
Supplementary Appendix for “Deliver the Vote!

Micromotives and Macrobehavior in Electoral Fraud”

This appendix contains proofs of those technical results that do not follow directly from

the discussion in the text (A.1-A.5), additional empirical tests for the 2012 Russian

presidential election (B.1-B.5), our analysis of the 2011 Russian legislative election (C.1),

our analysis of turnout for the 2011 legislative and 2012 presidential Russian elections

(D.1), and an analysis of electoral fraud in the 2012 presidential Russian election using

Benford’s law (E.1).

A.1 The Posterior Density of θ|Si

Our assumption that θ is uniformly distributed on the unit interval (0, 1) implies that the

probability density of θ, f(θ), is

f(θ) =

 1, if 0 < θ < 1;

0, otherwise.

Similarly, our assumption that Si is uniformly distributed on the interval (θ − ε, θ + ε)

implies that

f(Si|θ) =


1
2ε
, if θ − ε < Si < θ + ε;

0, otherwise.

Using Bayes’ rule for random variables, we see that g(θ|Si), the posterior density of θ given

that agent i observes the incumbent’s precinct-level popularity Si, is

g(θ|Si) =
f(Si|θ)f(θ)

f(Si)
where f(Si) =

∫ ∞
−∞

f(Si|θ)f(θ) dθ.
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Because the support of f(θ) is limited to (0, 1), while the density f(Si|θ) implies that Si

may take values on (−ε, 1 + ε), we need to account for the lower and upper bounds 0 and 1

on the integration limits in the computation of f(Si) when Si is within an ε distance of

these bounds. That is, if θ is further than an ε distance from the boundaries 0 or 1,

ε < Si < 1− ε, then

f(Si) =

∫ Si+ε

Si−ε

1

2ε
dθ = 1 and g(θ|Si) =

1

2ε
.

Meanwhile, if θ is within an ε distance of 0, −ε < Si < ε, then

f(Si) =

∫ Si+ε

0

1

2ε
dθ = 1 and g(θ|Si) =

1

Si + ε
,

whereas, if θ is within an ε distance of 1, 1− ε < Si < 1 + ε, then

f(Si) =

∫ 1

Si−ε

1

2ε
dθ = 1 and g(θ|Si) =

1

1− (Si + ε)
.

Lemma 1.

θ|Si ∼


Uniform(0, Si + ε) if − ε < Si ≤ ε;

Uniform(Si − ε, Si + ε) if ε < Si < 1− ε;

Uniform(Si − ε, 1) if 1− ε ≤ Si < 1 + ε.

Proof. Follows from the text.

A.2 The Upper Bounds on F and ε

Lemma 1 implies that our claim in the main text that the posterior density of θ|Si is

uniform on the interval (Si − ε, Si + ε) holds as long as the signals Si come from the

interval (ε, 1− ε). The interval on which the signals Si are relevant for the global game
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analysis in the main text is (1
2
− F − ε, 1

2
+ ε). Hence, we must have

ε <
1

2
− F − ε or equivalently ε <

1

4
(1− 2F ) and F <

1

2
(1− 4ε).

In turn, the maximum admissible values of F and ε are

ε =
1

4
(1− 2F ) and F =

1

2
(1− 4ε),

with ε > 0 and F > 0 implying ε < 1
4

and F < 1
2
.

F < 1
2

is also required for the existence of the left strict-dominance region in our global

game. That is, the region 0 < θ < 1
2
− F in which all agents strictly prefer to refrain from

fraud (c.f. ?, 65).

A.3 Equilibrium reward factor w∗

The incumbent’s marginal expected benefit is

∂[b(1− θ∗)]
∂w

=
bcF

(c+ w)2
,

which is positive and decreasing in w,

∂2[b(1− θ∗)]
∂2w

= − 2bcF

(c+ w)3
,

Meanwhile, the incumbent’s marginal cost is

∂
[
w
(
1
2

+ φF
)]

∂w
=

1

2(c+ w)2

[
c2 +

F 2 + ε+ 2Fε

ε
(2c+ 1)w

]
,
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which is also positive but increasing in w,

∂2
[
w
(
1
2

+ φF
)]

∂2w
=
c2F (F + 2ε)

ε(c+ w)3
> 0.

Setting the two equal results in a quadratic equation in w,

[F + ε(1 + 2F )]w2 + 2c(F 2 + 2εF + ε)w + εc(c− 2bF ) = 0,

with the solutions

w∗ = −c−
√
cF [cF + 2ε(b+ c)]

F 2 + 2εF + ε
and w∗ = −c+

√
cF [cF + 2ε(b+ c)]

F 2 + 2εF + ε
.

Of these, only the latter can be positive, which is the case as long as b > c
2F

.

When b < c
2F

, the incumbent’s marginal cost of fraud is greater than his marginal

benefit for any positive value of w. Recall that the incumbent’s marginal benefit is positive

and decreasing in w with the limiting values

lim
w→0

∂[b(1− θ∗)]
∂w

=
bF

c
and lim

w→∞

∂[b(1− θ∗)]
∂w

= 0.

Meanwhile, the incumbent’s marginal cost is also positive but increasing in w with the

limiting values

lim
w→0

∂
[
w
(
1
2

+ φF
)]

∂w
=

1

2
and lim

w→∞

∂
[
w
(
1
2

+ φF
)]

∂w
=
F 2 + 2εF + ε

2ε
.

The latter is larger than the former for any positive value of w if

limw→0
∂[b(1−θ∗)]

∂w
< limw→0

∂[w( 1
2
+φF)]
∂w

, which is the case if b < c
2F

. For b ≤ c
2F

, therefore, the

incumbent’s optimal choice of w is w∗ = 0.
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A.4 Comparative Statics

The threshold θ∗ is decreasing in w∗ since

∂θ∗

∂w∗
= − cF

(c+ w∗)2
< 0.

