be transformed to 𝜇 by either performing the mean-

preserving spread, or sending a positive mass to coordinatewise larger points. In our notion, the inequality holds for any

convex function that is not necessarily non-decreasing. Thus the second operation may make

∫
𝑔𝑑𝜇′ smaller and is not

allowed during the transformation.

10
Here we assume each Θ𝑖 to be compact such that a intergral on Θ𝑖 is well-defined. Two Θ𝑖 s may overlap on their

boundaries. We still refer to (Θ𝑖 , . . . ,Θ𝑛) a partition of Θ as the set of overlapping points has 0 measure w.r.t. 𝑓 .
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We prove the following lemma by applying the divergence theorem.

Lemma 11. For any differentiable function 𝐺 , we have∫
Θ
𝐺 (𝜃 )𝑑𝜇𝑃 =

∫
Θ
[−𝐺 (𝜃 ) + ∇𝐺 (𝜃 ) · 𝜃 +𝐺 (0)] 𝑓 (𝜃 )𝑑𝜃 −

𝑛−1∑
𝑖=1

∫
Θ𝑖

𝜕𝐺 (𝜃 )
𝜕𝜃𝑖

𝑓 (𝜃 )𝑑𝜃

Choosing 𝐺 (𝜃 ) = 1,∀𝜃 ∈ Θ implies that 𝜇𝑃 (Θ) = 0.

Now we are ready to define the dual problem (Figure 5).

inf

𝑃 ∈P,𝛾 ∈Γ+ (Θ×Θ)
𝛾1−𝛾2⪰𝑐𝑢𝑥 𝜇

𝑃

∫
Θ×Θ

𝑐 (𝜃, 𝜃 ′)𝑑𝛾 (𝜃, 𝜃 ′)

Fig. 5. The Dual Problem in Form of Optimal Transportation

To have a better understanding of the dual problem, we prove the following lemma which shows

that the weak duality holds.

Lemma 12. For any feasible solution 𝐺 to the primal (Figure 4) and any feasible solution (𝑃 =

(Θ1, . . . ,Θ𝑛), 𝛾) to the dual (Figure 5),∫
Θ

[
−𝐺 (𝜃 ) + ∇𝐺 (𝜃 ) · 𝜃 − max

{
𝜕𝐺 (𝜃 )
𝜕𝜃1

, . . . ,
𝜕𝐺 (𝜃 )
𝜕𝜃𝑛−1

, 0

}
+𝐺 (0)

]
𝑓 (𝜃 )𝑑𝜃 ≤

∫
Θ×Θ

𝑐 (𝜃, 𝜃 ′)𝑑𝛾 (𝜃, 𝜃 ′)

The inequality achieves equality if and only if all of the following conditions are satisfied:

(1)
𝜕𝐺 (𝜃 )
𝜕𝜃𝑖

= max

{
𝜕𝐺 (𝜃 )
𝜕𝜃1

, . . . ,
𝜕𝐺 (𝜃 )
𝜕𝜃𝑛−1

, 0

}
for every 𝑖 ∈ [𝑛−1], 𝜃 ∈ Θ𝑖 ; max𝑖∈[𝑛−1]

𝜕𝐺 (𝜃 )
𝜕𝜃𝑖

≤ 0 for every

𝜃 ∈ Θ𝑛 .

(2) 𝛾 (𝜃, 𝜃 ′) > 0 =⇒ 𝐺 (𝜃 ) −𝐺 (𝜃 ′) = 𝑐 (𝜃, 𝜃 ′).
(3)

∫
Θ
𝐺 (𝜃 )𝑑 (𝛾1 − 𝛾2) =

∫
Θ
𝐺 (𝜃 )𝑑𝜇𝑃 . In other words, 𝜇𝑃 (in Definition 4) can be transformed to

𝛾1 − 𝛾2 by performing a mean-preserving spread operated in a region where𝐺 is linear.

An important application of Lemma 12 is that: Given a menuM in any matching utility envi-

ronment, we can certify the optimality of M by constructing a feasible dual (𝑃,𝛾) that satisfies all
conditions in Lemma 12 with respect to the utility function 𝐺 (·) induced byM. This is because

𝐺 (·) being an optimal solution to the primal problem in Figure 4 immediately implies thatM is

the optimal menu since the primal problem is a relaxation of our problem.

Theorem 8. Given any matching utility environment and any menuM. Let 𝐺 (·) be the buyer’s
utility function induced byM. If there exists a feasible dual solution (𝑃,𝛾) to the problem in Figure 5

such that𝐺 and (𝑃,𝛾) satisfies all conditions in the statement of Lemma 12, thenM is the optimal

menu in this environment.

5.2.2 Proof of Theorem 7. Now we focus on the special case 𝑛 = 3 and give a proof of Theorem 7

using Theorem 8. The type space Θ = {(𝜃1, 𝜃2) ∈ [0, 1]2 | 𝜃1 + 𝜃2 ≤ 1} is a triangle. Let M∗ =

{𝐸∗ (𝜃 ), 𝑡∗ (𝜃 )}𝜃 ∈Θ be the mechanism that only sells the full information at price 𝑝 = 1

3
. Let𝐺∗ (𝜃 ) =

𝑉 ∗
𝜃
(𝐸∗ (𝜃 )) − 𝑡∗ (𝜃 ) be the buyer’s utility function inM∗

. By Theorem 8, it suffices to construct a

feasible dual (𝑃∗, 𝛾∗) that satisfies all conditions in Lemma 12.

Denote 𝜋∗
𝑖 (𝜃 ) the (𝑖, 𝑖)-entry of 𝐸∗ (𝜃 ). We consider the following partition 𝑃∗ = (Θ∗

1
,Θ∗

2
,Θ∗

3
) of

Θ: Θ∗
𝑖 = {𝜃 ∈ Θ | 𝜃𝑖 ≥ 𝜃 𝑗 ,∀𝑗 ∈ {1, 2, 3}}, here 𝜃3 = 1 − 𝜃1 − 𝜃2. See Figure 10a for an illustration. In

uniform distribution, the density 𝑓 (𝜃 ) = 2 is a constant for all 𝜃 ∈ Θ. Thus we can simplify the

description of 𝜇𝑃
∗
as in Observation 2.
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Observation 2. By Definition 4, the measure 𝜇𝑃
∗
with respect to the partition 𝑃∗

is the sum of:

• A point mass of +1 at 0.
• For each (𝑖, 𝑗) = (1, 2), (1, 3), (2, 3), a mass of

2

3
uniformly distributed on the line segment

𝑆𝑖 𝑗 = {𝜃 ∈ Θ | 𝜃𝑖 = 𝜃 𝑗 ≥ 𝜃𝑘 }. Here 𝑘 is the index other than 𝑖, 𝑗 . 𝜃3 = 1 − 𝜃1 − 𝜃2.

• A mass of −3 uniformly distributed through out Θ.

Now we construct the measure 𝛾∗ ∈ Γ+ (Θ×Θ) as follows: Let Ω1 = {𝜃 ∈ Θ : 1−max𝑖∈[𝑛] 𝜃𝑖 ≥ 𝑝}
be the set of types where the buyer purchases the full information inM∗

. Let Ω2 = Θ\Ω1. For any

measurable set 𝐴, 𝐵 ⊆ Θ, define 𝛾 (𝐴 × 𝐵) = 1𝐴 (0) ·
∫
Ω2

1𝐵 (𝜃 )𝑑𝜃/Vol(Ω2). See Figure 10b for an
illustration of the notations. To verify that𝐺∗

and (𝑃∗, 𝛾∗) are the optimal primal and dual solution

respectively, it suffices to prove the following lemma.

Lemma 13. 𝐺∗
and (𝑃∗, 𝛾∗) are feasible solutions to the primal (Figure 4) and dual problem (Figure 5)

respectively. Moreover, they satisfy all the conditions in the statement of Lemma 12.

The primal feasibility and the first two conditions are relatively easy to verify. To prove the

dual feasibility and Condition 3, denote 𝛾∗
1
, 𝛾∗

2
the marginals of 𝛾 . By definition of 𝛾 , 𝜇𝑃

∗ − (𝛾∗
1
− 𝛾∗

2
)

contains only a mass of −2 uniformly distributed throughout out the hexagon Ω1, and a mass of

2

3
uniformly distributed in each line segment 𝑆12, 𝑆13, 𝑆23. Due to the special geometric shape of

the hexagon, we can transform the positive mass on the line segments to the whole region Ω1 via

mean-preserving spread, to “zero-out” the negative mass. This proves both the dual feasibility and

Condition 3 since 𝐺∗ (𝜃 ) = 2

3
is constant throughout Ω1.

6 CONCLUSION
We considered the problem of selling information to a data-buyer with private information. The

(approximately) optimal mechanism typically offers menu of options at different prices to the data-

buyer. We showed that this revenue maximization problem shares some features with the problem of

selling multiple items to a single buyer. Yet, the problem of finding the optimal menu of information

structure is richer in two important aspects. First, every item on the menu is information structure,

thus matrix of signals given the true state, and second, the individual rationality constraint varies

with the private information of the agent. Thus, the choice set as well as the set of constraints is

richer than the standard multi-item. Our analysis thus focused on establishing lower and upper

bounds for the optimality of the complete information structure, which is a natural information

product and in a sense the equivalence of the grand bundle in the mutli-item problem.

We established a lower bound on the cardinality of the optimal menu in the binary-state environ-

ment. An interesting future direction is to show an upper bound of the cardinality of the optimal

menu. Although we showed an 𝑂 (𝑚) approximation ratio for selling complete information in this

single-dimensional environment, no finite upper bound (in a function of𝑚) of the cardinality that

holds for all type distribution is known.

In general environments, we offered a primal-dual approach to prove the optimality of a given

menu. We used the approach to show the optimality of selling complete information in a special

environment. We believe that this approach should be productive to further characterize the optimal

menu in other environments.
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A ADDITIONAL PRELIMINARIES
Definition 5 (Responsive Experiment [8]). A buyer type 𝜃 is responsive to an experiment 𝐸 if:

There is a one-to-one mapping 𝑔 : 𝑆 → [𝑚] from the signal set to the action space such that, for every

𝑘 ∈ [𝑚], the buyer chooses the action 𝑘 when receiving signal 𝑠 iff 𝑔(𝑠) = 𝑘 .

Lemma 14 (Adapted from Proposition 1 from [8]). A mechanismM = {(𝐸 (𝜃 ), 𝑡 (𝜃 ))}𝜃 ∈Θ is

responsive if every buyer type 𝜃 is responsive to 𝐸 (𝜃 ). Then for any mechanism M, there exists a

responsive mechanismM ′ = {𝐸 ′(𝜃 ), 𝑡 (𝜃 )}𝜃 ∈Θ with the same payment rule, such that for every type 𝜃 ,

the buyer has the same value for both experiments 𝐸 (𝜃 ) and 𝐸 ′(𝜃 ).

Lemma 15. [8] Any optimal menu contains a fully informative experiment.

B MISSING DETAILS FROM SECTION 3
Proof of Lemma 1: Since ℎ is strictly decreasing in [𝑎, 𝑏], let ℎ−1

be its inverse function. Define 𝐹 as

follows: 𝐹 (𝜃 ) = 1− 𝑐
1−ℎ (𝜃 ) ,∀𝜃 ∈ [𝑎, 𝑏); 𝐹 (𝑏) = 1. Here 𝑐 = 1−ℎ(𝑎) to ensure that 𝐹 (𝑎) = 0. Consider

the fully informative experiment with any price 𝑝 . The utility for purchasing this experiment is

1 − 𝑝 regardless of the buyer’s prior. Thus the buyer purchases the fully informative experiment iff

ℎ(𝜃 ) ≤ 1 − 𝑝 , which happens with probability 1 − 𝐹 (ℎ−1 (1 − 𝑝)) = 𝑐/𝑝 . Thus FRev = 𝑐 . Moreover,

𝑓 (𝜃 ) = −𝑐 · ℎ′ (𝜃 )
(1−ℎ (𝜃 ))2

,∀𝜃 ∈ [𝑎, 𝑏). 11 We have∫ 𝑏

𝑎

𝑓 (𝜃 ) · (1 − ℎ(𝜃 ))𝑑𝜃 = −𝑐 ·
∫ 𝑏

𝑎

ℎ′(𝜃 )
1 − ℎ(𝜃 )𝑑𝜃 = 𝑐 · log(1 − ℎ(𝜃 ))

���𝑏
𝑎
= 𝑐 · log

(
1 − ℎ(𝑏)
1 − ℎ(𝑎)

)
2

11
As ℎ ( ·) is a convex function, it is also continuously differentiable on except countably many points. For those points, we

can choose ℎ′ (𝜃 ) to be any subdifferential at 𝜃 .
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Proof of Lemma 2:We first bound the revenue ofM. Notice that for every 1 ≤ 𝑖 ≤ 𝑚 − 2,

𝑝𝑖 =

𝑖−1∑
𝑗=0

ℎ 𝑗 + 𝜃𝑖𝑙𝑖 = (2𝑖 − 1) · 𝜀2
𝑚 − 𝜀2

𝑖 · (𝜀2
𝑚 +

∑
1≤ 𝑗<𝑖

2
𝑗 · 𝜀2

𝑚−2
𝑗 ) ≤ (2𝑖 − 1) · 𝜀2

𝑚

(5)

On the other hand, when 𝜀 < 1

2
𝑚 , we have

𝑝𝑖 = (2𝑖 − 1) · 𝜀2
𝑚 − 𝜀2

𝑚+2
𝑖 −

∑
1≤ 𝑗<𝑖

2
𝑗 · 𝜀2

𝑚+2
𝑖−2

𝑗

(6)

≥ (2𝑖 − 1) · 𝜀2
𝑚 − 𝜀2

𝑚+2 · (1 +
∑

1≤ 𝑗<𝑖
2
𝑗 ) ≥ (2𝑖 − 1) · 𝜀2

𝑚 − 𝜀2
𝑚+1

Moreover,

1 − 𝑢 (𝜃𝑖+1) =
𝑖∑
𝑗=0

ℎ 𝑗 = (2𝑖+1 − 1) · 𝜀2
𝑚

Thus for every 𝜃 such that 𝜃𝑖 < 𝜃 ≤ 𝜃𝑖+1, the payment ofM is at least

min{𝑝𝑖 , 𝑝𝑖−1, 𝑝𝑖−2} = 𝑝𝑖−2 ≥ 1

9

(1 − 𝑢 (𝜃𝑖+1)) ≥
1

9

(1 − 𝑢 (𝜃 )).

Thus we have Rev(M) ≥ 1

9
·
∫ 𝜃𝑚−1

𝜃1

𝑓 (𝜃 ) · (1 − 𝑢 (𝜃 ))𝑑𝜃 .
Next we prove that M is IR and 𝛿-IC. Firstly, if the buyer follows the recommendation of

experiment 𝐸𝑖 , his expected utility is 𝜃 (1 + 𝑙𝑖 ) + 1 − 𝜃 − 𝑝𝑖 = 1 + 𝜃𝑙𝑖 − 𝑝𝑖 = 1 − ∑𝑖−1

𝑗=0
ℎ 𝑗 + (𝜃 − 𝜃𝑖 )𝑙𝑖 ,

which is 𝑢 (𝜃𝑖 ) and 𝑢 (𝜃𝑖+1) if we choose 𝜃 to be 𝜃𝑖 and 𝜃𝑖+1 respectively. Since 𝑢 (·) is linear on
(𝜃𝑖 , 𝜃𝑖+1], the buyer’ expected utility for receiving (𝐸𝑖 , 𝑝𝑖 ) is exactly 𝑢 (𝜃 ). Thus her utility by

reporting truthfully is at least 𝑢 (𝜃 ) ≥ 0, andM is IR.

Now fix any 𝜃 ∈ [𝜃1, 𝜃𝑚−1]. Let 𝑖 be the unique number such that 𝜃𝑖 < 𝜃 ≤ 𝜃𝑖+1. Suppose

that the buyer misreports and receives experiment 𝐸 𝑗 for 1 ≤ 𝑗 ≤ 𝑚 − 2. We notice that when

the experiment recommends action 1, the state 𝜔1 is fully revealed and the buyer will follow the

recommendation, choosing action 1. If the buyer chooses action𝑚 − 𝑟 when being recommended

action𝑚, for 0 ≤ 𝑟 ≤ 𝑚 − 1, then his utility for buying experiment 𝑗 is

𝑈 𝑗,𝑟 (𝜃 ) := 𝜃 (1 + 𝑙 𝑗 ) + 𝜃 (−𝑙 𝑗 )𝑢1,𝑚−𝑟 + (1 − 𝜃 )𝑢2,𝑚−𝑟 − 𝑝 𝑗 = 𝑢2,𝑚−𝑟 + 𝜃 (1 + 𝑙 𝑗 − 𝑙 𝑗𝑢1,𝑚−𝑟 −𝑢2,𝑚−𝑟 ) − 𝑝 𝑗 .

When 1 ≤ 𝑟 ≤ 𝑚 − 2, using the fact that 𝑢2,𝑚−𝑟 = 1 − 𝑝𝑟 and 𝑢1,𝑚−𝑟 = 1 − 𝑝𝑟 + 𝑙𝑟 , we can rewrite

𝑈 𝑗,𝑟 (𝜃 ) = 1 + 𝜃 (𝑝𝑟 + 𝑙 𝑗 (𝑝𝑟 − 𝑙𝑟 )) − 𝑝𝑟 − 𝑝 𝑗 .

We argue that for every 𝜃 ∈ (𝜃𝑖 , 𝜃𝑖+1], the following inequality holds.

max

𝑗 ∈{1,...,𝑚−2},𝑟 ∈{0,...,𝑚−1}
𝑈 𝑗,𝑟 (𝜃 ) ≤ max

𝑗 ′∈{𝑖,𝑖−1,𝑖−2},𝑟 ′∈{0,...,𝑚−1}
𝑈 𝑗 ′,𝑟 ′ (𝜃 ) + 7 · 𝜀2

𝑚+1. 12 (7)

Since a buyer with type 𝜃 receives utility max𝑗 ′∈{𝑖,𝑖−1,𝑖−2},𝑟 ′𝑈 𝑗 ′,𝑟 ′ (𝜃 ) inM if he reports truthfully,

Inequality (7) guarantees thatM is 𝛿-IC (recall that 𝛿 = 7 · 𝜀2
𝑚+1

), as the buy can obtain utility at

most max𝑗 ∈{1,...,𝑚−2},𝑟 𝑈 𝑗,𝑟 (𝜃 ) by misreporting his type.

Now we prove that for every 𝑗 ∈ {1, . . . ,𝑚 − 2}, 𝑟 ∈ {0, . . . ,𝑚 − 1},𝑈 𝑗,𝑟 (𝜃 ) is no more than the

RHS of Inequality (7) by a case analysis.

(1) 𝑟 = 0. For every 𝑗 ∈ {1, . . . ,𝑚 − 2},𝑈 𝑗,0 (𝜃 ) = 𝑉 ∗
𝜃
(𝐸 𝑗 ) − 𝑝 𝑗 is the agent’s utility for purchasing

𝐸 𝑗 , if he follows the recommendation. By the definition of the IR curve 𝑢 (·), the function
𝑈ℓ,0 (·) coincides with 𝑢 (·) on the interval [𝜃ℓ , 𝜃ℓ+1] for all ℓ ∈ {1, . . . ,𝑚 − 2}. Since 𝑢 (·) is a
convex function and 𝜃 ∈ (𝜃𝑖 , 𝜃𝑖+1],𝑈𝑖,0 (𝜃 ) ≥ 𝑈 𝑗,0 (𝜃 ) for all 𝑗 ∈ {1, . . . ,𝑚 − 2}.

12
In the RHS of the inequality, 𝑗 can only take value 𝑖, 𝑖 − 1 when 𝑖 ≤ 2, and can only take value 𝑖 when 𝑖 = 1.
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(2) 𝑟 =𝑚−1. For every 𝑗 ∈ {1, . . . ,𝑚−2}, since 𝜀 < 1

2
𝑚 ,𝑈 𝑗,𝑚−1 (𝜃 ) = 𝜃−𝑝 𝑗 ≤ 𝜃 ≤ 𝜃𝑚−1 < 𝜀2

𝑚−1−1.

On the other hand,𝑈𝑖,0 (𝜃 ) = 1 + 𝜃ℓ𝑖 − 𝑝𝑖 ≥ 1 − 2
𝑚 · 𝜀2

𝑚

> 1 − 𝜀2
𝑚−1 > 𝑈 𝑗,𝑚−1 (𝜃 ).

(3) 1 ≤ 𝑟 ≤ 𝑚−2. Recall 𝑝𝑟 − (2𝑟 −1) ·𝜀2
𝑚 ∈ [−𝜀2

𝑚+1, 0] for every 𝑟 ∈ {1, ...,𝑚−2} (Inequality (6)).
For every 𝑗, 𝑟 ∈ {1, ...,𝑚 − 2},𝑈 𝑗,𝑟 (𝜃 ) can be further bounded as follows:

𝑈 𝑗,𝑟 (𝜃 ) ≥ 1 − 𝑝𝑟 − 𝑝 𝑗 + 𝜃 · [(2𝑟 − 1)𝜀2
𝑚 − 𝜀2

𝑚+1 − 𝜀2
𝑗 ((2𝑟 − 1)𝜀2

𝑚 + 𝜀2
𝑟 )]

≥ 1 − 𝑝𝑟 − 𝑝 𝑗 − 𝜃 · 𝜀2
𝑗+2

𝑟 − 2 · 𝜀2
𝑚+1

≥ 1 − (2𝑗 + 2
𝑟 − 2) · 𝜀2

𝑚 − 𝜃 · 𝜀2
𝑗+2

𝑟 − 2 · 𝜀2
𝑚+1

The first inequality follows from the upper bound (Inequality (5)) and the lower bound

(Inequality (6)) of 𝑝𝑖 . The second inequality follows from 𝜃 < 1 and 𝜀 < 1

2
𝑚 . The last

inequality follows from Inequality (5). On the other hand,

𝑈 𝑗,𝑟 (𝜃 ) ≤ 1 − 𝑝𝑟 − 𝑝 𝑗 + 𝜃 · [(2𝑟 − 1)𝜀2
𝑚 − 𝜀2

𝑗 ((2𝑟 − 1)𝜀2
𝑚 − 𝜀2

𝑚+1 + 𝜀2
𝑟 )]

≤ 1 − 𝑝𝑟 − 𝑝 𝑗 − 𝜃 · 𝜀2
𝑗+2

𝑟 + 2 · 𝜀2
𝑚+1

≤ 1 − (2𝑗 + 2
𝑟 − 2) · 𝜀2

𝑚 − 𝜃 · 𝜀2
𝑗+2

𝑟 + 4 · 𝜀2
𝑚+1.

The first and last inequalities follow from Inequality (5) and (6). The second inequality follows

from 𝜃 ≤ 𝜃𝑚−1 < 𝜀2
𝑚−1−1

. There are two nice properties of the upper and lower bounds of

𝑈 𝑗,𝑟 (𝜃 ): (i) they are within 𝑂 (𝜀2
𝑚+1) and (ii) they are both symmetric with respect to 𝑗 and 𝑟 .

(a) If 2
𝑗 + 2

𝑟 > 2
𝑖
, then either 𝑗 or 𝑟 must be at least 𝑖 , which implies that 2

𝑗 + 2
𝑟 ≥ 2

𝑖 + 2.

By Equation (2), 𝜃 ≤ 𝜃𝑖+1 < 𝜀2
𝑚−2

𝑖−1
. Thus 𝜃 · 𝜀2

𝑗+2
𝑟

< 𝜀2
𝑚+1

. We notice that if either

𝑗 or 𝑟 is at least 𝑖 , (2𝑗 + 2
𝑟 − 2) · 𝜀2

𝑚

is minimized when ( 𝑗, 𝑟 ) = (𝑖, 1) or (1, 𝑖). Thus
𝑈 𝑗,𝑟 (𝜃 ) ≤ 𝑈𝑖,1 (𝜃 ) + 7 · 𝜀2

𝑚+1
.

(b) If 2
𝑗 + 2

𝑟 < 2
𝑖−1

, then 𝑖 > 1 and thus 2
𝑗 + 2

𝑟 ≤ 2
𝑖−1 − 2 (as both are even numbers when

𝑖 > 1). Since 𝜃 ≥ 𝜃𝑖 > 2
𝑖−1 · 𝜀2

𝑚−2
𝑖−1

, we have 𝜃 · 𝜀2
𝑗+2

𝑟 ≥ 2
𝑖−1 · 𝜀2

𝑚−2
. As 𝜀 < 1

2
𝑚 , the term

𝜃 · 𝜀2
𝑗+2

𝑟

dominates (2𝑗 + 2
𝑟 − 2) · 𝜀2

𝑚

and 1 − (2𝑗 + 2
𝑟 − 2) · 𝜀2

𝑚 − 𝜃 · 𝜀2
𝑗+2

𝑟

is maximized

when 2
𝑗 + 2

𝑟
is maximized conditioned on 2

𝑗 + 2
𝑟 < 2

𝑖−1
. In other words, it is maximized

when ( 𝑗, 𝑟 ) = (𝑖 − 2, 𝑖 − 3) or (𝑖 − 3, 𝑖 − 2). Thus𝑈 𝑗,𝑟 (𝜃 ) ≤ 𝑈𝑖−2,𝑖−3 (𝜃 ) + 6 · 𝜀2
𝑚+1

.

(c) If 2
𝑗 +2

𝑟 ∈ [2𝑖−1, 2𝑖 ], then either 𝑗 or 𝑟 is in {𝑖−2, 𝑖−1, 𝑖}. Since |𝑈 𝑗,𝑟 (𝜃 )−𝑈𝑟, 𝑗 (𝜃 ) | ≤ 6 ·𝜀2
𝑚+1

,

for all 𝑗 and 𝑟 in {1, . . . ,𝑚 − 2}, we have𝑈 𝑗,𝑟 (𝜃 ) ≤ max𝑗 ′∈{𝑖,𝑖−1,𝑖−2},𝑟 ′∈{1,...,𝑚−2}𝑈 𝑗 ′,𝑟 ′ (𝜃 ) + 6 ·
𝜀2

𝑚+1
.

2

To complete the proof of Theorem 1, we need the following lemma adapted from [12].

Lemma 16 (Adapted from Lemma 8 in [12]). Suppose M is a mechanism of option size ℓ , where

the IC and IR constraints are violated by at most 𝛿 , for some 𝛿 > 0 and finite ℓ > 0. Then there exists

an IC, IR mechanism M ′
of option size ℓ such that Rev(M ′) ≥ (1 − 𝜂) · Rev(M) − 𝛿/𝜂 − 𝛿 , for any

𝜂 > 0. Moreover, if every experiment 𝐸 in M is semi-informative, then M ′
is a semi-informative

menu.

Proof of Lemma 16: Let M = ({𝐸 (𝜃 ), 𝑡 (𝜃 )})𝜃 ∈[0,1] and {(𝐸 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[ℓ ] be the ℓ options in M. For

every 𝑗 ∈ [ℓ], let 𝑡 ′𝑗 = (1 − 𝜂)𝑡 𝑗 − 𝛿 . Let M ′
be the menu with options {(𝐸 𝑗 , 𝑡

′
𝑗 )} 𝑗 ∈[ℓ ] , i.e., the buyer

with type 𝜃 purchase the experiment that maximizes 𝑉𝜃 (𝐸 𝑗 ) − 𝑡 ′𝑗 . ClearlyM ′
is IC and IR.

