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A B S T R A C T   

Word learning entails the mapping of an auditory word-form to its appropriate grammatical category (e.g., noun, 
verb, adjective), but before that mapping can occur, the naïve learner must infer which of the myriad of possible 
referents of that word was intended by the speaker. This creates a computational explosion of referential am
biguity referred to as the gavagai problem. In a set of corpus analyses of parent-directed speech to young infants, 
we describe the distributional information available to early word learners, with a focus on nouns and adjectives 
that refer to whole objects and object properties. And in two experiments on word-learning in adults spanning 
seven different distributional conditions, we document how variations in the ratio of novel labels for objects and 
properties affect the robustness of word learning. Our results suggest that the language input to 6- to 20-month- 
olds is robustly populated with high-frequency object words and high-frequency property words, but their co- 
occurrence is sparse. Although this distributional information slightly favors object words over property 
words, a more plausible account of the whole-object bias in early word learning is the inability to encode the 
details of an object/event during rapid naming. Our results from adults, presented with novel labels for multi- 
referent objects in a cross-situational statistical learning paradigm, also reveal this whole-object bias as well 
as the absence of property-label generalization to novel objects, even when the distribution of labels is shifted 
almost exclusively to property words. These results are discussed in terms of the relative ease of mapping 
auditory word-forms to whole objects vs. object properties, thereby limiting the combinatorics of the gavagai 
problem, especially in infants with immature encoding and memory representation abilities.   

1. Introduction 

One of the hallmarks of language acquisition is that children’s first 
productions consist of content words – they label objects and events that 
are common in their immediate environment (Brown, 1973). Interest
ingly, infants readily distinguish between function words and content 
words as two separate classes long before they produce their first words 
(Marino, Bernard, & Gervain, 2020; Shi, Werker, & Cutler, 2006; Shi, 
Werker, & Morgan, 1999), in part because function words occur much 
more frequently than content words. Furthermore, Hochmann (2013) 
has shown that 7-month-olds treat extremely high-frequency auditory 
word-forms as less referential than word-forms of medium frequency. 
Nevertheless, the primary vehicle for understanding and conveying in
formation to a communicative partner about a referent consists of nouns, 
adjectives, or verbs (roughly in that order). Moreover, when older 

infants are taught a new word, they more quickly and robustly map that 
auditory word-form to the whole object (e.g., dog) than to a property of 
that object (e.g., furry; see MacNamara, 1972). The absence of function 
words in early child productions could be the result of their generally 
lower salience than content words – they are shorter in duration, un
stressed, and co-articulated with their surrounding context – even 
though they are much more frequent than content words, suggesting 
that their ubiquity is insufficient to motivate their use. In contrast, the 
lower propensity of producing property words and mapping them onto 
novel auditory word-forms cannot be salience-based – the sound of blue 
is no less salient than the sound of ball. Thus, it is natural to look toward 
a distributional explanation to account for this difference. And, indeed, 
the fact that toddlers who fail to produce function words are neverthe
less sensitive to their deletion in comprehension (Gerken, Landau, & 
Remez, 1990), suggests that distributional information is accessed prior 
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to production. 
There is ample evidence that infants have access to robust distribu

tional properties of linguistic input in natural-language corpora 
(Batchelder, 2002; Swingley, 2005) and can extract some of those sta
tistics in artificial-language experiments, including at the level of pho
netic categories (Maye, Werker, & Gerken, 2002), phonotactics 
(Chambers, Onishi, & Fisher, 2003), word segmentation (Saffran, Aslin, 
& Newport, 1996), and the frequency of function words as a cue to novel 
noun learning (Hochmann, Endress, & Mehler, 2010). One version of the 
distributional hypothesis for the whole-object bias is that property 
words are simply less frequent than basic-level object words in everyday 
parental language input to their infant. Moreover, perhaps blue is not 
only less frequent than ball overall but blue is less frequently paired with 
ball than all instances of ball (i.e., the conditional probability of blue 
given ball is low). But, of course, spoken language is not presented to 
infants devoid of visual context. Thus, another version of the distribu
tional hypothesis is that parents, and infants themselves, structure their 
referential world to bias the mapping of auditory word-forms to whole 
objects rather than to object properties (Yurovsky, Smith, & Yu, 2013). 
When a parent holds up an object and elicits the infant’s visual attention 
to it, the most “transparent” inference is that the spoken word refers to 
the whole object. A similar but less overt constraint on attention to a 
named object occurs when the infant rather than the parent is holding 
the object themselves. Regardless, the naming is correlated with visual 
attention to the object, thereby reducing the set of likely referents (see 
Smith, Jayaraman, Clerkin, & Yu, 2018). 

But the two foregoing versions of the distributional hypothesis rely 
on what the parent says rather than on why the infant infers that the 
referent of that spoken word is the whole object and not one of its many 
properties. This is the gavagai conundrum (Quine, 1960) – given a novel 
word and a novel event in the world, why does the infant infer that the 
word refers to the whole object (e.g., a rabbit) and not some property of 
the event (e.g., hopping, white, furry, disembodied rabbit parts)? This 
conundrum is not resolvable in a straightforward way even though to 
most adults it appears to be trivial. What else would a listener infer when 
hearing “Oh, gavagai” than the obvious fact that “gavagai” is a synonym 
for rabbit? Unfortunately, intuitions are often faulty when dealing with 
sophisticated users of a particular language. In what has been called the 
Human Simulation Paradigm, Gleitman and colleagues (Gillette, Gleit
man, Gleitman, & Lederer, 1999; Medina, Snedeker, Trueswell, & 
Gleitman, 2011) asked adults to report what a word (simulated by a 
“beep” inserted into a video of common everyday scenes) likely referred 
to. When the beep occurred as a person was hammering repeatedly, the 
beep was sometimes inferred as referring to the subject (hammer), the 
verb (act of hammering), and only occasionally as the object (thing 
being hammered) or a property of the event (heavy hammer, rapid/slow 
hammering). While there was, in fact, tremendous ambiguity about how 
to link the auditory word-form (simulated by the beep) with the referent 
of that word-form, the most common interpretation was nevertheless 
that the word referred to the whole object. Importantly, this ambiguity 
was also present when adults viewed videos of 14- to 18-month-olds 
interacting with their parents in natural settings (Trueswell et al., 
2016), thereby confirming that even in simpler contexts typical of early 
development the presence of word-referent ambiguity is ubiquitous. 

A common explanation for this bias to treat auditory word-forms as 
referring to the whole object consists of moving out of the linguistic 
domain and into the conceptual domain. That is, the whole-object bias in 
word-naming and word-learning could in essence be a conceptual bias to 
attend primarily to the object rather than to its myriad properties 
(Spelke, 1990). In turn, if parents share this conceptual bias, they may 
reinforce what for their infant begins as an initially small bias when a 
word is spoken in the presence of an ambiguous event, thereby 
enhancing the strength of the whole-object bias compared to an only 
slightly less salient property bias. Thus, we come back full circle to the 
second version of the distributional hypothesis – parents drive both sides 
of the equation by eliciting attention to an object (or waiting for the 

infant to do so) and speaking the name that labels that whole object. It 
would be infelicitous for parents to do otherwise by, for example, 
consistently referring to the family pet as furry, because that property is 
not unique to that specific pet’s basic-level category. 

