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Abstract

The MRI environment restricts the types of populations and tasks that can be studied by

cognitive neuroscientists (e.g., young infants, face-to-face communication). FNIRS is a neu-

roimaging modality that records the same physiological signal as fMRI but without the con-

straints of MRI, and with better spatial localization than EEG. However, research in the

fNIRS community largely lacks the analytic sophistication of analogous fMRI work, restrict-

ing the application of this imaging technology. The current paper presents a method of multi-

variate pattern analysis for fNIRS that allows the authors to decode the infant mind (a key

fNIRS population). Specifically, multivariate pattern analysis (MVPA) employs a correlation-

based decoding method where a group model is constructed for all infants except one; both

average patterns (i.e., infant-level) and single trial patterns (i.e., trial-level) of activation are

decoded. Between subjects decoding is a particularly difficult task, because each infant has

their own somewhat idiosyncratic patterns of neural activation. The fact that our method suc-

ceeds at across-subject decoding demonstrates the presence of group-level multi-channel

regularities across infants. The code for implementing these analyses has been made read-

ily available online to facilitate the quick adoption of this method to advance the methodolog-

ical tools available to the fNIRS researcher.

Introduction

The goal of cognitive neuroscience is to use the relationship between activity in the brain and

cognitive operations to understand how the mind works. In the last two decades, the use of

fMRI has vastly expanded our window on the neural correlates of human cognition. Initially,

fMRI analyses predominantly facilitated brain mapping: Experiments could tell us where in the

brain clusters of voxels show differential BOLD signals to two or more stimulus conditions.

With the addition of multivariate analysis techniques (e.g., multivoxel pattern analysis, MVPA),

more sophisticated questions can be asked, such as whether the pattern of BOLD can discrimi-

nate between two or more stimulus conditions. Multivariate analyses are an important advance
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as they have shifted the focus of cognitive neuroscience from mean activation differences to the

information contained within patterns of brain activity (see [1] for an example).

MVPA studies have provided compelling evidence that the adult brain contains distributed

patterns of neural activity [2–4]. Studies have demonstrated the power of MVPA to decode

natural visual images [5], noun identity [6], and speaker identity [7]. Indeed, the use of multi-

variate methods has become widespread, with thousands of papers employing this method

with fMRI data. Analogous multivariate methods having also been developed for EEG (e.g.,

[8]), MEG (e.g., [9]), and intracranial recordings (e.g., [10])

However, despite fMRI’s power to address foundational questions in cognitive neurosci-

ence, it is not universally applicable to all kinds of subject populations. For example, early

developmental populations (e.g., infants) have not yet been successfully scanned while awake.

Many clinical populations such as those with acute anxiety disorders, movement disorders, or

cochlear implants also cannot participate in MRI experiments. Furthermore, the scanner envi-

ronment greatly restricts the types of cognitive tasks and abilities that can be investigated. Cog-

nitive abilities, such as face-to-face communication or motor movements, cannot be assessed

while laying supine and motionless inside the tightly enclosed and noisy bore of the scanner.

Thus, the MRI environment drastically restricts the kinds of tasks and populations that can be

studied.

Functional near-infrared spectroscopy (fNIRS) is a complementary neuroimaging modality

that has gained popularity in recent years for its ability to deal with many of these constraints

that limit the use of fMRI. The fNIRS device records the same physiological substrate as fMRI

(i.e., changes of blood oxygenation in the cortex arising from neurovascular coupling) using

scattered infrared light instead of magnetic fields and radio waves. Specifically, fNIRS requires

participants to wear a cap embedded with detectors and emitters of near-infrared light, similar

to a pulse oximeter. A detector-emitter pair forms a NIRS channel within which cortical hemo-

dynamic responses can be recorded (Fig 1). Crucially, this method for recording the hemody-

namic response is free from requirements that make the MRI environment so restrictive. No

magnetic fields are needed, and the device is not sensitive to local electrical interference. Thus,

it is safe for participants with metal or magnetically sensitive implants, and the machine is

highly portable to many types of environments. The fNIRS device is silent, the cap is relatively

comfortable to wear, and the measurements are more robust to movement than MRI. A differ-

ent imaging modality, EEG, also has the advantages of being quiet and using sensors that can

be attached directly to the head. However, fNIRS has significantly better ability to spatially

localize neural signals than does EEG, which has poor localization due to the conduction of

the electrophysiological signals throughout the head. In other words, although the coverage of

a single fNIRS channel is large, one can be highly confident that the signal is specific to that

region.

While there are clear limitations to fNIRS (e.g., the absence of an anatomical image, lower

spatial resolution, and the ability to record only from the surface of the cortex), it provides an

important tool to expand cognitive neuroscience into areas of inquiry previously beyond our

methodological reach (see recent reviews from a developmental perspective: [11,12]).

A major hurdle to the widespread acceptance of fNIRS, as an alternative to fMRI, fNIRS

data analysis techniques have historically lagged behind fMRI in sophistication. Part of this

analytic immaturity arises from inherent methodological limitation of fNIRS. For example,

NIRS systems do not collect the anatomical images that enable fMRI signals to be spatially

localized (see [13] for recent advanced in this area). However, other aspects of fNIRS data anal-

ysis have fallen behind for reasons not inherent to the method. For example, only recently

have fNIRS researchers employed corrections for multiple comparisons (see [14] for a review

of the history of statistical techniques with fNIRS) or defined prior neuroanatomical regions of
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interest validated by structural MRI templates [15,16]. While fNIRS methodology has greatly

progressed, this neuroimaging modality will only reach its potential as a complementary neu-

roimaging technique if it achieves a high level of analytical sophistication.

In this paper, we propose an important step forward for fNIRS data analysis by presenting a

simple, easily implemented method for conducting multivariate pattern analyses with fNIRS

data gathered from infants. Several comprehensive tutorials have explored the application of

machine-learning and multivariate methods to fMRI data [17,18], but after 15 years of fMRI-

based decoding, fNIRS still lacks a comparable literature. We aim to begin closing this gap.

Our application of MVPA to fNIRS is computationally fast and immediately applicable to a

variety of preprocessing routines already used in the fNIRS field. Moreover, we’ve made the

code to implement these analyses freely available, along with the data‘sets used in the current

paper (http://teammcpa.github.io/EmbersonZinszerMCPA/ and http://dataspace.princeton.

edu/jspui/handle/88435/dsp01xs55mf543). The code can be used as a modular function with a

variety of other data sets or can be readily adapted to future applications.

