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Abstract

Carbon offsets could reduce the global costs of carbon abatement but
there is little evidence on how much they truly reduce emissions. We
study carbon offsets sold by firms under the Clean Development Mech-
anism (CDM) in China by matching offset projects proposed to the
United Nations to panel data on emissions and output for manufacturing
firms. We have two main findings. First, the CDM attempts to screen
out projects that would be profitable without offset payments by reject-
ing proposed projects with higher stated returns. Second, offset-selling
firms steeply increase emissions after registering an offset project, rela-
tive to similar firms that proposed a project but did not follow-through.
We explain this increase in emissions by jointly modeling the firm de-
cision to propose an offset project and the Board’s decision of whether
to approve. In the model, CDM firms increase emissions due to a com-
bination of the selection of higher-growth firms into abatement project
investment and the causal effect of higher productivity, post investment,
on firm scale and therefore emissions.
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1 Introduction

To reduce harm from global climate change the world needs to cut greenhouse gas emissions.
High-income countries are responsible for most historical carbon dioxide emissions, but low- and
middle-income countries, like India and China, constitute a large and growing share of emissions
today. Figure 1 shows a decomposition of global carbon dioxide emissions from 1950 to 2022.
China and India comprised only 16% of emissions in 1992, when the first global climate agreement
was struck, which has soared to 43% in 2022. No global climate agreement can succeed without
broad participation in emissions reductions.

This need for global emissions reductions, coupled with reluctance, from low- and middle-
income countries (LMICs), to strictly limit emissions, creates an enormous potential market for
carbon offsets. LMICs are not likely to set hard limits on carbon dioxide emissions. China and
India have stated goals to limit the emissions intensity of their economies but declined to limit the
trajectory of emissions, because they do not want to risk slowing economic growth. A carbon offset
is a payment by one party to another to reduce emissions on the first party’s behalf. In principle,
rich countries could use offsets to pay for abatement investments in lower-income countries both
to support their growth and to reduce the global cost of meeting any carbon emissions target.

The main weakness of offsets is that they may not in fact reduce emissions, due to the adverse
selection of firms that would have made abatement investments even without offset payments.
Suppose a firm in Germany, whose emissions are regulated, pays a firm in China to undertake a
project to reduce its emissions. If the Chinese firm would have invested in the project anyway, for
some private benefit, then allowing offsets will instead increase global emissions, because the firm
in Germany now faces a looser cap, without causing any reduction in emissions in China. In the
language of climate policy, only reductions in emissions relative to the Chinese firm’s unknown,
business-as-usual emissions are “additional” reductions that should be counted as an offset. While
this additionality problem is widely recognized, there is little empirical evidence on its importance,
and offsets remain an important part of global climate policy.1

This paper studies adverse selection in arguably the world’s most important carbon offset mar-
ket, the Clean Development Mechanism (CDM) of the Kyoto Protocol. Under the CDM, firms in
rich countries could pay firms in LMICs to reduce emissions. The CDM has paid for 3 thousand
offset projects in 80 countries that have issued 2.2 billion tons of Certified Emissions Reductions
(CERs) (Institute for Global Environmental Strategies, 2022). We ask whether manufacturing

1Offsets continue to feature prominently as a policy tool under the current United Nations’ framework climate
agreement. Article 6.4 of the Paris Accord governs climate offsets and the framework developing under this article
emulates the CDM. Offsets, in this framework, are called the “International Transfer of Mitigation Outcomes” (IT-
MOs), meaning one country reducing emissions on behalf of another. The rules for ITMOs are an active subject of
negotiation in the COP process.

1



firms that undertook carbon offset projects under the CDM actually reduced emissions, relative to
a business-as-usual counterfactual.

The empirical difficulty in studying offset markets is that researchers face the same problem as
the market regulator, the CDM Executive Board (hereafter, the Board), of developing a counterfac-
tual for what emissions would have been in the absence of an offset project. This paper addresses
this problem by forming a new data set that matches all CDM projects proposed by manufacturing
firms in China to a contemporaneous firm-level panel data set of emissions, inputs and outputs.
This matching allows us to develop plausible counterfactuals for the emissions trajectories of firms
that undertake offset projects. We observe a broad set of control firms and both firms that propose

an offset project to the United Nations and those firms that follow-through to register a project,
which allows offset sales. We can therefore study the firm selection into proposing a project, the
regulator’s decision rule of what projects to register (i.e., approve), and the emissions of firms that
propose or register a project relative to firms that do not.

We use this data to generate four main findings from a descriptive analysis of the carbon offset
market. First, firms that propose offset projects in China are strongly selected on observable char-
acteristics and have some of the highest firm-level emissions in the Chinese economy. Firms that
propose CDM projects have baseline emissions five times higher and baseline emissions growth
four times higher than firms in the same industry and province that do not propose a project.

Second, the Board attempts to screen on additionality by rejecting projects with high stated
returns. Our data include the original project proposals for each CDM project. In these proposals,
firms argue why their project is additional—why the firm would not invest in the project on their
own without the revenue provided by offset sales. We estimate the Board’s probability of register-
ing a proposed project based on baseline characteristics that the project reported to the Board. We
find that for each one standard deviation increase in the stated return to the project the probability
that the Board registers the project declines by 8 percent. This result is consistent with the Board
attempting to approve only projects that are privately unprofitable and that would therefore offer
additional emissions reductions.

Third, despite the regulator’s attempt at screening, carbon dioxide emissions at firms that regis-
ter CDM projects grow steeply in the years after project registration, relative to emissions at firms
that propose but do not register a project. A unique aspect of our data is that every proposed CDM
project has to project, ex ante, how much that project will reduce carbon emissions if implemented.
The average CDM project forecasts an emissions reduction of 150 thousand tons per year, which
would represent a substantial cut in baseline emissions amongst firms that propose (30% reduc-
tion) or ultimately register (12% reduction) a project. Our event-study estimates find, by contrast,
that firms that register projects increase emissions by roughly 570 thousand tons per year (standard
error 170 thousand tons) in the four years after the project start. The change in emissions at CDM
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firms is therefore roughly four times as large—and of the opposite sign—as is initially projected.
Fourth, the increase in emissions at firms that register a CDM project is entirely accounted for

by increases in firm scale. Firms that register a CDM project increase their sales, value of output,
cost of goods sold and wage bill in the years after project start, all by a magnitude proportional
to that of the increase in emissions. The emissions intensity, or emissions per value of output, of
firms that undertake offset projects is therefore roughly flat.

These reduced-form findings show that firms that undertake offset projects do not reduce their
emissions relative to similar firms, but our event-studies cannot on their own distinguish between
the causal effect of an abatement investment on emissions and the selection of firms into registering
a project. Event-study estimates are interpretable as causal treatment effects only in the absence
of anticipation. We study offset projects, which are long-lived capital investments by forward-
looking firms and should therefore be expected to respond to anticipated firm growth. Firms choose
whether to propose an offset project and the regulator chooses which firms to register.

We therefore introduce a model of firm investment and emissions to separate the causal effect
of abatement investments on emissions from firm selection. In the model, a firm produces output
using emissions and can choose whether to undertake a project that increases the productivity
of emissions as an input. The firm may undertake this project privately or apply to the Clean
Development Mechanism, at a cost, to seek approval to sell carbon credits. The firm knows both
its cost of investment and its productivity growth in the next period. The CDM Board observes
a noisy signal of the firm’s private cost of investment and sets a threshold rule to reject projects
which appear to have high private returns.

We characterize the selection of offset projects in this model. Firms that register offset projects
have emissions growth different from that of firms that do not register for three reasons. First,
registered firms are more likely to undertake projects, which have a direct emissions productivity

effect of reducing emissions given fixed input choices. Second, registered firms expand in response
to projects. This scale effect is due to higher emissions productivity leading firms to choose higher
inputs. Third, there is selection on growth, as regulatory screening on a signal of investment costs
selects for firms that have high growth trajectories. For firms, projects are profitable when either
the investment has a lower cost or the firm has high future productivity (like a high demand shock
tomorrow). Because the regulator screens out projects with a lower investment cost signal, but
does not observe growth, firms that are able to register will have higher productivity growth and
therefore emissions growth than the firms that propose a CDM project or firms that do not apply.

We use model simulations to decompose the effect of registration into causal and selection
components. We find that the model can produce the suite of empirical facts from our reduced-form
results, including: (i) selection on firm size into CDM proposal; (ii) higher registration rates for
low-return projects; (iii) higher emissions growth at registered than proposing firms; (iv) increases
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in firm scale after CDM investment; (v) constant emissions intensity at registered as compared
to proposing or non-CDM firms. In an example model calibration that reproduces this suite of
facts, we also find significant mistargeting and approval of non-additional projects. In the model,
to achieve more abatement, the Board must relax its approval threshold to approve projects with a
higher signal of private returns, which are less likely to be additional. The share of abatement that
is additional declines, at the margin, as the Board relaxes this threshold, and the abatement cost
per ton of actual abatement rises. In ongoing work, we will combine our reduced-form moments
on project approval and emissions growth for CDM projects with estimates of firm production
functions to estimate the model parameters and characterize what share of offset payments went
toward additional abatement investments.

This paper contributes to a thriving literature in environmental economics on incomplete regu-
lation. In theory, environmental regulations are most efficient when they are universal, to equalize
marginal abatement costs across all sources. In practice, for reasons of politics, the costs of moni-
toring, and the like, many regulations have incomplete coverage. One way to broaden coverage is
to allow voluntary participation in abatement. An initial wave of research on incomplete regula-
tion, in the context of the US Acid Rain program, showed how regulation should adjust when some
sources could voluntarily choose to abate (Montero, 1999, 2000, 2005). More recently, studies of
carbon regulation have considered how a regulator with incomplete coverage of emissions should
optimally adjust policy when regulated firms can trade (Kortum and Weisbach, 2021; Fowlie and
Reguant, 2022; Weisbach et al., 2023). This paper studies carbon offsets as a voluntary mechanism
to relax the incompleteness of carbon regulation. We find that adverse selection into offset projects
undermines the potential abatement cost benefits of broader coverage.

A major theme in the study of incomplete regulation is the consequences of selection into
regulation for economic efficiency. The theory of adverse selection in offset markets delineates a
trade-off between the amount of abatement achieved and the information rents transferred to firms
(Bushnell, 2010, 2011; Van Benthem and Kerr, 2013; Mason and Plantinga, 2013). In principle,
the threat of a tax based on average emissions could be used to induce firms to voluntarily disclose
emissions (Cicala, Hémous and Olsen, 2022). Empirically, the literature on problems of selection
in offset markets is best developed for land use.2 We study offset projects in the manufacturing
sector and our analysis highlights the ways in which the economics differ in this case, for example
due to the endogenous choice of inputs and firm scale in response to higher productivity.

Finally, this paper joins a relatively small empirical literature questioning whether CDM projects

2Research has shown that there is strong selection into land use conservation or change contracts based on private
benefits to project participants, which can steeply raise program costs or lower the environmental benefits from land
use offsets (Jack, 2013; Aronoff and Rafey, 2023; Aspelund and Russo, 2024). An empirical literature using remote-
sensing data documents that a large share of payments for ecosystem services from land use go to projects that were
not additional (i.e., marginal to these payments) (West et al., 2020; Badgley et al., 2022; Guizar-Coutiño et al., 2022).
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specifically reduce carbon dioxide emissions. Calel et al. (2021) estimate that CDM wind power
projects are, in many cases, just as profitable as other wind investments that were made without
offset payments, and are therefore unlikely to be additional. Jaraitė, Kurtyka and Ollivier (2022)
estimate that firms undertaking CDM projects in India increase their emissions. We add to this lit-
erature by assembling firm-level panel data on emissions for a broad sample and estimating emis-
sions trajectories for CDM firms as compared to plausible counterfactual firms. We also model
the process of selection and approval into the CDM to show that registered firm emissions grow
despite the Board’s efforts to screen out high-return projects. China, our setting, is the largest orig-
inator of CDM projects in the world and has the highest carbon dioxide emissions of any country.
Prior research by a subset of the present coauthors studies the effect of domestic Chinese policy
on industrial energy use (Chen et al., 2021), but there is little prior work on China’s participation
in international carbon markets.

The rest of the paper proceeds as follows. Section 2 introduces the Clean Development Mech-
anism, describes our data and then uses it to document selection into CDM proposals. Section 3
presents empirical results on the screening rule for CDM projects and event-studies of CDM firm
emissions and other outcomes. Section 4 introduces our model and uses a calibrated version of the
model to interpret our empirical results. Section 7 concludes.

2 Context and data

This section describes the origin and purpose of the Clean Development Mechanism (CDM). We
then introduce our data sources and how we match CDM projects to data on the firms in China that
undertook those projects. Finally, we walk through the steps in the CDM approval process using
our data to illustrate firm selection into the CDM.

2.1 Overview of the Clean Development Mechanism
The Clean Development Mechanism (CDM) is a carbon offset market set up under the Kyoto

Protocol, the first operating agreement of the United Nations Framework Convention on Climate
Change (UNFCCC) (United Nations Framework Convention on Climate Change, 1997). The ar-
chitecture of the Kyoto Protocol divided countries into two groups: Annex 1 countries, which are
all members of the OECD, agreed to commit to greenhouse gas reduction targets, while non-Annex
1 countries, of low- and middle-income, were exempt from such targets. This division formalized
the greater responsibility of industrialized countries for past greenhouse gas emissions and their
higher income, and therefore capability to abate, at the time of ratification. The Kyoto Protocol
came into force in 2005 with targets for Annex 1 countries to return to 1990 emissions levels, or
below, by the end of a first commitment period spanning from 2008 to 2012.
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The design of the Protocol included three “flexibility mechanisms” to allow for abatement
across international borders, including for abatement in non-Annex I countries. Because GHGs are
global pollutants, an efficient program of greenhouse gas mitigation would equalize the marginal
cost of abatement all around the world. The division of responsibilities under Kyoto appears to
preclude efficiency, as only some countries have abatement targets at all. The Clean Development
Mechanism, one of the flexibility mechanisms, therefore allows for carbon abatement projects to
be undertaken in non-Annex 1 countries to sell offsets to parties in Annex 1 countries that face
emissions reductions targets. The demand side of this market is made up of firms within countries
that face binding emissions targets under the European Union Emissions Trading System (EU
ETS). The supply side consists of many potential abatement projects in non-Annex I countries.
The firms undertaking these projects are under no regulatory obligation to undertake abatement
projects but voluntarily choose to sell offsets in the CDM.

The CDM began supporting projects in 2006 and as of 2024 these projects have issued 2.2
billion tons of CO2 equivalent in carbon offsets, which the CDM calls Certified Emissions Reduc-
tions (CERs). China is the largest issuer, by far, with 1.2 billion tons (51%) of this total, followed
by India (13%), Brazil (8%) and the Republic of Korea (8%). Projects comprise a dizzying range
of possible means of GHG abatement, from renewable energy projects to the flaring of GHG emis-
sions from industrial processes. The rules for eligibility for CDM issuance changed at the end
of the first commitment period in 2012, disallowing the exchange of CERs for permits within the
EU ETS from new projects in most non-Annex I countries (European Commission, 2024). The
issuance of new projects dramatically slowed after this point.

