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Modeling fine-grained spatio-temporal pollution maps with
low-cost sensors
Shiva R. Iyer1, Ananth Balashankar1, William H. Aeberhard2, Sujoy Bhattacharyya3,4, Giuditta Rusconi4,5, Lejo Jose6, Nita Soans6,
Anant Sudarshan7, Rohini Pande8 and Lakshminarayanan Subramanian 1✉

The use of air quality monitoring networks to inform urban policies is critical especially where urban populations are exposed to
unprecedented levels of air pollution. High costs, however, limit city governments’ ability to deploy reference grade air quality
monitors at scale; for instance, only 33 reference grade monitors are available for the entire territory of Delhi, India, spanning
1500 sq km with 15 million residents. In this paper, we describe a high-precision spatio-temporal prediction model that can be used
to derive fine-grained pollution maps. We utilize two years of data from a low-cost monitoring network of 28 custom-designed low-
cost portable air quality sensors covering a dense region of Delhi. The model uses a combination of message-passing recurrent
neural networks combined with conventional spatio-temporal geostatistics models to achieve high predictive accuracy in the face
of high data variability and intermittent data availability from low-cost sensors (due to sensor faults, network, and power issues).
Using data from reference grade monitors for validation, our spatio-temporal pollution model can make predictions within 1-hour
time-windows at 9.4, 10.5, and 9.6% Mean Absolute Percentage Error (MAPE) over our low-cost monitors, reference grade monitors,
and the combined monitoring network respectively. These accurate fine-grained pollution sensing maps provide a way forward to
build citizen-driven low-cost monitoring systems that detect hazardous urban air quality at fine-grained granularities.
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INTRODUCTION
Pollution prediction in cities with dense populations can be critical
for generating fine-grained policy recommendations and public
health warnings1–3. The scale of accurate sensor-based monitoring
required to achieve this can come at a huge cost and thus inhibit
building a dense fine-grained pollution sensing map. The
deployment of low-cost particulate matter sensors to replace or
augment reference grade pollution air quality monitoring systems
has been studied extensively recently, and have addressed issues
of calibration4–6, design7,8, data selection9, and personal exposure
quantification10,11. However, building a highly accurate large scale
fine-grained pollution sensing and monitoring map that leverages
the size of a pollution network has been largely unexplored.
Specifically, modeling the behavior of noisy low-cost sensors in
cities with high pollution and population density has not been
studied previously, with recent state-of-the-art mapping
approaches providing errors only in the range of 30–40%12,13.
This high error lends the pollution sensing map unusable for
policymaking and air quality hazard detection. Prior work on
deploying low-cost sensor networks for air pollution have been
successful on a small scale (within 2 km radius) with high rates of
agreement for PM 2.5 measurements in Southeastern United
States14. Survey studies have shown that there is a necessity for a
paradigm shift towards crowd-funded sensor networks to enable
fine-grained sensing-based applications on a large scale15. The
question of calibration issues in such large scale settings has been
explored recently with promising results without the need for
significant recalibration16 after well-controlled laboratory calibra-
tion17. PM 2.5 prediction models recently have explored deep
neural networks like long-short term memory (LSTM), convolution

neural networks (CNN), attention-based models; vector regression,
partial differential equations, but focus on a single unified model
at a single location, rather than in a large scale sensor network
setting18–24.
Recent work has also explored the use of distributed sensor

networks to gather information on air pollution and other
meteorological variables in urban contexts25–29. Clements et al. 30

provide a comprehensive review of many such works. Researchers
have sought to learn more about how pollution sensing systems of
low-cost sensors may be deployed in urban contexts14,31–36. With
the exception of Gao et al. 36, who examine the performance of
fine particulate sensors in Xi’an in China, most of these
deployments have occurred in areas with significantly lower air
pollution than the city of Delhi in India. Gao et al. 36 also point out
that low-cost PM2.5 sensors may perform worse in very low
pollution environments, suggesting that they may be relatively
more useful when particulate concentrations are high. Related
approaches in this space can be broadly classified into three
groups—spatial interpolation approaches, land-use regression, and
dispersion models Xie et al. 37, Jerrett et al. 38. In the case of
dispersion models, they assume that an appropriate chemical
transport model is identified along with their parameter values,
and a high-quality emissions inventory. In the case of land-use
regression models, having access to environmental characteristics
that significantly influence pollution is critical. This additional data
is often suited for longer range predictions, as the geographical
and meteorological data vary over a longer temporal and coarser
spatial grids39,40.
In this paper, we describe a methodology to model and predict

