Global Reallocations in the US-China Trade War

Pablo D. FajgelbaumII\diamondsuit Penny K. Goldberg†\diamondsuit
Patrick J. Kennedy† Amit K. Khandelwal‡\diamondsuit Daria Taglioni±

IIUCLA, ‡Yale, †Berkeley, ±World Bank, \diamondsuitNBER

June 2023
Motivation

- In 2018-19, US-China engaged in a trade war, taxing $450b of annual trade
 - thousands of goods tariffed, avg US tariffs from about 4% to 25%
 - US and China tariffs targeted 3.6% of US GDP and 5.5% of China GDP

- This paper: How are bystanders' exports affected?
Motivation

- In 2018-19, US-China engaged in a trade war, taxing $450b of annual trade
 - thousands of goods tariffed, avg US tariffs from about 4% to 25%
 - US and China tariffs targeted 3.6% of US GDP and 5.5% of China GDP

- This paper: How are bystanders' exports affected?

- Trade war is a natural experiment to understand the key forces driving world trade
 - Substitution/complementarities?
 - Scale?
 - Specialization?
This Paper

1. Framework to guide empirical analysis that captures these elements
2. Estimate impacts of tariffs on bystanders’ exports to US, CH, rest of world (RW)
3. Examine possible forces driving the responses
This Paper

1. Framework to guide empirical analysis that captures these elements
2. Estimate impacts of tariffs on bystanders’ exports to US, CH, rest of world (RW)
3. Examine possible forces driving the responses

Method:
- Model motivates product-level regressions to estimate impact of trade-war tariffs on countries’ exports
- ...allowing for country-, sector-, and size-specific tariff responses
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country heterogeneity in export growth in taxed products (relative to untaxed)
 - Avg export growth in taxed products (relative to untaxed) is 6.7%, sd 6.3%
 - Sc is just 1.3% under homogenous tariffs

3. Country component of tariffs explains 82.8% of export growth variation
 - Size and sector component of tariffs account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - Countries classified as complements or substitutes of US/China, and operating along upward or downward supply curves
 - MEX, TWN, COL, UKR operate along downward sloping supply curves
 - MEX, TWN: beneficiaries because they substitute US and China
 - COL, UKR: not beneficiaries because they complement US and China
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.7%, sd 6.3%
 - sd is just 1.3% under homogenous tariff elasticities
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.7%, sd 6.3%
 - sd is just 1.3% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 82.8% of export growth variation
 - size and sector component of tariff elasticities account for rest
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.7%, sd 6.3%
 - sd is just 1.3% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 82.8% of export growth variation
 - size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 ▶ trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 ▶ avg export growth in taxed products (relative to untaxed) is 6.7%, sd 6.3%
 ▶ sd is just 1.3% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 82.8% of export growth variation
 ▶ size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 ▶ countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 ▶ MEX, TWN, COL, UKR operate along downward sloping supply
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.7%, sd 6.3%
 - sd is just 1.3% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 82.8% of export growth variation
 - size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 - MEX, TWN, COL, UKR operate along downward sloping supply
 - MEX, TWN: beneficiaries bc they substitute US and China
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.7%, sd 6.3%
 - sd is just 1.3% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 82.8% of export growth variation
 - size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 - MEX, TWN, COL, UKR operate along downward sloping supply
 - MEX, TWN: beneficiaries bc they substitute US and China
 - COL, UKR: not beneficiaries bc they complement US and China
Related Literature

- **Interdependency across export destinations**
 - Morales et al 19, Alfaro et al 23, Alumnia et al 18, Mau 17, Flaaen et al 20, Albornoz et al 21

- **Cross-country variation in trade elasticities**
 - Anderson VW 03, Eaton Kortum 02, Costinot et al 12, Caliendo Parro 15, Adao et al 17, Lind Ramondo 18

- **Scale economies**
 - Antweiler Trefler 02, Costinot et al 19, Bartelme et al 19, Lashkaripir Lugovskyy 22

- **US-China Trade War**
 - Amiti et al. 19, Fajgelbaum et al. 20, Cavallo et al. 21, Flaaen et al. 20, Flaaen Pierce 19, Waugh 19
Framework

- Ricardian-Armington trade model
- Translog aggregator of varieties (origins) of product ω from sector j in country n:

$$s_{i\omega}^n = a_{i\omega}^n + \sum_{i' \in I} \sigma_{i'i}^j \ln p_{i'i\omega}^n$$