While the CDM market is no longer supporting new projects, the program has spawned succ-
cessors within the UNFCCC process. The Paris Accord introduced a new framework under Article
6.4 to allow abatement in one country to count towards the abatement goals of another country
(United Nations Framework Convention on Climate Change, 2015b). This framework is similar
to the flexibility mechanisms under the Kyoto Protocol in allowing for the “International Transfer
of Mitigation Outcomes” (ITMO), which are carbon offsets by another name. The rules to start
an offset market under this framework have not yet been agreed upon as of the COP28 meeting
in Dubai. The CDM is a compliance offset market because demand in this market comes from
regulated firms with compliance obligations to reduce emissions or buy permits. The CDM has
also influenced the design of voluntary markets for carbon offsets between unregulated parties.3

Our findings on the CDM are therefore relevant for shaping regulation towards a range of carbon
offset markets.

3In voluntary offset markets private companies or individuals who are not obligated to meet an emissions reductions
target buy offsets for their own emissions goals, marketing, or other reasons. This voluntary segment has grown
enormously in recent years but seen large price fluctuations arguably due to a lack of confidence in the additionality
and integrity of offsets (see, for example Greenfield, 2023).
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2.2 Data sources
We rely mainly on two sources of data, the United Nations Framework Convention on Climate

Change (UNFCCC), for data on CDM projects, and the China Environmental Statistics Database
(CESD), for firm emissions. We describe these in turn.

The UNFCCC reviews all proposed CDM projects and publicly releases data and documents
on these projects (see https://cdm.unfccc.int/Projects/index.html). We use
a subset of this data that has been compiled by the Institute for Global Environmental Strate-
gies (IGES) as the IGES CDM database (available at https://www.iges.or.jp/en/pub/
iges-cdm-project-database/en), and supplement this subset with additional documents
from the UNFCCC. The UNFCCC data contain a wealth of information on projects drawn from
primary document sources. To propose a CDM project the project proponent has to submit a
Project Design Document (PDD) to the CDM Executive Board detailing: the firm that proposed
a project, the location of a project, the nature of the project and what kind of investment it will
make, and the Certified Emissions Reductions from the project, among other variables. The PDD
typically also includes information on the investment ticket size for the abatement project and the
internal rate of return for the project, as calculated by the proponent or their consultants.

Our second main source of data is the China Environmental Statistics Database (CESD), from
China’s Ministry of Environmental Protection. The CESD data are a firm-year panel covering
energy consumption in physical units and pollutant emissions for the largest industrial firms in
China. We calculate CO2 emissions by applying fuel-specific emissions factors for China, from
the UNFCCC, to the fuel quantities observed in the CESD. The CESD data may be audited by both
local and national environmental protection agencies. The main limitation of these data is that they
are available from 2001 only up through 2010, limiting the post period for our study of CDM firms
to effectively five years. The CESD also contains a measure of output. We supplement the CESD,
for additional firm outcomes, with the Annual Survey of Industrial Firms (ASIF) from the National
Bureau of Statistics (1998-2009, 2011-2013). The ASIF covers firm-year revenue and inputs like
employment.

We find relatively high match rates in merging from the group of CDM proposing firms to
the CESD and ASIF datasets (Appendix Table A3). Our merging process manually matched firm
names from the English version in the UNFCCC database, to the Chinese version in a firm ref-
erence directory (www.tianyancha.com), and then to the Chinese names observed in the de-
anonymized CESD. The CDM project population in China, restricting to project types likely to be
undertaken by manufacturing firms, includes 1049 projects put forward by 894 firms. Of this set,
we are able to match 52% of the projects to some firm in the CESD and 80% of the projects to
some firm in the ASIF, which has broader coverage.
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2.3 Stages of the Clean Development Mechanism approval process
The Clean Development Mechanism has a complex approval process through which the Board

and its agents screen projects for whether they will achieve additional reductions in carbon emis-
sions (United Nations Framework Convention on Climate Change, 2015a). The main steps are:
(i) the proposal of a project by a firm, (ii) validation of the project by a third-party certifier, (iii)
review and registration of the project by the Board. Here we briefly describe this process with an
emphasis on the proposal and registration steps that are central to our empirical analysis.

The first step in the CDM process is for a firm to propose a project. To propose a project a firm,
often with the help of a consultant, needs to draft a Project Design Document (PDD) that describes
the investment the firm will make to reduce emissions and calculates how many Certified Emissions
Reductions (CERs) this investment will generate.4 In our sample the most common project types
are for waste heat recovery and utilization, fuel switches to various less GHG-intensive fuels,
energy efficiency and industrial process improvements (Appendix Table A2). In their PDD, firms
argue that their project reduces emissions by undertaking an investment analysis to show that the
project, without the additional revenue provided by CERs, would have a low internal rate of return,
so that the firm would not invest if it did not get CDM payments. When a firm has prepared a PDD
the project then must be cleared by the host country, after which it is forwarded to the UNFCCC,
which posts the PDD for the proposal on its website. We therefore observe in our data all proposed
projects regardless of whether they were later approved or even submitted for approval.

The second and third steps in the CDM process are validation and registration. Conceptually,
these steps are essentially a single, screening stage in which the Board and its agents are deciding
whether to allow the project to sell carbon offsets or not. In the validation step, the firm hires a
special third-party certifier, called a Designated Operating Entity (DOE), to visit the project site,
check the details of the CDM application against the firm’s records and plans, and give assurance
that the project accords with the rules for its project type. If a project passes validation and the firm
chooses to pursue it, the project is then submitted by the DOE, on behalf of the firm, to the CDM
Executive Board in Bonn, Germany. The Board and its staff vet the submission (a third party, on
reviewing the publicly-posted PDD, can also raise an objection or request a detailed review of the
project). If the Board approves the project it is then registered. Registration allows the firm to sell
CERs after the project is complete and subject to ongoing monitoring of ex post emissions.

4The UNFCCC keeps a list of the types of investments that are eligible for the CDM, for example, energy-efficiency
upgrades, fuel switching, or changing the industrial process in the manufacture of cement. Each type of investment
has an accompanying “methodology,” a detailed protocol for what information each type of project has to present in
its PDD to calculate baseline emissions and emissions reductions (United Nations Framework Convention on Climate
Change, 2021). The methodology gives the rules for how a firm can argue that its project will achieve additional
reductions in emissions, beyond whatever business-as-usual changes the firm might have undertaken.
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2.4 Firm selection into CDM proposal and registration
Our matched data allow us to describe the process of selection into CDM proposal and ulti-

mately project registration. In this subsection we use this data to describe how firms that propose
and register CDM projects differ from other firms. Here and below we will call firms that proposed
but did not register a project proposed only firms. Our control group of non-CDM firms in this part
is made up of firms in the same industry and province as any firm that proposed a CDM project
and which were in the top 10,000 firms by output in at least one sample year.

There are three main findings from this descriptive analysis. First, firms that propose or register
CDM projects have at baseline some of the highest firm-level emissions in the Chinese economy.
Figure 2 shows the distributions of log carbon dioxide emissions for the control group of firms
(in green), firms that only proposed a CDM project (in red) and firms that registered a project
(in blue). The median of the distribution of emissions for control firms is 3.04 (log thousands of
tons) whereas the median for proposed only firms is 5.45. By contrast, the distributions of baseline
emissions between registered and proposed firms overlap considerably. The median log emissions
for registered firms is 5.76. The distribution of emissions for registered firms is nonetheless shifted
to the right, relative to that for proposed only firms, which can be seen in the right tail, as the very
largest firms in the data are more likely to be registered.

Second, proposed only and registered firms dwarf firms in the broad control sample on the basis
of inputs and outputs, not only emissions. Table 1 compare mean characteristics (with standard
deviations in brackets) between proposed only (column 2) and registered (column 3) firms and the
broad sample of control firms (column 1). Columns 4 and 5 show the mean difference between
proposed and control firms (column 2 less column 1) and between registered and proposed firms
(column 3 less column 2), with standard errors for the difference in means in parentheses. Panel A
shows variables from the CESD data. Proposed firms have a value of output of CNY 1221m, about
seven times larger than control firms (panel A, output value, column 2 vs. column 1). They are
not significantly more likely to use coal, but have higher coal consumption than control firms by a
factor of five and have both higher CO2 emissions and emissions growth. Panel B shows variables
from the ASIF, which has broader coverage of firm inputs and outputs. CDM proposed firms have
much higher levels of fixed capital assets, wages, employment and revenue than control firms.

CDM registered firms are larger than proposed only firms with respect to output and emis-
sions but are generally more similar with respect to other inputs. The mean registered firm has
CO2 emissions twice as large as the mean proposed firm, but comparable emissions growth in the
period before the proposed project (panel A, CO2 growth). The mean values of inputs like fixed
capital assets and the wage bill are higher for registered firms, relative to proposed firms, but these
differences are not statistically significant, due to the high variance of these variables among the
very largest firms (panel B, fixed assets and wage bill, column 5). The overall picture that emerges
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is therefore that firms that propose any CDM project are enormous, an order of magnitude larger
than other firms in their own industries, whereas firms that end up registering projects, while larger
still, are not so dissimilar to proposed only firms. The substantial differences between the broad
sample of control firms and proposed only or registered firms will lead us, below, to use matching
estimators to establish a control group of firms more like those in the CDM.

The third finding from our descriptive analysis of selection is that most screening happens
before a project is formally submitted to the Board for approval. Table 2 shows, for our sample
of CDM projects in the Chinese manufacturing sector, the number of projects that were proposed
(column 2), applied to the CDM Board (column 3) and were registered in each year (column 4).
Columns 5 and 6 calculate the conditional probabilities that a project applies given proposal and
that a project is registered given application. The bulk of the projects span from 2006 to 2012. In
the last row, we see that 64% of projects that are proposed end up applying to the CDM Board
(column 5) and fully 95% of projects that apply are then registered (column 6). Recall, from
the discussion above, that after a project is proposed it needs to undergo validation by a certifier
(DOE) that then forwards its implicit approval with the application to the Board. We interpret these
results as showing that, if a project is going to be rejected, it is effectively rejected pre-emptively,
at the validation stage, before the DOE and firm submit a formal application to the Board. This
finding accords with the characterization that the Board will approve projects that have applied by
default unless a Board member or outside party raises an objection (United Nations Framework
Convention on Climate Change, 2015a). In our model and empirical analysis of the approval
process we will therefore treat the firm’s decision to propose as the first stage and the Board’s
validation and registration decisions as a joint second stage.

3 Empirical analysis of project screening and firm emissions

This section uses our data to estimate the screening rule for what proposed projects are registered.
We then use an event-study approach to trace out the emissions trajectories of firms that register
CDM projects as compared to firms that propose a project or to a broader set of control firms.

3.1 Screening of offset projects: the CDM registration rule
The CDM approval process is meant to screen out projects that would not achieve additional

reductions in emissions. Our setting is well-suited to estimate what screening rule the Board is
actually following and to test whether it is plausibly seeking to reject non-additional projects,
for two reasons. First, our data encompass both proposed only projects and registered projects.
Second, information on all projects, as contained in the Project Design Document (PDD), is a
good approximation of the information available to the Board in making a decision. The PDD is
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the basis of scrutiny of the project and the Board’s registration decision.

Empirical approach.—We consider the sample of 620 firms that proposed, or proposed and
registered, a CDM project and which matched to the CESD or ASIF data samples. Within this
sample we estimate a linear probability model

Registeredi = InternalRateReturniβ1 +X ′
i β2 +αt +αk +αc +αl + εi. (1)

Here Registeredi is a dummy variable equal to one if a project is registered, InternalRateReturni is
a continuous variable measuring the internal rate of return for the proposed CDM project reported
by the firm in the PDD, Xi are other project characteristics such as whether a consultant helped
prepared the PDD, and the various α’s are fixed effects for year of project start αt , project types
αk, certified emission reduction deciles αc and the time from project proposal to project start αl .

The main coefficient of interest is on the variable InternalRateReturni. As part of the invest-
ment analysis in the PDD, firms typically report the rate of return they expect for the project. This
calculation is fairly complex since it depends on the cost of the investment, any private benefits to
the firms, such as through lower energy savings, and the anticipated carbon emissions savings and
hence CER payments if the project is approved under the CDM.

Empirical results.—Table 3 reports the results of the estimation of (1). Column 1 includes
fixed effects but no other project-level controls, while columns 2 through 4 progressively add con-
trols for other project characteristics. Across the board, we find that higher reported rates of return
on a proposed CDM project are associated with an economically and statistically significantly
lower probability of approval. The rate of return is measured like an interest rate and has median
0.15 and standard deviation 0.08. The coefficient of −0.550 (standard error 0.270) on the rate of
return, in column 4, for example, then implies that a one-standard-deviation increase in the rate of
return lowers the probability of project registration by 4.4 percentage points (= 0.08×−0.55), or
7.7 percent of the mean rate of approval (57%).

This finding that reporting higher rates of return is associated with a lower rate of project
registration is consistent with the Board attempting to screen out non-additional projects. If a
project has a very high rate of return, it may be reasoned that the return would still be high even
without the added revenue provided by CERs. In that case, the Board may decide that a project is
non-additional. This result is especially striking given the contrast with the more common problem
in rate-of-return regulation of capital investments. The typical problem in rate-of-return regulation
(for example, of electric utilities) is that a regulator must rule out investments that regulated firms
propose, to earn a guaranteed return on capital, but which in fact have high costs or low rates
of return. The problem of the Board in the CDM is the opposite: the Board wishes to screen
out projects that have low costs or high returns, since those projects would likely have proceeded
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in any case and therefore will not generate additional reductions in emissions. Appendix Table 3
estimates equations like (1), but with investment as the independent variable, and finds that projects
with high investment costs are indeed more likely to be registered.

We find additional support for the idea of the Board attempting to screen on additionality in
the coefficients on other project characteristics of Table 3. Having a consultant help prepare the
PDD appears to be associated with a higher probability of registration (column 2). However, this
result turns out to be due to consultants taking on projects with a longer time lag from the proposal
to the start of the project (i.e., the start of construction). Once we also condition on this time lag
(columns 3 and 4), we find that: (i) projects with a longer time lag are significantly more likely
to be registered (ii) having a consultant no longer predicts registration. Projects with consultants
are more likely to be registered, therefore, because consultants work on projects with longer time
lags. A longer time lag, in turn, is associated with project registration because the CDM approval
process favors projects that demonstrate “that the CDM was seriously considered in the decision
to implement the project activity” (United Nations Framework Convention on Climate Change,
2015a). This favoritism was made explicit after 2008, when firms were required to give advance
notice of their consideration of a CDM project in order later to be considered for registration. The
notice requirement was taken to suppress CDM applications from firms who were undertaking an
energy- or emissions-saving investment but were not motivated by the CDM to do so.

3.2 Emissions and output for firms undertaking offset projects
This subsection studies the emissions of firms that proposed or registered CDM projects as

compared to control firms that did not pursue a CDM project. The prior result on screening shows
that the Board is attempting to screen out firms with high returns that are not likely to be additional.
The current subsection examines whether this screening was successful in selecting for firms that
reduced their carbon emissions.

