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A B S T R A C T   

A key goal of human neurodevelopmental research is to map neural and behavioral trajectories across both 
health and disease. A growing number of developmental consortia have begun to address this gap by providing 
open access to cross-sectional and longitudinal ’big data’ repositories. However, it remains challenging to 
develop models that enable prediction of both within-subject and between-subject neurodevelopmental varia
tion. Here, we present a conceptual and analytical perspective of two essential ingredients for mapping neuro
developmental trajectories: state and trait components of variance. We focus on mapping variation across a range 
of neural and behavioral measurements and consider concurrent alterations of state and trait variation across 
development. We present a quantitative framework for combining both state- and trait-specific sources of neu
robehavioral variation across development. Specifically, we argue that non-linear mixed growth models that 
leverage state and trait components of variance and consider environmental factors are necessary to compre
hensively map brain-behavior relationships. We discuss this framework in the context of mapping language 
neurodevelopmental changes in early childhood, with an emphasis on measures of functional connectivity and 
their reliability for establishing robust neurobehavioral relationships. The ultimate goal is to statistically unravel 
developmental trajectories of neurobehavioral relationships that involve a combination of individual differences 
and age-related changes.   

1. Introduction 

A main goal of developmental cognitive neuroscience is to under
stand the systematic neurobehavioral changes observed across devel
opment and how they relate to environmental and experiential factors. 
Recent large-scale neuroimaging efforts (e.g., the Adolescent Brain 
Cognitive Development (Casey et al., 2018) [ABCD], the Healthy Brain 
Network (Alexander et al., 2017) [HBN] or the Human Connectome 
Project [HCP] Lifespan (Howell et al., 2019; Somerville et al., 2018) 
studies) have facilitated this goal by providing access to quantitative 
developmental datasets of an unprecedented breadth and size. Crucially, 
these ‘big data’ initiatives have made widely available both 
cross-sectional and longitudinal brain imaging measurements, along 
with behavioral and environmental assessments. These datasets are 
particularly useful for understanding variation in neural measures and 
their behavioral correlates, which may allow for characterization of 
change within an individual and between individuals. Achieving a char
acterization of these different sources of variance is crucial to develop 
predictive models of both normative and atypical development and 

ultimately growth curves that enable prediction of behavior from neural 
measurements. Importantly, growth curves of neurobehavioral re
lationships may in turn help to identify sensitive periods during devel
opment when potential interventions are most effective and to 
characterize the impact of environmental factors in predicting neuro
behavioral development. 

Despite the general agreement that characterizing neurobehavioral 
variation across development is crucial, it is still unclear how to best 
leverage these large-scale datasets to characterize the different sources 
of variation that contribute to neural and behavioral development 
(Becht and Mills, 2020; Telzer et al., 2018). In this perspective piece, we 
argue that there are at least two main components of variance that are 
essential for characterizing neurobehavioral trajectories and age-related 
changes: i) individual differences or trait-like patterns of variation and 
ii) within-subject differences or state-like patterns of variation. We 
elaborate on this argument by showing that neurodevelopmental 
research has much to benefit from combined quantification of these two 
sources of variance, their interactions and changes over time. 

To illustrate our perspective, we can consider a commonly used 
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measure of brain function, functional connectivity (FC). FC refers to the 
degree of covariation between spatially distributed signals in the brain 
(Biswal, 2012; Snyder, 2016; Snyder and Raichle, 2012). The functional 
organization of the adult brain has been extensively characterized via FC 
with a variety of neuroimaging techniques, such as functional magnetic 
resonance imaging (fMRI), functional near-infrared spectroscopy 
(fNIRS), electro-encephalography (EEG), magneto-encephalography 
(MEG), and electrocorticography (ECoG). FC patterns in the adult 
brain tend to be relatively stable within an individual, and similar pat
terns can be captured across subjects (de Souza Rodrigues et al., 2019; 
Demuru and Fraschini, 2020; Finn et al., 2015; Gordon et al., 2017a, b; 
Miranda-Dominguez et al., 2014). This within-individual stability in FC 
measures has been leveraged to understand individual differences or 
‘trait’ variance by investigating neural patterns in single subjects and 
how they may relate to behavioral phenotypes (Bosl et al., 2018; Finn 
and Todd Constable, 2016; Friedman et al., 2019; Gratton et al., 2016; 
Greene et al., 2018; Nostro et al., 2018; Oswald et al., 2017; Rosenberg 
et al., 2016; Seitzman et al., 2019; Yoo et al., 2018). 

Trait-related neural variation is often measured with resting-state 
FC. Resting-state FC refers to patterns of covarying spontaneous 
neuronal activity among a set of brain regions, which are observed even 
in the absence of external stimuli (Biswal, 2012; Biswal et al., 1997; Fox 
et al., 2005; Snyder and Raichle, 2012). These patterns were originally 
used to capture the statistical properties of neural activity that is spon
taneously generated in the absence of a task (Biswal et al., 1995, 1997; 
Raichle, 2015; Snyder, 2016; Snyder and Raichle, 2012; Van den Heuvel 
and Hulshoff Pol, 2010). Importantly, resting-state FC and associated 
networks are highly stable and replicable within an individual and FC 
patterns during rest have been leveraged to understand individual dif
ferences across health and disease (Finn et al., 2015; Gordon et al., 
2017a; Gratton et al., 2018; Greene et al., 2018; Satterthwaite et al., 
2018; Seitzman et al., 2019). In parallel, studies have also shown that 
consistent and specific FC patterns emerge as a function of cognitive task 
(Cole et al., 2013, 2014, 2016; Gratton et al., 2016). For example, tasks 
engage a consistent whole-brain network organization different from 
resting-state networks and frequently result in higher connectivity 
among certain sub-networks. Furthermore, different tasks are associated 
with systematic and distinct network changes. Connectivity between 
language and visual networks increases during naturalistic viewing tasks 
(Betti et al., 2013) or between visual and dorsal attention networks 
during visual attention tasks (Spadone et al., 2015) relative to rest. 
Task-related sources of variation, however, explain only a portion of the 
observed network variance, which is primarily accounted for by 
trait-related sources of variation (Gratton et al., 2018). Removal of 
resting-state network estimates from task-based estimates seems to 
enhance the more transient task-dependent effects (Cole et al., 2019; 
Gratton et al., 2018). Collectively, these findings show that FC measures 
may reflect stable traits of individuals, while also capturing more 
state-like transient patterns that are consistently associated with specific 
cognitive tasks. 

