
	 1	

Supplementary	Materials		
	
Motivational	context	modulates	prediction	error	response	in	schizophrenia	
	
Jenna	Reinen,	Jared	X.	Van	Snellenberg,	Guillermo	Horga,	Anissa	Abi-Dargham,	
Nathaniel	D.	Daw,	Daphna	Shohamy		
	
	
Reinforcement	Learning	Model	Analyses		
	
Subject	Level	Model.		We	used	a	Q	learning	model	to	estimate	two	parameters	
(learning	rate	𝛼	and	beta	𝛽)	for	each	subject.	Estimation	of	these	parameters	on	a	
trial-by-trial	basis	was	used	to	generate	trial-specific	prediction	error	(𝛿)	
regressors	for	use	with	the	functional	imaging	data.	The	value	of	the	choice	options	
were	modeled	as:		

𝑄! ! =  𝑄! ! +  𝛼 ∗ 𝛿 !  	

𝛿 ! = 𝑓𝑏 𝑡 −  𝑄! !  	

Where	learning	rate	𝛼	is	a	free	learning	rate	parameter.	On	each	trial	(t),	the	model	
can	learn	from	prediction	error	𝛿,	scaled	by	the	learning	rate.	Across	conditions,	
positive	feedback	fb(t)	was	coded	as	1	and	negative	feedback	was	coded	as	-1,	
ensuring	that	any	condition-wise	effects	on	parameters	would	not	be	confounded	by	
feedback	coding.	We	assumed	that	subjects	made	their	choice	c	(0	or	1)	according	to	
the	learned	values	𝑄!(!) at	each	step	using	a	softmax	distribution	with	free	inverse	
temperature	parameter	𝛽1:	
	

𝑃 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎 𝑄!,𝑄! =
exp 𝛽 ∗ 𝑄!

exp 𝛽 ∗ 𝑄! + exp (𝛽 ∗ 𝑄!)
	

	
Critically,	the	ability	to	update	the	cue	value	relies	on	information	in	the	form	of	PE,	
the	difference	between	value	expected	and	outcome	received.	Prediction	error	was	
calculated	as	the	difference	between	the	expected	Q	value	given	choice	at	trial	(t)	
and	the	actual	feedback	(fb)	received.		
	
For	the	parameter	fits	reported	below,	we	use	a	change	of	variables	in	which	𝛼	is	
transformed	by	an	inverse	Gaussian	CDF	(so	that	its	value,	otherwise	bounded	in	
[0,1]	ranges	between	−∞	and	∞	and	group	and	condition	effects	can	be	summed	
along	the	unbounded	real	line),	and	𝛽	is	reparameterized	as	𝛽 ⋅ 𝛼,	which	makes	its	
magnitude	more	stable	under	variation	in	learning	rate.2	
	
Group	Level	Models.	In	order	to	assess	effects	on	the	model	parameters	of	group	
and	condition	(and,	in	subsequent	analyses,	feedback	valence),	we	used	a	multilevel	
mixed	model,	in	which	the	individual	subject	and	condition-specific	parameters	for	
the	above	subject-level	model	were	nested	under	population-level	distributions.	We	
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then	jointly	estimated	individual	and	population-level	parameters,	and	effects	of	
condition	and	disease	on	them.		
	
At	the	population	level,	both	𝛽	and	𝛼	were	drawn	for	each	subject	from	a	Gaussian	
distribution	with	free	mean	and	standard	deviation	parameters	representing	the	
population	tendency	and	across-subject	variation	in	the	parameter.		We	modeled	
separate	group	means	for	patients	vs	controls	by	adding	an	additional	term	to	the	
population	level	mean.	Thus	the	softmax	temperature	for	subject	𝑠 was	drawn	from:	
	

𝛽!~𝑁 𝜇! + 𝑘!∗! ⋅ 𝐼 𝑠, ′𝑝𝑎𝑡𝑖𝑒𝑛𝑡′ ,𝜎! 		
	
where	I	is	a	binary	indicator	of	patient	(1)/control	(0)	status	and	𝑘!∗!	(‘g’	for	group)	
is	a	free	parameter	coding	the	difference	in	mean	softmax	temperature	for	the	
patient	group.	Learning	rate	was	coded	analogously.		
	