Empirical approach.—We use an event-study design with staggered treatment using the
imputation-based difference-in-difference estimator of Borusyak, Jaravel and Spiess (2021). Be-
cause of the large skewness in the distribution of firm emissions and the concentration of CDM
firms in the right tail of the emissions distribution, we favor event-study estimators that first match
firms on pre-period emissions and then implement the staggered difference-in-difference estimator
post matching.

In the first step of our estimation we limit the sample of control firms using matching. As
described in Section 2, the typical CDM proposed only or registered firm is much larger and
higher-emitting than the typical non-CDM firm; however, there is a very large pool of candidate
matches among non-CDM firms in the data. We use a Euclidean distance match without replace-
ment (Abadie and Imbens, 2012; Abadie and Spiess, 2022). The distance matching selects control
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firms to minimize the sum of squared deviations between a treated firm and a candidate control
firm on the available baseline lags of the outcome variable, for example, baseline CO2 emissions
in years τ = −4 to τ = −1 before the project start. Matching estimators present a bias-variance
trade-off between finding the best pre-period match to reduce bias and increasing the number of
matches and therefore the precision of estimates. In our baseline specification we use 3 matches
for each treated firm and we also report results for 10 matches per treated firm.

After matching we account for the staggered rollout of CDM projects across firms by using
a difference-in-difference imputation estimator Borusyak, Jaravel and Spiess (2021). We seek to
estimate event-study specifications of the form

Yit = αi +α jt +
4

∑
τ=−5

β1τ1[t −Starti = τ]Proposedi + (2)

4

∑
τ=−5

β2τ1[t −Starti = τ]Registeredi + εit , (3)

where Yit is an outcome variable, such as emissions, αi are firm fixed effects, α jt are industry-
year fixed effects (at the 2-digit level), Starti gives the start year of the CDM project for firm i,
Proposedi is an indicator equal to one for firms that only proposed a CDM project but did not
register, Registeredi is an indicator equal to one for firms that registered a CDM project, and εit is
an idiosyncratic error term (clustered at the firm level). The coefficients of interest are β1τ and β2τ

estimating the relative change in the outcome variable in the years before and after the start of a
CDM project. In a variant of this specification, we limit the sample to only firms that proposed or
registered a CDM project and omit the event-time indicators interacted with Proposedi, such that
the coefficients β2τ compare outcomes for registered firms using just proposed only firms as the
control group. In this narrower sample of firms we omit the matching step because CDM proposed
only firms are already large and comparable to CDM registered firms (Figure 2).

The imputation based difference-in-difference estimator estimates (2) in three steps. First,
using only untreated firm-year observations, from non-CDM firms or CDM firms prior to their
project start year, estimate the firm and industry-year fixed effects with Yit = αi +α jt + uit . One
can also estimate the effect of time-varying covariates in this step. Second, for each treated firm-
year, predict Ŷit(0) using this baseline regression and estimate T̂it = Yit − Ŷit(0). Third, estimate
any function of the T̂it , such as the mean value of the firm-level treatment effect in each event-year.
Borusyak, Jaravel and Spiess (2021) show that this estimator is the unique efficient linear estimator
in their event-study setting (under an auxiliary assumption that the errors are homoskedastic).

Empirical results on emissions.—We start by examining the Certified Emissions Reduc-
tions (CERs) that CDM firms proposed to achieve in their Project Design Documents. An unusual
feature of our data is that the PDD for each firm contains their explicit projection of how much
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their proposed abatement project was supposed to reduce emissions relative to the baseline level
of emissions. These projections cover the “project boundary,” which may be a plant or a system
within a plant (such as the boiler), rather than the whole firm. A typical PDD projection assumes a
flat baseline for emissions and then projects CERs relative to this baseline over a period of 7 to 14
years.

Figure 3 shows the coefficients from an event-study specification run on the projected CER data
drawn from PDDs, rather than data on actual emissions. A CDM project in our sample on average
proposed to reduce emissions by 150 thousand tons of CO2 per year, on impact, with that reduction
remaining steady over the first five years of the project (these projections are typically steady for the
entire project life; we truncate the projections to correspond to the horizon for our event studies of
actual emissions). The projected CERs represent a substantial chunk of firm emissions at baseline.
Table 1 shows baseline emissions of about 500 thousand tons per year for firms that only propose
a CDM project and emissions of about 1200 thousand tons for firms that register a project. The
proposed CER reductions would therefore represent a 30% decrease in emissions for proposed-
only firms or a 12% decrease for registered firms, despite that the proposed CDM project does
not necessarily encompass all emissions from a given firm. The second (red) line in Figure 3
shows the actual CER issuance from registered projects ex post. CER issuance naturally lags CER
projections because issuing CERs requires follow-up monitoring to confirm equipment installation
and measure ex post emissions. CER issuance may also be lower than CER projections, even in
the long run, if a firm decides not to go through ex post monitoring or to sell its permits.5

Figure ?? shows estimates of the event-study specification (2) restricted to the sample of firms
that proposed a CDM project. Panel A shows the event-study coefficients with the level of emis-
sions as the outcome and panel B with the log of emissions. The main finding from the figure is that
CO2 emissions steeply increase at firms that register a CDM project relative to emissions at firms
that only propose a project. In levels (panel A), emissions at registered firms are slightly below
emissions at proposed-only firms, but grow rapidly in the year of the project start and the four years
afterwards. In logs (panel B), emissions at registered and proposed-only firms are balanced in the
pre-period, but emissions grow markedly at registered firms and exceed proposed-only emissions
by roughly 0.5 log points by four years after the project start.

Figure 4 estimates the event-study specification (2) in a broader sample of firms including firms
that did not propose a CDM project. In each figure the blue line shows event-study coefficients for
emissions at CDM registered firms and the red line for CDM proposed-only firms, in both cases
as compared to a matched sample of control firms. The rows of the figure differ in the estimator

5We expect that firms in our sample received a negative shock to the value of issuance between the time of starting
their projects, in the 2006 to 2012 range, and the time of monitoring, since CER prices fell at the end of Phase 2 of the
EU ETS (Appendix Figure A1).
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used, where the first and second rows use a matching estimator prior to estimating the staggered
difference-in-difference regression, and the third row omits this step. In each row the left-hand
side takes the level of CO2 emissions as the outcome and the right-hand side takes the log.

The main finding of this figure is that the gap between CDM registered and proposed-only firms
is driven by large increases in emissions at registered firms. For example, in levels (panel A), CDM
proposed-only firms have flat emissions before the proposed project start date and some modest
emissions growth, not sigificantly different from zero in most individual years in the post period.
By contrast, emissions at registered firms increase rapidly in the post period. In logs (panel B),
emissions are flat for both registered and proposed-only firms in the pre-period. Emissions remain
flat for proposed-only firms in the post-period, but grow rapidly for registered firms. Estimators
with a broader matched sample, with 10 control firms matched to each treated firm (panels C and
D), or with no-matching (panels E and F) show qualitatively similar results. The one exception is
in panel F, with no matching, where the difference between registered and proposed firms arises
more from declines in emissions among proposing firms (relative to matched controls) than from
emissions growth among registered firms. Even in this case, it is clear that emissions at CDM
registered firms are higher in the post period as compared to proposed-only firm emissions. Given
that CDM firms are so large, we prefer estimators with a matching step (e.g., panels A and B) in
order to restrict the control sample of firms to have comparable scale of emissions in the pre-period.

The magnitude of the emissions increases at CDM registered firms in the years after registra-
tion is very large. Table 4 presents regression results for carbon emissions that pool the post-period
events from (2) into a single post indicator variable and therefore estimate the average change in
emissions for registered and proposed firms after the CDM project start date, as compared to a
matched set of control firms. In panel A, emissions are measured in levels. In our preferred speci-
fication with firm and industry-year fixed effects (column 4), CDM registered firms are estimated
to increase CO2 emissions after the project start date, relative to a matched sample of control firms,
by 569 thousand tons (standard error 173 thousand tons) and CDM proposed firms by 190 thousand
tons (standard error 124 thousand tons). The former effect is highly significant (p< 0.01) while the
latter coefficient is not statistically significantly different from zero. In panel B, the outcome is log
carbon emissions. Again looking at the column 4 specification, the results are qualitatively simi-
lar, with registered firms estimated to increase their emissions after registration by 27 log points
(standard error 10 log points). Proposing firms have a small, negative and statistically insignificant
change in emissions.

The upshot of these estimates is that, while CDM registered firms project ex ante that they
will reduce emissions by 150 thousand tons per year, in fact emissions at these firms increased by
some 570 thousand tons per year after registration (Table 4, column 4). In a sample restricted to
only proposing firms, as used in the event studies for Figure ??, we find an even larger increase
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in emissions in registered versus proposed firms in levels, of 831 thousand tons per year, and a
similar effect, in logs, of 22 log points (Appendix Table ??).

Emissions growth due to scale versus emissions intensity.—Figure 5 decomposes emis-
sions growth at CDM registered firms into growth in output and growth in emissions intensity
(emissions per unit output), using the same (2) specification as for Figure 4. Panel A shows the
value of output in levels and panel B in logs. Panel C shows emissions intensity in levels and panel
D in logs.

The main finding from the figure is that emissions growth is mainly attributable to growth in
scale rather than changes in emissions intensity. In panel A, the level of output in CDM registered
firms increases in the years leading up to the CDM project start date and grows more quickly in
the years afterwards. In panel B, the log value of output at registered and proposed-only firms is
similar in the pre-period, but grows more quickly at registered firms after the project start. The
point estimate for the aggregate growth in output in year 4 after the project for registered firms
is near 0.5 log points (panel B), which is comparable to, if slightly smaller than, the estimated
coefficient on the same event year with log CO2 emissions as the outcome (Figure 4, panel B).
Estimates for emissions intensity (panel C) are roughly flat, but imprecisely estimated, for both
registered and proposed only firms. There is some evidence that log emissions intensity increases
at registered firms, though, again, the estimates for this ratio are imprecise. We conclude that most
emissions growth can be attributed to increases in the value of output produced, though there may
be an ancillary role for increases in emissions intensity in some specifications.

Drawing in additional data, we find supporting evidence from input costs that CDM registered
firms sharply increase scale in the years after registration. Our main emissions outcomes are mea-
sured in the CESD; however, we also observe a broader set of firm inputs in the ASIF. This allows
us to go beyond emissions and output as measures of scale. Figure 6 compares the log of revenue,
the cost of sales, the wage bill and fixed assets in the ASIF for CDM registered and proposed-only
firms to a matched sample of control firms. We find that the revenue and variable inputs (cost of
sales, wage bill) are growing quickly for CDM registered firms even prior to the project start date,
and in some cases this growth accelerates after the project start (wage bill, panel C). There is no
growth in fixed assets in registered firms, which is somewhat surprising, as CDM projects them-
selves involve capital investments. Capital is difficult to measure and the size of CDM investments
is likely small when compared to the entire existing capital stock of the firms. The growth in vari-
able inputs from the project start date to four years after for registered firms is approximately 0.4
log points, similar to the growth in the value of output or sales and slightly smaller than the growth
in emissions.

Table B9 summarizes these event studies with regressions that estimate the average change in
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sales and input demands in the post period for registered and proposed only firms. The independent
variable of interest is an interaction between registered firms and the period from 0 to 5 years after
the CDM project start date. Each column has a different dependent variable: sales, the cost of
sales, the wage bill and fixed assets. We find, consonant with the event-study Figure 6, that all
of sales, the cost of sales and the wage bill increase significantly in the period after registration,
by amounts ranging from 16 log points for the cost of sales to 29 log points for the wage bill.
Given the confidence intervals the increase in all of these measures of output and variable inputs
is similar in proportional terms to the estimated increase in CO2 emissions (of 27 log points, in
Table 4, panel B, column 4). There is no growth in fixed assets for registered firms in the period
after registration.

Overall, the evidence from two data sources suggests that growth in the scale of firm vari-
able inputs and therefore output and sales accounts for most of, and perhaps the entirely of, the
estimated increase in emissions at registered firms.

Discussion of results.— We find a suite of empirical results on selection, screening and
emissions in the CDM. First, CDM proposed only and registered firms are much larger emitters
at baseline than other firms in the same industries. Second, the regulator attempts to screen out
high-return projects, on the basis of the firm’s proposal, in order to ensure CDM firms achieve
additional reductions in carbon emissions. Third, despite this attempt at screening, emissions at
registered firms grows steeply in the years after registration, relative to a control group of firms that
only proposed a CDM project or a broad sample of matched firms. Fourth, this emissions growth
is mainly due to an increase in firm scale and not emissions intensity.

We do not interpret the event-study estimates as providing causal estimates of the effect of
CDM participation on emissions growth. CDM projects involve forward-looking investments that
trade off capital expenditures today for future private benefits in energy savings and social benefits
in emissions savings. For this reason, we believe that firms may select into the CDM based on their
own anticipated growth, which would violate the “no anticipation” assumption required to interpret
an event-study estimate as the causal effect of a dynamic treatment. While the event-study results
show that CDM registered firms did not reduce emissions, in an absolute sense, it remains possible,
in the presence of selection, that their counterfactual emissions in the absence of the CDM would
have been still higher than we estimate.

Our preferred interpretation of the event-study estimates is that they combine three concep-
tually distinct forces. First, an emissions productivity effect, the causal effect of a technological
change on emissions, holding constant firm output. This raw technological effect is what the CDM
screening process is designed to measure. Second, a scale effect, from variable input choices en-
dogenously responding to an increase in productivity. Third, a selection on growth effect, from
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firms that anticipate higher future growth being more likely to invest in a long-lived project today.
The CDM explicitly screens on willingness to invest in abatement capital. In order to formalize
these effects and build a framework for measurement, Section 4 provides an explicit model of
selection and screening in the CDM.

4 Model of the Clean Development Mechanism

This section presents a model of the Clean Development Mechanism to allow us to measure the
effects of firm productivity, input choices and selection on firm emissions growth. In the model, a
firm has private information about the returns on its abatement project and the Board attempts to
screen projects, to award carbon credits only to firms with additional investments.

4.1 Set-up
Figure 7 describes the structure of the CDM game and the payoffs for the firm at each terminal

node. A firm can decide whether to apply at a cost to the CDM. If the firm does not apply, it
chooses whether to invest in an abatement project or not, based only upon the private returns to the
project. If the firm does apply, the Board draws a signal of the firm’s investment costs, and either
registers the project or not based on its signal. The Board seeks to register only projects with low
private returns. If the project is not registered, the firm faces the same investment decision as if it
had not applied in the first place. If the project is registered, the firm now has the prospect of selling
certified emissions reductions (CERs), which raises its potential payoff from investment. In what
follows, we micro-found the benefits and costs of abatement investment in the firm’s production
decisions and profits.

Production.—We use a framework where emissions are an input to production (Copeland
and Taylor, 2005; Shapiro and Walker, 2018). Firms have a production function

y = (1−a)zv (4)

where z is productivity, v is a composite input of capital and labor, and (1−a) is the loss of output
for abatement effort a. Firm emissions depend on abatement through

e =
(

1−a
ze

)1/αe

zv (5)

Total emissions are proportional to value added zv. However, firms can make abatement effort a

to reduce emissions. The effect of abatement effort on emissions is governed by an abatement
efficiency factor ze > 1 and the elasticity of emissions 1/αe with respect to 1−a.
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Substituting in the choice of 1−a, we write the production function as

y = ze[zv]1−αe(e)αe ≡ [ze(z)1−αe]︸ ︷︷ ︸
z̃

v1−αeeαe (6)

Firms therefore have a Cobb-Douglas production function in a composite input and emissions.
With this form, emissions productivity is factor-neutral: emissions productivity ze and the general
productivity term z combine to form total factor productivity z̃.