Understanding the contribution of, and interactions between, state 
and trait components of variance in shaping neural and behavioral 
development requires a characterization of their changes over time. 
Characterizing these time dependent relationships across development 
has proven challenging, especially during periods of rapid change. 
During the first years of life, for example, the human brain undergoes 
dramatic and rapid maturational changes in both anatomy and function. 
This is a critical time during development in which a number of 
normative learning mechanisms and susceptibility to social disorders 
emerge (Haartsen et al., 2016; Keunen et al., 2017; Vasung et al., 2019). 
During this period, the reliability and stability of neural and behavioral 
measurements—which are crucial for identifying normative changes 
expected as a function of age—may be affected by state-like patterns of 
developmental variation that modulate concurrent trait-like variations 
(Blasi et al., 2014; Herting et al., 2018). Importantly, signal fluctuations 
at the individual-level during early childhood may be a reflection of 

normative changes and variable trajectories associated with typical 
development. Furthermore, research on developmental change indicates 
that signal variability is likely to increase during the acquisition of new 
skills (Adolph et al., 2003, 2008; McMurray, 2007). These acquisition 
periods are often characterized by the stochastic presence/absence of a 
given skill, until a stable period of daily expression is reached. Impor
tantly, these periods of frequent regressions and sudden alterations in 
the rate of change may reflect developmental phases of particular sus
ceptibility to environmental input. Achieving a comprehensive under
standing of neurobehavioral variation during these periods of rapid 
change will likely require fine-grained neurobehavioral measures that 
reflect signal variability and contributions of both state- and 
trait-dependent components of variance. 

Finally, developmentally-relevant time-dependent neurobehavioral 
relationships can also be observed within a single task. These are fluc
tuations in neural activity that change over relatively short timescales 
and have been primarily studied via invasive electrophysiological re
cordings of single cells and non-invasive electroencephalograms (Allen 
et al., 2018; Criado et al., 2008; Rey et al., 2015; Shou et al., 2020). 
These methods have a higher temporal resolution than fMRI and allow 
investigations into the adaptability and dynamics of brain functioning 
and their cognitive correlates. In contrast, studies using fMRI have often 
implicitly assumed that the observed spatial and temporal patterns are 
stationary throughout the length of the scanning session (e.g., during a 
task or resting-state). Nevertheless, research into the time-varying as
pects of FC measures indicates that dynamic FC patterns can also be 
identified via fMRI. For example, there are correspondences between 
features of FC over short periods of time (e.g., variability or modularity 
shifts) and measures of task performance (e.g., response-time or accu
racy) (Bassett and Mattar, 2017; Bertolero et al., 2020; Kao et al., 2020; 
Mattar et al., 2018). These dynamic FC patterns seem to be modulated 
by learning and experience, which has raised questions regarding how 
environmental stimuli and associated learning experiences shape the 
developing brain. Bassett and colleagues (Bassett et al., 2011), for 
example, investigated the reconfigurations of human brain networks 
during learning in a group of young adults and showed that learning is 
dependent on the flexibility of brain connections to adapt and change in 
relation to environmental input. Using tools from network science and 
graph theory, they in turn used variability in network structure to make 
predictions about the amount of learning in subsequent experimental 
sessions. Similar results have been found in studies investigating the 
effects of learning on brain network reconfigurations across a variety of 
cognitive domains such as spatial, motor, perceptual or value learning 
and also with respect to cognitive load (Antzoulatos and Miller, 2014; 
Bassett et al., 2015; Bertolero et al., 2020; Gerraty et al., 2018; Mattar 
et al., 2018). These findings provide evidence for the dynamic nature of 
FC patterns and highlight the potential of understanding how the dy
namic social environment and individual-specific learning experiences 
contribute to shape brain networks and cognitive development. 

In the remainder of this perspective piece, we posit that mapping 
neurodevelopmental variation requires combining, both conceptually 
and quantitatively, state- and trait-dependent sources of variance. In 
doing so, we consider how these orthogonal components of variance 
contribute to characterizing neural and behavioral relationships across 
development with the ultimate goal of enabling prediction of behavior 
from neural patterns. We first examine examples of state- and trait- 
dependent sources of variance found across anatomical (cortical 
folding patterns), functional (brain FC) and behavioral (language) 
measurements. These examples will illustrate how measures of neural 
and behavioral variation can be characterized by a combination of these 
two orthogonal components of variance. We then consider state and trait 
relationships that occur concurrently in relation to a given neural or 
behavioral measurement with a focus on brain FC. We discuss how state- 
and trait-dependent sources of variance and their interactions can be 
formally quantified via models that partition the variance into within- 
and between-subject components. Crucially, we argue that modeling 

S. Sanchez-Alonso and R.N. Aslin                                                                                                                                                                                                           



Developmental Cognitive Neuroscience 45 (2020) 100855

3

non-linear growth curves along with state-like and trait-like patterns of 
variation is necessary to comprehensively map neurobehavioral trajec
tories across development. Finally, we examine key factors that may 
affect the reliability of developmental measures for establishing robust 
neurobehavioral relationships. 

2. Mapping state and trait components of neurodevelopmental 
variation 

Neuroimaging studies have traditionally quantified data across in
dividual subjects with the goal of drawing inferences regarding general 
patterns of brain activity that are common across groups of people 
(Becht and Mills, 2020; Gordon et al., 2017b; Madhyastha et al., 2018; 
Telzer et al., 2018). In other words, human brain function and behavior 
have been studied extensively via group-averaging, which focuses on the 
population mean, or by investigating how individuals vary relative to 
the mean. To map human neurodevelopment across age, however, it is 
necessary to study how a specific person differs from the group-level 
pattern with respect to neural and behavioral variables and how in
dividuals themselves vary over time. This necessitates consideration of 
‘within-subject’ or ‘state’ variance components, which are present 
alongside ‘between-subject’ or ‘trait’ variance components. Statistically, 
these two sources of variance are orthogonal and therefore can be 
characterized independently of each other. 

Recent large-scale neuroimaging efforts have facilitated the process 
of quantifying individual variability across a population and a number of 
studies have shown that individuals exhibit FC patterns that differ from 
the group-level pattern (Gordon et al., 2017a; Marek et al., 2019; 
Seitzman et al., 2019). These individual differences in functional brain 
organization have been associated with stable, trait-like systematic 
variation in behavior. Crucially, it is unclear to what extent these 
individual-specific variations and associated network organizations are stable 
within a person or exhibit state-related changes. This core question is 
fundamental for neurodevelopmental research since humans undergo 
rapid neural and behavioral state- and trait-related change across 
development, especially during the early years of life. Therefore, ac
counting for these two sources of variance, and their interactions, is a 
prerequisite to comprehensively quantify differences across individuals, 
as well as variation within a person as a function of time-dependent 
genetic, neural, behavioral and environmental factors. Understanding 
individual differences as a source of variation in a population, however, 
has often ignored the orthogonal source of within-subject variance 
(Geerligs et al., 2015; Seghier and Price, 2018; Sharda et al., 2015; 
Geerligs and Tsvetanov, 2017). Here we discuss these two ways of 
quantifying variance, namely trait- and state-dependent variance, and 
how modeling them in combination is essential for advancing neuro
developmental research. 