The	model	also	included	within-subject	effects	of	condition	on	the	temperature	and	
learning	rate,	such	that	for	condition	𝑐	(1	gain,	0	loss),	𝛽!! = 𝛽! + 𝛽!,!"#$ ⋅ 𝐼 𝑐, ′𝑔𝑎𝑖𝑛′ .	
The	per-subject	condition	effects	𝛽!,!"#$	(representing	the	difference	in	softmax	
temperature	in	the	gain	condition)	were	again	drawn	from	group-level	
distributions,	with	a	mean	and	standard	deviation	and	an	additional	parameter	
capturing	any	differences	in	this	effect	between	patients	and	controls:	
	

𝛽!,!"#$~𝑁 𝜇!∗! + 𝑘!∗!∗! ⋅ 𝐼 𝑠, ′𝑝𝑎𝑡𝑖𝑒𝑛𝑡′ ,𝜎!∗! 		
	
Again,	analogous	condition	effects	were	included	for	the	learning	rate.		
	
All	together,	the	population-level	model	contained	two	means	for	the	learning	
parameters	(𝜇! , 𝜇!  ),	two	means	for	the	condition	effects, (𝜇!∗! , 𝜇!∗!),	four	effects	of	
group	or	group	x	condition	(𝑘!∗!, 𝑘!∗!∗! , 𝑘!∗!, 𝑘!∗!∗!),	and	four	standard	deviations	
(𝜎! ,𝜎!∗! ,𝜎! ,𝜎!∗!).		
	
To	complete	the	model,	we	specified	hyperpriors	on	these	parameters,	which	were	
taken	to	be	uninformative	within	the	range	of	parameters	seen	in	the	literature.		
For	the	softmax	temperature,	hyperpriors	on	the	standard	deviation	terms	were	
taken	as	half-Cauchy(0,2),	and	𝜇𝑠	and	𝑘s	as	N(0,2).		For	the	softmax	temperature,	we	
used	N(0,1)	for	all	parameters	(the	half	of	that	distribution	with	positive	support	for	
variances).	This	was	chosen	so	that	the	a	priori	distribution	over	the	bounded	
subject	level	learning	rate	(when	transformed	by	a	Gaussian	CDF	with	variance	5)	
was	approximately	uniform	in	0,1.	
	
We	also	considered	two	followup	models,	which	augmented	the	aforementioned	
model	by	allowing	for	either	the	learning	rate	(model	2)	or	feedback	scaling	(model	
3)	to	vary	between	trials	with	correct	vs.	incorrect	feedback.	For	model	2,	this	
involved	adding	an	additional	within-subject	factor	𝛼!,!"# 	to	the	learning	rate	(prior	
to	transformation	with	the	Gaussian	CDF)	for	negative	feedback	trials.	This	had	its	
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own	group	level	mean	𝜇!∗!"#,	standard	deviation	𝜎!∗!"# ,	and	interaction	with	group	
𝑘!∗!∗!"# .	For	model	3,	we	instead	rescaled	the	feedback	fb(t)	(1	or	-1)	by	a	within-
subject	factor	𝑓!,!"# 	or	𝑓!,!"# ,	depending	on	the	feedback.	These	were	each	drawn	
from	group-level	distributions	with	means	(𝜇!"# ,	𝜇!"#),	standard	deviations	
(𝜎!"# ,𝜎!"#),	condition	means	(𝜇!"#∗! , 𝜇!"#∗!)	and	standard	deviations	(𝜎!"#∗! ,𝜎!"#∗!),		
and	group	or	group	x	condition	effects	(𝑘!"#∗!, 𝑘!"#∗!, 𝑘!!"∗!∗! , 𝑘!"#∗!∗!).	This	model	
omits	the	softmax	temperature	𝛽	(equivalently,	takes	it	to	be	everywhere	1)	and	the	
associated	group-level	parameters,	because	the	rescaling	of	feedback	terms	has	
equivalent	effect	by	rescaling	the	learned	𝑄.	The	model	also	omitted	condition	and	
group	x	condition	effects	on	the	learning	for	simplicity.		
	