Optimal output and emissions.—To solve for firm output and emissions, we assume that

each firm faces an inverse demand curve p = y−
1
η with η > 1. With this demand curve, the firm

maximizes profit by choosing an optimal output of

y∗(z̃) =
((

η −1
η

)
z̃

Cw

)η

(7)

where Cw is a constant depending on factor prices and production parameters. Firm emissions are
linear in the chosen output at

e∗(z̃) =
Cw

z̃
αe

te
y∗(z̃) = η̃(η −1)

αe

te

(
z̃

Cw

)η−1

(8)

where η̃ = (η − 1)η−1η−η and te is the price of emissions. We think of this emissions price as
being a shadow cost of existing regulations for air pollution or energy use, although it could also
include the prices of inputs like coal that generate emissions. Since η > 1, the emissions from
optimal production are increasing in the emissions productivity ze, due to a scale effect. Emissions
intensity, per unit of output and per unit of sales, respectively, can be expressed as

e∗

y∗
=

Cw

z̃
αe

te

e∗

r∗
=

η −1
η

αe

te
(9)

Emissions intensity per unit output is decreasing in both productivity z̃ and the emissions shadow
cost te, while emissions intensity per unit sales does not depend on productivity.

Abatement project.—Firms, whether or not they are registered in the CDM, have the option
to undertake an abatement project to increase their emissions productivity ze. We now define two
periods, with t = 0 before the consideration of the project and t = 1 after. Let the initial emissions
productivity be ze0 and the emissions productivity after investment be ze1 = ∆eze0 for some ∆e > 1.
An abatement project therefore increases the firm’s emissions productivity, allowing the firm to
make the same output with a lower level of emissions input.

The firm’s general productivity changes by ∆z ≡ z1/z0 between periods. We assume that firms
have perfect foresight of their productivity growth. Without the abatement project, post-period
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business-as-usual emissions are

eBAU
1 = ∆

(1−αe)(η−1)
z e0 (10)

With the abatement project, emissions change to

e1 = ∆
η−1
e ∆

(1−αe)(η−1)
z e0. (11)

Firm emissions growth therefore depends on both the exogenous growth in productivity and the
endogenous choice to invest in the project.

The private benefit to the firm of undertaking the abatement project is the change in profits that
the project would cause. Firm profit is a linear function of emissions π(z̃) = 1

η−1
te
αe

e(z̃). The gross
private benefit from the abatement project is therefore

1
η −1

te
αe

(
e1 − eBAU

1

)
=

1
η −1

te
αe

(∆η−1
e −1)(∆z)

(1−αe)(η−1)︸ ︷︷ ︸
b(∆e,∆z)

e0 (12)

The firm’s benefit b(∆e,∆z)e0 therefore depends on the baseline level of emissions, the emissions
productivity gain from the project and the firm’s anticipated change in productivity.

The firm has to pay an investment cost to do the abatement project. We assume that the invest-
ment cost F(∆e,e0)ε depends on the emissions productivity gain ∆e, the firm’s baseline emissions
e0 and an idiosyncratic investment cost shock ε . It is necessary to discount the flow benefits of the
project to compare them to up-front investment costs. For this purpose, we assume that the project
runs for a period of T̃ discounted years.

Clean Development Mechanism payments.—If the firm invests in the project and is regis-
tered for the CDM, it can sell carbon credits. The Board grants carbon credits based on what it can
measure. We make two key assumptions on how carbon credits are calculated that are consistent
with the structure of the model and the CDM rules.

First, we assume that the Board does not have any information about the firm’s productivity
growth ∆z, but can observe both baseline emissions and the technical productivity improvement ∆e

from the project. In the CDM approval process, the Board fastidiously measures baseline emissions
and the technical characteristics of the project, but does not attempt to forecast growth.

Second, we assume that the Board calculates CERs as the reduction in emissions that would
be achieved if the firm produced the same output as at baseline with the same composite input v

but the higher emissions productivity given by ∆e. Using (6) to solve for the implied change in
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emissions from this rule yields a Certified Emissions Reduction of

CER =

[
1−
(

1
∆e

)1/αe
]

︸ ︷︷ ︸
δe(∆e)

e0. (13)

The firm is granted more CERs if baseline emissions are high, if the emissions productivity im-
provement ∆e from the project is large, and if the elasticity of output with respect to emissions αe

is small. At a CER price of p the CERs have a value pδee0 to the firm.

4.2 Firm and Board strategies
We solve the game backwards from the firm’s investment decisions given registration.

Firm investment decision.—The firm invests when the project is profitable

T̃ (b+ pδ1{CDM})e0 ≥ Fε, (14)

where 1{CDM} indicates CDM registration and we omit the arguments of project benefits and
costs. The net payoffs of the firm’s project without and with CERs define a hierarchy of firm
profitability. We define three types of firms:

Firm type =


Never invest if T̃ (b+ pδe)e0 < Fε

Additional if T̃ (b+ pδe)e0 ≥ Fε and T̃ be0 < Fε

Always invest if T̃ be0 ≥ Fε.

(15)

The Never invest firms have projects that are not profitable even if they are registered under the
CDM. The Additional firms can profitably invest if and only if they are registered. The Always

invest firms have a profitable project even without CERs and are therefore non-additional.

Board registration rule.—The Board, if it observed investment costs and project benefits,
would register only Additional firms, since the investment decision is responsive to CDM regis-
tration only for these firms. The Board cannot observe the firms’ private benefits and costs but
attempts to screen for additional firms using imperfect information.

The Board observes δe and e0 as part of the firm’s CDM application but does not see two
parts of the firm’s return. First, the Board does not know the firm’s growth rate and evaluates
project returns under the assumption that ∆z = 1, that is, at the firm’s baseline scale.6 Second, the
Board observes the average fixed cost of a project, but only receives a noisy signal εs of the firm’s
idiosyncratic cost shock ε .

6We provide empirical evidence that this assumption is reasonable. In regressions for project registration, lagged
firm emissions growth is found to have no statistically significant effect on registration.
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We restrict the Board to follow a screening rule that registers a project if its perceived return is
low enough. Let b ≡ b(∆e,1) where b(·, ·) is the firm’s return per unit of baseline emissions (12).
The Board registers a project if its perceived annual rate of return is below some threshold R

R =

(
b+ pδe

)
e0

Fεs < R. (16)

The logic is intuitive—if the firm has a high return, or appears to have a low investment cost, then
the project is likely to be privately profitable and therefore not additional.

It is possible to simplify the model exposition if the abatement project is scale-free, in the sense
that the investment costs of the project are linear in baseline emissions. We specify that the cost of
a project depends on the amount of CERs it will produce,

F(∆e,e0) = γ0(δee0)
γ1. (17)

Empirically, we estimate γ̂1 ≈ 1 (see Appendix B), so we proceed with the assumption γ1 = 1.
Under this assumption, the log of the registration rule (16) becomes

log
(
b/δe + p

)
− log(γ0)︸ ︷︷ ︸

Log observed rate of return

− log(εs)︸ ︷︷ ︸
Cost signal

< logR. (18)

In Table 3, above, we estimate this registration rule and provide direct evidence for the rule’s
implication that the registration probability is decreasing in observed returns.

Firm application decision.—The first stage of the game is the firm’s decision of whether
to apply to the CDM or not. From the firm’s perspective, the noisy signal εS generates ex ante
uncertainty in project registration. Let F(εs|ε) be the distribution of the Board’s signal conditional
on the firm’s draw of investment cost. Then the firm’s registration probability is

Pr(Registered|ε) = Pr

 log
(
b/δe + p

)
− log(γ0)− logR︸ ︷︷ ︸

logε
s

< log(εs)

∣∣∣∣∣∣∣ε
 (19)

= 1−F(εs|ε). (20)

We can think of the Board’s threshold return R implying a corresponding threshold signal ε
s, such

that the Board registers all firms with a high enough cost εs > ε
s (hence low enough return).

The expected payoff of applying for the CDM differs by firm type (15). Never invest firms will
not apply since they will not invest even if they were registered. Additional and Always invest firms
expect a profit from application of

π
A(b,∆e,ε,e0) = Pr(Registered|ε)

[
T̃ (b+ pδe)− (γδe)ε

]
e0 (21)

π
NA(b,∆e,ε,e0) = Pr(Registered|ε)T̃ (pδe)e0. (22)
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The expected profits differ by type because additional firms, if they are registered, earn the profit
from the whole project, while always invest firms earn only the incremental profit from being
granted carbon credits.

Firms will apply to the CDM if their gain in profit from application exceeds the application
cost. We specify a cost Ae0 of applying to the CDM. We assume that firms know their idiosyncratic
investment cost ε and their growth rate ∆z prior to application. The application decision is

Apply =


1 if Additional and πA(b,∆e,ε,e0)> Ae0

1 if Non-additional and πNA(b,∆e,ε,e0)> Ae0

0 otherwise.

Additional and non-additional firms have different application rules because for non-additional
firms the expected CER payments only have to cover application costs, whereas for additional
firms they also have to compensate for private investment losses.

4.3 Model outcomes by firm type
Firm decisions by type.—Figure 8 characterizes the model outcomes by firm types. The

axes of the figure show the two-dimensional firm type space: on the vertical axis, logb(∆e,∆Z), the
gross benefit of investment, and on the horizontal axis, logε , the firm’s idiosyncratic investment
cost shock. Each marker in this space is a simulated firm. The simulations rely on our actual
parameter estimates; the estimation procedure will be describend in the following section. The
color of the marker indicates the firm type. The type of the marker indicates whether a firm
invested (×) or not (hollow ◦).

The figure illustrates how firm types dictate decision-making. Firms are delineated into three
types according to (15): always invest firms have low costs and high benefits (northwest), never
invest firms have high costs and low benefits (southeast), and additional firms lie in between. Firms
in the region at the top center of the figure, above the dashed blue frontier, apply for the CDM,
because they have high growth rates (private benefits) and moderate investment costs. Firms with
high investment costs do not apply to the CDM because their project is too costly to be profitable,
even if granted carbon credits. Firms with low investment costs do not apply to the CDM because
they anticipate the regulator will receive a signal of their low cost and their project will not be
approved.

Firm types interact with application and registration decisions to determine investment If a firm
is of the always invest type, its marker has an ×, regardless of whether it applies to the CDM, since
the project is privately profitable. Among always invest types that apply, some are registered and
granted CERs (indicated by ×). If a firm is additional, it may apply if the return on investment
is high enough; this is the case for firms in the “Apply” space above the blue dashed frontier but
below the dashed black line. Because these firms are additional, they only invest (indicated by ×) if
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there project is registered. The model therefore produces a range of outcomes for firm application
decisions, registration and investment in abatement projects.

Implied emissions growth rates.—Our event-study results show that emissions at registered
firms grow more quickly than emissions at proposing or non-CDM firms. In the model, emissions
growth for firms can be decomposed into two forces.

1. Scale effect (Endogenous inputs). Firms adjust their variable inputs in response to a change
in emissions productivity. If we fix expected growth of ∆z = 1, but allow firms to adjust
inputs, then an increase in emissions productivity will increase emissions by

ge = ∆
η−1
e > 1.

2. Selection on growth effect (Exogenous growth). Firms decide on their investments with
information about next periods’ productivity growth. If we allow the firm’s productivity to
have expected growth rate ∆z, then the growth in firm emissions will be

ge = ∆
η−1
e ∆

(1−αe)(η−1)
z > 1.

The observed difference-in-differences estimates showing higher growth for registered firms
than proposed firms, and proposed firms than for non-applicants, can be rationalized in the model as
a combination of these two effects. It is possible to derive analytic formulas for these combinations
if we condition on a particular level of ε .7 In this case, we show that the difference in growth for a
registered firm as compared to a non-applicant is given by

E[log(ge)|registered,ε]−E[log(ge)|not apply,ε] =

(η −1) log∆e︸ ︷︷ ︸
Scale

+(E[logb| logb > b1(ε)]−E[logb| logb < b1(ε)])︸ ︷︷ ︸
Selection

,

where b1(ε) is the minimum private benefit for a firm to apply to the CDM as a function of its
investment cost. There is a selection effect in application because only high-growth firms find it
worthwhile to apply. In Figure 8, these firms are defined by log benefits, on the vertical axis, above
the dashed blue frontier defining the set of applicants. Similarly, the difference in growth between
firms that are registered and those that only propose a project is

E[log(ge)|registered,ε]−E[log(ge)|proposed, not registered,ε] =
ωA

1 (ε)

ωNA(ε)+ωA
1 (ε)

(η −1) log∆e,

7We also assume this ε is high enough that the firm will apply to the CDM for some level of b. This rules out the
case where the ε is so low that the firm’s expected value of CERs is not enough to cover the CDM application cost.
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where ωA
1 (ε) is the mass of additional firms that apply and ωNA is the mass of non-additional

firms that apply. The growth rate gap between the groups is therefore increasing in the fraction of
additional firms among all applicants. If more firms are additional then more firms undertake the
project when registered, which increases emissions growth for registered as compared to proposed-
only firms.

5 Model estimation

We now discuss how we estimate the model. The estimation draws on data from both the firm-
level panel data sets and the UN’s Project Design Documents. The model is estimated in four
parts. In the first part, we estimate the production function parameters using firm-level panel data
before the CDM started, with standard techniques. In the second part, we estimate firm investment
costs via a linear regression. The third and fourth parts are unique to our model. In the third
part, we estimate the mean firm-level emissions productivity improvement. In the fourth part, we
estimate the distribution of firm growth and the Board’s registration rule and signal structure. We
now describe these parts in turn and present our estimates in parallel for each part. The parameter
estimates for all parts are gathered in Table 6.

5.1 Production function
We parameterize the composite input function v and the productivity process z to estimate the

firm production function. We assume a standard Cobb-Douglas value-added production function
such that

vit = lαl
it kαk

it . (23)

The firm’s output is then

logyit = logze
i +(1−αe)[logzit +αl log lit +αk logkit ]+αe logeit (24)

Using the relationship that logrit =
(

1− 1
η

)
logyit , we have

logrit = α
∗
l log lit +α

∗
k logkit +α

∗
e logeit + logze∗

i + logz∗it + ε
m
it (25)

where logze∗
i =

(
1− 1

η

)
logze

i , logz∗it =
(

1− 1
η

)
(1−αe) logzit , α∗

l =
(

1− 1
η

)
(1−αe)αl,α

∗
k =(

1− 1
η

)
(1−αe)αk, and α∗

e =
(

1− 1
η

)
αe. The term εm

it is an iid measurement or optimization
error contained in revenue data.

