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Abstract

Market-based environmental regulations are seldom used in low-income
countries, where pollution is highest but state capacity is often low. We
experimentally evaluate the world’s first particulate matter emissions mar-
ket, which covers industrial plants in a large Indian city. There are three
main findings. First, the market functioned well: permit trade was active,
and plants bought and sold permits to meet their compliance obligations
almost perfectly. Second, treatment plants, randomly assigned to the emis-
sions market, reduced pollution emissions relative to control plants by 20%
to 30%. Third, the market reduces abatement costs by 11% at a constant
level of emissions. We use rich data on plant bids for emissions permits
to estimate heterogeneous marginal abatement costs and evaluate cost sav-
ings. These estimates show that plants can reduce emissions for small
increases in abatement costs. The pollution market therefore has mortality
benefits that exceed costs by at least twenty-five times.
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1 Introduction

Many low-income countries today suffer from extraordinarily high air pollution. In India, for

example, nearly the entire population of 1.4 billion people breathes air more polluted than World

Health Organization standards for particulate matter, often by a factor of ten or more.1 To face this

air pollution crisis, India relies on command-and-control environmental regulations modeled on

those in the United States fifty years ago (Piette, 2018). These regulations are stringent on paper,

but weakly enforced in practice (Duflo et al., 2013, 2018), perhaps because strict enforcement

would be too costly for firms.

A powerful alternative to standards is to regulate pollution with markets. Foundational theo-

retical work has shown that markets can abate pollution at the lowest possible cost (Coase, 1960;

Dales, 1968). The United States and the European Union have had great success in using markets

to reduce air pollution (Ellerman et al., 2000; Martin, Muûls and Wagner, 2016; Dechezleprêtre,

Nachtigall and Venmans, 2023). Yet, in spite of high pollution and a high concern for cost, low-

income countries have not followed these examples (Stavins, 2003; Blackman, Li and Liu, 2018).2

As a result, there is no evidence on whether pollution markets can work in countries with low state

capacity. The absence of pollution markets in these countries may reflect a correct judgment that

they cannot work, or a self-fulfilling policy—pollution markets cannot work only because they

have not been tried before.

This paper examines how a new pollution market in India impacted plant compliance, pollution

emissions and abatement costs. We study the world’s first market for particulate matter emissions.

This new market was introduced through a randomized-control trial that brought treatment plants

into the market while keeping similar control plants under existing command-and-control regu-

lations. The market and accompanying experiment emerged from a decade-long collaboration

1Air pollution harms people by shortening their lives and reducing the human capital they form as children (Eben-
stein et al., 2017; Isen, Rossin-Slater and Walker, 2017). Reducing air pollution throughout India to the World Health
Organization standard would, by some estimates, increase Indian life expectancy by an average of five years (Pande
et al., 2015; Greenstone and Hasenkopf, 2023).

2Markets are also rare or absent for common pool resources, like fisheries or groundwater, for which they could
also bring large efficiency gains (Chu, 2009; Ryan and Sudarshan, 2022)
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between our research team and the Gujarat Pollution Control Board (GPCB), the environmental

regulator in Gujarat, India, to build the institutions to support an emissions market: monitoring

infrastructure to measure pollution on a continuous basis, new market regulations and a platform

to enable trade. The experiment allows us to measure causal effects of market-based regulation,

which have been elusive in the rich literature on emissions trading (Fowlie, Holland and Mansur,

2012; Martin, Muûls and Wagner, 2016).

GPCB launched the market for industrial plants in and around Surat, Gujarat, a rapidly growing

city of 7 million people, in 2019. Under the command-and-control status quo, plants are mandated

to install abatement equipment and are then sporadically inspected in-person, by government reg-

ulators or auditors, to check that they meet limits on the concentration of pollution emissions. Our

prior research has shown that enforcement in this regime is undercut by poor information and that

many plants violate pollution standards as a result (Duflo et al., 2013, 2018). For the present exper-

iment, GPCB mandated a sample of 317 large, coal-burning plants to install Continuous Emissions

Monitoring Systems (CEMS) to measure the total mass of particulate matter (PM) emitted, as com-

pared to the measurement, under the status quo, of pollution concentrations during spot visits.3 The

emissions market experiment then randomly assigned 162 out of 317 plants to the market while

155 control plants stayed under the command-and-control regime.

Treatment plants were shifted into a newly-built emissions market. GPCB set a cap on the

total mass of particulates that could be emitted by all treatment plants over a compliance period.

They allocated permits to treatment plants, with permits summing to 80% of the cap distributed for

free, in proportion to plant emissions potential, and 20% sold off in weekly auctions. Thereafter,

treatment plants could trade permits with one another. At the conclusion of each compliance

period, any treatment plant that did not hold enough permits to cover their emissions was subject

to fines based on the size of the shortfall. The evaluation ran from September 2019 to April 2021,

3The change from measuring pollution concentration to pollution mass (also called load) is important in its own
right. Concentrations of air pollution, measured in mg/Nm3, are the mass of pollution per volume of gas emitted from
the plant’s chimney during a half-hour sample on a spot visit. Load, measured in kg, is the total mass of pollution
emitted—think of the weight of a giant pile of very fine dust. Measurement of load is preferable both because load is
what determines a plants’ contribution to ambient pollution and because load is measured with CEMS monitors that
record pollution continuously, instead of only during spot visits.
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with an interruption due to a nationwide Covid-19 lockdown. There were a total of 10 compliance

periods each of four to six weeks’ duration.

We have three main findings from our analysis of the experiment. First, the market functioned

well, both with respect to plant compliance and with respect to permit trade. Treatment plants

complied—held enough permits to cover their emissions—in 99% of plant-periods. By contrast,

the compliance rate with concentration standards in the control is 66%. The regulator established a

reputation for enforcement in the market regime early on, by levying fines specified in the market

rules on a couple of plants that did not buy enough permits in the first period. We therefore find

that the market caused greater compliance; high compliance is a benefit of the market treatment, as

opposed to low compliance being a fixed feature of the context that disallows the use of markets.

The permit market appeared to have low transactions costs, as plants traded often, with daily

trading volume reaching up to 20% of the market cap. At the end of each compliance period, plant

permit holdings differed greatly from initial allocations, and plants left little money on the table in

unused and unsold permits.