Parameter	Estimation	and	Significance	Testing.	We	estimated	the	model	parameters	
by	using	Markov	Chain	Monte	Carlo	(MCMC)	inference,	implemented	in	the	Stan	
programing	language3,	4.	This	is	a	procedure	which	provides	samples	from	the	
posterior	distribution	over	all	model	parameters	conditional	on	the	observed	
choices.	We	ran	four	chains	of	1000	samples	each,	discarding	the	first	100	samples	
per	chain	for	burnin.	This	approach	is	similar	to	those	used	by	Otto	et	al2	and	Sharp	
et	al5.	We	verified	convergence	and	mixing	of	the	model	by	visual	inspection	of	
traceplots	and	by	examining	the	diagnostic	statistic	𝑟	6,	for	which	values	close	to	1	
are	consistent	with	convergence.	This	value	was	less	than	1.1	for	all	parameters	in	
all	models.	We	also	augmented	Model	1	to	additionally	generate	samples	of	the	per-
subject	and	trial	prediction	errors	𝛿,	which	are	a	function	of	the	learning	rate,	
according	to	its	posterior	distribution.	The	posterior	median	value	of	each	of	these	
samples	was	calculated	and	used	in	our	imaging	analysis	as	the	trial-	and	subject-
unique	parametric	repressor.	We	report	model	likelihoods	for	each	group	in	Table	
S2.		
	
We	used	the	distribution	of	the	samples	to	generate	symmetric	95%	credible	
intervals	(the		range	between	the	2.5th	and	97.5th	percentiles)	for	each	parameter	of	
interest.	We	treated	a	parameter	as	significant	if	zero	lay	outside	this	range.	We	also	
report	“P”	as	one	minus	the	size	of	the	largest	symmetric	credible	interval	that	
excludes	zero7,	which	is	roughly	analogous	to	a	two-tailed	P	value.	
	
Results.	In	Table	S1,	we	report	the	median,	95%	credible	interval,	and	significance	
of	the	group	level	parameter,	estimated	using	MCMC	for	each	of	the	three	models		
Here,	values	of	k	in	bold	indicate	we	can,	with	more	than	95%	confidence,	exclude	
zero	for	the	effect	on	learning.	This	shows	a	significant	effect	of	the	softmax	
temperature	by	group,	which	(in	model	3,	which	divides	it	into	a	separate	scaling	
term	for	correct	vs.	incorrect	feedback),	is	significant	only	for	the	correct	trials.	The	
implications	for	these	findings	are	discussed	within	the	main	text.		

In	addition	to	the	model	described	in	the	manuscript,	the	fits	of	two	followup	
models,	we	examined	whether	the	groupwise	effect	on	learning	might	reflect	a	more	
specific	effect	on	positive	(correct)	or	negative	(incorrect)	feedback	trials.	In	a	
model	(model	2)	where	learning	rate	was	allowed	to	vary	as	a	function	of	feedback	
type,	we	found	no	differences	between	learning	rates	by	trial	type,	nor	any	group	



	 4	

effect	on	this	difference	(P=0.21,	P=0.23);	the	group	effect	on	softmax	temperature	
remained.	However,	in	a	model	where	the	feedback	itself	was	instead	scaled	
separately	on	each	trial	type	(thereby	splitting	up	the	softmax	temperature,	which	
scales	value,	into	separate	components	associated	with	positive	and	negative	
feedback,	model	3),	the	effect	of	group	was	significant	only	for	positive	feedback	
trials	(P=.005),	though	note	that	the	difference	in	effects	between	positive	and	
negative	feedback	trials	was	not,	itself,	significant	(P=.31).	Altogether	these	results	
suggest	that	patients’	choices	were	less	driven	by	feedback;	that	the	effect	was	not	
detectably	related	to	learning	rate;	and	that	the	effect	was	particularly	pronounced	
for	positive	feedback	trials.		