But even if parents consistently timed their utterances to take 
advantage of how the infant was allocating their attention on a moment- 
by-moment basis (which they clearly do not), how would the infant 
know to which of the many potential object properties that word-form 
should be linked? And even if an infant happened to be holding in 
their own hand a multi-dimensional object and the parent said “Look at 
the gavagai”, how would the infant know that “gavagai” meant rabbit, 
white, or furry? A paradigm developed by Yu, Smith, and colleagues (see 
review by Smith, Suanda, & Yu, 2014), called cross-situational statistical 
learning, provided a partial answer to this question. If an auditory word- 
form was used in the presence of two objects, and across a series of 
scenes that same word-form was used to label scenes containing object A 
and not presented for scenes containing object B, then by a “process of 
elimination” adults and infants could generate a most likely hypothesis 
about which word-form referred to which object. Notice, however, a key 
difference between the cross-situational statistical learning paradigm 
and the Human Simulation paradigm – the former employs multiple 
instances of auditory-visual pairings that have a consistent correlation, 
whereas the latter relies on a single instance to elicit a causal 
explanation. 

It is important to note that distributional information is not the only 
potential mechanism that could enable infants to infer whether a label 
refers to an object or a property. Infants appear to have a preference for 
attending to shape and size over pattern and color for objects under
going brief occlusion (Wilcox, 1999) and they are less likely to rely on 
color than shape in a word-referent mapping task (Graham & Poulin- 
Dubois, 1999; Kandhadai, Hall, & Werker, 2017). However, these 
tasks do not provide extensive training to examine the role of distribu
tional learning. There is also a long history of studies in older infants and 
toddlers that document the utility of mutual exclusivity as a way to link a 
novel auditory word-form to an object (Markman, 1990). And a variety 
of syntactic bootstrapping mechanisms have been shown to enable tod
dlers and young children to assign a novel label to the correct part of 
speech (Gleitman, 1990; Waxman & Booth, 2001). But in both of these 
latter cases, the additional mechanism that reduces ambiguity in linking 
a label to its referent do not appear to play a role until infants are well 
into their second year of life (Bion, Borovsky, & Fernald, 2013; Hal
berda, 2003). 

The key question that motivates the present line of research is 
whether there is evidence in parental speech to young infants – in the 
early phase of word learning – that supports either version of the 
distributional hypothesis. To that end, we first examined language input 
to infants from two databases: CHILDES (https://childes.talkbank.org/) 
and SEEDLingS (Bergelson, 2017). We extracted all instances of the most 
frequent nouns as well as the most frequent verbs, prepositions, and 
adjectives. We then asked whether the spoken-word contexts for each of 
these parts-of-speech were stable enough to allow infants to extract 
common bigrams or trigrams (surrounding frames) from which the 
property names could be learned. For example, if ball was a high- 
frequency noun, we asked whether there were words immediately 
before or after ball that were also high enough in frequency to enable 
that adjacent word to be learned. In general, the answer was no. Spe
cifically, the frequency of words surrounding a noun was either high (e. 
g., function words) or so low that it was implausible as a robust distri
butional source of information for a property word to be learned. This 
prompted us to ask whether the whole-object bias in word-learning can 
be overcome if we simply change the statistics of the corpus. In two on- 
line experiments with adults, we confirmed that learning property 
names and object names is readily achieved in a cross-situational sta
tistical learning paradigm. However, performance for these two types of 
words did not mirror the statistics of their presentation during the 
learning phase. Moreover, even when property names far outnumbered 
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object names, object names were easily learned and property names 
were not learned better. And adults readily generalized object names to 
novel exemplars, but they did not readily generalize property names. 
While this does not provide definitive evidence for an intrinsic 
conceptually-based whole-object naming bias – because that bias might 
have been induced by early experience with objects and their labels – it 
does suggest that once formed, the whole-object bias is so robust that 
even extremely counter-biased property statistics cannot overcome it. 
Similar findings have been observed for non-native phonetic categories: 
adults have entrenched native-language phonetic categories that are 
more plastic during an early period of learning and can only be altered in 
adulthood after extensive training (Bradlow, Akahane-Yamada, Pisoni, 
& Tohkura, 1999). 

2. Corpus analyses of lexical distributions in parental speech 

The fundamental question addressed by our corpus analyses is 
whether word frequency and/or the surrounding context of a word 
could serve as a reliable cue to infer whether that word was referring to 
the whole object or to a property of that object. We know from previous 
corpus analyses and novel word-learning studies, in both infants and 
adults, that the immediately surrounding context – including bigrams 
before or after the target word or the before-and-after frame that sur
rounds the target word – provides sufficient information to enable 
assignment of that word to a grammatical category (Chemla, Mintz, 
Bernal, & Christophe, 2009; Mintz, 2002, 2003; Mintz, Wang, & Li, 
2014). However, this frequent frames hypothesis has never been applied 
to the question of resolving the ambiguity about object name vs. prop
erty name in young infants. Mintz (2005) reported evidence of novel 
property word-learning in 2- and 3-year-olds, but those results relied on 
children having at least minimal prior knowledge of grammatical cate
gories (e.g., noun). 

The basic idea motivating our corpus analysis was that three separate 
distributional cues might combine to provide infants with a mechanism 
for solving the gavagai problem. First, infants even in the first postnatal 
year rapidly assign content words and function words into different 
categories (Shi et al., 1999; Shi et al., 2006). Second, although young 
infants have auditory working-memory limitations (Benavides-Varela & 
Mehler, 2015), they are able to rank order a small subset of highly 
frequent content words from relatively infrequent content words (Vou
loumanos & Werker, 2009). And third, a lower-frequency content word 
that was consistently paired with a higher-frequency content word, by a 
process of cross-situational statistical learning, could provide the infant 
with sufficient information to infer that the lower-frequency word 
referred to a property of the object. 

2.1. Materials and methods 

We conducted analyses on the Providence corpus from the CHILDES 
database, which contains transcriptions of spontaneous interactions 
between six monolingual English-speaking children (Alex, Ethan, Lily, 
Naima, Violet, and William) and their parents at home (Demuth, Cul
bertson, & Alter, 2006). We included only transcripts in which the target 
children were 20 months of age or younger, resulting in a total of 92 
transcripts. We capped this age range at 20 months because this is the 
period of most rapid vocabulary growth (McMurray, 2007). Only the 
parents’ utterances were analyzed, as we were interested in character
izing the linguistic input that infants received. Analyses were conducted 
using a combination of CLAN and Python. Our sample consisted of 7201 
word types and 301,672 word tokens, of which 3184 types were nouns 
(63,198 tokens) and 799 types were adjectives (14,324 tokens). 