Second, the treatment reduced treatment particulate emissions by 20% to 30%, relative to con-

trol plant emissions in the command-and-control regime.4 The regulator set the cap, with incom-

plete initial data on emissions, to try to match the stringency of control regulation. The relative

reduction in emissions for the treatment plants was due both to the initial cap turning out to be

more strict than control regulations, in practice, and to the regulator reducing the cap over the first

several compliance periods. We interpret this lowering of the cap as the regulator endogenously

tightening regulation after seeing the relatively low costs of compliance in the market regime.

Our third main finding, from these marginal abatement cost estimates, is that the market would

reduce variable abatement costs by 11% holding emissions constant. To obtain this estimate, de-

spite that emissions in the treatment group declined, we leverage data on the universe of 8,433

treatment plant bids to buy and sell permits to recover marginal abatement costs.5 We use variation

4This range reflects variation in point estimates based on how emissions are imputed during periods when CEMS
did not transmit pollution data from plants (see Section 4).

5We believe these data are a novel contribution in the literature where price data on executed trades has been the
best case to date. For example, Ellerman et al. (2000) discuss permit prices and how prices compare to ex ante expected
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in plant permit bids within each compliance period to estimate heterogeneous marginal abatement

cost (MAC) functions, from emissions to costs, that differ across plants and periods. Though the

MAC functions are estimated with data only from treatment plants’ bids, the experiment ensures

that the distribution of MAC functions is the same in the control group. We therefore compare

costs across regimes, at several emissions levels, by evaluating the treatment plants’ abatement

cost functions at either the efficient, market distribution of emissions or the distribution of emis-

sions actually observed in the control group.

Finally, we combine our pollution and cost estimates, including also the fixed costs of setting

up the market, to conduct a benefit-cost analysis of a potential market expansion. This analysis

finds that, under a range of assumptions on the mortality damages from pollution, the benefits

of the market exceed costs by at least twenty-five times, reflecting the high mortality costs of air

pollution and the low costs of abatement in the market.

This paper contributes to the literatures in development and environmental economics. A main

theme of the research on development and the environment has been the Herculean challenge of en-

vironmental regulation in low-state-capacity settings (Greenstone and Hanna, 2014; Jayachandran,

2022). Common findings are that poor or corrupted monitoring impedes regulation (Duflo et al.,

2013; Oliva, 2015; Duflo et al., 2018; Zou, 2021), and that coarse regulations, themselves adopted

in response to poor monitoring, are partly undercut by behavioral responses (Davis, 2008; He,

Wang and Zhang, 2020).6 Our findings add to this literature by showing that, at least in Gujarat,

high private abatement costs are not the primary culprit for high emissions (see also Greenstone

et al., 2022, on this theme) and that markets can be an effective way to reduce pollution.

The conventional wisdom in environmental economics on market-based regulation is that emis-

sions markets abate pollution at lower cost than extant command-and-control regulations (Eller-

abatement costs in the Acid Rain program. Klier, Mattoon and Prager (1997) and Shapiro and Walker (2020) present
summary statistics on transaction prices in RECLAIM and US air pollution offset markets.

6The one prior example of a market targeting particulates with which we are familiar was in Chile and in fact
regulated boiler capacity, not emissions, because of limitations in pollution monitoring at the time (Montero, Sanchez
and Katz, 2002). This coarse proxy removed the prospect of low-cost abatement because most particulate abatement
happens after combustion, and plants could receive no credit for actions such as running end-of-pipe abatement equip-
ment or changing fuels. Eventually, the market disbanded after many plants switched to natural gas in response to a
fall in prices further weakening the value of this proxy.
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man et al., 2000; Fowlie, Holland and Mansur, 2012). A general challenge for the evidence on

this point is that plants regulated with markets are vastly different from those left out, making it

hard to identify a valid counterfactual.7 As a result, existing evaluations of emissions markets re-

quire strong assumptions to estimate what emissions and plant costs would have been without a

market (Fowlie, Holland and Mansur, 2012; Martin, de Preux and Wagner, 2014; Borenstein et al.,

2019). This paper experimentally assigns plants to the market and command-and-control regimes

to provide causal estimates of the effects of an emissions market on both pollution and costs.

The paper proceeds as follows. Section 2 introduces India’s status quo environmental regula-

tion and the new emissions market and then describes the data, sample and experimental design

incorporating this market. Section 3 provides evidence that the market functioned well. Section 4

presents estimates of experimental treatment effects on emissions. Section 5 describes the model

and estimates marginal abatement costs from bids. Section 6 compares the costs of abatement

under the two regulatory regimes and provides a benefit-cost analysis. Section 7 concludes.

2 Context and Experimental Design

We begin by describing the status quo regulatory regime (2.1). We then lay out the history of our

engagement with both central and state governments (2.2), the development of the Surat market

and the market rules that applied to treatment plants (2.3). In the second half of this section we

describe the experimental design (2.4), our data sources (2.5) and the characteristics of sample

plants (2.6).
7 Prior research on emissions markets makes this point explicitly. Fowlie, Holland and Mansur (2012) write that

“Unresolved disagreements about what constitutes an appropriate measure of counterfactual emissions have resulted
in a plurality of opinions regarding RECLAIM’s overall performance. After 15 years of program evaluations, the emis-
sions impacts of RECLAIM vis-à-vis the subsumed CAC rules remain controversial.” Early work on the EU Emissions
Trading System (ETS) for carbon dioxide highlighted the difficulty of estimating whether the ETS reduced emissions
at all, in an environment with uncertainty about emissions and aggregate shocks (Ellerman and Buchner, 2008). This
problem has remained prominent in the literature on the EU ETS. Martin, Muûls and Wagner (2016) write “An ideal
evaluation of the EU ETS would combine a representative firm- or plant-level data set of sufficient detail with a study
design that attributes to the EU ETS only those observed behavioral changes it has actually caused. It is difficult to
solve this identification problem because there are so many factors that might simultaneously affect firm behavior, thus
confounding the impact estimate. The state-of-the-art solution would be to conduct a randomized control trial or field
experiment (e.g., Greenstone and Gayer (2009)). As in other real-world settings, however, randomizing participation
in the EU ETS is neither desirable nor politically feasible.”
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2.1 The Command and Control Status Quo

Under the status quo command and control regulations, the “command” mandates plants to

install pollution-control equipment. The “control” is an intensity standard that limits pollution

concentrations (for particulate matter, the limit is typically 150 mg/Nm3). State Pollution Control

Boards (SPCBs) enforce these regulations by visiting plants, measuring pollution and imposing

sanctions.8

We collaborated with GPCB on prior research that showed incomplete compliance in the status

quo. The regulator is limited in part by poor information about pollution emissions (Duflo et al.,

2013). While sanctions can be large, they are typically reserved for severe offenses, leaving the

many plants with routine violations with weak incentives to abate (Duflo et al., 2018). Pollution

concentration limits are uniform across plants without regard to their age, size, fuel or abatement

capital. Because of this uniformity, despite large differences across plants, there may be significant

heterogeneity in marginal abatement costs across different plants.

