Global Reallocations in the US-China Trade War

Pablo D. Fajgelbaum\(\Pi^\diamond\) Penny K. Goldberg\(\dagger^\diamond\)
Patrick J. Kennedy\(\dagger\) Amit K. Khandelwal\(\dagger^\diamond\) Daria Taglioni\(\pm\)

\(\Pi\) UCLA, \(\dagger\) Yale, \(\dagger\) Berkeley, \(\pm\) World Bank, \(\diamond\) NBER

December 2023
Motivation

- In 2018-19, US-China engaged in a trade war, taxing $450b of annual trade
 - thousands of goods tariffed, avg US tariffs from about 4% to 25%
 - US and China tariffs targeted 3.6% of US GDP and 5.5% of China GDP

- This paper: How are bystanders' exports affected?
Motivation

- In 2018-19, US-China engaged in a trade war, taxing $450b of annual trade
 - thousands of goods tariffed, avg US tariffs from about 4% to 25%
 - US and China tariffs targeted 3.6% of US GDP and 5.5% of China GDP

- This paper: How are bystanders' exports affected?

- Trade war is a natural experiment to understand the key forces driving world trade
 - Substitution/complementarities?
 - Scale?
 - Specialization?
This Paper

1. Framework to guide empirical analysis that captures these elements
2. Estimate impacts of tariffs on bystanders’ exports to US, CH, rest of world (RW)
3. Examine possible forces driving the responses
This Paper

1. Framework to guide empirical analysis that captures these elements
2. Estimate impacts of tariffs on bystanders’ exports to US, CH, rest of world (RW)
3. Examine possible forces driving the responses

Method:
- model motivates product-level regressions to estimate impact of trade-war tariffs on countries’ exports
- ...allowing for country-, sector-, and size-specific tariff responses
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and
 - MEX, TWN, COL, UKR operate along downward supply
 - MEX, TWN: beneficiaries bc they substitute US and China
 - COL, UKR: not beneficiaries bc they complement US and China
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities

⋆ MEX, TWN: beneficiaries bc they substitute US and China
⋆ COL, UKR: not beneficiaries bc they complement US and China
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 ▶ trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tarifed products (relative to untaxed)
 ▶ avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 ▶ sd is just 1.4% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 80.5% of export growth variation
 ▶ size and sector component of tariff elasticities account for rest

⋆ MEX, TWN: beneficiaries bc they substitute US and China
 ⋆ COL, UKR: not beneficiaries bc they complement US and China
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 ▶ trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 ▶ avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 ▶ sd is just 1.4% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 80.5% of export growth variation
 ▶ size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 ▶ countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 ▶ MEX, TWN, COL, UKR operate along downward sloping supply
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 - MEX, TWN, COL, UKR operate along downward sloping supply
 - MEX, TWN: beneficiaries bc they substitute US and China
Findings

1. Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations

2. Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities

3. Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest

4. Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 - MEX, TWN, COL, UKR operate along downward sloping supply
 - MEX, TWN: beneficiaries bc they substitute US and China
 - COL, UKR: not beneficiaries bc they complement US and China
Related Literature

- **Interdependency across export destinations**
 - Morales et al 19, Alfaro et al 23, Alumnia et al 18, Mau 17, Flaaen et al 20, Albornoz et al 21

- **Cross-country variation in trade elasticities**
 - Anderson VW 03, Eaton Kortum 02, Costinot et al 12, Caliendo Parro 15, Adao et al 17, Lind Ramondo 18

- **Scale economies**
 - Antweiler Trefler 02, Costinot et al 19, Bartelme et al 19, Lashkaripir Lugovskyy 22

- **US-China Trade War**
 - Amiti et al. 19, Fajgelbaum et al. 20, Cavallo et al. 21, Flaaen et al. 20, Flaaen Pierce 19, Waugh 19
Framework

- Ricardian-Armington trade model
- Translog aggregator of varieties (origins) of product ω from sector j in country n:

$$s^n_{i\omega} = a^n_{i\omega} + \sum_{i' \in I} \sigma^j_{i'i} \ln p^n_{i'i\omega}$$

- with prices $p^n_{i'i\omega} = \tau^n_{i'i\omega} T^n_{i\omega} p_{i'i\omega}$
- $\sigma^j_{iCH}, \sigma^j_{iUS}$ capture i’s substitution with CH and US
- assume $\sigma^j_{i'i} = \sigma^j_{RW}$ for $i' \neq i$ and $i \neq US, CH$
Framework

- Ricardian-Armington trade model

- Translog aggregator of varieties (origins) of product ω from sector j in country n:
 \[
 s_{i\omega}^n = a_{i\omega}^n + \sum_{i' \in I} \sigma_{i'i}^j \ln p_{i'\omega}^n
 \]
 - with prices $p_{i'\omega}^n = \tau_{i'\omega}^n T_{i\omega} p_{i'\omega}$
 - $\sigma_{iCH}^j, \sigma_{iUS}^j$ capture i's substitution with CH and US
 - assume $\sigma_{i'i}^j = \sigma_{RW}^j$ for $i' \neq i$ and $i \neq US, CH$