For any type 𝜃 ∈ [0, 1], let 𝑗 ∈ [𝑚] be the unique number such that 𝐸 (𝜃 ) = 𝐸 𝑗 . Since the IC

constraints inM are violated by at most 𝛿 , we know that

𝑉𝜃 (𝐸 𝑗 ) − 𝑡 𝑗 ≥ 𝑉𝜃 (𝐸𝑘 ) − 𝑡𝑘 − 𝛿, ∀𝑘 ∈ [ℓ]
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Now suppose that the buyer with type 𝜃 purchases 𝐸𝑘∗ inM ′
. Then

𝑉𝜃 (𝐸𝑘∗ ) − (1 − 𝜂)𝑡𝑘∗ ≥ 𝑉𝜃 (𝐸 𝑗 ) − (1 − 𝜂)𝑡 𝑗
Choosing 𝑘 to be 𝑘∗ in the first inequality and combining the two inequalities, we have that

𝑉𝜃 (𝐸𝑘∗ ) − (1 − 𝜂)𝑡𝑘∗ ≥ 𝑉𝜃 (𝐸𝑘∗ ) − 𝑡𝑘∗ − 𝜀 + 𝜂𝑡 𝑗 =⇒ 𝑡 𝑗 − 𝑡𝑘∗ ≤ 𝛿

𝜂

Hence, for the revenue we have Rev(M ′) ≥ (1 − 𝜂) · Rev(M) − 𝛿 − 𝛿
𝜂
. The second part of the

statement directly follows from the fact thatM ′
shares the same set of experiments withM. 2

Proof of Theorem 1:We consider the construction present in Section 3. By Lemma 1 and Lemma 2,

Rev(M) ≥ 1

9

· log(2) · (𝑚 − 2) · FRev

We notice that FRev = 𝜀2
𝑚

. According to the construction of the mechanism,M is of option size at

most𝑚 − 2. Thus by applying Lemma 16 with 𝜂 = 1

2
and 𝛿 = 7 · 𝜀2

𝑚+1
, we have

SIRev ≥ 1

2

· Rev(M) − 3 · 7 · 𝜀2
𝑚+1 ≥ 𝜀2

𝑚 ·
[
log(2)

18

(𝑚 − 2) − 21𝜀

]
= Ω(𝑚) · FRev

Since OPT ≥ SIRev, we further have OPT = Ω(𝑚) · FRev. 2

Proof of Lemma 3: Let 𝐸1, . . . , 𝐸ℓ be the experiments contained in mechanismM, and 𝑡 (𝐸1), . . . , 𝑡 (𝐸ℓ )
be the prices. Let 𝑝𝑖 be the revenue that is generated by experiment 𝐸𝑖 , i.e., 𝑝𝑖 = Pr𝜃 [M(𝜃 ) =

𝐸𝑖 ] · 𝑡 (𝐸𝑖 ). Then, Rev(M) = ∑ℓ
𝑖=1

𝑝𝑖 =⇒ 𝑝 𝑗 ≥ Rev(M)
ℓ

, for some 𝑗 ∈ [ℓ]. Now, consider menu

M ′
that contains only the fully informative experiment 𝐸∗ with price 𝑡 (𝐸 𝑗 ). We claim that for all

types 𝜃 such that M(𝜃 ) = 𝐸 𝑗 , the agent with type 𝜃 is willing to purchase the experiment 𝐸∗ at
price 𝑡 (𝐸 𝑗 ), as 𝑉𝜃 (𝐸∗) ≥ 𝑉𝜃 (𝐸 𝑗 ),∀𝜃 ∈ [0, 1]. Thus, for all 𝜃 such that M(𝜃 ) = 𝐸 𝑗 , 𝑉𝜃 (𝐸∗) − 𝑡 (𝐸∗) ≥
𝑉𝜃 (𝐸 𝑗 ) − 𝑡 (𝐸 𝑗 ) ≥ 𝑢 (𝜃 ), where the second inequality follows fromM is IR. Hence, the revenue of

M ′
is at least 𝑝 𝑗 ≥ Rev(M)

ℓ
. 2

Proof of Theorem 2: By Theorem 1, there exists some environment such that 𝑐 := OPT

FRev
= Ω(𝑚).

Suppose there is an optimal menu M∗
that consists of 𝑐 ′ < 𝑐 different experiments. Then by

applying Lemma 3 to M∗
, we have FRev ≥ OPT

𝑐′ > OPT

𝑐
. Contradiction. Thus any optimal menu

consists of at least 𝑐 experiments. 2

C MISSING DETAILS FROM SECTION 4
Observation 3. [8] For any semi-informative experiment 𝐸, 𝑞(𝐸) = 𝜋11 · 𝑢11 − 𝜋2𝑚 · 𝑢2𝑚 satisfies

the following: When 𝑞(𝐸) ≤ 𝑢11 − 𝑢2𝑚 , 𝐸 has Pattern 1 in Table 2, where 𝜋11 = (𝑞(𝐸) + 𝑢2𝑚)/𝑢11.

When 𝑞(𝐸) > 𝑢11 − 𝑢2𝑚 , 𝐸 has Pattern 2 in Table 2, where 𝜋2𝑚 = (𝑢11 − 𝑞(𝐸))/𝑢2𝑚 .

Observation 4. [8] For any semi-informative experiment 𝐸, and any 𝜃 ∈ [0, 1], 𝑉 ∗
𝜃
(𝐸) = 𝜃𝑞(𝐸) +

𝑢2𝑚 + min{𝑢11 − 𝑢2𝑚 − 𝑞(𝐸), 0} (recall that 𝑢11 ≥ 𝑢2𝑚 = 1).

C.1 Proof of Lemma 4
Lemma 17. There exists a responsive-IC and IR mechanismM that satisfies both of the following

properties:

(1) Every experiment ofM only recommends the fully informative actions. Formally, 𝜋𝑖 𝑗 (M(𝜃 )) = 0,

for all 𝜃 ∈ Θ, 𝑖 ∈ {1, 2}, 2 ≤ 𝑗 ≤ 𝑚 − 1.

(2) Rev(M) = OPT
∗
.
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Proof. Fix any responsive-IC and IR mechanismM, any experiment 𝐸 thatM offers, any action

ℓ such that 2 ≤ ℓ ≤ 𝑚 − 1, and any state 𝑖 = 1, 2. Suppose 𝜋𝑖ℓ (𝐸) is not zero. We modify 𝐸 to

get another experiment 𝐸 ′
by moving all the probability mass from 𝜋𝑖ℓ (𝐸) to 𝜋𝑖1 (𝐸) and 𝜋𝑖𝑚 (𝐸)

in a proper way, such that the modified mechanism generates the same revenue. Let M∗
be an

optimal responsive-IC and IR mechanism. We show how to modify its experiments 𝐸 to obtain a

responsive-IC and IR menu that satisfies both properties in the statement.

For any 𝜃 ∈ [0, 1], recall that 𝑉 ∗
𝜃
(𝐸) is the agent’s value for experiment 𝐸 if she follows the

recommendation:

𝑉 ∗
𝜃
(𝐸) = 𝜃

∑
𝑗 ∈[𝑚]

𝜋1𝑗 (𝐸)𝑢1𝑗 + (1 − 𝜃 )
∑
𝑗 ∈[𝑚]

𝜋2𝑗 (𝐸)𝑢2𝑗

Let 𝑈𝜃 (𝐸) = 𝑉 ∗
𝜃
(𝐸) − 𝑡 (𝐸) be her utility for 𝐸 when following the recommendation. We only

consider moving the probability mass from 𝜋2ℓ (𝐸) to 𝜋21 (𝐸) and 𝜋2𝑚 (𝐸). The case where we move

the probability mass of 𝜋1ℓ (𝐸) follows from a similar argument.

Without loss of generality, assume 𝜀 = 𝜋2ℓ (𝐸) > 0. We move 𝜀1 mass from 𝜋2ℓ (𝐸) to 𝜋21 (𝐸) and
𝜀2 mass from 𝜋2ℓ (𝐸) to 𝜋2𝑚 (𝐸). Both 𝜀1 and 𝜀2, which satisfy 𝜀1 + 𝜀2 = 𝜀, will be determined later.

Let 𝐸 ′
be the modified experiment, and we keep its price as 𝑡 (𝐸). For every 𝜃 , we show how to

choose 𝜀1 and 𝜀2 appropriately so that𝑈𝜃 (𝐸 ′) = 𝑈𝜃 (𝐸).

𝑈𝜃 (𝐸 ′) −𝑈𝜃 (𝐸) = (1 − 𝜃 )
∑
𝑗 ∈[𝑚]

(𝜋2𝑗 (𝐸 ′) − 𝜋2𝑗 (𝐸))𝑢2𝑗

= (1 − 𝜃 ) · (𝜀1 (𝑢21 − 𝑢2ℓ ) + 𝜀2 (𝑢2𝑚 − 𝑢2ℓ ))

Here the first equality follows from 𝜋1𝑗 (𝐸 ′) = 𝜋1𝑗 (𝐸),∀𝑗 ∈ [𝑚]. Now choose 𝜀1, 𝜀2 such that

𝜀1 + 𝜀2 = 𝜀 and 𝜀1 (𝑢2ℓ − 𝑢21) = 𝜀2 (𝑢2𝑚 − 𝑢2ℓ ). In other words,

𝜀1 =
(𝑢2𝑚 − 𝑢2ℓ )𝜀

(𝑢2ℓ − 𝑢21) + (𝑢2𝑚 − 𝑢2ℓ )
, 𝜀2 =

(𝑢2ℓ − 𝑢21)𝜀
(𝑢2ℓ − 𝑢21) + (𝑢2𝑚 − 𝑢2ℓ )

Notice that since 𝑢21 < 𝑢2ℓ < 𝑢2𝑚 we have that 𝜀1, 𝜀2 > 0. With the choices of 𝜀1, 𝜀2, we have

𝑈𝜃 (𝐸) = 𝑈𝜃 (𝐸 ′),∀𝜃 ∈ [0, 1]. Thus, the modified mechanism is still responsive-IC and IR and has

the same revenue. We modifyM∗
by applying the above procedure to every experiment 𝐸 offered

by M∗
, every ℓ ∈ {2, ...,𝑚 − 1} , and every state 𝑖 = 1, 2. Let M ′

be the mechanism after the

modification. ThenM ′
is responsive-IC and IR and satisfies both properties in the statement. □

Due to Lemma 17, we can focus on responsive-IC and IR mechanisms that only recommend

fully informative actions. Let C2 be the set of all such mechanisms. For ease of notation, we

denote an experiment offered by the mechanism 𝐸 =

(
𝜋11 1 − 𝜋11

1 − 𝜋2𝑚 𝜋2𝑚

)
. Note that 𝑉 ∗

𝜃
(𝐸) =

𝜃𝑢11 · 𝜋11(𝐸) + (1 − 𝜃 )𝑢2𝑚 · 𝜋2𝑚 (𝐸).

Proof of Lemma 4: Let M be an arbitrary mechanism in C2. Let 𝐸 be any experiment offered by M,

such that 𝜋11 < 1 and 𝜋2𝑚 < 1. Without loss of generality, assume that (1−𝜋11)𝑢11 ≤ (1−𝜋2𝑚)𝑢2𝑚 .

The other case is similar. Let 𝜀1 = 1 − 𝜋11 and 𝜀2 =
𝑢11

𝑢2𝑚
· 𝜀1. By our assumption, 𝜀2 ≤ 1 − 𝜋2𝑚 . We

modify experiment 𝐸 and its price 𝑡 (𝐸) in the following way: Move probability mass 𝜀1 from 𝜋1𝑚

to 𝜋11, and move probability mass 𝜀2 from 𝜋21 to 𝜋2𝑚 . Denote 𝐸
′
the modified experiment. Since

𝜋11 + 𝜀1 = 1, we have

𝐸 ′ =

(
1 0

1 − 𝜋2𝑚 − 𝜀2 𝜋2𝑚 + 𝜀2

)
.
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Consider the mechanism M̂ where we replace 𝐸 by 𝐸 ′
and let the price of experiment 𝐸 ′

be

𝑡 (𝐸 ′) := 𝑡 (𝐸) + 𝜀2 · 𝑢2𝑚 . Formally, for every 𝜃 such that M(𝜃 ) = 𝐸, define M̂(𝜃 ) = 𝐸 ′
and the

payment 𝑡 ′(𝜃 ) = 𝑡 (𝜃 ) + 𝜀2 · 𝑢2𝑚 . For any other types, M̂ offers the same experiment with the same

price as offered byM.

For any 𝜃 , we have that

𝑉 ∗
𝜃
(𝐸 ′) −𝑉 ∗

𝜃
(𝐸) = 𝜃𝑢11 · (𝜋11 (𝐸 ′) − 𝜋11 (𝐸)) + (1 − 𝜃 )𝑢2𝑚 · (𝜋2𝑚 (𝐸 ′) − 𝜋2𝑚 (𝐸))

= 𝜃𝜀1 · 𝑢11 + (1 − 𝜃 )𝜀2 · 𝑢2𝑚 = 𝜀2 · 𝑢2𝑚 .

Hence, we can immediately see that for every type 𝜃 , the agent’s utility for experiment 𝐸 ′
at price

𝑡 (𝐸 ′)) is the same as the agent’s utility for experiment 𝐸 at price 𝑡 (𝐸). SinceM is responsive-IC

and IR, M̂ is also responsive-IC and IR. Moreover, we have that Rev(M̂) ≥ Rev(M). By repeating

this procedure for all the experiments in the optimal mechanism M ′ ∈ C2, we can construct a

mechanism M∗ ∈ C′
2
, such that Rev(M∗) ≥ Rev(M ′). By Lemma 17, Rev(M ′) = OPT

∗
. Thus

Rev(M∗) = OPT
∗
. 2

C.2 Proof of Lemma 5
We begin with necessity. For every 𝜃 , let 𝐸 (𝜃 ) be the experiment that corresponds to 𝑞(𝜃 ) (Obser-
vation 3). For any two types 𝜃1, 𝜃2 ∈ [0, 1], where 𝜃2 > 𝜃1, we have

𝑉 ∗
𝜃1

(𝐸 (𝜃1)) − 𝑡 (𝜃1) ≥ 𝑉 ∗
𝜃1

(𝐸 (𝜃2)) − 𝑡 (𝜃2)
𝑉 ∗
𝜃2

(𝐸 (𝜃2)) − 𝑡 (𝜃2) ≥ 𝑉 ∗
𝜃2

(𝐸 (𝜃1)) − 𝑡 (𝜃1)

Adding up both inequalities obtains

𝑉 ∗
𝜃1

(𝐸 (𝜃1)) +𝑉 ∗
𝜃2

(𝐸 (𝜃2)) ≥ 𝑉 ∗
𝜃1

(𝐸 (𝜃2)) +𝑉 ∗
𝜃2

(𝐸 (𝜃1)) (8)

By Observation 4, for every 𝜃, 𝜃 ′ ∈ [0, 1],

𝑉 ∗
𝜃
(𝐸 (𝜃 ′)) =

{
𝜃 · 𝑞(𝜃 ′) + 𝑢2𝑚, if 𝑞(𝜃 ′) ≤ 𝑢11 − 𝑢2𝑚

(𝜃 − 1) · 𝑞(𝜃 ′) + 𝑢11, if 𝑞(𝜃 ′) > 𝑢11 − 𝑢2𝑚

If both 𝑞(𝜃1) and 𝑞(𝜃2) are at most 𝑢11 − 𝑢2𝑚 , Inequality (8) ⇐⇒ (𝜃1 − 𝜃2) (𝑞(𝜃1) − 𝑞(𝜃2)) ≥
0 ⇐⇒ 𝑞(𝜃1) ≤ 𝑞(𝜃2). Similarly, when both 𝑞(𝜃1) and 𝑞(𝜃2) are greater than 𝑢11 − 𝑢2𝑚 , we also

have 𝑞(𝜃1) ≤ 𝑞(𝜃2).
Without loss of generality, the only remaining case is when 𝑞(𝜃2) ≤ 𝑢11 − 𝑢2𝑚 < 𝑞(𝜃1). Inequal-

ity (8) is equivalent to

(𝜃1 − 1)𝑞(𝜃1) + 𝑢11 + 𝜃2 · 𝑞(𝜃2) + 𝑢2𝑚 ≥ 𝜃1 · 𝑞(𝜃2) + 𝑢2𝑚 + (𝜃2 − 1) · 𝑞(𝜃1) + 𝑢11

⇐⇒ (𝜃1 − 𝜃2) (𝑞(𝜃1) − 𝑞(𝜃2)) ≥ 0,

which contradicts with 𝜃1 < 𝜃2. Hence, 𝑞(𝜃1) ≥ 𝑞(𝜃2) and 𝑞(𝜃 ) is non-decreasing in 𝜃 .

For every 𝜃 ∈ [0, 1], let 𝑈 ∗ (𝜃 ) = 𝑉 ∗
𝜃
(𝐸 (𝜃 )) − 𝑡 (𝜃 ) be the agent’s utility by reporting truthfully

and following the recommendation of the experiment. Let 𝜃 ∗ = sup{𝜃 : 𝑞(𝜃 ) ≤ 𝑢11 −𝑢2𝑚}. Assume

𝑞(𝜃 ∗) ≤ 𝑢11 − 𝑢2𝑚 .
13
When 𝜃 ∈ [0, 𝜃 ∗],𝑈 ∗ (𝜃 ) = 𝜃 · 𝑞(𝜃 ) + 𝑢2𝑚 − 𝑡 (𝜃 ) is a quasilinear function, and

by Myerson’s theory [34],M is responsive-IC implies that𝑈 ∗ (𝜃 ) = 𝑈 ∗ (0) +
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 . Thus

𝑡 (𝜃 ) = 𝑉 ∗
𝜃
(𝐸 (𝜃 )) −𝑈 ∗ (𝜃 ) = 𝜃 · 𝑞(𝜃 ) + 𝑢2𝑚 −𝑈 ∗ (0) −

∫ 𝜃

0

𝑞(𝑥)𝑑𝑥 (9)

13
The other case follows from a similar argument, where we replace both intervals [0, 𝜃 ∗ ], (𝜃∗, 1] by [0, 𝜃 ∗), [𝜃∗, 1].
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Similarly, for all 𝜃 ∈ (𝜃 ∗, 1], we have𝑈 ∗ (𝜃 ) = 𝑈 ∗ (1) −
∫

1

𝜃
𝑞(𝑥)𝑑𝑥 . Hence

𝑡 (𝜃 ) = (𝜃 − 1) · 𝑞(𝜃 ) + 𝑢11 −𝑈 ∗ (1) +
∫

1

𝜃

𝑞(𝑥)𝑑𝑥 (10)

According to Equation (9), when 𝜃 = 0, 𝑡 (0) = 𝑢2𝑚 −𝑈 ∗ (0) ≥ 0. Since M is IR, 𝑈 ∗ (0) ≥ 𝑢2𝑚 .

Thus𝑈 ∗ (0) = 𝑢2𝑚 . Similarly, by Equation (10) we have𝑈 ∗ (1) = 𝑢11.

When the agent has type 𝜃 ∗ and misreports to 𝜃 ′ > 𝜃 ∗, responsive-IC implies that

𝑉 ∗
𝜃 ∗ (𝐸 (𝜃 ′)) − 𝑡 (𝜃 ′) =(𝜃 ∗ − 𝜃 ′) · 𝑞(𝜃 ′) + 𝑢11 −

∫
1

𝜃 ′
𝑞(𝑥)𝑑𝑥

≤𝑈 ∗ (𝜃 ∗) = 𝑢2𝑚 +
∫ 𝜃 ∗

0

𝑞(𝑥)𝑑𝑥

Let 𝜃 ′ → 𝜃 ∗
+
,
14
we have

∫
1

0
𝑞(𝑥)𝑑𝑥 ≥ 𝑢11 −𝑢2𝑚 . Similarly, when the agent has type 𝜃 ′ > 𝜃 ∗ and

misreports to 𝜃 ∗, responsive-IC implies that

𝑉 ∗
𝜃 ′ (𝐸 (𝜃

∗)) − 𝑡 (𝜃 ∗) =(𝜃 ′ − 𝜃 ∗) · 𝑞(𝜃 ∗) + 𝑢2𝑚 +
∫ 𝜃 ∗

0

𝑞(𝑥)𝑑𝑥

≤𝑈 ∗ (𝜃 ′) = 𝑢11 −
∫

1

𝜃 ′
𝑞(𝑥)𝑑𝑥

Let 𝜃 ′ → 𝜃 ∗
+
, we have

∫
1

0
𝑞(𝑥)𝑑𝑥 ≤ 𝑢11 − 𝑢2𝑚 . Thus

∫
1

0
𝑞(𝑥)𝑑𝑥 = 𝑢11 − 𝑢2𝑚 . Now it’s easy to

verify that 𝑡 (𝜃 ) satisfies Equation (4). Thus for every 𝜃 ,𝑈 ∗ (𝜃 ) = 𝑉 ∗
𝜃
(𝐸 (𝜃 )) −𝑡 (𝜃 ) = 𝑢2𝑚 +

∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 .

The third property directly follows from the fact thatM is IR.

For sufficiency, suppose q satisfies all of the properties in the statement, construct the payment t
using Equation (4). Then by Observation 4, for every true type 𝜃 , misreporting to type 𝜃 ′ induces
utility

𝑉 ∗
𝜃
(𝐸 (𝜃 ′)) − 𝑡 (𝜃 ′) = (𝜃 − 𝜃 ′) · 𝑞(𝜃 ′) + 𝑢2𝑚 +

∫ 𝜃 ′

0

𝑞(𝑥)𝑑𝑥

Since 𝑞(𝜃 ′) is non-decreasing, it is not hard to see that the utility is maximized when 𝜃 ′ = 𝜃 .

Thus the mechanism is responsive-IC. Moreover, the utility for reporting truthfully her type 𝜃 is

𝑢2𝑚 +
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 . Thus by property 3, the mechanism is IR.

C.3 Proof of Lemma 6
By Lemma 5, for any q that can be implemented with some responsive-IC and IR mechanismM,

the revenue ofM can be written as follows:

Rev(M) =
∫

1

0

𝑡 (𝜃 ) 𝑓 (𝜃 )𝑑𝜃 =

∫
1

0

(
𝜃 · 𝑞(𝜃 ) + min{𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 ), 0} −

∫ 𝜃

0

𝑞(𝑥)𝑑𝑥
)
𝑓 (𝜃 )𝑑𝜃

=

∫
1

0

[𝜃 𝑓 (𝜃 )𝑞(𝜃 ) + min{(𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 )) 𝑓 (𝜃 ), 0}]𝑑𝜃 −
∫

1

0

∫ 𝜃

0

𝑞(𝑥)𝑑𝑥𝑑𝐹 (𝜃 )

=

∫
1

0

[𝜃 𝑓 (𝜃 )𝑞(𝜃 ) + min{(𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 )) 𝑓 (𝜃 ), 0}]𝑑𝜃 − 𝐹 (𝜃 )
∫ 𝜃

0

𝑞(𝑥)𝑑𝑥
���1
0

+
∫

1

0

𝑞(𝜃 )𝐹 (𝜃 )𝑑𝜃

=

∫
1

0

[(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 ) + min{(𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 )) 𝑓 (𝜃 ), 0}]𝑑𝜃−(𝑢11 − 𝑢2𝑚)

14𝑎 → 𝑏+ means that 𝑎 approaches 𝑏 from the right.
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sup
∫

1

0

[(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 ) + min{(𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 )) 𝑓 (𝜃 ), 0}]𝑑𝜃

s.t. 𝑞(𝜃 ) is non-decreasing in 𝜃 ∈ [0, 1]
𝑞(0) ≥ −𝑢2𝑚, 𝑞(1) ≤ 𝑢11∫

1

0

𝑞(𝜃 )𝑑𝜃 = 𝑢11 − 𝑢2𝑚

𝑢2𝑚 +
∫ 𝜃

0

𝑞(𝑥)𝑑𝑥 ≥ 𝑢 (𝜃 ), ∀𝜃 ∈ [0, 1]

Fig. 6. The Optimization Problem with Explicit IR constraints

Thus the optimal mechanism M∗ ∈ C′
2
is captured by the optimization problem in Figure 6.

Notice that there is an IR constraint for every type 𝜃 in Figure 6. To bound the size of the optimal

responsive-IC and IRmechanism, we propose an equivalent optimization problem that only contains

𝑂 (𝑚) constraints. Recall that for every 𝜃 ∈ [0, 1], 𝑢 (𝜃 ) = max𝑘∈[𝑚]{𝜃 ·𝑢1𝑘 + (1−𝜃 ) ·𝑢2𝑘 }. For every
𝑘 ∈ [𝑚], let ℎ𝑘 (𝜃 ) = 𝜃 · 𝑢1,𝑚+1−𝑘 + (1 − 𝜃 ) · 𝑢2,𝑚+1−𝑘 = 𝜃 · ℓ𝑘 + 𝑢2,𝑚+1−𝑘 ,∀𝜃 ∈ [0, 1] be the agent’s
value function when she has no additional information, and follows action𝑚 + 1 − 𝑘 . Recall that

ℓ𝑘 = 𝑢1,𝑚+1−𝑘 − 𝑢2,𝑚+1−𝑘 is also the slope of the 𝑘-th piece (from the left) of the IR curve.

Given any feasible solution {𝑞(𝜃 )}𝜃 ∈[0,1] of the program in Figure 6, the IR constraint at type 𝜃

is equivalent to: 𝑢2𝑚 +
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 ≥ ℎ𝑘 (𝜃 ),∀𝑘 ∈ [𝑚]. For every 𝑘 ∈ [𝑚], let 𝜃𝑘 := sup{𝜃 ∈ [0, 1] :

𝑞(𝜃 ) ≤ ℓ𝑘 }. Consider the following function

𝑢2𝑚 +
∫ 𝜃

0

𝑞(𝑥)𝑑𝑥 − ℎ𝑘 (𝜃 ) = 𝑢2𝑚 +
∫ 𝜃

0

𝑞(𝑥)𝑑𝑥 − 𝜃 · ℓ𝑘 − 𝑢2,𝑚+1−𝑘

By taking the derivative on 𝜃 , we can see that the above function is minimized at 𝜃𝑘 , as 𝑞(𝜃 ) ≤ ℓ𝑘

for all𝜃 < 𝜃𝑘 and𝑞(𝜃 ) > ℓ𝑘 for all𝜃 > 𝜃𝑘 . Thus the set of constraints

{
𝑢2𝑚 +

∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 ≥ ℎ𝑘 (𝜃 ),∀𝜃 ∈ [0, 1]

}
is captured by a single constraint𝑢2𝑚+

∫ 𝜃𝑘

0
𝑞(𝑥)𝑑𝑥 ≥ ℎ𝑘 (𝜃𝑘 ).We notice that𝜃𝑘 =

∫
1

0
1[𝑞(𝑥) ≤ ℓ𝑘 ]𝑑𝑥 .

By the definition of ℎ𝑘 , the constraint can be rewritten as

∫
1

0

(𝑞(𝑥) − ℓ𝑘 ) · 1[𝑞(𝑥) ≤ ℓ𝑘 ]𝑑𝑥 ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚 (11)

A feasible qmust satisfy that 𝑞(𝜃 ) ∈ [−𝑢2𝑚, 𝑢11] and
∫

1

0
𝑞(𝑥)𝑑𝑥 = 𝑢11−𝑢2𝑚 . Also ℓ1 = −𝑢2𝑚, ℓ𝑚 =

𝑢11. Thus, Inequality (11) is trivial when 𝑘 = 1 or𝑚. In our modified optimization problem, we only

include the constraints for 2 ≤ 𝑘 ≤ 𝑚 − 1.

Proof of Lemma 6:

It suffices to show that: A solution q = {𝑞(𝜃 )}𝜃 ∈[0,1] is feasible in the optimization problem in

Figure 6 if and only if it is feasible in the optimization problem in Figure 3.

We denote 𝑄 the optimization problem in Figure 6 and 𝑄 ′
the optimization problem in Figure 3.

Suppose q is feasible in 𝑄 . For every 𝑘 ∈ [𝑚], let 𝜃𝑘 = sup{𝜃 ∈ [0, 1] : 𝑞(𝜃 ) ≤ ℓ𝑘 }. Then since
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𝜃𝑘 =
∫

1

0
1[𝑞(𝜃 ) ≤ ℓ𝑘 ]𝑑𝑥 , we have∫

1

0

(𝑞(𝑥) − ℓ𝑘 ) · 1[𝑞(𝑥) ≤ ℓ𝑘 ]𝑑𝑥 =

∫ 𝜃𝑘

0

𝑞(𝑥)𝑑𝑥 − 𝜃𝑘 ℓ𝑘

≥ 𝑢 (𝜃𝑘 ) − 𝑢2𝑚 − 𝜃𝑘 ℓ𝑘 ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚

Here the first inequality follows from the IR constraint of program 𝑄 at type 𝜃𝑘 , and the second

inequality follows from the definition of the IR curve 𝑢 (·). Thus q is feasible in 𝑄 ′
.