- with prices $p_{i'i\omega}^n = \tau_{i'i\omega}^n T_{i\omega}^n p_{i'\omega}$
- $\sigma_{iCH}^j, \sigma_{iUS}^j$ capture i’s substitution with CH and US
- assume $\sigma_{i'i}^j = \sigma_{RW}^j$ for $i' \neq i$ and $i \neq US, CH$
Framework

- Ricardian-Armington trade model
- Translog aggregator of varieties (origins) of product ω from sector j in country n:

 $$ s_{i\omega}^n = a_{i\omega}^n + \sum_{i' \in I} \sigma_{i\omega}^j \ln p_{i'\omega}^n $$

 - with prices $p_{i'\omega}^n = \tau_{i'\omega}^n T_{i\omega}^n p_{i'\omega}$
 - $\sigma_{iCH}^j, \sigma_{iUS}^j$ capture i’s substitution with CH and US
 - assume $\sigma_{ii'}^j = \sigma_{RW}^j$ for $i' \neq i$ and $i \neq US, CH$

- Supply (sales) curve of exporter i of product ω:

 $$ X_{i\omega} = \frac{1}{b_i^j} A_{ij} p_{i\omega} Z_{i\omega} $$

 - A_{ij}: endogenous sector (j)-level cost shifters (ie, wages, input costs)
 - $Z_{i\omega}$ exogenous cost shifter
 - $b_i^j = \frac{1}{\epsilon_i^j} - \gamma_i^j$, where ϵ_i^j reflects factor mobility & γ_i^j reflects scale

- Equilibrium: prices $\{p_{i\omega}\}$ such that goods markets clear
Impact of US-China Tariffs on Third-Country Exports

Proposition

Given tariff shocks \(\{ T^n_{i\omega} \} \), first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X^n_{i\omega} = \beta^n_{1i\omega} \Delta \ln T^n_{CH,\omega} + \beta^n_{2i\omega} \Delta \ln T^n_{US,\omega} + \beta^n_{3i\omega} \Delta \ln T^n_{i,\omega} + \beta^n_{4i\omega} \Delta \ln T^n_{CH,i,\omega} \\
+ \beta^n_{5i\omega} \sum_{j \neq CH,US,i} \Delta \ln T^n_{j,\omega} + \beta^n_{6i\omega} \sum_{j \neq CH,US,i} \Delta \ln T^n_{CH,j,\omega} + \eta^n_{i\omega}
\]
Impact of US-China Tariffs on Third-Country Exports

Proposition

Given tariff shocks \(\{ T_{i\omega}^n \} \), first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH}
\]

\[
+ \beta_{5i\omega}^n \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{US} + \beta_{6i\omega}^n \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i\omega}^n
\]

\(\beta_{1i\omega}^n \) : tariff response to US tariff on China:

\[
\beta_{1i\omega}^n \equiv \left(1_{n=US} + \frac{E_{\omega}^{US}}{E_{\omega}} \frac{1}{b_{i}^{j} \sigma_{ii}^{j}} - 1 \right) \frac{\sigma_{CHi}^{j}}{s_{i\omega}^{n}}
\]

- substitutability: \(\sigma_{CHi}^{j} \)
- scale: \(b_{i}^{j} \sigma_{ii}^{j} \)
- size: \(\frac{E_{\omega}^{n}}{E_{\omega}}, \frac{X_{i\omega}^{n}}{E_{\omega}}, \frac{X_{i\omega}^{n}}{E_{\omega}} \)
Impact of US-China Tariffs on Third-Country Exports

Proposition

Given tariff shocks \(\{ T_{i\omega}^n \} \), first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,i\omega}^U + \beta_{2i\omega}^n \Delta \ln T_{US,i\omega}^C + \beta_{3i\omega}^n \Delta \ln T_{i\omega}^U + \beta_{4i\omega}^n \Delta \ln T_{i\omega}^C \\
+ \beta_{5i\omega}^n \sum_{j \neq CH,US,i} \Delta \ln T_{j\omega}^U + \beta_{6i\omega}^n \sum_{j \neq CH,US,i} \Delta \ln T_{j\omega}^C + \eta_{i\omega}^n
\]

- \(\eta_{i\omega}^n \): other goods prices, factor prices, aggregate demand shifts

\[
\eta_{i\omega}^n = \left(\sum_{n' \in I} \frac{X_{i\omega}^{n'}}{X_{i\omega}} \, \hat{E}_{i\omega} - \hat{A}_{ij} \right) b_i^j \sigma_{ii} + \sum_{i' = US,CH} \sigma_{CHi}^j \hat{p}_{i'\omega} + \sigma_{RW}^j \sum_{i' \neq i} \hat{p}_{i'\omega} \\
\times \frac{1}{s_{i\omega}^n} + \hat{E}_{i\omega}
\]