Taking total derivatives of θ∗ with respect to the parameters, we see that θ∗ is

increasing in c and decreasing in b, F , and ε:

dθ∗

dc
=
∂θ∗

∂c
+
∂θ∗

∂w∗
∂w∗

∂c
=

w∗F

(c+ w∗)2
− cF

(c+ w∗)2

[
F (cF + εb+ 2εc))

w∗(F 2 + 2εF + ε)
− 1

]
=

εbF

w∗[cF + 2ε(b+ c)]
> 0;

dθ∗

db
=
∂θ∗

∂b
+
∂θ∗

∂w∗
∂w∗

∂b
= 0− cF

(c+ w∗)2
ε(c+ w∗)

cF + 2ε(b+ c)

= − εcF

(c+ w∗)[cF + 2ε(b+ c)]
< 0;

dθ∗

dF
=
∂θ∗

∂F
+
∂θ∗

∂w∗
∂w∗

∂F
= − w∗

c+ w∗
− cF

(c+ w∗)2
εc[ε(b+ c)− F (bF − c)]
(c+ w∗)(F 2 + 2εF + ε)

< 0 for b >
c

2F
;

dθ∗

dε
=
∂θ∗

∂ε
+
∂θ∗

∂w∗
∂w∗

∂ε
= 0− cF

(c+ w∗)2
cF 2(2bF − c)

2(c+ w∗)(F 2 + 2εF + ε)2

= −F (2bF − c)(c+ w∗)

2[cF + 2ε(b+ c)]2
< 0 for b >

c

2F
.
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A.5 Fraud as Insurance against Defeat: Pre-election

Expectations and the Equilibrium Supply of Fraud

Writing the incumbent’s expected payoff from (8) in the main text as

(
θ̂ + σ − θ∗

2σ

)
b− wθ̂ − wF

(
(θ̂ + ε)− S∗

2ε

)

and differentiating it with respect to w, we obtain

−
b ∂θ

∗

∂w∗

2σ
− θ̂ − F

(
(θ̂ + ε)− S∗

2ε

)
+
Fw ∂S∗

∂w∗

2ε
(A.1)

Above, we are treating θ∗ and φ as functions of w. Their partial derivatives with respect to

w are

∂θ∗

∂w∗
= − cF

(c+ w∗)2
and

∂φ

∂w∗
= − cF + 2ε

(c+ w∗)2
.

Substituting these partial derivatives into (A.1) and setting it equal to zero, we obtain a

quadratic equation in w. Of the two solutions, only w∗ can be positive, which is the case as

long as

b >
c

2F

(
(2θ̂F − F + 4θ̂ε)σ

ε

)
.

For θ̂ = 1
2

and σ = 1
2
, w∗ reduces to that from the basic model.

A.6 Differences in Competitiveness across Precincts: Persistent

versus Variable Electoral Support

The agents’ payoffs are summarized in Figure A.1.
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Agent i’s action

Election result
R ≥ 1

2
R < 1

2

ai = f w(Si − Pi + F ) −cF
ai = n w(Si − Pi) 0

Figure A.1: Agent i’s payoffs as a function of her fraud decision ai and the election result R
for the model with persistent and variable electoral support

The majority threshold is now

φ∗ =
1
2
− θ − α(π − θ)

F
.

The majority threshold implies that the threshold agent’s belief that the incumbent will

lose the election is

Pr

[
R <

1

2
| Si = S∗

]
= Pr [φ < φ∗ | Si = S∗]

= Pr

[
(θ + ε)− S∗

2ε
< φ∗

]
= Pr

[
(θ + ε)− S∗

2ε
<

1
2
− θ − α(π − θ)

F

]
= Pr

[
θ <

FS∗ − εF + ε− 2αεπ

F + 2ε− 2αε

]
.

Given that θ and Si are uniformly distributed on the intervals (0, 1) and (θ − ε, θ + ε),

respectively, we have

Pr

[
R <

1

2
| Si = S∗

]
=

FS∗−εF+ε−2αεπ
F+2ε−2αε − (S∗ − ε)

2ε

=
1
2
− (1− α)(S∗ + ε)− απ

F + 2(1− α)ε
.

Substituting this expression into the indifference condition in (4), we see that the agents’
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fraud, popularity, and majority thresholds are

S∗ =
1

1− α

(
1

2
− F w

c+ w
− απ

)
+ ε

c− w
c+ w

,

θ∗ =
1

1− α

(
1

2
− F w

c+ w
− απ

)
,

φ∗ =
w

c+ w
.

Maximizing the incumbent’s expected payoff in light of the thresholds S∗, θ∗, and φ∗ we

obtain

w∗ =

√
cF (cF + 2ε[b+ (1− α)c])

F 2 + ε(1− α)(1 + 2F ) + αF (π − 1
2
)
− c ,

which is positive as long as

b >
c

2F

[
αF

(
π − 1

2

)
+ (1− α)ε

]
.

Otherwise, w∗ = 0.

Equilibrium uniqueness obtains as long as α and π do not violate the limit dominance

condition for global games (c.f. ?, 65). That is, i) there is θ ∈ (0, 1) such that even if no

other agent were to engage in fraud, doing so strictly dominates doing nothing for agent i;

ii) there is θ ∈ (0, 1) such that even if all other agents were to engage in fraud, doing

nothing strictly dominates engaging in fraud for agent i. Condition i) requires that

απ + (1− α)θ ≥ 1

2
, or equivalently that θ ≥

1
2
− απ

1− α
= θ .

In order to have 0 < θ and θ < 1, it must be the case that απ < 1
2

and α(1− π) < 1
2
,
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respectively. Condition ii) requires that

απ + (1− α)θ + F <
1

2
, or equivalently that θ <

1
2
− F − απ

1− α
= θ .

In order to have 0 < θ and θ < 1, it must be the case that F + απ < 1
2

and

α(1− π)− F < 1
2
, respectively.

Since F + απ < 1
2

implies απ < 1
2

and α(1− π) < 1
2

implies α(1− π)− F < 1
2
,

equilibrium uniqueness obtains as long as

F + απ <
1

2
and α(1− π) <

1

2
. (A.2)

These two inequalities hold as long as α is not too large and are most constraining at

extreme values of π.1 Figure A.2 illustrates this requirement by plotting the first inequality

in (A.2) by a dashed line, the second inequality in (A.2) by a solid line, and the

combinations of α and π that satisfy both inequalities in gray.2

A.7 The Normal Model

The Normal information structure outlined in the text implies that the incumbent is

genuinely supported by a majority of the electorate, θ ≥ 1
2
, when θ′ ≥ 0. The fraction of

agents φ that engage in fraud in equilibrium corresponds to one minus the cumulative

distribution function of the N (θ∗
′
, σ2) distribution evaluated at S∗

′
and, after observing the

incumbent’s (probit-transformed) popularity in her precinct S
′
i , agent i believes that the

incumbent’s national-level (probit-transformed) popularity θ′ follows the Normal density

1An alternative reasoning that arrives at these inequalities would look for conditions that rule out equi-
libria in which agents either always or never commit fraud (i.e. regardless of the value of θ.)