The application of MVPA to fNIRS data has the potential to extract substantially greater

detail about the neural correlates of cognition than can be revealed using univariate statistics.

On one hand, multivariate methods can be more sensitive: Indeed, prominent results in the

fMRI literature have found that hemodynamic responses encode significant information about

participants’ cognitive states without producing a robust univariate contrast (e.g., [1,19]). In

the present study, we demonstrate this same sort of result for the first time using fNIRS in

infants: as is described in more detail below, we show that when the classifier’s task is to distin-

guish between two conditions which are both audio-visual but which differ in the specific

nature of the audio-visual stimuli (faces-and-music, versus fireworks-and-speech) our multi-

channel decoding approach is able to succeed whereas purely univariate analysis fails.

However, considering multiple channels at once yields more important benefits than sim-

ply being more sensitive than univariate analyses. A more interesting distinction is the fact

Fig 1. Functional near-infrared spectroscopy (fNIRS) records cortical hemodynamic responses in

populations that cannot comfortably be inside the MR scanner such as young infants. Pairs of

detectors and emitters form an fNIRS channel (from Gervain et al., 2011 with permission) which covers a

localizable region of the cortex.

https://doi.org/10.1371/journal.pone.0172500.g001
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that although univariate activation intensity can only go up or down, multivariate patterns

have similarity relations to each other, and therefore induce a structured similarity space (see

Representational Similarity Analysis or RSA, [20,21]) Similarity measures can, for example,

quantify how much a new observation matches previous observations and thus be used to clas-

sify the new observation. These sorts of questions of representational structure simply do not

arise in a purely univariate framework and thus provide an opportunity for greater detail

rather than a more sensitive contrast between two conditions.

Despite the success of multivariate methods for neural decoding in other imaging modali-

ties, there are significant challenges to applying these methods to fNIRS. First, while fNIRS

records local and specific hemodynamic changes in the cortex (like fMRI), the number of

recording sites is typically very few (e.g., 10 to 25 channels). Second, the spatial resolution is

greatly decreased relative to an fMRI voxel: A typical channel measures an approximately 2

cm2 region on the surface of the cortex. The spatial distribution of these recording sites across

the scalp is also usually sparse, with a 2 cm separation between adjacent channels, and signals

are not sampled any deeper than 2 cm into the cortical tissue. Thus, on the one hand, the num-

ber of fNIRS recording sites is similar to EEG (on the order of dozens). On the other hand,

fNIRS records a spatially localized signal, unlike EEG. Although it may be difficult to conceive

of successful MVPA decoding with only 10–25 “super” voxels sparsely distributed over the cor-

tex, these are the most typical conditions under which multivariate methods are likely to be

applied to fNIRS data.

The amount of data gathered within- and across-participants also significantly differs

between fNIRS and other imaging modalities. Many populations that can be readily studied

with fNIRS but not fMRI (e.g., infants) cannot participate for the large number of trials typi-

cally seen in MVPA designs. These fNIRS datasets typically have a greater number of partici-

pants than the average number of trials per participant. Consequently, while many fMRI

MVPA studies focus on within-subject decoding techniques and avoid the problems associated

with across-subject generalization, it is unclear whether decoding will be successful with the

small number of trials and the high-degree of between-subject variability typical of fNIRS data-

sets. Thus, while multivariate methods have achieved broad success within the fMRI commu-

nity (and increasingly in high-density EEG and MEG), it is unclear whether this approach will

be successful given the constraints of the typical infant fNIRS dataset.

While there have been a few successful attempts applying multivariate methods to fNIRS

data from adults or children, no previous study has attempted the far more challenging task of

decoding fNIRS data from infants. This is likely because infant datasets always contain fewer

stimulus-presentation trials and more noise than the data that can be obtained from older and

hence more cooperative participants. The present study employs some similar approaches

used in this prior body of work, but they also differ in crucial ways. Previous studies have

decoded emotional state [22], subjective preference [23,24], item price [25], vigilance [26], and

ADHD and autism diagnoses [27] from fNIRS recordings. While the results are promising

(decoding accuracy between 60–70%), these initial attempts fall short of providing a methodo-

logical foundation from which the fNIRS community can build further multivariate analyses.

First, these studies have all employed Support Vector Machine (SVM) algorithms for classifica-

tion. SVMs are a machine learning technique that seek a set of weights for the hemodynamic

signal from each voxel or channel that best predicts classification accuracy with as large a mar-

gin as possible between the classes to be distinguished [2].

Several alternate classification methods have also been successfully applied to decoding

fMRI data and may prove useful for multivariate fNIRS analyses as well. Similarity-based

decoding is one such example. This approach uses representational similarity structures (RSA,

described above) to classify new observations based on their similarity to other known
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observations in the similarity structure [21]. A very simple version of an RSA approach is sim-

ply using Pearson correlation, and we explore the application of this method to infant fNIRS

data. Specifically, we will explore whether Pearson correlation can be used to show that infants’

neural responses to similar stimuli (within Condition) are relatively homogenous compared to

neural responses to dissimilar stimuli (across Condition). If a correlation-based decoding was

successful, RSA-based decoding would likely succeed in future infant fNIRS studies with mul-

tiple stimulus classes.

Second, these previous studies typically assessed adults rather than the infant and clinical

populations that are uniquely suited for fNIRS imaging. The current limitation of multivariate

fNIRS methods to typically functioning adults has thus not inspired broader application.

Many populations typically studied in fNIRS cannot contribute a large number of trials in an

experiment and are more difficult to test. Thus, these studies (with exception of [27]) have

larger pools of data from each individual participant available for the classification (typically

50+ samples per participant) but these large within-subject datasets would be extremely diffi-

cult to achieve in infants or many clinical populations. Ichikawa et al [27] overcame this limita-

tion to decode clinical diagnoses (ADHD/autism) in children with a classifier that required a

large amount of computational power. The training necessary for this technique required the

calculation of 224 or 17 million subsets of the data. Given the great deal of neural variability

across individuals, especially in clinical populations and early in development, performing

decoding across individuals is quite difficult and has typically been more challenging for

MVPA studies using fMRI. However, as we will demonstrate, across-infant multivariate infer-

ences can produce highly accurate results while overcoming one of the most common practical

limitations of infant research (limited numbers of trials per infant).

The current study extends previous work in three major respects:

1. We employ a correlation-based decoding method that is computationally simple, fast,

and easily interpretable. The code for implementing all the analyses and a sample data-

set are included to encourage immediate application and broad adoption in the fNIRS

community.