- vanishes with
 - Cobb-Douglas product-level shifters
 - \(\sigma_{RW}^j = 0 \) price changes in US and China
 - \(\sigma_{RW}^j = 0 \) cross-substitutions

- implementation: exporter-importer-sector FEs, size controls, assess pre-trends
Impact of US-China Tariffs on Third-Country Exports

Proposition

Given tariff shocks \(\{ T_{i\omega}^n \} \), first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X_{i\omega}^n = \beta_{1i\omega} \Delta \ln T_{CH,\omega}^U + \beta_{2i\omega} \Delta \ln T_{US,\omega}^C + \beta_{3i\omega} \Delta \ln T_{i,\omega}^U + \beta_{4i\omega} \Delta \ln T_{i,\omega}^C + \beta_{5i\omega} \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^U + \beta_{6i\omega} \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^C + \eta_{i\omega}^n
\]

- \(\eta_{i\omega}^n \): other goods prices, factor prices, aggregate demand shifts

\[
\eta_{i\omega}^n = \left(\sum_{n' \in \mathcal{I}} \frac{x_{i\omega}^{n'}}{x_{i\omega}^n} \hat{E}_{\omega}^{n'} - \hat{A}_{ij} \right) b_i^j \sigma_{ii}^j + \sum_{i'=US,CH} \sigma_{j}^{i'CH} \hat{p}_{i'\omega} + \sigma_{RW}^j \sum_{i' \neq i} \hat{p}_{i'\omega} \frac{1}{s_{i\omega}^n} + \hat{E}_{\omega}
\]

- \(\hat{E}_{\omega} \)
- \(\sigma_{ii}^j \)
- \(\sigma_{j}^{i'CH} \)
- \(\sigma_{RW}^j \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
- \(\hat{E}_{\omega} \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
- \(\hat{E}_{\omega} \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
- \(\hat{E}_{\omega} \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
- \(\hat{E}_{\omega} \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
- \(\hat{E}_{\omega} \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
- \(\hat{E}_{\omega} \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
- \(\hat{E}_{\omega} \)
- \(\hat{p}_{i'\omega} \)
- \(b_i^j \)
- \(\sigma_{ij} \)
- \(\hat{A}_{ij} \)
- \(\frac{x_{i\omega}/E_{\omega}}{s_{i\omega}^n} \)
- \(\frac{s_{i\omega}^n}{s_{i\omega}^n} \)
- \(\frac{1}{s_{i\omega}^n} \)
Proposition

When the US imposes a tariff on China in product ω, then:

(i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease)

(ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}}{E_{i\omega}} < b_i < 0$.

Exports:

<table>
<thead>
<tr>
<th>Increase to RW ($\beta_{1i\omega}^{RW} > 0$)</th>
<th>Decrease to US ($\beta_{1i\omega}^{US} < 0$)</th>
<th>Increase to US ($\beta_{1i\omega}^{US} > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease to RW ($\beta_{1i\omega}^{RW} < 0$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Regions Implied by Export Responses

Proposition

When the US imposes a tariff on China in product ω, then:

(i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease)

(ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff

$$\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0.$$
Parameter Regions Implied by Export Responses

Proposition

When the US imposes a tariff on China in product \(\omega \), then:

(i) if \(\sigma_{CHi} > 0 \) (\(\sigma_{CHi} < 0 \)), exports from \(i \) to the US generally increase (decrease)

(ii) if \(\sigma_{CHi} > 0 \) (\(\sigma_{CHi} < 0 \)) and \(\sigma_{ii} < 0 \), exports increase (decrease) from \(i \) to RW iff

\[
\frac{X_{i\omega}}{E_{\omega}} < b_i < 0.
\]

<table>
<thead>
<tr>
<th></th>
<th>Decrease to US ((\beta_{1i\omega}^{US} < 0))</th>
<th>Increase to US ((\beta_{1i\omega}^{US} > 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase to RW ((\beta_{1i\omega}^{RW} > 0))</td>
<td>China substitute ((\sigma_{CHi} > 0))</td>
<td>neg sloping supply ((b_i < 0))</td>
</tr>
<tr>
<td>Decrease to RW ((\beta_{1i\omega}^{RW} < 0))</td>
<td>China substitute ((\sigma_{CHi} > 0))</td>
<td>pos sloping supply ((b_i > 0))</td>
</tr>
</tbody>
</table>
Parameter Regions Implied by Export Responses