We first extracted the most frequent words from the grammatical 
categories of noun, preposition, adjective, and verb across transcripts for 
each infant, then picked tokens that were within the top 20 most com
mon across infants (Table 1). Then, the frequencies of different frames 
surrounding each of these tokens were recorded, with a frame defined as 

the pair of context words that appeared immediately before and after a 
token (Mintz, 2003). Frames could not cross utterance boundaries. In 
addition to frame frequencies, we recorded the frequencies of individual 
words that co-occurred with the tokens, coming either directly before or 
after the token word (within an utterance). 

We also examined the SEEDLingS database, which contains video 
and audio recordings taken monthly of infants living in the upstate New 
York area (Bergelson, 2017). We used the 6-month-old sample for our 
analysis, which includes hour-long video recordings and day-long LENA 
audio recordings from 43 infants in their home environments. We 
extracted frames for all instances of ball and book for both audio and 
video recordings, including two words immediately before and two 
words after the token, and recorded the frequencies of unique words in 
each position. 

2.2. Results 

Table 2 shows the top-20 most frequent bigrams and most frequent- 
frames for the four target nouns in the CHILDES samples. As expected, 
the most frequent surrounding contexts for these nouns consisted of 
function words, which as discussed earlier, are treated as a separate 
auditory category from content words. The conditional probability of 
the most frequent bigrams containing a property word (little baby, red 
ball, baby book, purple mommy) given the target word (baby, ball, book, 
mommy) was 0.048, 0.055, 0.039, and 0.022, respectively, and none of 
the top-20 frequent frames contained a property word. Notably, this low 
conditional probability is not the result of property words being much 
less frequent overall than object words. The four most common property 
words (big, little, good, red) occurred 230, 342, 375, and 107 times in our 
CHILDES samples (7.36% of the adjectives in our sample), while the four 
most common object words (baby, ball, book, mommy) occurred 376, 
348, 462, and 225 times (2.23% of the nouns in our sample). 

If the low conditional probability of property words given an object 
word is a viable account of the object-word bias, then the inverse rela
tion – the conditional probability of object words given a property word 
– should be substantially higher. Table 3 shows the top-20 most frequent 
bigrams and most frequent-frames for the four target property words in 
the CHILDES samples. Again, the most frequent surrounding contexts for 
these property words consisted of function words, which as discussed 
earlier, are treated as a separate auditory category from content words. 
The conditional probability of the most frequent bigrams containing an 
object word (big girl, little piggy, good job, red ball) given the property 
word (big, little, good, red) was 0.065, 0.069, 0.069, and 0.103, respec
tively. While the mean of the top four conditional probabilities for 
property words given object words is 0.041 and for object words given 
property words is 0.076, it is not clear that this twofold difference, even 
though in the predicted direction for an object-word bias, is sufficiently 
large to support the object-word bias unless the sample of parental 
speech was extensive. 

A similar pattern was observed in the SEEDLingS samples (see 
Tables A1 and A2 in the Appendix). The two most frequent bigrams for 
the target word book (n = 420) were baby and truck, and the two most 
frequent bigrams for the target word ball (n = 241) were beach and green, 
with conditional probabilities for property words given object words of 
0.019 and 0.017 for book and 0.058 and 0.008 for ball, respectively. 

Table 1 
High frequency words by grammatical category.  

Part of speech Selected tokens 

Noun baby, ball, book, mommy 
Preposition in, on, to, with 
Adjective big, little, good, red 
Verb go, have, see, want  
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2.3. Discussion 

Our corpus analyses revealed, as expected, that property words are 
used slightly less often than object words in parental speech to young 
infants. But crucially, these property words are only rarely paired with a 
given object word. As a result, a plausible word-learning mechanism is 
for infants to compute (implicitly) the likelihood that a given content 
word (e.g., ball) was spoken in the presence of a multi-component object 
or event (e.g., red ball) and simply linking that content word to the most 
common referent (either red or ball) across all instances that contain 
that object or event. The problem with this putative mechanism is that 
the distributional evidence for the inverse case – the probability of a 
content word given a property word – is only slightly more likely. Thus, 
it is not clear, in the absence of an enormous amount of parental speech 
that contains these small and slightly different probabilities of co- 
occurrence (0.041 vs. 0.076), that distributional information provides 
young infants with a robust cue to explain the whole-object bias in word 
learning. 

Of course, any corpus analysis is subject to several caveats. Tran
scriptions of parental speech to infants are a gloss on the nuances of 
acoustic/phonetic variability present in natural speech. This renders 

conclusions from transcriptions a best-case scenario as the infant is 
surely confronted with more variable input than what is captured by 
transcribed speech. However, prosodic and extra-linguistic information 
is largely absent from transcriptions, and even when audio-recordings 
overcome that limitation, the full context (e.g., which objects are pre
sent and at what point in the parental utterance) is missing unless there 
is a video recording as well. Thus, corpus analyses, at best, should be 
viewed as tapping into the most robust sources of information available 
to the infant learner and not a definitive demonstration that other 
sources of information are absent. 

An alternative account of the whole-object bias in early word 
learning is that infants must conduct a “rapid mapping” task in which 
they are faced with large amounts of information. This task is, after all, 
what characterizes the gavagai problem – given the flow of events during 
natural word-learning contexts, infants must make inferences about the 
meaning of parental speech at a rate of about 2 words/s as they attend to 
visual object/events. While infants as young as 6 months show rudi
mentary word-referent mapping for highly familiar stimuli (Bergelson & 
Swingley, 2012), an unfamiliar word-form paired with an unfamiliar 
visual object creates a challenge even for 14-month-olds (Stager & 
Werker, 1997). Thus, the fundamental problem facing infants who are 

Table 2 
Top 20 frequent frames for target nouns from CHILDES. Underscore indicates position of the target word. Absence of a word before or after an underscore indicates 
utterance boundary.  

Baby Freq Ball Freq Book Freq Mommy Freq 

the_ 135 the_ 110 a_ 91 to_ 45 
a_ 68 a_ 75 the_ 82 want_to 39 
little_ 18 your_ 37 this_ 74 with_ 23 
my_ 15 red_ 19 that_ 56 for_ 16 
the_in 15 big_ 16 your_ 26 that’s_ 12 
that_ 14 little_ 14 another_ 23 there’s_ 9 
that_up 12 my_ 10 baby_ 18 the_ 9 
that_has 11 Koosh_ 7 a_about 15 up_ 8 
the_a 10 a_too 6 the_about 12 _has 8 
yes_ 10 the_with 6 favorite_ 8 does_love 7 
your_book 9 that_ 6 big_ 7 tell_what 6 
your_ 9 the_in 6 train_ 7 said_ 6 
hi_ 8 beach_ 6 the_to 6 a_ 6 
a_in 8 the_is 5 the_is 6 I’m_ 5 
say_ 7 the_on 5 a_to 6 purple_ 5 
the_has 6 the_ride 5 different_ 5 and_ 5 
the_book 6 her_ 5 what_do 5 Elmo’s_ 4 
that_all 5 mommys_ 4 that_is 5 give_a 4 
the_bunny 5 his_ 3 a_for 5 on_ 4 
a_cow 5 runaway_ 3 little_ 5 can_have 4  

Table 3 
Top 20 frequent frames for target adjectives from CHILDES. Underscore indicates position of target word.  