For the other direction, suppose q is feasible for 𝑄 ′
. For every 𝑘 ∈ [𝑚], consider the following

function 𝐻𝑘 : [0, 1] → R, where 𝐻 (𝜃 ) :=
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 − 𝜃 · ℓ𝑘 . Since 𝑞(𝜃 ) is non-decreasing in 𝜃 ,

𝐻𝑘 (𝜃 ) is minimized at 𝜃 = 𝜃𝑘 = sup{𝜃 ∈ [0, 1] : 𝑞(𝜃 ) ≤ ℓ𝑘 }. We notice that the last constraint of

𝑄 ′
implies that 𝐻𝑘 (𝜃𝑘 ) ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚 for all 𝑘 ∈ {2, 3, ...,𝑚 − 1}. It is not hard to verify that the

inequality also holds for 𝑘 = 1 and 𝑘 =𝑚. When 𝑘 = 1, the inequality is trivial when 𝑞(0) > −𝑢2𝑚 .

If 𝑞(0) = −𝑢2𝑚 , since ℓ1 = −𝑢2𝑚 and 𝑞(𝜃 ) ∈ [−𝑢2𝑚, 𝑢11],∀𝜃 ∈ [0, 1], thus 𝑞(𝜃 ) = −𝑢2𝑚,∀𝜃 ∈ [0, 𝜃1].
Thus 𝐻1 (𝜃1) = 0 = 𝑢2𝑚 −𝑢2𝑚 . When 𝑘 =𝑚, since 𝜃𝑚 = 1 and ℓ𝑚 = 𝑢11, 𝐻𝑚 (𝜃𝑚) = 𝑢11 −𝑢2𝑚 −𝑢11 =

𝑢21 − 𝑢2𝑚 .

Thus for every 𝑘 ∈ [𝑚], 𝜃 ∈ [0, 1], we have∫ 𝜃

0

𝑞(𝑥)𝑑𝑥 − 𝜃 · ℓ𝑘 ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚

Since 𝑢 (𝜃 ) = max𝑘∈[𝑚]{𝜃 · ℓ𝑘 + 𝑢2,𝑚+1−𝑘 }, we have
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 ≥ 𝑢 (𝜃 ) − 𝑢2𝑚 . Thus q is feasible

for 𝑄 . 2

Proof of Theorem 3: By Lemma 7, let M∗
be the optimal semi-informative, responsive-IC and

IR mechanism with option size at most 3𝑚 − 1. By Lemma 4, Rev(M∗) = OPT
∗ ≥ OPT. By

Lemma 3, there exists a menuM that contains only the fully informative experiment, such that

Rev(M) ≥ Rev(M∗)
3𝑚−1

. Thus, FRev ≥ OPT

3𝑚−1
. 2

C.4 Proof of Lemma 7
We first consider the case where 𝐷 is a discrete distribution. For simplicity we assume that 0 ∈
Supp(𝐷). Let Supp(𝐷) = {𝜃1, . . . , 𝜃𝑁 }, where 0 = 𝜃1 < 𝜃2 < . . . < 𝜃𝑁 ≤ 1 and 𝑁 is the size of the

support. For every 𝑖 ∈ 𝑁 , denote 𝑓𝑖 the density of type 𝜃𝑖 . For ease of notations, we denote 𝜃𝑁+1 = 1.

The optimization problem in Figure 3 w.r.t. the discrete distribution 𝐷 is shown in Figure 7.
15
The

set of variables in the program is {𝑞𝑖 }𝑖∈[𝑁 ] . Denote P(𝐷) (or P when 𝐷 is clear from context) the

optimization problem in Figure 7.

Our goal is to turn the program P(𝐷) into a collection of LPs, so that the highest optimum

among the collection of LPs correspond to the optimum of P(𝐷). Each LP is parametrized by a

vector (𝑖∗, i = {𝑖2, . . . , 𝑖𝑚−1}), and finds the optimal solution among all (𝑞1, . . . , 𝑞𝑁 )’s that satisfies
the following conditions:

(1) 𝑞𝑖 ≤ 𝑢11 − 𝑢2𝑚 for all 𝑖 < 𝑖∗ and 𝑞𝑖 ≥ 𝑢11 − 𝑢2𝑚 for all 𝑖 ≥ 𝑖∗.
(2) 𝑞𝑖 ≤ ℓ𝑘 for all 𝑖 < 𝑖𝑘 and 𝑞𝑖 ≥ ℓ𝑘 for all 𝑖 ≥ 𝑖𝑘 for all 𝑘 ∈ {2, . . . ,𝑚 − 1}. Recall that

ℓ𝑘 = 𝑢1,𝑚+1−𝑘 − 𝑢2,𝑚+1−𝑘 .

15
For any solution {𝑞𝑖 }𝑖∈[𝑁 ] , the problem in Figure 7 is clearly equivalent to the problem in Figure 3 where 𝑞 ( ·) : [0, 1] →

[−𝑢2𝑚,𝑢11 ] is defined as 𝑞 (𝜃 ) = 𝑞𝑖 , ∀𝑖 ∈ [𝑁 ], 𝜃 ∈ [𝜃𝑖 , 𝜃𝑖+1) .
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max
𝑁∑
𝑖=1

[
𝑞𝑖 ·

(
𝜃𝑖 · 𝑓𝑖 + (𝜃𝑖+1 − 𝜃𝑖 ) ·

𝑖∑
𝑗=1

𝑓𝑗

)
+ min {(𝑢11 − 𝑢2𝑚 − 𝑞𝑖 ) · 𝑓𝑖 , 0}

]
s.t. (1) 𝑞𝑖 ≤ 𝑞𝑖+1, ∀𝑖 ∈ [𝑁 − 1]

(2) 𝑞1 ≥ −𝑢2𝑚, 𝑞𝑁 ≤ 𝑢11

(3)
𝑁∑
𝑖=1

𝑞𝑖 · (𝜃𝑖+1 − 𝜃𝑖 ) = 𝑢11 − 𝑢2𝑚

(4)
𝑁∑
𝑖=1

min{𝑞𝑖 − ℓ𝑘 , 0} · (𝜃 𝑗+1 − 𝜃 𝑗 ) ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚, ∀𝑘 ∈ {2, 3, ...,𝑚 − 1}

Fig. 7. The Optimal Responsive-IC and IR Mechanism for Discrete Distribution 𝐷

The reason that we consider solutions that satisfy these conditions is that now the objective and

constraint (4) are linear. In particular, the objective becomes

𝑁∑
𝑖=1

𝑞𝑖 ·
(
𝜃𝑖 · 𝑓𝑖 + (𝜃𝑖+1 − 𝜃𝑖 ) ·

𝑖∑
𝑗=1

𝑓𝑖

)
+

𝑁∑
𝑖=𝑖∗+1

(𝑢11 − 𝑢2𝑚 − 𝑞𝑖 ) · 𝑓𝑖 .

Constraint (4) becomes

𝑖𝑘∑
𝑗=1

(𝑞 𝑗 − ℓ𝑘 ) · (𝜃 𝑗+1 − 𝜃 𝑗 ) ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚 .

To further simplify the program, we introduce variables 𝑞𝑖 = 𝑞𝑖+1 − 𝑞𝑖 ,∀𝑖 ∈ [𝑁 − 1], and replace

𝑞𝑖 with 𝑞1 +
∑𝑖−1

𝑗=1
𝑞 𝑗 ,∀𝑖 ∈ [𝑁 ]. The monotonicity constraint of P is thus captured by all 𝑞𝑖 ’s being

non-negative. See Figure 8 for the LP we construct. In particular, constraint (1) corresponds to

constraint (2) of P; Constraint (2) corresponds to constraint (3) of P. Constraints (3) and (4) follow

from the definition of 𝑖∗. Constraints (5) and (6) follow from the definition of 𝑖𝑘 , and (7) corresponds

to constraint (4) of P. In the LP in Figure 8, both 𝑖∗ and i = {𝑖𝑘 }2≤𝑘≤𝑚−1 are fixed parameters. We

denote P ′(𝐷, 𝑖∗, i) the LP with those parameters.

We first show in Lemma 18 that the LP has an optimal solution q̂ = (𝑞1, {𝑞𝑖 }𝑖∈[𝑁−1]) such that

all but (3𝑚 − 1) 𝑞𝑖 ’s are zero, for any discrete distribution 𝐷 and any set of parameters (𝑖∗, i). We

notice that it implies that the corresponding q = {𝑞𝑖 }𝑖∈[𝑁 ] takes at most 3𝑚 − 1 different values,

which then implies that the mechanism contains at most 3𝑚 − 1 different options.

Lemma 18. For any integer 𝑁 and set of parameters (𝑖∗, i) where each parameter is in [𝑁 ], if
P ′(𝐷, 𝑖∗, i) is feasible, then there exists an optimal solution of P ′(𝐷, 𝑖∗, i), denoted as (𝑞∗

1
, {𝑞∗𝑖 }𝑖∈[𝑁−1]),

such that |{𝑖 ∈ [𝑁 − 1] : 𝑞∗𝑖 > 0}| ≤ 3𝑚 − 1.

Proof. The LP contains𝑁 variables (𝑞1 is unconstrained), 1 equality constraint, and 4+3(𝑚−2) =
3𝑚 − 2 inequality constraints. We add slack variables to change the LP into the canonical form

max{𝒄𝑇𝒙 : 𝐴𝒙 = 𝒃, 𝒙 ≥ 0}. In particular, we replace variable 𝑞1 by two non-negative variables

𝑞+
1
, 𝑞−

1
such that 𝑞1 = 𝑞+

1
− 𝑞−

1
. For each inequality constraints, we add one slack variable and make

the constraint an equality.

Now, we have a canonical form LP, with 𝑁 + 3𝑚 − 1 variables, and 3𝑚 − 1 equality constraints.

Thus by the Fundamental Theorem of linear programming, if P ′(𝐷, 𝑖∗, i) is feasible, any basic
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max
𝑁∑
𝑖=1

(𝑞1 +
𝑖−1∑
𝑗=1

𝑞 𝑗 ) · (𝜃𝑖 𝑓𝑖 + (𝜃𝑖+1 − 𝜃𝑖 ) ·
𝑖∑

𝑟=1

𝑓𝑟 ) +
𝑁∑

𝑖=𝑖∗+1

(𝑢11 − 𝑢2𝑚 − 𝑞1 −
𝑖−1∑
𝑗=1

𝑞 𝑗 ) · 𝑓𝑖

s.t. (1) 𝑞1 ≥ −𝑢2𝑚, 𝑞1 +
𝑁−1∑
𝑗=1

𝑞 𝑗 ≤ 𝑢11

(2)
𝑁∑
𝑖=1

(𝑞1 +
𝑖−1∑
𝑗=1

𝑞 𝑗 ) · (𝜃𝑖+1 − 𝜃𝑖 ) = 𝑢11 − 𝑢2𝑚

(3) 𝑞1 +
𝑖∗−1∑
𝑗=1

𝑞 𝑗 ≤ 𝑢11 − 𝑢2𝑚

(4) 𝑞1 +
𝑖∗∑
𝑗=1

𝑞 𝑗 ≥ 𝑢11 − 𝑢2𝑚

(5) 𝑞1 +
𝑖𝑘−1∑
𝑗=1

𝑞 𝑗 ≤ 𝑢1,𝑚+1−𝑘 − 𝑢2,𝑚+1−𝑘 , ∀𝑘 ∈ {2, 3, . . . ,𝑚 − 1}

(6) 𝑞1 +
𝑖𝑘∑
𝑗=1

𝑞 𝑗 ≥ 𝑢1,𝑚+1−𝑘 − 𝑢2,𝑚+1−𝑘 , ∀𝑘 ∈ {2, 3, . . . ,𝑚 − 1}

(7)
𝑖𝑘∑
𝑗=1

(𝑞1 +
𝑗−1∑
𝑟=1

𝑞𝑟 − ℓ𝑘 ) · (𝜃 𝑗+1 − 𝜃 𝑗 ) ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚, ∀𝑘 ∈ {2, 3, . . . ,𝑚 − 1}

𝑞𝑖 ≥ 0, ∀𝑖 ∈ [𝑁 − 1]

Fig. 8. The Linear Program with Parameters (𝑖∗, i)

feasible solution in the canonical-form LP has at most 3𝑚 − 1 non-zero entries. Since there must be

an optimal solution of P ′(𝐷, 𝑖∗, i) that correspond to a basic feasible solution, so it must have at

most 3𝑚 − 1 non-zero entries. □

Proof of Lemma 7: We first prove the case when 𝐷 is a discrete distribution. Let OPT
′
be the

maximum objective, over all parameters (𝑖∗, i), and all feasible solutions of P ′(𝐷, 𝑖∗, i).

Claim 1. For any discrete distribution 𝐷 = ({𝜃𝑖 }𝑖∈[𝑁 ], {𝑓𝑖 }𝑖∈[𝑁 ]), a solution q = {𝑞𝑖 }𝑖∈[𝑁 ] is feasi-
ble for P(𝐷) if and only if there exists parameters (𝑖∗, i) such that the solution q̂ = (𝑞1, {𝑞𝑖 }𝑖∈[𝑁−1])
is feasible for P ′(𝐷, 𝑖∗, i). Here 𝑞𝑖 = 𝑞𝑖+1 − 𝑞𝑖 ,∀𝑖 ∈ [𝑁 − 1]. Moreover, OPT

′ = OPT
∗
.

Proof. Suppose q is feasible for P(𝐷). Let 𝑖∗ = max{𝑖 ∈ [𝑁 ] : 𝑞𝑖 ≤ 𝑢11 − 𝑢2𝑚}. For every
𝑘 ∈ {2, . . . ,𝑚 − 1}, let 𝑖𝑘 = max{𝑖 ∈ [𝑁 ] : 𝑞𝑖 ≤ ℓ𝑘 }. We verify that q̂ satisfies all constraints of

P ′(𝐷, 𝑖∗, i). Constraints (1), (2) follow from constraints (2), (3) of P(𝐷) accordingly. Constraints
(3)-(6) follow from the definition of 𝑖∗ and all 𝑖𝑘 ’s. Constraint (7) follows from the definition of

𝑖𝑘 and (4) of P(𝐷). Moreover, by the definition of 𝑖∗ and the fact that 𝑞𝑖 = 𝑞1 +
∑𝑖−1

𝑗=1
𝑞𝑖 ,∀𝑖 ∈ [𝑁 ],

the objective of solution q in P(𝐷) is equal to the objective of solution 𝑞1 and q̂ in P ′(𝐷, 𝑖∗, i).
Choosing q as the optimal solution for P(𝐷) implies that OPT

∗ ≤ OPT
′
.

On the other hand, suppose q̂ is feasible for P ′(𝐷, 𝑖∗, i) for some parameters (𝑖∗, i). For every
𝑖 ∈ {2, . . . , 𝑁 }, define 𝑞𝑖 = 𝑞1 +

∑𝑖−1

𝑗=1
𝑞𝑖 . We verify that q is feasible for P(𝐷). Constraint (1) holds

as all 𝑞𝑖 ’s are non-negative; Constraints (2) and (3) follow from constraints (1) and (2) of P ′(𝐷, 𝑖∗, i)
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accordingly; Constraint (4) follows from constraints (5)-(7) of P ′(𝐷, 𝑖∗, i). Similarly, according to

constraints (3) and (4) of P ′(𝐷, 𝑖∗, i) and the fact that 𝑞𝑖 = 𝑞1 +
∑𝑖−1

𝑗=1
𝑞𝑖 ,∀𝑖 ∈ [𝑁 ], the objective of

solution q̂ in 𝑃 ′(𝐷, 𝑖∗, i) is equivalent to the objective of solution q in P(𝐷). Thus by choosing q̂ as

the optimal solution among all parameters (𝑖∗, i) and all feasible solutions of P ′(𝐷, 𝑖∗, i), we have
OPT

′ ≤ OPT
∗
. Hence, OPT

′ = OPT
∗
. □

By Lemma 18 and the definition of OPT
′
, there exist a set of parameters (𝑖∗, i) as well as a feasible

solution q̂ of P ′(𝐷, 𝑖∗, i) such that: (i) the solution q̂ achieves objective OPT
′
in the program

P ′(𝐷, 𝑖∗, i); (ii) |{𝑖 ∈ [𝑁 − 1] : 𝑞∗𝑖 > 0}| ≤ 3𝑚 − 1. By Claim 1 and property (i), the corresponding q
is the optimal solution of P(𝐷). By property (ii), there are at most 3𝑚 − 1 different values among

{𝑞𝑖 }𝑖∈[𝑁 ] . LetM = {(𝑞𝑖 , 𝑡𝑖 )}𝑖∈[𝑁 ] ∈ C′
2
be the responsive-IC and IR mechanism that implements

q. According to Equation (4) and the fact that 𝑞𝑖 ≤ 𝑞𝑖+1,∀𝑖 ∈ [𝑁 − 1], 𝑡𝑖 = 𝑡 𝑗 for all 𝑖, 𝑗 such that

𝑞𝑖 = 𝑞 𝑗 . ThusM has option size at most 3𝑚 − 1.

Next we prove the case for continuous distributions.

We consider a discretization of the continuous interval [0, 1]. Let 𝑁 ≥ 2 be any integer and

𝜀 = 1

𝑁
. We consider the discretized space {0, 𝜀, 2𝜀, ..., (𝑁 − 1)𝜀}. We denote by 𝐷 (𝑁 )

the discretized

distribution of 𝐷 , and {𝑓 (𝑁 )
𝑖

}𝑖∈[𝑁 ] , {𝐹 (𝑁 )
𝑖

}𝑖∈[𝑁 ] the pdf and cdf of 𝐷 (𝑁 )
. Formally, 𝐹

(𝑁 )
𝑖

= 𝐹 (𝑖𝜀),
and 𝑓

(𝑁 )
𝑖

= 𝐹 (𝑖𝜀) − 𝐹 ((𝑖 − 1)𝜀), ∀𝑖 ∈ [𝑁 ].
Denote S = {q : [0, 1] → [−𝑢2𝑚, 𝑢11] : 𝑞(·) is non-decreasing}. For every 𝑁 and every q ∈ S,

denote ℎ𝑁 (q) the objective of the program in Figure 7 under solution {𝑞((𝑖 − 1)𝜀)}𝑖∈[𝑁 ] , with
respect to the distribution 𝐷 (𝑁 )

. Formally,

ℎ𝑁 (q) =
𝑁∑
𝑖=1

[
𝑞((𝑖 − 1)𝜀) · ((𝑖 − 1)𝜀 · 𝑓 (𝑁 )

𝑖
+ 𝜀 · 𝐹 (𝑁 )

𝑖
) + min{(𝑢11 − 𝑢2𝑚 − 𝑞((𝑖 − 1)𝜀)) · 𝑓 (𝑁 )

𝑖
, 0}

]
For every q ∈ S, denote ℎ(q) the objective of the program in Figure 3 under solution q, with

respect to the continuous distribution 𝐷 , i.e.,

ℎ(q) =
∫

1

0

[(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 ) + min{(𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 )) 𝑓 (𝜃 ), 0}]𝑑𝜃

Claim 2. ℎ𝑁 (·) uniformly converges to ℎ(·) on S, i.e., for every 𝛿 > 0 there exists 𝑁0 ∈ N such

that |ℎ𝑁 (q) − ℎ(q) | < 𝛿,∀𝑁 ≥ 𝑁0, q ∈ S.

Proof. Fix any 𝛿 > 0. Fix any q ∈ S. Consider the term

𝐴
(𝑁 )
1

(q) =
𝑁∑
𝑖=1

[
𝑞((𝑖 − 1)𝜀) · ((𝑖 − 1)𝜀 · 𝑓 (𝑁 )

𝑖
+ 𝜀 · 𝐹 (𝑁 )

𝑖
)
]
−

∫
1

0

(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 )𝑑𝜃

=

𝑁∑
𝑖=1

[
𝑞((𝑖 − 1)𝜀) · (𝑖𝜀 · 𝐹 (𝑖𝜀) − (𝑖 − 1)𝜀 · 𝐹 ((𝑖 − 1)𝜀)) −

∫ 𝑖𝜀

(𝑖−1)𝜀
(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 )𝑑𝜃

]
Here the second equality follows from the definition of 𝑓

(𝑁 )
𝑖

, 𝐹
(𝑁 )
𝑖

. For every 𝑖 ∈ [𝑁 ], since 𝑞(·)
is non-decreasing,∫ 𝑖𝜀

(𝑖−1)𝜀
(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 )𝑑𝜃 ≥ 𝑞((𝑖 − 1)𝜀) · (𝜃𝐹 (𝜃 ))

����𝑖𝜀
𝜃=(𝑖−1)𝜀

= 𝑞((𝑖 − 1)𝜀) · (𝑖𝜀 · 𝐹 (𝑖𝜀) − (𝑖 − 1)𝜀 · 𝐹 ((𝑖 − 1)𝜀))

 
Session 5D: Mechanism Design II ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

639



Thus 𝐴
(𝑁 )
1

(q) ≤ 0. On the other hand, for every 𝑖 ∈ [𝑁 ], similarly we have∫ 𝑖𝜀

(𝑖−1)𝜀
(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞(𝜃 )𝑑𝜃 ≤ 𝑞(𝑖𝜀) · (𝑖𝜀 · 𝐹 (𝑖𝜀) − (𝑖 − 1)𝜀 · 𝐹 ((𝑖 − 1)𝜀))

Thus

𝐴
(𝑁 )
1

(q) ≥
𝑁∑
𝑖=1

(𝑞((𝑖 − 1)𝜀) − 𝑞(𝑖𝜀)) · (𝑖𝜀 · 𝐹 (𝑖𝜀) − (𝑖 − 1)𝜀 · 𝐹 ((𝑖 − 1)𝜀))

≥ max

𝑖∈[𝑁 ]
{𝑖𝜀 · 𝐹 (𝑖𝜀) − (𝑖 − 1)𝜀 · 𝐹 ((𝑖 − 1)𝜀)} · (𝑞(0) − 𝑞(1))

≥ −2𝑢11 · max

𝑖∈[𝑁 ]
{𝑖𝜀 · 𝐹 (𝑖𝜀) − (𝑖 − 1)𝜀 · 𝐹 ((𝑖 − 1)𝜀)}

Here the last inequality follows from 𝑞(0) ≥ −𝑢2𝑚 ≥ −𝑢11 and 𝑞(1) ≤ 𝑢11. Since 𝐹 is continuous

on the closed interval [0, 1], the function 𝜃 · 𝐹 (𝜃 ) is continuous on [0, 1] and thus it is uniformly

continuous. Hence there exists 𝑁1 ∈ N such that max𝑖∈[𝑁 ]{𝑖𝜀 · 𝐹 (𝑖𝜀) − (𝑖 − 1)𝜀 · 𝐹 ((𝑖 − 1)𝜀)} <
𝛿

4𝑢11

,∀𝑁 ≥ 𝑁1. Thus 𝐴
(𝑁 )
1

(q) > −𝛿
2
.

Now consider the other term

𝐴
(𝑁 )
2

(q) =
𝑁∑
𝑖=1

min{(𝑢11 − 𝑢2𝑚 − 𝑞((𝑖 − 1)𝜀)) · 𝑓 (𝑁 )
𝑖

, 0} −
∫

1

0

min{(𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 )) 𝑓 (𝜃 ), 0}𝑑𝜃

=

𝑁∑
𝑖=1

[
𝑓
(𝑁 )
𝑖

· min{𝑞((𝑖 − 1)𝜀), 0} −
∫ 𝑖𝜀

(𝑖−1)𝜀
min{𝑞(𝜃 ), 0}𝑓 (𝜃 )𝑑𝜃

]
,

where 𝑞(𝜃 ) = 𝑢11 − 𝑢2𝑚 − 𝑞(𝜃 ) ∈ [−𝑢2𝑚, 𝑢11] is non-increasing on 𝜃 . For every 𝑖 ∈ [𝑁 ], we denote
𝑇𝑖 the 𝑖-th term in the sum. Let 𝜃 ∗ = sup{𝜃 ∈ [0, 1] : 𝑞(𝜃 ) ≤ 0} and 𝑖∗ = max{𝑖 ∈ [𝑁 ] : (𝑖 − 1)𝜀 ≤
𝜃 ∗ < 𝑖𝜀}.

When 𝑖 < 𝑖∗, since 𝑞(·) is non-increasing and 𝑓
(𝑁 )
𝑖

= 𝐹 (𝑖𝜀) − 𝐹 ((𝑖 − 1)𝜀),

𝑇𝑖 ≥ 𝑓
(𝑁 )
𝑖

· 𝑞((𝑖 − 1)𝜀) − 𝑞((𝑖 − 1)𝜀) ·
∫ 𝑖𝜀

(𝑖−1)𝜀
𝑓 (𝜃 )𝑑𝜃 = 0

𝑇𝑖 ≤ 𝑓
(𝑁 )
𝑖

· [𝑞((𝑖 − 1)𝜀) − 𝑞(𝑖𝜀)]
When 𝑖 > 𝑖∗. Clearly 𝑇𝑖 = 0. When 𝑖 = 𝑖∗,

|𝑇𝑖∗ | =
�����𝑓 (𝑁 )
𝑖∗ · 𝑞((𝑖∗ − 1)𝜀) −

∫ 𝜃 ∗

(𝑖∗−1)𝜀
𝑞(𝜃 ) 𝑓 (𝜃 )𝑑𝜃

����� ≤ 2𝑢11 · 𝑓 (𝑁 )
𝑖∗ ,

where the inequality follows from the fact that |𝑞(𝜃 ) | ≤ max{𝑢11, 𝑢2𝑚} = 𝑢11,∀𝜃 ∈ [0, 1] and that

𝐹 (𝜃 ∗) − 𝐹 ((𝑖∗ − 1)𝜀) ≤ 𝑓
(𝑁 )
𝑖∗ . Thus

|𝐴 (𝑁 )
2

(q) | ≤
�����𝑖∗−1∑
𝑖=1

𝑇𝑖

����� + |𝑇𝑖∗ | ≤
�����𝑖∗−1∑
𝑖=1

𝑓
(𝑁 )
𝑖

· [𝑞((𝑖 − 1)𝜀) − 𝑞(𝑖𝜀)]
����� + 2𝑢11 · 𝑓 (𝑁 )

𝑖∗

≤ (|𝑞((𝑖 − 1)𝜀) − 𝑞(0) | + 2𝑢11) · max

𝑖∈[𝑁 ]
𝑓
(𝑁 )
𝑖

≤ 4𝑢11 · max

𝑖∈[𝑁 ]
𝑓
(𝑁 )
𝑖

Since 𝐹 (·) is uniformly continuous on [0, 1], there exists𝑁2 ∈ N such thatmax𝑖 𝑓
(𝑁 )
𝑖

= max𝑖 (𝐹 (𝑖𝜀)−
𝐹 ((𝑖 − 1)𝜀)) < 𝛿

8𝑢11

,∀𝑁 ≥ 𝑁2. Thus |𝐴 (𝑁 )
2

(q) | < 𝛿
2
.
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Combining everything together, for every 𝑁 ≥ 𝑁0 = max{𝑁1, 𝑁2}, for every q ∈ S, we have

|ℎ𝑁 (q) − ℎ(q) | = |𝐴 (𝑁 )
1

(q) +𝐴
(𝑁 )
2

(q) | < 𝛿

2

+ 𝛿

2

= 𝛿

Thus ℎ𝑁 (·) uniformly converges to ℎ(·) on S. □

Back to the proof of Lemma 7. Denote P𝑐𝑜𝑛𝑡 the program in Figure 3 and OPT
∗
the supremum of

the objective over all feasible solutions of P𝑐𝑜𝑛𝑡 . We first argue that there exists a feasible solution

q∗ whose objective ℎ(q∗) equals to OPT
∗
.