2. The present study is the only reported multivariate analysis with infants. A large number of

researchers employing fNIRS are doing so to probe the neural correlates of early develop-

ment, but they have exclusively used univariate methods [12], It is currently unknown

whether decoding the infant brain is possible using MVPA, especially given the small num-

ber of trials contributed by infants in a typical experiment.

3. The current MVPA analysis performs all classifications across infants. Data from an infant

who does not contribute to the group model are classified by aggregating data across other

infants in the dataset. The between-subjects approach takes advantage of the larger number

of available participants in an experiment than trials completed by each participant.

Our overall goal is to determine whether MVPA can decode the infant brain. Specifically,

we examine whether patterns of activation across multiple NIRS channels can accurately pre-

dict the patterns of activation in an infant who did not participate in the creation of a group
model. We examine the decoding accuracy for each test infant’s activation patterns as that

infant’s data are iteratively removed from the group model. We refer to the resulting classifica-

tion of each test infant’s condition averages as infant-level decoding. We also examine the

much more difficult task of classifying each of the test infant’s individual trials (trial-level
decoding) based only on the group model to which the left out test infant did not contribute.

In sum, we ask whether a group model of neural responses created from several infants suf-

ficiently generalizes to classify observations from a new infant (the test infant). Our measure of
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success is whether decoding produces accurate predictions (i.e., significantly above chance)

when these MVPA methods are iterated across the entire sample of infants. To determine

whether this method is robust and generalizable to new experiments, we will also apply it

across two separate groups of infants in different experiments presenting different levels of

decoding difficulty.

Materials and methods

Our application of MVPA to fNIRS uses a group model, derived from multichannel patterns

of activation, to decode unlabeled patterns of activation that did not contribute to the group

model. We begin by describing how multichannel patterns are calculated, then how the group
model is created, and finally how this group model is used to decode unlabeled multichannel

patterns. All analyses were conducted in MATLAB (version R2013a, 8.1.0.604) with custom

analysis scripts.

First, multichannel patterns are constructed by including information for all channels, for

each trial, for every infant. MVPA treats each channel as an independent observation. To

derive a multichannel pattern, oxygenated hemoglobin (HbO) is averaged over an a priori
determined time-window (i.e., up to tmeasures after stimulus onset) for each channel (chan).

This measure is re-baseline corrected to the first measurement. This is described in Eq 1 and

Fig 2A.

xchan ¼
1

t
Pt

i¼1
ðHbOchan;i � HbOchan;1Þ ð1Þ

It is standard in the developmental fNIRS literature to focus on the oxygenated response

(see recent review: [11]), however, there would be no change in the method to conduct this

analysis with the deoxygenated response. Extensions of this method would be required to

include both the oxygenated and deoxygenated responses simultaneously. The average oxy-

genated response (xchan) is determined for each channel for the same time-window and then

combined with the corresponding averages from the other channels into a single vector to cre-

ate amultichannel pattern (x) for a single time-window (e.g., single trial), for a single infant

(see Fig 2A). These multichannel patterns are vectors of dimension n where n equals the num-

ber of channels.

x⃑ ¼ ½x1; x2; . . . xn� ð2Þ

Multichannel patterns can then be averaged across all the trials (r) of a given stimulus con-

dition within infants to give rise to an infant-level multichannel pattern for that stimulus con-

dition (i.e., in an experiment with two conditions, two such vectors are calculated, one for each

condition).

x⃑Infant;Cond ¼
1

r
Pr

j¼1
x⃑Infant n;Cond A;Trial j ð3Þ

To construct the group model, infant-level multichannel patterns, for each stimulus condi-

tion, are averaged to produce a group-level multichannel pattern (xGroup,Cond). However, it is

important to note that not all infants are included in this average: we employ a leave-one-out

method so a single test infant is removed from the average and the group model is created

from N-1 infants for the current experiment. See Fig 2B. This leave-one-out process is iterated

N times so that each infant has been left out and will serve as the test infant, and thus, the

group average has been recomputed N times from the remaining (non-test) infants.
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The multichannel patterns are compared to one another using Pearson correlation. Because

the multichannel pattern vectors have the same number of dimensions (the number of

Fig 2. Illustration of the multivariate methods applied to fNIRS in this paper.

https://doi.org/10.1371/journal.pone.0172500.g002
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channels) at all levels of analysis, we can compare a group-level model to (1) the infant-level

multichannel pattern for the test infant or (2) the multichannel patterns for single trials from

the test infant. We will refer to the former as infant-level decoding and the latter as trial-level
decoding. While these two types of decoding are derived from the same basic principles, they

differ in that the infant-level decoding has multiple infant-level multichannel patterns to

decode simultaneously (the number is equivalent to the number of stimulus conditions, but in

this paper, we compare across two conditions exclusively), whereas trial-level decoding, by def-

inition, has only a single multichannel pattern to decode. These differences in methodology

between the two types of decoding result in subtle differences in how the group model is used

to decode these multichannel patterns of activation. We now describe these differences in

detail.

Infant-level decoding uses the group model to predict the infant-level multichannel pat-

terns of the test infant for each stimulus condition. Specifically, the test infant’s multichannel

patterns are decoded by determining which permutation of condition labels yields the greatest

overall correlation to the group-level model. For two conditions, A and B, two Pearson correla-

tions are computed as follows:

tanh� 1
ðcorrðxGroup;CondA; xTest;Unl1ÞÞ þ tanh� 1

ðcorrðxGroup;CondB; xTest;Unl2ÞÞ ð4:1Þ

&

tanh� 1
ðcorrðxGroup;CondB; xTest;Unl1ÞÞ þ tanh� 1

ðcorrðxGroup;CondA; xTest;Unl2ÞÞ ð4:2Þ

The sums of the Fisher r-to-z (hyperbolic arctangent) transformed Pearson correlations are

compared. Decoding is considered successful if the sum of the correlations with the correct

labels is greater than the sum of the correlations with the incorrect labels. In other words, if

Unlabeled1 is the test infant’s average response to ConditionA and Unlabeled2 is the test

infant’s average response to Condition B, one could consider that whichever permutation

yields the greatest sum of correlations (A-1, B-2 vs. A-2, B-1) provides the best estimate of

labels for the new, unlabeled responses. If the new labels are correct, then decoding of this test

infant with the group model is considered accurate, and if not, then decoding is considered

inaccurate (a 1 or a 0 is assigned for this test infant, respectively).