Proposition

When the US imposes a tariff on China in product \(\omega \), then:

(i) if \(\sigma_{CHi} > 0 \) \((\sigma_{CHi} < 0) \), exports from \(i \) to the US generally increase (decrease)

(ii) if \(\sigma_{CHi} > 0 \) \((\sigma_{CHi} < 0) \) and \(\sigma_{ii} < 0 \), exports increase (decrease) from \(i \) to RW iff

\[
\frac{X_{i\omega}}{E_{i\omega}} / \sigma_{ii} < b_i < 0.
\]

<table>
<thead>
<tr>
<th>Increase to RW ((\beta^{RW}_{1i\omega} > 0))</th>
<th>Decrease to US ((\beta^{US}_{1i\omega} < 0))</th>
<th>Increase to US ((\beta^{US}_{1i\omega} > 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>China complement ((\sigma_{CHi} < 0)) (\text{pos sloping supply} \ (b_i > 0))</td>
<td>China substitute ((\sigma_{CHi} > 0)) (\text{neg sloping supply} \ (b_i < 0))</td>
<td></td>
</tr>
<tr>
<td>Decrease to RW ((\beta^{RW}_{1i\omega} < 0))</td>
<td>China complement ((\sigma_{CHi} < 0)) (\text{neg sloping supply} \ (b_i < 0))</td>
<td>China substitute ((\sigma_{CHi} > 0)) (\text{pos sloping supply} \ (b_i > 0))</td>
</tr>
</tbody>
</table>
Parameter Regions Implied by Export Responses

Proposition

When the US imposes a tariff on China in product ω, then:

(i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease)
(ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff
$$\frac{X_{i\omega}}{E_{i\omega}} < b_i < 0.$$

<table>
<thead>
<tr>
<th>Increase to RW ($\beta_{1i\omega}^{RW} > 0$)</th>
<th>Decrease to US ($\beta_{1i\omega}^{US} < 0$)</th>
<th>Increase to US ($\beta_{1i\omega}^{US} > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China complement ($\sigma_{CHi} < 0$)</td>
<td>China complement ($\sigma_{CHi} < 0$)</td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
</tr>
<tr>
<td>pos sloping supply ($b_i > 0$)</td>
<td>pos sloping supply ($b_i > 0$)</td>
<td>neg sloping supply ($b_i < 0$)</td>
</tr>
</tbody>
</table>

Same logic applies to Chinese tariffs on US

- In that case, sign of σ_{USi} is revealed
Data

- Global bilateral trade data, 2014:1–2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations
Data

- Global bilateral trade data, 2014:1–2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations

- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T_{CH,\omega}^{US}$: US tariff changes on China in product ω US ITC
 - $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter i US ITC
 - $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
 - $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019
Data

- Global bilateral trade data, 2014:1–2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations

- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T_{CH,\omega}^{US}$: US tariff changes on China in product ω US ITC
 - $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter i US ITC
 - $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
 - $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019

Definitions

- i: exporter
- ω: products (hs6)
- j: 9 sectors
- $\Delta \ln X_{CH\omega}^{US}$: exports from CH to US
Data

- Global bilateral trade data, 2014:1–2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations

- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T_{CH,\omega}^{US}$: US tariff changes on China in product ω US ITC
 - $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter i US ITC
 - $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
 - $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019

- Definitions
 - i: exporter
 - ω: products (hs6)
 - j: 9 sectors
 - $\Delta \ln X_{CH \omega}^{US}$: exports from CH to US

- Aggregate data to 24-month periods, study long differences
 - Examine 2016/17 to 2018/19 export growth in response to tariffs
 - Scale tariffs in proportion to their duration through the 24-month interval
Summary Statistics: World Trade in 2017