2The threshold equilibrium that we examine in the main text still remains one of the multiple equilibria
that obtain when the inequalities in (A.2) fail to be satisfied. These inequalities are trivially satisfied when
α = 0 (our baseline model.)
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Figure A.2: Values of the incumbent’s persistent support π and its weight α that guarantee
equilibrium uniqueness

with the mean
σ2

0S
′
i+σ

2θ
′
0

σ2
0+σ

2 and the variance
σ2

0σ
2

σ2
0+σ

2 .3

Figure A.3 illustrates the information structure of the Normal Model by plotting the

common prior about the incumbent’s popularity θ (dashed line), N (θ
′
0, σ

2
0) with θ

′
0 = 0,

σ2
0 = 1, against the threshold agent’s posterior belief θ|Si about the incumbent’s

national-level popularity after observing the signal Si = S∗i (solid line) for σ2 = 1
4

(left) and

σ2 = 1
100

(right). The mean
σ2

0S
′
i+σ

2θ
′
0

σ2
0+σ

2 of the posterior density θ|Si is denoted by θP .

In order to find the equilibrium fraud, popularity, and majority thresholds, it will be

useful to rewrite these quantities as well as the equilibrium conditions in terms of the

probit-transformed popularity θ′ and the agents’ signals S
′
i . The majority threshold

3This is the standard Bayesian inference for the Normal distribution according to which the posterior
mean of θ′|S′i is a weighted average of the prior mean θ

′

0 and the precinct-level signal S
′

i (with the weights
in proportion of the prior variance σ2

0 to the signal variance σ2); see e.g. ?, 439.
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Figure A.3: The common prior N (0, 1) (dashed line) and the threshold agent’s posterior
belief about the incumbent’s national-level popularity after observing the signal Si = S∗i
(solid line) for σ2 = 1

4
(left) and σ2 = 1

100
(right).

becomes

φ∗ =
1
2
− Φ(θ′)

F
; (A.3)

the fraction of agents φ that engage in fraud in equilibrium corresponds to one minus the

cumulative distribution function of the N (θ′, σ2) distribution evaluated at S∗
′
,

φ = 1− Φ

(
S∗
′ − θ′

σ

)
; (A.4)

and the threshold agent’s belief that the incumbent will lose the election (from the

indifference condition) becomes

Pr

[
R <

1

2
| Si = S∗

]
= Pr [φ < φ∗ | Si = S∗]

= Pr

[
φ <

1
2
− Φ(θ′)

F
| Si = S∗

]
= Pr

[
Φ(θ′) <

1

2
− φF | Si = S∗

]
= Pr

[
θ′ < Φ−1

(
1

2
− φF

)
| Si = S∗

]
,
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which corresponds to the cumulative distribution function of the N
(
σ2

0S
′
i+σ

2θ
′
0

σ2
0+σ

2 ,
σ2

0σ
2

σ2
0+σ

2

)
distribution evaluated at Φ−1

(
1
2
− φF

)
,

Pr

[
R <

1

2
| Si = S∗

]
= Φ

Φ−1
(
1
2
− φF

)
− σ2

0S
′
i+σ

2θ
′
0

σ2
0+σ

2√
σ2

0σ
2

σ2
0+σ

2

 . (A.5)

Updating the indifference condition using (A.5) and combining with (A.4), we see that in

equilibrium the following two conditions must hold for the Normal model:

φ =
1
2
− Φ(θ∗

′
)

F
and, (A.6)

Φ

Φ−1
(
1
2
− φF

)
− σ2

0S
∗′+σ2θ

′
0

σ2
0+σ

2√
σ2

0σ
2

σ2
0+σ

2

 =
w

c+ w
, (A.7)

with φ = 1−Φ
(
S∗
′−θ∗′

σ

)
according to (A.4). Equilibrium condition (A.6) states that, when

S
′
i = S∗

′
and θ

′
= θ∗

′
, the fraction of agents that receive a signal of at least S∗

′
is exactly

the fraction of agents needed to deliver a bare majority of the vote to the incumbent.

Equilibrium condition (A.7) states that the threshold agent with the signal S
′
i = S∗

′
is

indifferent between engaging in fraud and refraining from it.

This set of two equations about two unknowns can be reduced to a single equation in

θ∗
′

by solving (A.6) for S∗
′
,

S∗
′
= θ∗

′
+ σΦ−1

(
1−

1
2
− Φ(θ∗

′
)

F

)
, (A.8)

and substituting it into (A.7). After some algebra, we obtain

σ0√
σ2
0 + σ2

Φ−1

(
1−

1
2
− Φ(θ∗

′
)

F

)
=

σ

σ0
√
σ2
0 + σ2

(θ∗
′ − θ0)− Φ−1

(
w

c+ w

)
. (A.9)
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Figure A.4: The left-hand-side versus the right-hand-side of (A.9) for the case of a unique
equilibrium (left) and a case that lacks uniqueness (right)

Equilibrium condition (A.9) has a unique solution for θ∗
′

as long as the signal Si is

sufficiently precise relative to the prior belief about θ. That is, as long as σ2 is not too

large relative to σ2
0. Observe that the right-hand-side of (A.9) is linearly increasing in θ∗

′

with the slope σ

σ0

√
σ2

0+σ
2
. Meanwhile, the left-hand-side of (A.9) is also increasing in θ∗

′
but

it is non-linear (it is inverse S-shaped along the y-axis) and its slope may be smaller than

σ

σ0

√
σ2

0+σ
2

for large values of σ2 (relative to σ2
0).4 In these cases, (A.9) may no longer have a

unique solution.

Figure A.4 illustrates the two cases. More formally, the partial derivative of the

left-hand-side of (A.9) with respect to θ′ is

∂LHS

∂θ′
=

σ0√
σ2
0 + σ2

e
− θ
′2
2

+erfc−1
[
2− 1−2Φ(θ′)

F

]2

F
> 0 ,

4The left-hand-side is defined only on the interval φ−1( 1
2 − F ) < θ

′
< 0, with limθ′→0 = ∞ and

limθ′→φ−1( 1
2−F ) = −∞.
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where erfc−1(x) is the inverse complementary error function (see e.g. ?, 160),

erfc−1(x) = 1− erf(x) and erf(x) =
2√
π

∫ x

0

e−t
2

dt.

In turn, the slope of the left-hand-side of A.4 is steeper than the slope of its right-hand-side

as long as

σ

σ0
< min

θ′

e
− θ
′2
2

+erfc−1
[
2− 1−2Φ(θ′)

F

]2

F
.