For trial-level decoding, the test infant’s multichannel patterns for each unlabeled trial are

correlated with each condition from the group model. If the correct label yields the greater cor-

relation then we consider decoding to be successful. For example, a correctly decoded Condi-

tionA trial would be represented by the following equation:

tanh� 1
ðcorrðxGroup;CondA; xTest;UnlÞÞ > tanh� 1

ðcorrðxGroup;CondB; xTest;UnlÞÞ ð5Þ

After binary decoding accuracy (1/0) is recorded for each trial for a given test infant, aver-

age accuracy for each condition is derived by averaging decoding accuracy for all trials of a

given condition.

Once decoding (infant-level or trial-level) is complete for a given test infant, this procedure

is iterated throughout the population of infants until each infant has been a test infant and

their patterns of activation have been decoded. Specifically, after decoding is complete the test

infant is reintegrated and the multichannel patterns from another infant are removed (i.e., the

new test infant) before a new group level model is created. To conduct decoding for N infants

in a given experiment, N group models are created with a unique model for each infant.

These methods can be applied to three or more stimulus conditions, but the present study

will focus on the case of only two conditions. Extension to a greater number of conditions is

further addressed in the Discussion.
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Application of MVPA to infant fNIRS data

We applied our MVPA method to two previously collected infant fNIRS datasets. Both datasets

were obtained from a Hitachi ETG-4000 and a custom cap and optical fibers built especially

for fNIRS data collection with infants. FNIRS data were sampled at 10Hz. Twenty-four chan-

nels were used in the NIRS cap, with 12 over the back of the head to record bilaterally from the

occipital lobe, and 12 over the left side of the head to record from the left temporal lobe. The

channels were organized in two 3x3 arrays, and the cap was placed so that, for the lateral array,

the central optode on the most ventral row was centered over the infants’ left ear and, for the

rear array, the central optode on the most ventral row was centered between the infant’s ears

and over the inion. This cap position was chosen based on which NIRS channels were most

likely to record from temporal and occipital cortex in infants. Due to curvature of the infant

head, a number of channels did not provide consistently good optical contact across infants

(the most dorsal channels for each pad rarely if ever made physical contact with the infant’s

scalp and thus were a priori excluded for the entire population). We did not consider the

recordings from these channels in subsequent analyses and only considered a subset of the

channels (7 for the lateral pad over the ear and 3 for the pad at the rear array).

Written consent was obtained from a legal guardian for each infant before the experiment.

This consent procedure and the experimental methods were approved by the Institutional

Review Board of the University of Rochester. During the experiment, the infant sat on a careta-

ker’s lap in a darkened room and surrounded by a black curtain to reduce visual distraction

and to separate the participant from the experimenter. Caretakers were instructed to refrain

from influencing their infant, only providing comfort if needed. Infants watched the video

until they consistently stopped looking, became fussy, or, in the case of dataset #2, all experi-

mental blocks were watched.

Raw data were exported to MATLAB (version 2006a for PC) for subsequent analyses with

HomER 1 (Hemodynamic Evoked Response NIRS data analysis GUI, version 4.0.0) for a stan-

dard preprocessing of the NIRS data. First, the “raw intensity data is normalized to provide a

relative (percent) change by dividing the mean of the data” (HomER 1.0 manual). Then the

data is low-pass filtered (cutoff 3 Hz) to remove noise such as heart-beat. Second, changes in

optical density are calculated for each wavelength, and a PCA analysis was employed to remove

motion artifacts. Finally, the modified Beer-Lambert law is used to determine the changes

(delta) concentration of oxygenated and deoxygenated hemoglobin for each channel (the

DOT.data.dConc output variable was used for subsequent analyses, see the HomER Users

Guide for full details [28]).

Dataset 1: Differentiating auditory and visual processing

This dataset came from an experiment in which infants either viewed a visual stimulus (a red

smiley face appearing for 1 sec in a white box on the screen) or heard an auditory stimulus (a

toy sound, either a rattle or a honk sound that played for 1 sec) in separate events in an event-

related design. Including static presentation of the empty white square on either side of these

unimodal stimulus events, these trials lasted 3–3.5 seconds (see 15 for detailed information

about stimulus presentation) and were separated by a jittered baseline lasting between 4–9 sec-

onds (mean 6.5 seconds). See Fig 3 (left panel) for a schematic of this task (i.e., which informa-

tion we must decode from the neural signal).

Twenty-five (25) infants were recruited for this study (mean age = 5.7, SD = 0.61 months,

10 female, 2/25 infants were identified as Hispanic and 23 infants were identified by their

parents as Caucasian and 2 were identified as mixed race, Caucasian + Asian, Caucasian

+ Native American + Black). Of these infants, 19 were included in the final data analyses, with

Multivariate pattern analysis infant fNIRS

PLOS ONE | https://doi.org/10.1371/journal.pone.0172500 April 20, 2017 9 / 23

https://doi.org/10.1371/journal.pone.0172500


3 infants excluded due to poor optical contact (e.g., due to a large amount of dark hair; these

individual subject exclusions were made based on experimental notes or from observation of

the recordings. The decision to include or exclude each subject was made once and before the

data were analyzed in order to reduce the possibility for experimental bias) and 3 for failing to

watch the video to criterion. Infants were recruited through the database of interested partici-

pants from the Rochester Baby Lab and were born no more than 3 weeks before their due date,

had no major health problems or surgeries, no history of ear infections, nor known hearing or

vision difficulties. Caregivers were compensated $10 for their visit and a token gift (e.g., a Baby

Lab t-shirt, bib or tote bag).

Separate univariate analyses for Dataset 1 were previously reported in [29]. For more details,

please refer to that manuscript. On average, infants watched for 6.9 trials of each of the two

unimodal conditions (SD = 1.95). For the current MVPA analyses, the data were analyzed with a

time-window of 0–10 seconds. This is a different time-window than that employed in Emberson

et al. (2015), which employed a 4–11.5 second time-window. This difference reflects the fact that

Emberson et al. [15] used univariate analyses to capture the peak of the hemodynamic response

Fig 3. Depiction of the two datasets and the decoding results (infant-level and trial-level) for each. Error bars depict the bootstrapped

confidence intervals of the mean across infants.

https://doi.org/10.1371/journal.pone.0172500.g003
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function, whereas the current analysis it was important to maximize the variability of the

response curve for optimal decoding. Thus, a time-window was chosen which included the rise

of the hemodynamic response in the first four seconds. Parameters for selecting the optimal time

window for a particular experiment are not yet clear, so while this visual inspection approach

proves sufficient in the present study, the same time window may not generalize to all event-

related designs. In the supplementary materials (S1 File), we review the consequences of this

time window selection relative to other possible windows. Future research will be necessary to

evaluate the impact of time window parameters for decoding other datasets and the best meth-

ods for selection.