<table>
<thead>
<tr>
<th>Industry</th>
<th>Examples</th>
<th>USD</th>
<th>Share</th>
<th>HS6</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery</td>
<td>Engines, computers, cell phones</td>
<td>5,632</td>
<td>0.30</td>
<td>771</td>
<td>0.15</td>
</tr>
<tr>
<td>Materials</td>
<td>Plastics, lumber, stones, glass</td>
<td>2,246</td>
<td>0.12</td>
<td>639</td>
<td>0.12</td>
</tr>
<tr>
<td>Transport</td>
<td>Vehicles, airplanes, parts</td>
<td>2,121</td>
<td>0.11</td>
<td>130</td>
<td>0.02</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Medications, cosmetics, vaccines</td>
<td>1,884</td>
<td>0.10</td>
<td>787</td>
<td>0.15</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Soy beans, wine, coffee, beef</td>
<td>1,617</td>
<td>0.09</td>
<td>899</td>
<td>0.17</td>
</tr>
<tr>
<td>Minerals</td>
<td>Oil, coal, salt, electricity</td>
<td>1,586</td>
<td>0.08</td>
<td>148</td>
<td>0.03</td>
</tr>
<tr>
<td>Metals</td>
<td>Copper, steel, iron, aluminum</td>
<td>1,350</td>
<td>0.07</td>
<td>563</td>
<td>0.11</td>
</tr>
<tr>
<td>Apparel</td>
<td>Footwear, t-shirts, hand bags</td>
<td>1,100</td>
<td>0.06</td>
<td>912</td>
<td>0.18</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Medical devices, furniture, art</td>
<td>1,255</td>
<td>0.07</td>
<td>354</td>
<td>0.07</td>
</tr>
</tbody>
</table>

- 5203 HS6 products classified into 9 sectors

specialization
US Tariff Changes

ΔT^US_{CH} & ΔT^US_i
China Tariff Changes

ΔT_{US}^{CH} & ΔT_{i}^{CH}

Agriculture

Apparel

Chemicals

Machinery

Materials

Metals

Minerals

Miscellaneous

Transport

$\Delta T(CH,US)$ & $\Delta T(CH,i)$
China Exports to US on ΔT^{US}_{CH}

China’s exports to US fall with US tariff

$$\Delta X^{US}_{CH} = \alpha + \beta \Delta T^{US}_{CH} + \epsilon^{US}_{CH}$$

China's Export Value to US

Pre-period: $\beta = -0.12$ (0.29).
China Exports to US on ΔT_{CH}^US

China’s exports to US fall with US tariff

$$\Delta X_{CH\omega}^{US} = \alpha + \beta \Delta T_{CH\omega}^{US} + \epsilon_{CH\omega}^{US}$$

China’s Export Value to US

- 2015-17
- 2017-19

Pre-period: $\beta = -0.12$ (0.29). Post-period: $\beta = -1.34$ (0.27).
US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

$$\Delta X_{US, \omega}^{CH} = \alpha + \beta \Delta T_{US, \omega}^{CH} + \epsilon_{US, \omega}^{CH}$$

US Export Value to China

○ 2015-17

Pre-period: $\beta = 1.87 (0.46)$.
US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

\[
\Delta X_{US,\omega}^{CH} = \alpha + \beta \Delta T_{US,\omega}^{CH} + \epsilon_{US,\omega}^{CH}
\]

US Export Value to China

- 2015-17
- 2017-19

Pre-period: $\beta=1.87$ (0.46). Post-period: $\beta=-2.98$ (0.42).
RW Exports to US on ΔT^US_{CH}

Takeaway 1: RW exports to US increase with US tariff

\[
\Delta X^US_{RW,\omega} = \alpha + \beta \Delta T^US_{CH,\omega} + \epsilon^US_{RW,\omega}
\]

Bystanders' Export Value to US

- 2015-17

Pre-period: $\beta=-0.19$ (0.10).
RW Exports to US on ΔT_{CH}^{US}

Takeaway 1: RW exports to US increase with US tariff

$$\Delta X_{RW,\omega}^{US} = \alpha + \beta \Delta T_{CH}^{US} + \epsilon_{RW,\omega}^{US}$$

Bystanders' Export Value to US

- Pre-period: $\beta = -0.19 (0.10)$
- Post-period: $\beta = 0.31 (0.10)$
RW Exports to CH on \(\Delta T_{US}^{CH} \)

Takeaway 1: RW exports to CH flat with CH tariff

\[
\Delta X_{RW,\omega}^{CH} = \alpha + \beta \Delta T_{US,\omega}^{CH} + \epsilon_{RW,\omega}^{CH}
\]

Bystanders' Export Value to China

- 2015-17

Pre-period: \(\beta = 0.07 \) (0.18).
RW Exports to CH on ΔT^{CH}_{US}

Takeaway 1: RW exports to CH flat with CH tariff

$$\Delta X^{CH}_{RW\omega} = \alpha + \beta \Delta T^{CH}_{US\omega} + \epsilon^{CH}_{RW\omega}$$

Bystanders' Export Value to China

Pre-period: $\beta=0.07$ (0.18). Post-period: $\beta=0.01$ (0.19).
RW Exports to RW on ΔT_{CH}^{US}

Takeaway 1: RW exports to RW increase with US tariff

$$\Delta X_{RW,\omega}^{RW} = \alpha + \beta \Delta T_{CH,\omega}^{US} + \epsilon_{RW,\omega}^{RW}$$