2.2 Laying the Groundwork for India’s First Emissions Market

The market grew out of a deep collaboration between our research team and environmental

regulators to build the monitoring, regulatory and trading infrastructure for an emissions market.

We proposed, at a 2010 conference of Indian state environmental regulators, that states could use

emissions markets as a regulatory tool. India’s Ministry of Environment and Forests then solicited a

white paper on emissions markets that we co-authored (Duflo et al., 2010). The conference sparked

scoping discussions on emissions markets with the State Pollution Control Boards in India’s three

leading industrial states, Gujarat, Maharashtra and Tamil Nadu.

The monitoring infrastructure needed to establish an emissions market had to be built before

a market could be launched, in any state. Emissions markets rely on Continuous Emissions Mon-

itoring Systems (CEMS), for which no Indian standards existed circa 2010. A Central Pollution

8The Air Act (1981) established a command and control framework for regulating industrial pollution. The Water
Act (1974) established SPCBs as environmental regulators for water pollution standards. The Air Act expanded these
powers to include air pollution. SPCBs can introduce additional regulation in highly polluted regions.
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Control Board (CPCB) panel, including co-author Sudarshan as a member, in 2013 drafted techni-

cal standards for CEMS usage in India (Central Pollution Control Board, 2013). These standards

were developed with a pilot market in mind but also enabled a nationwide movement towards the

adoption of CEMS.9 Gujarat was the first of the three interested states to mandate CEMS devices

when the standards were published, which prompted our research-policy collaboration with GPCB

on the development of an emissions market. GPCB pushed the roll-out and testing of CEMS at

scale, a laborious process that required a new, private ecosystem to install and maintain the devices

(Sudarshan, 2023). Tamil Nadu and Maharashtra have since adopted CEMS for monitoring larger

plants. As of 2024, we are also working with the Maharashtra Pollution Control Board on the

design of a market for sulfur dioxide.

To start an emissions market GPCB needed to issue regulations, establish a trading platform

and build market participants’ capacity. Together with our research team at JPAL South Asia,

we collaborated with GPCB on each of these steps. GPCB selected NCDEX e-Markets Limited

(NeML), a subsidiary of a leading Indian commodity exchange, to host the market. GPCB, NeML,

the co-authors of this paper and our research team jointly developed market rules. The Forest

and Environment Department, Government of Gujarat formally notified the market on June 4th,

2019 (via notification GVN-2019-17-GPCB-SFS-1-2019-ETS-T). The market is supervised on an

ongoing basis by a Market Oversight Committee (MOC) chaired by the Chairman, GPCB and

with additional members including the GPCB Regional Officer, GPCB Environmental Engineers,

NeML, the head of the South Gujarat Textile Processor’s Association (SGTPA), the concerned

industry association, and this paper’s co-authors. The GPCB and the SGTPA hosted a series of

stakeholder capacity-building workshops to train GPCB’s own officials and regulated plants on the

rules of the market, penalties for non-compliance, how to participate in auctions and how to trade.

9In 2014, the CPCB mandated installation of Continuous Emissions Monitoring Systems (CEMS) for large plants
in 17 manufacturing sectors across India. This mandate is restricted to large plants and the CEMS data from this
mandate is largely not used in the enforcement of regulation; for example, CEMS readings can direct the regulator’s
priorities but cannot be used as the legal basis for sanctioning plants in the status quo.
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2.3 Surat Emissions Market Design

The Surat emissions trading scheme is the world’s first particulate emissions market as well

as India’s first market for any pollutant. GPCB chose to locate the emissions market in Surat, an

industrial hub with a population of 7 million, because the city is critically polluted and has a high

contribution of point-source industrial emissions to ambient pollution levels.10 The market is a

standard cap-and-trade design in which plants are allocated, or can buy, permits granting the right

to emit and face fines for non-compliance if emissions exceed their permit holdings. Here we detail

the market design.

Cap.— The cap in the market limits the load, or mass, of pollution emitted. GPCB initially

capped particulate emissions at 280 tons per month. This cap was an approximation that assumed

plants would run at the maximum available capacity and produce emissions at the maximum con-

centration allowed under the status quo the whole time. Once the market began, GPCB got better

estimates of load from CEMS devices and judged the initial cap had been set too high. GPCB then

adjusted the cap downwards, in steps, to 170 tons per month (see Appendix Table A2).

Permit allocation.— Each permit allows a plant to emit one kilogram of particulate matter

(PM). PM includes suspended particles of all sizes, since neither CEMS devices nor manual mon-

itoring in the status quo differentiate by particle size, as is common in ambient monitoring of PM.

Permits are valid only for one compliance period of four to six weeks’ duration (see Appendix

Table A1). Permits expire at the end of each compliance period so plants cannot bank or borrow

across periods. At the start of each compliance period, 80% of issued permits were given to plants

for free, proportional to a scale measure, emissions capacity, calculated prior to the market.11 The

balance of 20% of permits were sold to plants via a uniform price, multi-unit two-sided auction.

Permit trade.— Each compliance period opens with an auction in which GPCB offers 20%

of the cap in permits at the market floor price. If GPCB does not sell all these permits during the

10Roughly one-third of ambient fine particle pollution in and around Surat city comes from industrial plants; twice
as large as that of the next most significant source, transportation, at 16% (Guttikunda, Nishadh and Jawahar, 2019).
A current assessment for Surat is at: https://urbanemissions.info/india-apna/surat-india.