As is typically the case with data on revenue but not physical output quantities, we will not
be able to separately identify η from the rest of production function parameters. We therefore
calibrate η = 4 and use this value to re-scale all the estimated parameters.
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We assume that there is a proxy variable, intermediate inputs, that is monotonically increasing
in firm productivity, conditional on capital and labor. In other words, mit = m(kit , lit ,zit). We can
then write the revenue equation as

logrit = φ(lit ,kit ,eit ,mit)+ logze∗
i + ε

m
it

where

φ(lit ,kit ,eit ,mit)≡ α
∗
l log lit +α

∗
k logkit +α

∗
e logeit +m−1(lit ,kit ,mit)

Once we obtain the estimate of φ̂(lit ,kit ,eit ,mit), we assume logz∗it = g(logz∗it−1)+ ε
z
it to yield the

quasi-time-difference equation

φ̂it = α
∗
l log lit +α

∗
k logkit +α

∗
e logeit +g(φ̂it−1 −α

∗
l log lit−1 −α

∗
k logkit−1 −α

∗
e logeit−1)+ ε

z
it

We obtain an emission elasticity parameter α̂∗
e = 0.161 and the labor and capital coefficient

α̂∗
l = 0.456, α̂∗

k = 0.175. With our calibrated value of η = 4, this implies that the value-added
production function has αl = 0.724, αk = 0.278 and is not significantly different from constant
returns. Similarly, we can calculate αe = 0.215. It is useful to interpret the emission elasticity
parameter as governing the trade-off between output and abatement effort: at an output loss of
5% (1− a = 0.95), a firm could reduce emissions by 21.2%. Our emissions elasticity (share) is
greater than that estimated for local air pollutants (Shapiro and Walker (2018)). We believe this
estimate is reasonable given the importance of energy use and hence carbon emissions in these
energy-intensive industries.

5.2 Investment cost function
We estimate the cost of investment for abatement projects using data from the Project Design

Documents (PDDs) submitted to the UN. Our approach assumes that reported investment costs are
unbiased measures of the true investment cost, measured up to an idiosyncratic error term.

The investment cost is Fε where F is given by (17) and ε is an idiosyncratic private cost shock
known to the firm but not the Board. As both investment cost and CERs are observed, we estimate
the linear regression

log(F) = log(γ0)+ γ1 log(δee0)+ ε. (26)

Table D12 reports the results. We find that γ̂1 is not statistically different from one, so we can
proceed with the multiplicative structure of the investment cost. We also find that the constant in
regression is −7.94, which implies an fixed investment cost of 330 USD (approximately 230 EUR
during the sample period) per ton of emission saved. Since projects are long-lived, this estimate is
reasonable and consistent with the narratives in PDD that a CER price of 10 EUR can meaningfully
improve the annual IRR of the projects. If we take the average CER price of 10 EUR, we obtain a
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normalized parameter of γ0 = 23 times the CER price.
Our estimates of investment costs imply reasonable rates of return. We compute the average

annual private internal rate of return (IRR) b̄/(δeγ0) on CDM projects to be about 5%. This esti-
mate, despite being derived independently from the production function and investment cost data,
is close to the stated private returns in the PDDs.

5.3 Emissions productivity gain
We also use data from the Project Design Documents (PDDs) of all proposed projects to esti-

mate the emissions productivity factor ∆e from undertaking a CDM project. Equation (13) gives
the model expression for CERs as a function of baseline emissions, the emissions elasticity αe and
the emissions productivity factor ∆e. CERs and firm baseline emissions are observed in the data.
Therefore, after estimating α̂e in the production function, we can solve this equation for ∆e. We
take an emissions-weighted average of the saving rate CER/e0 across projects to obtain an estimate
of ∆̂e = 1.027 (see Appendix Table D13).

The emissions productivity improvement may seem small, but recall this is the implied pro-
ductivity gain for the whole firm from a single investment project. It therefore captures both the
technical efficiency gain from the project, which can often be 20–30% or more, and the size of
the project-related emissions relative to the firm’s total emissions. We can compare the change in
emissions productivity to the firm’s baseline condition. For the same 5% decline in output that
before was associated with a 21% reduction in emissions, the firm, after investment in the project,
could instead reduce emissions by 31%.

5.4 Board signal structure and firm emissions growth
Identification.—The final, and most subtle, part of the estimation recovers firm emissions

growth and the Board signal structure: the registration threshold and the correlation of the Board’s
signal with the firm’s true investment cost. While firm emissions growth is observed in the data,
the Board’s signal and the firm’s idiosyncratic component of investment costs are not observed.
We argue that the model parameters are nonetheless identified from the difference-in-difference of
growth rates across registered, proposed-only and non-applicant firms.

Figure 9 presents the identification argument graphically using data from simulations of the
model. Each panel shows three data moments: the growth rate of registered firms compared to non-
applicants (solid black line, measured against the left axis); the growth rate of proposed-only firms
compared to non-applicants (dashed black line, left axis); and the registration rate conditional on
application (dashed red line, right axis). The left panel plots these moments varying ε

s, the Board’s
threshold signal of investment cost for registration, and the right panel varies ρs, the correlation of
the signal with the true investment cost.
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The left panel shows that more stringent screening decreases registration rates and raises the
growth rates of firms conditional on application. Moving from left to right, the Board requires a
higher signal of investment cost (lower return) to register a firm. Hence fewer firms are registered
(dashed red line). Because screening is more stringent, the selected set of firms that do apply
has higher emissions growth rates, in order for application to be worthwhile despite the lower
probability of registration. More stringent screening increases growth rates about equally for both
registered and proposed-only firms.

The right panel shows that the gap in growth rates between registered and proposed firms is
increasing in the strength of the Board’s signal. The logic is as follows. If the Board’s signal were
random noise, then firms would be assigned to registration or proposed-only status at random.
The only growth rate gap between firms would be due to the endogenous adoption of the project
by additional firms becoming registered. If the Board’s signal is informative, then there will be an
additional, selection component of the growth rate gap between registered and proposed firms. This
selection component arises even though the Board cannot observe growth. Firms apply to the CDM
when their investment cost is moderate and their private benefit (growth rate) is high (Figure 8).
The application decision induces a positive correlation between firm growth and investment costs:
if a firm has high project costs, it must have especially high growth to bother applying. When
the Board rejects low-cost projects, therefore, it also tends to reject low-growth projects. More
informative Board screening therefore makes the growth of registered firms relatively higher than
the growth of the proposed-only firms whose projects are rejected.

Estimation.—Using this logic we estimate the parameters {µ∆Z ,σ∆Z ,ρ,ε
s} based on four

moments: the emissions growth rates of registered, proposed and non-applicant firms and the
registration rate. We match these moments in the model using the Generalized Method of Moments
and, as the estimator is just-identified, fit the moments exactly. The model therefore reproduces
the difference-in-difference estimates of Table 4 by construction.

We have two comments on the resulting parameter estimates, reported in Table 6. First, the
registration threshold ε̂

s
implies a threshold rate of return, inclusive of the private benefit and CER

payments, around R = 15%. This estimate seems empirically reasonable and, again by construc-
tion, matches the observed registration rate. Second, the Board is found to be well-informed. The
correlation of the Board’s signal of investment cost and the true cost is ρ̂s = 0.75, which is quite
high. The CDM is an exceptionally costly and rigorous screening mechanism and this expense
yields an informative signal.
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6 Model results on additionality and screening

With the model estimates we can now characterize the outcomes of the CDM in the status quo
and consider how the CDM would perform under counterfactual screening stringency or other
conditions. We use the model estimates to produce three main results.

First, most of the growth of emissions reported in the event-study estimates of Table 4 is found,
through the model, to be exogenous selection-on-growth. We find that 82% of the differential
growth of registered firms and 86% of the differential growth of proposed-only firms, with re-
spect to non-applicants, is due to selection. The model logic for the large share of exogenous
growth is straightforward: CDM abatement projects are not large enough contributors to firm’s
total emissions productivity to endogenously increase growth to the large extent observed. In our
model, complete adoption of CDM projects by a group of firms increases emissions by a factor
of ∆̂

η̂−1
e ≈ 8.6%, relative to non-adoption. Most of the observed growth of registered firms must

therefore be due to selection, not the causal effect of the CDM abatement project on scale.
Second, a large share of CDM registered projects are non-additional. Table 7 summarizes firm

outcomes for application, registration and investment by firm type. We find that most firms are
“never invest” (55%) followed by “additional” (28%) and “always invest” (16%). Conditional on
being registered, the probability that a firm was non-additional is 36% (= 5.4/(5.4+ 9.8). The
registration also makes Type II errors by rejecting additional firms that have applied. Amongst
additional applicants, the probability of registration is only 62% (= 9.8/(9.8+6.2)). The screening
process therefore generates substantial errors despite that the Board is estimated to have a highly
informative signal of investment cost. In part, this is due to the fact that the firm has a two-
dimensional type and Board does not observe firm growth.

Third, changes to the stringency of screening would not substantially reduce the share of CERs
granted to non-additional firms. Figure 10 traces out a marginal cost curve for additional emissions
reductions as a function of the regulatory threshold used in screening ε

s. In the left-hand panel we
plot mean CERs issued and the fraction of CERs issued to additional firms as a function of the
investment cost threshold. We find that lowering the investment cost threshold steeply increases
mean CERs issued per firm in the applicant pool. However, the share of non-additional CERs
granted is relatively insensitive to screening stringency. The estimated ε

s is indicated by a vertical
dotted line. The share of non-additional CERs at this estimated stringency is nearly the same as
what it would be if the investment cost threshold was doubled.

The reason for this result is that changes in stringency, in the model, exclude more firms but do
not have a large effect on the marginal additionality of the firms that are screened out. Consider
Figure 8. The dashed blue application frontier defines firm types that apply to the CDM. If the
registration threshold rises, only higher-return and higher-cost firms continue to apply, so this
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frontier shrinks inwards, excluding both non-additional (always invest) firms on the left side and
additional firms on the bottom of the frontier. The Figure 10, panel A result is that changing
stringency excludes a roughly constant fraction of firms of each type. Panel B then plots the
implication for abatement costs. We normalize the nominal price of a CER to one. The payment
per CER is constant in the model, but the payment per CER granted to an additional firms varies
with the composition of firms that are registered. We find that the actual cost per additional CER is
between 1.4 and 1.6 and increases only slightly as the stringency of the screening rule is relaxed.
More stringent screening, without more information than the Board presently observes, would not
appreciably reduce the registration of non-additional firms.

7 Conclusion

We study the carbon offset market created by the Clean Development Mechanism to encourage
abatement projects in low- and middle-income countries. We match data on CDM offset projects,
both proposed and ultimately registered, to panel data on firm emissions, inputs and outputs in
China, the world’s largest emitter of carbon dioxide and the largest offset issuer, by far, under the
CDM. We use this matched data to study the screening of firms into offset projects and how firm
emissions respond to the registration of an offset project.

Our analysis produces four main findings. First, there is heavy selection into offset proposal
and registration on observable characteristics, with CDM firms having higher and faster-growing
baseline emissions than other firms in the same industries and provinces. Second, the CDM execu-
tive Board attempts to screen out non-additional projects, as it is more likely to reject projects that
have higher stated returns or which have a shorter time from application to a project’s proposed
start date. Third, the emissions at firms which register CDM projects increase steeply after the
project start, and on average are 570 thousand tons higher in the four years after a project start
relative to the year before, as compared to a matched sample of control firms. Fourth, growth in
firm emissions is due to an increase in firm scale which is observed proportionally across sales and
other variable inputs such as labor, rather than a change in emissions intensity.

We explain these findings using a model of CDM proposal and screening in which firms differ
in their costs of investment and (unobserved) rates of growth. The finding that emissions at CDM
firms go up initially seems paradoxical given that CDM projects were projected ex ante to reduce
emissions by 150 thousand tons per year on average. Our model reconciles this paradox with
both a causal and a selection effect. The causal effect is that firms endogenously choose inputs in
response to an increase in productivity and so the scale of firm production grows in response to an
investment that improves emissions productivity. The selection effect is that the CDM screens on
static returns, but not on growth, and therefore the firms that succeed in registering projects will
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have higher productivity growth than firms that only proposed projects or did not apply. We show
in a calibrated version of our model that these effects can produce the empirical results that we
estimate in the data. In ongoing work we will estimate the parameters of the model to quantify the
relative importance of these effects.

In most parts of the world and in many sectors carbon dioxide emissions are not regulated,
which leaves a large potential market for carbon offsets, the purchase of abatement from firms
and people producing these uncovered emissions. The integrity of these markets have come into
question over whether, for example, certifiers have the right incentives or offset payments are
passed through to project participants like small farmers (in the case of land use offsets). Our
analysis studies the CDM, which arguably had more extensive monitoring and rigorous screening
than any carbon offset market in the world. We highlight that asymmetric information on firm
growth or investment costs can produce adverse selection even when monitoring of the technical
side of investments and baseline emissions is essentially perfect. Most abatement projects do not
happen in a vacuum but are undertaken for a mix of social benefits, through offset payments, and
private benefits such as energy savings or technological improvements that raise firm efficiency.
Our findings cast doubt on whether even rigorous screening can reliably separate additional from
non-additional projects in a dynamic environment where firms make investment decisions in part
for such private benefits.
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8 Figures

Figure 1: Carbon Dioxide Emissions by Country or Region, 1950–2022
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The figure shows CO2 emissions from coal, oil, gas, cement production and flaring for various countries and regions
based on data from the Global Carbon Budget. The Global Carbon Budget uses data from the UNFCCC for the
period 1990 to 2022 for Annex I countries and populates data before 1990 with multiple sources including Carbon
Dioxide Information Analysis Center (CDIAC), the BP Statistical Review of World Energy and global and national
cement emissions from Andrew (2019). The emissions for countries and regions are mutually exclusive and exhaustive
with respect to global emissions. The emissions for Asia exclude China and India, which are shown separately, and
similarly the emissions for the Americas exclude the USA.
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Figure 2: Comparison of Baseline Emissions Between CDM Firms and Other Firms
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Notes: Authors’ calculations using data from CESD and UNFCCC. This figure shows the distribution of carbon
dioxide emissions for firms registered under the CDM, before a project was undertaken, distributions for firms that
proposed a CDM project that was not registered (what we call proposed only firms) as compared to the large firms
that were in the same industry and province of CDM firms but did not propose a project in Panel A, while matched
firms in our baseline sample in Panel B. Carbon dioxide emissions are measured in the China Environmental Statistics
Database (CESD) in the base year of 2005, one year before the project start year for many CDM projects in our sample,
or the year closest to 2005 for firms with no missing emissions in that year. Emissions in the CESD are calculated by
applying fuel-specific emissions factors to the physical quantities of fuels consumed.
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Figure 3: Proposed Certified Emissions Reductions (CERs) ex ante and CERs Issued ex post
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The figure shows the coefficients from an event-study specification for certified emissions reductions (CERs), that is,
carbon emissions relative to baseline, using the stated projections from each CDM firm in their project proposals (red
line) and also CERs supposed that if each firm starts proposing CERs immediately after the CDM activity start (green
line). The data on projected CERs are drawn from the Project Design Documents (PDD) filed with the CDM Executive
Board. The second event-study (blue line) shows the path of CERs actually issued ex post. Issued CERs can differ
from and also lag proposed CERs because ex post verification is required to issue CERs and this takes time.
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Figure 4: Event Studies for CO2 Emissions