urban air quality at a fine-grained level using dense and noisy,
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low-cost sensors. There are two main questions we seek to answer
in this paper—(i) how can we use a network of low-cost and
portable air quality monitors in order to build a fine-grained
pollution heatmap in a city that provides accurate prediction?, (ii)
does it help to augment existing monitoring networks by the local
governments with low-cost air quality sensors?
We deploy a network of 28 low-cost sensors, many of them

concentrated in the south Delhi area, in collaboration with
Kaiterra41, a company that makes low-cost air quality monitors
and air filters. We dramatically increase the density of the
deployment by 28× in Delhi (area 573 mi2) with 28 sensors,
compared to previous deployments (Xi’an - area 3898 mi2, 8 low-
cost sensors). Further, the large longitudinal dataset we have been
able to capture over 2 years as compared to prior work, which
captured at most a few weeks of data, allows us to model long-
term seasonal changes and train more complex neural network
models that can adapt to seasonal and daily patterns. We build on
prior work and model the pollution network in its entirety, with
prediction models at each sensor location using data from near-by
sensor locations.
We model pollution at any location in Delhi as measured by the

concentration of fine particulate matter (PM2.5) measured in
μgm−3 using historical data of up to 8 h from all the sensors in the
network. We make this choice of building a fine-grained pollution
sensing map over shorter timelines to leverage the primary
advantage of low-cost sensors while overcoming the drawback of
noise by aggregating numerous spatio-temporal measurements.
By learning the variability of each of these noisy measurements
through message passing neural networks (MPRNN) which have

the ability to model each sensor separately, we learn to not only
separate the signal from the noise, but build an accurate sensing
network of low-cost sensors that achieves <10% root mean
squared earror (RMSE) in predicting up to one hour in advance
over a fine-grained spatio-temporal grid as compared to baseline
modeling approaches that provide 30% RMSE. By using a sparse
network of sensors, whose signals are shared through neural
network embeddings, we learn to capture the information from
nearby sources that might affect the readings of nearby sources
(e.g., factory) and ignore the ones which are heavily localized (e.g.,
food cart). Such an accurate, fine-grained pollution sensing map
(≤10% MAPE) is usable by policymakers in deciding which
neighborhoods of the city need interventions to improve the air
quality and population health. To the best of our knowledge, we
are the first in attempting to model a city-scale sensor network
deployment with low-cost sensors augmenting high-quality
government monitoring stations. With a sensor network the size
of a city, with 60 sensors spread across the city of Delhi (700 sq
km), capturing spatio-temporal variations and constructing
accurate pollution maps necessitates modeling each sensor
separately. By increasing the scale and addressing the correspond-
ing modeling challenges, our work has widespread implications
for pollution sensing and its low-cost deployability.

RESULTS
Our data consists of PM2.5 concentration data averaged to the
hour from the 28 low-cost sensors and the 32 government
monitors, a total of 60 monitors, collected over a period of
24 months, from May 1, 2018, to May 1, 2020. We use the until Oct
30, 2019 for training (75%) and hold out the remaining (25%) for
testing. We report two criteria—the RMSE and the mean absolute
percentage error (MAPE). We evaluate our models on the data
from the combined set of our 28 low-cost sensors and the 32
government monitors, as well as separately on each set. For each
of these locations, we compare our model-based predictions with
the ground truth of the measurement of the pollution sensor.
Overall, the MPRNN model with imputed data using STHM

along with the spline correction provides a very highly accurate
estimation of the PM concentration level across all locations (ref
Table 1). The best performing model is able to predict PM2.5

concentrations with an average RMSE of 10.1 μgm−3 and MAPE of
9.6% across all the locations and over the testing period. While
estimating a spline per location provides the best predictive
performance, we note that using an average spline across all
observed locations only marginally increases the RMSE and MAPE
errors. The average spline is computed after averaging the data
over all the locations. Across all locations, the median RMSE and
MAPE are 9.15 μgm−3 and 8.64% respectively (ref Fig. 1). The best
case values are 4.28 μgm−3 and 5.57% respectively, and the worst
case values are 24.1 μgm−3 and 19.64% respectively. The location
where we have minimum MAPE is at a location in Green Park, a
very busy area of south Delhi, further validating the need for fine-
grained pollution sensing in a large city like Delhi.