We	also	assessed	the	fit	of	the	model	to	each	subject’s	behavior	by	computing	
the	log-likelihood	of	each	subject’s	choices	using	the	model	as	fit	to	the	remaining	
subjects	(leave	one	out).		We	augmented	the	MCMC	models	to	compute	samples	
from	the	likelihood	of	each	subject's	choices,	according	to	the	distribution	of	model	
parameters	fit	to	the	remaining	subjects	in	a	leave-one-out	procedure.	We	then	took	
the	log	average	of	the	samples	to	compute	expected	per-subject	predictive	log	
likelihoods,	which	we	compared	between	patients	and	controls	using	two-sample	t-
tests,	and	between	models	using	paired-sample	t-tests	over	subjects.	While	there	
was	a	significant	group	difference	in	fit	(t	=	-2.37;	p	=	0.02)	both	groups	fit	better	
than	chance	(patients:	t	=	4.10	p	<	0.001;	controls:	t	=	8.71,	p	<	0.001).	Further,	both	
groups	showed	a	spread	across	likelihoods.	For	this	analysis,	chance	was	calculated	
to	be	-83	(below	chance	being	below	-83).	One	patient	was	at	-83,	and	one	patient	
was	slightly	below	chance,	demonstrating	that,	while	arguably	two	subjects	were	
not	fit	well	by	the	data,	the	majority	of	patient	subjects	were	above	chance	as	
defined	by	the	model.	

Across	subjects,	the	three	models	were	not	significantly	different	from	one	
another	in	terms	of	fit,	reflecting	the	fact	that	they	represented	alternative	
parameterizations	for	the	same	underlying	effect	(Supplementary	Table	S2).		
	
MODEL	1	 Lower	CI	 Posterior	

Median	 Upper	CI	 Bayesian	P	

μ	-	beta	 0.58	 0.74	 0.91	 <0.001	
μ	-	beta*cond	 -0.23	 -0.04	 0.18	 0.65	
μ	-	alpha	 -1.38	 -0.62	 0.21	 0.93	
μ	-	alpha	*	cond	 -1.28	 -0.51	 0.3	 0.9	
k	-	beta	*	group	 -0.68	 -0.44	 -0.21	 <0.001	
k	–	beta	*	group	*	cond	 -0.18	 0.09	 0.37	 0.75	
k	-	alpha	*	group	 -1.67	 -0.49	 0.68	 0.214	
k	-	alpha	*	group	*	cond	 -1.29	 -0.04	 1.27	 0.48	
σ	-	beta	 0.19	 0.27	 0.39	

	σ	-	beta	*	cond	 0.16	 0.28	 0.44	
	σ	-	alpha	

	
1.25	 1.76	 2.45	

	σ	-	alpha*	cond	 0.13	 0.95	 1.8	
		 	 	 	 	MODEL	2	 Lower	CI	 Posterior	

Median	 Upper	CI	 Bayesian	P	

μ	-	beta	 0.58	 0.74	 0.91	 <0.001	
μ	-	beta*cond	 -0.2	 0	 0.23	 0.493	
μ	-	alpha	 -1.16	 -0.3	 0.66	 0.726	
μ	-	alpha	*	cond	 -1.21	 -0.3	 0.6	 0.753	
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μ	-	alpha	*	neg	fb			 -2.07	 -0.98	 0.1	 0.9653	
k	-	beta	*	group	 -0.66	 -0.42	 -0.19	 <0.001	
k	–	beta	*	group	*	cond	 -0.21	 0.08	 0.35	 0.707	
k	-	alpha	*	group	 -1.43	 -0.15	 1.15	 0.405	
k	-	alpha	*	cond	*	group	 -1.35	 0.04	 1.38	 0.523	
k	-	alpha*group	*	neg	fb		 -2.2	 -0.62	 0.99	 0.228	
σ	-	beta	 0.2	 0.29	 0.41	

	σ	-	beta	*	cond	 0.16	 0.29	 0.46	
	σ	-	alpha	

	
0.86	 1.6	 2.38	

	σ	-	alpha*	cond	 0.23	 1.28	 2.23	
	σ	–	alpha	*	neg	fb		 0.29	 1.62	 3	
		 	 	 	 	MODEL	3	 Lower	CI	 Posterior	