- Supply (sales) curve of exporter i of product ω:
 \[
 X_{i\omega} \equiv A_{ij} p_{i\omega} Z_{i\omega}
 \]
 - A_{ij}: endogenous sector (j)-level cost shifters (ie, wages, input costs)
 - $Z_{i\omega}$ exogenous cost shifter
 - $b_i = \frac{1}{\epsilon_i} - \gamma_i$, where ϵ_i reflects factor mobility & γ_i reflects scale

- Equilibrium: prices $\{p_{i\omega}\}$ such that goods markets clear
Impact of US-China Tariffs on Third-Country Exports

Proposition

Given tariff shocks \{T_{i\omega}^n\}, first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH} \\
+ \beta_{5i\omega}^n \sum_{j \neq \text{CH,US},i} \Delta \ln T_{j,\omega}^{US} + \beta_{6i\omega}^n \sum_{j \neq \text{CH,US},i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i\omega}^n
\]

.
Impact of US-China Tariffs on Third-Country Exports

Proposition

Given tariff shocks \(\{ T_{i,\omega}^n \} \), first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X_{i,\omega}^n = \beta_{1i,\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i,\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i,\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i,\omega}^n \Delta \ln T_{i,\omega}^{CH} \\
+ \beta_{5i,\omega}^n \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{US} + \beta_{6i,\omega}^n \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i,\omega}^n
\]

- \(\beta_{1i,\omega}^n \): tariff response to US tariff on China:
 \[
 \beta_{1i,\omega}^n \equiv \left(1_{n=US} + \frac{E_{\omega}^{US}}{E_{\omega}} \frac{1}{\frac{X_{i,\omega}/E_{\omega}}{b_i \sigma_{ii}^j} - 1} \right) \frac{\sigma_{CHi}^j}{s_{i,\omega}^n}
 \]

 - substitutability: \(\sigma_{CHi}^j \)
 - scale: \(b_i \sigma_{ii}^j \)
 - size: \(\frac{E^n_{\omega}}{E_{\omega}}, \frac{X_{i,\omega}}{E_{\omega}}, \frac{X^n_{i,\omega}}{E_{\omega}} \)
Proposition

Given tariff shocks \(\{ T_{i\omega}^n \} \), first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH} + \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{US} + \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i\omega}^n
\]

- \(\eta_{i\omega}^n \): other goods prices, factor prices, aggregate demand shifts

\[
\eta_{i\omega}^n = \left(\sum_{n' \in I} \frac{X_{i\omega}^{n'}}{X_{i\omega}} \hat{E}_{n'} - \hat{A}_{ij} \right) b_i^j \sigma_{ii}^j + \sum_{i' = US,CH} \sigma_{CHi}^j \hat{p}_{i'\omega} + \sigma_{RW}^j \sum_{i' \neq i} \hat{p}_{i'\omega} \frac{1}{s_{i\omega}^n} + \hat{E}_{\omega}
\]

- vanishes with
 - Cobb-Douglas product-level shifters
 - \(\rightarrow 0 \) price changes in US and China
 - \(\rightarrow 0 \) cross-substitutions (\(\sigma_{RW}^j = 0 \))

- implementation: exporter-importer-sector FEs, size controls, assess pre-trends
Impact of US-China Tariffs on Third-Country Exports

Proposition

Given tariff shocks \(\{ T_{n \omega} \} \), first-order approximation around an arbitrary initial equilibrium:

\[
\Delta \ln X^n_{i \omega} = \beta^n_{1i \omega} \Delta \ln T_{CH, \omega} + \beta^n_{2i \omega} \Delta \ln T_{US, \omega} + \beta^n_{3i \omega} \Delta \ln T_{i, \omega} + \beta^n_{4i \omega} \Delta \ln T_{CHi, \omega} + \beta^n_{5i \omega} \sum_{j \neq CH, US, i} \Delta \ln T_{j, \omega} + \beta^n_{6i \omega} \sum_{j \neq CH, US, i} \Delta \ln T_{j, \omega} + \eta^n_{i \omega}
\]

- \(\eta^n_{i \omega} \): other goods prices, factor prices, aggregate demand shifts

\[
\eta^n_{i \omega} = \frac{\left(\sum_{n' \in I} \frac{X^n_{i \omega}}{X^n_{i \omega}} \hat{E}^n_{i \omega} - \hat{A}_{ij} \right) b^i_j \sigma^j_{ii} + \sum_{i' = US, CH} \sigma^j_{CHi} \hat{p}^{i'}_{i \omega} + \sigma^j_{RW} \sum_{i' \neq i} \hat{p}^{i'}_{i \omega}}{1 - \frac{\sigma^j_{ii} b^i_j}{X^n_{i \omega} / E_{i \omega}}} \cdot \frac{1}{s^n_{i \omega}} + \hat{E}^n_{i \omega}
\]