Claim 3. There exists a feasible solution q∗ to P𝑐𝑜𝑛𝑡 , whose objective ℎ(q∗) equals to OPT∗.
Proof. Let {q∗ℓ }ℓ∈N+ be a sequence of feasible solutions such that limℓ→∞ ℎ(q∗ℓ ) = OPT

∗
. We

notice that for every ℓ , the feasible solution q∗ℓ (·) is a non-decreasing function mapping [0, 1] to
a bounded interval [−𝑢2𝑚, 𝑢11]. Thus {q∗ℓ }ℓ∈N+ is a sequence of non-decreasing functions and it’s

uniformly-bounded. By Helly’s selection theorem (see for instance [2, 6]), there exists a subsequence

{q∗ℓ𝑖 }𝑖∈N+ and a function q∗ : [0, 1] → [−𝑢2𝑚, 𝑢11] such that {q∗ℓ𝑖 }𝑖 pointwisely converges to q∗.
For every 𝜃 ∈ [0, 1] and 𝑞 ∈ [−𝑢2𝑚, 𝑢11], define

𝐺 (𝜃, 𝑞) = (𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑞 + min{(𝑢11 − 𝑢2𝑚 − 𝑞) 𝑓 (𝜃 ), 0} (12)

For every 𝜃 ∈ [0, 1], 𝑖 ∈ N+, define 𝑔𝑖 (𝜃 ) = 𝐺 (𝜃, 𝑞∗ℓ𝑖 (𝜃 )) and 𝑔(𝜃 ) = 𝐺 (𝜃, 𝑞∗ (𝜃 )). Then since

𝐺 (𝜃, 𝑞) is continuous on 𝑞 for every 𝜃 , {𝑔𝑖 }𝑖∈N+ pointwisely converges to 𝑔. Moreover, define

𝑔(𝜃 ) = 𝑢11 · (𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ) + 𝑓 (𝜃 )) ≥ 0,∀𝜃 ∈ [0, 1]. Then 𝑔(·) is integrable in [0, 1]. And for every 𝑖

and 𝜃 , since 𝑞∗ℓ𝑖 (𝜃 ) ∈ [−𝑢2𝑚, 𝑢11] and 𝑢11 ≥ 𝑢2𝑚 , we have |𝑔𝑖 (𝜃 ) | ≤ 𝑔(𝜃 ). Thus by the dominated

convergence theorem,

OPT
∗ = lim

𝑖→∞
ℎ(q∗ℓ𝑖 ) = lim

𝑖→∞

∫
1

0

𝑔𝑖 (𝜃 )𝑑𝜃 =

∫
1

0

( lim

𝑖→∞
𝑔𝑖 (𝜃 ))𝑑𝜃 =

∫
1

0

𝑔(𝜃 )𝑑𝜃 = ℎ(q∗)

It remains to verify that q∗ is a feasible solution to P𝑐𝑜𝑛𝑡 . Since {q∗ℓ𝑖 }𝑖 is a sequence of feasible
solutions, all constraints in P𝑐𝑜𝑛𝑡 hold for q∗ℓ𝑖 . For every inequality, we take the limit 𝑖 → ∞ on both

sides. Constraints (1), (2) hold for q∗ since {q∗ℓ𝑖 }𝑖 pointwisely converges to q
∗
. In order for constraints

(3) and (4) to hold for q∗, it’s sufficient to argue that we can swap the limit and integral for both

inequalities. This is because for every 𝑖 and 𝜃 , we have |𝑞∗ℓ𝑖 (𝜃 ) | ≤ 𝑢11 and | (𝑞∗ℓ𝑖 (𝜃 ) − ℓ𝑘 ) · 1[𝑞∗ℓ𝑖 (𝜃 ) ≤
ℓ𝑘 ] | ≤ |𝑞∗ℓ𝑖 (𝜃 ) | + |ℓ𝑘 | ≤ 2𝑢11 (recall that |ℓ𝑘 | = |𝑢1,𝑚+1−𝑘 −𝑢2,𝑚+1−𝑘 | ≤ max{𝑢11, 𝑢2𝑚} = 𝑢11). Thus by

the dominated convergence theorem, constraints (3) and (4) both hold for q∗. Thus q∗ is feasible
for P𝑐𝑜𝑛𝑡 . □

For every 𝑁 ≥ 2, denote OPT𝑁 the optimum of P(𝐷 (𝑁 ) ), the program in Figure 7 with respect

to the distribution 𝐷 (𝑁 )
. By Lemma 18 and Claim 1, there exists a set of parameters (𝑖∗, i) and

a feasible solution (𝑞 (𝑁 )
1

, {𝑞 (𝑁 )
𝑖

}𝑖∈[𝑁−1]) to P ′(𝐷 (𝑁 ) , 𝑖∗, i) such that: (i) the solution has objective

exactly OPT𝑁 , and (ii) |{𝑖 ∈ [𝑁 − 1] : 𝑞∗𝑖 > 0}| ≤ 3𝑚 − 1. For every 𝑖 ∈ {2, . . . , 𝑁 }, let 𝑞 (𝑁 )
𝑖

= 𝑞
(𝑁 )
1

+∑𝑖−1

𝑗=1
𝑞
(𝑁 )
𝑗

. Define q(𝑁 )
: [0, 1] → [−𝑢2𝑚, 𝑢11] as follows: 𝑞 (𝑁 ) (𝜃 ) = 𝑞

(𝑁 )
𝑖

,∀𝑖 ∈ [𝑁 ], 𝜃 ∈ [(𝑖−1)𝜀, 𝑖𝜀),
and 𝑞 (𝑁 ) (1) = 𝑞

(𝑁 )
𝑁

. By Claim 1, {𝑞 (𝑁 ) ((𝑖 − 1)𝜀)}𝑖∈[𝑁 ] is a feasible solution to program P(𝐷 (𝑁 ) ).
Moreover, ℎ𝑁 (q(𝑁 ) ) = OPT𝑁 .

For every 𝑖 ∈ [𝑁 ], by Claim 1, {𝑞 (𝑁 )
𝑖

}𝑖∈[𝑁 ] is a feasible solution to P(𝐷 (𝑁 ) ). By the definition

of q(𝑁 )
, it’s not hard to verify that q(𝑁 )

is a feasible solution to P𝑐𝑜𝑛𝑡 . By property (ii), Im(q) =
{𝑞(𝜃 ) : 𝜃 ∈ [0, 1]}, the image of q(·), has size at most 3𝑚 − 1. Let 𝑛 = 3𝑚 − 1 and S′ ⊆ S be the

set of all feasible solutions q to P𝑐𝑜𝑛𝑡 such that |Im(q) | ≤ 𝑛. We notice that there is a mapping

Φ from every q ∈ S′
to a set of (2𝑛 − 1) real numbers 𝜉 = ({𝜃𝑖 }𝑖∈[𝑛−1], {𝑞𝑖 }𝑖∈[𝑛]) such that

𝑞(𝜃 ) = 𝑞𝑖 ,∀𝑖 ∈ [𝑛], 𝜃 ∈ [𝜃𝑖−1, 𝜃𝑖 ) and 𝑞(1) = 𝑞𝑛 . Here 𝜃0 = 0, 𝜃𝑛 = 1.
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Let T be the set of 𝜉 ’s that satisfy all of the following properties:

(1) 0 ≤ 𝜃1 ≤ . . . ≤ 𝜃𝑛−1 ≤ 1.

(2) −𝑢2𝑚 ≤ 𝑞1 ≤ . . . ≤ 𝑞𝑛 ≤ 𝑢11.

(3)

∑𝑛
𝑖=1

(𝜃𝑖 − 𝜃𝑖−1) · 𝑞𝑖 = 𝑢11 − 𝑢2𝑚 .

(4)

∑𝑛
𝑖=1

(𝜃𝑖 − 𝜃𝑖−1) · (𝑞𝑖 − ℓ𝑘 ) · 1[𝑞𝑖 ≤ ℓ𝑘 ] ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚,∀𝑘 ∈ {2, 3, . . . ,𝑚 − 1}.
Then it’s not hard to verify that Φ is an 1-1 mapping from S′

to T . Denote Φ−1
the inverse of

Φ. Moreover, since every constraint above is either equality or non-strict inequality among the

sum and product of numbers ({𝜃𝑖 }𝑖∈[𝑛−1], {𝑞𝑖 }𝑖∈[𝑛]), thus T is a closed subset of R2𝑛−1
. Thus T is

a compact space under the 𝐿∞-norm. Therefore, the sequence {Φ(q(𝑁 ) )}𝑁 contains a subsequence

{Φ(q(𝑁ℓ ) )}ℓ∈N+ that converges to some 𝜉 ′ ∈ T . Let q′ = Φ−1 (𝜉 ′) ∈ S′
.

Claim 4. limℓ→∞ ℎ𝑁ℓ
(q(𝑁ℓ ) ) = ℎ(q′).

Proof. Fix any 𝛿 > 0. Since both functions 𝜃𝐹 (𝜃 ) and 𝐹 (𝜃 ) are continuous, there exists some

𝜂 (𝛿) ∈ (0, 𝛿
8𝑛
) such that |𝜃𝐹 (𝜃 ) − 𝜃 ′𝐹 (𝜃 ′) | < 𝛿

16𝑛 ·𝑢11

and |𝐹 (𝜃 ) − 𝐹 (𝜃 ′) | < 𝛿
16𝑛 ·𝑢11

for any 𝜃 and 𝜃 ′

with |𝜃 − 𝜃 ′ | < 𝜂 (𝛿).
Since {Φ(q(𝑁ℓ ) )}ℓ∈N+ converges to Φ(q′), then there exists ℓ1 such that for every ℓ ≥ ℓ1,

| |Φ(q(𝑁ℓ ) )−Φ(q′) | |∞ < 𝜂 (𝛿). DenoteΦ(q(𝑁ℓ ) ) = ({𝜃 ℓ𝑖 }𝑖∈[𝑛−1], {𝑞ℓ𝑖 }𝑖∈[𝑛]) andΦ(q′) = ({𝜃 ′𝑖 }𝑖∈[𝑛−1], {𝑞′𝑖 }𝑖∈[𝑛]).
Let 𝜃 ℓ

0
= 𝜃 ′

0
= 0 and 𝜃 ℓ𝑛 = 𝜃 ′𝑛 = 1. We are going to bound |ℎ(q(𝑁ℓ ) ) − ℎ(q′) |. We notice that

ℎ(q(𝑁ℓ ) ) =
𝑛∑
𝑖=1

[
𝑞ℓ𝑖 ·

∫ 𝜃 ℓ
𝑖

𝜃 ℓ
𝑖−1

(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ))𝑑𝜃 + (𝐹 (𝜃 ℓ𝑖 ) − 𝐹 (𝜃 ℓ𝑖−1
)) · min{𝑢11 − 𝑢2𝑚 − 𝑞ℓ𝑖 , 0}

]
=

𝑛∑
𝑖=1

[
𝑞ℓ𝑖 · (𝜃 ℓ𝑖 𝐹 (𝜃 ℓ𝑖 ) − 𝜃 ℓ𝑖−1

𝐹 (𝜃 ℓ𝑖−1
)) + (𝐹 (𝜃 ℓ𝑖 ) − 𝐹 (𝜃 ℓ𝑖−1

)) · min{𝑢11 − 𝑢2𝑚 − 𝑞ℓ𝑖 , 0}
]

Similarly,

ℎ(q′) =
𝑛∑
𝑖=1

[
𝑞′𝑖 · (𝜃 ′𝑖 𝐹 (𝜃 ′𝑖 ) − 𝜃 ′𝑖−1

𝐹 (𝜃 ′𝑖−1
)) + (𝐹 (𝜃 ′𝑖 ) − 𝐹 (𝜃 ′𝑖−1

)) · min{𝑢11 − 𝑢2𝑚 − 𝑞′𝑖 , 0}
]

Since |𝜃 ℓ𝑖 − 𝜃 ′𝑖 | < 𝜂 (𝛿),∀𝑖 ∈ [𝑛 − 1], then for every 𝑖 ∈ [𝑛], | (𝜃 ℓ𝑖 𝐹 (𝜃 ℓ𝑖 ) − 𝜃 ℓ𝑖−1
𝐹 (𝜃 ℓ𝑖−1

)) − (𝜃 ′𝑖 𝐹 (𝜃 ′𝑖 ) −
𝜃 ′𝑖−1

𝐹 (𝜃 ′𝑖−1
)) | < 2 · 𝛿

16𝑛 ·𝑢11

, and | (𝐹 (𝜃 ℓ𝑖 ) − 𝐹 (𝜃 ℓ𝑖−1
)) − (𝐹 (𝜃 ′𝑖 ) − 𝐹 (𝜃 ′𝑖−1

)) | < 2 · 𝛿
16𝑛 ·𝑢11

.

Since | |Φ(q(𝑁ℓ ) ) − Φ(q′) | |∞ < 𝜂 (𝛿) < 𝛿
8𝑛
, we have

| min{𝑢11 − 𝑢2𝑚 − 𝑞ℓ𝑖 , 0} − min{𝑢11 − 𝑢2𝑚 − 𝑞′𝑖 , 0}| ≤ |𝑞ℓ𝑖 − 𝑞′𝑖 | <
𝛿

8𝑛

Moreover, |𝑞ℓ𝑖 | ≤ 𝑢11, | min{𝑢11 − 𝑢2𝑚 − 𝑞ℓ𝑖 , 0}| ≤ 𝑢11 and 𝜃
′
𝑖 𝐹 (𝜃 ′𝑖 ) − 𝜃 ′𝑖−1

𝐹 (𝜃 ′𝑖−1
) ∈ [0, 1], 𝐹 (𝜃 ′𝑖 ) −

𝐹 (𝜃 ′𝑖−1
) ∈ [0, 1]. Using the inequality |𝑎𝑏 − 𝑐𝑑 | ≤ |𝑎 | · |𝑏 −𝑑 | + |𝑑 | · |𝑎 − 𝑐 | for every 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, we

have for every ℓ ≥ ℓ1,

|ℎ(q(𝑁ℓ ) ) − ℎ(q′) | ≤
𝑛∑
𝑖=1

2 · (𝑢11 ·
𝛿

8𝑛 · 𝑢11

+ 1 · 𝛿

8𝑛
) < 𝛿

2

Moreover, by Claim 2, there exists ℓ2 such that for every ℓ ≥ ℓ2, |ℎ𝑁ℓ
(q(𝑁ℓ ) ) −ℎ(q(𝑁ℓ ) ) | < 𝛿

2
. Thus

when ℓ ≥ max{ℓ1, ℓ2}, we have |ℎ𝑁ℓ
(q(𝑁ℓ ) ) −ℎ(q′) | ≤ |ℎ(q(𝑁ℓ ) ) −ℎ(q′) | + |ℎ𝑁ℓ

(q(𝑁ℓ ) ) −ℎ(q(𝑁ℓ ) ) | <
𝛿 . □

We prove ℎ(q′) ≥ OPT
∗
. For every 𝑁 , we construct a feasible solution of P(𝐷 (𝑁 ) ). For every

𝑖 ∈ [𝑁 ], let 𝑝 (𝑁 )
𝑖

= 1

𝜀
·
∫ 𝑖𝜀

(𝑖−1)𝜀 𝑞
∗ (𝜃 )𝑑𝜃 (see Claim 3 for the definition of q∗).We verify that {𝑝 (𝑁 )

𝑖
}𝑖∈[𝑁 ]

is a feasible solution to P(𝐷 (𝑁 ) ). Constraint (1) follows from 𝑞∗ (·) being non-decreasing. For
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constraint (2), since 𝑞∗ (·) is non-decreasing, 𝑝 (𝑁 )
1

≥ 1

𝜀
·
∫ 𝜀

0
𝑞∗ (0)𝑑𝜃 = 𝑞∗ (0) ≥ −𝑢2𝑚 . Similarly

𝑝
(𝑁 )
𝑁

≤ 𝑞∗ (1) ≤ 𝑢11. For constraint (3), we have

𝜀 ·
𝑁∑
𝑖=1

𝑝
(𝑁 )
𝑖

=

𝑁∑
𝑖=1

∫ 𝑖𝜀

(𝑖−1)𝜀
𝑞∗ (𝜃 )𝑑𝜃 =

∫
1

0

𝑞∗ (𝜃 )𝑑𝜃 = 𝑢11 − 𝑢2𝑚

For constraint (4), for every 𝑘 ∈ {2, . . . ,𝑚 − 1}. Let 𝜃𝑘 = sup{𝜃 ∈ [0, 1] : 𝑞∗ (𝜃 ) ≤ ℓ𝑘 } and let 𝑖∗ be
the unique number such that (𝑖∗ − 1)𝜀 ≤ 𝜃𝑘 < 𝑖∗𝜀. Then 𝑝

(𝑁 )
𝑖

≤ ℓ𝑘 ,∀𝑖 < 𝑖∗ and 𝑝
(𝑁 )
𝑖

> ℓ𝑘 ,∀𝑖 > 𝑖∗.
We have

𝜀 ·
𝑁∑
𝑖=1

min{𝑝 (𝑁 )
𝑖

− ℓ𝑘 , 0} =
𝑖∗−1∑
𝑖=1

(∫ 𝑖𝜀

(𝑖−1)𝜀
𝑞∗ (𝜃 )𝑑𝜃 − 𝜀ℓ𝑘

)
+ 𝜀 · min{𝑝 (𝑁 )

𝑖∗ − ℓ𝑘 , 0}

=

∫ (𝑖∗−1)𝜀

0

(𝑞∗ (𝜃 ) − ℓ𝑘 )𝑑𝜃 + 𝜀 · min{𝑝 (𝑁 )
𝑖∗ − ℓ𝑘 , 0}

≥
∫ (𝑖∗−1)𝜀

0

(𝑞∗ (𝜃 ) − ℓ𝑘 )𝑑𝜃 +
∫ 𝜃𝑘

(𝑖∗−1)𝜀
(𝑞∗ (𝜃 ) − ℓ𝑘 )𝑑𝜃

=

∫
1

0

(𝑞∗ (𝜃 ) − ℓ𝑘 )1[𝑞∗ (𝜃 ) ≤ ℓ𝑘 ]𝑑𝜃 ≥ 𝑢2,𝑚+1−𝑘 − 𝑢2𝑚

(13)

The first inequality of Equation (13) is because: By the definition of 𝜃𝑘 ,
∫ 𝑖∗𝜀

𝜃𝑘
(𝑞∗ (𝜃 ) − ℓ𝑘 )𝑑𝜃 ≥ 0.

Thus

𝜀 · min{𝑝 (𝑁 )
𝑖∗ − ℓ𝑘 , 0} ≥ 𝜀 · (𝑝 (𝑁 )

𝑖∗ − ℓ𝑘 ) =
∫ 𝑖∗𝜀

(𝑖∗−1)𝜀
(𝑞∗ (𝜃 ) − ℓ𝑘 )𝑑𝜃 ≥

∫ 𝜃𝑘

(𝑖∗−1)𝜀
(𝑞∗ (𝜃 ) − ℓ𝑘 )𝑑𝜃

The third equality of Equation (13) follows from the definition of 𝜃𝑘 . The last inequality follows from

that q∗ is a feasible solution to P𝑐𝑜𝑛𝑡 . Thus {𝑝 (𝑁 )
𝑖

}𝑖∈[𝑁 ] is a feasible solution to P(𝐷 (𝑁 ) ). Define
p(𝑁 )

: [0, 1] → [−𝑢2𝑚, 𝑢11] as follows: 𝑝 (𝑁 ) (𝜃 ) = 𝑝
(𝑁 )
𝑖

,∀𝑖 ∈ [𝑁 ], 𝜃 ∈ [(𝑖 − 1)𝜀, 𝑖𝜀), and 𝑝 (𝑁 ) (1) =
𝑝
(𝑁 )
𝑁

. Then ℎ𝑁 (p(𝑁 ) ) is exactly the objective of {𝑝 (𝑁 )
𝑖

}𝑖∈[𝑁 ] with respect to the program P(𝐷 (𝑁 ) ).
By the optimality of q(𝑁 )

, ℎ𝑁 (p(𝑁 ) ) ≤ ℎ𝑁 (q(𝑁 ) ). Thus ∀ℓ ∈ N+, ℎ𝑁ℓ
(p(𝑁ℓ ) ) ≤ ℎ𝑁ℓ

(q(𝑁ℓ ) ).
We will argue that ℎ𝑁ℓ

(p(𝑁ℓ ) ) converges to OPT
∗
as ℓ → ∞. If this is true, then by taking the

limit on both sides of the above inequality, we have thatOPT
∗ ≤ limℓ→∞ ℎ𝑁ℓ

(q(𝑁ℓ ) ) = ℎ(q′), where
the equality follows from Claim 4.

Since 𝑞∗ (·) is non-decreasing, for every 𝑖 ∈ [𝑁 ] and 𝜃 ∈ [(𝑖 − 1)𝜀, 𝑖𝜀), we have

|𝑝 (𝑁 ) (𝜃 ) − 𝑞∗ (𝜃 ) | = |𝑝 (𝑁 )
𝑖

− 𝑞∗ (𝜃 ) | ≤ 𝑞∗ (𝑖𝜀) − 𝑞∗ ((𝑖 − 1)𝜀).

Thus if 𝑞∗ (·) is continuous at 𝜃 , then lim𝑁→∞ |𝑝 (𝑁 ) (𝜃 ) − 𝑞∗ (𝜃 ) | = 0. Moreover, since 𝑞∗ (·) is a
monotone function in a closed interval [0, 1], the set of non-continuous points has zero measure.

Thus lim𝑁→∞ 𝑝 (𝑁 ) (𝜃 ) = 𝑞∗ (𝜃 ) almost everywhere.

Similar to the proof of Claim 3, we have

lim

ℓ→∞
ℎ(p(𝑁ℓ ) ) = lim

ℓ→∞

∫
1

0

𝐺 (𝜃, 𝑝 (𝑁ℓ ) (𝜃 ))𝑑𝜃 =

∫
1

0

𝐺 (𝜃, 𝑞∗ (𝜃 ))𝑑𝜃 = ℎ(q∗),

where the definition of𝐺 is shown in Equation (12). Thus, by Claim 2, we have limℓ→∞ ℎ𝑁ℓ
(p(𝑁ℓ ) ) =

limℓ→∞ ℎ(p(𝑁ℓ ) ) = ℎ(q∗) = OPT
∗
. We have proved that ℎ(q′) ≥ OPT

∗
. On the other hand, since

q′ ∈ S′
, q′

is feasible solution to P𝑐𝑜𝑛𝑡 . Thus ℎ(q′) ≤ OPT
∗
. Thus we have ℎ(q′) = OPT

∗
,

which implies that q′
is indeed an optimal solution to P𝑐𝑜𝑛𝑡 . Let Φ(q′) = ({𝜃 ′𝑖 }𝑖∈[𝑛−1], {𝑞′𝑖 }𝑖∈[𝑛]).

Then 𝑞′(𝜃 ) = 𝑞′𝑖 ,∀𝑖 ∈ [𝑛], 𝜃 ∈ [𝜃 ′𝑖−1
, 𝜃 ′𝑖 ) and 𝑞′(1) = 𝑞′𝑛 . Since q′

is a feasible solution to P𝑐𝑜𝑛𝑡 ,

 
Session 5D: Mechanism Design II ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

643



let M ′ = {𝑞(𝜃 ), 𝑡 (𝜃 )}𝜃 ∈[0,1] ∈ C′
2
be the responsive-IC and IR mechanism that implements q′

(Lemma 5). To show thatM ′
contains at most 𝑛 = 3𝑚 − 1 different options, it suffices to prove that

for every 𝑖 ∈ [𝑛], 𝑡 (𝜃 ) is a constant in [𝜃 ′𝑖−1
, 𝜃𝑖 ). Suppose there exist 𝜃, 𝜃 ′ ∈ [𝜃 ′𝑖−1

, 𝜃𝑖 ), 𝜃 ≠ 𝜃 ′ such
that 𝑡 (𝜃 ) ≠ 𝑡 (𝜃 ′). Without loss of generality, assume 𝑡 (𝜃 ) < 𝑡 (𝜃 ′). Then when the buyer has type

𝜃 ′, misreporting 𝜃 induces the same experiment, but a lower price. It contradicts with the fact that

M ′
is responsive-IC. ThusM ′

is an optimal responsive-IC, IR mechanism that contains at most

3𝑚 − 1 different options. We finish the proof.

2

D MISSING DETAILS FROM SECTION 4.2
In this section we will provide a proof of Theorem 4. We first provide a sufficient and necessary

condition under which selling complete information achieves the highest revenue among all

responsive-IC and IR mechanisms (Theorem 9). Note that the same condition also guarantees that

selling complete information is the optimal mechanism among all IC and IR mechanisms.

Since 𝑓 is strictly positive on [0, 1], 𝐹 (·) is strictly increasing. Denote 𝐹−1 (·) the inverse of 𝐹 .
Recall that for every 𝜃 ∈ [0, 1], 𝜑− (𝜃 ) = 𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ) and 𝜑+ (𝜃 ) = (𝜃 − 1) 𝑓 (𝜃 ) + 𝐹 (𝜃 ). Intuitively,
they can be viewed as the agent’s virtual values when 𝑞(𝜃 ) ≤ 𝑢11 −𝑢2𝑚 and when 𝑞(𝜃 ) > 𝑢11 −𝑢2𝑚

respectively. If either 𝜑−
or 𝜑+

is not monotonically non-decreasing, we iron the functions using the

generalized ironing procedure by Toikka [39], which is a generalization of the ironing procedure

by Myerson [34]. Denote �̃�−
and �̃�+

the ironed virtual value functions of 𝜑−
and 𝜑+

respectively.

See Appendix D.1 for formal definitions of the ironing procedure and the ironed interval.

Theorem 9. LetM∗
be the menu that contains only the fully informative experiment with price

𝑝 > 0. ThenM∗
achieves the maximum revenue among all responsive-IC and IR mechanisms if and

only if, there exist two multipliers 𝜂∗ and 𝜆∗ ≥ 0 such that:

(1) 𝑝 ≤ 𝑝 , where 𝑝 = min

{
(𝑢11−𝑢12)𝑢2𝑚

𝑢11−𝑢12+𝑢22

,
(𝑢2𝑚−𝑢2,𝑚−1)𝑢11

𝑢2𝑚+𝑢1,𝑚−1−𝑢2,𝑚−1

}
. Moreover, 𝜆∗ > 0 only when 𝑚 = 3,

𝑢12 − 𝑢22 = 𝑢11 − 1, and 𝑝 = 𝑝 = 1 − 𝑢22.

(2) Let 𝜃𝐿𝑝 =
𝑝

𝑢11

and 𝜃𝐻𝑝 = 1 − 𝑝

𝑢2𝑚
be the two points where the utility function of buying the fully

informative experiment, i.e., a linear function, intersects with the IR curve. For every 𝜃 ∈ [0, 𝜃𝐿𝑝 ),
�̃�− (𝜃 ) −𝜂∗ + 𝜆∗ ≤ 0; For every 𝜃 ∈ [𝜃𝐿𝑝 , 𝜃𝐻𝑝 ), �̃�− (𝜃 ) −𝜂∗ + 𝜆∗ ≥ 0 and �̃�+ (𝜃 ) −𝜂∗ ≤ 0; For every

𝜃 ∈ [𝜃𝐻𝑝 , 1], �̃�+ (𝜃 ) − 𝜂∗ ≥ 0.

(3) 𝜃𝐿𝑝 is not in the interior of any ironed interval of �̃�− (·). And 𝜃𝐻𝑝 is not in the interior of any

ironed interval of �̃�+ (·).
Here is a proof sketch of Theorem 9. We first prove an exact characterization of the optimal

responsive-IC and IR mechanism in C′
2
, i.e., the optimal solution q∗ = {𝑞∗ (𝜃 )}𝜃 ∈[0,1] of the program

in Figure 3, by Lagrangian duality (Theorem 10). It is a generalization of the characterization

by Bergemann et al. [8] to𝑚 ≥ 3 actions. We Lagrangify constraints (3) and (4) in the program.

q = {𝑞(𝜃 )}𝜃 ∈[0,1] is an optimal solution iff there exist Lagrangian multipliers that satisfy the KKT

conditions. As a second step, we apply this characterization to q that corresponds to selling the

complete information. To simplify our characterization, we show that at most two of the Lagrangian

multipliers can be non-zero (in contrast to Θ(𝑚) non-zero multipliers as in Theorem 10), when the

solution q corresponds to a mechanism that only sells complete information. This is enabled by

showing that in order to be the optimal menu, the price of the complete information can not be too

high (Lemma 20).

We notice that if a fully informative menu achieves the maximum revenue among all responsive-

IC and IR mechanisms, then it must also achieve the maximum revenue among all IC and IR mech-

anisms. In the rest of this section, we focus on responsive-IC and IR mechanisms. By Lemma 4 and
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Observation 3, we only need to consider mechanisms where every experiment is semi-informative

(Table 2). Recall that C′
2
is the set of responsive-IC, IR mechanisms that have this format. Throughout

this section, we use q = {𝑞(𝜃 )}𝜃 ∈[0,1] to represent the experiments of the mechanism. Recall that

the optimal mechanism in C′
2
is captured in the program in Figure 3.