Trait-dependent variance refers to a signal that exhibits variation 
across units of measurement relative to the group mean – in this case 
units would be individuals. Formally, this can be expressed with the 
following sum of squares (SS) equation: 

SStrait =
∑n

i=1

(
xi − xg

)2  

Where  

• i refers to the ith individual;  
• n is the number of individuals in a sample;  
• Xi is the individual observations;  
• Xg is the group mean 

Importantly, this variance component can describe a signal that may 
show minimal state-dependent (e.g., stable over time) variance or that 
may show large state-dependent (e.g., unstable over time) variance. In 
other words, the ‘trait’ component of variance is orthogonal to the ‘state’ 

component. 
In contrast, state-dependent variance refers to a signal that shows 

variation over repeated observations of the same unit (e.g., a single 
child), such that the unit of measurement varies as a function of mea
surement instance (e.g., over time or over different experimental con
ditions such as resting-state versus task). Formally, this can be expressed 
with the following equation: 

SSstate =
∑n

i=1
(xi − xi)

2  

Where  

• i refers to the ith individual;  
• n is the number of individual observations;  
• Xi is the individual observations;  
• Xg is the individual mean 

To exemplify these two sources of variance, we will use cortical 
folding patterns because they represent a natural biological process that 
exhibits both trait-dependent variance (i.e., adult cortical folding pat
terns are highly variable across people but relatively stable at the indi
vidual level) as well as state-dependent variance (i.e., rapid and highly 
dynamic folding during early neurodevelopment which also differs 
across children) (Fig. 1). In the adult brain, there is relatively minor 
within-subject (i.e., state-dependent) variance in cortical folding pat
terns. However, cortical folding patterns vary widely across individuals, 
even between pairs of monozygotic twins (Van Essen et al., 2019) (i.e., 
trait-dependent variance). Importantly, a number of studies have shown 
that cortical folding patterns, such as sulcal depth, are related to FC 
patterns (Mueller et al., 2013). More generally, trait-dependent variance 
in brain anatomy and function has been associated with behavioral 
variation that is stable within an individual but varies drastically across 
individuals (Bayly et al., 2014; Garcia et al., 2018a; Mueller et al., 2013; 
Satterthwaite et al., 2018; Seitzman et al., 2019). This type of variance 
that shows high stability at the individual level is what we refer to as 
trait-dependent variance. 

In contrast, an example of state-dependent variance are cortical 
folding patterns in the third trimester of prenatal development, a period 
of rapid cortical expansion, during which folding patterns show high 
within-subject variability (Garcia et al., 2018b). Alterations in the 
development of cortical folding patterns during this period have 
important consequences for healthy development later in life and indeed 
have been associated with a range of cognitive and emotional disorders 
(Garcia et al., 2018b; Sun and Hevner, 2014). Several studies suggest 
that cortical folding patterns are driven by mechanical tension along 
long-distance axons in the white matter since the outer gray matter 
shows more rapid growth than the underlying white matter (Bayly et al., 
2014; Garcia et al., 2018a; Kroenke and Bayly, 2018). Therefore, folding 
variability may impact within-subject connectivity and consequently 
variation in the connectivity profile of different brain areas. Despite the 
complex cortical folding patterns that emerge early in development and 
their relevance for understanding developmental disorders, to our 
knowledge, there are no studies that have attempted to characterize how 
this basic anatomical phenomenon varies as a function of both trait- and 
state-dependent sources of variance in the same sample of individuals. 

Another instance of trait- and state-dependent sources of variance 
can be observed in measurements of brain FC (Fig. 1). Although FC 
measures exhibit both state and trait variation, studies have tradition
ally focused on only one of these two sources of variance in a simplifying 
effort to address fundamentally different questions. An example of trait- 
dependent variance is variability in FC patterns during resting-state, 
which are relatively stable within an individual. Indeed, these resting- 
state FC patterns can be used to ’fingerprint’ an individual; in other 
words, to identify that particular individual relative to others based on 
their FC patterns (Finn et al., 2015; Gordon et al., 2017b; 
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Miranda-Dominguez et al., 2014). In contrast, FC measurements asso
ciated with a given cognitive task are an example of state-dependent 
variance. For example, FC patterns during movie-watching are distinct 
from resting-state FC patterns (Betti et al., 2013; Demirtaş et al., 2019) 
and indeed movie-watching and rest have been associated with 
brain-wide differences in FC (Sanchez-Alonso et al., 2020). There is also 
evidence of systematic within-subject FC variability as a function of 
cognitive task (Cole et al., 2013, 2014). Moreover, variations in FC can 
be used to decode the specific task in which an individual is engaged, 
thus suggesting that these state-dependent FC patterns are not random 
but vary systematically within a person in a way that can also be 
captured across the entire group (Chen et al., 2018). Collectively, these 
data illustrate how both trait- and state-dependent components of 
variance in brain FC measurements can uniquely contribute to mapping 
of neurobehavioral relationships. Two key questions in neuro
developmental research are i) whether FC measurements that show 
trait-dependent variance also exhibit behaviorally-relevant state-
dependent changes across development and ii) how these two sources of 
variance change over age in relation to experiential and environmental 
factors. 

Finally, trait- and state-dependent variance is observed at the 
behavioral level in measures of expressive language skills (Fig. 1). In 
adults, expressive language skills are relatively stable within an indi
vidual and show minimal day-to-day variation (Thiessen et al., 2016). 
That is, our language skills do not change much during adulthood. Note, 
however, that specific language measurements may vary substantially 
among adults, for example, as a function of education level, socioeco
nomic status or language proficiency (e.g., in second language learners). 
In contrast to adulthood, language expressive skills vary greatly within 
an individual during early childhood, especially in the first five years of 
life. As we acquire language there is tremendous day-to-day, and 
month-to-month change in measures of language skills (Adolph et al., 
2008; Feldman, 2019; McMurray, 2007; Thiessen et al., 2016). For 
example, whereas the first words are produced at around 12 months of 
age, it is only about three years later (48–60 months) that most children 
are able to use grammar at near-adult levels and to construct narrative 
discourse (Feldman, 2019). Measures of this robust state-dependent 
language variation in early childhood have indeed been harnessed to 
identify key milestones of typical language development and to study 

how language deficits can be indicative of neurodevelopmental disor
ders. Here, language illustrates a key example of why characterizing 
sources of state-dependent and trait-dependent variance is essential, 
especially for neurodevelopmental processes that exhibit critical and 
rapid changes during early childhood. Although these two components 
of variance are orthogonal, they can be observed concurrently. In other 
words, a given neural or behavioral measure can simultaneously exhibit 
within-subject and between-subject change – a point we turn to in the 
next section. 

3. Concurrent changes of state and trait neurodevelopmental 
variation 

Having established that neurobehavioral measures can be quantified 
by examining their trait- and state-dependent variance components, we 
now turn to the fact that they may also exhibit effects that are interac
tive. That is, state-dependent variance may exhibit change with age/task 
as a function of change in trait-dependent variance. To isolate such state- 
trait variance relationships, it is essential to formalize them in a hier
archical multi-level model – a framework we will return to later. Here, 
we focus on brain FC measurements to formulate a scheme for how to 
conceptualize concurrent changes in FC variability along both state- 
dependent and trait-dependent variance components. 