Bystanders’ Export Value to RW

- 2015-17

Pre-period: $\beta = -0.14$ (0.08).
RW Exports to RW on \(\Delta T_{US}^{CH} \)

Takeaway 1: RW exports to RW increase with US tariff

\[
\Delta X^{RW}_{RW,\omega} = \alpha + \beta \Delta T_{CH,\omega}^{US} + \epsilon^{RW}_{RW,\omega}
\]

Bystanders' Export Value to RW

Pre-period: \(\beta=-0.14 \) (0.08). Post-period: \(\beta=0.20 \) (0.08).
RW Exports to RW on ΔT_{CH}^{US}

Takeaway 1: RW exports to RW increase with CH tariff

$$\Delta X_{RW,\omega}^{RW} = \alpha + \beta \Delta T_{US,\omega}^{CH} + \epsilon_{RW,\omega}^{RW}$$

Bystanders' Export Value to RW

Pre-period: $\beta = 0.11$ (0.08).
RW Exports to RW on ΔT_{US}^{CH}

Takeaway 1: RW exports to RW increase with CH tariff

$$\Delta X_{RW\omega}^R = \alpha + \beta \Delta T_{US\omega}^{CH} + \epsilon_{RW\omega}$$

Bystanders' Export Value to RW

Pre-period: $\beta=0.11$ (0.08). Post-period: $\beta=0.29$ (0.08).
Main Specification

- Full specification:

\[
\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH}
+ \alpha_{ij}^n + \Omega^n SIZE_{i\omega} + \pi^n \Delta \ln X_{i\omega,t-1}^n + \epsilon_{i\omega}^n,
\]

- \(\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n SIZE_{zi\omega} \quad z = 1, 2, 3, 4 \)
- run separately to destinations \(n = US, CH, RW \)
- country-sector fixed effects, lagged growth controls for pretrends
Main Specification

- Full specification:

\[\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH} \]

\[+ \alpha_{ij}^n + \Omega^n SIZE_{i\omega} + \pi^n \Delta \ln X_{i\omega,t-1}^n + \epsilon_{i\omega}^n, \]

- \(\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zi(\omega)}^n + \Gamma_z^n SIZE_{zi\omega} \quad z = 1, 2, 3, 4 \)
- run separately to destinations \(n = US, CH, RW \)
- country-sector fixed effects, lagged growth controls for pretrends
- \(SIZE_{zi\omega} \) contains three proxies:
 - share US (or CH) imports in global imports in \(\omega \)
 - share of exporter \(i \) exports in global imports in \(\omega \)
 - share of variety \(i\omega \) in destination \(n \) imports
Main Specification

- Full specification:

\[\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH} + \alpha_{ij}^n + \Omega^n \text{SIZE}_{i\omega} + \pi^n \Delta \ln X_{i\omega,t-1}^n + \epsilon_{i\omega}^n, \]

- \(\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n \text{SIZE}_{zi\omega} \quad z = 1, 2, 3, 4 \)
- run separately to destinations \(n = US, CH, RW \)
- country-sector fixed effects, lagged growth controls for pretrends
- \(\text{SIZE}_{zi\omega} \) contains three proxies:
 - share US (or CH) imports in global imports in \(\omega \)
 - share of exporter \(i \) exports in global imports in \(\omega \)
 - share of variety \(i\omega \) in destination \(n \) imports

- Predicted values:

\[\Delta \ln \hat{X}_{iWD}^n = \sum_{\omega} \sum_n \lambda_{i\omega}^n \left(\beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH} \right) \]

- \(\lambda_{i\omega}^n \) pre-war export shares of variety \(i\omega \) in total exports of \(i \) to \(n \)
Relative Export Growth in Targeted Products

Takeaway 2: Large Heterogeneity in Predicted Exporter Growth

90/10 bootstrapped error bars
Decomposing Relative Exports, \(\beta^n_{zi,\omega} = \beta^n_{zi} + \beta^n_{zj(\omega)} + \Gamma^n_z SIZE_{zi,\omega} \)

Takeaway 3: Importance of Country Component

![Graph showing the relationship between ΔX(i), Full Heterogeneity and Δβ(zi,ω) with different configurations: Homogenous Response, Sector Component Only, Size Component Only, and Country Component Only.](image)
Decomposing Relative Exports, \(\beta_{zi\omega} = \beta_{zi} + \frac{\beta_{zi}}{\beta_{zi} - \beta_{zi}} \times \frac{\text{SIZE}_{zi}}{\text{SIZE}_{zi}} \)