In Appendix D.1, we come up with an exact characterization of the optimal responsive-IC and IR

mechanism M∗ ∈ C′
2
, in any environment with 2 states and𝑚 actions. In Appendix D.2, we apply

this result to achieve a sufficient condition under which the fully informative menu is optimal.

D.1 Characterization of the Optimal Responsive-IC and IR Mechanism
In this section, we are going to present our exact characterization of the optimal mechanism in C′

2
,

i.e., the optimal solution q∗ = {𝑞∗ (𝜃 )}𝜃 ∈[0,1] of the program in Figure 3. We Lagrangify Constraints

(3) and (4) in the program. Denote 𝜂 and 𝜆 = {𝜆𝑘 }2≤𝑘≤𝑚−1 the Lagrangian multipliers for both sets

of constraints accordingly.

Definition 6. Given Lagrangian multipliers 𝜂 and 𝜆 = {𝜆𝑘 }𝑘∈{2,...,𝑚−1} ≥ 0, define the virtual
surplus function 𝐽 (𝜂,𝜆) : [−𝑢2𝑚, 𝑢11] × [0, 1] → R as follows:

𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) =(𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 )) · 𝑞 + 𝑓 (𝜃 ) · min{𝑢11 − 𝑢2𝑚 − 𝑞, 0}

+ 𝜂 · (𝑢11 − 𝑢2𝑚 − 𝑞) +
𝑚−1∑
𝑘=2

𝜆𝑘 ·
(
(𝑞 − ℓ𝑘 ) · 1[𝑞 ≤ ℓ𝑘 ] − 𝑢2,𝑚+1−𝑘 + 𝑢2𝑚

)
Then the Lagrangian𝐿(q, 𝜂, 𝜆) of the program in Figure 3 can be written as:𝐿(q, 𝜂, 𝜆) =

∫
1

0
𝐽 (𝜂,𝜆) (𝑞(𝜃 ), 𝜃 )𝑑𝜃 .

Observation 5. For any fixed 𝜃 ∈ [0, 1], all of the following functions are continuous, differentiable
in [−𝑢2𝑚, 𝑢11] except at finitely many points, and weakly concave in 𝑞 (note that 𝑔2 (𝑞) is linear)
(1) 𝑔1 (𝑞, 𝜃 ) = (𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 )) · 𝑞 + 𝑓 (𝜃 ) · min{𝑢11 − 𝑢2𝑚 − 𝑞, 0}.
(2) 𝑔2 (𝑞) = 𝑢11 − 𝑢2𝑚 − 𝑞.

(3) 𝑔
(𝑘)
3

(𝑞) = (𝑞 − ℓ𝑘 ) · 1[𝑞 ≤ ℓ𝑘 ] − 𝑢2,𝑚+1−𝑘 + 𝑢2𝑚,∀𝑘 ∈ {2, 3, ...,𝑚 − 1}.
Thus for any Lagrangian multipliers (𝜂, 𝜆 ≥ 0), the function 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) is continuous, differentiable
in 𝑞 ∈ [−𝑢2𝑚, 𝑢11] except at finitely many points, and weakly concave in 𝑞, for any fixed 𝜃 ∈ [0, 1].
Besides,

𝜕𝑔1

𝜕𝑞
(𝑞, 𝜃 ) =

{
𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ), ∀𝑞 ∈ (−𝑢2𝑚, 𝑢11 − 𝑢2𝑚)
(𝜃 − 1) 𝑓 (𝜃 ) + 𝐹 (𝜃 ), ∀𝑞 ∈ (𝑢11 − 𝑢2𝑚, 𝑢11)

are both continuous in 𝜃 on [0, 1]. Thus except at 𝑞 = −𝑢2𝑚, 𝑢11 − 𝑢2𝑚, 𝑢11,
𝜕𝐽 (𝜂,𝜆)

𝜕𝑞
(𝑞, 𝜃 ) exists and is

continuous in 𝜃 on [0, 1].
Denote S = {q : [0, 1] → [−𝑢2𝑚, 𝑢11] : 𝑞(·) is non-decreasing}. We notice that S is convex,

thus by Observation 5, the program in Figure 3 is a general convex programming problem. Strong

duality holds according to Theorem 8.3.1 and Theorem 8.4.1 of [33].

Lemma 19. [33] Let (𝜂∗, 𝜆∗) ∈ arg min𝜆≥0,𝜂 maxq∈S 𝐿(q, 𝜂, 𝜆) be the optimal Lagrangian multiplier.

Then a solution q∗ is optimal in the program in Figure 3 if and only if q∗ ∈ arg maxq∈S 𝐿(q, 𝜂∗, 𝜆∗).

Now we are ready to state the characterization of the optimal solution.

Definition 7 (Ironing [34]). Given any differentiable function 𝜑 : [0, 1] → R. Let 𝐹 be any

continuous distribution on [0, 1], with density 𝑓 (·). Define the ironed function �̃� (·) as follows: For
every 𝑟 ∈ [0, 1], let 𝐻 (𝑟 ) :=

∫ 𝑟

0
𝜑 (𝐹−1 (𝑥))𝑑𝑥 and 𝐺 (·) be the convex hull of 𝐻 (·). 16 Let 𝑔(·) be the

16𝐺 ( ·) is the convex hull of 𝐻 ( ·) if𝐺 is the highest convex function such that𝐺 (𝜃 ) ≤ 𝐻 (𝜃 ), ∀𝜃 ∈ [0, 1].
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derivative of 𝐺 (·), 17 and �̃� (𝜃 ) := 𝑔(𝐹 (𝜃 )),∀𝜃 ∈ [0, 1]. For any open interval 𝐼 ⊆ (0, 1), we call 𝐼 an
ironed interval of �̃� (·) if 𝐺 (𝐹 (𝜃 )) < 𝐻 (𝐹 (𝜃 )),∀𝜃 ∈ 𝐼 .

Definition 8. Let 𝐹 (·) be the agent’s type distribution on [0, 1], with density 𝑓 (·). For every
𝜃 ∈ [0, 1], let 𝜑− (𝜃 ) = 𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ) and 𝜑+ (𝜃 ) = (𝜃 − 1) 𝑓 (𝜃 ) + 𝐹 (𝜃 ) be the agent’s two virtual values
at type 𝜃 .18 Denote �̃�− (·) and �̃�+ (·) the ironed virtual value functions of 𝜑− (·) and 𝜑+ (·) respectively.
We say an open interval 𝐼 ⊆ (0, 1) an ironed interval of �̃�−

(or �̃�+
) if

∫ 𝐹 (𝜃 )
0

�̃�− (
𝐹−1 (𝑥)

)
𝑑𝑥 <∫ 𝐹 (𝜃 )

0
𝜑− (

𝐹−1 (𝑥)
)
𝑑𝑥 (or

∫ 𝐹 (𝜃 )
0

�̃�+ (
𝐹−1 (𝑥)

)
𝑑𝑥 <

∫ 𝐹 (𝜃 )
0

𝜑+ (
𝐹−1 (𝑥)

)
𝑑𝑥) for all 𝜃 ∈ 𝐼 .

Theorem 10. Suppose q∗ = {𝑞∗ (𝜃 )}𝜃 ∈[0,1] is a feasible solution of the program in Figure 3. Then q∗
is optimal if and only if, there exist multipliers 𝜂∗ and 𝜆∗ = {𝜆∗

𝑘
}𝑘∈{2,...,𝑚−1} ≥ 0, such that all of the

following properties are satisfied:

(1) 𝑞∗ (·) is non-decreasing,

𝑞∗ (𝜃 ) ∈ arg max

𝑞∈[−𝑢2𝑚,𝑢11 ]

{
�̃�− (𝜃 ) · 𝑞− + �̃�+ (𝜃 ) · 𝑞+ − 𝜂∗ · 𝑞 +

𝑚−1∑
𝑘=2

𝜆∗
𝑘
(𝑞 − ℓ𝑘 ) · 1[𝑞 ≤ ℓ𝑘 ]

}
,

where 𝑞− = min{𝑞,𝑢11 − 𝑢2𝑚}, 𝑞+ = max{𝑞 − 𝑢11 + 𝑢2𝑚, 0}, almost everywhere.

(2) q∗ and (𝜂∗, 𝜆∗) satisfy the complementary slackness, i.e., for every 𝑘 ∈ {2, 3, ...,𝑚 − 1},

𝜆∗
𝑘
·
[∫

1

0

(𝑞∗ (𝑥) − ℓ𝑘 ) · 1[𝑞∗ (𝑥) ≤ ℓ𝑘 ]𝑑𝑥 − (𝑢2,𝑚+1−𝑘 − 𝑢2𝑚)
]
= 0

(3) q∗ satisfies the generalized pooling property (Definition 10): For any 𝑥 ∈ [−𝑢2𝑚, 𝑢11], define
𝑞∗

−1 (𝑥) = inf{𝜃 ∈ [0, 1] : 𝑞∗ (𝜃 ) ≥ 𝑥}. Then q∗ satisfies the generalized pooling property if

(a) for every 𝑥 ∈ [−𝑢2𝑚, 𝑢11 − 𝑢2𝑚] and open interval 𝐼 ⊆ (0, 1):

𝑞∗
−1 (𝑥) ∈ 𝐼 and 𝐼 is an ironed interval for �̃�− (·) =⇒ 𝑞∗ (·) is constant on 𝐼 .

(b) for every 𝑥 ∈ (𝑢11 − 𝑢2𝑚, 𝑢11] and open interval 𝐼 ⊆ (0, 1):

𝑞∗
−1 (𝑥) ∈ 𝐼 and 𝐼 is an ironed interval for �̃�+ (·) =⇒ 𝑞∗ (·) is constant on 𝐼 .

Theorem 10 follows from the generalized ironing procedure by Toikka [39]. We first introduce

the necessary background.

General Virtual Surplus Function: Given any function 𝐽 (·, ·) : [𝑎, 𝑏] × [0, 1] → R. We assume that

𝐽 satisfies: (i) For every fixed 𝑞 ∈ [𝑎, 𝑏], 𝐽 (𝑞, ·) is continuously differentiable on (0, 1), and (ii) For

every fixed 𝜃 ∈ [0, 1], 𝐽 (·, 𝜃 ) is continuous on [𝑎, 𝑏] and weakly concave. (iii) Except at finitely

many points 𝑞 ∈ [𝑎, 𝑏], 𝜕𝐽

𝜕𝑞
(𝑞, 𝜃 ) exists and is continuous in 𝜃 on [0, 1]. We define the ironed virtual

surplus in Definition 9.

Definition 9 (Generalized Ironing Procedure [39]). Given any virtual surplus function 𝐽 ,

for every 𝑟 ∈ [0, 1], let ℎ(𝑞, 𝑟 ) :=
𝜕𝐽

𝜕𝑞

(
𝑞, 𝐹−1 (𝑟 )

)
. By assumption (iii), it is well-defined on [𝑎, 𝑏]

except at finitely many points. We extend ℎ to the whole interval [𝑎, 𝑏] by left-continuity. For every

𝑞 ∈ [𝑎, 𝑏], 𝑟 ∈ [0, 1], let 𝐻 (𝑞, 𝑟 ) :=
∫ 𝑟

0
ℎ(𝑞, 𝑥)𝑑𝑥 . 19 For every 𝑞 ∈ [𝑎, 𝑏], define𝐺 (𝑞, ·) := conv𝐻 (𝑞, ·)

17
Since𝐻 ( ·) is differentiable,𝐺 ( ·) , as the convex hull of𝐻 ( ·) , is continuously differentiable on (0, 1) . We extend 𝑔 to [0, 1]

by continuity.

18𝜑− (𝜃 ) is the virtual value when 𝑞 (𝜃 ) ≤ 𝑢11 −𝑢2𝑚 , and 𝜑+ (𝜃 ) is the virtual value when 𝑞 (𝜃 ) > 𝑢11 −𝑢2𝑚 .

19
By assumption (iii) of 𝐽 ( ·, ·) and the continuity of 𝐹−1 ( ·) , ℎ (𝑞, 𝑥) continuous in 𝑥 and hence is integrable in 𝑥 .
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as the convex hull of function 𝐻 (𝑞, ·). Let 𝑔(𝑞, 𝑟 ) := 𝜕𝐺
𝜕𝑟

(𝑞, 𝑟 ), which is non-decreasing in 𝑟 for every

𝑞 ∈ [𝑎, 𝑏]. 20 Define the ironed virtual surplus function 𝐽 : [𝑎, 𝑏] × [0, 1] → R as follows:

𝐽 (𝑞, 𝜃 ) = 𝐽 (0, 𝜃 ) +
∫ 𝑞

0

𝑔(𝑠, 𝐹 (𝜃 ))𝑑𝑠

Definition 10. [39] Given q = {𝑞(𝜃 )}𝜃 ∈[0,1] . For any 𝑥 ∈ [𝑎, 𝑏], define 𝑞−1 (𝑥) = inf{𝜃 ∈ [0, 1] :

𝑞(𝜃 ) ≥ 𝑥}. Then q satisfies the generalized pooling property if for every 𝑥 ∈ [𝑎, 𝑏] and open interval

𝐼 ⊂ [0, 1]:
𝑞−1 (𝑥) ∈ 𝐼 and 𝐺 (𝑥, 𝜃 ) < 𝐻 (𝑥, 𝜃 ),∀𝜃 ∈ 𝐼 =⇒ 𝑞(·) is constant on 𝐼 .

Theorem 11. [39] Let S = {q : [0, 1] → [𝑎, 𝑏] : 𝑞(·) is non-decreasing} and S′ = {q : [0, 1] →
[𝑎, 𝑏]}. Then

sup

q∈S

{∫
1

0

𝐽 (𝑞(𝜃 ), 𝜃 )𝑑𝜃
}
= sup

q∈S′

{∫
1

0

𝐽 (𝑞(𝜃 ), 𝜃 )𝑑𝜃
}
.

Moreover, q ∈ S achieves the supremum of

∫
1

0
𝐽 (𝑞(𝜃 ), 𝜃 )𝑑𝜃 if and only if: 𝐽 (𝑞(𝜃 ), 𝜃 ) = sup𝑞∈[𝑎,𝑏 ] 𝐽 (𝑞, 𝜃 )

almost everywhere, and q satisfies the generalized pooling property.

Proof of Theorem 10: By Observation 5, for any collection of Lagrangian multipliers 𝜂, 𝜆 ≥ 0, the
virtual surplus function 𝐽 (𝜂,𝜆) (·, ·) satisfies our assumptions. We apply the ironing procedure in

Definition 9 to 𝐽 (𝜂,𝜆) (·, ·):

ℎ(𝑞, 𝑟 ) = 𝜕𝐽 (𝜂,𝜆)

𝜕𝑞

(
𝑞, 𝐹−1 (𝑟 )

)
=

{
𝜑− (𝐹−1 (𝑟 )) − 𝜂 + ∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 , 𝑞 ≤ 𝑢11 − 𝑢2𝑚

𝜑+ (𝐹−1 (𝑟 )) − 𝜂 + ∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 , 𝑞 > 𝑢11 − 𝑢2𝑚

Recall that ℓ𝑘 = 𝑢1,𝑚+1−𝑘 − 𝑢2,𝑚+1−𝑘 ,∀𝑘 ∈ [𝑚]. Here 𝑘 (𝑞) is the unique number 𝑗 ∈ {1, ...,𝑚 − 1}
such that ℓ𝑗 < 𝑞 ≤ ℓ𝑗+1 (let 𝑘 (𝑞) = 1 when 𝑞 = ℓ1). For every 𝑞 ∈ [−𝑢2𝑚, 𝑢11] and 𝑟 ∈ [0, 1],

𝐻 (𝑞, 𝑟 ) =
∫ 𝑟

0

ℎ(𝑞, 𝑥)𝑑𝑥 =


∫ 𝑟

0
𝜑− (𝐹−1 (𝑥))𝑑𝑥 + 𝑟 ·

(∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 − 𝜂

)
, 𝑞 ≤ 𝑢11 − 𝑢2𝑚∫ 𝑟

0
𝜑+ (𝐹−1 (𝑥))𝑑𝑥 + 𝑟 ·

(∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 − 𝜂

)
, 𝑞 > 𝑢11 − 𝑢2𝑚

For every fixed 𝑞 ∈ [−𝑢2𝑚, 𝑢11], to obtain 𝐺 (𝑞, ·), we take the convex hull of 𝐻 (𝑞, ·). Note that
𝑟 ·

(∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 − 𝜂

)
is a linear function on 𝑟 , thus we are effectively only taking the convex hull of

the functions 𝐻− (𝑟 ) :=
∫ 𝑟

0
𝜑− (𝐹−1 (𝑥))𝑑𝑥 and 𝐻+ (𝑟 ) :=

∫ 𝑟

0
𝜑+ (𝐹−1 (𝑥))𝑑𝑥 . Denote 𝐺− (·) and 𝐺+ (·)

the convex hull of 𝐻− (·) and 𝐻+ (·) accordingly. Then

𝐺 (𝑞, 𝑟 ) =

𝐺− (𝑟 ) + 𝑟 ·

(∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 − 𝜂

)
, 𝑞 ≤ 𝑢11 − 𝑢2𝑚

𝐺+ (𝑟 ) + 𝑟 ·
(∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 − 𝜂

)
, 𝑞 > 𝑢11 − 𝑢2𝑚

By definition of �̃�−
, �̃�+

(Definition 8), we have

𝑔(𝑞, 𝑟 ) =
{
�̃�− (𝐹−1 (𝑟 )) + ∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 − 𝜂, 𝑞 ≤ 𝑢11 − 𝑢2𝑚

�̃�+ (𝐹−1 (𝑟 )) + ∑𝑚−1

𝑗=𝑘 (𝑞)+1
𝜆 𝑗 − 𝜂, 𝑞 > 𝑢11 − 𝑢2𝑚

20
Since 𝐻 (𝑞, ·) is differentiable on (0, 1) for every 𝑞 ∈ [𝑎,𝑏 ], 𝐺 (𝑞, ·) , as the convex hull of 𝐻 (𝑞, ·) , is continuously

differentiable on (0, 1) for every 𝑞 ∈ [𝑎,𝑏 ]. We extend 𝑔 (𝑞, ·) to [0, 1] by continuity.
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The ironed virtual surplus 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) = 𝐽 (𝜂,𝜆) (0, 𝜃 )+
∫ 𝑞

0
𝑔(𝑠, 𝐹 (𝜃 ))𝑑𝑠 . We notice that 𝐽 (𝜂,𝜆) (0, 𝜃 ) =

−∑𝑚−1

𝑘=2
𝜆𝑘 ℓ𝑘 , and by definition of 𝑘 (𝑞),∫ 𝑞

0

𝑚−1∑
𝑗=𝑘 (𝑠)+1

𝜆 𝑗𝑑𝑠 =

𝑚−1∑
𝑗=2

𝜆 𝑗 ·
∫ 𝑞

0

1[𝑠 ≤ ℓ𝑗 ]𝑑𝑠 =
𝑚−1∑
𝑗=2

𝜆 𝑗 · min{ℓ𝑗 , 𝑞}

Thus we have

𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) = 𝐽 (𝜂,𝜆) (0, 𝜃 ) +
∫ 𝑞

0

𝑔(𝑠, 𝐹 (𝜃 ))𝑑𝑠

=

{
�̃�− (𝜃 ) · 𝑞 − 𝜂 · 𝑞 + ∑𝑚−1

𝑘=2
𝜆𝑘 (𝑞 − ℓ𝑘 ) · 1[𝑞 ≤ ℓ𝑘 ], 𝑞 ≤ 𝑢11 − 𝑢2𝑚

�̃�− (𝜃 ) · (𝑢11 − 𝑢2𝑚) + �̃�+ (𝜃 ) (𝑞 − 𝑢11 + 𝑢2𝑚) − 𝜂 · 𝑞 + ∑𝑚−1

𝑘=2
𝜆𝑘 (𝑞 − ℓ𝑘 ) · 1[𝑞 ≤ ℓ𝑘 ], 𝑞 > 𝑢11 − 𝑢2𝑚

=�̃�− (𝜃 ) · 𝑞− + �̃�+ (𝜃 ) · 𝑞+ − 𝜂 · 𝑞 +
𝑚−1∑
𝑘=2

𝜆𝑘 (𝑞 − ℓ𝑘 ) · 1[𝑞 ≤ ℓ𝑘 ],

where 𝑞− = min{𝑞,𝑢11 − 𝑢2𝑚}, 𝑞+ = max{𝑞 − 𝑢11 + 𝑢2𝑚, 0}.
We first prove that the properties are necessary for q∗ to be optimal. Suppose q∗ is an optimal so-

lution. Let (𝜂∗, 𝜆∗) be the optimal Lagrangian multipliers. By Lemma 19, q∗ maximizes 𝐿(q, 𝜂∗, 𝜆∗) =∫
1

0
𝐽 (𝜆

∗,𝜂∗) (𝑞(𝜃 ), 𝜃 )𝑑𝜃 over q ∈ S. By Theorem 11, 𝐽 (𝜂
∗,𝜆∗) (𝑞∗ (𝜃 ), 𝜃 ) = sup𝑞∈[−𝑢2𝑚,𝑢11 ] 𝐽

(𝜂∗,𝜆∗) (𝑞, 𝜃 )
almost everywhere, which is exactly the first property in the statement of Theorem 10, and q∗
satisfies the generalized pooling property. Since q∗ is the optimal solution and (𝜂∗, 𝜆∗) are the

optimal Lagrangian multipliers, the second property in the statement of Theorem 10 directly follows

from the KKT condition. Finally, we prove the last property. An important property of 𝐻 (·, ·) and
𝐺 (·, ·) is that for any 𝑞 ≤ 𝑢11 −𝑢2𝑚 , 𝐻 (𝑞, 𝑟 ) > 𝐺 (𝑞, 𝑟 ) iff 𝐻− (𝑟 ) > 𝐺− (𝑟 ), and for any 𝑞 > 𝑢11 −𝑢2𝑚 ,

iff 𝐻+ (𝑟 ) > 𝐺+ (𝑟 ). Therefore, q∗ satisfies the generalized pooling property is equivalent to the last

property in the statement.

Nowwe prove sufficiency. For any feasible solutionq∗, suppose there exist multipliers (𝜂∗, 𝜆∗ ≥ 0)
that satisfy all three properties in the statement. We argue that q∗ is the optimal solution (and

(𝜂∗, 𝜆∗) are the optimal Lagrangian multipliers) by verifying the KKT conditions. Firstly, both q∗
and (𝜂∗, 𝜆∗) are feasible primal and dual solutions. Secondly, by the first property of the statement,

𝐽 (𝜂
∗,𝜆∗) (𝑞∗ (𝜃 ), 𝜃 ) = sup𝑞∈[−𝑢2𝑚,𝑢11 ] 𝐽

(𝜂∗,𝜆∗) (𝑞, 𝜃 ) almost everywhere. As argued above, the fact that

q∗ satisfies the third property implies that q∗ satisfies the generalized pooling property. Thus

by Theorem 11, q∗ maximizes 𝐿(q, 𝜂∗, 𝜆∗) =
∫

1

0
𝐽 (𝜆

∗,𝜂∗) (𝑞(𝜃 ), 𝜃 )𝑑𝜃 over q ∈ S. The stationary

condition is satisfied. Thirdly, the second property of the statement implies that the complementary

slackness is satisfied. Thus by the KKT conditions, q∗ is the optimal solution. 2

D.2 Optimality Conditions for Selling Complete Information
In this section, we characterize the conditions under which selling only the fully informative

experiment is optimal using Theorem 10. Clearly, any responsive-IC and IR mechanism that only

contains the fully informative experiment 𝐸∗ is determined by the price 𝑝 > 0 of 𝐸∗. And for every

type 𝜃 ∈ [0, 1], the agent selects 𝐸∗ if and only if𝑉𝜃 (𝐸∗) ≥ 𝑢 (𝜃 ). Since𝑉𝜃 (𝐸∗) = 𝜃𝑢11+ (1−𝜃 )𝑢2𝑚−𝑝
is linear in 𝜃 and the IR curve is convex in 𝜃 , the agent selects 𝐸∗ when her type 𝜃 is in some

closed interval [𝜃𝐿𝑝 , 𝜃𝐻𝑝 ] (see Figure 9a or Figure 9b for an illustration of 𝜃𝐿𝑝 , 𝜃
𝐻
𝑝 ).

21
Clearly, the

mechanism is also IC, since the agent will always follow the recommendation when receiving

either no information or full information.

21
We assume that 𝜃𝐿𝑝 and 𝜃𝐻𝑝 exist, otherwise the price is too high, and the mechanism has revenue 0.
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We first prove the following corollary of Lemma 5. It states that any 𝑘-piecewise-linear “utility

curve”, which always stays above the IR curve, can be implemented by a responsive-IC and IR

mechanism with 𝑘 experiments.

Corollary 3. Given any finite integer 𝑘 ≥ 2 and any continuous, piecewise linear function

ℎ : [0, 1] → R+ with 𝑘 pieces. Suppose ℎ(·) satisfies all of the following: (i) ℎ(0) = 𝑢2𝑚, ℎ(1) = 𝑢11;

(ii) −𝑢2𝑚 ≤ ℓ1 < ... < ℓ𝑘 ≤ 𝑢11, where for each 𝑖 ∈ [𝑘], ℓ𝑖 is the slope of the 𝑖-th piece of ℎ;

(iii) ℎ(𝜃 ) ≥ 𝑢 (𝜃 ),∀𝜃 ∈ [0, 1] . Then there exists a responsive-IC and IR mechanism M ∈ C′
2
with

𝑘 experiments, such that for every 𝜃 ∈ [0, 1], the agent’s utility at type 𝜃 , when she follows the

recommendation, is ℎ(𝜃 ).

Proof. We define the mechanism M = (q, t) as follows. Let 0 < 𝜃1 < 𝜃2 < ... < 𝜃𝑘−1 < 1 be the

𝑘 − 1 kinks of ℎ. Denote 𝜃0 = 0, 𝜃𝑘 = 1. For every 𝜃 ∈ [0, 1), define 𝑞(𝜃 ) = ℓ𝑖 , where 𝑖 ∈ [𝑘] is the
unique number such that 𝜃 ∈ [𝜃𝑖−1, 𝜃𝑖 ). Also define 𝑞(1) = ℓ𝑘 .

We will verify that q satisfies all the requirements of Lemma 5. By property (ii), we have that

𝑞(𝜃 ) ∈ [−𝑢2𝑚, 𝑢11] is non-decreasing in 𝜃 . Moreover, we notice that 𝑞(𝜃 ) is the right derivative
of ℎ(𝜃 ) at every 𝜃 ∈ [0, 1). Since ℎ(0) = 𝑢2𝑚 and ℎ is continuous at 𝜃 = 1, we have ℎ(𝜃 ) =

𝑢2𝑚 +
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥,∀𝜃 ∈ [0, 1]. Taking 𝜃 = 1, we have

∫
1

0
𝑞(𝑥)𝑑𝑥 = ℎ(1) − 𝑢2𝑚 = 𝑢11 − 𝑢2𝑚 . At last,

by property (iii) we have ℎ(𝜃 ) = 𝑢2𝑚 +
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 ≥ 𝑢 (𝜃 ),∀𝜃 ∈ [0, 1].

Thus by Lemma 5, there exists a payment rule t such thatM is a responsive-IC and IR mechanism,

and t satisfies Equation (4). By Observation 4, with such payment, the agent’s utility at every type

𝜃 , when he follows the recommendation, is 𝑢2𝑚 +
∫ 𝜃

0
𝑞(𝑥)𝑑𝑥 = ℎ(𝜃 ). Since 𝑞(𝜃 ) takes 𝑘 different

values, the mechanism contains 𝑘 experiments. □

To obtain a simplified characterization, an important step is the following observation: If some

fully informative menu with price 𝑝 is the optimal menu, then both 𝜃𝐿𝑝 and 𝜃𝐻𝑝 have to stay in

the first and last piece of the IR curve accordingly (see Figure 9a). To see the reason, consider a

curve ℎ(·) (a piecewise linear function) that is the maximum of the utility function of buying the

fully informative experiment at price 𝑝 and the IR curve. In other words, ℎ(·) coincides with the

utility function of buying the fully informative experiment on interval [𝜃𝐿𝑝 , 𝜃𝐻𝑝 ], and coincides with

the IR curve everywhere else. If 𝜃𝐿𝑝 and 𝜃𝐻𝑝 do not lie in the first and last piece of the IR curve

respectively, there are pieces of the curve ℎ(·) that belong to the 𝑖-th piece of the IR curve for

some 2 ≤ 𝑖 ≤ 𝑚 − 1 (the blue line in Figure 9b). We argue that we can change the mechanism to

offer another experiment (based on this piece of the IR curve), so that (i) the mechanism is still

responsive-IC and IR, and (ii) the revenue of the mechanism strictly increases.This contradicts with

the optimality of selling only the fully informative experiment. See Figure 9b for an illustration

and Lemma 20 for a formal statement.