The above is a sufficient condition for a unique solution to (A.9). For the value of F used

in the paper (F = 2
10

), for instance, this condition implies that uniqueness is guaranteed for

any value of θ′ as long as σ is at most 4.84 times as large as σ0. (This uniqueness condition

is satisfied for any realistic scenario as σ0 is greater than σ when these are understood to

be the standard deviation of the pre-election expectation and the election-day signal,

respectively.)

The comparative statics of S∗ are θ∗ with respect to F , w, and c remain identical to the

Uniform model. Differentiating (A.9) with respect to w, the left-hand-side is zero (since it

does not depend on w) while the right-hand-side is negative as

∂RHS

∂w
= −
√

2π c eerfc
−1[ 2w

c+w ]
2

(c+ w)2
< 0 .

This implies that an increase in w shifts the right-hand-side (A.9) downward while the

left-hand-side is unchanged, resulting in a decrease in θ∗
′

(since the left-hand-side is

increasing in θ′.) A similar argument confirms that θ∗
′

increasing in c, since

∂RHS

∂c
=

√
2π w eerfc

−1[ 2w
c+w ]

2

(c+ w)2
> 0 .
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Meanwhile, θ∗
′

is decreasing in F , as the partial derivative of the right-hand-side with

respect to F is zero (since it does not depend on F ) while the derivative of the

left-hand-side is positive as

∂LHS

∂F
= −

σ0
√

π
2

erf
[
θ′√
2

]
e
erfc−1

2+ erf

[
θ′√

2

]
F

2

F 2
√
σ2
0 + σ2

> 0 ,

where erf
[
θ′√
2

]
< 0. The same relationship with respect to F , w, and c holds for S∗ since

S∗
′

is increasing in θ∗
′

according to (A.8).

Finally, consider the incumbent’s optimal choice of the reward factor w in light of the

pre-election belief θ0 about his popularity. The equivalent of the incumbent’s expected

payoff in (7) is

Pr [θ ≥ θ∗] b− wE[R] =

[
1− Φ

(
θ∗
′ − θ′0
σ0

)]
b− w

∫ ∞
−∞

E[R|θ′ ]f(θ
′
)dθ

′
. (A.10)

In (A.10), equilibrium probability of the incumbent’s victory Pr [θ ≥ θ∗] corresponds to one

minus the cumulative distribution function of the N (θ
′
0, σ

2
0) distribution evaluated at θ∗

′
,

and the incumbent’s expected national-level election outcome E[R|θ′ ] is evaluated with

respect to the distribution of θ
′
; f(θ

′
) thus corresponds to the probability density function

of the N (θ
′
0, σ

2
0) distribution. In turn,

∫ ∞
−∞

E[R|θ′ ]f(θ
′
)dθ

′
=

∫ ∞
−∞

(
E[Si|θ

′
] + Fφ(θ

′
)
)
f(θ

′
)dθ

′
. (A.11)

In this expression, E[Si|θ
′
] is the incumbent’s expected genuine national-level vote-share
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when his popularity is θ
′
,

E[Si|θ
′
] =

∫ ∞
−∞

Sif(S
′

i|θ
′
) dS

′

i =

∫ ∞
−∞

Φ(S
′
)f(S

′

i|θ
′
) dS

′

i ,

which is evaluated with respect to the distribution of S
′
i ; f(S

′
i|θ
′
) thus corresponds to the

probability density function of the N (θ
′
, σ2) distribution. Meanwhile, φ(θ

′
) in (A.10) is the

fraction of agents that engage in fraud in equilibrium when the incumbent’s popularity is θ
′

and corresponds to one minus the cumulative distribution function of the N (θ′, σ2)

distribution evaluated at S∗
′
,

φ = 1− Φ

(
S∗
′ − θ′

σ

)
.

In equilibrium, the incumbent maximizes the expected payoff in (A.10) with respect to w

while treating θ∗, S∗, and φ as functions of w.

This optimization problem is too mathematically complex to be analytically tractable

and w∗ must be found numerically. The parameter values c=1, F = 2
10

, b = 100, σ2 = 1
100

,

θ0 = 1
2

(which implies θ
′
0 = 0), and σ2

0 = 1, for instance, result in w∗ = 4.48, θ∗ = 0.33,

S∗ = 0.30, and φ∗ = 0.83. That is, agents engage in fraud only if the incumbent’s

popularity in their precinct is greater than 30% and fraud secures the incumbent’s victory

if his national-level popularity is greater than 33%, or equivalently, when at least 83% of

agents participate in fraud. This example is illustrated in Figure A.5, which plots the effect

of the incumbent’s actual national-level popularity θ on the equilibrium and needed levels

of fraud as a solid black line, assuming that the incumbent’s actual popularity θ will turn

out as expected (i.e. θ = θ0 = 1
2
).5

The Normal model highlights particularly well the contrast between the rigidity of the

equilibrium outcome when the incumbent’s popularity is above θ∗ and the resounding

5This is the analogue of Figure 3 from our earlier discussion.
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Figure A.5: The effect of the incumbent’s actual national-level popularity θ on the equilib-
rium v. needed level of fraud in the Normal model

defeats that occur as the incumbent’s popularity crosses below θ∗. In our example, agents

receive highly precise signals, σ2 = 1
100

. We see that when each agent has nearly perfect

information about the incumbent’s national-level popularity θ, shifts in the agents’

perception of the incumbent’s popularity result in herd-like coordination: On the one hand,

virtually all agents conduct fraud on behalf of the incumbent regardless of the actual value

of θ as long as θ > θ∗; on the other hand, a minor shift in the incumbent’s popularity from

just above to just below θ∗ results in his defeat by a margin of about F% as virtually all

agents change their behavior from conducting fraud to refraining from it.
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B.1 The 2012 Presidential Election: Multiples of Five

Likelihood ratio independence tests: In order to examine the over-representation of

0’s and 5’s, we round each candidate’s vote share to the nearest multiple of 0.5, extract the

unit and the first decimal place digits, and pool them into the twenty resulting digit pairs.