To exemplify this idea, we can consider research in neuro
developmental disorders, which has often focused on characterizing 
trait-dependent sources of variance. Research on autism spectrum dis
order (ASD), which is characterized by impairments in social commu
nication and restrictive, repetitive behaviors, points to distinct FC 
patterns that distinguish ASD from typically developing controls across 
rest and task (Easson et al., 2019; Hull et al., 2017; Long et al., 2016; Xu 
et al., 2019). Less frequent, however, are studies that characterize both 
task-specific (state) and disorder-specific (trait) effects within the same 
sample. One such study was conducted by Jasmin and colleagues (Jas
min et al., 2019), who examined FC variation in individuals with ASD 
and controls as they participated in two social interaction tasks that 
required different levels of social demands, as well as in a resting-state 
session. They were able to quantify both trait and state effects on FC, 
as well as their interaction, which revealed different levels of interre
gional correlation as a function of task and rest between individuals with 

Fig. 1. Illustration of State- and Trait-Dependent Sources of 
Variance Across Neural and Behavioral Measures. Examples of 
state and trait variation are shown across neural and behavioral 
measures: i) variation in cortical folding patterns as a function of 
age within-individuals (i.e., state) and between-individuals (i.e., 
trait), ii) variation in language expressive scores as a function of 
age within-individuals (i.e., state) and between-individuals (i.e., 
trait), and iii) variation in functional connectivity as a function of 
task within-individuals (i.e., state) and between-individuals (i.e., 
trait).   
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ASD and typically developing controls. Specifically, ASD-specific corti
co-cortical interactions showed an increase during task and a decrease 
during rest in comparison to controls (i.e., contextual or state-dependent 
differences, Fig. 2). In contrast, striato- and thalamo-cortical in
teractions increased across rest and tasks in comparison to controls (i.e., 
core or trait-dependent differences, Fig. 2). These rest-task effects and 
group-level differences allowed the authors to identify these striato- and 
thalamo-cortical connections as being core to ASD impairments. This 
example illustrates how leveraging state-dependent and trait-dependent 
sources of variance in the same groups of participants can contribute to a 
characterization of FC variability in relation to neurodevelopmental 
disorders. These state-trait variance relationships are crucial to achieve 
a comprehensive understanding of neurodevelopmental variation as it 
can reveal nuanced neural patterns that are driven by specific tasks and 
that may aid in characterizing population-level differences. 

State-dependent neurodevelopmental variation can be observed as a 
function of cognitive task, but importantly, also in relation to age. For 
example, there is variation in FC patterns during rest as a function of an 
individual’s age (i.e., across years, but also months or days), which has 
been associated with brain maturation processes and experience (Betzel 
et al., 2014; Gao et al., 2015; Grayson and Fair, 2017; Hoff et al., 2013; 
Hutchison and Morton, 2015; Oldham and Fornito, 2019; Smyser et al., 
2010). Network FC at birth, quantified using graph theoretic techniques 
(i.e., degree and betweenness centrality measures), is strongly deter
mined by local anatomy (De Asis-Cruz et al., 2015; Van Den Heuvel 
et al., 2015), which evolves into a more distributed organization that 
supports the establishment of primary sensory networks within the first 
two years of life (Eggebrecht et al., 2017; Gao et al., 2015). For a review 
on the development of large-scale functional networks see (Grayson and 
Fair, 2017). At the group level, within- and between-network FC mea
sures are relatively stable in children and adults of the same age, thus 
allowing prediction of an individual’s age based on variations in FC 
patterns across age (Dosenbach et al., 2010). More recent studies have 
focused on investigating sources of state-dependent variation in FC 
measures and how they relate to age-specific variation. Geerligs and 
colleagues (Geerligs et al., 2015) investigated age- and state-specific 
effects on FC in a large-scale developmental sample (18–88 years). 
They computed FC matrices across three different brain states: a 
resting-state session, a movie-watching session and a sensorimotor task. 
Most of the variance across states was explained by commonalities in FC 

patterns that are found in each state (63 %–87 %). Importantly, they also 
quantified the effects of age on FC across states by calculating the cor
relation between age and FC. They found that the percentage of FC 
variance explained by trait-dependent effects (FC shared across states) 
was approximately equal to the percentage of variance explained by 
state-dependent effects (state-specific FC) (Fig. 3). These findings pro
vide evidence for the important role of both state- and trait-dependent 
effects in shaping FC patterns across development. Understanding 
these concurrent state- and trait-dependent effects is therefore crucial to 
obtain a comprehensive picture of neurodevelopmental change given 
the rapid and dramatic age-related effects observed during childhood 
and adolescence. 

So far, we have considered studies that assume brain FC to be a 
stationary measure throughout the length of the scanning session. As a 
result, each scan (e.g., rest or task) is considered a static snapshot of the 
participant’s brain function as assessed by FC. In other words, each scan 
session characterizes a ‘state’. An alternative is to consider state and trait 
relationships that occur ‘within’ a specific task or scan session. For 
example, a growing number of studies have focused on time-varying 
analyses of FC, which investigate how brain function reconfigures it
self at the scale of seconds to minutes (Gonzalez-Castillo et al., 2019; 
Saggar et al., 2018; Shine et al., 2016). In these studies, the term ‘state’ 
refers to whole-brain stable FC configurations recurring across partici
pants and time (Allen et al., 2014; Damaraju et al., 2014; Gonza
lez-Castillo et al., 2015; Valsasina et al., 2019). Note, however, that 
these two definitions of ‘state’, whether it be a whole scan session of 
6− 10 min or FC configurations that are 30 s in duration, can be char
acterized by FC measures that show within-subject variability. 

Time-varying FC dynamics have been modelled during movie- 
watching and story-listening, which show stable shifts in patterns of 
FC across time and participants (Betzel et al., 2019; Bolton et al., 2019; 
Manning et al., 2018; Simony et al., 2016). These FC shifts in turn relate 
to scene boundaries identified by human observers (Baldassano et al., 
2017, 2018; Silva et al., 2019). Similarly, brain FC networks change 
dynamically as a function of cognitive demands (Antzoulatos and Miller, 
2014; Bassett and Mattar, 2017; Braun et al., 2015; Mattar et al., 2018). 
These studies often quantify FC changes via shifts in modularity and 
community allegiance using tools from network science and graph 
theory. State-dependent within-subject variability is observed as a 
function of learning or interactions with the environment, for example 

Fig. 2. Concurrent State and Trait Effects. Core regions (i.e., trait-dependent, represented with green squares and lines) indicate pairs of brain regions with Autism 
> Control differences that are common across tasks (social interaction tasks and resting-state). Contextual regions (i.e., state-dependent, represented with black 
squares and lines) indicate pairs of regions that differ significantly by Group and State (Group x State interaction). Reproduced, with permission, from Jasmin 
et al. (2019). 
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as a result of consecutive stages in a learning paradigm. Along these 
lines, Bassett and colleagues (Bassett et al., 2011) showed that the 
amount of person-specific FC flexibility, as measured by nodal flexi
bility, can predict the amount of learning of a specific participant in a 
subsequent experimental session. Importantly, network variability was 
not accounted for by trait-dependent sources of variance. That is, this 
variation is not a stable signature of an individual’s functional brain 
organization, but instead changes as a function of the learning experi
ence. Collectively, studies investigating dynamic reconfigurations of 
brain networks within a task or movie scan may be particularly relevant 
for understanding developmental changes and, specifically, how chil
dren adapt their existing brain function to the contextual demands of the 
environment. Nevertheless, despite the growing literature on 
time-varying FC analyses, criticisms have emerged regarding their sta
tistical validity and physiological origins, as well as their accuracy and 
reliability. Furthermore, recent studies suggest that time-varying FC 
during resting-state, in which there is no induced state (e.g., as a result of 
a task or movie), may be the result of sampling variability of static FC, 
head motion, and/or changes in arousal (Hindriks, 2015, Laumann, 
2017) (see Lurie, 2019 for a review on main concerns and controversies 
regarding time-varying FC in resting-state fMRI). 