Lemma 20. Consider the fully informative experiment 𝐸∗ with any price 𝑝 > 0. Assume there is

some 𝜃 such that𝑉𝜃 (𝐸∗) > 𝑢 (𝜃 ). Let 𝜃𝐿𝑝 , 𝜃𝐻𝑝 (0 < 𝜃𝐿𝑝 < 𝜃𝐻𝑝 < 1) be the two 𝜃 ’s such that𝑉𝜃 (𝐸∗) = 𝑢 (𝜃 ).
Let 𝜃1 and 𝜃2 be the first and last kink of the IR curve.

22
Suppose selling the full information at price 𝑝

achieves the optimal revenue among all responsive-IC and IR mechanisms. Then 𝜃𝐿𝑝 ≤ 𝜃1 and 𝜃
𝐻
𝑝 ≥ 𝜃2

(see Figure 9a).

Proof. Let M be the menu that only contains the fully informative experiment 𝐸∗ with price 𝑝 .

We prove by contradiction. Without loss of generality, assume that 𝜃𝐿𝑝 > 𝜃1. Let 𝐿 : [0, 1] → R be

the agent’s utility function for the experiment 𝐸∗, i.e., 𝐿(𝜃 ) = 𝑉𝜃 (𝐸∗) − 𝑝 = 𝜃 · 𝑢11 + (1 − 𝜃 )𝑢2𝑚 − 𝑝 .

Consider the function ℎ : [0, 1] → R such that ℎ(𝜃 ) = max{𝑢 (𝜃 ), 𝐿(𝜃 )},∀𝜃 ∈ [0, 1]. One can

22
Formally, 𝜃1 satisfies 𝑢2𝑚 (1 − 𝜃1) = 𝑢1,𝑚−1𝜃1 + (1 − 𝜃1)𝑢2,𝑚−1, and 𝜃2 satisfies 𝑢11𝜃2 = 𝑢12𝜃2 + (1 − 𝜃2)𝑢22.
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easily verify that ℎ is a piecewise linear function that satisfies the requirement of Corollary 3. By

Corollary 3, there exists a responsive-IC and IR mechanism M ′ = (q′, t′) ∈ C′
2
, such that for every

𝜃 ∈ [0, 1], the agent’s utility at type 𝜃 , when she follows the recommendation, is ℎ(𝜃 ). When the

agent’s type 𝜃 ∈ [𝜃𝐿𝑝 , 𝜃𝐻𝑝 ], she purchases experiment 𝐸∗ at price 𝑝 in M ′
, and thus the mechanism

collects total revenue Rev(M) at interval [𝜃𝐿𝑝 , 𝜃𝐻𝑝 ]. It suffices to show that M ′
collects strictly

positive revenue from types in [0, 𝜃𝐿𝑝 ) ∪ (𝜃𝐻𝑝 , 1], which contradicts with the optimality ofM.

Since 𝜃1 < 𝜃𝐿𝑝 , there is at least one (linear) piece of the piecewise linear function ℎ(·) is in [𝜃1, 𝜃
𝐿
𝑝 ].

Consider any such piece. The whole piece is also on the IR curve. Let (𝜃 ′, 𝑢 (𝜃 ′)) and (𝜃 ′′, 𝑢 (𝜃 ′′)) be
the two endpoints of this piece (𝜃 ′ < 𝜃 ′′) and ℓ be the slope. Then −𝑢2𝑚 < ℓ < 𝑢11 −𝑢2𝑚 . We design

an experiment 𝐸 offered by M ′
, so that all types on interval (𝜃 ′, 𝜃 ′′) purchase this experiment.

Denote 𝑞 the variable corresponds to the experiment 𝐸. Then by Observation 4, 𝑞 = ℓ ≤ 𝑢11 − 𝑢2𝑚 .

Thus when 𝜃 ∈ (𝜃 ′, 𝜃 ′′), 𝑉𝜃 (𝐸) = 𝑞 · 𝜃 + 𝑢2𝑚 . Moreover, notice that (i) 𝑢 (𝜃 ′) ≥ 𝑢2𝑚 − 𝑢2𝑚𝜃
′
, the

RHS is agent’s payoff for always choosing action𝑚 without receiving any experiment, and (ii)

ℎ(𝜃 ) = ℓ · (𝜃 − 𝜃 ′) + 𝑢 (𝜃 ′),∀𝜃 ∈ [𝜃 ′, 𝜃 ′′]. Hence
𝑡 ′(𝜃 ) = 𝑉𝜃 (𝐸) − ℎ(𝜃 ) = 𝑢2𝑚 + ℓ · 𝜃 ′ − 𝑢 (𝜃 ′) = (𝑢2𝑚 + ℓ)𝜃 ′ > 0,∀𝜃 ∈ (𝜃 ′, 𝜃 ′′)

Therefore, Rev(M ′) ≥ Rev(M) + (𝐹 (𝜃 ′′) − 𝐹 (𝜃 ′)) · (𝑢2𝑚 + ℓ)𝜃 ′ > Rev(M), as 𝐹 (·) is strictly
increasing, contradicting with the optimality ofM. Hence, we must have 𝜃𝐿𝑝 ≤ 𝜃1 and 𝜃

𝐻
𝑝 ≥ 𝜃2. □

(a) The fully informative experi-
ment where 𝜃𝐿𝑝 ≤ 𝜃1 and 𝜃𝐻𝑝 ≥ 𝜃2

(b) The scenario when the fully in-
formative experiment is not opti-
mal

(c) In the proof of Theorem 9: 𝜃𝐻𝑝 >

𝜃2 when ℓ𝑚−1 = 𝑢11 − 𝑢2𝑚

Fig. 9. Illustrations of notations and the utility curve of full information

To prove Theorem 9, we also need the following lemma for the ironed virtual value, which may

be of independent interest.

Lemma 21. (Adapted from Lemma 4.11 in [39]) Let 𝜑1, 𝜑2 be any pair of differentiable real-valued

functions on [0, 1]. Let 𝐹 be any continuous distribution on [0, 1]. Denote �̃�1, �̃�2 the ironed functions of

𝜑1, 𝜑2 respectively, with respect to the distribution 𝐹 (Definition 7). Suppose 𝜑1 (𝜃 ) ≥ 𝜑2 (𝜃 ),∀𝜃 ∈ [0, 1].
Then �̃�1 (𝜃 ) ≥ 𝜑2 (𝜃 ),∀𝜃 ∈ [0, 1].
Proof. Let 𝑓 be the pdf of 𝐹 . As shown in Definition 7, define 𝐻1 (𝑟 ) =

∫ 𝑟

0
𝜑1 (𝐹−1 (𝑥))𝑑𝑥,∀𝑟 ∈

[0, 1], 𝐺1 (·) as the convex hull of 𝐻1 (·), and 𝑔1 (·) as the (extended) derivative of 𝐺1 (·) (see Foot-
note 17). Define 𝐻2,𝐺2, 𝑔2 similarly for 𝜑2.

For every 𝜃 ∈ [0, 1], �̃�1 (𝜃 ) = 𝑔1 (𝐹 (𝜃 )), �̃�2 (𝜃 ) = 𝑔2 (𝐹 (𝜃 )). Thus to show �̃�1 (𝜃 ) ≥ �̃�2 (𝜃 ), it suffices

to prove that 𝑔1 (𝑟 ) ≥ 𝑔2 (𝑟 ),∀𝑟 ∈ [0, 1]. We prove the claim by contradiction. Suppose there exists

𝑟0 ∈ [0, 1] such that 𝑔1 (𝑟0) < 𝑔2 (𝑟0). We notice that

H(𝑟 ) ≜ 𝐻1 (𝑟 ) − 𝐻2 (𝑟 ) =
∫ 𝑟

0

[
𝜑1 (𝐹−1 (𝑥)) − 𝜑2 (𝐹−1 (𝑥))

]
𝑑𝑥,
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which is non-decreasing in 𝑟 , since 𝜑1 (𝐹−1 (𝑥)) ≥ 𝜑2 (𝐹−1 (𝑥)),∀𝑥 ∈ [0, 1]. Let 𝜌 = 𝐺1 (𝑟0) −𝐺2 (𝑟0).
To reach a contradiction, we show that there exists 𝑟1 ≤ 𝑟0 such thatH(𝑟1) ≥ 𝜌 and there exists

𝑟2 > 𝑟0 such thatH(𝑟2) < 𝜌 , which contradicts with the fact thatH is non-decreasing.

Let 𝐿1 : [0, 1] → R (or 𝐿2) be the unique linear function tangent to𝐺1 (or 𝐺2) at 𝑟0. Then since

𝐺1 (or𝐺2) is the convex hull of 𝐻1 (or 𝐻2), we have for every 𝑟 ∈ [0, 1], 𝐿1 (𝑟 ) ≤ 𝐺1 (𝑟 ) ≤ 𝐻1 (𝑟 ) and
𝐿2 (𝑟 ) ≤ 𝐺2 (𝑟 ) ≤ 𝐻2 (𝑟 ).

The existence of 𝑟1: If 𝐺2 (𝑟0) = 𝐻2 (𝑟0), then 𝐻1 (𝑟0) − 𝐻2 (𝑟0) ≥ 𝐺1 (𝑟0) −𝐺2 (𝑟0) = 𝜌 . By choosing

𝑟1 = 𝑟0 we haveH(𝑟1) ≥ 𝜌 . Now assume𝐺2 (𝑟0) < 𝐻2 (𝑟0). Then 𝑟0 is in the interior of some ironed

interval 𝐼 of 𝜑2. Let 𝑟1 < 𝑟0 be the left endpoint of the interval 𝐼 . Then 𝐻2 (𝑟1) = 𝐿2 (𝑟1). We have

H(𝑟1) = 𝐻1 (𝑟1) − 𝐻2 (𝑟1) ≥ 𝐿1 (𝑟1) − 𝐿2 (𝑟1) > 𝐿1 (𝑟0) − 𝐿2 (𝑟0) = 𝐺1 (𝑟0) −𝐺2 (𝑟0) = 𝜌

Here the first inequality follows from 𝐻1 (𝑟1) ≥ 𝐿1 (𝑟1) and 𝐻2 (𝑟1) = 𝐿2 (𝑟1). The second inequality

follows from the fact that 𝑑 (𝐿1 (𝑟 ) − 𝐿2 (𝑟 ))/𝑑𝑟 = 𝐺 ′
1
(𝑟0) − 𝐺 ′

2
(𝑟0) = 𝑔1 (𝑟0) − 𝑔2 (𝑟0) < 0. The

second-last equality follows from the fact that 𝐿1 (or 𝐿2) meets 𝐺1 (or 𝐺2) at 𝑟0.

The existence of 𝑟2: The proof follows from a similar argument as 𝑟1. If 𝐺1 (𝑟0) = 𝐻1 (𝑟0), then
𝐺 ′

1
(𝑟0) = 𝐻 ′

1
(𝑟0) = 𝑔1 (𝑟0). We notice that

𝑑 (𝐻1 (𝑟 ) − 𝐿2 (𝑟 ))
𝑑𝑟

����
𝑟=𝑟0

= 𝑔1 (𝑟0) − 𝑔2 (𝑟0) < 0.

Thus there exists some 𝑟2 > 𝑟0 such that𝐻
′
1
(𝑟 )−𝑔2 (𝑟0) < 0 for all 𝑟 ∈ [𝑟0, 𝑟2] due to the continuity

of 𝐻 ′
1
(·), which implies that

𝜌 = 𝐺1 (𝑟0) −𝐺2 (𝑟0) = 𝐻1 (𝑟0) − 𝐿2 (𝑟0) > 𝐻1 (𝑟2) − 𝐿2 (𝑟2) ≥ 𝐻1 (𝑟2) − 𝐻2 (𝑟2) = H(𝑟2)

Now assume 𝐺1 (𝑟0) < 𝐻1 (𝑟0). Then 𝑟0 is in the interior of some ironed interval 𝐼 of 𝜑1. Let

𝑟2 > 𝑟0 be the right endpoint of the interval 𝐼 . Then 𝐻1 (𝑟2) = 𝐿1 (𝑟2). We have

H(𝑟2) = 𝐻1 (𝑟2) − 𝐻2 (𝑟2) ≤ 𝐿1 (𝑟2) − 𝐿2 (𝑟2) < 𝐿1 (𝑟0) − 𝐿2 (𝑟0) = 𝐺1 (𝑟0) −𝐺2 (𝑟0) = 𝜌

Here the first inequality follows from 𝐻1 (𝑟2) = 𝐿1 (𝑟2) and 𝐻2 (𝑟2) ≥ 𝐿2 (𝑟2). The second inequality

follows from the fact that 𝑑 (𝐿1 (𝑟 ) − 𝐿2 (𝑟 ))/𝑑𝑟 < 0 and 𝑟2 > 𝑟0. The second-last equality follows

from the fact that 𝐿1 (or 𝐿2) meets 𝐺1 (or 𝐺2) at 𝑟0.

The existence of 𝑟1 and 𝑟2 contradicts with the fact that H is non-decreasing. Thus �̃�1 (𝜃 ) ≥
�̃�2 (𝜃 ),∀𝜃 ∈ [0, 1]. □

Proof of Theorem 9: Let 𝐿∗ be the affine utility function for purchasing the fully informative experi-

ment at price 𝑝 , i.e. 𝐿∗ (𝜃 ) = 𝑢11𝜃 +𝑢2𝑚 (1−𝜃 ) −𝑝 = (𝑢11−𝑢2𝑚)𝜃 +𝑢2𝑚−𝑝 . Denote 𝜃𝐿𝑝 and 𝜃𝐻𝑝 the two

points where 𝐿∗ intersects with the IR curve. For every 𝑘 ∈ [𝑚], let 𝐿𝑘 be the affine function for the

𝑘-th piece of the IR curve, i.e., 𝐿𝑘 (𝜃 ) = 𝜃 ·𝑢1,𝑚+1−𝑘 + (1− 𝜃 ) ·𝑢2,𝑚+1−𝑘 = 𝜃 · ℓ𝑘 +𝑢2,𝑚+1−𝑘 ,∀𝜃 ∈ [0, 1].
Let q∗ be the experiments purchased by the agent inM∗

, i.e.,

𝑞∗ (𝜃 ) =


−𝑢2𝑚, 𝜃 ∈ [0, 𝜃𝐿𝑝 )
𝑢11 − 𝑢2𝑚, 𝜃 ∈ [𝜃𝐿𝑝 , 𝜃𝐻𝑝 )
𝑢11, 𝜃 ∈ [𝜃𝐻𝑝 , 1]

(14)

Necessary condition. We first prove that the properties in the statement are necessary. Suppose

M∗
is the optimal responsive-IC and IR mechanism, then q∗ is the optimal solution to the program

in Figure 3. We are going to verify each property of the statement by applying Theorem 10 to the

solution q∗.
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Property 1. Recall that 𝜃1, 𝜃2 are the first and last kink of the IR curve. By Footnote 22,

𝜃1 =
𝑢2𝑚 − 𝑢2,𝑚−1

𝑢1,𝑚−1 + 𝑢2𝑚 − 𝑢2,𝑚−1

, 𝜃2 =
𝑢22

𝑢11 + 𝑢22 − 𝑢12

By Lemma 20, 𝜃𝐿𝑝 ≤ 𝜃1 and 𝜃
𝐻
𝑝 ≥ 𝜃2. Thus 𝜃

𝐿
𝑝 , 𝜃

𝐻
𝑝 are the points where 𝐿∗ intersects with the first

and last piece of the IR curve, respectively. We have 𝐿∗ (𝜃𝐿𝑝 ) = 𝑢1𝑚𝜃
𝐿
𝑝 + 𝑢2𝑚 (1 − 𝜃𝐿𝑝 ) ⇔ 𝜃𝐿𝑝 =

𝑝

𝑢11

.

Similarly, 𝐿∗ (𝜃𝐻𝑝 ) = 𝑢11𝜃
𝐻
𝑝 +𝑢21(1−𝜃𝐻𝑝 ) ⇔ 𝜃𝐻𝑝 = 1− 𝑝

𝑢2𝑚
. Thus 𝜃𝐿𝑝 ≤ 𝜃1 and 𝜃

𝐻
𝑝 ≥ 𝜃2 are equivalent

to

𝑝 ≤ 𝑝 = min

{
(𝑢11 − 𝑢12)𝑢2𝑚

𝑢11 − 𝑢12 + 𝑢22

,
(𝑢2𝑚 − 𝑢2,𝑚−1)𝑢11

𝑢2𝑚 + 𝑢1,𝑚−1 − 𝑢2,𝑚−1

}
.

To prove the second half of property 1, by Theorem 10, there exist multipliers 𝜆 = {𝜆𝑘 }𝑘∈{2,...,𝑚−1} ≥
0 and 𝜂 that satisfy all properties of Theorem 10. We choose 𝜂∗ = 𝜂 and 𝜆∗ = 𝜆2. For ev-

ery 𝑘 ∈ {2, 3, . . . ,𝑚 − 1}, let 𝜃 ∗
𝑘

= sup{𝜃 ∈ [0, 1] : 𝑞∗ (𝜃 ) ≤ ℓ𝑘 }. Then since −𝑢2𝑚 < ℓ𝑘 =

𝑢1,𝑚+1−𝑘 − 𝑢2,𝑚+1−𝑘 < 𝑢11, we have 𝜃
∗
𝑘
= 𝜃𝐿𝑝 iff ℓ𝑘 < 𝑢11 − 𝑢2𝑚 , and 𝜃

∗
𝑘
= 𝜃𝐻𝑝 otherwise. Notice that

Δ𝑘 :=

∫
1

0

(𝑞∗ (𝑥) − ℓ𝑘 ) · 1[𝑞∗ (𝑥) ≤ ℓ𝑘 ]𝑑𝑥 − (𝑢2,𝑚+1−𝑘 − 𝑢2𝑚)

=

∫ 𝜃 ∗
𝑘

0

(𝑞∗ (𝑥) − ℓ𝑘 )𝑑𝑥 − 𝑢2,𝑚+1−𝑘 + 𝑢2𝑚 = 𝐿∗ (𝜃 ∗
𝑘
) − 𝐿𝑘 (𝜃 ∗𝑘 )

(15)

Here the last inequality is because: 𝑢2𝑚 +
∫ 𝜃𝐿𝑝

0
𝑞∗ (𝑥)𝑑𝑥 = 𝑢2𝑚 (1 − 𝜃𝐿𝑝 ) = 𝑢2𝑚 (1 − 𝑝

𝑢11

) = 𝐿∗ (𝜃𝐿𝑝 )

and 𝑢2𝑚 +
∫ 𝜃𝐻𝑝

0
𝑞∗ (𝑥)𝑑𝑥 = 𝐿∗ (𝜃𝐿𝑝 ) + (𝜃𝐻𝑝 − 𝜃𝐿𝑝 ) · (𝑢11 − 𝑢2𝑚) = 𝐿∗ (𝜃𝐻𝑝 ).

First consider the case when𝑚 = 3. We argue that if ℓ2 ≠ 𝑢11 − 𝑢2𝑚 , then 𝜆2 = 0. We only prove

the case when ℓ2 < 𝑢11 − 𝑢2𝑚 . The other case is similar. Suppose 𝜆2 > 0, the ironed virtual surplus

function 𝐽 (𝜂,𝜆) can be written as follows (denote 𝛼 = 𝑢11 − 𝑢2𝑚):

𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) = �̃�− (𝜃 ) · min{𝑞, 𝛼} + �̃�+ (𝜃 ) · max{𝑞 − 𝛼, 0} − 𝜂𝑞 + 𝜆2 · min{𝑞 − ℓ2, 0}
For every fixed 𝜃 , the function 𝐽 (𝜂,𝜆) (·, 𝜃 ) is continuous and 3-piecewise-linear. Thus at least one

of the four values −𝑢2𝑚 , ℓ2, 𝑢11 − 𝑢2𝑚 , and 𝑢11 must be in arg max𝑞∈[−𝑢2𝑚,𝑢11 ] 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ). We also

have

𝜕𝐽 (𝜂,𝜆)

𝜕𝑞
(𝑞, 𝜃 ) =


�̃�− (𝜃 ) − 𝜂 + 𝜆2, 𝑞 < ℓ2

�̃�− (𝜃 ) − 𝜂, 𝑞 ∈ (ℓ2, 𝛼)
�̃�+ (𝜃 ) − 𝜂, 𝑞 > 𝛼

Define 𝜙1 (𝜃 ) = �̃�− (𝜃 ) − 𝜂 + 𝜆2, 𝜙2 (𝜃 ) = �̃�− (𝜃 ) − 𝜂 and 𝜙3 (𝜃 ) = �̃�+ (𝜃 ) − 𝜂. By Definition 8,

𝜑− (𝜃 ) − 𝜑+ (𝜃 ) = 𝑓 (𝜃 ) > 0,∀𝜃 ∈ [0, 1]. Thus by Lemma 21, �̃�− (𝜃 ) ≥ �̃�+ (𝜃 ),∀𝜃 ∈ [0, 1]. Thus
𝜙1 (𝜃 ) > 𝜙2 (𝜃 ) ≥ 𝜙3 (𝜃 ),∀𝜃 ∈ [0, 1]. We notice that −𝑢2𝑚 ∈ arg max𝑞 𝐽

(𝜂,𝜆) (𝑞, 𝜃 ) iff 𝜙1 (𝜃 ) ≤ 0.

Since 𝑞∗ (𝜃 ) = −𝑢2𝑚,∀𝜃 ∈ [0, 𝜃𝐿𝑝 ) and q∗ is a pointwise maximizer of 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) almost everywhere

(the first property of Theorem 10), we have 𝜙1 (0) ≤ 0. Since 𝜆2 > 0, 𝜙2 (0) < 0. Similarly, since

𝑢11 ∈ arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ) iff 𝜙3 (𝜃 ) ≥ 0, we have 𝜙3 (1) ≥ 0. Thus 𝜙2 (1) ≥ 0. By Footnote 17, 𝜙2 is

a continuous function on [0, 1]. Let 𝜀 = 𝜆2/2 > 0, then there exists an opened interval 𝐼 such that

𝜙2 (𝜃 ) ∈ (−𝜀, 0),∀𝜃 ∈ 𝐼 . At interval 𝐼 , 𝜙1 (𝜃 ) = 𝜙2 (𝜃 ) + 𝜆2 > 0, and 𝜙3 (𝜃 ) ≤ 𝜙2 (𝜃 ) < 0. This implies

that for every 𝜃 ∈ 𝐼 , arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ) contains a single value 𝑞 = ℓ2, which contradicts with the

fact that q∗ is a pointwise maximizer of 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) almost everywhere.

Thus, if 𝜆∗ > 0, then ℓ2 = 𝑢11 − 𝑢2𝑚 =⇒ 𝑢12 − 𝑢22 = 𝑢11 − 1. Moreover, by the second property

of Theorem 10, we have

0 = Δ2 = 𝐿∗ (𝜃𝐻𝑝 ) − 𝐿2 (𝜃𝐻𝑝 ) = 𝑢2𝑚 − 𝑝 − 𝑢2,𝑚−1 =⇒ 𝑝 = 1 − 𝑢22
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Now consider the case when 𝑚 ≥ 4. We prove that 𝜆 = 0 and thus 𝜆∗ = 𝜆2 = 0. For every

𝑘 ∈ {3, . . . ,𝑚 − 2}, since 𝜃𝐿𝑝 ≤ 𝜃1 and 𝜃
𝐻
𝑝 ≥ 𝜃2, we have 𝐿

∗ (𝜃𝐿𝑝 ) ≥ 𝐿2 (𝜃𝐿𝑝 ) > 𝐿𝑘 (𝜃𝐿𝑝 ) and 𝐿∗ (𝜃𝐻𝑝 ) ≥
𝐿𝑚−1 (𝜃𝐻𝑝 ) > 𝐿𝑘 (𝜃𝐻𝑝 ). For every𝑘 ∈ {3, . . . ,𝑚−2}, Δ𝑘 > 0. By the second property of Theorem 10, we

have 𝜆𝑘 = 0. For 𝑘 = 2, if ℓ2 ≥ 𝑢11 −𝑢2𝑚 , then 𝜃 ∗
2
= 𝜃𝐻𝑝 . We thus have 𝐿∗ (𝜃𝐻𝑝 ) ≥ 𝐿𝑚−1 (𝜃𝐻𝑝 ) > 𝐿2 (𝜃𝐻𝑝 ),

since 𝑚 ≥ 4. By the second property of Theorem 10, 𝜆2 = 0. Similarly, if ℓ𝑚−1 < 𝑢11 − 𝑢2𝑚 ,

𝜆𝑚−1 = 0. If ℓ𝑚−1 = 𝑢11 − 𝑢2𝑚 , we have 𝜃
𝐻
𝑝 > 𝜃2 (see Figure 9c for a proof by graph). We have

𝐿∗ (𝜃𝐻𝑝 ) = 𝐿𝑚 (𝜃𝐻𝑝 ) > 𝐿𝑚−1 (𝜃𝐻𝑝 ), which implies that 𝜆𝑚−1 = 0. Since 𝜆𝑘 = 0,∀𝑘 ∈ {3, . . . ,𝑚 − 2},
then 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) can be written as

𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) = �̃�− (𝜃 ) ·min{𝑞, 𝛼}+�̃�+ (𝜃 ) ·max{𝑞−𝛼, 0}−𝜂𝑞+𝜆2 ·min{𝑞−ℓ2, 0}+𝜆𝑚−1 ·min{𝑞−ℓ𝑚−1, 0}
Now suppose 𝜆2 > 0 and 𝜆𝑘−1 > 0. The case when 𝜆2 > 0 = 𝜆𝑘−1 and 𝜆𝑘−1 > 0 = 𝜆2 follows from

a similar argument where either the term 𝜆2 · min{𝑞 − ℓ2, 0} or 𝜆𝑚−1 · min{𝑞 − ℓ𝑚−1, 0} is redundant.
Since 𝜆2 > 0 and 𝜆𝑘−1 > 0, we have ℓ2 < 𝑢11 − 𝑢2𝑚 < ℓ𝑚−1. Thus

𝜕𝐽 (𝜂,𝜆)

𝜕𝑞
(𝑞, 𝜃 ) =


�̃�− (𝜃 ) − 𝜂 + 𝜆2 + 𝜆𝑚−1, 𝑞 < ℓ2

�̃�− (𝜃 ) − 𝜂 + 𝜆𝑚−1, 𝑞 ∈ (ℓ2, 𝛼)
�̃�+ (𝜃 ) − 𝜂 + 𝜆𝑚−1, 𝑞 ∈ (𝛼, ℓ𝑚−1)
�̃�+ (𝜃 ) − 𝜂, 𝑞 > ℓ𝑚−1

Similar to the proof for the𝑚 = 3 case, since 𝜆2 > 0, we can find an opened interval 𝐼 such that

for every 𝜃 ∈ 𝐼 , arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ) contains a single value 𝜃 = ℓ2, which contradicts with the fact

that q∗ is a pointwise maximizer of 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) almost everywhere.
23
Thus we have 𝜆𝑘 = 0,∀𝑘 ∈

{2, . . . ,𝑚 − 1}.

Property 2. In property 1, we show that when𝑚 = 3, either 𝜆2 = 0 or ℓ2 = 𝑢11 −𝑢2𝑚 . When𝑚 ≥ 4,

𝜆 = 0. Recall that 𝜂∗ = 𝜂 and 𝜆∗ = 𝜆2. In any of the scenarios, the ironed virtual surplus function

𝐽 (𝜂,𝜆) can be expressed as follows (recall that 𝛼 = 𝑢11 − 𝑢2𝑚):

𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) = �̃�− (𝜃 ) · min{𝑞, 𝛼} + �̃�+ (𝜃 ) · max{𝑞 − 𝛼, 0} − 𝜂∗ · 𝑞 + 𝜆∗ (𝑞 − 𝛼) · 1[𝑞 ≤ 𝛼]

=

{
(�̃�− (𝜃 ) − 𝜂∗ + 𝜆∗) · 𝑞 − 𝜆∗𝛼, 𝑞 ≤ 𝛼

(�̃�+ (𝜃 ) − 𝜂∗) · 𝑞 + (�̃�− (𝜃 ) − �̃�+ (𝜃 )) · 𝛼, 𝑞 > 𝛼

(16)

For every fixed 𝜃 , the function 𝐽 (𝜂,𝜆) (·, 𝜃 ) is continuous and 2-piecewise-linear. Thus at least one of

the three values −𝑢2𝑚 , 𝑢11 − 𝑢2𝑚 , and 𝑢11 must be in arg max𝑞∈[−𝑢2𝑚,𝑢11 ] 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ). We study the

set arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ) by a case analysis.