Figure A.6 displays the distribution of these digit pairs and demonstrates that the

multiples of five are indeed over-represented. Assuming that neighboring digits should be

distributed approximately uniformly, we compute the G2 statistic (?, 36) for the

frequencies of 0.0 and 5.0 and the two digit pairs to their left and right. These are the digit

pairs {9.0, 9.5, 0.0, 0.5, 1.0} and {4.0, 4.5, 5.0, 5.5, 6.0}, respectively. The G2 statistics (75.0

and 38.3 with df = 4) strongly suggest that these digit frequencies are not uniform (both

p-values = 0). Once we exclude the digit pairs 0.0 and 5.0, however, the remaining digit

frequencies are consistent with uniformity (G2 = 2.6 and 2.8 with df = 3 implying p-values

of 0.46 and 0.42, respectively). An analysis based on standardized residuals implies the

same conclusion.

The perturbation approach: In order to construct the null distribution for digit

frequencies, we perturb precinct-level turnout and vote shares as follows: We draw turnout

τi from the binomial distribution Binomial(Ni, Ti), where Ni and Ti are the number of

registered voters and actual turnout in precinct i. We then draw vote shares (ν1i , . . . , ν
5
i ) for

candidates 1 through 5 from the multinomial distribution Multinomial(τi, (V
1
i , . . . , V

5
i )),

where (V 1
i , . . . , V

5
i ) are the actual vote totals for candidates 1 through 5 in precinct i.
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Figure A.6: The distribution of the pooled unit and the first decimal place digits in Putin’s
precinct-level vote share (after rounding to the nearest multiple of 0.5)

B.2 The 2012 Presidential Election: Alternative Kernel Density

Estimate Bandwidths

Following our theoretical analysis, we continue evaluating the prediction that the extent of

fraud across individual precincts should be increasing in Putin’s vote share. In order to

evaluate this prediction, we develop a measure of ruggedness in the distribution of Putin’s

precinct-level results. In the paper, we report the difference between the empirical

distribution of each candidate’s precinct-level results and its optimal kernel density

estimate.6

Due to space constraints, we were not able to report half and twice the optimal

bandwidths as recommended by ?. We report these robustness checks in Figures A.7 and

6The optimal bandwidth minimizes the mean integrated squared error based on a Gaussian kernel, and
is 1.2 for Putin, 0.67 for Zyuganov, 0.19 for Mironov, 0.42 for Prokhorov, and 0.27 for Zhirinovsky.
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A.8. The bandwidths do not change the conclusions from our previous analysis: the

distribution of Putin’s precinct-level results is still the only one in which departures from

smoothness both coincide with the multiples of five and increase in his vote-share.

Figure A.9 presents the residuals from the kernel density estimate for Putin

(diamonds), Zyuganov (squares), and the remaining three minor candidates (Prokhorov,

Zhirinovsky, and Mironov). As in the main text, the 95th and 99th percentiles are based on

the pooled residuals of all candidates but Putin. Once again, except for a few residuals

clustered around 0 and 100 per cent, all residuals above the 95% and 99% percentiles

belong to either Zyuganov or Putin. More importantly, as predicted by our theoretical

model, the ruggedness of the distribution of precinct-level results is increasing Putin’s and

only Putin’s vote-share and it is not sensitive to our choice of bandwidth.
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B.3 Asymptotic Confidence Intervals

In addition to the empirical confidence intervals reported in the main text and in the

preceding section, we employ an alternative, theoretical benchmark for evaluating the

ruggedness of Putin’s precinct-level results. We compute the 95% asymptotic confidence

intervals for the kernel density estimate of each candidate’s distribution of precinct-level

results and treat the observations that lie outside these confidence intervals as anomalously

rugged. Figure A.10 displays the 95% asymptotic confidence intervals from the kernel

density estimate for Putin (gray area) with the deviations of Putin’s empirical distribution

from its kernel density estimate (black line).

To test for robustness, we once again report the optimal, twice the optimal, and half

the optimal bandwidths for our kernel density estimates. We judge residuals that fall

outside of the 95% confidence interval as anomalously rugged, and report their absolute

values in Figure A.11. Using these asymptotic confidence intervals, Figure A.12 plots the

distribution of such residuals for all candidates. As previously explained, the 95th and 99th

percentiles are based on the distribution of the pooled residuals of all candidates but Putin.

We see that using this alternative, asymptotic benchmark, the ruggedness of the

distribution of precinct-level results is again increasing Putin’s and only Putin’s vote-share

– as anticipated by our theoretical arguments.
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Figure A.12: The difference between the empirical distribution of each candidate’s precinct-
level results and the corresponding 95% confidence interval of the kernel density estimate

Finally, Figures A.13, A.14, and A.15 confirm our findings by reporting opposition

candidate’s 95% asymptotic confidence intervals, Putin’s 99% asymptotic confidence

intervals, and their absolute values.
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B.4 Method of Fraud

Agents operating locally have two likely options for executing election fraud: the outright

inflation of Putin’s vote share by stuffing ballot boxes, or the stealing of votes from

opposition candidates. Our analysis of the ruggedness in the distribution of precinct-level

results in the 2012 Russian presidential election may already shed light on how fraud was

conducted. Throughout our discussion above, Zyuganov was the only candidate other than

Putin with a significant amount of ruggedness in his precinct-level results. Yet crucially,

this ruggedness did not coincide with multiples of five and was not increasing in his vote

share. This observation suggests that rather than stuffing ballots in order to round Putin’s

precinct-level vote share to some higher multiple of five, Putin’s local operatives may have

been instead stealing votes from Zyuganov. Stealing specifically from Zyuganov makes

logistical sense: Zyuganov was the only major opposition candidate in this election and

hence the only candidate with a number of votes large enough in most individual precincts

that could be transferred to Putin’s column in order to round his vote share to some higher

multiple of five. In order to evaluate this first hypothesis, we add Putin’s and Zyuganov’s

precinct-level votes and examine the ruggedness in the resulting distribution of vote shares.

As Figure A.16 reveals, the significant ruggedness in the two candidates’ individual

vote-share distributions now disappears – supporting the hypothesis of vote-stealing from

Zyuganov.

In order to test this hypothesis more thoroughly, we continue with our measure of

ruggedness and compute the difference between the empirical distribution of each

candidate’s precinct-level results and its optimal kernel density estimate. Here, however, we

use Putin and Zyuganov’s combined distribution. Figure A.17 shows the difference between

the empirical distribution of each candidate’s precinct-level results and its kernel density

estimate. We see that with the exception of a few spikes around 0 and 100 per cent (which
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Figure A.16: The distribution (gray solid line) and kernel density estimate (black dashed
line) of the sum of Putin’s and Zyuganov’s precinct-level vote share

are driven by the poor fit of the kernel density estimate for corner values), the ruggedness

of Putin and Zyuganov’s combined distribution is significantly smaller than the ruggedness

of their individual distributions and close to the ruggedness of the remaining candidates.