Spatial variations
The 3-way cubic spline fit shows a common trend of baseline
pollution rising steadily up to 8 am, then decreasing up to 4 pm
and then increasing again until midnight. We note that this is the
composite polynomial model of the PM concentrations in an
average day (ref Fig. 2). The median error of this model is about
40 μgm−3 at each of the three windows, 12 am–8 am, 8 am–4 pm
and 4 pm–12 am, and this is reduced to about 10 μgm−3 post the
neural network model fit on the residuals. Figure 2 and
Supplementary Fig. 2 show the per-sensor splines and the average
spline in detail. Not only do the per-sensor splines vary widely
across space, we notice that regions with significantly high spline

Table 1. RMSE and MAPE of prediction of PM concentrations,
averaged across all the sensor locations.

Model Our sensors Govt
monitors

Combined

RMSE MAPE RMSE MAPE RMSE MAPE

STHM 29.5 33.2% 38.3 32.7% 31.4 37.8%

k-NN neural network 38.8 35.7% 69.7 52.6% 54.2 51.6%

MPRNN 37.1 34.4% 65.2 51.3% 56.3 51.6%

Per-sensor spline 25.1 32.8% 60.4 49.1% 47.3 36.5%

STHM + spline 21.8 25.8% 27.2 24.9% 24.2 26.2%

k-NN neural network +
per-sensor residual spline

11.6 16.3% 18.1 13.4% 12.8 14.7%

MPRNN + per-sensor
residual spline

9.8 10.2% 13.2 11.7% 10.4 12.6%

Per-sensor spline +
Residual MPRNN

10.1 10.5% 14.7 12.2% 10.7 13.5%

Per-sensor spline with
STHM imputation
+ MPRNN

9.5 9.4% 12.6 10.5% 10.1 9.6%

MPRNN with STHM
imputation + average
residual spline

10.1 9.8% 13.2 10.9% 11.2 10.3%

The RMSE is in units of μg/m3. The best performing model is shown in
boldface. The Per-sensor spline with STHM imputation followed by the use
of MPRNN to estimate residual errors performs the best and has
significantly lower RMSE and MAPE than any of the models that do not
combine these steps. Using just a cubic spline or STHM or MPRNN in
isolation results in a significant increase in the RMSE and MAPE errors.
Replacing the per-sensor spline with an average spline does not
significantly affect the RMSE and MAPE errors. The STHM model is
primarily useful in filling in missing values and only provides a minor
improvement to the MPRNN + per-sensor spline model. Another baseline
method where we replace the MPRNN with k-Nearest Neighbors increases
the MAPE and RMSE errors.
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residual errors like the sensors A838, E8E4, and 2E9C in
Supplementary Fig. 2, are all located in central locations of Delhi
with well established commercial activity like Connaught Place,
Sardarjung Enclave and Lado Sarai respectively. Further, in
Supplementary Fig. 2, the outliers with significantly high residual
error splines among the government monitoring stations are
Patparganj DPCC, Punjabi Bagh DPCC, and DKSSR DPCC. While
Patparganj is situated next to an industrial area, Punjabi Bagh is a
well-known residential locality with established commercial
activity centers, and DKSSR, short for Dr. Karni Singh Shooting
Range, is a shooting range located in the outskirts of Delhi next to
an interstate highway. The diversity of these splines across various
geographical regions further indicate the need to model fine-
grained pollution profiles in seemingly remote as well as central
locations of Delhi. We also note that the average spline can
sufficiently operate for bootstrapping at locations where we do
not have enough sensor data to begin with.
For the most part, locations that exhibited high residual errors

after MPRNN fit continued to show high error (relative to other
locations) even after spline correction, even though the magni-
tude of the residual decreases. This phenomenon is partially
explained by the high baseline values of the sensors with high
residual errors, that is often coupled with high variance in
measurement.

Effect of network size and training data
The fewer the monitors we used in our hybrid model, the
greater was the final prediction performance. As Supplementary
Fig. 3 shows, with only one monitor in the network, the
predictive errors are about 35 and 20 μgm−3, respectively, for
the low-cost sensor network and government network. How-
ever, as we include data from more nodes in the network, final
prediction error drops sharply to about 15% and then gradually
tails off at about 10%. The error flattens out about 30 sensors,
which is approximately the number of sensors of each type that
we have in our experiment. We infer that having an even denser
deployment likely adds little value to the predictive perfor-
mance. Further, decreasing the amount of training data to train
the model shows that at minimum, one year of data is required
to capture the seasonal trends and achieve RMSE of almost 10%
(Supplementary Table 3).