- \(\Delta \ln X^n_{i \omega} \) vanishes with
 - Cobb-Douglas product-level shifters
 - \(\rightarrow 0 \) price changes in US and China
 - \(\rightarrow 0 \) cross-substitutions \((\sigma^j_{RW} = 0) \)

- Implementation: exporter-importer-sector FEs, size controls, assess pre-trends

Set \(\beta_5 = \beta_6 = 0 \) because of lack of tariff variation
Proposition

When the US imposes a tariff on China in product ω, then:

(i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease)

(ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff

\[
\frac{X_{i\omega}/E_\omega}{\sigma_{ii}} < b_i < 0.
\]

<table>
<thead>
<tr>
<th>Exports:</th>
<th>Decrease to US ($\beta_{1i\omega}^{US} < 0$)</th>
<th>Increase to US ($\beta_{1i\omega}^{US} > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase to RW ($\beta_{1i\omega}^{RW} > 0$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decrease to RW ($\beta_{1i\omega}^{RW} < 0$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Regions Implied by Export Responses

Proposition

When the US imposes a tariff on China in product ω, then:

(i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease)

(ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}}{E_{\omega}} < b_i < 0$.

<table>
<thead>
<tr>
<th></th>
<th>Decrease to US ($\beta_{1i\omega}^{US} < 0$)</th>
<th>Increase to US ($\beta_{1i\omega}^{US} > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase to RW ($\beta_{1i\omega}^{RW} > 0$)</td>
<td></td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
</tr>
<tr>
<td>Decrease to RW ($\beta_{1i\omega}^{RW} < 0$)</td>
<td></td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
</tr>
</tbody>
</table>
Proposition

When the US imposes a tariff on China in product ω, then:

(i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease)

(ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0$.

<table>
<thead>
<tr>
<th>Increase to RW ($\beta_{1i\omega}^{RW} > 0$)</th>
<th>Decrease to US ($\beta_{1i\omega}^{US} < 0$)</th>
<th>Increase to US ($\beta_{1i\omega}^{US} > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
</tr>
<tr>
<td>neg sloping supply ($b_i < 0$)</td>
<td>neg sloping supply ($b_i < 0$)</td>
<td>pos sloping supply ($b_i > 0$)</td>
</tr>
<tr>
<td>Decrease to RW ($\beta_{1i\omega}^{RW} < 0$)</td>
<td>Decrease to RW ($\beta_{1i\omega}^{RW} < 0$)</td>
<td>Decrease to RW ($\beta_{1i\omega}^{RW} < 0$)</td>
</tr>
</tbody>
</table>
Parameter Regions Implied by Export Responses

Proposition

When the US imposes a tariff on China in product ω, then:

(i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease)

(ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}}{E_{\omega}}/\sigma_{ii} < b_i < 0$.

Exports:

<table>
<thead>
<tr>
<th>Increase to RW ($\beta_{1i\omega}^{RW} > 0$)</th>
<th>Decrease to US ($\beta_{1i\omega}^{US} < 0$)</th>
<th>Increase to US ($\beta_{1i\omega}^{US} > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China complement ($\sigma_{CHi} < 0$)</td>
<td>China complement ($\sigma_{CHi} < 0$)</td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
</tr>
<tr>
<td>pos sloping supply ($b_i > 0$)</td>
<td>pos sloping supply ($b_i > 0$)</td>
<td>neg sloping supply ($b_i < 0$)</td>
</tr>
<tr>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
<td>pos sloping supply ($b_i > 0$)</td>
</tr>
<tr>
<td>neg sloping supply ($b_i < 0$)</td>
<td>neg sloping supply ($b_i < 0$)</td>
<td>neg sloping supply ($b_i < 0$)</td>
</tr>
</tbody>
</table>
Parameter Regions Implied by Export Responses

Proposition

When the US imposes a tariff on China in product ω, then:
(i) if $\sigma_{CHi} > 0 \ (\sigma_{CHi} < 0)$, exports from i to the US generally increase (decrease)
(ii) if $\sigma_{CHi} > 0 \ (\sigma_{CHi} < 0)$ and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff
$$\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0.$$

<table>
<thead>
<tr>
<th>Increase to RW ($\beta_{1i\omega}^{RW} > 0$)</th>
<th>Decrease to US ($\beta_{1i\omega}^{US} < 0$)</th>
<th>Increase to US ($\beta_{1i\omega}^{US} > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China complement ($\sigma_{CHi} < 0$)</td>
<td>China complement ($\sigma_{CHi} < 0$)</td>
<td>China substitute ($\sigma_{CHi} > 0$)</td>
</tr>
<tr>
<td>pos sloping supply ($b_i > 0$)</td>
<td>pos sloping supply ($b_i > 0$)</td>
<td>neg sloping supply ($b_i < 0$)</td>
</tr>
<tr>
<td>neg sloping supply ($b_i < 0$)</td>
<td>neg sloping supply ($b_i < 0$)</td>
<td>pos sloping supply ($b_i > 0$)</td>
</tr>
</tbody>
</table>