Dataset 2: Differentiating combinations of audiovisual processing

In this dataset, infants either viewed a block of 8 faces while listening to music (VFaces+AMusic)

or they listened to a block of 8 words while looking at dimmed fireworks (VFireworks+AWords).

Thus, in this dataset, successful decoding of the pattern of neural responses required distin-

guishing between types of audiovisual (AV) processing and not simply whether the infant is

hearing something or seeing something as in Dataset #1. The audio stimuli were 8 common

words familiar to infants and commonly attested in samples of infant-directed speech (apple,

baby, bottle, blanket, cookie, diaper, doggie, story). The visual face stimuli were 8 smiling Cau-

casian female faces from the NimStim database [30]. All stimuli had a stimulus onset interval

of 1 second. The inter-stimulus interval (ISI) for visual stimuli was always .25 seconds. The ISI

for audio stimuli ranged from .2-.3 seconds because of slight differences in word duration. The

8 stimuli in each modality were presented in shuffled order for each block. As with Dataset #1,

these stimuli were followed by a jittered 4–9 second baseline (mean = 6.5 sec). See Fig 3 for a

schematic of this dataset. Unrelated univariate analyses of this dataset are presented in [31]

with more details on the experiment available in that manuscript.

Twenty-six infants were recruited based on the same criteria and using the same methods

as Dataset #1. Of these, 18 infants were included in the final analysis: Infants were excluded for

poor optical contact (6, see above), not watching to criterion (1), or refusing to wear the NIRS

cap (1). The remaining sample of infants had a mean age of 5.8 months (SD = 0.6) and con-

sisted of 9 females and 9 males. Of the included infants, 88.9 percent heard only English at

home. Two other participants heard another language from their family 60 or 90 percent of

the time. Participants were identified as Caucasian (16), black (1), and Hispanic (2). Infants

watched these two multimodal blocks an average of 4.9 times each (SD = 1.17). As with Dataset

#1, the time-window investigated for MVPA is slightly different than for the corresponding

univariate analyses (6–14.5 seconds, 30). In this block design, our analysis focused on the

cumulative response to the eight stimuli during the exposure period. Thus the current analyses

employ a time window of 6–12.5 seconds during which the fNIRS response was likely to pla-

teau. Individual trials may vary in the first 6 seconds after stimulus onset while the fNIRS

response is still rising, but the plateau is more likely to stabilize throughout the course of the

block. Similar to Dataset #1, this time window also curtails the end the hemodynamic response

period. As we are decoding over averaged windows of oxygenated hemoglobin, in general,

there is not yet a clear and principled way to select time-windows for the current analyses.

Future work could identify optimal timing for event designs (as in Dataset 1) versus block

designs (as in Dataset 2) or model beta values as in adult fMRI analyses. The application of

multivariate methods to infant fNIRS data is indeed in its infancy, and while we briefly explore

these issues in the Supplementary Materials (S1 File), principled guidelines for time window

selection remains an exercise for further research. An exploratory test found that, for this par-

ticular dataset, including the beginning of the response (i.e., starting from 0 seconds after
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stimulus onset), yielded chance-level decoding performance. However, the retrospective analy-

sis provided in the supplementary materials (S1 File) also revealed that decoding was generally

best for time windows starting between 4-7s after the start of the stimulus block.

Results

Decoding accuracy is averaged across all test infants to produce an overall decoding accuracy

score: Infant-level decoding accuracy is expressed as the percentage of infants where the aver-

aged multichannel patterns for the two conditions are correctly labeled (greater correlation for

correct condition labels than the incorrect condition labels, see Eqs 4.1 and 4.2). Trial-level

decoding accuracy is expressed as the average percent of correctly labeled trials across infants,

where correct refers to cases where the correlation is higher for the correct condition label

than the incorrect condition label (see Eq 5). We apply these tests to two datasets and ask

whether these decoding methods reliably predict, on an infant-level or trial-level, the obtained

infant fNIRS data. The output of the decoding scripts and our analysis code can be down-

loaded at https://github.com/laurenemberson/EmbersonZinszerMCPA_analysesFromPaper.

Infant-level decoding

In Dataset #1, the infant-level multichannel patterns (averaged for each condition, Fig 2) were

correctly labeled for 17 out of 19 infants (accuracy = 89%; see top panel of Fig 3, “Infant-level”

data). In Dataset #2, the infant-level multichannel patterns for the two types of audiovisual tri-

als were correctly labeled for 13 out of 18 infants (accuracy = 72%; see Fig 3, bottom panel).

Because the cross validation procedure introduces dependencies between each infant that is

tested against the group model, a parametric binomial test is not appropriate for testing the

significance of these results. Instead, we performed a permutation-based test to create an

empirical null distribution and determine the p-value for the observed decoding results. This

procedure is described and illustrated in detail in the supplementary materials [32]. Decoding

accuracy was statistically significant in both Dataset #1 (p = 0.001) and Dataset #2 (p = 0.048).

Thus, we find that the group model can successfully decode two stimulus conditions in an

infant’s fNIRS data with high accuracy, determining whether a test infant is either seeing or

hearing a stimulus (Dataset #1), and in the much more difficult contrast between different

combinations of audio-visual stimulation (Dataset #2) where successful decoding cannot rely

on stimulus modality exclusively. In Dataset #2, accurate labeling requires the correct discrimi-

nation of one audiovisual combination from another, such that only subtle patterns of cortical

activation in the same or overlapping regions will distinguish these two conditions rather than

broad spatial differences among channels (e.g., anterior-vs.-posterior or right-vs.-left), which

we test in the univariate analyses presented later in this section.

Trial-level decoding

For Dataset #1, labeling each trial independently for each test infant yielded 68% accuracy for

Visual trials and 66% for Auditory trials (Fig 3, top panel). Each of these accuracy scores signif-

icantly exceeded chance (50%, see S1 File for the details of generating the null-hypothesis dis-

tribution and p-values; Visual: p<0.001; Auditory: p<0.001).

For Dataset #2, labeling each trial independently yielded 60% accuracy for Audiovisual-1

trials and 57% for Audiovisual-2 trials (Fig 3, bottom panel). While numerically above 50%,

these accuracy scores did not robustly exceed chance (50%, Audiovisual-1: p = 0.054; Audiovi-

sual-2: p = 0.125).