A. CO2 Emissions
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Notes: Authors’ calculations using data from CESD and UNFCCC. This figure shows coefficients from the event-
study specification (2) comparing CO2 emissions and log CO2 emissions for firms that Registered a CDM project (in
blue line) and firms that only Proposed a CDM project (in red line) to matched control firm samples. Each CDM firm
is first matched without replacement to 3 control firms on baseline emissions trajectories using Euclidean distance
matching (Abadie and Imbens, 2012), and then the following difference-in-differences estimates use the staggered
estimator of (Gardner et al., 2023).
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Figure 5: Decomposition of CO2 Emissions Into Scale and Emissions Intensity
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Notes: Authors’ calculations using data from CESD and UNFCCC. This figure shows the coefficients from the event-
study specification (2) comparing output and emissions intensity (CO2 per unit output) for firms that Registered a CDM
project (in blue line) and firms that only Proposed a CDM project (in red line) to matched control firm samples. Each
CDM firm is first matched without replacement to 3 control firms on baseline emissions trajectories using Euclidean
distance matching (Abadie and Imbens, 2012), and then the following difference-in-differences estimates use the
staggered estimator of (Gardner et al., 2023).
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Figure 6: Event-studies for Sales and Input Demands
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Notes: Authors’ calculations using data from ASIF and UNFCCC. This figure shows the coefficients from the event-
study specification (2) comparing sales and input demands for firms that Registered a CDM project (in blue line) and
firms that only Proposed a CDM project (in red line) to matched control firm samples. Each CDM firm is first matched
without replacement to 3 control firms on baseline sales trajectories using Euclidean distance matching (Abadie and
Imbens, 2012), and then the following difference-in-differences estimates use the staggered estimator of (Gardner
et al., 2023).
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Figure 7: Model of the Clean Development Mechanism
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The figure shows the game tree for the model of the Clean Development Mechanism application process and firm
investment. A firm can decide whether to apply at a cost to the CDM. If the firm does not apply, it chooses whether
to invest in the abatement project or not, based only upon the private returns to the project. If the firm does apply,
the Board draws a signal of the firm’s investment costs, and either Registers the project or not based on its signal
(following a rule like that we estimated in Table 3). If the project is not registered, the firm faces the same investment
decision as if it had not applied in the first place. If the project is registered, the firm now has the prospect of selling
certified emissions reductions (CERs), which raises its potential payoff from investment.
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Figure 8: Illustration of firm actions by firm type

-2 -1.5 -1 -0.5 0 0.5 1
-4

-3.5

-3

-2.5

-2

-1.5

-1

Always invest
Additional
Never invest
Registered & Invest
Non-registered & Invest

41



Figure 9: Illustration of Model Identification for Registration Signal and Threshold

A. Moments by ε
s parameter
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B. Moments by ρs parameter
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This figure illustrates how the observed data moments on firm growth rates and firm registration rates
identify the parameters of the Board’s registration rule. Panel A varies the value of ε

s, the regulator’s
cut-off for the investment signal, along the horizontal axis. Moving from left to right the regulator sets
a higher cut-off meaning firms have to have a higher observed signal εs of investment cost (hence lower
return) in order to be registered. Panel B varies the value of ρs, the correlation of the regulator’s signal
of investment cost with the firm’s true investment cost. Moving from left to right the regulator’s signal is
more precise. Within each panel, the data moments are: (i) the difference between the emissions growth
of registered firms and non-applicants (black solid line), (ii) the difference between the emissions growth
of proposed-only firms and non-applicants (black dashed line), (iii) the registration rate (red dashed line,
measured against right-hand axis).

Figure 10: Additionality and Abatement under the CDM

A. CER issuance and Non-Additional CERs by Regis-
tration Stringency
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9 Tables
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Table 1: Comparison of CDM Proposing and Registered Firms to Broad Control Group

Broad
Proposed

only
Registered

Proposed
- Broad

Registered
- Proposed

(1) (2) (3) (4) (5)

Panel A: CESD variables

Output value (CNY m) 164.8 1221.0 3764.2 1056.3*** 2543.2***
[1018.4] [3659.1] [10343.9] (261.4) (773.6)

CO2 emissions (’000 ton) 90.3 511.5 1215.1 421.2*** 703.7***
[358.5] [922.9] [3042.8] (65.6) (224.0)

Uses coal (=1) 0.93 0.95 0.88 0.015 -0.073***
[0.25] [0.22] [0.33] (0.016) (0.028)

Uses liquid fuel (=1) 0.062 0.16 0.15 0.10*** -0.0090
[0.24] [0.37] [0.36] (0.026) (0.037)

Uses natural gas (=1) 0.033 0.061 0.12 0.028 0.058**
[0.18] [0.24] [0.32] (0.017) (0.029)

Total coal consumption (’000 ton) 44.1 255.7 606.7 211.7*** 351.0***
[172.5] [472.3] [1574.1] (33.6) (115.8)

Natural gas consumption (million m3) 2.00 6.58 13.1 4.59 6.49
[61.5] [50.0] [64.9] (3.60) (5.82)

CO2 growth 0.030 0.16 0.12 0.13*** -0.038
[0.59] [0.50] [0.66] (0.047) (0.079)

Observations 29182 197 202 29379 399

Panel B: ASIF variables

Fixed assets (CNY m) 126.4 1660.3 2431.7 1533.9*** 771.4
[1086.1] [6747.6] [11931.3] (427.6) (808.4)

Investment, long-term (CNY m) 16.3 89.3 296.3 73.0 207.0
[1777.6] [642.6] [1782.7] (59.4) (171.3)

Investment, short-term (CNY m) 0.98 4.57 13.3 3.59 8.77
[38.2] [37.0] [125.3] (3.58) (12.5)

Wage bill (CNY m) 7.93 47.6 158.9 39.7*** 111.3*
[67.3] [112.9] [963.3] (7.85) (59.7)

Revenue (CNY m) 212.2 1870.4 3163.8 1658.2*** 1293.4
[1305.2] [5645.9] [14789.0] (355.7) (920.1)

Cost of product sales (CNY m) 181.5 1692.7 2149.0 1511.2*** 456.4
[1184.8] [5348.6] [7777.0] (338.3) (561.4)

Employment (number) 348.1 1513.4 3085.8 1165.4*** 1572.4**
[1474.7] [3350.3] [12575.6] (215.4) (774.4)

Observations 89958 251 304 90209 555

This table compares variables in groups. Broad refers to all firms that do not propose a CDM project and are in the same province and industry
as a CDM firm. Proposed only firms are firms that have a record in the UNFCCC CDM registry with a status that is not registered. Registered
firms are firms are that registered in a CDM project according to the UNFCCC CDM registry. Columns 4 and 5 report the mean difference and
the standard errors of different groups. Column 4 compares the set of proposed only firms to firms with on CDM record. Column 5 compares
registered firms to proposed only firms. We take the firm-year observation that is closest to 2005 for firms in the broad sample and firm-year
observation that is closest to proposed project start year for firms that are proposed only or registered. Panel A are variables in the Chinese
Environmental Statistics Dataset (CESD) while panel B are variables in the Annual Survey of Industrial Firms (ASIF). Statistical significance at
certain thresholds is indicated by * p < 0.10, **P < 0.05, ***p < 0.01.
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Table 2: CDM Project Proposal and Registration by Application Year

CDM Project Status Probabilities

Application Pr(Applied| Pr(Registered|
Year Proposed Applied Registered Proposed) Applied)
(1) (2) (3) (4) (5) (6)

2005 2 1 1 0.50 1.00
2006 58 40 38 0.69 0.95
2007 205 101 90 0.49 0.89
2008 208 78 68 0.38 0.87
2009 180 99 92 0.55 0.93
2010 185 105 101 0.57 0.96
2011 198 135 135 0.68 1.00
2012 193 171 171 0.89 1.00
2013 19 7 7 0.37 1.00
2015 1 1 1 1.00 1.00
2020 10 0 0 0.00
Total 1259 738 704 0.59 0.95

This table shows the number of CDM projects in China by year of application. The sample
consists of CDM projects with project types that are commonly undertaken by manufacturing
firms. The projects are distinguished by their application status. A project is “Proposed" if
there is a corresponding CDM project record in the IGES dataset. And a project is “Applied"
if that project is submitted to UNFCCC executive board for a decision, which implies that its
project status is equal to one of RD, RD2, RD3, or RJ. A project is “Registered" if its project
status is equal to one of RD, RD2, or RD3. In total, there are 1,036 distinct China-host CDM
projects based on the newest version of the IGES dataset.
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Table 3: Estimates of the CDM Board’s Registration Rule

Dependent variable: Registered (=1)
LPM Probit

(1) (2) (3) (4) (5) (6)

log(IRR) -0.170*** -0.182*** -0.207*** -0.174*** -0.187*** -0.172***
(0.0606) (0.0599) (0.0512) (0.0527) (0.0534) (0.0538)

Consultant on proposal (=1) 0.219*** 0.0678 -0.0235 0.0767 -0.0448
(0.0780) (0.0834) (0.0780) (0.0904) (0.0671)

Credit buyer lined up (=1) -0.152*** -0.142*** -0.144*** -0.102** -0.123***
(0.0545) (0.0510) (0.0479) (0.0504) (0.0417)

Build lag 0.329*** 0.335***
(0.0236) (0.0264)

Credit start year effects Yes Yes Yes Yes Yes Yes
Project type effects Yes Yes Yes Yes Yes Yes
CER deciles Yes Yes Yes Yes Yes Yes
Build lag quartiles Yes Yes

Mean dep variable 0.571 0.571 0.571 0.571 0.571 0.571
Observations 620 620 620 620 615 615
This table reports coefficients from regressions of log stated rate of return on registration. The first four columns
report coefficients from a linear probability model. The last two columns report marginal effects from a probit
regression. The sample is the set of projects in IGES that is matched to a firm in the CESD/ASIF dataset. Rate of
return is the stated rate of return in the Project Design Documents (PDD) that is submitted as part of the CDM project
proposal. Summary statistics for rate of return: median (0.13), mean (0.15), standard deviation (0.08). Consultant
on proposal is an indicator for whether a consultant was used in CDM application or not, as stated in the PDD.
Credit buyer lined up is an indicator for whether there are buyers of Certifed Emissions Reduction (CER), as stated
in the PDD. Build lag measures the number of years from date of public comment of the project to proposed credit
start date. Date of public comment is usually a fixed number of days after the project is submitted. Proposed credit
start date is when firms expect to start receiving credits for the project; it is a proxy for when the project is built
and running. Summary statistics for lag: median (0.97), mean (1.14), standard deviation (0.80). All specifications
contain proposed credit start year, project type and deciles of proposed emission reduction fixed effects. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Point Estimates for CO2 Emissions

(1) (2) (3) (4)

Panel A. Dependent variable: CO2 emissions (’000 tons)

Registered (=1) × 1925.9*** 1114.1*** 940.4*** 945.6***
Post (0-4 years) (639.1) (267.8) (265.2) (237.0)

Observations 3594 3594 3594 3594
Mean dep variable 1008.5 1008.5 1008.5 1008.5

Proposed (=1) × 266.6* 287.7** 206.3 199.9
Post (0-4 years) (139.0) (130.0) (130.6) (128.0)

Observations 3656 3656 3656 3656
Mean dep variable 314.5 314.5 314.5 314.5

Difference 1659.4 826.4 734.1 745.7
P-value [0.0004] [0.0020] [0.0056] [0.0032]

Panel B. Dependent variable: log CO2 emissions (’000 tons)

Registered (=1) × 1.030*** 0.559*** 0.432*** 0.398***
Post (0-4 years) (0.228) (0.096) (0.105) (0.118)

Observations 3490 3490 3490 3490
Mean dep variable 5.299 5.299 5.299 5.299

Proposed (=1) × 0.658*** 0.433*** 0.266*** 0.215**
Post (0-4 years) (0.171) (0.089) (0.099) (0.100)

Observations 3548 3548 3548 3548
Mean dep variable 4.801 4.801 4.801 4.801

Difference 0.372 0.126 0.166 0.183
P-value [0.0048] [0.1520] [0.0660] [0.0560]

Firm FE Yes Yes Yes
Year FE Yes Yes
Industry-Year FE Yes
Authors’ calculations using data from CESD and UNFCCC. This figure shows the coefficients
from regressions on indicators for registration and proposal 0 to 4 years after CDM proposed
project start year. Each CDM firm is first matched without replacement to 3 control firms on
baseline emission trajectories using Euclidean distance matching (Abadie and Imbens, 2012),
and then the following difference-in-differences estimates use the staggered estimator of (Gard-
ner et al., 2023). All standard errors are clustered at the firm level and statistical significance
at certain thresholds is indicated by * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: Point Estimates for Output and Input Demands

Dependent variable: Ln of . . .

Output Intensity
Sales Cost Fixed Wage

Revenue of Sales Assets Bill
(1) (2) (3) (4) (5) (6)

Registered (=1) × 0.422*** -0.092 0.448*** 0.421*** 0.259*** 0.168**
Post (0-4 years) (0.100) (0.073) (0.102) (0.102) (0.089) (0.081)

Observations 3560 3190 6340 6334 6319 5801
Mean dep variable 5.543 -0.340 6.333 6.125 5.380 2.863

Proposed (=1) × 0.238*** -0.013 0.236*** 0.232*** 0.219** 0.177**
Post (0-4 years) (0.086) (0.084) (0.087) (0.087) (0.108) (0.077)

Observations 3616 3242 5847 5842 5836 5325
Mean dep variable 4.960 -0.203 5.755 5.577 4.702 2.353

Difference 0.184 -0.079 0.212 0.189 0.040 -0.009
P-value [0.0456] [0.6816] [0.0708] [0.0764] [0.4716] [0.5708]

Firm FE Yes Yes Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes Yes Yes
Notes: Authors’ calculations using data from ASIF and UNFCCC. This figure shows the coefficients from regressions
on indicators for registration and proposal 0 to 4 years after CDM proposed project start year. Each CDM firm is
first matched without replacement to 3 control firms on baseline sales trajectories using Euclidean distance matching
(Abadie and Imbens, 2012), and then the following difference-in-differences estimates use the staggered estimator of
(Gardner et al., 2023). All standard errors are clustered at the firm level and statistical significance at certain thresholds
is indicated by * p < 0.10, ** p < 0.05, *** p < 0.01

Table 6: Model parameter estimates

Parameter Estimate Data Description

Production and demand y =
[
ze0∆ez1−αe

]
(lαl

it kαk
it )

1−αeeαe

η 4 Elasticity of demand
αe 0.22 CESD Elasticity of output with respect to emissions
αk,αl 0.72, 0.28 ASIF Elasticity of output with respect to capital, labor
∆e 1.028 CESD, UN Emissions productivity improvement

Investment costs F = γ0(CER)γ1ε

γ0,γ1 23, 1 UN Investment cost as a function of CERs
σε 0.6 UN Investment cost shock standard deviation

Productivity growth and Board signal structure
ρε,εs 0.75 CESD, UN Correlation of signal and investment cost shock
µz,σz 0.05, 0.19 CESD, UN Productivity distribution parameters
εs 0.56 CESD, UN Registration threshold
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Table 7: Plant actions by plant type

Firm type

Never Invest Always Invest Additional
(1) (2) (3)

All firms 55.4 16.2 28.4
Non-applicants 55.4 4.0 12.4

Apply + registered 0.0 5.4 9.8
Apply + rejected 0.0 6.8 6.2
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Appendix A [FOR ONLINE PUBLICATION ONLY]

Online Appendix
Carbon Offset Markets: Evidence on Adverse Selection

from the Clean Development Mechanism in China

Qiaoyi Chen, Nicholas Ryan and Daniel Yi Xu.