4. Combined quantification of state and trait-dependent 
variation to characterize neurodevelopmental trajectories 

Combined quantification of state- and trait- dependent sources of 
variance and their interactions requires models that can partition the 
variance into within- and between-subject components. While this is 
perhaps trivial, it is important to emphasize a key property of models 
that combine these two sources of variance: they can represent both 
correlated and uncorrelated (independent) variance/error. In contrast, 
many statistical procedures in the general linear model (GLM) family (e. 
g., correlation, regression, analyses of variance and factor analysis) 
cannot be used to partition correlated versus independent variance since 
they assume data independence (i.e., uncorrelated error). A common 
alternative is the use of mixed models, such as hierarchical linear models 
(HLMs), which allow partitioning of the variance into within- (corre
lated) and between-subjects (independent) components in the same 
model, and thus represent the effects of variables ‘nested’ at different 
levels of measurement (Duncan and Duncan, 2004; Garson, 2012; 
Hesser, 2015) (additional cross-sectional and longitudinal modeling 
approaches are discussed in (Becht and Mills, 2020; King et al., 2018; 
Madhyastha et al., 2018; Telzer et al., 2018)). HLMs are an alternative 

Fig. 3. Concurrent Age and State Effects. Correlation between age and functional connectivity for each pair of regions of interest (ROI) across brain states (resting- 
state, movie-watching, sensorimotor). r=similarity of age effects between states, H0=expected value for the similarity between states if there were no true state 
differences (based on split-half analyses). Based on these two correlation coefficients, the following percentages were calculated: overlap=percentage of variance 
explained by trait effects (i.e., variance in the FC matrixes that is shared across states), state.diff=percentage of variance explained by state effects (ie. variance due to 
state-related changes in connectivity). Reproduced, with permission, from Geerligs et al. (2015). 
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term for what is known more generally as ‘linear mixed models’, which 
is a generalization and expansion of the GLM. HLMs are referred to in the 
literature with different labels such as ‘random effects’, ‘multilevel’ or 
‘mixed effects’ models, all of which highlight different properties of 
linear mixed models. The commonality across all HLM-style models is 
that they adjust estimates at the observation-level on the basis of 
grouping measures at some higher level of nesting. For example, in 
contrast to ordinary least squares (OLS) regression, HLMs allow for 
different beta coefficients for each of the predictors to be computed 
across different correlated or independent levels. In estimating the 
model parameters, HLMs capture the covariance structure of the data, 
which is a key distinction from OLS or other GLM methods that cannot 
handle variance mixing (Garson, 2012; Lindley, 2015). 

As noted, HLMs are commonly used to model data that are ‘nested’ at 
more than one level of measurement. Consider, for instance, modeling 
differences across two types of tasks in a repeated measures design in 
which each individual completes both tasks. HLMs can be used to model 
individual- and task-level observations, with tasks nested within in
dividuals. In this particular simplified example, task-level observations 
are not independent because measurements of each task observation 
completed by a particular individual are expected to be more similar 
within this individual (i.e., within-subject or ‘correlated’ variance 
component) versus the same tasks conducted across different individuals 
(i.e., between-subject ‘independent’ variance component). That is, ob
servations sampled at the highest level (in this case each individual) are 
independent. In equation form, this HLM can be represented as follows: 

y = Xβ + Zu + ε (1)  

Where 

• y is a N x 1 column vector where N is to the total number of all ob
servations across all levels of the dependent variable;  

• X is a N x P matrix of the between-subject P predictors;  
• β is a P × 1 column vector of the between-subject coefficients;  
• Z is the N x (qJ) matrix for the q within-subject predictors and J 

levels;  
• u is a (qJ) x 1 column vector of q within-subject coefficients for J 

levels;  
• E is a N x 1 column vector of model residuals 

HLMs are particularly useful for analyses of longitudinal data, where 
repeated observations of the same individual are measured over time. 
Longitudinal data exhibit autocorrelation since observations at two 
consecutive points for a given individual are likely to be more similar to 
one another than observations at those same time points for two 
different individuals. A common type of longitudinal HLM is mixed 
growth models, in which age is modeled as a within-subject predictor on 
some measurable phenomena of the individual (Duncan and Duncan, 
2004; Hesser, 2015). Growth modeling allows identification of both 
patterns of change in developmental curves over time and the effects of 
different variables (e.g., sex or IQ) on the intercepts and slopes of the 
curves over time. Graphically, this type of analysis can be visualized 
with a ‘growth curve’ for each individual, in which the X-axis is age and 
the Y-axis is amount of variance in a given dependent variable. Fig. 4 
shows examples of idealized developmental growth curves. 

The growth curves illustrated in Fig. 4 vary at the individual level 
and can be characterized as a function of state- and trait-dependent 
sources of variance. These developmental patterns can be analyzed 
with respect to their curvature over time (e.g., speed or acceleration 
rates). Statistical models frequently assume that growth curves follow a 
linear trajectory. There are real-world examples of linear trajectories in 
which there is no change over time, such as gene-related variance, which 
is expected to stay constant across the lifespan within the individual, 
while at the same time displaying between-subject variability (Fig. 4A). 
The assumption of linear fits in developmental growth curves, however, 
cannot comprehensively capture developmental changes (Madhyastha 
et al., 2018; Telzer et al., 2018). Linear trajectories often assume con
stant within-subject variability and increasing between-subject vari
ability, which would imply that a given measure never stabilizes 
(Fig. 4B). 

Alternatively, non-linear relationships can be modelled statistically 
by adding non-linear terms such as a log or power function to the pre
dictors in HLMs (Grimm et al., 2011; King et al., 2018). Fig. 4C–D show 
examples of non-linear fits between age and amount of signal variance 
for a given phenotype. A simple example of a non-linear relationship is 
variability in height across development, which can be characterized 
with a non-linear curve that shows a rapid increase and high 
state-dependent (within-subject) variation in early development (Black 
and Krishnakumar, 1999). Height stabilizes during adolescence and 
remains stable during adulthood, which is a period of minimal 
state-dependent variation, but high trait-dependent (between-subjects) 

Fig. 4. Developmental Growth Curves. A. 
Linear relationship with no change between age 
and amount of signal variance (e.g., gene- 
related variance) illustrating a trajectory with 
high constant between-subject variation and no 
within-subject variation. B. Linear relationship 
with constant slope in which there is constant 
within-subject variation and increasing 
between-subject variation. This fit line repre
sents the traditional way of capturing statistical 
relationships. C. Non-linear relationship 
(bounded sigmoid) with rapid change starting 
at birth that over time reaches a plateau (e.g., 
height-related variance). D. Non-linear rela
tionship describing a sigmoid function with 
minimal change early in life and increasing 
within-subject variation starting at age 10 that 
over time reaches a plateau (e.g., synaptic 
pruning-related variance) E. Fluctuations with 
high variability and unpredictable shifts illus
trating periods of rapid change across develop
ment. F. Fluctuations early in life that stabilize 
at a later period (e.g., language-related 
variance).   
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variation (Fig. 4C). Another example of a non-linear relationship 
observed across development is the process of synaptic pruning. Syn
aptic pruning increases rapidly between ages 2–10 years and peaks 
during adolescence (Juraska and Willing, 2017; Petanjek et al., 2011). 
The total number of synapses begins to stabilize after this period and 
remains constant into early adulthood, when it plateaus and shows 
minimal state-dependent variation (Fig. 4D). These state and trait dy
namics show how non-linear trajectories can capture state-to-trait 
transitions across development. They also illustrate the necessity of 
considering temporal dynamics of state-trait variation and non-linear 
growth models to characterize developmental trajectories. 