• �̃�− (𝜃 )−𝜂∗+𝜆∗ ≤ 0: Since 𝜆∗ ≤ 0, �̃�+ (𝜃 )−𝜂∗ ≤ �̃�− (𝜃 )−𝜂∗ ≤ 0. Thus−𝑢2𝑚 ∈ arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ).

On the other hand, −𝑢2𝑚 ∈ arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ) clearly implies that �̃�− (𝜃 ) − 𝜂∗ + 𝜆∗ ≤ 0.

• �̃�− (𝜃 ) − 𝜂∗ + 𝜆∗ ≥ 0 and �̃�+ (𝜃 ) − 𝜂∗ ≤ 0: Now 𝑞 = 𝑢11 − 𝑢2𝑚 maximizes 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ), and vice

versa.

• �̃�+ (𝜃 ) − 𝜂∗ ≥ 0: Then �̃�− (𝜃 ) − 𝜂∗ + 𝜆∗ ≥ �̃�+ (𝜃 ) − 𝜂∗ ≥ 0. Thus 𝑢11 ∈ arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ). On

the other hand, 𝑢11 ∈ arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ) clearly implies that �̃�+ (𝜃 ) − 𝜂∗ ≥ 0.

Thus by the first property of Theorem 10, q∗ is a pointwise maximizer of the ironed virtual surplus

function almost everywhere. Thus property 2 holds almost everywhere. Moreover, if there exists

some 𝜃0 ∈ [0, 1] such that 𝑞∗ (𝜃0) ∉ arg max𝑞 𝐽
(𝜂,𝜆) (𝑞, 𝜃 ). Suppose 𝑞∗ (𝜃0) = −𝑢2𝑚 . Then according

23
If 𝜆2 = 0 and 𝜆𝑚−1 > 0, we reach a contradiction by finding an opened interval 𝐼 such that for every 𝜃 ∈ 𝐼 ,

arg max𝑞 𝐽 (𝜂,𝜆) (𝑞, 𝜃 ) contains a single value 𝜃 = ℓ𝑚−1.
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to the above case analysis, �̃�− (𝜃0) − 𝜂∗ + 𝜆∗ > 0. Since �̃�− (·) is continuous at 𝜃0, there exists a

neighborhood 𝐼 of𝜃0 such that �̃�
− (𝜃0)−𝜂∗+𝜆∗ > 0,∀𝜃 ∈ 𝐼 .24 Thus−𝑢2𝑚 ∉ arg max𝑞 𝐽

(𝜂,𝜆) (𝑞, 𝜃 ),∀𝜃 ∈
𝐼 , contradicting with the fact that q∗ is a pointwise maximizer of the ironed virtual surplus function

almost everywhere. Similarly, we reach a contradition when 𝑞∗ (𝜃0) = 𝑢11 − 𝑢2𝑚 or 𝑢11. Hence, q∗

is a pointwise maximizer of 𝐽 (𝜂,𝜆) everywhere on [0, 1], which implies that property 2 holds for

every 𝜃 ∈ [0, 1].

Property 3. q∗ only takes three different values −𝑢2𝑚, 𝑢11 − 𝑢2𝑚, 𝑢11. Moreover, 𝑞∗
−1 (−𝑢2𝑚) = 0,

𝑞∗
−1 (𝑢11 − 𝑢2𝑚) = 𝜃𝐿𝑝 , 𝑞

∗−1 (𝑢11) = 𝜃𝐻𝑝 . Thus by the third property of Theorem 10, q∗ satisfies the
generalized pooling property iff 𝜃𝐿𝑝 is not in the interior of any ironed interval of �̃�− (·), and 𝜃𝐻𝑝 (·)
is not in the interior of any ironed interval of �̃�+

.

Sufficient Condition. Next, we prove that the properties in the statement are sufficient. Given

a menu M that contains only the fully informative experiment with with price 𝑝 > 0. Suppose

there exist multiplier 𝜂∗ and 𝜆∗ ≥ 0 that satisfies all properties in the statement. We prove that q∗
(defined in Equation (14)) is an optimal solution to the program in Figure 3.

Firstly, since 𝑝 ≤ 𝑝 , due to the analysis for Property 1, we know that 𝜃𝐿𝑝 ≤ 𝜃1 and 𝜃
𝐻
𝑝 ≥ 𝜃2. Thus

𝜃𝐿𝑝 < 𝜃𝐻𝑝 and q∗ is a feasible solution of the program, which induces strictly positive revenue.

To apply Theorem 10, we choose multipliers 𝜂 ′ and 𝜆′ = {𝜆′
𝑘
}𝑘∈{2,...,𝑚−1} ≥ 0, and prove that

all three properties in the statement of Theorem 10 are satisfied for q∗ and (𝜂 ′, 𝜆′), which implies

that q∗ is an optimal solution. Let 𝜂 ′ = 𝜂∗. When𝑚 = 3, let 𝜆′
2
= 𝜆∗. When𝑚 ≥ 4, let 𝜆′

𝑘
= 0 for all

𝑘 ∈ {2, . . . ,𝑚 − 1}.
For the first property of Theorem 10, we notice that the ironed virtual surplus function 𝐽 (𝜂

′,𝜆′) (𝑞, 𝜃 )
satisfies Equation (16). As argued earlier in the case analysis in property 2, when property 2 of The-

orem 9 is satisfied, q∗ is a pointwise maximizer of 𝐽 (𝜂
′,𝜆′) (𝑞, 𝜃 ). The first property of Theorem 10 is

satisfied.

For the second property of Theorem 10, according to the choice of 𝜆′, we only have to argue

that the equality holds when𝑚 = 3 and 𝜆∗ > 0. For other scenarios, the property trivially holds

since the corresponding multiplier 𝜆′
𝑘
is 0. Thus by property 1 (in the statement of Theorem 9),

𝑢12 − 𝑢22 = 𝑢11 − 1 and 𝑝 = 1 − 𝑢22. We follow the notation 𝜃 ∗
𝑘
and Δ𝑘 as used for proving property

1 is necessary. By Equation (15),

Δ2 = 𝐿∗ (𝜃 ∗
2
) − 𝐿2 (𝜃 ∗2) = 𝐿∗ (𝜃𝐻𝑝 ) − 𝐿2 (𝜃𝐻𝑝 ) = 𝑢23 − 𝑝 − 𝑢22 = 0, (𝑢23 = 1 as𝑚 = 3).

Thus the second property of Theorem 10 is satisfied. As argued above, q∗ satisfies the generalized
pooling property iff 𝜃𝐿𝑝 is not in the interior of any ironed interval of �̃�−

, and 𝜃𝐻𝑝 is not in the

interior of any ironed interval of �̃�+
. Thus the third property of Theorem 10 is also satisfied. Hence,

q∗ and (𝜂 ′, 𝜆′) satisfy all properties in Theorem 10, which implies that q∗ is an optimal solution. 2

Proof of Theorem 4: We are going to show that there exist 𝑝 > 0 and multipliers 𝜂∗, 𝜆∗ ≥ 0 that

satisfy all properties of Theorem 9. Then by Theorem 9, selling the complete information at price 𝑝

is the optimal menu.

We notice that in Definition 7, if 𝜑 (·) is non-decreasing, 𝐻 (·) is a convex function. Thus 𝐺 (𝑟 ) =
𝐻 (𝑟 ),∀𝑟 ∈ [0, 1] and �̃� (𝜃 ) = 𝜑 (𝜃 ),∀𝜃 ∈ [0, 1]. Since 𝜑− (·) and 𝜑+ (·) are both monotonically

non-decreasing, we have 𝜑− (𝜃 ) = �̃�− (𝜃 ) and 𝜑+ (𝜃 ) = �̃�+ (𝜃 ),∀𝜃 ∈ [0, 1].
Define function𝑊 : [0, 1] → R as:𝑊 (𝑝) = 𝜑− ( 𝑝

𝑢11

) − 𝜑+ (1 − 𝑝

𝑢2𝑚
). Then by Definition 8, we

have𝑊 (0) = 𝜑− (0) − 𝜑+ (1) = −1. If 𝜑− ( 𝑝

𝑢11

) ≥ 𝜑+ (1 − 𝑝

𝑢2𝑚
),𝑊 (𝑝) ≥ 0. Since both 𝜑−

and 𝜑+
are

24
When 𝜃0 = 0 (or 1), �̃�− ( ·) is right-continuous (or left-continuous) at 𝜃0. We choose 𝐼 to be [0, 𝛿) or (1 − 𝛿, 1] for some

sufficiently small 𝛿 > 0.
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continuous,𝑊 is also continuous. Thus there exists 𝑝0 ∈ (0, 𝑝] such that𝑊 (𝑝0) = 0. Consider

𝑝 = 𝑝0 and multipliers 𝜂∗ = 𝜑− ( 𝑝0

𝑢11

) = 𝜑+ (1 − 𝑝0

𝑢2𝑚
), 𝜆∗ = 0. Property 1 of Theorem 9 holds since

𝑝0 ≤ 𝑝 and 𝜆∗ = 0. Property 3 of Theorem 9 holds since neither 𝜑− (·) nor 𝜑+ (·) requires ironing. For
property 2 of Theorem 9, since 𝜃𝐿𝑝0

=
𝑝0

𝑢11

and 𝜃𝐻𝑝0

= 1− 𝑝0

𝑢2𝑚
, by our choice of 𝜂∗, 𝜑− (𝜃𝐿𝑝0

) −𝜂∗ = 0 and

𝜑+ (𝜃𝐻𝑝0

) −𝜂∗ = 0. Property 2 then follows from the fact that 𝜑− (·) and 𝜑+ (·) are both monotonically

non-decreasing.

2

For several standard distributions, 𝜑− (·) and 𝜑+ (·) are both monotonically non-decreasing. The

following examples are some applications of Theorem 4.

Example 1 (Uniform Distribution). Consider the uniform distribution𝑈 [0, 1]. Then 𝜑− (𝜃 ) = 2𝜃

and 𝜑+ (𝜃 ) = 2𝜃 − 1 are both increasing functions. Thus when𝑚 = 3 and 𝑢12 −𝑢22 = 𝑢11 − 1, selling the

complete information is optimal. When 𝑢11 = 𝑢2𝑚 = 1, 𝜑− ( 𝑝

𝑢11

) ≥ 𝜑+ (1 − 𝑝

𝑢2𝑚
) if and only if 𝑝 ≥ 1

4
.

In other words, if 𝑢22 ≤ 3(1 − 𝑢12) and 𝑢1,𝑚−1 ≤ 3(1 − 𝑢2,𝑚−1), selling the complete information is

optimal.

Example 2 (Exponential Distributions Restricted on [0, 1]). 𝑓 (𝜃 ) = 𝑐 · 𝜆𝑒−𝜆𝜃 , where 𝑐 =

1 − 𝑒−𝜆 . 𝑓 ′(𝜃 ) = −𝑐𝜆2 · 𝑒−𝜆𝜃 . When 𝜆 ≤ 2, (𝜑−) ′(𝜃 ) = 2𝑓 (𝜃 ) + 𝜃 𝑓 ′(𝜃 ) = 𝑐𝜆(2 − 𝜃𝜆) · 𝑒−𝜆𝜃 ≥ 0. And

(𝜑+) ′(𝜃 ) = 2𝑓 (𝜃 ) + (𝜃 − 1) 𝑓 ′(𝜃 ) > 0, since 𝑓 ′(𝜃 ) < 0. Selling the complete information is optimal if

either conditions in Theorem 4 is satisfied.

Example 3 (Normal Distributions Restricted on [0, 1]). Consider the normal distribution

N(0, 𝜎2) restricted on [0, 1]. 𝑓 (𝜃 ) = 𝑐 · exp(− 𝜃 2

2𝜎2
), where 𝑐 = 1/

∫
1

0

1

𝜎
√

2𝜋
· exp(− 𝜃 2

2𝜎2
)𝑑𝜃 . 𝑓 ′(𝜃 ) =

−𝑐 · 𝜃
𝜎2

exp(− 𝜃 2

2𝜎2
) < 0. When 𝜎2 ≥ 1

2
, (𝜑−) ′(𝜃 ) = 2𝑓 (𝜃 ) + 𝜃 𝑓 ′(𝜃 ) = 𝑐 (2 − 𝜃

𝜎2
) · exp(− 𝜃 2

2𝜎2
) ≥ 0. And

(𝜑+) ′(𝜃 ) = 2𝑓 (𝜃 ) + (𝜃 − 1) 𝑓 ′(𝜃 ) > 0, since 𝑓 ′(𝜃 ) < 0. Selling the complete information is optimal if

either conditions in Theorem 4 is satisfied.

E MISSING DETAILS FROM SECTION 5
E.1 Missing Details from Section 5.1

Proof of Theorem 6: Let 𝛽 =
∫ ∞

0

1

𝑟 (𝑥)𝑑𝑥 . We first show that for any distribution 𝐷 ,
Rev(M,𝐷)
FRev(𝐷) ≤ 𝛽 . In

fact, we have

Rev(M, 𝐷) = E
𝜃∼𝐷

[𝑡 (𝜃 )] =
∫ ∞

0

Pr

𝜃∼𝐷
[𝑡 (𝜃 ) ≥ 𝑥]𝑑𝑥 ≤

∫ ∞

0

Pr

𝜃∼𝐷
[𝑈 (𝜃 ) ≥ 𝑟 (𝑥)]𝑑𝑥

≤
∫ ∞

0

FRev(𝐷)
𝑟 (𝑥) 𝑑𝑥 = 𝛽 · FRev(𝐷)

Here the first inequality follows from the definition of 𝑟 (𝑥): 𝑡 (𝜃 ) ≥ 𝑥 implies that𝑈 (𝜃 ) ≥ 𝑟 (𝑥).
For the second inequality, we notice that by the definition of𝑈 (𝜃 ), the buyer will purchase the fully
informative experiment at price 𝑝 if and only if𝑈 (𝜃 ) ≥ 𝑝 . Thus FRev(𝐷) ≥ 𝑟 (𝑥) · Pr[𝑈 (𝜃 ) ≥ 𝑟 (𝑥)].
Now we prove that Ratio(M) ≥ 𝛽 . In particular, we show that for any 𝛽 ′ < 𝛽 there exists a

distribution 𝐷 such that Rev(M, 𝐷) > 𝛽 ′ · FRev(𝐷).
Since 1/𝑟 (𝑥) is weakly decreasing, non-negative, and

∫ ∞
0

1

𝑟 (𝑥)𝑑𝑥 = 𝛽 , there exist 0 = 𝑡0 < 𝑡1 <

· · · < 𝑡𝑁 < ∞ with 0 = 𝑟 (𝑡0) < 𝑟 (𝑡1) < · · · < 𝑟 (𝑡𝑁 ) < ∞ such that
25

𝛽 ′′ =
𝑁∑
𝑘=1

𝑡𝑘 − 𝑡𝑘−1

𝑟 (𝑡𝑘 )
> 𝛽 ′.

25
We notice that𝑈 (0) = 0 as the payment 𝑡 ( ·) is non-negative. Thus 𝑟 (𝑡0) = 𝑟 (0) = 0.
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Let 𝜀 > 0 be small enough so that 𝛽 ′′ > (1 + 𝜀)𝛽 ′ and 𝑟 (𝑡𝑘+1) > (1 + 𝜀)𝑟 (𝑡𝑘 ) for all 1 ≤ 𝑘 < 𝑁 . By

the definition of 𝑟 (·), we can choose a sequence of types {𝜃 (𝑘) }𝑘∈[𝑁 ] in Θ such that 𝑡 (𝜃 (𝑘) ) ≥ 𝑡𝑘

and 𝑟 (𝑡𝑘 ) ≤ 𝑈 (𝜃 (𝑘) ) < (1 + 𝜀)𝑟 (𝑡𝑘 ). Then
𝑁∑
𝑘=1

𝑡𝑘 − 𝑡𝑘−1

𝑈 (𝜃 (𝑘) )
>

𝑁∑
𝑘=1

𝑡𝑘 − 𝑡𝑘−1

(1 + 𝜀)𝑟 (𝑡𝑘 )
=

𝛽 ′′

1 + 𝜀
> 𝛽 ′

For every 𝑘 ∈ [𝑁 ], let 𝜉𝑘 = 𝑈 (𝜃 (𝑘) ). We notice that𝑈 (𝜃 (𝑘) ) < (1+ 𝜀)𝑟 (𝑡𝑘 ) < 𝑟 (𝑡𝑘+1) ≤ 𝑈 (𝜃 (𝑘+1) )
for 0 ≤ 𝑘 < 𝑁 . Consider the distribution 𝐷 with support {𝜃 (1) , . . . , 𝜃 (𝑁 ) } and Pr[𝜃 = 𝜃 (𝑘) ] =

𝜉1 · ( 1

𝜉𝑘
− 1

𝜉𝑘+1

) for all 𝑘 ∈ [𝑁 ], where 𝜉𝑁+1 = ∞.

Recall that the buyer will purchase the fully informative experiment at price 𝑝 if and only if

𝑈 (𝜃 ) ≥ 𝑝 . Thus under distribution 𝐷 , it’s sufficient to consider the price 𝑝 = 𝑈 (𝜃 (𝑘) ) = 𝜉𝑘 for some

𝑘 ∈ [𝑁 ]. Since {𝑈 (𝜃 (𝑘) )}𝑘∈[𝑁 ] is a strictly increasing sequence, then the buyer will purchase at price

𝑝 = 𝜉𝑘 whenever 𝜃 ∈ {𝜃 (𝑘) , . . . , 𝜃 (𝑁 ) }, which happens with probability

∑𝑁
𝑗=𝑘

𝜉1 · ( 1

𝜉𝑘
− 1

𝜉𝑘+1

) = 𝜉1

𝜉𝑘
.

Hence we have FRev(𝐷) = 𝜉1.

Rev(M, 𝐷) =
𝑁∑
𝑘=1

𝑡 (𝜃 (𝑘) ) · Pr[𝜃 = 𝜃 (𝑘) ] =
𝑁∑
𝑘=1

𝑡𝑘 · 𝜉1 · (
1

𝜉𝑘
− 1

𝜉𝑘+1

)

= 𝜉1 ·
𝑁∑
𝑘=1

𝑡𝑘 − 𝑡𝑘−1

𝜉𝑘
> 𝛽 ′ · FRev(𝐷)

2

Proof of Lemma 8: Recall that under this environment 𝑈 (𝜃 ) =
∑

3

𝑖=1
𝜃𝑖 · 1 − max{𝜃1, 𝜃2, 𝜃3} =

1 − max{𝜃1, 𝜃2, 𝜃3} (here 𝜃3 = 1 − 𝜃1 − 𝜃2). We first construct the distribution 𝐷 based on the given

sequence {𝑦𝑘 }𝑁𝑘=1
. Let {𝑡𝑘 }𝑁𝑘=1

be a sequence of positive numbers that increases fast enough so

that: (i) (𝑡𝑘/gap𝑘 ) ·𝑈 (𝑦𝑘 ) is increasing, and (ii) 𝑡𝑘+1/𝑡𝑘 ≥ 1/𝜀 for all 1 ≤ 𝑘 < 𝑁 . Such a sequence

must exist since after 𝑡1, . . . , 𝑡𝑘−1 are decided, we can choose a large enough 𝑡𝑘 to satisfy both

properties. Let 𝛿 > 0 be any number such that 1/𝛿 > max𝑘∈[𝑁 ]{𝑡𝑘/gap𝑘 }. For every 𝑘 ∈ [𝑁 ],
define 𝑥𝑘 ∈ [0, 1]2

as 𝑥𝑘 = (𝛿𝑡𝑘/gap𝑘 ) · 𝑦𝑘 . For every 𝑘 ∈ [𝑁 ], since 𝛿𝑡𝑘/gap𝑘 < 1 and 𝑦𝑘 ∈ Θ, we
have 𝑥𝑘 ∈ Θ.

By Property 2 and 3 of the statement, 0.4 ≥
√
𝑦2

𝑘,1
+ 𝑦2

𝑘,2
≥

√
𝑦2

𝑘,1
+ (0.9𝑦𝑘,1)2

, which implies that

𝑦𝑘,1 ≤
√

0.42/1.81 < 1

3
. Similarly, 𝑦𝑘,2 < 1

3
. Let 𝑦𝑘,3 = 1 − 𝑦𝑘,1 − 𝑦𝑘,2 and 𝑥𝑘,3 = 1 − 𝑥𝑘,1 − 𝑥𝑘,2. Then

𝑈 (𝑦𝑘 ) = 1 − max{𝑦𝑘,1, 𝑦𝑘,2, 𝑦𝑘,3} = 1 − 𝑦𝑘,3 = 𝑦𝑘,1 + 𝑦𝑘,2. Moreover, since 𝛿𝑡𝑘/gap𝑘 < 1, we have

𝑥𝑘,𝑖 < 𝑦𝑘,𝑖 < 1

3
for 𝑖 = 1, 2. Thus 𝑈 (𝑥𝑘 ) = 1 − 𝑥𝑘,3 = 𝑥𝑘,1 + 𝑥𝑘,2 = (𝛿𝑡𝑘/gap𝑘 ) · 𝑈 (𝑦𝑘 ). For every

𝑘 ∈ [𝑁 ], let 𝜉𝑘 = 𝑈 (𝑥𝑘 ). Then {𝜉𝑘 }𝑁𝑘=1
is an increasing sequence due to (i).

Consider the distribution 𝐷 with support {𝑥1, . . . , 𝑥𝑁 }. Pr[𝜃 = 𝑥𝑘 ] = 𝜉1 · ( 1

𝜉𝑘
− 1

𝜉𝑘+1

) for all
𝑘 ∈ [𝑁 ], where 𝜉𝑁+1 = ∞. In the next step, we construct a sequence of experiments {Π (𝑘) }𝑘∈[𝑁 ]
and a mechanismM. For every 𝑘 ∈ [𝑁 ], define experiment Π (𝑘)

as follows:

Π (𝑘)
1 2 3

𝜔1 𝑦𝑘,1 0 1 − 𝑦𝑘,1
𝜔2 0 𝑦𝑘,2 1 − 𝑦𝑘,2
𝜔3 0 0 1

Now consider the following mechanismM. For every buyer’s type 𝜃 in the support, the buyer

chooses the experiment Π (𝑘∗)
where 𝑘∗ = arg max𝑘

{
𝑉 ∗
𝜃
(Π (𝑘) ) − 𝛿 · 𝑡𝑘

}
, and pays 𝛿 · 𝑡𝑘∗ . In other
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words, he chooses the option (with experiment Π (𝑘∗)
and price 𝛿 · 𝑡𝑘∗ ) that obtains the highest

utility, when he follows the recommendation.

Claim 5. M is IC and IR.

Proof. We first prove thatM is IR. For every buyer’s type 𝑥𝑘 , the buyer’s utility after purchasing

Π (𝑘∗)
is

𝑉𝑥𝑘 (Π (𝑘∗) ) − 𝛿 · 𝑡𝑘∗ ≥ 𝑉 ∗
𝑥𝑘
(Π (𝑘∗) ) − 𝛿 · 𝑡𝑘∗

≥ 𝑉 ∗
𝑥𝑘
(Π (𝑘) ) − 𝛿 · 𝑡𝑘

= 𝑥𝑘,1𝑦𝑘,1 + 𝑥𝑘,2𝑦𝑘,2 + 𝑥𝑘,3 − 𝛿 · 𝑡𝑘

= 𝛿𝑡𝑘 ·
(
𝑦2

𝑘,1
+ 𝑦2

𝑘,2

gap𝑘

− 1

)
+ 𝑥𝑘,3

≥ 𝑥𝑘,3

Here the second inequality follows from the definition of 𝑘∗; The first equality follows from the fact

that: under the matching utility environment, 𝑉 ∗
𝜃
(Π (𝑘) ) = 𝜃1𝑦𝑘,1 + 𝜃2𝑦𝑘,2 + 𝜃3 for every type 𝜃 ∈ Θ;

The second equality follows from the definition of 𝑥𝑘 ; The last inequality follows from Property

1 and 3 of the statement. We notice that at type 𝑥𝑘 , the buyer has value max𝑗 {
∑

𝑖 𝑥𝑘,𝑖 · 𝑢𝑖 𝑗 } =

max{𝑥𝑘,1, 𝑥𝑘,2, 𝑥𝑘,3} = 𝑥𝑘,3 before purchasing any experiment. ThusM is IR.

By the definition of M, it’s clear that M is responsive-IC. To prove that M is also IC, it suffices

to show that for any type 𝜃 from the distribution 𝐷 and any experiment Π (𝑘)
, following the

recommendation always maximizes the buyer’s utility, i.e. 𝑉𝜃 (Π (𝑘) ) = 𝑉 ∗
𝜃
(Π (𝑘) ). In fact, according

to the construction of Π (𝑘)
, when action 1 or 2 is recommended, the corresponding state (1 or

2, respectively) is fully revealed and thus following the recommendation clearly maximizes the

buyer’s expected payoff. When action 3 is recommended, the buyer with type 𝑥𝑞 (for some 𝑞 ∈ [𝑁 ])
has expected payoff 𝑥𝑞,1 (1 − 𝑦𝑘,1), 𝑥𝑞,2 (1 − 𝑦𝑘,2) and 𝑥𝑞,3, by choosing action 1, 2 and 3 respectively.

Since 𝑥𝑞,1 < 1

3
and 𝑥𝑞,2 < 1

3
, we have 𝑥𝑞,3 > 1

3
≥ max{𝑥𝑞,1 (1 − 𝑦𝑘,1), 𝑥𝑞,2 (1 − 𝑦𝑘,2)}. Thus the buyer

will always follow the recommendation for every experiment Π (𝑘)
. SinceM is responsive-IC,M is

also IC. □

Back to the proof of Lemma 8. Now we compute Rev(M, 𝐷). We notice that for every 𝑘 ∈ [𝑁 ]
and every type 𝜃 ∈ Θ,

𝑉 ∗
𝜃
(Π (𝑘) ) = 𝜃1 · 𝑦𝑘,1 + 𝜃2 · 𝑦𝑘,2 + 𝜃3 .

Consider any buyer’s type 𝑥𝑘 . For any 1 ≤ 𝑞 < 𝑘 , by the definition of 𝑥𝑘 and gap𝑘 , we have

𝑉 ∗
𝑥𝑘
(Π (𝑘) ) −𝑉 ∗

𝑥𝑘
(Π (𝑞) ) = 𝑥𝑘,1 · (𝑦𝑘,1 − 𝑦𝑞,1) + 𝑥𝑘,2 · (𝑦𝑘,2 − 𝑦𝑞,2)

=
𝛿𝑡𝑘

gap𝑘

· {𝑦𝑘,1 · (𝑦𝑘,1 − 𝑦𝑞,1) + 𝑦𝑘,2 · (𝑦𝑘,2 − 𝑦𝑞,2)}

≥ 𝛿𝑡𝑘 > 𝛿𝑡𝑘 − 𝛿𝑡𝑞

Recall that inmechanismM, the buyer chooses the experimentΠ (𝑞)
thatmaximizes

{
𝑉 ∗
𝜃
(Π (𝑞) ) − 𝛿 · 𝑡𝑞

}
.