Median	 Upper	CI	 Bayesian	P	

μ	-	pos	fb		 0.84	 1.15	 1.5	 <0.001	
μ	-	pos	fb	*	cond	 -0.21	 0.11	 0.43	 0.235	
μ	-	neg	fb		 -0.03	 0.29	 0.56	 0.032	
μ	-	neg	fb	*	cond	 -0.59	 -0.2	 0.22	 0.855	
μ	-	alpha	 -0.52	 -0.25	 0.01	 0.9695	
k	-	pos	fb	*	group	 -1.09	 -0.61	 -0.17	 0.005	
k	-	pos	fb	*	cond	*	group	 -0.34	 0.13	 0.65	 0.7	
k-	neg	fb	*	group	 -0.62	 -0.22	 0.19	 0.133	
k	-	neg	fb	*	cond	*	group		 -0.46	 0.07	 0.62	 0.61	
σ	-	pos	fb		 0.25	 0.45	 0.69	

	σ	-	pos	fb	*	cond	 0.11	 0.39	 0.69	
	σ	-	neg	fb		 0.08	 0.25	 0.48	
	σ	-	neg	fb	*	cond	 0.07	 0.28	 0.59	
	σ	-	alpha	 0.43	 0.65	 0.94	
		

Supplementary	Data	Table	1.		95%	credible	interval	and	posterior	median	are	given	
for	each	group	level	parameter.	Values	were	taken	from	the	distribution	of	samples	
generated	from	Bayesian	statistical	inference	using	an	MCMC	procedure.	Significant	
values	indicate	a	nonzero	effect	with	more	than	95%	confidence.	
	
MODEL		 Mean	 +/-	1	SEM	
Model	1,	Patients	 -64.18	 4.59	
Model	2,	Patients	 -64	 4.64	
Model	3,	Patients	 -64.51	 4.71	
Model	1,	Controls	 -50.12	 3.77	
Model	2,	Controls	 -50.06	 3.79	
Model	3,	Controls	 -50.68	 3.83	
	
Supplementary	Data	Table	2.	Model	likelihoods	for	each	group.		
	

Finally,	to	check	the	success	of	our	parameter	estimation,	we	ran	a	data	
simulation.	We	augmented	the	MCMC	model	to	generate	samples	from	the	per-trial,	
per-subject	simulated	probabilities	of	optimal	choices	(the	so-called	posterior	
predictive	density	over	choices),	in	order	to	compare	simulated	model	behavior	to	
observed	choices.	Our	results	matched	the	actual	data	relatively	well	(see	
Supplementary	Figure	1).	Similar	to	analyses	in	the	actual	data,	an	ANOVA	revealed	
an	effect	of	group	(F=5.36,	p=0.02	but	not	of	condition	(F=9,	p=0.95)	and	no	
interaction	(F=0.75,p=0.38).		
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Supplementary	Data	Figure	1.	Participant	data	versus	data	generated	from	data	
simulation.		
	
Functional	MRI	Preprocessing	Steps		

Functional	images	were	preprocessed	with	SPM8	(Wellcome	Department	of	
Imaging	Neuroscience,	London,	UK)	and	in-house	Matlab	code.	Data	was	converted	
to	a	32-bit	floating	point	precision	Analyze	format	to	reduce	the	impact	of	rounding	
errors,	and	an	in-brain	mask	was	used	to	detect	artifactual	volumes	by	comparing	
global	signal	across	a	sliding	window;	volumes	which	differed	more	than	8	mean	
deviations	from	the	adjacent	volume’s	mean	signal	value	were	subsequently	not	
included	in	analysis.	Functional	images	were	then	slice-time	corrected	and	realigned	
using	INRIAlgin8	to	correct	for	motion.	T1	and	EPI	images	were	realigned	to	match	
templates	from	the	International	Consortium	for	Brain	Imaging	(ICBM),	and	a	six-
parameter	affine	coregistration	technique,	along	with	manual	visual	inspection,	was	
implemented	to	complete	and	check	reorientation	and	coregisration.	T1	images	
were	then	segmented	into	their	tissue	components	(gray	matter,	white	matter,	and	
cerebrospinal	fluid)	and	the	normalization	parameters	generated	in	the	
segmentation	algorithm	were	applied	to	the	coregistered	T1	and	EPI	images.		This	
process	was	checked	visually.	Images	were	then	smoothed	with	an	8mm	Gaussian	
kernel,	which	was	scaled	by	the	first-level	hemodynamic	response	function	(HRF)	
across	runs.	For	more	information	on	these	preprocessing	steps,	see	Van	
Snellenberg	et	al,	2015	9.	