● Same logic applies to Chinese tariffs on US
 ▶ In that case, sign of σ_{USi} is revealed
Data

- Global bilateral trade data, 2014:1–2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations
Data

Global bilateral trade data, 2014:1–2019:12 Comtrade
- Top 50 countries, 95.9% of world trade
- US, CH, RW as destinations

Statutory tariff schedules, 2018:1–2019:12
- $\Delta T_{CH,\omega}^{US}$: US tariff changes on China in product ω US ITC
- $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter i US ITC
- $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
- $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019
Data

- Global bilateral trade data, 2014:1–2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations

- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T_{US}^{CH,\omega}$: US tariff changes on China in product ω US ITC
 - $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter i US ITC
 - $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
 - $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019

- Definitions
 - i: exporter
 - ω: products (hs6)
 - j: 9 sectors
 - $\Delta \ln X_{CH\omega}^{US}$: exports from CH to US
Data

- Global bilateral trade data, 2014:1–2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations

- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T^{US}_{CH,\omega}$: US tariff changes on China in product ω US ITC
 - $\Delta T^{US}_{i,\omega}$: US tariffs changes on exporter i US ITC
 - $\Delta T^{CH}_{US,\omega}$: China tariffs changes on US China MoF
 - $\Delta T^{CH}_{i,\omega}$: China MFN tariffs (ex USA) Bown et al. 2019

- Definitions
 - i: exporter
 - ω: products (hs6)
 - j: 9 sectors
 - $\Delta \ln X^{US}_{CH,\omega}$: exports from CH to US

- Aggregate data to 24-month periods, study long differences
 - Examine 2016/17 to 2018/19 export growth in response to tariffs
 - Scale tariffs in proportion to their duration through the 24-month interval
Summary Statistics: World Trade in 2017

<table>
<thead>
<tr>
<th>Industry</th>
<th>Examples</th>
<th>USD</th>
<th>Share</th>
<th>HS6</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery</td>
<td>Engines, computers, cell phones</td>
<td>5,632</td>
<td>0.30</td>
<td>771</td>
<td>0.15</td>
</tr>
<tr>
<td>Materials</td>
<td>Plastics, lumber, stones, glass</td>
<td>2,246</td>
<td>0.12</td>
<td>639</td>
<td>0.12</td>
</tr>
<tr>
<td>Transport</td>
<td>Vehicles, airplanes, parts</td>
<td>2,121</td>
<td>0.11</td>
<td>130</td>
<td>0.02</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Medications, cosmetics, vaccines</td>
<td>1,884</td>
<td>0.10</td>
<td>787</td>
<td>0.15</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Soy beans, wine, coffee, beef</td>
<td>1,617</td>
<td>0.09</td>
<td>899</td>
<td>0.17</td>
</tr>
<tr>
<td>Minerals</td>
<td>Oil, coal, salt, electricity</td>
<td>1,586</td>
<td>0.08</td>
<td>148</td>
<td>0.03</td>
</tr>
<tr>
<td>Metals</td>
<td>Copper, steel, iron, aluminum</td>
<td>1,350</td>
<td>0.07</td>
<td>563</td>
<td>0.11</td>
</tr>
<tr>
<td>Apparel</td>
<td>Footwear, t-shirts, hand bags</td>
<td>1,100</td>
<td>0.06</td>
<td>912</td>
<td>0.18</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Medical devices, furniture, art</td>
<td>1,255</td>
<td>0.07</td>
<td>354</td>
<td>0.07</td>
</tr>
</tbody>
</table>

- 5203 HS6 products classified into 9 sectors
China Tariff Changes

ΔT_{US}^{CH} & ΔT_{i}^{CH}

- Agriculture
- Apparel
- Chemicals
- Machinery
- Materials
- Metals
- Minerals
- Miscellaneous
- Transport
China Exports to US on ΔT_{CH}^{US}

China’s exports to US fall with US tariff

$$\Delta X_{CH}^{US} = \alpha + \beta \Delta T_{CH}^{US} + \epsilon_{CH}^{US}$$

Panel A
China’s Export Value to US

<table>
<thead>
<tr>
<th>Δln $X_{US,CH}$</th>
<th>Δ ln $T_{US,CH}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.4</td>
<td>0.05</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

Pre-period: $\beta = -0.12$ (0.29).
China Exports to US on ΔT_{US}^{CH}

China's exports to US fall with US tariff

$$\Delta X_{CH}^{US} = \alpha + \beta \Delta T_{CH}^{US} + \epsilon_{CH}^{US}$$

Panel A

China's Export Value to US

<table>
<thead>
<tr>
<th>$\Delta \ln X(US,CH)$</th>
<th>Pre-period: $\beta=-0.12$ (0.29). Post-period: $\beta=-1.34$ (0.27).</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>2015-17</td>
</tr>
<tr>
<td>0.1</td>
<td>2017-19</td>
</tr>
<tr>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