Thus the above inequality implies that in M, the buyer must purchase an experiment Π (𝑞)
where

𝑞 ≥ 𝑘 . Since {𝑡𝑘 }𝑁𝑘=1
is an increasing sequence, the buyer’s payment is at least 𝛿 · 𝑡𝑘 . By Theorem 6,
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Rev(M, 𝐷) ≥
𝑁∑
𝑘=1

𝛿 · 𝑡𝑘 · 𝜉1 · (
1

𝜉𝑘
− 1

𝜉𝑘+1

) = 𝛿𝜉1 ·
𝑁∑
𝑘=1

𝑡𝑘 − 𝑡𝑘−1

𝜉𝑘

≥ (1 − 𝜀)𝜉1 ·
𝑁∑
𝑘=1

𝛿𝑡𝑘

𝜉𝑘
= (1 − 𝜀) ·

𝑁∑
𝑘=1

gap𝑘

𝑦𝑘,1 + 𝑦𝑘,2
· FRev(𝐷)

≥ 3

2

(1 − 𝜀) ·
𝑁∑
𝑘=1

gap𝑘 · FRev(𝐷)

Here the second inequality follows from 𝑡𝑘+1/𝑡𝑘 ≥ 1/𝜀. The third inequality follows from the

fact that both 𝑦𝑘,1 and 𝑦𝑘,2 are at most
1

3
, as shown in the beginning of the proof. The second

equality follows from 𝜉𝑘 = 𝑈 (𝑥𝑘 ) = (𝛿𝑡𝑘/gap𝑘 ) ·𝑈 (𝑦𝑘 ) = (𝛿𝑡𝑘/gap𝑘 ) · (𝑦𝑘,1 +𝑦𝑘,2) and the fact that
FRev(𝐷) = 𝜉1, which is proved in Theorem 6. We include the proof here for completeness. Recall

that a buyer with type 𝑥 will purchase the fully informative experiment at price 𝑝 if and only if

𝑈 (𝑥) ≥ 𝑝 . Thus under distribution 𝐷 , it’s sufficient to consider the price 𝑝 = 𝑈 (𝑥𝑘 ) = 𝜉𝑘 for some

𝑘 ∈ [𝑁 ]. Since {𝑈 (𝑥𝑘 )}𝑘∈[𝑁 ] is a strictly increasing sequence, then the buyer will purchase at

price 𝑝 = 𝜉𝑘 whenever 𝑥 ∈ {𝑥𝑘 , . . . , 𝑥𝑁 }, which happens with probability

∑𝑁
𝑗=𝑘

𝜉1 · ( 1

𝜉𝑘
− 1

𝜉𝑘+1

) = 𝜉1

𝜉𝑘
.

Hence, FRev(𝐷) = 𝜉1.

The proof is done by noticing that Rev(M, 𝐷) ≤ OPT(𝐷), sinceM is IC and IR by Claim 5. 2

Proof of Theorem 5: For any integer 𝑁 , we construct a sequence {𝑦𝑘 }𝑁𝑘=1
that satisfies all three

properties in the statement of Lemma 8, and gap𝑘 = Θ(𝑘−6/7). Then by Lemma 8, there exists a

distribution 𝐷 with support size 𝑁 such that (by choosing 𝜀 = 1

3
)

OPT(𝐷)
FRev(𝐷) ≥

𝑁∑
𝑘=1

gap𝑘 = Ω(
𝑁∑
𝑘=1

𝑘−6/7) = Ω(𝑁 1/7)

All the points {𝑦𝑘 }𝑁𝑘=1
are placed in a sequence of “shells”. As 𝑘 goes larger, 𝑦𝑘 stays in a shell with

a larger and larger radius. For every 𝑖 = 1, . . . , 𝑀 , the 𝑖-th shell has radius 0.3 +∑𝑖
ℓ=1

ℓ−3/2/𝛼 , where
𝛼 = 0.1 ·∑𝑀

ℓ=1
ℓ−3/2

. For every shell 𝑖 , let 𝑟𝑖 be the arc from angle arctan( 9

10
) to angle arctan( 10

9
).The

𝑖-th shell contains 𝑖3/4
points. All points are evenly spread in the arc 𝑟𝑖 , so that angle between any

two of them is at least 𝑐 · 𝑖−3/4
for some absolute constant 𝑐 .

We notice that the radius of every shell is in the range [0.3, 0.4]. Thus any point 𝑦𝑘 on each shell

satisfies𝑦𝑘,1+𝑦𝑘,2 ≤ 1 and | |𝑦𝑘 | |2 =
√
𝑦2

𝑘,1
+ 𝑦2

𝑘,2
∈ [0.3, 0.4]. Moreover, according to the definition of

𝑟𝑖 , all points𝑦𝑘 on this arc must satisfy
𝑦𝑘,1
𝑦𝑘,2

∈ [ 9

10
, 10

9
]. It remains to analyze gap𝑘 = min0≤ 𝑗<𝑘 {(𝑦𝑘,1−

𝑦 𝑗,1) ·𝑦𝑘,1+ (𝑦𝑘,2−𝑦 𝑗,2) ·𝑦𝑘,2} = min0≤ 𝑗<𝑘 {𝑦𝑘 · (𝑦𝑘 −𝑦 𝑗 )}. We have that𝑦 𝑗 ·𝑦𝑘 = | |𝑦 𝑗 | |2 · | |𝑦𝑘 | |2 ·cos(𝛼)
where 𝛼 is the angle between 𝑦𝑘 and 𝑦 𝑗 . Let 𝑖 and 𝑖 ′ be the shell that 𝑦𝑘 and 𝑦 𝑗 are placed in

respectively. Then 𝑖 ′ ≤ 𝑖 . Suppose 𝑖 ′ = 𝑖 . Since 𝛼 = Ω(𝑖−3/4), we have cos(𝛼) = 1 − Ω(𝑖−3/2)
(because cos(𝛼) = 1−𝛼2/2+𝛼4/24− . . .). (𝑦𝑘 −𝑦 𝑗 ) ·𝑦𝑘 = | |𝑦𝑘 | |22 ·Ω(𝑖−3/2) = Ω(𝑖−3/2). Now suppose

𝑖 ′ < 𝑖 . | |𝑦𝑘 | |2 − ||𝑦 𝑗 | |2 =
∑𝑖

ℓ=𝑖′+1
ℓ−3/2/𝛼 ≥ 𝑖−3/2/𝛼 . Since ∑∞

ℓ=1
ℓ−3/2

converges, 𝛼 = 0.1 · ∑𝑀
ℓ=1

ℓ−3/2

is bounded by some absolute constant. Thus

(𝑦𝑘 − 𝑦 𝑗 ) · 𝑦𝑘 ≥ ||𝑦𝑘 | |22 − ||𝑦 𝑗 | |2 | |𝑦𝑘 | |2 ≥ 0.3( | |𝑦𝑘 | |2 − ||𝑦 𝑗 | |2) = Ω(𝑖−3/2),
where the second inequality follows from | |𝑦 𝑗 | |2 ≥ 0.3. Combining both cases, we have proved

that gap𝑘 = Θ(𝑖−3/2). Since the first 𝑖 shells together contain ∑𝑖
ℓ=1

𝑖3/4 = Θ(𝑖7/4) points, we have
𝑘 = Θ(𝑖7/4) and gap𝑘 = Θ(𝑘−6/7). 2
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E.2 Missing Details from Section 5.2
The following observation directly follows from the definition of responsive mechanisms.

Observation 6. In the matching utilities environment, a mechanismM is responsive if and only

if 𝜃𝑖𝜋𝑖𝑖 (𝜃 ) ≥ 𝜃 𝑗𝜋 𝑗𝑖 (𝜃 ),∀𝜃 ∈ 𝑇, 𝑖, 𝑗 ∈ [𝑛]. Here 𝜃𝑛 = 1 − ∑𝑛−1

𝑖=1
𝜃𝑖 .

Proof of Lemma 9: Let M be any optimal responsive mechanism. Then the buyer’s value for

experiment 𝐸 (𝜃 ) is (𝜃𝑛 = 1 − ∑𝑛−1

𝑖=1
𝜃𝑖 ):

𝑉 ∗
𝜃
(𝐸 (𝜃 )) =

𝑛∑
𝑖=1

𝜃𝑖𝜋𝑖 (𝜃 ) =
𝑛−1∑
𝑖=1

𝜃𝑖 · (𝜋𝑖 (𝜃 ) − 𝜋𝑛 (𝜃 )) + 𝜋𝑛 (𝜃 ) (17)

Now for every type 𝜃 , let 𝑐 (𝜃 ) = 1 − max𝑖 {𝜋𝑖 (𝜃 )} ≥ 0. For every 𝑖 ∈ [𝑛], we arbitrarily move a

total mass of 𝑐 (𝜃 ) from {𝜋𝑖 𝑗 (𝜃 )} 𝑗≠𝑖 to 𝜋𝑖𝑖 (𝜃 ). We also increase the payment of type 𝜃 by 𝑐 (𝜃 ). Let
M ′ = {𝐸 ′(𝜃 ), 𝑡 ′(𝜃 )}𝜃 ∈Θ be the induced mechanism. By Observation 6,M ′

is responsive sinceM
is responsive and 𝜋𝑖𝑖 (𝜃 ) is (weakly) increased while 𝜋𝑖 𝑗 (𝜃 ) is (weakly) decreased for 𝑖 ≠ 𝑗 .

Moreover, for every 𝜃 ∈ Θ, the buyer’s utility after purchasing 𝐸 ′(𝜃 ), 𝑉 ∗
𝜃
(𝐸 ′(𝜃 )) − 𝑡 ′(𝜃 ), is the

same as𝑉 ∗
𝜃
(𝐸 (𝜃 )) − 𝑡 (𝜃 ). SinceM is IC, IR,M ′

is also IC, IR. And Rev(M ′) ≥ Rev(M). ThusM ′

is also the optimal responsive mechanism. The proof is finished by noticing thatM ′
satisfies the

property in the statement due to the choice of 𝑐 (𝜃 ). 2
Proof of Observation 1: For any 𝜃, 𝜃 ′ ∈ Θ, since the mechanism is responsive, IC and IR, we have

𝐺 (𝜃 ′) −𝐺 (𝜃 ) ≥ [𝑉 ∗
𝜃 ′ (𝐸 (𝜃 )) − 𝑡 (𝜃 )] − [𝑉 ∗

𝜃
(𝐸 (𝜃 )) − 𝑡 (𝜃 )]

=𝑉 ∗
𝜃 ′ (𝐸 (𝜃 )) −𝑉 ∗

𝜃
(𝐸 (𝜃 )) =

𝑛−1∑
𝑖=1

(𝜋𝑖 (𝜃 ) − 𝜋𝑛 (𝜃 )) (𝜃 ′𝑖 − 𝜃𝑖 )

Taking derivative on both sides at 𝜃 ′ = 𝜃 finishes the proof. 2

Proof of Lemma 10: For any 𝜃 , the buyer’s utility function𝐺 (𝜃 ) is the maximum of a collection of

linear functions over 𝜃 . Thus 𝐺 (·) is convex. Moreover, for any 𝜃, 𝜃 ′ ∈ Θ,

𝐺 (𝜃 ) −𝐺 (𝜃 ′) ≤ [𝑉𝜃 (𝐸 (𝜃 )) − 𝑡 (𝜃 )] − [𝑉𝜃 ′ (𝐸 (𝜃 )) − 𝑡 (𝜃 )] ≤ 𝑐 (𝜃, 𝜃 ′)
Here the first inequality follows from the fact that 𝐺 (𝜃 ′) = 𝑉𝜃 ′ (𝐸 (𝜃 ′)) − 𝑡 (𝜃 ′) ≥ 𝑉𝜃 ′ (𝐸 (𝜃 )) − 𝑡 (𝜃 )
sinceM is IC. The second inequality follows from the definition of 𝑐 (𝜃, 𝜃 ′).

It remains to show that𝐺 (0) = 1. SinceM is IR,𝐺 (0) ≥ 𝑢 (0) = 1. On the other hand, the buyer’s

value for any experiment is at most 1. Thus 𝐺 (0) ≤ 1. 2

Proof of Lemma 11:We use the notations from Definition 4. For every 𝜃 ∈ Θ, by the product rule,

we have
26

div(𝐺 (𝜃 ) 𝑓 (𝜃 ) · 𝜃 ) = 𝜃 · ∇(𝐺 (𝜃 ) · 𝑓 (𝜃 )) −𝐺 (𝜃 ) 𝑓 (𝜃 ) · ∇𝜃
= 𝜃 · [𝐺 (𝜃 ) · ∇𝑓 (𝜃 ) + 𝑓 (𝜃 ) · ∇𝐺 (𝜃 )] + (𝑛 − 1) ·𝐺 (𝜃 ) 𝑓 (𝜃 )

Integrating over Θ for both sides, by the divergence theorem, we have∫
Θ
(∇𝐺 (𝜃 ) · 𝜃 ) 𝑓 (𝜃 )𝑑𝜃 =

∫
𝜕Θ

𝐺 (𝜃 ) 𝑓 (𝜃 ) (𝜃 · 𝒏)𝑑𝜃 −
∫
Θ
𝐺 (𝜃 ) · [∇𝑓 (𝜃 ) · 𝜃 + (𝑛 − 1) 𝑓 (𝜃 )] 𝑑𝜃 (18)

Similarly, for every 𝑖 ∈ [𝑛 − 1],
div(𝐺 (𝜃 ) 𝑓 (𝜃 ) · 𝒆𝑖 ) = 𝒆𝑖 · [𝐺 (𝜃 ) · ∇𝑓 (𝜃 ) + 𝑓 (𝜃 ) · ∇𝐺 (𝜃 )]

26
For any real-valued function 𝐹 ( ·) over Θ, div(𝐹 ) is the divergence of 𝐹 , defined as div(𝐹 ) = ∑𝑛−1

𝑖=1

𝜕𝐹
𝜕𝜃𝑖

.
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Thus ∫
Θ𝑖

𝜕𝐺 (𝜃 )
𝜕𝜃𝑖

𝑓 (𝜃 )𝑑𝜃 =

∫
Θ𝑖

(∇𝐺 (𝜃 ) · 𝒆𝑖 ) 𝑓 (𝜃 )𝑑𝜃

=

∫
𝜕Θ𝑖

𝐺 (𝜃 ) 𝑓 (𝜃 ) (𝒆𝑖 · 𝒏𝑖 )𝑑𝜃 −
∫
Θ𝑖

𝐺 (𝜃 ) · (𝒆𝑖 · ∇𝑓 (𝜃 ))𝑑𝜃
(19)

Combining Equation (18), Equation (19) and the fact that

∫
Θ
𝑓 (𝜃 )𝑑𝜃 = 1 completes the proof. 2

Proof of Lemma 12: By Lemma 11,∫
Θ
𝐺 (𝜃 )𝑑𝜇𝑃 =

∫
Θ
[−𝐺 (𝜃 ) + ∇𝐺 (𝜃 ) · 𝜃 +𝐺 (0)] 𝑓 (𝜃 )𝑑𝜃 −

𝑛−1∑
𝑖=1

∫
Θ𝑖

𝜕𝐺 (𝜃 )
𝜕𝜃𝑖

𝑓 (𝜃 )𝑑𝜃

≥
∫
Θ

[
−𝐺 (𝜃 ) + ∇𝐺 (𝜃 ) · 𝜃 − max

{
𝜕𝐺 (𝜃 )
𝜕𝜃1

, . . . ,
𝜕𝐺 (𝜃 )
𝜕𝜃𝑛−1

, 0

}
+𝐺 (0)

]
𝑓 (𝜃 )𝑑𝜃

The last inequality achieves equality if and only if Condition (1) is satisfied. It suffices to prove that∫
Θ
𝐺 (𝜃 )𝑑𝜇𝑃 ≤

∫
Θ×Θ 𝑐 (𝜃, 𝜃

′)𝑑𝛾 (𝜃, 𝜃 ′). In fact, since 𝐺 (𝜃 ) −𝐺 (𝜃 ′) ≤ 𝑐 (𝜃, 𝜃 ′),∀𝜃, 𝜃 ′ ∈ Θ, we have∫
Θ×Θ

𝑐 (𝜃, 𝜃 ′)𝑑𝛾 (𝜃, 𝜃 ′) ≥
∫
Θ×Θ

(𝐺 (𝜃 ) −𝐺 (𝜃 ′))𝑑𝛾 (𝜃, 𝜃 ′)

=

∫
Θ
𝐺 (𝜃 )𝑑𝛾1 −

∫
Θ
𝐺 (𝜃 ′)𝑑𝛾2

≥
∫
Θ
𝐺 (𝜃 )𝑑𝜇𝑃

The first inequality achieves equality if and only if Condition (2) is satisfied. The last inequality

follows from the fact that 𝛾1 − 𝛾2 ⪰𝑐𝑢𝑥 𝜇𝑃 and 𝐺 is convex. The last inequality achieves equality if

and only if Condition (3) is satisfied. 2

(a) Illustration of 𝑃∗. Line segments 𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 corre-
spond to 𝑆13, 𝑆23, 𝑆12 respectively.

(b) Ω1 is the hexagon separated by the three red lines.
𝛾∗ has a positive density between 0 and each point
in Ω2.

Fig. 10. Illustrations of the optimal dual when 𝑛 = 3

Proof of Observation 2: Firstly, ∇𝑓 (𝜃 ) = 0 for every 𝜃 since 𝑓 (𝜃 ) is a constant. Thus the last two
terms in Definition 4 is always 0. Moreover, the term 1𝐴 (0) contributes a point mass of +1 at 0.
The term −𝑛 ·

∫
Θ
1𝐴 (𝜃 ) 𝑓 (𝜃 )𝑑𝜃 contributes a total mass of −3 uniformly distributed through out Θ.

By Lemma 11, the other two terms contribute a total mass of 2 on the boundary of triangle Θ and

line segments 𝑎𝑑,𝑏𝑑, 𝑐𝑑 . We notice that when 𝜃 is on the x-axis (or y-axis), both 𝜃 · 𝒏 and 𝒆1 · 𝒏1 (or
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𝒆2 · 𝒏2) are 0. Moreover, for any point 𝜃 on the line segment 𝜃1 + 𝜃2 = 1, the outward pointing unit

vector is (1, 1). Thus 𝜃 · 𝒏 = 1 = 𝒆𝑖 · 𝒏𝑖 for any 𝑖 ∈ {1, 2}. Thus there is no mass on the boundary of

the big triangle Θ and a total mass of 2 is distributed among line segments 𝑎𝑑,𝑏𝑑, 𝑐𝑑 . The mass on

each segment is then obtained by calculating the line integral. 2

Proof of Lemma 13:We verify feasibility and all three conditions in the statement of Lemma 12:

Primal Solution Feasibility. Since 𝐺∗
is induced by a responsive, IC and IR mechanismM∗

, by

Lemma 10, 𝐺∗
is a feasible solution to the primal.

Condition 1. By Observation 1, for every 𝑖 ∈ {1, 2}, 𝜕𝐺∗ (𝜃 )
𝜕𝜃𝑖

= 𝜋∗
𝑖 (𝜃 ) − 𝜋∗

3
(𝜃 ),∀𝜃 ∈ Θ. Now for any

𝑖 ∈ {1, 2, 3} and 𝜃 ∈ Θ𝑖 , if 𝜃 ∈ Ω1, 𝜋
∗
𝑗 (𝜃 ) = 1,∀𝑗 ∈ {1, 2, 3}. Thus max{ 𝜕𝐺

∗ (𝜃 )
𝜕𝜃1

,
𝜕𝐺∗ (𝜃 )
𝜕𝜃2

} = 0; If 𝜃 ∈ Ω2,

the buyer does not purchase any experiment. SinceM∗
is responsive, by Observation 6 and the

fact that 𝜃𝑖 ≥ 𝜃 𝑗 ,∀𝑗 ≠ 𝑖 , we have that 𝜋∗
𝑗𝑖 (𝜃 ) = 1,∀𝑗 ∈ {1, 2, 3}. Thus max{ 𝜕𝐺

∗ (𝜃 )
𝜕𝜃1

,
𝜕𝐺∗ (𝜃 )
𝜕𝜃2

} equals to
1 if 𝑖 ∈ {1, 2}, and -1 otherwise. Thus Condition (1) is satisfied.

Condition 2. 𝛾∗ (𝜃, 𝜃 ′) > 0 if and only if 𝜃 = 0 and 𝜃 ′ ∈ Ω2. Thus 𝐺
∗ (𝜃 ) − 𝐺∗ (𝜃 ′) = 1 −

max{𝜃 ′
1
, 𝜃 ′

2
, 1−𝜃 ′

1
−𝜃 ′

2
}, since the buyer with any type 𝜃 ′′ has utility𝑢 (𝜃 ′′) = max{𝜃 ′′

1
, 𝜃 ′′

2
, 1−𝜃 ′′

1
−𝜃 ′′

2
}

if she does not purchase any experiment. Consider the experiment 𝐸 such that 𝜋 𝑗1 (𝐸) = 1,∀𝑗 ∈
{1, 2, 3} and 0 elsewhere, which is one of the no information experiments. Then 𝑉0 (𝐸) = 𝑢 (0) =
1 and 𝑉𝜃 ′ (𝐸) = 𝑢 (𝜃 ′) = max{𝜃 ′

1
, 𝜃 ′

2
, 1 − 𝜃 ′

1
− 𝜃 ′

2
}. 𝐺∗ (𝜃 ) − 𝐺∗ (𝜃 ′) = 𝑉0 (𝐸) − 𝑉𝜃 ′ (𝐸). Moreover,

𝐺∗ (𝜃 ) −𝐺∗ (𝜃 ′) ≤ 𝑐 (𝜃, 𝜃 ′) since 𝐺∗
is feasible. Thus the inequality achieves equality for any (𝜃, 𝜃 ′)

such that 𝛾∗ (𝜃, 𝜃 ′) > 0.

Condition 3 and Dual Solution Feasibility. Denote 𝛾∗
1
, 𝛾∗

2
the marginals of 𝛾 . We prove that we can

transform 𝜇𝑃 to 𝛾∗
1
− 𝛾∗

2
through a sequence of mean-preserving spreads in the region where 𝐺∗

is linear. By the definition of 𝛾∗, 𝛾∗
1
has a point mass of +1 at 0. −𝛾∗

2
has a mass of −1 uniformly

distributed on Ω2. Recall that Ω2 = {𝜃 ∈ Θ : max{𝜃1, 𝜃2} ≥ 2

3
} ∪ {𝜃 ∈ Θ : 𝜃1 + 𝜃2 ≤ 1

3
},

which consists of 3 right triangles with side length
1

3
. Thus Vol(Ω2) = 1

6
= 1

3
· Vol(Θ). Thus by

Observation 2, 𝜇𝑃
∗ (Ω2) = (𝛾∗

1
−𝛾∗

2
) (Ω2). Hence 𝜂 = 𝜇𝑃

∗ − (𝛾∗
1
−𝛾∗

2
) can be written as 𝜂1 −𝜂2, where

(1) 𝜂1: A mass of
2

3
uniformly distributed on each line segment 𝑎𝑑, 𝑏𝑑, 𝑐𝑑 , having a total mass of

2.

(2) 𝜂2: A mass of 2 uniformly distributed through out Ω1.

We notice that for every 𝜃 ∈ Ω1, the buyer purchases the fully informative experiment and

thus 𝐺∗ (𝜃 ) = 2

3
is constant throughout the region Ω1. Hence, to prove 𝛾∗

1
− 𝛾∗

2
⪰𝑐𝑢𝑥 𝜇𝑃

∗
and that

Condition 3 is satisfied, it suffices to show that we can spread the positive mass on 𝑎𝑑,𝑏𝑑, 𝑐𝑑 to the

whole region Ω1 via mean-preserving spreads, to “zero out” the negative mass (in −𝜂2).

To visualize the proof, wemap each point (𝜃1, 𝜃2) ∈ Θ to the point (𝜃1, 𝜃2, 𝜃3 = 1−𝜃1−𝜃2) ∈ [0, 1]3
,

so that the type space becomes a regular triangle (Figure 11). Now Ω1 is separated into three

pentagons by 𝑎𝑑,𝑏𝑑 and 𝑐𝑑 .

For every 𝜃 on the line segment 𝑐𝑑 , denote𝑤 (𝜃 ) the width of the pentagon efhdg at 𝜃 (Figure 12).

Similarly, define𝑤 (𝜃 ) for 𝜃 on the line segment 𝑎𝑑,𝑏𝑑 to be the width of the corresponding pentagon

at 𝜃 . Let 𝜂 ′
2
be a measure that has a total mass of 2 on the line segments 𝑎𝑑, 𝑏𝑑, 𝑐𝑑 , such that the

density of each point 𝜃 is proportional to 𝑤 (𝜃 ). We claim that 𝜂2 ⪰𝑐𝑢𝑥 𝜂 ′
2
by transforming 𝜂 ′

2
to

𝜂2 by mean-preserving spreads. For each point 𝜃 on the line segment 𝑐𝑑 , we spread the mass of

𝜃 uniformly to all points 𝜃 ′ in the pentagon efhdg such that 𝜃3 = 𝜃 ′
3
. This is a mean-preserving

spread since by symmetry, the mean of those points is 𝜃 . Moreover, since the density of 𝜃 in 𝜂 ′
2

is proportional to the width of the pentagon at 𝜃 , all the mass are uniformly distributed in the
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Fig. 11. Proof of Condition 3

pentagon. We perform similar operations for the other two pentagons. Thus we can transform 𝜂 ′
2

to 𝜂2 by mean-preserving spreads.

Fig. 12. Illustration of𝑤 (𝜃 ) and 𝜃0 in the proof

Now it suffices to prove that we can transform 𝜂1 to 𝜂
′
2
by mean-preserving spreads. We prove

the following claim.

Claim 6. For any 𝑥,𝑦 ∈ R+ such that 𝑥 < 𝑦, let 𝜽 1, 𝜽 2, 𝜽 3 be the three points on the line segments

𝑎𝑑,𝑏𝑑, 𝑐𝑑 respectively, such that the distance between each 𝜽 𝑖 and 𝑑 = ( 1

3
, 1

3
, 1

3
) is 𝑥 (green points

in Figure 11). Similarly, let 𝜽 ′
1
, 𝜽 ′

2
, 𝜽 ′

3
be the points that have distance 𝑦 from point 𝑑 (red points in

Figure 11). Then any positive mass uniformly distributed in 𝜽 1, 𝜽 2, 𝜽 3 can be transformed to the same

amount of mass uniformly distributed in 𝜽 ′
1
, 𝜽 ′

2
, 𝜽 ′

3
, via a mean-preserving spread.

Proof. For every 𝑖 ∈ {1, 2, 3}, we notice that 𝜽 𝑖 is a convex combination of 𝑑 and 𝜽 ′
𝑖 . Thus we

can spread the mass at 𝜽 𝑖 to 𝑑 and 𝜽 ′
𝑖 for every 𝑖 ∈ {1, 2, 3}. Next, since 𝑑 is a convex combination

of 𝜽 ′
1
, 𝜽 ′

2
, 𝜽 ′

3
, we can then spread of mass at 𝑑 to 𝜽 ′

1
, 𝜽 ′

2
, 𝜽 ′

3
. By symmetry, the mass is uniformly

distributed in those three points. □
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Back to the proof of Lemma 13. The density of each point in 𝜂1 is
2/3

𝑐𝑑
=

2

√
6

3
. For 𝜂 ′

2
, by symmetry,

the density of each point 𝜃 is

2𝑤 (𝜃 )
3

∫
𝑤 (𝜃 ′)𝑑𝜃 ′

=
2/3 ·𝑤 (𝜃 )

Area of pentagon efhdg

= 2

√
3 ·𝑤 (𝜃 )

Let 𝜃0 be the (unique) point in the interior of 𝑐𝑑 , such that𝑤 (𝜃0) =
√

2

3
(Figure 12).

27
Then for

any point 𝜃 in the line segment 𝑑𝜃0, the density of 𝜃 in 𝜂1 is at least the density of 𝜃 in 𝜂 ′
2
; For any

point 𝜃 in the line segment 𝜃0𝑐 , the density of 𝜃 in 𝜂1 is at most the density of 𝜃 in 𝜂 ′
2
. By Claim 6,

we can transform 𝜂1 to 𝜂
′
2
via mean-preserving spreads, by keeping spreading the mass of points in

𝑑𝜃0 to points in 𝜃0𝑐 . Thus we have 𝜂
′
2
⪰𝑐𝑢𝑥 𝜂1. Combining with the fact that 𝜂2 ⪰𝑐𝑢𝑥 𝜂 ′

2
, we have

𝜂2 ⪰𝑐𝑢𝑥 𝜂1, which implies that 𝛾∗
1
− 𝛾∗

2
⪰𝑐𝑢𝑥 𝜇𝑃

∗
.

2

27
The point is unique since

√
2

3
= 𝑒 𝑓 < 𝑔ℎ.
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