Data	quality	was	assessed	by	examining	global	temporal	signal-to-noise,	as	
well	as	visual	inspection	of	template-normalized	images	(to	ensure	that	
segmentation	and	normalizations	algorithms	functioned	correctly),	and	were	
deemed	to	be	of	sufficient	quality	in	all	cases.	To	assess	movement	for	participants,	
we	calculated	mean	absolute	displacement	for	each	subject	based	on	raw	
measurements.	A	direct	comparison	of	controls	versus	patients	revealed	that	
patients	demonstrated	greater	movement	than	controls	in	the	gain	(t	=	-2.03,	p	=	
0.04)	but	not	the	loss	condition	(t	=	-1.45,	p	=	0.15).	However,	we	account	for	
motion	by	using	motion	as	a	regressor	of	no	interest	in	our	GLM.		
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Exploratory	Analyses		
We	assessed	relationships	between	learning	measures	and	disease	

symptoms	as	an	exploratory	analysis,	given	the	limited	sample	size.	Behaviorally,	
we	examined	whether	there	existed	a	relationship	between	negative	symptoms	with	
learning	performance.	To	determine	whether	working	memory	capacity	is	related	to	
reward	responses	and	learning,	we	examined	correlations	between	working	
memory	performance	on	the	self-ordered	working	memory	task	(SOT)10	and	
learning	performance.	Because	prior	findings	have	reported	that	patients	with	
negative	symptoms	tend	to	be	the	most	impaired	in	terms	of	learning	from	positive	
outcomes	11-13,	we	limited	our	analyses	to	the	gain	condition.	For	the	functional	
imaging	data,	we	examined	whether	PE	responses	during	feedback	in	mPFC	and	
striatum	were	associated	with	these	measures.	To	do	so,	we	extracted	the	beta	
values	from	the	contrast	of	feedback	PE	in	the	gain	>	loss	conditions	in	these	ROIs	in	
patient	subjects.	We	examined	the	Pearson	correlation	between	these	beta	values	
with	performance	and	symptom	measures,	and	then	used	a	two-sample	t-test	to	
determine	whether	beta	values	in	each	of	these	regions	differed	based	on	the	
patients’	medication	history,	i.e.	whether	subjects	were	drug-naïve	or	drug-free	at	
the	time	of	testing	(9	of	16	were	medication	free).	Of	note,	these	analyses	were	
performed	with	a	group	of	16	participants,	and	as	such,	any	inferences	should	be	
taken	with	this	sample	size	in	mind.		

We	first	examined	behavioral	and	neural	relationships	to	learning	
performance.	We	did	not	find	a	relationship	between	PANSS	negative	symptoms	in	
beta	from	Model	1	(r=0.14,	p=0.61)	or	in	Model	2(r=0.20,	p=0.46).		

Similarly,	we	did	not	find	any	significant	relationships	with	optimal	choice	
learning	performance	and	working	memory	performance		(gain	condiiton:	r=0.32,	
p=0.22).	We	also	tested	the	relationship	between	behavioral	performance	and	
PANSS	negative	symptoms,	and	did	not	find	any	relationship	between	them	(optimal	
choice:	r=0.27,	p=0.31,	𝛽:	r=0.14,	p=0.61).	Likewise,	there	was	no	correlation	
between	PANSS	negative	symptoms	and	the	gain	>	loss	feedback	prediction	error	
beta	values	extracted	from	nucleus	accumbens	(r=-0.10,	p=0.71)	or	mPFC	(r=-0.11,	
p=0.68),	or	between	optimal	choice	performance	in	the	gain	condition	and	in	
patients	betas	within	mPFC	(r=-0.34,	p=0.20)	or	in	bilateral	accumbens	(r=-
0.18,p=0.48).		