Big Freq Little Freq Good Freq Red Freq 

too_ 89 a_bit 102 very_ 126 a_one 13 
a_girl 15 a_more 28 that’s_ 28 big_ball 11 
too_for 14 this_piggy 23 _job 26 the_one 10 
a_piece 12 a_ 18 a_idea 24 bright_caboose 9 
so_ 10 a_boy 15 that_ 23 is_ 8 
a_one 10 a_baby 14 it_ 19 the_ball 8 
the_ball 9 the_girl 14 very_honey 17 little_wagon 6 
a_noise 8 hi_girl 13 a_one 16 the_car 5 
the_red 7 this_piggie 11 a_job 14 big_barn 4 
a_red 7 a_bag 11 very_sweetie 11 green_ 3 
a_mess 7 a_girl 10 a_day 10 a_ball 3 
a_ball 6 a_piece 9 a_boy 8 big_dog 3 
is_ 6 a_ball 9 oh_ 8 its_ 3 
a_book 5 the_boy 9 very_job 7 the_barn 3 
a_meal 5 a_while 9 so_ 7 that_ 3 
a_deal 4 too_ 8 was_ 7 a_balloon 3 
a_rock 4 the_ball 8 is_ 6 and_ 3 
boasted_tiger 4 the_dog 8 a_place 6 a_rose 3 
a_kiss 4 your_guy 7 a_breakfast 6 they’re_ 3 
your_red 4 a_mouse 7 be_ 6 that’s_ 3  
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attempting to map a novel word-form to a novel object/event is to retain 
the most robust visual information in memory so that it can be repeat
edly linked to that same word-form across future repetitions of that 
object/event. 

The role of memory constraints on learning in infants, and in fact 
even in naïve adults, has been termed the “less is more” hypothesis 
(Newport, 1990). The basic idea is that when confronted with too much 
information, a reasonable strategy is to not attempt to retain all of that 
information in memory. Adults who try to retain all of the details present 
in a complex event often focus on the exceptions rather than the 
dominant rules (Hudson Kam & Newport, 2005), whereas infants who 
have such constraints “built in” because of their limited working 
memory and limited experience with creating robust sets of visual fea
tures for object recognition, fail to access all of the details and only 
retain “global” information. The whole-object bias is potentially an 
outcome of this limited ability to rapidly encode more than the most 
global form of an object when it is presented briefly in a word-naming 
context. As a result, information that is reliably present in the learning 
context but is at a “fine grained” level of detail, may simply be lost from 
the array of potential word-referent mappings, thereby reducing the 
combinatorics of the gavagai problem and highlighting the global in
formation that leads to the whole-object bias. 

The cross-situational statistical learning paradigm provides a rele
vant testbed for examining this “rapid encoding and global memory” 
hypothesis. Interestingly, studies using the cross-situational statistical 
learning paradigm have focused almost entirely on mapping auditory 
word-forms to whole objects (i.e., unique combinations of shape, color, 
texture, size, and viewpoint). Thus, in Experiment 1 we turn to the case 
of learning property words and we modify the paradigm slightly to vary 
the distributional information present for adult learners. 

3. Experiment 1: on-line learning of object and property words 
in adults 

The cross-situational statistical learning paradigm was introduced by 
Yu and Smith (2007) to study how sparse labeling of objects might 
enable learners to associate nonsense words with scenes containing 
multiple objects. First with adults, using scenes with four objects, and 
then with 12-month-old infants (Smith & Yu, 2008), using two objects, 
they showed that when these multi-object scenes were labeled with the 
same number of words as objects present in the scenes, learners could 
induce which label was reliably mapped to each object. Here we ask 
whether adults can learn property words when presented with simple 1- 
object scenes. Crucially, each object has two potential referents – its 
shape, which is most commonly associated with the whole-object bias, 
and its color, which is a salient object property. However, rather than 
providing a pair of labels for each object – one label for its shape and one 
label for its color – we varied the distribution of these object and 
property labels. For example, on some learning trials only one label was 
provided, and the adult had to infer whether it was an object/shape 
word or a property/color word. On other learning trials, two words were 
presented, but again adults had to infer which one was the object/shape 
word or the property/color word. Thus, the overall learning situation 
confronting the adults was more akin to the ambiguity present in real- 
world word-learning, thereby affording us access to any biases that 
adults might bring to this cross-situational statistical learning context 
and the gavagai problem that it represents. 

There is a surprising paucity of research on this question of learning 
property words via cross-situational statistical learning (see review by 
Zhang, Chen, & Yu, 2019). Only two studies have examined directly the 
trade-off between the learning of object labels and property labels. Chen, 
Gershkoff-Stowe, Wu, Cheung, and Yu (2017) created a novel set of 
visual stimuli that had both whole-object names and names for a visual 
feature of a subset of those objects (e.g., a hook). The feature name was 
contained in a single syllable that formed part of the whole-object name, 
much like a morphological marker. The visual stimuli were presented 

across learning trials in groups of four and each was labeled with a 
bisyllabic word that contained information that mapped onto both the 
objects and their features. Adults exhibited above-chance learning of 
both object-level and feature-level labels, although feature-level per
formance was less robust, especially when contained in final-syllable 
position. Chen, Zhang, and Yu (2018) employed a similar design using 
real-world objects but now the object name (e.g., vamy = beagle) and the 
category name (e.g., zorch = dog) were separate words. Most relevant to 
the present experiment, in a mixed condition, three objects were shown 
on each learning trial while two object labels and one category label 
were spoken. Adults showed above-chance performance on the test trials 
for both object words and category words, but word-learning perfor
mance for a given object was quite poor (~15%) when both types of 
information were present. 

It is important to note that one component of the design of Experi
ment 1 differs from all previous cross-situational statistical word- 
learning experiments. Rather than exhaustive labeling of each object 
in the display (e.g., 2 or 4 objects), only one object was presented and 
labeled on each trial. We chose this design because pilot studies revealed 
that labeling only one object in a 2-object scene led to poor learning of 
the object/property labels across trials, especially in an on-line data 
collection platform. While this single-object design is admittedly simpler 
than the traditional multi-object design, it nevertheless captures the 
essential ambiguity of the gavagai problem and represents the canonical 
case of parental labeling when the infant’s attention is directed to a 
single object in an otherwise cluttered environment. Moreover, the 
mixture of one- and two-word labels across learning trials more closely 
approximates the distributional properties of parental input, since it 
would be infelicitous to use property labels in natural contexts where it 
is not required (e.g., referring to every instance of a dog as furry dog). 