The possibility remains, however, that these results are an artifact of the data; the

smoothness of Putin and Zyuganov’s distribution may only be a product of combining the

two top-performing candidates rather than an indication that operatives specifically stole

from Zyuganov. To explore this possibility, we take the candidate who received the least

number of votes, Mironov, and inflate his vote share by 5.5, thereby approximating

Zyuganov’s average vote share across precincts. Since Mironov received only 3.9% of the

total vote, he is the least-likely target for Putin’s operatives. Figure A.18 reveals that when

we combine Mironov’s inflated vote share with Putin’s vote share, the significant
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Figure A.17: The difference between the empirical distribution of each candidate’s precinct-
level results and its kernel density estimate

ruggedness in the two candidates’ individual vote share distributions disappears. Because

we are fairly certain that operatives did not steal from Mironov, this casts serious doubt on

our evidence that operatives were stealing votes from Zyuganov.

To test for evidence of the alternative method of fraud, ballot box stuffing, we focus on

turnout. If Putin’s operatives were stealing from Zyuganov, we expect turnout to have no

clear relationship with Putin’s vote share (?). Figure A.19, however, reveals a strong

relationship between turnout and Putin’s vote share, suggesting that operatives did engage

in ballot-box stuffing.

We find more evidence of this method when we plot the average percent turnout

against Putin’s vote share rounded to 0.5%. Figure A.20 reveals spikes in turnout around

digits ending in 0.0 and 5.0, further highlighting the probability that operatives primarily

used ballot box stuffing to round Putin’s vote share to a higher multiple of 5.
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Figure A.18: The distribution (gray solid line) and kernel density estimate (black dashed
line) of the sum of Mironov’s (inflated) and Putin’s precinct-level vote share
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B.5 Multiples of Five Analysis for Other Candidates

Although the empirical distributions of opposition candidates’ vote shares do not appear to

have a consistent pattern, this does not preclude the possibility that other distributions

have a statistically significant over-representation of 5’s and 0’s. To explore this possibility,

we perform the likelihood ratio independence tests for all opposition candidates’ vote

shares. Beginning with Putin’s primary political opponent, Zyuganov’s G2 statistics

around 0 and 5 are 180.5 and 9.4 respectively, with p-values of 0 and 0.052 respectively.

Once 0 and 5 are removed, the G2 statistics are 123.3 and 7.3, p-values = 0 and 0.064

respectively, indicating that while digit frequencies do not follow the expected uniform

distribution, non-uniformity is not the result of an overabundance of 0’s and 5’s. Other

candidates’ likelihood ratio independence tests indicate the same conclusion. Mironov’s G2

statistic is 12000 and 2600 around 0 and 5 and 9500 and 2600 once the 0 and 5’s are

removed; Zhirinovsky’s G2 statistic is 1200 and 770.8 around 0 and 5, and 133.6 and 769.2

once the 0 and 5’s are removed; Prokhorov’s G2 is 4400 and 109.4 around 0 and 5, and

2600 and 109.4 once the 0 and 5’s are removed (all p-values = 0).

Because there are many precincts in which the three minor candidates, Mironov,

Zhirinovsky, and Prokhorov, received close to 0% of the vote, this may explain the lack of

uniformity and over-representation of zeros. Once we remove all precincts in which each

candidate received less than 1% of the vote, Putin’s G2 statistics still strongly indicate an

over-representation of 0’s and 5’s. (The G2 statistics are 74.9 and 38.5 around 0 and 5,

(p-values = 0), and 2.6 and 1.5 without 0 and 5’s (p-values = 0.455 and 0.672).

Opposition candidates, however, still deviate from the expected uniform distribution of

last digits. Zyuganov’s G2 statistic around 0 and 5 is 27.8 and 9.4(p-value = 0 and 0.052

respectively) and 26.8 and 7.3 without 0 and 5’s (p-values = 0 and 0.064). Prokhorov’s G2

statistic around 0 and 5 is 764.9 and 109.4 and 677.9 and 109.4; Zhirinovsky’s G2 statistic
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is 842.7 and 772.3 around 0 and 5, and 808 and 770.7 without the 0’s and 5’s; Mironov’s G2

statistics are 5200 and 2600 around 0 and 5, and 4400 and 2600 without the 0’s and 5’s

(p-values = 0), all of which still indicates that the lack of uniformity is unrelated to the

over-representation of 0’s and 5’s.
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Figure A.21: The distribution of United Russia’s precinct-level vote share in the 2011 par-
liamentary election

C.1 Results for 2011 Parliamentary Election

In our analysis of the 2011 legislative election in Russia, we take advantage of the same

form of fraud evident in the 2012 presidential election: the rounding of the incumbent’s

precinct-level vote share to a higher multiple of five. Focusing on the hypothesis that the

extent of fraud should be increasing in the incumbent’s vote share, we first establish that

0’s and 5’s are over-represented in United Russia’s vote share. Figure A.21 plots the

distribution of United Russia’s vote share across more than 90,000 precincts. Even more

prominent in this election is the suspicious lack of smoothness coinciding with the multiples

of five, especially between 65%-100%. In order to more rigorously examine the

over-representation of 0’s and 5’s, we round each candidate’s vote share to the nearest

multiple of 0.5, extract the unit and the first decimal place digits, and pool them into the
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Figure A.22: The distribution of the pooled unit and the first decimal place digits in United
Russia’s precinct-level vote share (after rounding to the nearest multiple of 0.5)

twenty resulting digit pairs. Figure A.22 displays the distribution of these digit pairs and

demonstrates that the multiples of five are indeed over-represented. Assuming that digits

should be distributed uniformly, we compute the G2 statistics for the frequencies of 0.0 and

5.0, and the two digit pairs to their left and right. The G2 statistics (32.6 and 60.76 with

df = 4), indicate that the digit frequencies are not uniform (both p-values = 0). Like the

2012 presidential election, the G2 statistics excluding 5 suggest that departures from

smoothness are the result of the over-representation of multiples of 5 (3.18, p=0.37).

Unlikes the 2012 election, however, the G2 statistics excluding 0.0 suggests that

neighboring digits are not distributed uniformly (13.35, p=0.004). Departures from

smoothness thus cannot be attributed solely to the over-representation of multiples of 5.