11Emissions capacity, measured in tons of steam equivalent per hour, is the sum of the output capacities of the boiler
and thermic fluid heater, the two main fuel-burning pieces of equipment in sample plants.
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first auction, they continue to be offered in subsequent weekly auctions. Plants can also buy or sell

permits at these auctions and during the week via over the counter (OTC) trades at the most recent

auction’s permit price. This OTC price restriction was adopted to encourage auction participation

and limit price volatility. Market rules impose holding limits to prevent plants from gaining market

power over permits.12

Price collar.— Prices were limited to between |5 and |100 per kg.13 GPCB supported the floor

price with a commitment to buy back permits at the floor at the end of each compliance period.

GPCB supported the ceiling price with a commitment to sell permits at the ceiling at the end of

each compliance period in unlimited quantity.

Compliance and penalties for non-compliance.— Compliance is enforced with financial

penalties. At the start of the market, plants had to post an environmental bond known as an

Environmental Damage Compensation Deposit (EDCD).14 The size of EDCD varied with plant

scale, and for most plants was |200,000, well in excess of permit expenditures at market prices.

After a compliance period ended, at which point emissions were known with certainty, plants had

a one-week true-up period to make further trades. At the end of the true-up plant permit holdings

were compared against their total emissions in the period. Plants with insufficient permits were

fined twice the ceiling price for every unit of emissions above their permit holdings with the fine

deducted from the EDCD (which the plant was then required to top-up).

Differences between the market and the status quo.— To summarize, the treatment emis-

sions market differs from control regulation in three main respects. First, the compliance obligation

for each treatment plant is tradeable, and ultimately determined by the market-level cap, rather than

12The limit for each plant was the greater of 1.5 times that plant’s initial allocation or 3% of the aggregate market
cap for the compliance period.

13This range was informed by engineering estimates that particulate matter abatement by equipment commonly
used in the sample, could occur at an average cost of |10 to 40, depending on type of equipment installed and plant
scale. The ceiling price was sufficiently high that plants would rather abate than pay the ceiling price for permits.

14While these EDCD bonds were new, GPCB commonly used other environmental bonds for violating plants to
guarantee against future non-compliance. The authority to impose fines derives from the “polluter pays principle”
widely recognized in Indian environmental law (Piette, 2018). A relevant precedent is the ruling of the National Green
Tribunal (NGT), India’s environmental high court. The NGT has directed that the Central Pollution Control Board
“may also assess and recover compensation for damage to the environment” (WP (CIVIL) No. 375/2012, Paryavaran
Suraksha Samiti vs. Union of India & Others).
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a fixed plant standard. Second, treatment plants are regulated for total pollution load (i.e., mass),

rather than concentration at one point in time. Third, penalties for noncompliance in the market

are financial and set based on ex ante rules.

2.4 Experimental Design

The initial sample included all 342 plants under the GPCB regional office in Surat with high

air pollution potential, as captured by the following criteria: (i) the plant must consume solid fuel

(coal or lignite, mostly), (ii) have a boiler capacity of at least one ton of steam per hour, and (iii) a

stack diameter of at least 24 cm (required for CEMS). All sample plants were mandated to install

CEMS. Half of sample plants were randomly assigned to the market treatment. After treatment

assignment but before the market commenced, the GPCB gathered more information on plants’

operating status, and deemed ineligible any plants that were closed or operated only seasonally.

This restriction left 162 and 155 plants in the treatment and control groups, respectively. Appendix

Table A3 summarizes plant attrition by treatment arm.

Figure 1 displays sample plants and ambient fine particulate (PM2.5) concentrations. The av-

erage pairwise distance between sample plants is 11 km, far below the dispersion of particulate

matter from a high plant stack (Guttikunda, Nishadh and Jawahar, 2019). Since plants are close

by, relative to how far pollution spreads, trade among nearby plants is unlikely to generate areas of

locally increasing pollution. The ambient shading in the background shows that PM2.5 concentra-

tions in Surat are 10 to 20 times the WHO standard of 5 µg/m3.

The experiment ran for ten compliance periods over about one-and-a-half calendar years. Ap-

pendix Table A1 shows the timeline. The first of two mock compliance periods, meant to familiar-

ize plants with trading, began on July 16th, 2019. During mock periods, the market rules were the

same as described above but plants were endowed with fake money. They were aware that the real

market would start after the mock periods. Six real compliance periods followed from September

16th, 2019 to March 22nd, 2020.15 Market operations were then suspended as part of a nationwide

15The initial schedule envisaged periods starting on the first of the month but the GPCB pushed it back by two
weeks to allow plants more time to calibrate their CEMS devices.
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Covid-19 lockdown that closed all sample plants. The market restarted in December, 2020 and we

have data from four additional compliance periods up to when the second (Delta) wave of Covid

hit in April, 2021.16 The treatment thus spans roughly one year of market operations spread over

one-and-a-half calendar years.

2.5 Data sources

The paper relies on three main sources of data.

Pollution measurement.—CEMS devices were installed in sample plants to provide high-

frequency data on particulate matter (see Appendix C.1 for more information on CEMS). CEMS

devices themselves have no direct effect on emissions.17 To incentivize CEMS uptime, plants that

failed to report CEMS data for any period of time had missing emissions data replaced accord-

ing to a rule that became increasingly punitive as the share of data missing rose (see Appendix

Table C2).18 Emissions with this replacement for missing data were called “validated emissions”

and used to calculate compliance. The replacement rule created stronger incentives for treatment

plants to comply because non-compliance meant plants would have higher emissions and need to

buy more permits. For this reason, treatment plants reported data at higher rates throughout the

experiment. CEMS data availability for control plants largely caught up in later compliance pe-

riods and average weekly data reporting rose to over 85% by the end of the sample (Appendix

Figure C2).

We use different emissions imputation rules in our data analysis to try to form an unbiased,

rather than a punitive, estimate of non-reported emissions.19 Appendix C describes our treatment

16The market restarted after the more severe Delta wave shutdowns. However several plants did not reopen imme-
diately or reduced operating hours. Permit prices were correspondingly often at the floor. The GPCB began plans to
expand coverage to the control and then implemented this expansion. For these reasons we prefer not to use data after
the Delta wave in our main analysis. We report results including these periods as a robustness check in Appendix F.5.