DISCUSSION
The low MAPE and RMSE across all monitors in Delhi provided by
our Per-Sensor Spline+MPRNN with STHM imputation model are
significant as it means that our model can detect hazardous air
quality with high precision. The RMSE error is significantly lower
than the observed variance in PM2.5 concentrations in a day,

Fig. 1 Prediction errors of PM2.5 during the test period (Nov 1, 2019–May 1, 2020) shown as the mean absolute percentage error (MAPE)
of the ground truth and predicted PM2.5 concentration. In this period, the PM2.5 concentration values ranges between 0 and 1000 μgm−3,
and average value being ~130 μgm−3. a Bar plot comparing our methodology with other competing approaches. We note that modeling
spatiotemporal interactions using a neural network such as MPRNN and accounting for intra-day periodic patterns in the form of spline
corrections together make a big difference in the performance. b Distribution of MAPE for the best performing model - Per-Sensor Spline with
STHM imputation + MPRNN, across all the locations shown as a cumulative density function (CDF). c Prediction errors of the best performing
model (MPRNN+Spline) at every monitoring location on the map. d Errors of the final prediction zoomed into the regions with highest
concentration of sensors (New Delhi and South Delhi).
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making it useful for short-term and intraday analyses as well. The
WHO air quality standards prescribe that PM2.5 levels should not
exceed 5 and 15 μgm−3 at an annual and daily average levels,
while the Indian Government air quality standards prescribe 40
and 60 μgm−3, respectively. We note that for the 60 sensors, Delhi
has exceeded these prescribed levels 371 out of the 641 days on a
daily level, across 2 years of our measurement. The 9.6 % MAPE
error that we are able to achieve, corresponds to the ability to
detect hazardous air quality as per Indian government standards

with 93.5% precision and 90.8% recall. This further indicates that
the low error rate we have obtained leads to an almost exact
prediction of hazardous air quality. This enables citizen-driven
sensing where pollution sensor readings can be crowdsourced,
and effective policy interventions like clean energy policies that
penalize construction sites that have PM2.5 levels more than 25%
higher than the nearest monitoring center can be operationa-
lized42. Specifically, the improvement in predictive power is
achieved in specific pollution hotspots like bus stations, markets,

Fig. 2 The interpretation of the spline correction, and its effect on the residual. The top two rows show the distribution of the residuals (in
PM units of μg/m3) over space, before and after the spline correction. Three different splines were fitted over the residuals in three different
time slots in the day. We observe that for the most part, locations that exhibited high residual errors after MPRNN fit (in the upper quantiles of
the residual error distribution) continued to show high error (relative to other locations) even after spline correction, even though the
magnitude of the residual does decrease. This phenomenon is partially explained by the high baseline values of the sensors with high residual
errors, that is often coupled with high variance in measurement. a Slot 1 (12 AM–8 AM). b Slot 2 (8 AM–4 PM). c Slot 3 (4 PM–12 AM).
d Composite cubic spline correction consisting of three splines fitted for three non-overlapping parts of the day—midnight to early morning
(12 AM to 8 AM), midday (8 AM to 4 PM), and evening to midnight (4 PM to 12 AM). e Ground truth PM2.5 (blue), along with MPRNN prediction
(green) and final prediction after spline correction (red) at one of our sensor locations in Chanakyapuri in New Delhi. f Ground truth PM2.5
(blue), along with MPRNN prediction (green) and final prediction after spline correction (red) at the CPCB monitor at Sirifort in South Delhi.
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etc. (Fig. 1). In addition, we can provide transparency of the overall
average pollution of the city43 and contribute towards increasing
the co-benefits of clean energy policies44,45.