3.1. Materials and methods 

Six different groups of participants were recruited via SONA and 
Prolific to participate in an online experiment. There were 6 different 
conditions in the experiment, each of which had a different distribution 
of shape and color names presented as participants viewed images 
containing a single object. There were 28 adults (21 female) in Condi
tion 1, 28 adults (15 female) in Condition 2, 27 adults (9 female) in 
Condition 3, 28 adults (9 female) in Condition 4, 27 adults (9 female) in 
Condition 5, and 28 adults (10 female) in Condition 6. Participants were 
largely White or Asian, at least 18 years or age, and not required to be 
native speakers of English (although all instructions were only in 
English). 

The inventory of objects consisted of six different shapes, each of 
which was paired with one of three possible colors. This ratio was 
chosen to better reflect the greater relative frequency of whole-object 
labels than property labels in natural discourse. Each shape and each 
color was associated with a unique artificial word label (see Fig. 1). 
Auditory stimuli consisted of a female voice that named the 
object/shape or property/color for the learning phase of the experiment, 
followed by a test phase in which trials asked, “Which one is 
(object/property label)?” (see Fig. 2). Note that this 6:3 ratio of shapes to 
colors created greater memory demands on learning object names than 
on learning property names, thereby biasing performance toward better 
learning of color labels. Auditory stimuli were generated using an online 
text-to-speech synthesizer. The experiment was coded using PsychoPy3 
and hosted online via Pavlovia. Participants completed the experiment 
independently using their own computers. 

During the learning phase of the experiment, participants were 
instructed to simply watch and listen to the objects and labels so that 
they could “learn some new words.” They saw one object per trial and 
heard either the shape label, color label, or both labels (see Fig. 2), for a 
total of 432 trials (with the exception of Condition 4, which was half the 
length of the others). When both labels were presented, the order was 
always the color label followed by the shape label to compensate for the 
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canonical ordering of adjectives and nouns in English-speaking partici
pants. Because a single instance of each label was extremely brief, the 
label (either one or two words) was repeated twice. Two pseudor
andomized orders of the trials were created in advance and counter
balanced between participants; stimulus presentation was constrained 
such that the labeled shape and color did not appear in consecutive 
trials. 

The six conditions were identical except for the proportion and 
number of trials in which the object label, property label, or both labels 
were presented. In Condition 1, participants were provided only object 
labels for 25% of the trials, only property labels for 25% of the trials, and 
both labels for 50% of the trials – this first condition of the experiment 
served to examine differences in learning object versus property labels 
when participants had equal exposure to both. In Condition 2, partici
pants were provided with object labels for 50% of the trials, property 
labels for 25% of the trials, and both labels for 25% of the trials. In 
Condition 3, participants were provided with object labels for 25% of the 
trials, property labels for 50% of the trials, and both labels for 25% of the 
trials. In Condition 4 the same proportions of object, property and both 
labels as in Condition 3 were used, but with half the number of trials (for 
a total of 216 trials) to see if increasing task difficulty (by shortening the 
learning phase) would highlight differences in learning object versus 
property labels. In Condition 5, object labels were presented on 12.5% of 

the trials, property labels were presented on 75% of the trials, and both 
labels were presented on 12.5% of the trials. And in Condition 6, 
property labels were presented on 75% of the trials and both property 
and object labels were presented on 25% of the trials. 

Following the learning phase, participants completed a test phase in 
which they saw two stimuli per trial and were asked to choose which one 
was described by an object or property label (see Fig. 2). Participants 
were instructed to press “1” or “2” on their keyboard to select a stimulus. 
Each object and property label was presented three times, for a total of 
27 test trials. Test trials were pseudorandomized such that the same 
label was not presented on two consecutive trials. 

3.2. Results 

Fig. 3 shows the mean test trial accuracy for object and property 
words in each of the six experimental conditions. The most robust 
object-word learning was present in Conditions 1 and 2 where object 
labels (either alone or in combination with property labels) were present 
on 75% of the learning trials. In Conditions 3 and 4, where object labels 
were present on 50% of the learning trials, test trial accuracy for object 
words declined slightly, and remained at the same level (~70%) in 
Conditions 5 and 6 despite object labels being present on only 25% of 
learning trials. This effect of the prevalence of object labels on learning 
object words was reflected in a significant Condition effect in a 1-way 
ANOVA [F(5,165) = 4.413, p < 0.001]. 

Fig. 3 also shows that the accuracy of learning property words was 
fairly consistent with the likelihood that property labels (alone or 
combination with object labels) were present on the learning trials. The 
proportion of learning trials with property labels in Conditions 1–6 was 
75%, 50%, 75%, 75%, 87.5%, and 100%, respectively, and a 1-way 
ANOVA revealed that the Condition effect was not significant 
[F(5,165) = 2.014, p = 0.079]. Interestingly, it was only in Condition 6 
where property labels alone were presented on 75% of the learning trials 
and object labels were always presented in combination with property 
labels on the remaining 25% of the learning trials, that accuracy for 
property words exceeded accuracy for object words [t(27) = − 2.21, 
p < 0.05]. Further evidence of a relationship between distributional 
information and learning for object labels but not property labels is 
shown in Table 4. 

Finally, we asked whether individuals who learned object words 
showed a trade-off in their learning of property words (and vice versa). 
That is, was there competition between the two types of labels present in 
the task as observed by Benitez, Yurovsky, and Smith (2016) for 1-word 
versus 2-word labels. As shown in Table 5, the answer was ‘no’, with 
participants showing consistently positive correlations between their 
learning accuracy for object-labels and property-labels. 

3.3. Discussion 

The findings from Experiment 1 show that adults can readily learn 
both object/shape words and property/color words in a simplified cross- 

Fig. 1. Stimuli for online Experiment 1.  

Fig. 2. Example of each type of trial in the exposure phase of Experiment 1. Auditory stimuli are indicated by quotations. Target object is the one on the left for both 
of the depicted test trials. (TOMA = shape; RIF = color). 
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situational statistical learning paradigm, in which only one object was 
present but a mixture of 1- and 2-word labels were provided on each 
learning trial for the object shape and/or object color. Moreover, the 
results reveal that the accuracy in learning labels for objects and prop
erties generally tracks the distributional statistics with which these la
bels are presented in the input, with some evidence that property labels 
are even less preferred in the early phase of learning (e.g., Conditions 3 
and 4 had the same distributions but the learning phase in Condition 4 
was half that of Condition 3). However, even in Condition 6 where ob
ject and property words were presented on 25% of learning trials and 
property words on 75% of learning trials, adults still learned objects 
words with above-chance accuracy: mean = 0.69 [t(27) = 4.57, 
p < 0.0001]. Moreover, there was no evidence that learning one type of 
word interfered with learning the other as learning accuracy for object 
and property words was positively correlated. 