Turning to our primary empirical test, we assess whether departures from smoothness
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are increasing in United Russia’s vote-share. We use the same measure developed in the

empirical section of the main text by taking the difference between the empirical

distribution of a candidate’s precinct-level vote share and its optimal kernel density

estimate. Figure A.23 plots the kernel density estimate for each party’s precinct-level

results by a black dashed line along with their actual empirical distribution (gray solid

line). The empirical distributions for the two minor parties (A Just Russia and LDPR)

almost exactly conform to their kernel density estimates, while the Communist Party

shows a small amount of ruggedness unrelated to multiples of 5. Significant ruggedness

corresponding with multiples of 5 is present only for United Russia, and appears to be

increasing in United Russia’s share of the vote.
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Figure A.24: The difference between the empirical distribution of each party’s precinct-level
results and its kernel density estimate

In order to quantify United Russia’s distribution ruggedness, we use the same empirical

and theoretical benchmarks presented in the main text. First, we judge United Russia’s

distribution by the standard of its three competitors. We first calculate the difference

between the empirical distribution of United Russia’s competitors’ precinct-level results

and their kernel density estimates, pool these residuals, and use their 95th and 99th

percentiles as a benchmark for judging how anomalous Putin’s ruggedness is. Figure A.24

compares United Russia’s residuals (diamonds) to its competitors residuals, and the 95th

and 99th percentiles. Consistent with our analysis of the 2012 presidential election, we use

the optimal bandwidth for our kernel density estimate, and both twice and half the optimal

bandwidth to check for robustness.7 With the exception of a few residuals at the lower end

7The optimal bandwidth for United Russia is 1.89, for the LDPR is 0.62, for A Just Russia is 0.69, and
for the Communist Party is 0.85.

42



of the distribution due to minor parties receiving 0 or almost 0% of the vote, United

Russia’s residuals are the only exceeding the 99 percentile. Additionally, while not as

striking as the 2012 presidential election, United Russia’s residuals are nevertheless the

only residuals increasing in the party’s vote share.8

Using an alternative theoretical benchmark, we compute the 95% and 99% asymptotic

confidence intervals for the kernel density estimate of United Russia’s results and treat the

empirical observations outside of these confidence intervals as anomalously rugged. Figure

A.25 demonstrates that once again, United Russia’s residuals are significantly larger than

those of the remaining party’s residuals. Figure A.26 presents the absolute value of these

residuals, making the relationship between United Russia’s residuals and its vote share

even more apparent. While the Communist Party’s residuals are noticeably anomalous,

they have no relationship with its vote share.

8When we regress United Russia’s residuals on its vote share, the vote share coefficient is positive and
statistically significant at the 0.01 significance level; the regression coefficient on the other parties’ vote share
is statistically significant but negative.
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Figure A.27: The distribution of turnout in the 2011 parliamentary and 2012 presidential
elections

D.1 2011 Parliamentary and 2012 Presidential Elections:

Analysis of Turnout

As a preliminary look at inflated turnout as a source of electoral fraud, Figure A.27 plots

the distribution of turnout across the more than 90,000 precincts. Although the

distribution display the familiar ruggedness present in Putin’s vote share, the most

noticeable outlier is the extreme bump in turnout at or near 100%. This, in conjunction

with our analysis of the combined Putin and Zyuganov vote share density suggests that

local operatives used two methods of electoral fraud: stealing from the second-place

candidate, and if that did not offer enough votes to reach a satisfactory vote share,

inflating turnout. As expected, Figure A.28 confirms the presence of an overabundance of

0’s, largely driven by the large number of precincts reporting 100% turnout.

We repeat our main empirical test by assessing whether departures from smoothness

are increasing in turnout. Figure A.29 plots the kernel density estimate for turnout by a

black dashed line along with its actual empirical distribution (gray solid line). Turnout is
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Figure A.28: The distribution of the pooled unit and the first decimal place digits in turnout
(after rounding to the nearest multiple of 0.5)

fairly rugged, and like our previous analysis of vote shares, spikes often coincide with

multiples of five.

Using our alternative theoretical benchmark, we commute the 95% asymptotic

confidence intervals for the kernel density estimate of turnout and treat the empirical

observations outside of these confidence intervals as anomalously rugged. Figure A.30

shows significant ruggedness, but the residuals outside of the confidence intervals do not

appear to be increasing in turnout.

Figure A.31 presents the absolute value of these residuals, further confirming that

ruggedness is not increasing in turnout, except with regards to the large spike around

100%. Since turnout does not become progressively anomalous as it increases, but Putin

and United Russia’s vote shares do become progressively anomalous as they increase, this

suggests that the primary method of fraud used in both elections was stealing from other

candidates, presumably second place candidates Zyuganov and the Communist Party.
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Figure A.29: The distribution (gray solid line) and kernel density estimate (black dashed
line) of electoral turnout
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Figure A.30: The 95% asymptotic confidence intervals (gray area) for the kernel density
estimate (black line) of electoral turnout
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Figure A.31: The difference between the empirical distribution of electoral turnout and the
95% confidence interval of its kernel density estimate
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E.1 The 2012 Russian Presidential Election and Benford’s Law

According to Benford’s Law, the leading digits of many naturally occurring numbers are

not uniformly distributed but rather follow a logarithmic pattern, according to which lower

numbers occur with greater frequency than higher ones (??). While extant research

demonstrates the applicability of Benford’s Law to population numbers, death rates, and

accounting data (??), its reliability in detecting electoral fraud is debated (????). Here we

briefly assess the performance of Benford’s Law in detecting fraud during the 2012 Russian

presidential election. Since most of the literature on Benford’s Law rejects the validity of

first-digit models for electoral fraud detection, we conduct a second-digit test (???).

Figure A.32 compares the actual and expected frequency of second digits for each

candidate in the 2012 presidential election. In order to test whether deviations of the

actual from expected frequency of second digits are statistically significant, we use the

Pearson χ2 test suggested by ?:

χ2
B2

=
9∑
i=0

(d2i − d2qB2i)
2

d2qB2i

,

where qB2i denotes the expected proportion with which the second digit is i, d2i denotes

the actual frequency with which the second digit is i, and d2 =
∑9

i=0 d2i denotes the total

number of second digits. The test statistic follows the χ2 distribution with 9 degrees of

freedom, and has a critical value of 16.9 for a test at the 0.05 significance level.
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We find that each candidates’ second digits significantly deviate from the distribution

implied by Benford’s Law, and these deviations are largest for the worst performing

candidates.9 Since all accusations of fraud during this election concerned the incumbent

Vladimir Putin only, we consider this finding a false-positive. It is most likely due to the

fact that the worst performing candidates received close to 0% of the vote in many

precincts. As a result, between 19 and 30% of precincts had to be excluded from the

analysis of the minor candidates’ results, since these candidates’ vote counts contained only

single digits (i.e. they received fewer than 10 votes). In the remaining precincts, more than

75% of the minor candidates’ vote counts were smaller than 100. Thus our case is not

suitable for a Benford’s law-based test: Benford’s law is best applied to data that span

several orders of magnitude (?) and the χ2
B2

statistic suffers from false positives when

precincts are homogenous and vote percentages are concentrated in narrow range (?).