Pre-period: $\beta=-0.12$ (0.29). Post-period: $\beta=-1.34$ (0.27).
US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

\[\Delta X_{US\omega}^{CH} = \alpha + \beta \Delta T_{US\omega}^{CH} + \epsilon_{US\omega}^{CH} \]

Panel B

US Export Value to China

Pre-period: $\beta = 1.87$ (0.46).
US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

\[\Delta X_{US\omega}^{CH} = \alpha + \beta \Delta T_{US\omega}^{CH} + \epsilon_{US\omega} \]

Panel B
US Export Value to China

<table>
<thead>
<tr>
<th>Δln X(CH,US)</th>
<th>Δln T(CH,US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>0.15</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.15</td>
</tr>
</tbody>
</table>

2015-17: $\beta=1.87$ (0.46). Post-period: $\beta=-2.98$ (0.42).

Pre-period: $\beta=1.87$ (0.46). Post-period: $\beta=-2.98$ (0.42).
Takeaway 1: RW exports to US increase with US tariff

$$\Delta X_{RW,\omega}^{US} = \alpha + \beta T_{CH,\omega}^{US} + \epsilon_{RW,\omega}^{US}$$

Panel A
Bystanders' Export Value to US

Pre-period: $\beta = -0.19$ (0.10).
Takeaway 1: RW exports to US increase with US tariff

\[\Delta X_{RW \omega}^{US} = \alpha + \beta \Delta T_{CH \omega}^{US} + \epsilon_{RW \omega}^{US} \]

Panel A
Bystanders’ Export Value to US

Pre-period: \(\beta = -0.19 \) (0.10). Post-period: \(\beta = 0.31 \) (0.10).
RW Exports to CH on ΔT_{US}^{CH}

Takeaway 1: RW exports to CH flat with CH tariff

$$\Delta X_{RW,\omega}^{CH} = \alpha + \beta \Delta T_{US,\omega}^{CH} + \epsilon_{RW,\omega}^{CH}$$

Panel B

Bystanders' Export Value to China

Pre-period: $\beta = 0.07$ (0.18).
RW Exports to CH on ΔT_{US}^{CH}

Takeaway 1: RW exports to CH flat with CH tariff

$$\Delta X_{RW,\omega}^{CH} = \alpha + \beta \Delta T_{US,\omega}^{CH} + \epsilon_{RW,\omega}^{CH}$$

Panel B
Bystanders' Export Value to China

Pre-period: $\beta=0.07$ (0.18). Post-period: $\beta=0.01$ (0.19).
Takeaway 1: RW exports to RW increase with US tariff

\[\Delta X_{RW,\omega} = \alpha + \beta \Delta T_{US,CH,\omega} + \epsilon_{RW,\omega} \]

Panel C

Bystanders' Export Value to RW

2015-17

Pre-period: \(\beta = -0.14 \) (0.08).
RW Exports to RW on ΔT_{CH}^{US}

Takeaway 1: RW exports to RW increase with US tariff

$$\Delta X_{RW,\omega} = \alpha + \beta \Delta T_{CH,\omega} + \epsilon_{RW,\omega}$$

Panel C
Bystanders' Export Value to RW

<table>
<thead>
<tr>
<th>Δ ln $X(RW,i)$</th>
<th>Δ ln $T(US,CH)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>0.15</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Pre-period: $\beta=-0.14$ (0.08). Post-period: $\beta=0.20$ (0.08).
RW Exports to RW on ΔT_{US}^{CH}

Takeaway 1: RW exports to RW increase with CH tariff

\[\Delta X_{RW,\omega} = \alpha + \beta \Delta T_{US,\omega}^{CH} + \epsilon_{RW,\omega} \]

Panel D
Bystanders’ Export Value to RW

Pre-period: $\beta = 0.11$ (0.08).
Takeaway 1: RW exports to RW increase with CH tariff

\[
\Delta X_{RW}^{\omega} = \alpha + \beta \Delta T_{US}^{CH} + \epsilon_{RW}^{\omega}
\]

Panel D

Bystanders' Export Value to RW

Pre-period: $\beta=0.11$ (0.08). Post-period: $\beta=0.29$ (0.08).
Main Specification

Full specification:

\[\Delta \ln X_{i\omega}^n = \beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH} + \alpha_{ij}^n + \Omega^n \text{SIZE}_{i\omega} + \pi^n \Delta \ln X_{i\omega,t-1}^n + \epsilon_{i\omega}^n, \]

- \(\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zi(\omega)}^n + \Gamma_z^n \text{SIZE}_{zi\omega} \quad z = 1, 2, 3, 4 \)
- run separately to destinations \(n = US, CH, RW \)
- country-sector fixed effects, lagged growth controls for pretrends
Main Specification