Characterizing concurrent effects of state-trait relationships can be 
particularly relevant for understanding neurobehavioral variation dur
ing periods of rapid developmental change or greater sensitivity to 
learning (Adolph and Robinson, 2011). These are periods of increased 
variability that may be particularly useful to delineate the path of 
change for a given neurobehavioral relationship (Badde et al., 2020; 
Bailey et al., 2001; Knudsen, 2004; Newport et al., 2001; Sourav et al., 
2019). Consider language development during the first years of life, a 
time characterized by multiple sensitive periods across a series of do
mains (e.g., tuning of native phonetic categories, acquisition of 
grammar) (see Glossary) (Knudsen, 2004; Nelson and Gabard-Durnam, 
2020; Newport et al., 2001; Takesian and Hensch, 2013; Werker and 
Hensch, 2015). These periods of rapid developmental change are asso
ciated with increased brain plasticity for encoding specific environ
mental stimuli through experience (Hensch, 2005; Knudsen, 2004; 
Sengpiel, 2007; Werker and Hensch, 2015). Of relevance, sensitive pe
riods are characterized by rapid changes in the individual, which may be 
represented as growth-curves with high within- and between-subject 
variability at the neural and behavioral levels (Fig. 4E), which over 
time stabilize (Fig. 4F) (Gabard-Durnam and McLaughlin, 2019; Hensch, 
2005; Knudsen, 2004). During these periods, exposure to specific stimuli 
and experiences is necessary for cortical specialization and development 
of neural circuits. For example, in the case of language development, the 
absence or limited exposure to language during the early years of life can 
have long-lasting negative consequences (Newport et al., 2001; Sakai, 
2005; Werker and Hensch, 2015). These are therefore periods of high 
vulnerability to adverse events in which the timing and exposure to 
specific types of experiences is essential for healthy development of 
neural circuits. 

Quantifying both state- and trait-sources of neurobehavioral 

variation in relation to sensitive periods is crucial to comprehensively 
understand the impact of environmental stimuli and the effects of 
learning in typical and atypical development. To illustrate this point, we 
can consider changes in language neurodevelopment. The first five years 
of life are characterized by sensitive periods of high within- and 
between-subject variability in language-related measures as the child 
achieves key developmental milestones (Fig. 5). During this period, 
variability in the acquisition of language skills may show accelerating or 
decelerating rates of change, for example as children acquire new words 
(McMurray, 2007). Furthermore, the acquisition of specific skills may be 
expressed intermittently, showing a period of variability during which 
the presence and absence of a given skill appears to be stochastic until it 
stabilizes (Adolph et al., 2003, 2008; Adolph and Robinson, 2011). 
These periods of regressions and sudden transitions in the rate of change 
are a reflection of the learning process and contribute to the variation 
observed during development as the child achieves main language 
milestones. In parallel to variation at the behavioral level, the brain 
undergoes rapid anatomical and functional changes such as the devel
opment of cortical folding patterns, synaptic pruning and changes in 
neural circuits (Cusack et al., 2018; DiMartino et al., 2014; Grayson and 
Fair, 2017; Keunen et al., 2017). These sensitive periods of language 
neurodevelopment, characterized by high within- and between-subject 
variability at the neural and behavioral levels, may be the most essen
tial periods for discrimination of state and trait variance. That is, these 
may be key neurodevelopmental time windows in which children 
exhibit maximal change in state and trait variance. Importantly, these 
are also periods in which the child is most vulnerable to environmental 
input and adversity (Gabard-Durnam and McLaughlin, 2019; Nelson and 
Gabard-Durnam, 2020). 

This quantitative framework fundamentally necessitates large-scale 
datasets that have the statistical power to capture neural and behav
ioral variability at the individual level across age. Furthermore, statis
tical analyses based on multivariate non-linear growth models that 
account for state- and trait-dependent sources of variance at both neural 
and behavioral levels are a prerequisite to fully understand neuro
developmental variation. In combination with methodological and 
analytical advances, this framework may ultimately provide a compre
hensive characterization of neurodevelopmental trajectories and pe
riods of heightened plasticity in which the brain may be particularly 
sensitive to environmental stimuli and clinical interventions. 

Fig. 5. Mapping State and Trait Dynamics Across Sensitive Periods of Language Neurodevelopment. Two sensitive periods are highlighted in blue and red, 
which span different developmental windows. Each period is marked by distinct transitions in state and trait variation, which are highlighted as the most saturated 
portions under the curve and highlighted with a vertical dotted arrow. These hypothetical maximal state and trait variance epochs represent a phase during language 
neurodevelopment, which may demarcate key neural and behavioral change, both within and across children. These windows of maximal neurobehavioral variation 
require quantification of concurrent state and trait variance dynamics in order to map personalized neurodevelopmental language trajectories, as well as maximal 
vulnerability to disease both within and across children. 
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5. Reliability and reproducibility of state and trait 
measurements 

A critical consideration when attempting to map neurobehavioral 
state- and trait-dependent variation is the reliability of the measure
ment, which impacts the reproducibility of the overall effect. Funda
mentally, failures to obtain reproducibility of the effect may reflect lack 
of statistical power and consequently the need for larger samples, which 
may be addressed via large-scale consortium-level datasets (Button 
et al., 2013; Hedge et al., 2018; Marek et al., 2020; Streiner et al., 2015). 
Large-scale datasets crucially contribute to avoid overfitting, which is a 
common concern in small samples due to the larger variability in esti
mates, which may lead to mistakenly fit sample-specific noise as true 
signal (Gelman, 2010; Ioannidis, 2008; Yarkoni and Westfall, 2017). 
Large samples notwithstanding, obtaining replicable neural and/or 
behavioral effects in developmental studies also requires careful 
consideration regarding the reliability of the measure. For instance, how 
consistent is a given measurement across repeated tests and/or sessions 
over time? This is particularly important if the ultimate goal is to 
develop predictive models of normative development at the 
individual-subject level (Herting et al., 2018). Furthermore, clinical 
applications for atypical development necessitate high reliability for 
obtaining actionable measurements at the individual level (Streiner 
et al., 2015). Here, we articulate some key general considerations that 
will impact reliability: i) sampling amount (i.e., the amount of data 
necessary to avoid measurement error for a given measure), ii) repeated 
sampling over time (i.e., how to separate within-subject time-dependent 
sampling error from true signal reflecting within-subject change), and 
iii) choice of dependent variable(s) and experimental paradigm. 