A Appendix: Data

Figure A1: Expected CER Prices and CDM Project Registration, 2005-2015
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Appendix A [FOR ONLINE PUBLICATION ONLY]

Figure A2: Map of CDM Projects Proposed in China
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The figure shows the locations of CDM projects in China. The exact coordinates of the projects are often
available in Project Design Documents (PDDs) which are manually downloaded from the UNFCCC CDM
database. The figure contains locations for the set of CDM projects matched to our sample and passed the
validation stage. Registered implies the project is approved by the board and registered as a CDM project.
Proposed implies the project is either rejected by the board or voluntarily withdrawn.
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Table A1: Common Industries for Firms Proposing CDM Projects in China

(1) (2) (3) (4)
2-digit industry code and name Count % % (Cumul.)

44 electricity and heat production and supply industry 210 33.9 33.9
31 non-metallic mineral products industry 193 31.1 65
25 petroleum processing, coking, and nuclear fuel processing industries 50 8.06 73.1
32 ferrous metal smelting and rolling industry 43 6.94 80
26 chemical raw materials and chemical products manufacturing 33 5.32 85.3
15 beverage manufacturing 21 3.39 88.7
22 paper making and paper products industry 15 2.42 91.1
13 agricultural and sideline food processing industry 13 2.10 93.2
33 non-ferrous metal smelting and rolling processing industry 10 1.61 94.8
This table shows the frequency tabulation of firms that propose a CDM project in China in the CESD dataset by their
2-digit industry code. A firm is considered to have proposed a CDM project if it has a record in the UNFCCC CDM
registry. The CESD dataset is the Chinese Environmental Statistics Dataset that contains information on a firm’s
energy usage and pollution. The top 10 most frequent industries are shown, along with cumulative percentage, out
of a total of 17 industries.

Table A2: Common CDM Project Types in the Matched Sample

(1) (2) (3) (4)
Project type Count % % (Cumul.)

Waste gas/heat utilization 305 49.2 49.2
Biomass 96 15.5 64.7
Energy efficiency 48 7.74 72.4
PV 48 7.74 80.2
Biogas 46 7.42 87.6
Fuel switch 35 5.65 93.2
Cement 31 5 98.2
Biofuels 5 0.81 99.0
N2O decomposition 5 0.81 99.8
PFC reduction and substitution 1 0.16 100
This table shows the frequency tabulation of project types for projects in our
matched sample. A firm may propose multiple projects, so we include only
the first registered project proposed by a firm or the first proposed project
(for firms that do not have registered projects). The project types are defined
as in the Institute for Global Environmental Strategies (IGES) dataset which
extracts publicly available information from the UNFCCC website.
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Table A3: Project-Level Documentations

Frequency Percentage (%)

CDM Sample (project level) 1,259 100.00

ASIF-CDM merge
match in the ASIF-CDM sample 834 66.24

match in the ASIF-CDM sample based on output filter 727 57.74

CESD-CDM merge
match in the CESD-CDM sample 540 42.89

match in the CESD-CDM sample based on emission filter 511 40.59

CDM Sample (firm level) 913 100.00

ASIF-CDM merge
match in the ASIF-CDM sample 664 72.73

match in the ASIF-CDM sample based on output filter 556 60.90

CESD-CDM merge
match in the CESD-CDM sample 430 44.91

match in the CESD-CDM sample based on emission filter 399 43.70
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B Appendix: Supplementary results

Table B4: Linear probability model on registration prediction

Dependent variable: Registered (=1)
(1) (2) (3) (4)

Stated investment in proposal 0.549** 0.511** 0.273 0.354*
(0.257) (0.259) (0.213) (0.191)

Consultant on proposal (=1) 0.218*** 0.0720 -0.0262
(0.0768) (0.0856) (0.0800)

Credit buyer lined up (=1) -0.140** -0.133** -0.134***
(0.0560) (0.0527) (0.0485)

Lag from proposal to project start (years) 0.323***
(0.0249)

Credit start year effects Yes Yes Yes Yes
Project type effects Yes Yes Yes Yes
Certified Emissions Reductions (CER) deciles Yes Yes Yes Yes
Quartiles of lag from proposal to project start Yes

Mean dep variable 0.571 0.571 0.571 0.571
R2 0.187 0.200 0.421 0.492
Observations 620 620 620 620
This table reports coefficients from regressions of stated investment (in billions US dollars) on registration. The
sample is the set of projects in IGES that is matched to a firm in the CESD/ASIF dataset. Investment is the stated
amount of investment in the Project Design Documents (PDD) that is submitted as part of the CDM project proposal.
Summary statistics for investment: median (0.014), mean(0.050), standard deviation (0.14). Consultant on proposal
is an indicator for whether a consultant was used in CDM application or not, as stated in the PDD. Credit buyer lined
up is an indicator for whether there are buyers of Certifed Emissions Reduction (CER), as stated in the PDD. Lag
from proposal to project start measures the number of years from date of public comment of the project to proposed
credit start date. Date of public comment is usually a fixed number of days after the project is submitted. Proposed
credit start date is when firms expect to start receiving credits for the project; it is a proxy for when the project is built
and running. Summary statistics for lag: median(0.97), mean (1.14), standard deviation (0.8). All specifications
contain proposed credit start year, project type and deciles of proposed emission reduction fixed effects. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B5: Robustness for Borusyak Estimator: CESD Data

CO2 ln(CO2) Output ln(Output) Intensity ln(Intensity)
(1) (2) (3) (4) (5) (6)

Registered (=1) × 979.9*** 0.466*** 3587.7*** 0.453*** -0.0766 -0.0747
Post (0-4 years) (166.9) (0.114) (722.0) (0.0928) (0.0746) (0.0699)

Observations 3423 3344 3391 3391 3027 3027
Mean dep variable 1058.7 5.49 2479.5 5.67 1.28 -0.247

Proposed (=1) × 204.7* 0.229** 952.5 0.232*** -0.0996 -0.0195
Post (0-4 years) (124.2) (0.0975) (602.9) (0.0822) (0.0938) (0.0790)

Observations 3540 3442 3501 3501 3144 3144
Mean dep variable 324.6 4.94 879.9 5.04 1.40 -0.145

Firm FE Yes Yes Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes Yes Yes
Notes: Authors’ calculations using data from CESD and UNFCCC. This figure shows the coefficients from regressions on indi-
cators for registration and proposal 0 to 4 years after CDM proposed project start year. Each CDM firm is first matched without
replacement to 3 control firms on baseline emission trajectories using Euclidean distance matching (Abadie and Imbens, 2012),
and then the following difference-in-differences estimates use the staggered estimator of (Borusyak, Jaravel and Spiess, 2021).
All standard errors are clustered at the firm level and statistical significance at certain thresholds is indicated by * p < 0.10, ** p
< 0.05, *** p < 0.01

Table B6: Robustness for Matching with Replacement: CESD Data

CO2 ln(CO2) Output ln(Output) Intensity ln(Intensity)
(1) (2) (3) (4) (5) (6)

Registered (=1) × 660.6*** 0.418*** 1776.9*** 0.461*** -0.0144 -0.0121
Post (0-4 years) (191.9) (0.0856) (612.9) (0.0979) (0.0751) (0.0693)

Observations 3041 2989 3004 3004 2690 2690
Mean dep variable 822.9 5.3 1956.5 5.47 1.26 -0.203

Proposed (=1) × 199.1 0.242** 709.7 0.205** -0.0633 -0.0105
Post (0-4 years) (133.4) (0.100) (658.2) (0.0868) (0.101) (0.0847)

Observations 3518 3420 3481 3481 3118 3118
Mean dep variable 316.9 4.83 963.2 4.94 1.41 -0.160

Firm FE Yes Yes Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes Yes Yes
Notes: Authors’ calculations using data from CESD and UNFCCC. This figure shows the coefficients from regressions on in-
dicators for registration and proposal 0 to 4 years after CDM proposed project start year. Each CDM firm is first matched with
replacement to 3 control firms on baseline emission trajectories using Euclidean distance matching (Abadie and Imbens, 2012),
and then the following difference-in-differences estimates use the staggered estimator of (Gardner et al., 2023). All standard errors
are clustered at the firm level and statistical significance at certain thresholds is indicated by * p < 0.10, ** p < 0.05, *** p < 0.01
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Figure B3: Coefficient Difference between Registered and Proposed Firms: CESD Data
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Notes: Authors calculations using data from CESD and UNFCCC. This figure shows results of a 2500 time bootstrap
analysis comparing point estimates for registered and proposed firms with our baseline specification. We first generate
bootstrap samples for registered (or proposed) firms, and then re-match controls to perform regression analysis with
Gardner estimator. Finally, we plot the coefficient difference between registered and proposed firms with these 500
iterations to get the density plot. This figure shows that there is a significant difference between the point estimates for
registered firms and proposed firms.
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Figure B4: Coefficient Difference between Registered and Proposed Firms: ASIF Data
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Notes: Authors calculations using data from ASIF and UNFCCC. This figure shows results of a 2500 time bootstrap
analysis comparing point estimates for registered and proposed firms with our baseline specification. We first generate
bootstrap samples for registered (or proposed) firms, and then re-match controls to perform regression analysis with
Gardner estimator. Finally, we plot the coefficient difference between registered and proposed firms with these 500
iterations to get the density plot. This figure shows that there is a significant difference between the point estimates for
registered firms and proposed firms.
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Figure B5: Robustness for Different Staggered DID Estimators: CESD Data
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Notes: Authors’ calculations using data from CESD and UNFCCC. The figure shows event study comparisons be-
tween Gardner et al. (2023) estimator and Borusyak, Jaravel and Spiess (2021) estimator with specification (2) using
our baseline sample for CESD data.
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Figure B6: Robustness for Different Staggered DID Estimators: ASIF Data
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Notes: Authors’ calculations using data from AISF and UNFCCC. The figure shows event study comparisons between
Gardner et al. (2023) estimator and Borusyak, Jaravel and Spiess (2021) estimator with specification (2) using our
baseline sample for ASIF data.
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Figure B7: Robustness for Matching with Replacement: CESD Data
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Notes: Authors’ calculations using data from CESD and UNFCCC. The figure shows the coefficients from the event-
study specification (2) comparing for firms that Registered a CDM project (in blue line) and firms that only Proposed
a CDM project (in red line) to matched control firm samples. Each CDM firm is first matched with replacement to 3
control firms on baseline emissions trajectories using Euclidean distance matching (Abadie and Imbens, 2012), and
then the following difference-in-differences estimates use the staggered estimator of (Gardner et al., 2023).
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Figure B8: Robustness for Matching with Replacement: ASIF Data
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Notes: Authors’ calculations using data from ASIF and UNFCCC. This figure shows the coefficients from the event-
study specification (2) comparing sales and input demands for firms that Registered a CDM project (in blue line)
and firms that only Proposed a CDM project (in red line) to matched control firm samples. Each CDM firm is first
matched with replacement to 3 control firms on baseline sales trajectories using Euclidean distance matching (Abadie
and Imbens, 2012), and then the following difference-in-differences estimates use the staggered estimator of (Gardner
et al., 2023).
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Figure B9: Robustness for 1:10 Matching: CESD Data
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Notes: Authors’ calculations using data from CESD and UNFCCC. The figure shows the coefficients from the event-
study specification (2) comparing for firms that Registered a CDM project (in blue line) and firms that only Proposed
a CDM project (in red line) to matched control firm samples. Each CDM firm is first matched without replacement
to 10 control firms on baseline emissions trajectories using Euclidean distance matching (Abadie and Imbens, 2012),
and then the following difference-in-differences estimates use the staggered estimator of (Gardner et al., 2023).
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Figure B10: Robustness for 1:10 Matching : ASIF Data
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Notes: Authors’ calculations using data from ASIF and UNFCCC. This figure shows the coefficients from the event-
study specification (2) comparing sales and input demands for firms that Registered a CDM project (in blue line) and
firms that only Proposed a CDM project (in red line) to matched control firm samples. Each CDM firm is first matched
without replacement to 10 control firms on baseline sales trajectories using Euclidean distance matching (Abadie and
Imbens, 2012), and then the following difference-in-differences estimates use the staggered estimator of (Gardner
et al., 2023).
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Table B7: Robustness for Matching with Replacement: ASIF Data

Dependent variable: Ln of . . .

Sales Revenue Cost of Sales Fixed assets Wage bill
(1) (2) (3) (4)

Registered (=1) × 0.430*** 0.399*** 0.242** 0.172**
Post (0-4 years) (0.105) (0.105) (0.0934) (0.0839)

Observations 5988 5983 5967 5473
Mean dep variable 6.22 6.01 5.25 2.73

Proposed (=1) × 0.253*** 0.236** 0.236** 0.158*
Post (0-4 years) (0.0963) (0.0963) (0.112) (0.0811)

Observations 5464 5461 5455 4976
Mean dep variable 5.90 5.73 4.83 2.48

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Notes: Authors’ calculations using data from ASIF and UNFCCC. This figure shows the coefficients from
regressions on indicators for registration and proposal 0 to 4 years after CDM proposed project start year.
Each CDM firm is first matched with replacement to 3 control firms on baseline sales trajectories using
Euclidean distance matching (Abadie and Imbens, 2012), and then the following difference-in-differences
estimates use the staggered estimator of (Gardner et al., 2023). All standard errors are clustered at the firm
level and statistical significance at certain thresholds is indicated by * p < 0.10, ** p < 0.05, *** p < 0.01

Table B8: Robustness for 1:10 Matching: CESD Data

CO2 ln(CO2) Output ln(Output) Intensity ln(Intensity)
(1) (2) (3) (4) (5) (6)

Registered (=1) × 1018.7*** 0.443*** 3892.5*** 0.407*** -0.0417 -0.0388
Post (0-4 years) (253.7) (0.104) (1036.2) (0.0852) (0.0720) (0.0566)

Observations 9413 9225 9318 9318 8357 8357
Mean dep variable 648.5 5.25 1443.0 5.32 1.51 -0.121

Proposed (=1) × 236.1* 0.274*** 1225.2* 0.326*** -0.139 -0.0817
Post (0-4 years) (131.8) (0.0946) (647.7) (0.0832) (0.109) (0.0826)

Observations 9655 9331 9538 9538 8560 8560
Mean dep variable 217.5 4.62 658.0 4.70 1.50 -0.166

Firm FE Yes Yes Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes Yes Yes
Notes: Authors’ calculations using data from CESD and UNFCCC. This figure shows the coefficients from regressions on indi-
cators for registration and proposal 0 to 4 years after CDM proposed project start year. Each CDM firm is first matched without
replacement to 10 control firms on baseline emission trajectories using Euclidean distance matching (Abadie and Imbens, 2012),
and then the following difference-in-differences estimates use the staggered estimator of (Gardner et al., 2023). All standard errors
are clustered at the firm level and statistical significance at certain thresholds is indicated by * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B9: Robustness for 1:10 Matching: ASIF Data

Dependent variable: Ln of . . .