Takeaway 3: Importance of Country Component
Decomposing Relative Exports, \(\beta_{\omega z} = \beta_{z1}^n + \beta_{zj(\omega)}^n + \gamma_{z}^n \text{SIZE}_{z\omega} \)

Takeaway 3: Importance of Country Component
Decomposing Relative Exports, $\beta_{zi}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_{z}^n \text{SIZE}_{zi\omega}$

Takeaway 3: Importance of Country Component
Decomposing Relative Exports, \[\beta_{zi\omega} = \beta_{zi}^{n} + \beta_{zj(\omega)}^{n} + \Gamma_{z}^{n} SIZE_{zi\omega} \]

Takeaway 3: Importance of Country Component
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

\[
\beta(RW,1i) \quad \beta(US,1i)
\]

- Upward supply, CH complement
- Downward supply, CH substitute
- Downward supply, CH complement
- Upward supply, CH substitute
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

\[
\beta(RW,2i) \quad \beta(CH,2i)
\]

- upward supply, US complement
- downward supply, US substitute
- downward supply, US complement
- upward supply, US substitute
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

![Graph showing supply and demand forces](image-url)
Conclusion

- US-China trade war was seen as a major turning point in the globalization era
 - our results do not support this view, at least for the time horizon we analyze
 - several countries increased global exports in products with higher US-China tariffs, relative to non-taxed products

- Future work to uncover the factors driving the country-component of tariff elasticities
Export Response to *US*, *CH*, *RW*, All Coefficients

<table>
<thead>
<tr>
<th></th>
<th>(1) $\Delta \ln X_{i,\omega,t}^{US}$</th>
<th>(2) $\Delta \ln X_{i,\omega,t}^{CH}$</th>
<th>(3) $\Delta \ln X_{i,\omega,t}^{RW}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta T_{CH,\omega}^{US}$ (β_1)</td>
<td>0.39***</td>
<td>-0.81***</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.18)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>$\Delta T_{US,\omega}^{CH}$ (β_2)</td>
<td>0.03</td>
<td>-0.05</td>
<td>0.35***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.20)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$\Delta T_{i,\omega}^{US}$ (β_3)</td>
<td>-1.97***</td>
<td>-0.28</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.26)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>$\Delta T_{i,\omega}^{CH}$ (β_4)</td>
<td>-0.13</td>
<td>-1.45***</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.40)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>Pre-trend control?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country \times Sector FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R2</td>
<td>0.07</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>N</td>
<td>102,901</td>
<td>90,128</td>
<td>223,556</td>
</tr>
</tbody>
</table>
Robustness: RW to RW

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta T_{US, \omega}^{US}$ (β_1)</td>
<td>0.15</td>
<td>0.14*</td>
<td>0.12</td>
<td>0.33***</td>
<td>0.14</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.09)</td>
<td>(0.11)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>$\Delta T_{US, \omega}^{CH}$ (β_2)</td>
<td>0.35***</td>
<td>0.33***</td>
<td>0.29***</td>
<td>0.37***</td>
<td>0.35***</td>
<td>0.33***</td>
<td>0.34***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.07)</td>
<td>(0.08)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$\Delta T_{i, \omega}^{US}$ (β_3)</td>
<td>-0.16</td>
<td>-0.15</td>
<td>0.01</td>
<td>-0.62**</td>
<td>-0.14</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.24)</td>
<td>(0.14)</td>
<td>(0.12)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>$\Delta T_{i, \omega}^{CH}$ (β_4)</td>
<td>-0.19</td>
<td>-0.20</td>
<td>-0.00</td>
<td>0.76***</td>
<td>-0.21</td>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.19)</td>
<td>(0.20)</td>
<td>(0.27)</td>
<td>(0.20)</td>
<td>(0.18)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Pre-trend control</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>cty-ind9</td>
<td>cty-ind9</td>
<td>cty-ind9</td>
<td>cty-hs2</td>
<td>ind9</td>
<td>cty</td>
<td>none</td>
</tr>
<tr>
<td>Winsorized</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>R2</td>
<td>.11</td>
<td>.097</td>
<td>.009</td>
<td>.14</td>
<td>.099</td>
<td>.1</td>
<td>.098</td>
</tr>
<tr>
<td>N</td>
<td>223,556</td>
<td>223,556</td>
<td>223,556</td>
<td>223,552</td>
<td>223,556</td>
<td>223,556</td>
<td>223,556</td>
</tr>
<tr>
<td>Exporters</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

Outcome is the log change in bystander countries' exports to countries other than the US and China. Column 1 is the baseline specification. Column 2 winsorizes the top and bottom 1% of the outcome. Column 3 excludes the pre-trend control. Columns 4-7 show robustness to alternative fixed effects: respectively, country-hs2, industry only, country only, and none.
Framework Details

- In country i, a bundle K_{ij} of inputs is used in tradeable sector j.