The reliability of fMRI measurements is strongly dependent on scan 
length and longer scanning times are often required for individual-level 
estimates relative to group-mean estimates. Most recent fMRI studies 
investigating the amount of data required to avoid measurement error 
have focused on resting-state FC, primarily in adult populations. Early 
studies on this topic showed high to modest reliability of group-mean FC 
estimates (Dijk et al., 2011; Shehzad et al., 2009). With respect to 
single-subject functional connections, reliability has often been statis
tically quantified with the intraclass correlation coefficient (ICC), which 
measures the proportion of the total variability in a measure that is due 
to true between-subject variability (Caceres et al., 2009; Fournier et al., 
2014; Liljequist et al., 2019). fMRI estimates have only modest 
individual-level reliability with a 5-min resting-state scan (Anderson 
et al., 2011) and individual-level reliability greatly improves when the 
scan length increases from 5-min up to 13-min, especially for scans 
obtained during the same session (Birn et al., 2013; Noble et al., 2017). 
Other studies suggest that scanning times longer than 25-min may be 
needed to reliably identify single-subject resting-state FC patterns across 
sessions collected within a person (Anderson et al., 2011). Similarly, 
reliability of FC measures during task-based paradigms is dependent on 
scan length, as individual differences between subjects become more 
reliable with longer scanning time (Gordon et al., 2017b; Shah et al., 
2016). Importantly, these scan time requirements are challenging to 
meet in large-scale developmental initiatives because babies and young 
children are often unable to remain awake and motionless during long 
resting-state sessions (Sanchez-Alonso et al., 2020; Vanderwal et al., 
2019). Consequently, large-scale consortium-level initiatives often 
collect data during 5− 10 min resting-state sessions, which often makes it 
challenging to obtain single-subject predictions from fMRI estimates. 

Another relevant consideration is how repeated sampling over time 
points affects reliability of the measurement. When testing a subject at 
two different points in time, it is crucial to separate within-subject time- 
dependent sampling error and additional spurious sources of within- 
subject biological variability (e.g., diurnal rhythms or metabolic state) 
from true within-subject change as a result of experience or brain 
maturation (Hodkinson et al., 2014; Laumann et al., 2015; Shannon 
et al., 2013). Repeated sampling is often necessary in order to 

distinguish meaningful state variation from noise, especially during 
developmental periods of rapid change in which larger within-subject 
variability is expected (Adolph et al., 2003, 2008; Adolph and Rob
inson, 2011). Current large-scale datasets, however, often rely on 
single-session data acquisitions which affects measurement reliability 
and the ability to establish robust neurobehavioral relationships 
(Adolph and Robinson, 2011; Herting et al., 2018; Rush and Hofer, 
2017). 

Finally, the reliability of the measurement is also impacted by the 
type of dependent variable (e.g., anatomical versus functional MRI) and 
experimental paradigm (e.g., task versus rest). While anatomical studies 
often achieve clinically-acceptable intra- and inter-session reliability, 
such standards are harder to obtain with fMRI estimates because they 
are often subject to larger within- and between-subject variability 
(Bennett and Miller, 2010; Madan and Kensinger, 2017; Zuo et al., 2014, 
2019). Regarding the choice of experimental paradigm in fMRI studies, 
eyes-open resting-state sessions often yield stronger correlations relative 
to eyes-closed sessions (Dijk et al., 2011; Noble et al., 2017). Studies on 
the reliability of FC measurements obtained across different cognitive 
states beyond rest is limited and the focus has been primarily on data 
obtained via task-based paradigms. Crucially, the unconstrained nature 
of the resting-state, in which a variety of brain states are sampled, may 
necessitate large amounts of data, but it is unknown whether such 
timing requirements also apply to data acquisitions that are more con
strained and focused on more homogeneous task-based brain states 
(Elliott et al., 2020; Shah et al., 2016; Vanderwal et al., 2019). 

A complementary method to traditional task-based designs are 
naturalistic paradigms, which sample a more constrained set of states 
than resting-state paradigms and are particularly well-suited for FC 
analyses and developmental studies (Cantlon, 2020; Emerson et al., 
2015; Vanderwal et al., 2019). Naturalistic methods can take a number 
of forms and they usually consist of stimuli that require rapid integration 
of real-time information (Bottenhorn et al., 2019; Sonkusare et al., 
2019). Examples of naturalistic methods include paradigms aimed at 
investigating neural and/or behavioral activity as the participant is 
exposed to natural scenes, is required to reason about problems, listens 
to music, or interacts with familiar individuals (e.g., the mother or fa
ther). One of the most commonly implemented types of naturalistic 
paradigms has, so far, been movie-watching. Reliability of FC mea
surements during movie-watching paradigms seems to be slightly better 
than during rest (Anderson et al., 2011; Wang et al., 2017) and FC 
measurements during movie-watching have better individual-level 
predictive value in young children relative to resting-state acquisitions 
(Sanchez-Alonso et al., 2020). Importantly, a longer movie-watching 
session does not necessarily yield better single-subject predictions than 
a shorter one, which seems to suggest that sampling more homogeneous 
cognitive states may require shorter acquisition times relative to 
resting-state sessions (Finn and Bandettini, 2020; Sanchez-Alonso et al., 
2020). Current large-scale neurodevelopmental studies leverage a range 
of experimental paradigms, from traditional block-designs to 
movie-watching and resting-state paradigms, which have facilitated 
investigation into the reliability of FC measures across paradigms. More 
research is needed, however, to understand the reliability and repro
ducibility of FC measurements that sample more constrained states 
beyond rest and their utility for investigating changes in brain function 
as a result of cognitive performance. 

Collectively, these findings indicate that accurate characterization of 
brain-behavior relationships in developmental samples requires taking 
into account the reliability of the measurement. Specifically, it is crucial 
to consider measurement error and within-subject time-dependent 
sources of variation in order to obtain a reliable characterization of 
within-subject change that is the result of brain maturation and/or 
experience. Current large-scale neurodevelopmental datasets offer a 
unique opportunity to investigate state and trait variation and identify 
potential gaps in our understanding of neurodevelopmental change. 
These initiatives may open the door to future studies that address 
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concerns regarding measurement replicability within and across ses
sions, including amount of data and dense longitudinal sampling. 
Furthermore, as the field of cognitive developmental neuroscience 
moves forward, we believe it is necessary to focus on understanding both 
state and trait variation at the neural and behavioral level. This in turn 
requires consideration of how state and trait variation are measured 
across development, including amount of signal, repeated sampling over 
time, type of experimental paradigm, and choice of dependent measure 
–all crucial factors that impact measurement reliability. 

6. Concluding remarks 

Human neurodevelopmental research aims to map neural and 
behavioral trajectories over time across both health and disease. This 
goal necessitates large-scale developmental datasets that allow for 
capturing relevant neurobehavioral variation. Recent ‘big data’ cross- 
sectional and longitudinal repositories have provided access to large- 
scale quantitative developmental datasets with rich neurobehavioral 
measures. These datasets can be leveraged to characterize variation at 
the individual level with the ultimate goal of developing predictive 
models of both normative and atypical development. Several studies 
have already convincingly shown that individuals exhibit variation in 
neural and behavioral measurements that are distinct from the group- 
level pattern. Neurobehavioral mapping, however, tends to focus only 
on characterizing either state- or trait-dependent components of vari
ance, separately from each other. 