Calibration
Since the data used to measure the model performance is new, it is
important to understand the spatial variations and heterogeneity in
measurements that underlies the sensor network. To further ensure
that the improvement in model’s prediction performance is better
than the noise in the data, we performed extensive calibration of the
sensors. For this, we leveraged the calibration performed in-house
by the sensor manufacturer (Kaiterra46) (more info in Appendix)
which confirms that re-calibration is not required47, and also
perform validation by comparing our sensor readings with the
readings provided by the nearest government pollution monitoring
station. Supplementary Figure 5 shows the cross-calibration of the
average pollution value reported by the 28 government monitors
with the average value of the 18 sensors in our testbed in the
locality of South Delhi. We observe that the sensors have been fairly
well calibrated with the reference monitors and report a similar
average value across the city despite individual sensor level and
spatio-temporal variations. This provides confidence in the data
generated from this pilot to be useful as a reference for pollution
modeling and forecasting.
Further, we also performed a nearest neighbor calibration

where we compute temporal correlation of our sensor with the
nearest government monitoring station of that sensor. Supple-
mentary Table 4 shows that on average the correlation
coefficients are >0.8, which indicates that there is no statistical
significant difference between them on average (t-test,
confidence level: 0.05, p-value: 0.0011). Further, in Supplemen-
tary Fig. 4, we see that when we order our sensors by the
nearest neighboring government station, the cross-correlations
between our sensors are correspondingly aligned, with high
correlation between nearby sensors and low correlation
between farther sensors. This further emphasizes the impor-
tance of the improvement in modeling as it significantly
improves the prediction capabilities of a fine-grained sensor
network, which can capture spatial variations in pollution
of Delhi.
The development of fine-grained pollution sensing maps at

low-costs can further catalyze the deployment of such monitoring
networks in other polluted cities, where the pollution networks are
sparse. With citizens procuring, deploying, and modeling pollution
of cities accurately, this paper provides a way forward for
developing high-quality fine-grained pollution sensing maps.

METHODS
Summary
We model the spatio-temporal prediction problem as a graph
prediction problem, where we predict a value at every node at
a certain time using as input the historical values from
neighboring nodes. In our setting, each sensor location v ∈ V
is a node in an undirected graph. Assuming that air pollutants
diffuse uniformly in all directions and exert their influence
throughout our region of interest, in this case the greater Delhi
region, we make the graph complete, where an edge exists
between every pair of nodes. The end goal is to train a model
that predicts at any node, the pollution level, measured in
terms of the concentration of fine particulate matter PM2.5, at
time t given one or more readings from neighboring locations
prior to t. The first step is to interpolate the gaps in the data.
We use a geostatistics model for this task, called the Spatio-
temporal Hierarchical Model (STHM). Then we fit a cubic spline
based on daily trends at each sensor location, and then finally
train a Message-Passing Recurrent Neural Network (MPRNN)

(Section 4.4) to predict residuals over the baseline. In order to
account for the amount of influence based on the pairwise
distances, we include the Euclidean distance between sensors
as part of our feature embedding in our message-passing
formulation. We test this model by predicting values at
locations where sensors, and therefore ground truth informa-
tion, are present, but the model is generalized enough to be
used to predict at locations where there is no ground truth data
available. If yv;t is the reading of the sensor at location v, at
timestamp t, and ŷv;t is our corresponding prediction, the
prediction model aims to minimize the mean absolute
percentage loss:

MAPE ¼
X
v

X
t

jŷv;t � yv;tj
yv;t

(1)

Our pollution forecasting model for estimating the PM2.5

particulate matter concentration across space and time consists
of three important steps. Given the variations in data availability
across our pollution sensors, the first step of our method uses a
standard Spatio-Temporal Hierarchical Model (STHM) to estimate
the missing data. Our STHM model is a standard statistical
modeling framework from geostatistics that combines multiple
sources of information, accommodates missing values, and
computes predictions in both space and time. Based on daily
variation patterns observed at each of the pollution sensors, the
second step in our method estimates a three-way cubic spline at
each sensor location, one for each disjoint 8 h interval in a 24 h
period (12 am to 8 am, 8 am to 4 pm and 4 pm to 12 am),
representing three different patterns in the PM2.5 variations. The
cubic splines for each sensor represented a baseline level of PM2.5

concentration. The cubic splines may provide a good approxima-
tion to the overall average daily variations across sensors but do
not capture short term spatio-temporal variations represented by
the residual errors in the baseline. The final step of our method is
to train a Message-Passing Recurrent Neural Network (MPRNN)
across the pollution monitoring points to estimate the residual
errors from neighboring sensors. We will briefly describe the
characteristics of our data and then explain the cubic spline and
MPRNN methodology in this section. We refer the reader to the
supplementary text for a detailed description of the STHM model.