- Each unit $k \in K_{ij}$ solves:

$$\max_{\omega} \max_x \left(p_{i\omega} z_{i\omega} e_k^0 \right)^{1-\alpha_j^l} x^{\alpha_j^l} - c_{ij}^l x,$$

 - $z_{i\omega} = Z_{i\omega} K_{i\omega}^{\gamma_i}$ captures scale effects.
 - e_k^ω is distributed Frechet with shape parameter ε_i.
 - c_{ij}^l is the cost of intermediates.

- Yields $X_{i\omega} \equiv A_{ij} p_{i\omega}^{b_i} Z_{i\omega}$ where

$$A_{ij} \equiv \left(\frac{c_{ij}^l}{\alpha_j^l} \right)^{\frac{\alpha_j^l}{\alpha_j^l-1}} K_{ij}^{\frac{1}{b_i \varepsilon_i}} r_{ij}^{\frac{b_i-1}{b_i}}$$

 where

$$r_{ij}^{\varepsilon_i} = \sum_{\omega \in \Omega^i} p_{i\omega} \left(\frac{c_{ij}^l/\alpha_j^l}{\alpha_j^l-1} \right)^{\frac{\alpha_j^l}{\alpha_j^l-1}} z_{i\omega}^0$$
China Exports to US on ΔT_{CH}^{US}

China’s exports to US fall with US tariff

\[\Delta X_{CH}^{US} = \alpha_j + \beta \Delta T_{CH}^{US} + \epsilon_{CH}^{US} \]

China’s Export Value to US

- 2015-17
- 2017-19

Pre-period: $\beta = 0.02$ (0.30). Post-period: $\beta = -1.58$ (0.2¢)
US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

$\Delta X_{US \omega}^{CH} = \alpha_j + \beta \Delta T_{US \omega}^{CH} + \epsilon_{US \omega}^{CH}$

US Export Value to China

- □ 2015-17
- ● 2017-19

Pre-period: $\beta=2.26 (0.48)$. Post-period: $\beta=-3.18 (0.44)$.
RW Exports to US on ΔT_{CH}^{US}

Takeaway 1: RW exports to US increase with US tariff

$$\Delta X_{RW,\omega}^{US} = \alpha_{ij} + \beta \Delta T_{CH,\omega}^{US} + \epsilon_{RW,\omega}^{US}$$

Bystanders' Export Value to US

![Graph showing the relationship between $\Delta \ln X(US,i)$ and $\Delta \ln T(US,CH)$ with data points for 2015-17 and 2017-19.]

Pre-period: $\beta=-0.12$ (0.11). Post-period: $\beta=0.20$ (0.11).
RW Exports to CH on ΔT_{US}^{CH}

Takeaway 1: RW exports to CH flat with CH tariff

$$\Delta X_{RW\omega}^{CH} = \alpha_{ij} + \beta \Delta T_{US\omega}^{CH} + \epsilon_{RW\omega}^{CH}$$

Bystanders' Export Value to China

Pre-period: $\beta = -0.01$ (0.18). Post-period: $\beta = -0.06$ (0.20).
RW Exports to RW on ΔT^{US}_{CH}

Takeaway 1: RW exports to RW increase with US tariff

$$\Delta X_{RW}^R = \alpha_{ij} + \beta \Delta T^{US}_{CH} + \epsilon_{RW}^{R}$$

Bystanders' Export Value to RW

Pre-period: $\beta = 0.00$ (0.09). Post-period: $\beta = 0.15$ (0.09).
RW Exports to RW on ΔT_{US}^{CH}

Takeaway 1: RW exports to RW increase with CH tariff

$$\Delta X_{RW;\omega}^{RW} = \alpha_{ij} + \beta \Delta T_{US;\omega}^{CH} + \epsilon_{RW;\omega}^{RW}$$

Bystanders' Export Value to RW

![Graph showing the relationship between $\Delta \ln X(RW,i)$ and $\Delta \ln T(CH,US)$]

Pre-period: $\beta = 0.12 (0.08)$. Post-period: $\beta = 0.30 (0.08)$.

back
Export Growth Correlates

- Distance to US
- Distance to CH
- GDP
- Trade Agreement Trade Share
- FDI stock