17The CEMS deployment was evaluated in a randomized control trial prior to the market launch. This trial shows
that CEMS alone had no effect on plant pollution emissions (Appendix C). Aside from its role as the basis for the
market, CEMS data was not legally admissible as a basis to penalize plants with high emissions.

18Missing CEMS data might occur for different reasons including reasons outside plants control such as extended
internet and electricity outages or device malfunctions. Replacement rules treated all missing data alike.

19The emissions replacement rule for the market was designed to punish non-reporting plants by over-estimating
their emissions. Since control plants complied with CEMS requirements more slowly, using the market replacement
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of missing data. There are two steps to imputing data at the plant-month level. First, we impute

missing daily observations within a week with the emissions rate from other days in that week or

weeks in that month for the same plant. Second, we use several alternative rules, including no

further imputation, to fill in plant-month observations when a plant does not report at any time

during a month. These rules include using the emissions rate from the same plant at other times

in the experiment (rule A) or the emissions of plants in the same treatment arm in the same month

(rule B). We discuss the robustness of our estimated treatment effects on emissions to different

imputation rules with the empirical results in Section 4.

Trading data.—Plants could trade on the platform of the market operator (NeML) via either

auction bids or over-the-counter trades, as described in Section 2. We observe initial allocations

of permits to plants and data on the universe of plant bids, consisting of a price and quantity pair,

irrespective of whether they resulted in a trade. For example, a plant willing to sell permits only at

a very high price might submit a series of unfulfilled bids. With initial allocations and subsequent

transactions we construct the full history of plant permit holdings and can observe, in particular,

whether plants hold enough permits at the end of each compliance period to cover their emissions.

Plant surveys.—An in-person baseline plant survey was conducted from December 2018 to

January 2019 and a phone-based endline survey wave in November 2020. The surveys had two

parts, general and technical. The general part was administered to the plant owner or manager,

and covered economic variables like inputs, outputs, sales and energy use. For the technical part,

our team observed abatement equipment installed on every point source of emissions in the plant

and recorded the characteristics of all emissions sources and abatement equipment. They also

interviewed plant staff about costs of equipment operation. We use the baseline data to characterize

status quo regulation and the endline data to investigate investments in abatement equipment and

their cost.

rules for missing data in control plants in our analysis would increase control emissions and bias upward in magnitude
the treatment effect on emissions.
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2.6 Summary Statistics

Table 1 summarizes plant covariates at baseline by treatment arm. Sample plants are large

factories with high energy and related input costs, though many are formally classified as “small

scale,” based on their capital stock at the plant’s establishment. The average control plant spends

$350,000 a year on electricity (Panel A). The boiler, the plant’s main pollution source, costs

$112,000 annually to run, excluding fuel expenditures. The sample is balanced across a wide

range of input, output, equipment, and pollution metrics.

The “command” portion of regulation works well: all plants have installed some air pollution

control device (APCD). Table 1, panel B shows that 97% of control plants (98% of treatment) have

a cyclone installed, 86% (81%) have a bag filter installed, 60% (64%) have a scrubber installed and

8% (11%) have an electrostatic precipitator. Installation rates are inversely proportional to the cost

and efficacy of abatement equipment. Cyclones are inexpensive but have a low efficacy, reducing

PM emissions by 60− 90% and PM2.5 by only 0− 40%. Larger plants with multiple emissions

sources are mandated to install more expensive APCDs like scrubbers, which remove more than

95% of PM.

The “control” portion works less well as many plants violate pollution standards. At baseline,

pollution concentrations and mass rates are balanced across treatment arms (Table 1, panel C). PM

concentration in stack gas average 169 mg/Nm3 in the control group and 179 mg/Nm3 in the treat-

ment group. Both average emissions levels exceed the SPM maximum standard of 150 mg/Nm3.

Roughly 30% of plants in both arms have pollution concentrations above the standard. The dis-

tribution of concentrations prior to the market’s launch by treatment arm is shown in Appendix

Figure B1.

Table 2 shows the evolution of bid counts, prices, and quantities. Table rows show statistics by

compliance period and columns show the number, quantity and price of bids submitted. The permit

market was active from the start, with 1,525 bids, nearly ten bids per treatment plant, submitted in

the first compliance period, at a mean price of |12.70 per kg (standard deviation |16.65 per kg)

(column 6). Both the level and dispersion of bid prices fell after the first compliance period, up
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to the Covid lockdown after period six, before rising again when the market reopened from period

seven onwards. Plants were active on both the buy and sell sides of the market. The average bid

size of 412 kg, across all compliance periods (column 3), can be compared to average emissions of

roughly 1,000 kg per plant-month. The bidding activity volume is large, especially since permits

equalling 80% of the overall market cap were allocated to plants before the first auction.

3 Trade and Compliance in the Emissions Market

Emission market analysis often assumes compliance with market rules, particularly the key rule

that plants must hold permits for each unit of emissions. This assumption may fail in low-state-

capacity environments such as India where non-compliance is widespread in the status quo regime.

It is therefore important to demonstrate that the emissions market functioned, both for the policy

reason of validating that an emissions market can work in this setting and to understand the first

stage for our analysis of how the market affects emissions and costs. Below, we provide a descrip-

tive analysis of the treatment market, demonstrating that (i) trade was vigorous; (ii) final permit

holdings differed from initial allocations, consistent with unobservable cost heterogeneity; and (iii)

plants complied with the permit holding rule almost perfectly.

3.1 Permit Trade

Figure 2 depicts the weekly time series of permit prices (panel A) and quantities traded (panel

B). The scattered data points show the weekly mean permit bid. Panel A’s solid line reflects weekly

clearing prices, which vary between blue and black to indicate the change in permit vintage with

each compliance period. The market rules deliberately reduced price volatility by constraining

over-the-counter trades to occur at prices revealed by weekly auctions (Section 2.3). The red

dashed line represents the price floor of |5 per kg.