4. Experiment 2: generalization of object and property labels 

While the results of Experiment 1 show a clear bias in adults for 

learning object/shape labels over property/color labels, a stronger test 
of the productive use of such labels involves their generalization to novel 
exemplars. For example, a child who labels their favorite stuffed animal 
as “teddy” could be restricting that name to a single unique object, 
whereas a child who extends that label to a large set of bears of different 
sizes and textures has clearly generalized that label to a category of 
objects. Experiment 2 provides such a test of generalization using the 
same cross-situational statistical learning paradigm as in Experiment 1. 
In addition to a test of generalization to novel exemplars of the object/ 
shape and property/color labels, Experiment 2 divided the exposure 
phase into thirds, with a test of learning for the shape and color labels of 
the trained stimuli after each of these three exposure sub-phases. The 
goal here was to determine whether the object bias emerged early in 
learning and whether learning of property labels grew stronger with 
additional exposure to the distributional information contained in the 
exposure phase. 

4.1. Materials and methods 

A total of 28 participants were recruited via Prolific to participate in 
Experiment 2. The stimulus inventory was the same as in Experiment 1 
for the exposure phase, but an additional 24 novel stimuli were gener
ated for use in the generalization test at the end of the experiment. Of 
these novel stimuli, half had a novel color but a familiar shape and half 
had a novel shape but a familiar color (overall two novel colors and four 
novel shapes, see Fig. 4). Audio stimuli were the same as in Experiment 
1. That is, a female voice presented the object or property label twice for 
each trial during the learning phase and asked, “Which one is (object/ 
property label)?” for the two-object test trials (see Fig. 2). 

The design included 216 learning trials during the exposure phase 
(the same as the half-length exposure in Condition 4 of Experiment 1). 
The exposure phase was divided into three blocks of 72 trials each. 
During these learning trials, participants saw one object per trial and 
heard an object label on 50% of the trials and a property label on the 
other 50% of the trials. The 6 shape labels and 3 color labels were 
balanced within the 50–50 distribution of object and property words 
presented in each learning block, although this resulted in twice as many 
instances of each color label than each shape label. Notably, participants 
were only exposed to single word labels; there were no trials that 
included shape+color labels as in Experiment 1. To assess the time 
course of learning, we included a brief test after each of the three 

Fig. 3. Average scores across participants on object and property tests for all conditions. Dashed line represents chance, error bars represent S.E., * indicates p <
0.05, *** indicates p < 0.001. 

Table 4 
Pearson correlations between label proportions and test scores across all con
ditions in Experiment 1.   

Object test Property test 

object labels r(164) = 0.265, p < 0.001 r(164) = − 0.120, p = 0.124 
property labels r(164) = − 0.329, p < 0.001 r(164) = 0.133, p = 0.088 
both labels r(164) = 0.239, p = 0.002 r(164) = − 0.079, p = 0.310  

Table 5 
Pearson correlations between accuracy of learning object 
names and accuracy of learning property names for each 
condition in Experiment 1. Raw object and property per
centages were converted to log-odds to linearize scores.   

Object vs. property 

Cond. 1 r(26) = 0.536, p = 0.003 
Cond. 2 r(26) = 0.594, p < 0.001 
Cond. 3 r(25) = 0.535, p = 0.535 
Cond. 4 r(26) = 0.478, p = 0.478 
Cond. 5 r(25) = 0.613, p < 0.001 
Cond. 6 r(26) = 0.649, p < 0.001  
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learning blocks, during which participants saw two familiar stimuli per 
trial and were asked to select which one was described by an object or 
property label. Participants were tested on each of the 6 object/shape 
words and each of the 3 property/color words for a total of 9 trials per 
test. Counterbalancing of learning and test trials was otherwise the same 
as in Experiment 1. 

At the end of the third testing phase, participants completed a 
generalization test in which they saw two novel stimuli per trial and 
were asked to choose which one was described by an object or property 
label (see Fig. 4). Each of the 6 shape labels and 3 color labels was tested 
twice, for a total of 18 generalization trials. Test pairs included one 
stimulus with a novel color/familiar shape and one stimulus with a 
novel shape/familiar color, thereby preventing participants from infer
ring whether a test label referred to an object or a property during this 
generalization test. Test trials were pseudorandomized such that the 
same label was not presented on two consecutive trials. 

4.2. Results 

The results of the tests after each third of the exposure phase are 
shown in Fig. 5. Performance on object/shape test-trials was above 80% 
correct even after the first block of 72 learning trials in the exposure 
phase and rose to over 90% after the third block of learning trials. In 

contrast, performance on property/color test-trials never reached 70% 
correct. This difference in performance between the learning of object 
and property labels was significant [F(1,2) = 44.55, p < 0.001]. 

Fig. 5 also shows the results of the generalization test at the end of 
the entire exposure phase (216 learning trials). Performance on object/ 
shape generalization trials (93.7% correct) was not only significantly 
above chance [t(27) = 31.69, p < 0.001] but was indistinguishable from 
performance on the trained stimuli (91.1% correct). In contrast, per
formance on property/color generalization trials (31.5% correct) was 
significantly below chance [t(27) = − 4.13, p < 0.001] and also below 
performance on property/color test trials for familiar stimuli (63.1% 
correct). Presumably, this further decline in performance on general
ization trials was the result of confusion when a weak representation of 
the color label was confronted with novel shapes, perhaps leading to the 
inference that the same label referred to two different colors (as in 
bilingual infants: see Padmapriya, Hall & Werker, 2017). However, 
there were relatively few property-generalization test trials, so this 
interpretation should remain tentative. 

4.3. Discussion 

The results of Experiment 2 provided even clearer evidence than 
Experiment 1 that adults have a strong bias to map novel labels to ob
ject/shape than to property/color in a cross-situational statistical 
learning paradigm. When the distributional statistics of these two 
mappings were balanced (50–50 object vs. property), adults learned the 
labels for the 6 shapes at near asymptotic levels (> 90% correct) and 
generalized those shape labels to objects with novel colors with equal 
performance (> 90% correct). However, adults learned the labels for the 
3 colors with less accuracy (< 70% correct) and failed to generalize 
those color labels to novel shapes. 

5. General discussion 

The gavagai problem has been recognized by linguistics, philoso
phers, and psychologists for 60 years as a potentially serious – some 
would claim intractable – challenge for language learning. Given the 
potentially infinite number of possible mappings between auditory 
word-forms and their intended meanings, how does a naïve learner 
“break this code” and settle on the demonstrably correct mapping that 
enables reliable communication? Theorists have posited a variety of 
constraints (Yurovsky & Frank, 2015), from the presence of innate cat
egories at the structural level to powerful general-purpose learning 

Fig. 4. Novel object shapes and colors used in the generalization test (A). Examples of two generalization test trials (B), in which the correct answer is on the left.  