- Full specification:

\[
\Delta \ln X^n_{i\omega} = \beta^1_{1i\omega} \Delta \ln T^US_{CH,\omega} + \beta^2_{2i\omega} \Delta \ln T^CH_{US,\omega} + \beta^3_{3i\omega} \Delta \ln T^US_{i,\omega} + \beta^4_{4i\omega} \Delta \ln T^CH_{i,\omega} \\
+ \alpha^n_{ij} + \Omega^n SIZE_{i\omega} + \pi^n \Delta \ln X^n_{i\omega,t-1} + \epsilon^n_{i\omega},
\]

- \(\beta^z_{zi\omega} = \beta^z_{zi} + \beta^z_{zj(\omega)} + \Gamma^n z SIZE_{zi\omega} \quad z = 1, 2, 3, 4 \)
- run separately to destinations \(n = US, CH, RW \)
- country-sector fixed effects, lagged growth controls for pretrends
- \(SIZE_{zi\omega} \) contains three proxies:
 - share US (or CH) imports in global imports in \(\omega \)
 - share of exporter \(i \) exports in global imports in \(\omega \)
 - share of variety \(i\omega \) in destination \(n \) imports
Main Specification

- Full specification:

\[\Delta \ln X_{i\omega}^n = \beta_{1i\omega} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega} \Delta \ln T_{i,\omega}^{CH} \\
+ \alpha_{ij}^n + \Omega^n SIZE_{i\omega} + \pi^n \Delta \ln X_{i\omega,t-1}^n + \epsilon_{i\omega}^n, \]

- \(\beta_{zi\omega} = \beta_{zi}^n + \beta_{zj(\omega)} + \Gamma^n SIZE_{zi\omega} \quad z = 1, 2, 3, 4 \)
- run separately to destinations \(n = US, CH, RW \)
- country-sector fixed effects, lagged growth controls for pretrends

- \(SIZE_{zi\omega} \) contains three proxies:
 - share US (or CH) imports in global imports in \(\omega \)
 - share of exporter \(i \) exports in global imports in \(\omega \)
 - share of variety \(i\omega \) in destination \(n \) imports

- Predicted values:

\[\Delta \ln \hat{X}_{iWD}^n = \sum_{\omega} \sum_n \lambda_{i\omega}^n \left(\beta_{1i\omega}^n \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^n \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^n \ln T_{i,\omega}^{US} + \beta_{4i\omega}^n \Delta \ln T_{i,\omega}^{CH} \right) \]

- \(\lambda_{i\omega}^n \) pre-war export shares of variety \(i\omega \) in total exports of \(i \) to \(n \)
Relative Export Growth in Targeted Products

Takeaway 2: Large Heterogeneity in Predicted Exporter Growth
Decomposing Relative Exports, $\beta^n_{zi\omega} = \beta^n_{zi} + \beta^n_{zj(\omega)} + \Gamma^n_z SIZE_{zi\omega}$

Takeaway 3: Importance of Country Component

- $\Delta X(i)$, Alternative Configurations of $\Delta \beta(ziw)$
- $\Delta X(i)$, Full Heterogeneity
- Homogenous Response
- Sector Component Only
- Size Component Only
- Country Component Only
Decomposing Relative Exports, \(\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n \Gamma_{zi}^n \text{SIZE}_{zi\omega} \)

Takeaway 3: Importance of Country Component

\[
\Delta X(i), \text{Alternative Configurations of } \Delta \beta(zi\omega)
\]

- Homogenous Response
- Sector Component Only
- Size Component Only
- Country Component Only
Decomposing Relative Exports, \(\beta_{zi\omega} = \beta_{zi\omega}^n + \beta_{zi\omega}^n + \Gamma_{zi\omega} \)

Takeaway 3: Importance of Country Component
Decomposing Relative Exports, $\beta_{nzi\omega} = \beta^z_{nzi} + \beta^z_{nzi(\omega)} + \Gamma^z_{n} SIZE_{zi\omega}$

Takeaway 3: Importance of Country Component
Decomposing Relative Exports, $\beta^n_{zi\omega} = \beta^n_{zi} + \beta^n_{zj(\omega)} + \Gamma^n_{z} SIZE_{zi\omega}$

Takeaway 3: Importance of Country Component
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

\[\beta(RW,1i) \]

\[\beta(US,1i) \]

- upward supply, CH complement
- downward supply, CH substitute
- upward supply, CH substitute
- downward supply, CH complement

\[\beta(RW,1i) \]

\[\beta(US,1i) \]
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

[Graph showing the relationship between \(\beta(RW,1i) \) and \(\beta(US,1i) \) for various countries, with upward supply, CH complement, downward supply, CH substitute, and \(\beta \) values indicated for different countries.]
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

The diagram shows the relationship between two variables, \(\beta(RW,2i) \) and \(\beta(CH,2i) \), with axes labeled accordingly. The graph indicates the following:

- **Upward Supply, US Complement**
- **Downward Supply, US Substitute**
- **Downward Supply, US Complement**
- **Upward Supply, US Substitute**