Market-clearing prices range from the price floor of |5 per kg to |16 per kg depending on

compliance period and week range. Prices were generally lower in the pre-Covid-interruption

compliance periods (1-6), when the cap was looser, and higher once the market resumed. In
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several compliance periods, for example periods 9 and 10, prices are moderately high during the

compliance period but then plummet during the true-up period, when emissions are known with

certainty.20 Mean bid prices were substantially higher than the market clearing price in the early

periods, but this difference declined over time, consistent with market participants learning that

the costs of emissions reductions were lower than initially expected. A similar pattern of declining

trading prices was observed at the start of the US Acid Rain program market for sulfur dioxide

(Schmalensee et al., 1998).

Panel B plots daily permit quantities traded as a fraction of the compliance period cap. The

double-sided auction on the first Tuesday of a compliance period typically causes a spike in quan-

tity. Overall trade volume is significant, reaching up to 20% of the monthly cap, or more, on

some days. Trade volumes are higher during the first part of a compliance period as plants buy or

sell permits to align permit holdings with expected emissions. As plants’ uncertainty about total

emissions for the period diminish, toward the end of the period, so do trade volumes.

3.2 Permit allocations

In the Surat market, permits totaling 80% of the cap were allocated pro rata based on a plant’s

total heat capacity, the regulator’s best ex ante measure of emissions capacity. If there is unob-

served heterogeneity in costs across plants, plants should trade away from their initial allocations

depending on underlying abatement costs.

To test this idea, Figure 3 plots the distribution of plant emissions as a percentage of their initial

permit allocation in each compliance period. Plants that emit exactly what they were allocated

appear at 100%, while plants that emit twice what they were allocated appear at 200%. Because

only 80% of the total cap is freely allocated per period, with the rest auctioned, we expect mean

emissions as a percentage of the permit allocation to exceed 100%.

In every compliance period, plant emissions are widely dispersed with respect to initial permit

20This price behavior is consistent with uncertainty, prior to the end of the compliance period, as to whether the
market would be short or long on permits in aggregate. After the market closes and this uncertainty is resolved, prices
should converge to the ceiling or floor, respectively. The market-clearing mechanism of a single auction after the close
of the compliance period may mute this end of period price volatility.
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allocations. Most plants fall between 50−200% of their initial allocation, with a relatively modest

share between 100− 125%. This dispersion indicates that the market meets two criteria: First,

low transaction costs: plants are unconstrained by initial permit allocations and trade to adjust

permit holdings. Second, unobserved heterogeneity: boiler capacity is a weak proxy for ultimate

emissions. Differences in plant capacity utilization, emissions rates, and marginal abatement costs

may all contribute to dispersion relative to the capacity-based measure used for permit allocation.

3.3 Compliance with Market Rules

Figure 4 plots the distribution of emissions across plants as a fraction of permit holdings at

the end of each of the ten true-up periods that followed the ten compliance periods (rather than

emissions as a fraction of initial allocations, as shown in Figure 3). Any plant that emits more than

its final permit holdings (i.e., more than 100% in the figure) is non-compliant. Plants that emit less

than their permit holdings (i.e., less than 100%), on the other hand, “leave money on the table” by

not selling their excess permits to other plants or back to the regulator at the floor price.

Compliance, defined as emissions during the compliance period being equal to or less than

permit holdings at the end of the true-up period, is nearly perfect. We observe only a few scattered

non-compliant plants (see periods 1, 3, and 8). We believe compliance was high because the

regulator established that violators would be penalized immediately and a non-discretionary rule

for fines proportional to permit shortfalls made strict enforcement credible.21 Plant compliance in

the market is an endogenous outcome reflecting a new regulatory regime with rule-based fines. In

the status quo, regulators could impose severe penalties, up to closing a plant down. However, the

most severe penalties were costly to impose, seldom and unpredictably applied, and did not scale

smoothly with the magnitude of a violation (Duflo et al., 2018).

Lastly, plants did not leave much money on the table. The mass in the histograms is stacked

21Emissions for two plants exceeded permit holdings during the initial compliance period. Plant A emitted 3928
kg against permit holdings of 3456 kg and Plant B emitted 4716 kg against permit holdings of 1456 kg. These plants
were levied Environmental Damage Compensation (EDCD) in accordance with market rules. Plant A paid the EDCD
and then topped up their environmental bond. As plant B had failed to post the required bond, the regulator ordered
plant closure. Plant B posted a bond and paid a penalty of |652,000, more than ten times the cost to buy permits on
the market to cover emissions in the period. The regulator allowed the plant to reopen after two weeks.
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at 100%; the vast majority of plants hold permits that exactly equal or only slightly exceed their

total emissions at the end of each period. Looking down the first column of distributions, and then

down the second, we can see that more plants left money on the table in early compliance periods,

when market participants had limited experience and the clearing price was relatively low. In later

compliance periods almost all plants hold only the permits they need to cover their emissions.22

The precision of permit holdings suggests that plants understood the incentives for permit trade

and that transaction costs in the market were low.

4 Experimental Results on Pollution Emissions

We now exploit the randomized assignment of plants to treatment to evaluate if the emissions mar-

ket reduced pollution emissions. Figure 5 displays weekly mean per plant emissions in kilograms

per month, from April 2019 to April 2021, by treatment arm. The solid (blue) and dashed (grey)

lines represent treatment and control plants, respectively. Vertical lines separate market compli-

ance periods. The Covid-19 lockdown, denoted interregnum on the figure, is shaded in light blue

and divides the sample into early (1 to 6) and late (7 to 10) compliance periods.

We include pre-experiment data in Figure 5, despite poor data reporting then. The time pattern

of reporting rates for treatment and control groups, depicted in Appendix Figure C2, explains the

apparent drop in monthly mean emissions in both treatment and control groups prior to the exper-

iment. Initial reporting is low and concentrated among larger plants, while treatment plants report

more than control plants. As data reporting increased, smaller plants began reporting, lowering

average emissions for reporting plants. Control plant reporting also rose such that the treatment-

control gap in reporting narrowed to a few percentage points by the end of the experimental period.

As described in Section 2.5, the main pollution series in Figure 5 imputes missing plant emissions

using observations from the same week or month for the same plant.