Fig. 5. Accuracy on object and property tests after each third of the learning 
phase of Experiment 2, as well as the final generalization test. Dashed line 
represents chance, error bars represent S.E., * indicates p < 0.05, *** indicates 
p < 0.001. 
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mechanisms fueled by extremely large datasets. There is little debate 
that the rapid acquisition of language by children in the first few years of 
life requires some set of constraints, whether structural or learning or 
both. In the present study, results from corpus analyses and two exper
iments have added some further insights on what those constraints are 
and how they might operate. 

First, it is clear from our corpus analyses that the distribution of 
words in the early linguistic input to infants is skewed to include the 
names for whole objects, with property words that describe some feature 
of those objects being slightly less frequent. Moreover, the conditional 
probability of a property name given an object name is extremely low, 
suggesting that knowing an object name would not enable learning a 
property name. However, the inverse – the conditional probability of an 
object name given a property name – was also extremely low, although 
about double that of the conditional probability of a property word 
given an object word. This implies that even if infants had no bias, 
whether perceptual or attentional, to seek matches between whole ob
jects and auditory word-forms, the input to which they are exposed 
would disfavor mappings that involve properties, but only if infants 
were exposed to a sufficiently large corpus to enable these low condi
tional probabilities to be relevant for learning. 

Second, the results from Experiments 1 and 2 provide compelling 
evidence that adults have little difficulty mapping auditory word-forms 
to both objects and their properties. Despite this robust evidence of 
learning, they exhibit a bias in favor of object labels over property labels. 
Even when a property label was used 100% of the time during the 
object+label learning phase, and object labels were used on only 25% of 
the learning trials, adults were able to reliably map words to objects. 
Moreover, under these highly property-biased circumstances, the accu
racy for property labels was only slightly (though significantly) higher 
than for object labels. This is similar to evidence from Monaghan, 
Mattock, Davies & Smith (2015) that adults learn noun mappings more 
readily than verb mappings, even when those mappings are not inter
mixed. Finally, performance on both object- and property-word map
pings was positively correlated, suggesting that good/poor learners were 
equally adept at extracting both types of information. This is particularly 
interesting in light of evidence that “mixture” designs, in which more 
than a single source of information is available to map words to their 
referents, can lead to competition between alternative mappings 
(Benitez et al., 2016; Yurovsky, Yu, & Smith, 2013). 

The results from Experiments 1 and 2 are consistent with the 
following overall account of how the gavagai problem is overcome in 
natural word-learning contexts. First, infants attend to a limited set of 
objects/events that are in close proximity to themselves and often in 
their grasp as parental speech is used to label that object/event. Parental 
speech is dominated by whole-object (basic level category) words, with 
property words used only slightly less frequently, but with pairs of ob
ject and property words having very low conditional probabilities. Thus, 
the distributional properties of the word-learning context are slightly 
object-biased, but that bias is unlikely to be sufficient to create a whole- 
object bias in word learning unless the infant is exposed to a very large 
corpus of parental speech input. 

Second, a small set of high-frequency object words are present in 
consistent contexts (Roy, Frank, DeCamp, Miller, & Roy, 2015), thereby 
enabling those words to become firmly established in long-term memory 
and allowing them to serve as “anchors” for learning the low-frequency 
bigrams and frequent-frames that surround these object words. In 
addition, shared contexts create competition for lexical access, even 
when the images depicting a word’s referent are easily discriminable 
(Bergelson & Aslin, 2017). Both computational models (Yu & Smith, 
2012) and empirical findings from adults (Clerkin, Hart, Regh, Yu, and 
Smith (2017) reveal that low-frequency words can, indeed, be learned as 
long as there is sufficient overall input to enable the extraction of sparse 

but consistent distributional information. Moreover, the Zipfian distri
bution of object names does not prove to be an impediment to this word- 
learning process. 

Third, although distributional information is available and could, in 
principle, contribute to the whole-object bias, in the early phase of word 
learning infants are being exposed to sparse language input. Thus, their 
initial word-learning task requires them to attend to, perceptually 
encode, and retain in memory a large set of potential matches between 
the auditory word-form and its intended referent. This mapping task, 
because of its high demands on working memory, creates a “represen
tational fidelity” challenge. If infants attempt to encode all available 
information, the gavagai problem becomes exponential. But if their 
limited cognitive abilities constrain the number and diversity of object/ 
event characteristics that can be encoded into memory, then the 
combinatorics of the gavagai problem are reduced. Although infants 
have impressive encoding and short-term memory abilities (Blaser and 
Kaldy, 2010), they are unable to retain that information without 
extensive repetition. Moreover, infants have very poor working memory 
(Kaldy & Leslie, 2005; Ross-Sheehy, Oakes, & Luck, 2003). In fact, even 
retaining two object properties (color and texture) in working memory 
after each property has been learned via repeated exposures is a chal
lenge for 9-month-olds (Piantadosi, Palmeri, & Aslin, 2018). These 
cognitive limitations are a hallmark of the “less is more” hypothesis 
(Newport, 1990) and have been shown – somewhat counterintuitively – 
to facilitate learning (Hudson Kam & Newport, 2009). The relevance of 
this hypothesis for the whole-object bias in word learning is that 
memory limitations are more likely to direct infants’ attention to the 
“global” characteristics of visual objects/events in a rapid word-object 
mapping task. This demand on rapid encoding and working memory is 
present even when only a single object is in the infant’s focal attention 
while being labeled, as in Experiments 1 and 2, especially when neither 
the object’s visual features nor the label’s auditory features are highly 
familiar. 

Finally, it is important to note that natural objects, at least in the 
shape and color dimensions, have distributional characteristics that 
favor the whole-object bias. The defining features of most basic-level 
objects rely on the obligatory conjunction of its parts – a cup without 
a handle is a bowl. Thus, the global features that are encoded in memory 
for a basic-level object have a canonical representational format. In 
contrast, the defining features of object properties such as color or 
texture are often non-uniformly distributed – a blue and white striped T- 
shirt is often labeled as blue. This difference in the degree of consistency 
in how an object’s shape or color is present when it is labeled as a cup or 
as blue provides another level of distributional information that con
tributes to the whole-object bias in word learning. 