The graph is a coordinate plane with tick marks at intervals to represent the values of \(\beta(RW,2i) \) and \(\beta(CH,2i) \). The axes range from -5 to 5 for both variables.
Supply and Demand Forces
Takeaway 4: Supply and Demand Forces Driving Response

\[
\beta_{(RW,2i)}
\]

\[
\beta_{(CH,2i)}
\]

upward supply, US complement

downward supply, US substitute

downward supply, US complement

upward supply, US substitute

-1.5 -1 -0.5 0 0.5 1 1.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Conclusion

- US-China trade war was seen as a major turning point in the globalization era
 - our results do not support this view, at least for the time horizon we analyze
 - several countries increased global exports in products with higher US-China tariffs, relative to non-taxed products

- Future work to uncover the factors driving the country-component of tariff elasticities
Countries’ Pre-War Export Baskets

Agriculture Apparel Chemicals Machinery Materials Metals Minerals Misc Transport

ARG AUS AUT BEL BGD BGR BRA CAN CHE CHL CHN COL CZE DEU DNK EGY ESP FIN FRA GBR GRD HKG HUN IDN IND

ARG AUS AUT BEL BGD BGR BRA CAN CHE CHL CHN COL CZE DEU DNK EGY ESP FIN FRA GBR GRD HKG HUN IDN IND

back
Export Response to *US*, *CH*, *RW*, All Coefficients

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta \ln X_{i, \omega, t}^{US}$</td>
<td>$\Delta \ln X_{i, \omega, t}^{CH}$</td>
<td>$\Delta \ln X_{i, \omega, t}^{RW}$</td>
</tr>
<tr>
<td>$\Delta T_{CH, \omega}^{US}$ (β_1)</td>
<td>0.21*</td>
<td>-0.84***</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.18)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>$\Delta T_{US, \omega}^{CH}$ (β_2)</td>
<td>-0.02</td>
<td>-0.06</td>
<td>0.35***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.20)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$\Delta T_{i, \omega}^{US}$ (β_3)</td>
<td>-0.59**</td>
<td>-0.12</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.34)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>$\Delta T_{i, \omega}^{CH}$ (β_4)</td>
<td>-0.15</td>
<td>-1.46***</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.40)</td>
<td>(0.20)</td>
</tr>
</tbody>
</table>

Pre-trend control? Yes Yes Yes
Country × Sector FE Yes Yes Yes
R2 0.07 0.08 0.11
N 102,901 90,128 223,556
Robustness: RW to RW

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta T_{CH,\omega}^{US} (\beta_1)$</td>
<td>0.12</td>
<td>0.12</td>
<td>0.10</td>
<td>0.29**</td>
<td>0.11</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.09)</td>
<td>(0.11)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$\Delta T_{US,\omega}^{CH} (\beta_2)$</td>
<td>0.35***</td>
<td>0.32***</td>
<td>0.29***</td>
<td>0.37***</td>
<td>0.34***</td>
<td>0.33***</td>
<td>0.34***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.07)</td>
<td>(0.08)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$\Delta T_{i,\omega}^{US} (\beta_3)$</td>
<td>0.09</td>
<td>0.09</td>
<td>0.26</td>
<td>-0.19</td>
<td>0.12</td>
<td>0.52***</td>
<td>0.54***</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.18)</td>
<td>(0.20)</td>
<td>(0.26)</td>
<td>(0.20)</td>
<td>(0.19)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>$\Delta T_{i,\omega}^{CH} (\beta_4)$</td>
<td>-0.19</td>
<td>-0.20</td>
<td>-0.01</td>
<td>0.73***</td>
<td>-0.21</td>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.19)</td>
<td>(0.20)</td>
<td>(0.27)</td>
<td>(0.20)</td>
<td>(0.18)</td>
<td>(0.18)</td>
</tr>
</tbody>
</table>

Pre-trend control	Yes	Yes	No	Yes	Yes	Yes	Yes
Fixed Effects	cty-ind9	cty-ind9	cty-ind9	cty-hs2	ind9	cty	none
Winsorized	No	Yes	No	No	No	No	No
R2	.11	.097	.009	.14	.099	.1	.098
N	223,556	223,556	223,556	223,552	223,556	223,556	223,556
Exporters	48	48	48	48	48	48	48

Outcome is the log change in bystander countries' exports to countries other than the US and China. Column 1 is the baseline specification. Column 2 winsorizes the top and bottom 1% of the outcome. Column 3 excludes the pre-trend control. Columns 4-7 show robustness to alternative fixed effects: respectively, country-hs2, industry only, country only, and none.
Framework Details

- In country \(i \), a bundle \(K_{ij} \) of inputs is used in tradeable sector \(j \)

- Each unit \(k \in K_{ij} \) solves:

\[
\max_{\omega} \max_{x} \left(p_{i\omega} z_{i\omega}^{0} e_{\omega}^{k} \right)^{1-\alpha_{j}} x^{\alpha_{j}} - c_{ij} x,
\]