22On average across all compliance periods plants consumed 95% of their permits and 78% of plants held permits,
at the end of the period, exactly equal to their emissions (down the the last kg). The share of plants holding exactly the
permits they needed rose from 51% in the first period to 91% and 84% in the last two, respectively, and the fraction of
permits consumed rose from 87% in the first period to 97% and 95% in the last two.
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Figure 5 yields two findings. First, treatment plants followed the market rules and emissions

therefore met the cap in all compliance periods, in contrast to the poor compliance with the con-

centration standard in the status quo. We plot the mean emissions per plant required to meet the

cap exactly with red horizontal lines. In later periods, the cap is roughly 1,000 kg (1 metric ton)

of SPM per plant-month. All compliance periods have mean treatment emissions, shown by the

solid blue line, below this level, sometimes substantially (around the Diwali holiday, in November,

many plants briefly cease operations and emissions fall). The seeming over-compliance in early

compliance periods reflects the market replacement rule for missing data (Appendix Table C2).23

Second, pollution emissions are consistently lower in the treatment than in the control group.

By the start of compliance period 1, in September 2019, treatment plants emit roughly 300 kilo-

grams per month less particulate matter than control plants. The treatment-induced gap in average

emissions remains throughout despite marked increases in control plant reporting. We use a re-

gression analysis at the plant-month level to estimate the treatment effect size:

log(Pollutionit) = β1Treatmenti +αt + εit . (1)

Pollutionit is the mass of plant-month PM emissions in kg, Treatmenti is an indicator variable equal

to one for plants assigned to the emissions market treatment, and αt are year-month fixed effects.

We restrict the data to the period when the experiment was running, when reporting was highest,

and report the robustness of our estimates to alternative imputation rules for missing emissions

(see also Appendix C). Standard errors are clustered at the plant level.

Table 3 reports the results. Columns 1 to 4 use pollution series that do not impute across

plant-months and therefore drop plant-months with no data. Columns 1 and 2 report unweighted

regressions. To capture treatment effects on the full plant sample, columns 3 and 4 regressions are

reweighted by the inverse probability of a plant reporting emissions (DiNardo, Fortin and Lemieux,

1996), where we use baseline observable characteristics to predict a plant’s reporting probability.

23We are plotting mean emissions with imputations at the plant mean in nearby periods; for the purpose of market
operations, missing emissions are replaced with a rule that fills in punitively high values, meant to deter non-reporting.
With these higher imputations for missing data the cap binds more or less exactly (as implied by Figure 4).
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Columns 5 to 8 report specifications that impute missing pollution observations using two different

imputation rules (see Annex C). Briefly, Rule A, in columns 5 and 6, imputes a stack missing

emissions in a given month at its mean emissions from other months in the experiment. Rule B,

in columns 7 and 8, imputes a stack at the monthly mean emissions load of its own treatment

group for the same month. Odd-numbered columns are unweighted and even-numbered columns

are reweighted by the inverse probability of reporting.

The market treatment significantly reduced PM emissions. Without imputation and reweight-

ing, column 2 reports a treatment effect on log emissions of −0.193 log points (standard error

0.076 log points). Re-weighting gives very similar estimates (column 4). The treatment effect on

pollution is larger with either imputation rule than with the raw data (columns 5− 8 compared

to columns 1− 4). The treatment effect on pollution is −0.282 log points (standard error 0.074

log points) for Rule A and −0.316 log points (standard error 0.057 log points) for Rule B. Imput-

ing missing data increases the magnitude of treatment effects because imputations tend to replace

missing control observations for log particulate emissions with values higher than the mean among

reporting control plants. Thus using imputed control plant emissions raises control emissions and

the estimated difference between treatment and control emissions. In Appendix F.5 we show that

our results are also robust to expanding the sample to include data after the second covid lockdown.

A natural next question is the impact of the market treatment on plant costs. There are two

challenges to comparing costs across treatment arms. First, because the treatment group has both

a different kind of regulation and, as we have shown, higher compliance and lower emissions than

the control group, a comparison of costs across arms will not isolate the effect of an emissions

market on costs holding constant the level of emissions. Second, the best measure of marginal

costs, permit market bids, is only available in the treatment group that participated in the market.

For these reasons, we now introduce a revealed preference approach to use our rich bidding data

to estimate marginal abatement cost functions. We then describe how these functions can be used

to evaluate costs for any distribution of emissions, and therefore to compare costs across treatment

arms.
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5 Estimating Marginal Abatement Cost Curves

Marginal abatement cost (MAC) curves are the key to measuring the costs of virtually any environ-

mental regulation. With MAC curves, one can evaluate marginal costs for any policy that implies

an allocation of emissions to different plants, or integrate these functions to recover the variable

costs for any proposed emissions reduction. While MAC curves are the theoretical foundation for

the study of regulation, they are not observable, which makes it difficult to apply these ideas.

We address this problem by using our extraordinarily rich bid data to estimate plants’ MAC

curves. Section 5.1 outlines the two assumptions needed to interpret plants’ emissions market

bids as measures of their marginal abatement costs. Section 5.2 describes how we estimate MAC

curves using bidding data and Section 5.3 presents the results, emphasizing the heterogeneity in

estimated MACs across treatment plants. We argue that the distribution of MAC curves in the

treatment group represents the distribution in the control group also and so can be used to compare

abatement costs across these regimes.

5.1 Emission Market Bids as Measures of Marginal Abatement Costs

We start with the two assumptions required to interpret plant permit bids as observations of

marginal abatement cost. The first assumption is that each plant i seeks to minimize its compliance

costs in a given period by solving

min
Ei

Zi0 +Zi(Ei)+P(Ei −Ai), (2)

where Ei is the plant choice of emissions, Zi0 is the fixed cost of abatement, Zi(·) gives variable

abatement expenditures as a function of emissions, P is the equilibrium permit price, known to the

plant, and Ai is the regulator’s free allocation of permits to the plant. The substance of this cost

minimization assumption is that plants trade-off their own, in-house emissions abatement with the

purchase of permits to lower compliance costs.

Variable abatement costs Zi(·) include costs associated with running pollution abatement equip-
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ment more frequently, changing inputs like filters or chemicals more often, or devoting more labor

to operation and maintenance of machines. We expect that Z′
i < 0 and Z′′

i > 0; abatement ex-

penditures decrease as emissions increase but at a rate that decreases in magnitude as emissions

grow. (Equivalently, marginal costs of abatement are increasing in abatement.) Plants are already

mandated to install pollution abatement equipment in the status quo, incurring a fixed cost Zi0 (see

Table 1, Panel B). We will document in Section 5.2 that these fixed expenditures do not change in

response to the emissions market treatment.