Thus, we find that the group model can successfully decode single trials for an infant who

did not contribute to the group model (i.e., test infant). In the case of Dataset #1, both
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conditions were decoded significantly beyond chance. While for Dataset #2, trial-level decod-

ing was around 60%, but did not reach the p<0.05 threshold for statistical significance.

MVPA with subsets of channels: Investigating spatial-specificity

Since the current MVPA method works on multichannel patterns (i.e., vectors) of arbitrary

(but consistent) length, it is also possible to perform the infant-level and trial-level analyses on

subsets of the fNIRS channels, rather than using all available fNIRS channels as we reported in

the previous sub-sections (10 channels).

Canonical MVPA analyses of fMRI data use voxel-stability and “searchlight” techniques to

determine which voxels contain sufficient information to decode previously unlabeled trials

[6,33]. Due to the small number of fNIRS channels and the large spatial extent of cortex over

which each channel samples (~2 cm of infant cortex, [11]), fNIRS recordings from the two

datasets are not conductive to a spatial searchlight analysis. However, the small number of

channels permits an exhaustive combinatorial analysis of decoding accuracy for all possible

channel subsets.

This subset analysis allows us to determine which channels make the greatest overall contri-

bution to MVPA decoding accuracy. Specifically, we consider two interrelated issues:

1. How many channels should be included in a subset for maximum decoding accuracy? Does

the inclusion of more channels result in better decoding?

2. Are some channels more informative than others? With smaller subset sizes, we test the

varying contribution of each channel to decoding accuracy. These issues together allow us

to tackle the question of whether this multivariate method can detect spatial-specificity in

decoding accuracy. Foreshadowing our results, we will provide evidence that average

decoding accuracy decreases with smaller subsets (e.g., reducing from 10 to 2 channels

employed per subset). However, we can detect substantial variation of decoding accuracy

across subsets and varying levels of decoding accuracy across channels indicating that some

channels contribute more information to the decoding process than others. Together, these

results provide evidence that spatially-specific decoding results can be obtained through

MVPA.

In this subset analysis, we varied the number of channels included in the decoding analysis

(subset size) from two channels to ten channels (i.e., the complete array, as reported in the fore-

going results). For every subset size, 10Cn possible combinations of n channels exist. For exam-

ple, for a subset size of 2 channels, subsets would be channels 1 & 2, 1 & 3, 1 & 4, etc. We tested

all subsets for infant-level decoding.

Are there differences in decoding accuracy with subset size?

To determine how decoding accuracy changes with subset size, accuracy over all subsets was

determined for each subset size and for both datasets. As shown in Fig 4, the difference in aver-

age decoding accuracy increases with larger subset sizes and peaks for both datasets when the

subset size equals the total number of channels (subset size = 10). Thus, even though all chan-

nels are included across subsets, when subset sizes are less than the total number of channels

(< 10), the maximum average decoding accuracy (across all subsets of the same size) improves

as the number of channels simultaneously considered during decoding increases. Of course,

the rise in decoding accuracy with numbers of channels included in the analysis is unlikely to

monotonically increase ad infinitum. However, this point is not the one being made here as

this method is intended to be applied to the fNIRS community and the developmental com-

munity in particular both of which are largely restricted to a small number of channels. Future
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research will be needed to consider the broader point of how decoding accuracy changes with

numbers of channels beyond 10.

We estimated a logistic regression model to evaluate the following patterns of decoding

accuracy for statistical significance:

1. differences in decoding accuracy between Datasets #1 and #2;

2. differences in decoding accuracy across channels;

3. the relationship between subset size and decoding accuracy.

In a mixed-effects logistic regression model [34], we examined infant-level decoding accu-

racy for each infant, for each subset, and for each channel across subset sizes 2 through 10. In

Fig 4. Decoding accuracy of infant-level activation patterns by subset size for Datasets #1 (purple boxes) and

#2 (blue boxes). Far right, decoding using three most informative channels (most informative channels determined

using subset size 2, Fig 3). Note: For the subset size of 10 channels, there is only one subset and so there is no range to

estimate.

https://doi.org/10.1371/journal.pone.0172500.g004
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other words, our model attempted to predict decoding accuracy before any of the data had

been averaged. Thus, decoding accuracy is either correct, 1, or incorrect, 0, (based on whether

the correlation between the infant-level multichannel pattern for the test infant and the group

model is higher for the correct labels compared to the incorrect or switched labels, described

in detail in Methods). Infants are treated as a random factor in the model to control for any

variability across infants. See S1 File for more details.

First, we confirmed that the difference in accuracy across datasets was significant (coeffi-

cient = -1.61, Z = -36.28, p< 0.001). Second, by comparing across nested models using chi-

squared tests, we confirmed that including channels in our model accounts for significant vari-

ance in decoding accuracy (χ2(333) = 7583.6, p< 0.001). This finding indicates that there are

systematic decoding differences across channels. We also find that the additional inclusion of

subset size in the model significantly increases its fit, indicating that there are differences in

decoding accuracy across set size (χ2(370) = 12958, p< 0.001). Third, subset size (from 2 to

10) has a significant positive coefficient in this latter model (coefficient, 39.66, Z = 5.99,

p< 0.001), confirming that with increases in subset size, there is an increase in accuracy.

These results confirm that there are significant differences in decoding accuracy between data-

sets, across channels, and with increasing subset size.

Are some channels more informative than others?

To test whether some channels are more informative than others, subset sizes of 2 to 10 chan-

nels were compared for infant-level decoding accuracy, with all possible combinations of chan-

nels tested in 10Cn subsets. If all channels were contributing equal information to the group

model, one would expect to see no or little variation across different subsets of channels.

Instead, we see a large amount of variation across channels with an impressive range from

greater decoding accuracy with all 10 channels to well below chance with fewer channels.

Moreover, subset was demonstrated in our statistical model to explain a significant amount of

decoding accuracy. In other words, the large amount variation across subsets that emerges as

the size of the subset decreases provides some evidence that some channels are more informa-

tive than others.

In addition, for each subset, the average decoding accuracy was assigned to each contribut-

ing channel. Once all subsets are decoded, each individual channel’s accuracy is defined as the

average accuracy for all the subsets it participated in. Fig 5 presents average infant-level decod-

ing accuracy for each of the 10 channels across subset sizes from 2 to 10 for both datasets. Sub-

tle differences between channels become visually apparent as subset size decreases from 10 to 5

and more pronounced with subset sizes of 2 and 3. Fig 6 presents a depiction of the relative

informativeness for each channel.