In this perspective piece, we have argued that combined quantifi
cation of both within-subject (state) and between-subject (trait) varia
tion across neural and behavioral measurements is essential to 
comprehensively characterize developmental change and age-related 
trajectories. We have described how these two sources of variance can 
be modelled in the same quantitative framework via non-linear mixed 
growth modeling. This is particularly important given that changes of 
state and trait neurobehavioral variation may occur concurrently across 
development. Therefore, person-specific neurodevelopmental variation 
may be related to population-level variation and, crucially, these re
lationships can be leveraged in the context of predictive-modeling ap
proaches (Becht and Mills, 2020; Rosenberg et al., 2018; Telzer et al., 
2018; Varoquaux and Poldrack, 2019). Finally, capturing state-trait 
dynamics and interactions may be particularly important to charac
terize sensitive periods of brain development –periods of heightened 
plasticity characterized by experience-dependent changes in brain 
function– in which there is high within- and between-subject variability. 

7. Outstanding questions  

• Building on current large-scale developmental datasets (e.g., ABCD, 
HCP Lifespan, HBN), what type of data (i.e., age range, sampling 
rate, amount of data, neurobehavioral measurements) are needed to 
comprehensively characterize neurobehavioral trajectories across 
development?  

• In considering neurodevelopmental change, the question arises as to 
the experimental paradigms best suited to capture state and trait 
dynamics across development –are naturalistic paradigms (e.g., 
movie-watching or story-listening) better suited than highly 
controlled experiments? Would a combination of laboratory- 
controlled experiments and naturalistic methods be able to provide 
a more comprehensive understanding of the developing brain?  

• What types of quantitative and modelling techniques are necessary 
to capture state-to-trait variance dynamics in neurodevelopment 
beyond non-linear mixed growth models?  

• How can we leverage state-trait dynamics to predict neurobehavioral 
variation at a later point in life?  

• Can we harness multi-modal imaging methodologies (e.g., fMRI, 
fNIRS, EEG) to better characterize age-related trends in brain orga
nization across development?  

• How do state- and trait-dependent sources of neurodevelopmental 
variance change over age in relation to experiential and environ
mental factors? 
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Betzel, R.F., Byrge, L., He, Y., Goñi, J., Zuo, X.N., Sporns, O., 2014. Changes in structural 
and functional connectivity among resting-state networks across the human lifespan. 
NeuroImage 102 (P2), 345–357. https://doi.org/10.1016/j. 
neuroimage.2014.07.067. 

Betzel, R.F., Byrge, L., Esfahlani, F.Z., Kennedy, D.P., 2019. Temporal fluctuations in the 
brain’s modular architecture during movie- watching. bioRxiv 750919. https://doi. 
org/10.1101/750919. 

Birn, R.M., Molloy, E.K., Patriat, R., Parker, T., Meier, T.B., Kirk, G.R., Nair, V.A., 
Meyerand, M.E., Prabhakaran, V., 2013. The effect of scan length on the reliability of 
resting-state fMRI connectivity estimates. NeuroImage 83, 550–558. https://doi.org/ 
10.1016/j.neuroimage.2013.05.099. 

Biswal, B., 2012. Resting state fMRI: a personal history. NeuroImage 62 (2), 938–944. 
https://doi.org/10.1016/j.neuroimage.2012.01.090. 

Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity 
in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. 
Med. 34 (4), 537–541. https://doi.org/10.1002/mrm.1910340409. 

Biswal, B., Van Kylen, J., Hyde, J.S., 1997. Simultaneous assessment of flow and BOLD 
signals in resting-state functional connectivity maps. NMR Biomed. 10 (4–5), 
165–170. https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID- 
NBM454>3.0.CO;2-7. 

Black, M.M., Krishnakumar, A., 1999. Predicting longitudinal growth curves of height 
and weight using ecological factors for children with and without early growth 
deficiency. J. Nutr. 129 (2), 539S–543S. https://doi.org/10.1093/jn/129.2.539s. 

Blasi, A., Lloyd-Fox, S., Johnson, M.H., Elwell, C., 2014. Test–retest reliability of 
functional near infrared spectroscopy in infants. Neurophotonics 1 (2), 025005. 
https://doi.org/10.1117/1.nph.1.2.025005. 

Bolton, Jochaut, D., Giraud, A.L., VanDeVille, D., 2019. Dynamic inter-subject functional 
connectivity reveals moment-to-moment brain network configurations driven by 
con- tinuous or communication paradigms. J. Vis. Exp. 145. https://doi.org/ 
10.3791/59083. https://www.jove.com/t/59083/dynamic-inter-subject-functiona 
l-connectivity-reveals-moment-to. 

Bosl, W.J., Tager-Flusberg, H., Nelson, C.A., 2018. EEG analytics for early detection of 
autism spectrum disorder: a data-driven approach. Sci. Rep. 8 (1), 1–20. https://doi. 
org/10.1038/s41598-018-24318-x. 

Bottenhorn, K.L., Flannery, J.S., Boeving, E.R., Riedel, M.C., Eickhoff, S.B., 
Sutherland, M.T., Laird, A.R., 2019. Cooperating yet distinct brain networks engaged 
during naturalistic paradigms: a meta-analysis of functional MRI results. Netw. 
Neurosci. 3 (1), 27–48. https://doi.org/10.1162/netn_a_00050. 
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Glossary 

Resting-state Networks: Pattern of covarying spontaneous neuronal fluctuating activity 
among a set of brain regions, which is observed even in the absence of external stimuli. 

Graph Theory: Branch of mathematics focused on the study of networks or graphs, which 
are defined as systems of elements (i.e., nodes, vertices) and their pairwise associa
tions (i.e., edges, connections). 

State: Measurable signal that exhibits variation over repeated observations of the same unit 
(e.g., a single child). 

State-dependent variation: Signal variation over repeated observations of the same unit (e. 
g., a single child), such that the unit of measurement varies as a function of mea
surement instance (e.g., over time or over different experimental conditions such as 
resting-state versus task). 

Trait: Measurable signal that exhibits variation over different units (e.g., multiple 
children). 

Trait-dependent variation: Signal variation observed across different units of measurement 
(e.g., multiple children). 

State-Trait Interactions: Combined (i.e., interactive) signal variance along both state- 
dependent and trait-dependent variance components for a given measurable unit. 
These effects can be observed concurrently or at different points in time across 
development. 

State-Trait Dynamics: Change in signal variance along state-dependent and/or trait- 
dependent variance components for a given measurable unit over time. 

Time-varying (Dynamic) FC: Covariation between spatially distributed signals in the brain 
that capture temporal dependencies (e.g., on the order of seconds to minutes). 

Mixed Growth Model: A statistical framework for modeling longitudinal data, in which 
repeated observations of the same individual are measured over time. 

Sensitive Period: Window of time characterized by increased brain plasticity for encoding 
environmental stimuli through experience, during which exposure to specific stimuli 
is essential for healthy development (e.g., vision or language). The absence of envi
ronmental stimuli during this time can have long-lasting consequences on behavior 
and may lead to irreversible changes in brain function with minimal recovery. 
Nevertheless, plasticity for specific neural circuits can exist beyond the sensitive 
period such that circuits can be reshaped later in life (e.g., as a result of new learning 
experiences). 
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