Crucially, tests based on Benford’s law do not allow us to evaluate whether the amount

of fraud is increasing in the incumbent’s precinct-level vote share – a key prediction of our

theoretical model that we evaluate in the paper.

F.1 2011 Russian Legislative Election Vote Shares by Region

9All χ2
B2

statistics exceed the critical value of 16.9: Putin’s is 67.8; Zyuganov’s is 532.6; Prokhorov’s is
9552.6; Mironov’s is 11818.1; Zhirinovsky’s is 4232.4.
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Territory United Russia Communist Party A Just Russia LDPR
Altai Republic 54.04 21.83 10.46 10.79
Altai Territory 37.89 25.19 16.41 16.89
Amur Region 44.32 19.53 10.46 21.35
Arkhangelsk Region 32.27 20.46 22.37 18.38
Astrakhan Region 61.17 13.48 14.80 8.47
Belgorod Region 52.01 22.79 11.78 9.81
Bryansk Region 50.83 23.64 11.33 10.80
Chechen Republic 99.54 0.09 0.18 0.02
Chelyabinsk Region 51.15 14.88 16.92 11.98
Chukotka Autonomous Okrug 72.56 6.92 5.57 11.60
Chuvash Republic 44.73 21.54 19.36 10.99
City of Moscow 47.45 19.69 12.35 9.62
City of St. Petersburg 35.93 15.57 24.04 10.46
Irkutsk Region 35.43 28.18 13.55 17.58
Ivanovo Region 40.73 22.86 15.84 15.01
Jewish Autonomous Region 49.35 20.31 10.80 16.12
Kabardino-Balkaria 81.94 17.64 0.20 0.08
Kaliningrad Region 37.69 25.96 13.48 14.33
Kaluga Region 41.06 22.26 15.86 14.59
Kamchatka 46.21 17.44 10.27 19.00
Karachay-Cherkess Republic 90.04 8.84 0.47 0.28
Kemerovo Region 65.25 10.67 8.09 12.53
Khabarovsk Territory 38.81 20.85 14.34 20.17
Khanty-Mansiysk Autonomous Okrug 41.75 16.39 14.10 22.94
Kirov Region 35.42 23.02 20.08 16.95
Kostroma Region 31.13 29.21 18.82 16.19
Krasnodar Region 57.06 17.84 10.98 10.62
Krasnoyarsk Territory 37.35 24.02 16.14 17.29
Kurgan region 45.00 19.90 14.67 17.11
Kursk Region 46.41 21.02 14.65 13.67
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Territory United Russia Communist Party A Just Russia LDPR
Leningrad Region 34.38 17.74 25.81 15.13
Lipetsk Region 40.87 23.34 17.06 14.68
Magadan Region 41.61 23.06 11.77 17.60
Moscow Region 575.51 442.84 274.54 249.04
Murmansk Region 32.63 22.17 20.04 18.45
Nenets Autonomous District 36.57 25.17 15.20 17.79
Nizhny Novgorod Region 45.10 29.13 10.73 10.79
Novgorod Region 35.23 19.88 28.58 11.69
Novosibirsk Region 34.35 30.72 12.89 15.94
Omsk Region 40.39 26.07 13.67 14.47
Orel Region 39.72 32.58 11.42 12.47
Orenburg Region 35.38 26.54 17.03 17.14
Perm 37.10 21.49 16.78 18.29
Prenza Region 57.38 20.21 8.82 10.32
Primosrky Krai 33.86 23.87 18.57 19.15
Pskov Region 37.18 25.50 16.65 14.13
Republic of Adygea 61.08 18.94 8.64 7.86
Republic of Bashkortostan 71.22 15.81 5.51 5.26
Republic of Buryatia 49.74 24.70 12.82 9.61
Republic of Dagestan 91.60 7.94 0.19 0.03
Republic of Ingushetia 91.74 2.97 2.34 0.41
Republic of Kalmykia 67.18 18.67 7.30 4.09
Republic of Karelia 32.90 19.64 20.99 18.30
Republic of Khakassia 40.79 24.02 13.90 16.28
Republic of Komi 59.59 13.64 11.62 12.07
Republic of Mari-El 52.93 21.00 10.73 11.87
Republic of Mordovia 92.06 4.57 1.30 1.55
Republic of North Ossetia - Alania 68.75 21.99 6.10 2.26
Republic of Sakha 49.77 16.60 22.09 8.58
Republic of Tatarstan 78.55 10.69 5.35 3.52
Republic of Tyva 86.12 3.97 6.78 2.11
Rostov Region 50.90 21.13 13.44 10.30
Ryazan Region 40.42 23.96 15.32 15.30
Sakhalin Region 42.60 23.81 11.96 16.25
Samara Region 40.16 23.60 14.48 16.04
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Territory United Russia Communist Party A Just Russia LDPR
Saratov Region 65.81 14.00 10.23 7.34
Smolensk Region 36.83 24.64 18.91 15.00
Stavropol Territory 50.05 18.75 12.05 15.60
Sverdlovsk Region 33.55 17.26 25.33 16.42
Tambov Region 67.69 16.72 6.12 7.20
Tomsk Region 38.22 22.81 13.66 18.19
Trans-Baikal Territory 43.95 18.93 14.32 19.48
Tula Region 62.07 15.26 8.56 9.32
Tver Region 38.96 23.55 20.07 11.85
Tyumen Region 62.96 11.88 7.48 14.23
Udmurt Republic 45.80 19.85 11.35 16.85
Ulyanovsk Region 44.19 23.42 15.84 12.77
Vladimir Region 38.87 20.85 21.87 13.14
Volgograd Region 36.00 23.09 22.26 13.48
Vologod Region 34.00 17.08 27.64 15.71
Voronezh Region 50.69 22.13 14.66 8.99
Yamalo-Nenets Autonomous District 72.46 6.63 4.75 13.78
Yaroslavl Region 29.50 24.37 22.98 15.73
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