Interestingly, we find that although both Datasets involve stimulus conditions that contain

auditory and visual information, there is some difference in which channels appear to be the

most informative: for Dataset #1, the three most informative channels (numerically) are 1, 3

and 8; for Dataset #2, the three most informative channels are 1, 2, and 9. Information about

the spatial location of these channels, their mean responses in each condition, and the correla-

tions of these response in each channel can be found in the Supplementary Materials (S1 File)

but generally, channels 1 through 3 are located in the occipital lobe spanning from V1 to LOC,

with the remaining channels are distributed through the temporal cortex (5 channels) and the

prefrontal cortex (2 channels). Thus, we find that as subset size decreases, there is more diver-

sity in mean decoding accuracy across channels, with prominent differences revealed between

channels in subset sizes 2 and 3. It is also interesting to note that for Dataset #1 while the differ-

ences between channels becomes more prominent as subset size decreases, the overall pattern
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of which channels are more informative compared to others remains stable. This is not the

case for Dataset #2: Between subset sizes of 2 and 3, there are differences in which channels are

(relatively) more or less informative, particularly in which channels are the least informative.

In sum, we present two pieces of evidence that spatial-specificity can be achieved in using

this MVPA technique with fNIRS. First, we find relative informativeness of different channels

across all subsets which provides evidence that not all channels are contributing the same

information. Second, we find a large amount of variation in decoding accuracy across subsets

of small numbers of channels indicating that not all subsets are equally able to decode across

infants. Indeed, we see that some subsets have decoding accuracy that is (numerically) greater

than decoding with all channels (subset size = 10). Again, this provides evidence that not all

channels are equally informative and thus some spatial inferences can be made (i.e., which

regions of the infant brain are contributing to decoding accuracy). See Supplementary Materi-

als (S1 File) for some exploratory analyses selecting and validating small number of channels.

Comparison to univariate analyses: Multivariate analysis distinguishes

between conditions when univariate cannot

Multivariate analyses have the ability to exploit the relations between signals from different

channels, whereas univariate analyses can only assess each channel individually. Thus, the

greatest opportunity for multivariate analyses to reveal information beyond that obtainable by

univariate approaches is when the task conditions stimulate broadly distributed regions of the

brain at once. In the present study, Dataset #2 contains just such a pair of conditions (faces-

Fig 5. Accuracy for each of the 10 NIRS channels for Dataset #1 (left) and Dataset #2 (right) in different subset sizes (from 2 to 10 channels

with each line labeled at the right with the subset size).

https://doi.org/10.1371/journal.pone.0172500.g005
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and-music, versus fireworks-and-speech). Both conditions are audio-visual, but the specific

nature of the audiovisual stimuli differs.

In a univariate analysis of Dataset #2, we compared average activation from 6 to 12.5 sec-

onds after stimulus onset. No single channel exhibited significant differences between condi-

tions after Bonferoni correction (0.05/10 or the number of channels). Thus, there are no

robust univariate differences between these two audiovisual conditions. In contrast, our multi-

variate analysis was able to decode this dataset with high accuracy at the infant-level (> 75%,

as depicted in Fig 3). There were three channels that were significant but did not survive cor-

rection (p< 0.05, Channels 8, 9, and 10). If we evaluate these channels for their relative infor-

mativeness in decoding, only Channel 9 appears to stand out and other highly-informative

channels (1–3) are not identified as univariately significant. This comparison is illustrated in

the lower panel of Fig 6: three channels were jointly able to provide highly accurate multivari-

ate decoding (the three blue-only circles in the Dataset 2 section at the bottom of Fig 6), but

there were no channels at all which provided significant univariate decoding (as shown by the

absence of any brown rings in that panel). Thus, in trying to distinguish between two types of

stimuli, which were both audio-visual but whose content differed (faces-and-music, versus

fireworks-and-speech), multivariate analysis was able to distinguish between conditions when

univariate could not.

Fig 6. Comparison of the relative informativeness across channels from multivariate analysis (from dark to

light, least to most informative respectively) and channels which exhibit a significant difference between the

same two conditions in a univariate analysis. Across both datasets, only a single channel that exhibits a significant

univariate response is one of the most informative channels in the multivariate analyses. In Dataset #2, not a single

channel was significant for our univariate analysis but we achieve significant infant-level decoding in the multivariate

analysis.

https://doi.org/10.1371/journal.pone.0172500.g006
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The literature on fMRI decoding has numerous direct comparisons of univariate statistics

and multivariate decoding methods (e.g., [19]). At least one previous study of fNIRS decoding

has demonstrated the effectiveness of decoding in the absence of significant univariate results

[27], but that study measured nine-year-old children, a subject group far more cooperative

than the infants of our present study, and hence allowed for many more stimulus-presentation

trials and much less noisy data than we are using here. Thus, while the benefits of employing

MVPA for fNIRS go beyond the benefits of statistical power (see the Introduction), it is impor-

tant to consider whether MVPA has the potential to uncover neural differences beyond uni-

variate statistics.

We also compared univariate and multivariate results in Dataset #1. We chose a standard

univariate approach (single-channel mean-based comparisons between conditions with statis-

tical corrections) to compare to our current methods. This choice does not maximize the sta-

tistical similarity between the methods (which would require non-standard statistical methods

for univariate tests) but does maximize comparison between the current approach and those

already employed in the literature. Average activation was compared between 4 and 9 seconds

after stimulus presentation [15]. As we expected, there are channels that survive correction in

the comparison of unimodal audio and visual stimuli. Specifically, 4 channels exhibited signifi-

cant differential activity (Channels 1, 7, 9, 10, ts(18)> |3.34|, ps< 0.0036). Interestingly, these

are not the same channels that were the most informative in decoding (i.e., Channels 1, 3 and

8; please see the fully cross-validated test in S1 File). The channel with the highest relative

decoding accuracy (Channel 3) did not exhibit significant differentiation of the two conditions

even before statistical correction. An additional 3 channels exhibited significant differences

(p< 0.05) but did not survive correction (Channels 4, 5 and 8). Thus, even in the case where

infants were presented with unimodal audio and visual stimuli, univariate statistics and

MVPA decoding yield different (but highly significant) results, suggesting that these analytic

approaches provide different types of information.

Discussion

We present evidence of significant decoding of the infant brain using a novel multivariate

analysis of fNIRS data from two infant datasets. These findings are notable for demonstrat-

ing a simple, effective multivariate method for fNIRS data with highly accurate decoding of

neural responses across infants that either complements or surpasses univariate analyses.