Data
The data used for the modeling the air pollution levels in Delhi
was sourced from a combination of 32 local government monitors
and a network of 28 low-cost sensors deployed by us in various
locations of Delhi from May 2018 to May 2020. The average
availability of each of these sensors are about 90 and 30% over the
measured period, respectively. This disparity is attributed to a
variety of factors such as disconnection for periodic necessary
calibration, network outages and periodic servicing of sensors. The
sensors are calibrated against the government sensors, by
conducting a longitudinal comparison study by measuring in
proximity to the location of the government monitoring centers.
The locations and their summary statistics of the sensors by
location is given by the Supplementary Tables 1 and 2, and are
shown visually in the box plots in Supplementary Fig. 1.

Cubic splines
We observe that on a daily basis, depending on the time of the
day and the location, there is a low-frequency component that
makes up an approximate “baseline level” of PM concentration.
Based on this observation, we fit a piecewise polynomial
function, called a spline, to model this low-frequency compo-
nent. We divided a single day into a number of epochs and fit a
spline for each epoch. Prior to implementing the cubic splines,
we observed that the residual errors from the MPRNN model
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exhibits different errors at different times in the day. We then
proceeded to fit cubic splines based on the daily spatio-
temporal patterns per sensor and per location. For example, if
our prediction error follows a temporal pattern of say, higher
prediction error in the morning, while lower in the afternoon, we
can leverage this fitting separate splines for morning and
afternoon to subtract out this component. The spline can be of
any order, but given our residual error patterns, but we found
that piecewise cubic spline works best. Suppose at time t and
location v, the raw PM value is given by yv,t. Then, the piecewise
spline to predict y, with time period p is given by:

ŷpðv; tÞ ¼ αv;p � t3 þ βv;p � t2 þ κv;p � t þ νv;p (2)

Note that the chosen parameters per sensor αv,p, βv,p, κv,p, νv,p,
where p∈ {“morning”, “afternoon”, “evening”}, depend on the
patterns in our residual errors and are fit accordingly to minimize
the root mean-squared residual error:

RMSEðvÞ ¼
X
t

X
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyðv; tÞ � ŷpðv; tÞÞ2

q
(3)

Message-passing recurrent neural network
MPRNN, based on refs. 48,49, is a neural network architecture
that is applied on a graph in order to predict values at each
node in the graph. This approach enables to us incorporates
spatial interactions between each pair of nodes as “messages”

that are broadcast from every node to its neighbors. Each node
has a modified version of a long short term memory (LSTM)
network that iterates between message-passing and the
recurrent computations.
Suppose yv,t is a quantity of interest at node v and time t, for

which we would like to build a predictive model. Mathematically,
we would like to learn a function F such that, yv;tþ1 ¼Fðv1; yv1;t; v2; yv2;t; ¼ ; vj 2 VÞ where the set V denotes the set
of all the nodes in the graph. A recurrent neural network unit is
assigned to each node in the graph, with each node vmaintaining
a hidden state hv,t at time t. Through a message-passing phase
and a time-recurrent phase, our model infers the next hidden
state, hv,t+1 from which the PM value at v is decoded. A message-
passing operation allows one segment to observe the hidden
state of its neighboring segments.
The computation proceeds in five steps, as five layers of the

neural network. In the first phase, the observation phase, the
input observations Yt ¼ fyv;tjv 2 Vg at time t are encoded into
hv,t by the observation operation Ov. In the second and third
phases, one or more iterations of messaging (M) and updating
(U) operations are performed to propagate the observations in
the graph. In the fourth phase, for each node, a time-recurrent
operator Tv utilizing an LSTM unit takes as input the final hidden
state hv,t and predicts the next hidden state hv,t+1. The final
phase is the readout operation Rv, which decodes the hidden
state to produce the output value to be predicted ŷv;tþ1. These
five steps are shown below. The message function takes as input

Fig. 3 Message passing recurrent neural network for pollution monitoring in Delhi. a Network of air quality monitors in the entire greater
Delhi region. bModel architecture, showing M sensor inputs feeding into the layers and producing a single real output, illustrated by zooming
on the selected region in (a). The computation goes from top to bottom. The green boxes represent input PM concentrations from a set of
locations, the gray boxes the hidden linear transformation layers, with the numbers in the boxes representing the number of internal
parameters to be learned, and the orange box shows the RNN with the LSTM cells. Here 256 is the embedding size of the hidden layer
messages passed, that was chosen empirically based on performance. The final output is the single real value of PM concentration. The input
to the RNN is the vector output of length 256 from the hidden layer. More details are in the supplementary text. c Sample model of a low-cost
sensor. d Our experimental testbed of monitors, and the quality of the PM2.5 data obtained. We had to contend with frequent outages and
communication issues that plagued our sensor network and affected data availability.