Sales Revenue Cost of Sales Wage bill Fixed assets
(1) (2) (3) (4)

Registered (=1) × 0.363*** 0.330*** 0.146* 0.113
Post (0-4 years) (0.0888) (0.0872) (0.0803) (0.0696)

Observations 16930 16917 16900 15479
Mean dep variable 6.23 6.05 5.12 2.73

Proposed (=1) × 0.199** 0.173** 0.194** 0.127*
Post (0-4 years) (0.0778) (0.0773) (0.0969) (0.0735)

Observations 14820 14809 14821 13517
Mean dep variable 5.75 5.56 4.57 2.30

Firm FE Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes
Notes: Authors’ calculations using data from ASIF and UNFCCC. This figure shows the coefficients from
regressions on indicators for registration and proposal 0 to 4 years after CDM proposed project start year.
Each CDM firm is first matched without replacement to 10 control firms on baseline sales trajectories using
Euclidean distance matching (Abadie and Imbens, 2012), and then the following difference-in-differences
estimates use the staggered estimator of (Gardner et al., 2023). All standard errors are clustered at the firm
level and statistical significance at certain thresholds is indicated by * p < 0.10, ** p < 0.05, *** p < 0.01

Table B10: Robustness for Broad Sample: CESD Data

CO2 ln(CO2) Output ln(Output) Intensity ln(Intensity)
(1) (2) (3) (4) (5) (6)

Registered (=1) × 1123.3*** 0.475*** 4974.4*** 0.455*** -0.0444 -0.0608
Post (0-4 years) (178.2) (0.0885) (824.8) (0.0675) (0.0546) (0.0526)

Observations 125147 119522 122901 122901 110188 110188
Mean dep variable 103.5 3.14 273.0 3.43 1.31 -0.366
Proposed (=1) × 235.5* 0.299*** 1260.9** 0.339*** -0.134 -0.0750
Post (0-4 years) (121.9) (0.0872) (602.3) (0.0720) (0.0860) (0.0795)

Observations 125087 119465 122832 122832 110120 110120
Mean dep variable 92.4 3.13 238.2 3.42 1.32 -0.362

Firm FE Yes Yes Yes Yes Yes Yes
Industry-Year FE Yes Yes Yes Yes Yes Yes
Notes: Authors’ calculations using data from CESD and UNFCCC. This figure shows the coefficients from regressions on indi-
cators for registration and proposal 0 to 4 years after CDM proposed project start year using all firm samples with CO2 emissions
ranking top 10,000 in the CESD data. The difference-in-differences estimates use the staggered estimator of (Borusyak, Jaravel
and Spiess, 2021). All standard errors are clustered at the firm level and statistical significance at certain thresholds is indicated
by * p < 0.10, ** p < 0.05, *** p < 0.01
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C Appendix: Model derivations

C.1 Derivation of firm outputs and emissions
Static cost minimization implies

e
v
=

αew
(1−αe)te

where w is the per unit composite input cost and te is the regulatory shadow cost of emission. The
cost function is defined as

C(y; z̃) =
(

w
1−αe

)1−αe
(

te
αe

)αe

︸ ︷︷ ︸
Cw

(
y
z̃

)

Profit maximization then gives

(1−1/η)× y−
1
η =Cw/z̃

The optimal output is thus

y∗(z̃) =
((

η −1
η

)
z̃

Cw

)η

where revenue is

r∗(z̃) =
((

η −1
η

)
z̃

Cw

)η−1

.

C.2 Decomposition of firm growth
The mapping from the estimated difference-in-difference coefficients to these structural param-

eters depends on the registration rule, firm application and investment decisions. Let us first denote
the registration probability of a project with cost shock ε as Pε . To illustrate the intuition, we con-
sider a specific value of ε that is high enough such that pδe >

(A/T̃ )
Pε

8. For notation convenience,

8If pδe <
(A/T̃ )

Pε
, then the expected benefit from the CDM program is lower than application cost for even the

Non-additional projects. As a result, we can define pδe =
(A/T̃ )

Pε̄
such that no firms with ε < ε̄ will choose to apply.
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we can define a few threshold values for logb that characterize firm’s decisions given ε .

logb < log((γε/T̃ − p)δe)︸ ︷︷ ︸
b0(ε)

Never invest and not apply

b0(ε)≤ logb < log((γε/T̃ − p)δe +(A/T̃ )/Pε̄))︸ ︷︷ ︸
b1(ε)

Additional project but not apply

b1(ε)≤ logb < log((γε/T̃ )δe)︸ ︷︷ ︸
b2(ε)

Additional project and apply

b2(ε)≤ logb Non-additional project and apply

The fraction of each type of firms (conditional on ε) can then defined by

ω
NI(ε) =

∫ b0(ε)

0
dFlogb fraction of never invest firms

ω
A(ε) =

∫ b1(ε)

b0(ε)
dFlogb︸ ︷︷ ︸

ωA
0 (ε): not apply

+
∫ b2(ε)

b1(ε)
dFlogb︸ ︷︷ ︸

ωA
1 (ε): apply

fraction of additional firms

ω
NA(ε) =

∫
b2(ε)

dFlogb fraction of non-additional firms

The discussion above highlights that there is clearly selection on growth effect at the application
stage. The firms that expect to have higher productivity growth ∆z (and thus higher private return
b) sort into the application of the CDM projects. We can show that the non-CDM firms (our control
group) has an expected log growth rate of

E[log(ge)|not apply,ε] =
[∫ b1(ε)

0
logb(∆z)dFlogb

]
/(ωNI(ε)+ω

A
0 (ε))− log b̄

Since the registration probability Pε is orthogonal to the unobserved firm growth logb(∆z), we have
the expected log growth rate of the registered firms as

E[log(ge)|registered,ε] =
[∫

b1(ε)
logb(∆z)dFlogb

]
/(ωNA(ε)+ω

A
1 (ε))+(η −1) log∆e − log b̄

The registered project firms benefit from the improvement in abatement productivity (η−1) log∆e,
i.e. the scale effect, but their faster growth relative to the non-CDM firms also reflects the selection
on unobserved productivity growth ∆z. Contrasting the growth of emission by registered firms vs
non-applicant firms gives

E[log(ge)|registered,ε]−E[log(ge)|not apply,ε] =

(η −1) log∆e +(E[logb| logb > b1(ε)]−E[logb| logb < b1(ε)])

which includes both the scale effect and the selection effect. The selection effect depends on cutoff
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of program application b1(ε).
The more interesting group is the firms that propose the CDM projects but are not registered.

For these firms, their growth outcome depends on whether the firm is an “additional firm” or “non-
additional firm”.

E[log(ge)|proposed, not registered,ε] =
∫

b2(ε)
(η −1) log∆e + logb(∆z)dFlogb︸ ︷︷ ︸

Non-additional

+
∫ b2(ε)

b1(ε)
logb(∆z)dFlogb︸ ︷︷ ︸
Additional

/(ωNA(ε)+ω
A
1 (ε))− log b̄

=

[∫
b1(ε)

logb(∆z)dFlogb

]
/(ωNA(ε)+ω

A
1 (ε))+

ωNA(ε)

ωNA(ε)+ωA
1 (ε)

((η −1) log∆e)− log b̄

It follows that contrasting the growth of emission by registered firms vs proposed (but not
registered) firms gives

E[log(ge)|registered,ε]−E[log(ge)|proposed, not registered,ε] =
ωA

1 (ε)

ωNA(ε)+ωA
1 (ε)

(η −1) log∆e

If only the non-additional firms apply for CDM projects, then these rejected projects would be
implemented even in the absence of the CDM subsidies – the difference between registered vs
proposed above would be close to zero. The growth rate difference between registered vs proposed
projects widens when there are more additional firms (ωA

1 (ε)) in the mix of applicants.

C.3 Equilibrium implications of CDM offsets
We assume that industrial composite good is produced with a CES technology across each

producer variety i

Y =

[∫
i
y

η−1
η

i

] η

η−1

which is consistent with our imposed residual demand curve yi =
1

P−η (pi)
−η 9. The equilibrium

price index is defined as P =
[∫

i p1−η

i

] 1
1−η .

Since firm’s decision in the initial equilibrium only depends on their z̃, the industry aggregate
emission can be expressed as

E = η̃(η −1)
αe

te

(
Cw

P

)1−η [∫
(z̃)η−1dFz̃

]
9We normalized the industry expenditure to be 1 here.
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Table D11: Parameter values used in Simulations

Parameter Value Description

αe 0.2 Elasticity of output with respect to emissions
η 3 Inverse elasticity of demand
te 1 Regulatory shadow cost of emission
p 1 Price of Certified Emissions Reductions
γ 1 Scale parameter that relates investment cost to size of CER
∆e 1.05 Emissions productivity growth rate
e0 50 Period 0 firm emissions
N 100,000 Number of firms in simulation
ρs 0.8 Correlation between fixed cost and its signal
(µε ,σε) (0, 0.5) Mean and standard deviation of log idiosyncratic fixed cost
(µεs,σεs) (0, 1) Mean and standard deviation of signal of log idiosyncratic fixed cost
(µFA,σFA) (-3.5,0) Mean and standard deviation of log fixed application cost distribution
(µ∆z,σ∆z) (0, 0.5) Mean and standard deviation of log productivity growth rate

With constant markup pricing, we can write p(z̃) = η

η−1

(
Cw
z̃

)
and the aggregate price index is

P1−η = (Cw)
1−η

(
η

η −1

)1−η [∫
(z̃)η−1dFz̃

]
So in this simple setting, the industry aggregate emission is proportional to aggregate industry
expenditure where E =

(
η−1

η

)
αe
te

. As a result, similar to Shapiro and Walker (2018), the industry
emission intensity is proportional to price index

E
Y

≡ E ×P =Cw

(
αe

te

)(
Z̃
)−1

where Z̃ =
[∫

(z̃)η−1dFz̃
] 1

η−1 .
The effect of the CDM on aggregate emissions in the economy will therefore depend on the

elasticity of substitution between the output of the energy-intensive sectors covered by the CDM
and other sectors. This substitution margin dictates how large is the aggregate response to the
emissions productivity improvements caused by CDM projects.

D Appendix: Model estimation

D.1 Fixed cost of investment
In the model, we had assumed that the fixed cost of investment is linear in the proposed certified

emissions reductions (CERs) such that Fp = γ(δee0). Here we test this hypothesis with a regression
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of log (investment) on log(CER):

log(Fp) = log(γ)+β1 log(δee0)+ ε

Table D12 shows the results of the regression and a test of the null hypothesis that β1 ̸= 1. For
specifications with start year effects, we fail to reject the null hypothesis, which supports our model
assumption that Fp = γ(δee0).

Table D12: Regression of log(investment) on log(CER) for CDM firms

Dependent variable: log(investment)
(1) (2) (3) (4) (5) (6)

log(proposed CER) 0.917*** 0.898*** 0.896*** 0.871*** 0.914*** 0.900***
(0.0559) (0.0469) (0.0578) (0.0629) (0.0659) (0.0684)

Project Type Yes Yes Yes Yes Yes
Indsutry Yes Yes Yes Yes
Province Yes Yes Yes
Start Year Yes Yes
log(CO2) Yes

log(γ) -7.94
RMSE 0.83 0.67 0.61 0.60 0.60 0.60
R2 0.47 0.67 0.77 0.80 0.81 0.81
p-value H0 : β1 ̸= 1 0.14 0.031 0.072 0.042 0.19 0.15
firms 301 301 301 301 301 301
This table reports coefficients from regressions log(stated investment) on log(proposed CER). The sample
is the set of firms in CESD matched to a CDM project and has emissions record before the proposed CDM
start year. The root mean squared error, which is our measure of σε , is taken to be 0.60. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Figure D11: Scatter plot of log(investment) on log(CER)
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Notes: This figure scatters log(stated investment) on log(proposed CER). The sample is the set of firms in the CESD
matched to a CDM project and has emissions record before the proposed CDM start year. The line of best fit is plotted
and has a slope close to 1, which supports our assumption that the fixed cost of investment is linear in proposed CER.
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D.2 Improvement in emissions productivity

Table D13: Estimation for δe

Original Value Winsor Value
All Waste Others All Waste Others

CER 34.97 27.23 7.73 31.07 25.37 5.71
(3.34) (3.19) (0.80) (3.27) (3.17) (0.52)

Initial CO2 233.6 219.2 14.38 233.6 219.2 14.38
(35.97) (35.36) (1.89) (35.97) (35.36) (1.89)

δe = CER/Initial CO2 0.150 0.124 0.538 0.133 0.116 0.397
(0.019) (0.017) (0.086) (0.017) (0.016) (0.048)

303 230 73 303 230 73

D.3 Board’s signal structure
In the empirical part, we will assume that ε and εs are jointly log-normal, with

log

([
ε

εs

])
∼ N

([
0
0

]
,

[
σ2

ε ρσε

ρσε 1

])
.

We normalize the variance of the signal to one. The parameter ρ is the correlation of the signal of
idiosyncratic investment costs with the true investment costs; as ρ → 1 the regulator is completely
informed. With this assumption, the registration probability can be written

Pr(Registered|ε) = 1−Φ

(
logε

s − 1
σε

ρ logε√
1−ρ2

)
.

A lower threshold ε
s on the Board’s investment cost signal increases the probability of registration.

Parametric Assumption of ∆z We proceed with a parametric assumption of the firm growth ∆z to
derive closed-form expressions of the above. Specifically, we assume that ∆z ∼ Lognormal(0,σ2

z ).
It is then straight-forward to show that logb ∼ Normal

(
log(b̄),σ2

b

)
, where σ2

b = [(1−αe)(η −
1)σz]

2

Conditional on ε , we can evaluate the fraction of firms that do not apply for the program as

ω
NI(ε)+ω

A
0 (ε) =

∫ b1(ε)

0
dFb = Φ

(
b1(ε)− log(b̄)

σb

)
Similarly, the fraction of firms that apply for the program is

ω
NA(ε)+ω

A
1 (ε) = 1−Φ

(
b1(ε)− log(b̄)

σb

)
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The control firms with ε have the expected growth rate

E[log(ge)|not apply,ε] = E[logb| logb < b1(ε)]− log b̄ =−σb

φ

(
b1(ε)−log(b̄)

σb

)
Φ

(
b1(ε)−log(b̄)

σb

)
The registered firms with ε have the expected growth rate

E[log(ge)|registered,ε] = E[logb| logb > b1(ε)]+(η −1) log∆e − log b̄

= (η −1) log∆e +σb

φ

(
b1(ε)−log(b̄)

σb

)
1−Φ

(
b1(ε)−log(b̄)

σb

)
In addition, the proposed but rejected firms have the expected growth rate

E[log(ge)|proposed, not registered,ε] =

E[logb| logb > b1(ε)]+(η −1) log∆e

1−Φ

(
b2(ε)−log(b̄)

σb

)
1−Φ

(
b1(ε)−log(b̄)

σb

) − log b̄

= (η −1) log∆e

1−Φ

(
b2(ε)−log(b̄)

σb

)
1−Φ

(
b1(ε)−log(b̄)

σb

) +σb

φ

(
b1(ε)−log(b̄)

σb

)
1−Φ

(
b1(ε)−log(b̄)

σb

)
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Figure D12: Monte Carlo estimates: Objective function
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Figure D13: Matching data moments: Objective function
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