Specifically we proposed a correlation-based analytic framework for conducting a multivar-

iate analysis on a small set (n = 10) of NIRS channels. The resultant multivariate pattern

analysis (MVPA) reliably decoded which of two stimulus conditions was present (i.e., the

average pattern of response across channels) both at the infant-level and at the trial-level

(i.e., the average pattern for an infant across all trials and the average pattern for a single

trial, respectively). Infant-level performance was robust across two datasets, which included

both unimodal and multimodal stimuli. Trial-level performance was reliable for unimodal

stimuli, and despite not achieving statistical significance, trial-level prediction accuracy in

the multimodal stimuli (around 60%) was strongly suggestive of subtle differences in the

sensory properties of the two stimulus conditions. Future trial-level discrimination may

simply require more statistical power (i.e., larger sample size of infants). Nevertheless,

decoding accuracy using MVPA was highly robust under for decoding across infants in

both unimodal and multimodal stimulus conditions. This result is especially impressive

given the many hurdles that must be overcome when gathering fNIRS data from infants

(e.g., limited number of channels, large spatial extent of sampled cortex per channel, small

number of trials contributed per infant, greater intersubject variability).
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The subset analyses suggest that MVPA methods benefit from including a greater numbers

of channels, highlighting the multivariate aspect of this method. Further, this analysis revealed

differential informativeness of individual channels to MVPA decoding accuracy. Specifi-

cally, we find that if the number of channels contributing to a multivariate analysis decreases,

there is an increase in the variance across subsets, indicating that some combinations of chan-

nels achieve nearly identical decoding performance to the full set of channels and other combi-

nations of channels have very poor decoding accuracy. Moreover, the average decoding

accuracy for a given channel varies across channels. These two findings provide evidence that

not all channels are contributing equal information to the decoding and provides some spa-

tially-specific information about representations in the infant brain can be recorded using

fNIRS and decoded using MVPA. Moreover, both of these findings validate the multivariate

method as a tool for identifying pattern-based neural correlates of cognition: The decrease in

average decoding accuracy with smaller subset sizes establishes that the current analysis

method utilizes patterns of activation distributed across channels and thus suffers when fewer

of these channels are contributing to the observed pattern of activation. It also follows that not

all channels contribute equally to decoding, and thus channel-wise analyses indicate differ-

ences in specialization or engagement of specific cortical regions to the current task, which is

detectable using MVPA.

The more informative channels identified in the present study were widely distributed

across the cortical surface including occipital, temporal and frontal regions. Moreover, the rel-

ative pattern of informativeness across channels was not the same across datasets. These find-

ings highlight the value of MVPA for pooling information across the brain without spatial

constraint. The evaluation of subset informativeness opens a window on exploring the contin-

uum of modular (i.e., cluster-based) versus distributed neural architectures, including how

such architectures might be biased before birth and/or emerge with exposure to postnatal

experience. This inference about spatial localization intersects with the goals of univariate anal-

yses, which focus on clusters of channels (i.e., an ROI approach). However, a direct compari-

son of univariate and multivariate methods in this study revealed that MVPA elucidates

aspects of the hemodynamic signal that are missed in standard univariate tests. In the multi-

modal dataset (Dataset #2), significant infant-level decoding is successful using a subset of

informative channels while univariate methods fail to find any significant differences on these

(or indeed, any) channels. Moreover, in both datasets, the more informative channels did not

strongly overlap with the channels that exhibited significant univariate results. In fact, only a

single channel both survived statistical correction in univariate tests and was one of the more

informative channels for decoding performance (Channel 3 in Dataset #1). Thus, on two

fronts we find that MVPA notably extends results found using univariate methods: In the

absence of significant univariate results, decoding is still possible (Dataset #2) and individual

channels can be identified as supporting decoding while yielding no significant univariate

results and vice versa. However, it is important to note that for both univariate and multivari-

ate methods, it is possible that differential response/informativeness could arise from signals

that are correlated with the contrasts of interest. This issue must be dealt with in the experi-

mental design and cannot be readily dealt with in the analyses regardless of whether they are

multi- or univariate.

It is notable that decoding was conducted between-infants (i.e., based on a group model

that did not include data from the test infant). It is an important area of future empirical work

to investigate the nature of the neural patterns or representations supporting this between-sub-

ject decoding. Intuitively, between-subjects decoding is likely to be relying on more coarse-

grained patterns than within-subjects decoding because of the variability of representations,

neural specialization and, pragmatically, the localization of NIRS channels across subjects.
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However, previous work with adult fMRI decoding has demonstrated that adults do share

fine-grained neural representations when they are considered in similarity space [35].

Given this initial proof of concept that multivariate methods can be used successfully to

decode two stimulus conditions from the fNIRS data of 6-month-old infants and provide find-

ings beyond univariate tests, there are a large number of questions that can be tackled which

were hitherto inaccessible to fNIRS studies using univariate methods. For example, rather than

asking whether cortical region X is more activated by a particular type of stimulus (e.g., faces)

than some other comparison stimulus (e.g., houses), one can ask two more subtle questions.

First, is there a pattern of activation that, even in the absence of a difference in mean activation

for the two stimulus conditions, indicates reliable decoding of that stimulus difference? Sec-

ond, given a reliable pattern of decoding, what is the spatial distribution of fNIRS channels

that are informative for that decoding process? Answers to these two questions, which our

findings now bring into the realm of possibility, will enable researchers who study the develop-
ment of the human brain to begin to propose and evaluate more sophisticated models of the

neural mechanisms of cognition. In addition, by relating the patterns of fNIRS activations

among stimuli that vary along known dimensions, one can expand MVPA to ask how higher-

level stimulus dimensions are decoded by the brain. Now that MVPA has been confirmed as a

viable method in infants, future use of Representational Similarity Analysis promises to be a

fruitful avenue for investigation, such as implementing methods for more than two conditions,

as described by [21] and [35].

Aslin et al.’s [12] review of fNIRS contribution to developmental research highlighted the

imminent need to extend multivariate methods developed in fMRI to fNIRS. Although some

previous studies have implemented machine learning techniques to classify fNIRS responses,

these multivariate approaches have not yet been widely adopted by the fNIRS community, and

we have argued that there are significant barriers to doing so both computationally and inter-

pretatively. In this paper and the supplementary material, we offer a simple, transparent

method for decoding fNIRS data in an early developmental population. The MATLAB code

for implementing these analyses is publicly available, flexible enough to easily accommodate

various experimental configurations (e.g., different numbers of fNIRS channels or subsets of

channels), and can automatically extract analysis-relevant details from HomER data files [28].

The availability and transparency of the methods and code will also allow researchers to make

changes that expand the use of multivariate analyses in their fNIRS research.
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