To	assess	the	effect	of	working	memory	(SOT)	on	prediction	error	response	
in	striatum,	we	used	the	extracted	beta	values	described	above,	and	then	assessed	
this	measure	in	an	analysis	of	covariance	(ANCOVA)	with	a	factor	of	group	to	
determine	if	working	memory	performance	measured	by	the	capacity	estimation	of	
the	self-ordered	working	memory	test	(SOT)10	was	related	to	the	accumbens	beta	
(gain>loss)	response	of	interest.	We	did	not	find	any	significant	effects	of	working	
memory	from	this	analysis	(F(group)	=	0.5,	p	=	0.82,	F(WM)	=	0,	p	=	0.97,	F(group	*	
WM)	=	0.04,	p	=	0.84).			

Finally,	for	group	differences	between	subjects	who	were	medication	naïve	
and	medication	free,	and	found	no	differences	in	the	G-L	beta	in	accumbens	(t(37)		=	-
1.05,	p	=	0.14)	or	in	mPFC	(t(37)		=	-0.67,	p	=0.51).			
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Supplementary	Data	Figure	2.	Reaction	time	by	block	of	20	trials.	Group	average	
reaction	times	were	calculated	for	each	group	of	20	trials	for	patients	(SP)	and	
controls	(SC).	There	was	no	effect	of	block	or	condition,	but	there	was	an	effect	of	
group,	as	patients’	reaction	times	were	slower	than	controls.		
	
	
Analyses	Excluding	Patient	Subjects	With	Model	Fits	at	Chance		
	 Additional	analyses	sought	to	examine	the	data	without	two	patients	who	
performed	at	or	worse	than	chance.	We	find	that	after	removing	the	two	subjects,	
the	pattern	of	positive	and	negative	results	were	largely	similar.	Behaviorally,	the	
analysis	of	optimal	choices	by	group	and	condition	was	as	before:	there	still	existed	
an	overall	effect	of	group	but	not	condition	or	interaction	for	the	optimal	choice	
(F(group)=4.56,	p	=	0.03;	F(condition)	=0.07,	p=0.79;	F(interaction)=0,	p=0.95).	
Effects	on	reaction	time	using	this	subgroup	failed	to	reach	significance	
(F(group)=1.94,	p=0.16;	F(condition)=0.01,	p=0.93;	F(interaction)=0;	p=0.99).	In	
the	model	fits	to	choices,	as	before,	we	still	found	an	effect	of	beta	on	group	
(P<0.001),	but	not	for	beta	by	group	by	condition	(P=0.70),	group	by	learning	rate	
(0.15),	or	learning	rate	by	condition	(0.39).	Corrected	(FWE	at	p	<	0.05)	neural	
results	also	remained	very	similar	(Supplementary	Data	Figure	4)	for	the	key	
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group	x	condition	interaction	effects	in	the	medial	temporal	lobe	(-45,	-24,	-6,	k	=	
139,	t-max	=	4.98).	For	the	group	x	condition	interaction,	the	large	reported	cluster	
on	the	right	was	present	at	uncorrected	thresholds	in	the	subgroup,	but	it	just	failed	
to	survive	whole	brain	correction,	whereas	a	region	in	left	putamen	did	survive	
whole	brain	correction	(-18,	-3,	0,	k	=	12,	t-max	=	2.86).	As	before,	we	also	found	
group	differences	in	the	gain	but	not	loss	condition	in	prefrontal	cortex	(gain	
condition:	6,	57,	-3,	k	=	57,	t-max	=	2.80;	-24,	54,	-6,	k	=	39,	t-max	=	2.72).		
	
	

	
Supplementary	 Data	 Figure	 3.	 Whole-brain	 fMRI	 results	 for	 feedback	 prediction	
error.	Whole-brain	results	were	FWE	corrected	at	p	<	0.05	during	for	the	feedback	
prediction	 error	 learning	 signal	when	 subjects	 learned	 from	 gains	 (a,	 above)	 and	
from	avoiding	losses	(b,	below).		
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Supplementary	 Data	 Figure	 4.	 Whole-brain	 fMRI	 results	 for	 feedback	 prediction	
error	without	2	patient	subjects.	Results	are	whole	brain	corrected	(FWE	p<0.05),	
and	are	consistent	with	findings	within	the	entire	sample.		
	