There are, of course, several limitations to the present corpus ana
lyses and experiments with adults. Given relatively small samples of 
parental speech per infant, we collapsed across infants to increase the 
robustness of our estimates of parental speech distributions. Thus, some 
parent-infant dyads with more highly differentiated distributional cues 
for object and property labels could benefit from this information. We 
did not conduct a detailed analysis of the contexts in the CHILDES and 
SEEDLingS samples to fully understand how infants might have inter
preted non-linguistic information that could potentially be available for 
word learning. Thus, we cannot know precisely how much these 
contextual cues facilitated or impeded the infant’s interpretation of 
parental speech. We also did not have access to the time-course of 
acquiring an accurate mapping of words to objects/properties in the 
cross-situational statistical learning paradigm, although the multiple 
testing phases employed in Experiment 2 revealed little evidence that 
initial biases were readily overcome by distributional properties of the 
learning input. Finally, we did not have detailed information about the 
English-language proficiency of the participants, which could have 
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interacted with the ordering of object and property labels in Experiment 
1 (i.e., we used a property-last word order that differs from English but is 
consistent with other languages).1 These and other more detailed 
questions about the biases that enable infants to resolve the gavagai 
problem await further research. 

6. Conclusions 

Distributional information about the likelihood of object and prop
erty words, as well as their co-occurrence, is present in parental speech 
to infants. While this information is biased toward whole objects over 
object properties, those distributional cues are unlikely to play a 
dominant role in the whole-object bias in word learning. Rather, a more 
likely mechanism leading to the whole-object bias are the intrinsic de
mands placed on the infant during rapid naming events. These demands 
consist of constraints on working memory and representational fidelity 
for multi-dimensional objects/events to which an auditory word-form is 
mapped. These cognitive constraints – consistent with the “less is more” 
hypothesis (Newport, 1990) – result in a bias to map auditory word- 

forms to the “global” features of objects (i.e., those that are easily 
encoded), which are correlated with the whole object. Results from 
adults in a series of cross-situational statistical learning experiments 
support this memory-based account of the whole-object bias in word 
learning. 
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Appendix A. Appendices  

Table A1 
Top 25 most frequent words co-occurring with instances of “book” in SEEDLingS audio files. Numbers in parenthesis indicate ordinal position, e.g. before (1) indicates 
word that occurs two words before “book” and before (2) indicates the word that comes directly before “book.”  

Before (1) Freq Before (2) Freq After (1) Freq After (2) Freq 

read 63 the 112 and 17 you 16 
a 26 a 67 is 11 we 7 
the 18 your 50 that 8 the 5 
all 17 this 35 about 8 read 5 
at 15 that 27 to 8 bears 4 
like 13 some 13 are 7 a 4 
eat 11 good 11 you 7 and 4 
with 11 those 11 up 7 us 4 
get 10 my 10 for 6 then 3 
your 9 baby 8 upstairs 6 that 3 
of 8 these 8 I 6 this 3 
have 8 another 7 but 5 to 3 
for 7 truck 7 wit 5 called 3 
put 7 more 7 in 5 I 3 
got 7 library 6 like 5 there 3 
hold 7 of 6 out 4 your 3 
reading 7 many 5 or 4 got 3 
it’s 7 our 5 too 4 silly 3 
here’s 7 new 4 down 3 over 3 
my 7 her 4 with 3 Mommy 3 
want 6 little 4 the 3 me 3 
this 6 what 4 back 3 with 2 
see 6 any 3 here 3 maybe 2 
you 5 picture 3 again 3 down 2 
one 5 three 3 of 3 my 2   

Table A2 
Most frequent words co-occurring with instances of “ball” in SEEDLingS audio files.  

Before (1) Freq Before (2) Freq After (1) Freq After (2) Freq 

roll 43 the 133 and 17 you 16 
get 21 your 19 is 11 we 7 
gimme 13 a 18 that 8 the 5 
the 8 beach 14 about 8 read 5 
that 7 my 14 to 8 bears 4 

(continued on next page) 

1 The IP-addresses of the 194 participants across all experimental conditions were located in 23 countries, 6 of which are predominantly English-speaking. We 
assumed that all 85 participants from these 6 countries were native speakers of English and asked whether performance on the property-label test was correlated with 
the proportion of subjects in each condition who were putatively native speakers of English. That correlation was not significant [r = − 0.21, t(5) = − 0.47, p = 0.658], 
suggesting that language-specific ordering of grammatical categories did not contribute to differences across experimental conditions. 
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Table A2 (continued ) 

Before (1) Freq Before (2) Freq After (1) Freq After (2) Freq 

with 7 that 8 are 7 a 4 
of 7 ball 5 you 7 and 4 
a 7 little 5 up 7 us 4 
like 6 this 3 for 6 then 3 
got 6 green 2 upstairs 6 that 3 
see 5 her 2 I 6 this 3 
and 5 giant 2 but 5 to 3 
there’s 5 yellow 2 with 5 called 3 
have 5 giraffe 2 in 5 I 3 
me 5 playing 2 like 5 there 3 
you 4 his 1 out 4 your 3 
your 4 cannon 1 or 4 got 3 
at 4 cotton 1 too 4 silly 3 
kick 4 blue 1 down 3 over 3 
put 4 they’re 1 with 3 Mommy 3 
throw 3 another 1 the 3 me 3 
ball 3 understand 1 back 3 with 2 
this 2 bouncy 1 here 3 maybe 2 
that’s 2 tennis 1 again 3 down 2 
it’s 2 rolling 1 of 3 my 2   

Table A3 
Statistics for object and property tests from Experiment 1.  

Cond. Distribution Object Property Paired sample t-test 

1 Both-50, Obj-25, Prop-25 M = 0.87, SD = 0.16 M = 0.65, SD = 0.28 t(27) = 4.49, p < 0.001 
2 Both-25, Obj-50, Prop-25 M = 0.85, SD = 0.18 M = 0.67, SD = 0.23 t(27) = 4.58, p < 0.001 
3 Both-25, Obj-25, Prop-50 M = 0.79, SD = 0.20 M = 0.77, SD = 0.21 t(26) = 0.56, p = 0.58 
4 Both-25, Obj-25, Prop-50  

(half exposure) 
M = 0.72, SD = 0.18 M = 0.61, SD = 0.25 t(27) = 2.36, p = 0.03 

5 Both-12.5, Obj-12.5, Prop-75 M = 0.70, SD = 0.21 M = 0.70, SD = 0.29 t(26) = − 0.17, p = 0.86 
6 Both-25, Obj-0, Prop-75 M = 0.69, SD = 0.22 M = 0.78, SD = 0.25 t(27) = − 2.21, p = 0.03   

Table A4 
Statistics for object and property tests from Experiment 2.  

Test. Object Property Paired sample t-test 

1 M = 0.83, SD = 0.20 M = 0.69, SD = 0.29 t(27) = 2.52, p = 0.018 
2 M = 0.87, SD = 0.17 M = 0.54, SD = 0.28 t(27) = 5.80, p < 0.001 
3 M = 0.91, SD = 0.14 M = 0.63, SD = 0.31 t(27) = 5.44, p < 0.001 
Gen M = 0.94, SD = 0.16 M = 0.32, SD = 0.40 t(27) = 7.04, p < 0.001  
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