- \(z_{i\omega}^{0} = Z_{i\omega} K_{i\omega}^{\gamma_{i}} \) captures scale effects
- \(e_{\omega}^{k} \) is distributed Frechet with shape parameter \(\varepsilon_{i} \)
- \(c_{ij} \) is the cost of intermediates

- Yields \(X_{i\omega} \equiv A_{ij} p_{i\omega}^{b_{i}} Z_{i\omega} \) where

\[
A_{ij} \equiv \left(\frac{c_{ij}}{\alpha_{j}} \right)^{\frac{\alpha_{j}}{\alpha_{j} - 1}} K_{ij}^{\frac{1}{b_{i} \varepsilon_{i}}} r_{ij}^{\frac{b_{i} - 1}{b_{i}}}
\]

where

\[
r_{ij}^{\varepsilon_{i}} = \sum_{\omega \in \Omega_{i}} \left(p_{i\omega} \left(\frac{c_{ij}}{\alpha_{j}} \right)^{\frac{\alpha_{j}}{\alpha_{j} - 1}} z_{i\omega}^{0} \right)^{\varepsilon_{i}}
\]
China Exports to US on ΔT_{CH}^{US}

China’s exports to US fall with US tariff

$$\Delta X_{CH\omega}^{US} = \alpha_j + \beta \Delta T_{CH\omega}^{US} + \epsilon_{CH\omega}^{US}$$

Panel A
China’s Export Value to US

Pre-period: $\beta = 0.02$ (0.30). Post-period: $\beta = -1.58$ (0.29).
US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

\[\Delta X_{US\omega}^{CH} = \alpha + \beta \Delta T_{US\omega}^{CH} + \epsilon_{US\omega}^{CH} \]

Panel B
US Export Value to China

- Pre-period: $\beta = 2.26 (0.48)$.
- Post-period: $\beta = -3.18 (0.44)$.

Pre-period: $\beta = 2.26 (0.48)$. Post-period: $\beta = -3.18 (0.44)$.

[Diagram showing the relationship between change in ln export value and change in ln trade]
RW Exports to US on ΔT_{CH}^{US}

Takeaway 1: RW exports to US increase with US tariff

$$\Delta X_{RW \omega}^{US} = \alpha_{ij} + \beta \Delta T_{CH \omega}^{US} + \epsilon_{RW \omega}^{US}$$

Panel A
Bystanders' Export Value to US

Pre-period: $\beta = -0.12$ (0.11). Post-period: $\beta = 0.20$ (0.11).
RW Exports to CH on ΔT_{US}^{CH}

Takeaway 1: RW exports to CH flat with CH tariff

\[
\Delta X_{RW\omega}^{CH} = \alpha_{ij} + \beta \Delta T_{US\omega}^{CH} + \epsilon_{RW\omega}^{CH}
\]

Panel B

Bystanders’ Export Value to China

Pre-period: $\beta = -0.01 (0.18)$. Post-period: $\beta = -0.06 (0.20)$.

Pre-period: $\beta = -0.01 (0.18)$. Post-period: $\beta = -0.06 (0.20)$.

Panel B

Bystanders’ Export Value to China

Pre-period: $\beta = -0.01 (0.18)$. Post-period: $\beta = -0.06 (0.20)$.
RW Exports to RW on ΔT^US_{CH}

Takeaway 1: RW exports to RW increase with US tariff

$$\Delta X^RW_{\omega} = \alpha_{ij} + \beta \Delta T^US_{Ch\omega} + \epsilon^RW_{\omega}$$

Panel C
Bystanders’ Export Value to RW

$\Delta \ln X(RW,i)$

$\Delta \ln T(US,CH)$

2015-17 2017-19

Pre-period: $\beta=-0.00$ (0.09). Post-period: $\beta=0.15$ (0.09).
Takeaway 1: RW exports to RW increase with CH tariff

\[
\Delta X_{RW\omega} = \alpha_{ij} + \beta \Delta T_{US\omega}^{CH} + \epsilon_{RW\omega}
\]

Panel D

Bystanders' Export Value to RW

Pre-period: \(\beta=0.12\ (0.08)\). Post-period: \(\beta=0.30\ (0.08)\).
Export Growth Correlates

Distance to US
Distance to CH
GDP
Trade Agreement Trade Share
FDI stock

-0.05 0 0.05 0.1
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

beta(RW,1i), beta(US,1i)

beta(RW,2i), beta(CH,2i)

upward supply, complement

downward supply, substitute

downward supply, complement

upward supply, substitute

beta(RW,1i), beta(US,1i)
Supply and Demand Forces

Takeaway 4: Supply and Demand Forces Driving Response

- \(\beta(RW,1i) \), \(\beta(RW,2i) \)
- \(\beta(US,1i) \), \(\beta(CH,2i) \)

- upward supply, complement
- downward supply, substitute

- \(-2 \) to \(2 \)
- \(-10 \) to \(5 \)