	
	

Region		
	

	 	

Coordinates	(Peak)	
							X									Y								Z	

K	
	

T-Max	
	 	 	

	

	 	 	 	 	 	 		
Superior	Temporal	Gyrus		 -42	 -21	 -9	 829	 4.93	
Superior	Temporal	Gyrus		 -42	 -21	 -9	 121	 4.93	
Sub-Gyral		 -24	 -18	 -12	 66	 4.12	
Inferior	Temporal	Gyrus		 -54	 -18	 -36	 38	 3.79	
Inferior	Temporal	Gyrus		 -51	 -6	 -42	 42	 3.75	
Middle	Temporal	Gyrus		 -45	 12	 -36	 32	 3.68	
Fusiform	Gyrus		 -39	 -63	 -12	 54	 3.33	
Middle	Temporal	Gyrus		 -54	 0	 -21	 53	 3.32	
Parahippocampal	Gyrus		 -42	 -33	 -6	 62	 3.31	
Fusiform	Gyrus		 -36	 -45	 -15	 62	 3.31	
Inferior	Temporal	Gyrus		 -30	 -6	 -45	 21	 3.26	
Inferior	Temporal	Gyrus		 -39	 -3	 -45	 24	 3.25	
Inferior	Temporal	Gyrus		 -54	 -6	 -30	 36	 3.23	
Fusiform	Gyrus		 -36	 -3	 -21	 94	 3.22	
Culmen	 -15	 -54	 -18	 29	 2.90	
Sub-Gyral		 -45	 -48	 0	 12	 2.70	
Uncus		 -30	 -18	 -33	 17	 2.62	
Uncus		 -27	 -3	 -30	 33	 2.59	
Precuneus		 12	 -51	 39	 472	 4.39	
Precuneus		 12	 -51	 39	 216	 4.39	
Precuneus		 -15	 -66	 30	 60	 3.70	
Precuneus		 6	 -51	 54	 65	 3.36	
Precuneus		 -12	 -45	 30	 34	 3.30	
Precuneus		 -9	 -54	 39	 68	 2.98	
Posterior	Cingulate		 9	 -36	 21	 23	 2.44	
Superior	Temporal	Gyrus		 27	 12	 -36	 571	 4.21	
Superior	Temporal	Gyrus		 27	 12	 -36	 53	 4.21	
Putamen	 18	 3	 0	 42	 4.07	
Putamen	 27	 3	 3	 43	 3.88	
Uncus		 18	 6	 -24	 58	 3.79	
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Caudate/Accumbens	 3	 9	 -3	 71	 3.54	
Precentral	Gyrus		 69	 -9	 27	 58	 3.33	
Parahippocampal	Gyrus/Amygdala		 30	 0	 -18	 35	 3.30	
Precentral	Gyrus		 60	 -3	 27	 56	 3.06	
Precentral	Gyrus		 57	 -6	 12	 50	 3.06	
BA	11/Orbitofrontal	Cortexc			 -9	 24	 -24	 26	 2.84	
Lentiform	Nucleus		 18	 -9	 -6	 13	 2.61	
Insula		 42	 0	 3	 18	 2.48	
Superior	Temporal	Gyrus		 30	 21	 -39	 18	 2.44	
Precentral	Gyrus		 30	 -15	 30	 508	 3.51	
Precentral	Gyrus		 24	 -9	 69	 63	 3.45	
Precentral	Gyrus		 36	 -18	 57	 59	 3.42	
Middle	Frontal	Gyrus		 30	 -6	 39	 24	 3.37	
Precentral	Gyrus		 33	 -15	 72	 45	 3.31	
Postcentral	Gyrus		 42	 -27	 36	 58	 3.22	
Postcentral	Gyrus		 33	 -30	 33	 45	 3.20	
Postcentral	Gyrus		 60	 -18	 51	 26	 3.06	
Insula		 45	 -24	 24	 20	 2.88	
Postcentral	Gyrus		 48	 -18	 42	 29	 2.63	
Postcentral	Gyrus		 27	 -36	 57	 32	 2.42	

	
Supplementary	Data	Table	3.	Clusters	and	subclusters	in	the	gain	>	loss	condition	
for	control	>	patient	subjects	in	response	to	feedback	prediction	error.	Results	are	
FWE	corrected	at	p	<	0.05,	and	are	in	MNI	space.	Local	maxima	(subclusters	>	10	
voxels)	are	listed	beneath	each	cluster	(bold).	 
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