S.R. Iyer et al.

6

npj Climate and Atmospheric Science (2022)    76 Published in partnership with CECCR at King Abdulaziz University



the hidden states of a pair of nodes v and n and the Euclidean
distance between them, dv,n as the influence of the pollution at a
given location on the pollution at another location would
depend on the distance between them. Hence, we include the
distance in the embedding.

hv;t ¼ Ovðhv;t�1; yv;tÞ (4)

mv;t ¼
X

n2V�v

Mðhv;t; hn;t; dv;nÞ (5)

hv;t ¼ Uðhv;t;mv;tÞ (6)

hv;tþ1 ¼ Tvðhv;tÞ (7)

ŷv;tþ1 ¼ Rvðhv;tþ1Þ (8)

For a selection of nodes W in the graph, the components of the
model fOw ;M;U; Tw ; Rw ; jw 2 Wg are defined. During inference,
the states Ht ¼ fhw;tjw 2 Wg are maintained at each time step.
The hidden state for each segment is initialized at t= 0 randomly
during training and evaluation hv;0 � Nð0; 1Þ.

Training and validation. We used the data from May 1, 2018, to
Nov 1, 2019, a period of 18 months, as the training period. The
number of samples we had for training were 166,979 from our
low-cost sensor network, and 371,806 from the government
network, resulting in a total of 538,785 samples. The model was
trained at each sensor location, using as input data from all the
other monitors except itself, over the entire training period. We
used the Adam optimizer50 with a learning rate of 0.001, and ran
the training for 30 epochs to ensure a robust and well-trained
model. To validate the model, we used the remaining 6 months
data from Nov 1, 2019, to May 1, 2020. The number of ground
truth samples available in this period were 20,408 and 91,493 in
the low-cost network and government network, respectively,
resulting in a total of 111901 samples. However, only 12 out of the
28 low-cost sensors were operational in the testing phase, since
many of them had not been serviced properly, partly owing to the
COVID-19 pandemic. The testing error reported under Results (§2),
therefore, shows the predictions tested at 12 low-cost sensor
locations and 32 government monitors, a total of 44 locations
combined. Further, to understand the implications of availability
of less data during training, we evaluated our model as shown in
Supplementary Table 3 and found that with training data less than
a year, our model’s performance significantly decreases as
seasonal trends are not well captured.

Implementation. The MPRNN is implemented using the Deep
Graph Library51 and PyTorch 52 in Python. The model diagram is
shown in Fig. 3.

Baselines
We contrast our combined model with two alternative modeling
approaches in order to set a baseline to benchmark the MPRNN
model performance. The first one is the STHM itself, a state-of-the-
art spatio-temporal modeling methodology. When the STHM is
used solely for the prediction, it performs poorly, as it does not
model unknown non-linear spatial dependencies due to disper-
sion. The second baseline is an alternative neural network
formulation that collects information from a specified number
(K) of nearest neighbors to a location L, and feeds them into a
trained recurrent neural network, to predict the value at L. Unlike
the MPRNN, this model does not account for explicit spatial
influence between every pair of sensors, thus allowing us to see
how a more simplified multi-variate non-linear model might
perform. We call this model the k-Nearest Neighbor (k-NN) Spatial
Neural Network.

DATA AVAILABILITY
The data that supports the findings of this study comprises two parts—the PM2.5
data from the government monitors and the data collected from our low-cost sensor
network. The former is public data and can be accessed here53. The data can also be
provided by the authors upon request. The latter is third-party data and the authors
are bound by a confidentiality agreement with Kaiterra, the makers of the low-cost
sensors, and can only be made available for confidential peer review, if requested by
reviewers, within the terms of the data use agreement and if compliant with ethical
and legal requirements.

CODE AVAILABILITY
All the relevant code can be obtained upon request from the corresponding author.
The code is also available on GitHub: https://github.com/shivariyer/epod-nyu-delhi-
pollution.
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