The second assumption is that plants are price-takers in the market for permits. This assump-

tion is appropriate in our setting because no plant holds a large share of the permit market. For

example, the 90th, 95th and 99th percentiles of plant permit allocations as a share of the emissions

market cap are 0.6%, 0.9% and 4.5%, respectively. Market rules also imposed holding limits to

prevent speculative price manipulation (see footnote 12). Under this assumption, the solution to

(2) satisfies the first-order condition

−∂Zi(Ei)

∂Ei
≡ MAC(Ei) = P. (3)

This is the familiar condition that the plant’s marginal abatement costs at a given level of emissions

equal the permit price. This condition holds regardless of the plant’s fixed abatement costs Zi0 and

initial permit allocation Ai. Therefore, under the two assumptions of cost minimization and no

market power for permits, plant marginal costs of abatement, which are not observable, equal their

permit bids, which we record in our data. Equation (3) therefore provides a basis for estimating

MAC curves.

5.2 Marginal Abatement Cost Curve Estimation

We use permit bid data from treatment plants, participating in the emissions market, to esti-

mate plants’ MAC functions. Bids vary both across the ten compliance periods and within each

period, because most plants submit multiple bids per period (see Table 2, column 2 and Appendix

Figure B2). Our main specification is an iso-elastic marginal abatement cost curve that allows for
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higher or lower cost functions for each plant-period:

logbitk = β1 logEitk +ξit + εitk. (4)

The dependent variable is the log of plant i’s bid number k in period t, our measure of plant

marginal abatement cost at a given emissions level. The main explanatory variable logEitk is the

log of the implied plant emissions if bid k in period t were to be executed.24 The error consists of

a plant-period effect ξit and an idiosyncratic term εitk that we discuss below. We vary specification

(4) by both (i) using plant observable characteristics or plant fixed effects in place of plant-period

effects and (ii) allowing heterogeneity in β1 for plants with different observable characteristics. We

discuss these variants with the estimates and focus on this main specification here.

The main parameter of interest is β1, the elasticity of marginal abatement costs with respect

to emissions. We expect that marginal abatement costs are decreasing in emissions (increasing

in abatement) such that β1 < 0. The main challenge in estimating the abatement cost elasticity, in

general, is that a plant’s chosen emissions level Eit will be endogenous to abatement cost shocks. If

plants with high abatement costs at a given time choose higher emissions levels, then the estimated

abatement elasticity would be biased upwards (β̂1 > β1).

Our specification addresses this challenge and allows for unbiased estimation of β1 via ordi-

nary least squares using variation in bids within a plant-period. This assumes that variation in

logEitk within a period reflects plant bids at different points along their MAC curve, up to an id-

iosyncratic error. Formally, this assumption is the familiar one of mean conditional exogeneity

E[εitk|Eitk,ξit ] = 0. While plants almost certainly emit more when they face a high abatement cost

shock (e.g., due to a positive demand shock), we find it plausible that they do not adjust emission

levels to cost shocks at high frequency. For example, a plant cannot change its set production

24Practically, we calculate the emissions associated with a bid as the plant’s permit holdings if that bid were
executed, because, given near-perfect compliance, emissions are equivalent to permit holdings in the market. For
example, if a plant is first allocated Ait = 1,500 kg of permits, and then with bid k = 1 seeks to buy 500 kg of
permits, Eit,k=1 = 1,500 + 500 = 2,000 is the sum of the initial allocation and the amount the bid seeks to buy.
Generically, let K (k) = {k′ : k′ < k,k′executed} be the set of bids already executed at the time k is offered. Then
Eitk = Ait +∑k′∈K (k) Bitk′ +Bitk where buy bids are represented as positive quantities B and sell bids with negative
quantities.
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schedule in a week simply because of higher than expected ash content of its fuel supply.25

In order to align the data with the time horizon of plant abatement choices we estimate (4) in a

restricted sample of bids from only the first half of each compliance period, while also exploring

estimates in other samples.26 In our model, plants choose whether to comply by reducing emis-

sions or buying permits, which is a good characterization of decisions in the early portion of a

compliance period. As the end of a period approaches, however, plants no longer face the same

trade-off, as within-period plant emissions are largely sunk. At the extreme, after the compliance

period has ended and the true-up period begins, emissions are fixed, so we expect plant demand

for permits to be inelastic and bids no longer to reflect marginal abatement costs.

Alternative step function marginal abatement cost functions.—Equation (4) specifies a

smooth, iso-elastic marginal cost function. This functional form may not represent plants’ under-

lying technology and therefore marginal costs at emissions levels far from those at which plants

bid in the data. A simple engineering model of abatement would specify that each piece of capital

abatement equipment can abate some fraction of emissions at a fixed marginal cost, beyond which

a more expensive piece of equipment must be used. Our data include the type and specifications

of abatement equipment in each plant, allowing us to consider this alternative functional form for

MAC curves. Appendix E provides a step function abatement cost model based on technologies

available to the plants and describes how we use bid data to estimate the height of the steps. We

compare the fit of this alternative model to our main specification in Section 6.1.

25One formal economic justification for this identifying assumption is that plants form unbiased expectations of
their emissions, and therefore marginal costs, at the time of bidding, but are uncertain about later shocks and therefore
their exact emissions level and marginal cost. For example, assume plants anticipate emissions Ẽitk = Eitνitk with
νitk ⊥ Eitk,ξit and E[logνitk] = 0. plants bidding their expected marginal costs yields specification (4) with a residual
εitk = β1 logνitk based on the forecast error.

26This strategy of restricting the sample to the first half of compliance periods is feasible because 3,120 out of the
8,433 total bids were submitted in the first half of a period and 2,775 were offered by plants that submitted multiple
bids in that time. Variation in bids to estimate β1 within a plant-period comes from plants making multiple bids in the
first half of a compliance period. There are a total of 1,560 (=156 plants × 10 compliance periods) plant-by-period
cells and in 1,140 of these cells plants made more than 1 bid.
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5.3 Marginal Abatement Cost Function Estimates

Elasticity of abatement cost with respect to emissions.—Table 4 reports β1, the estimated

MAC elasticity for plant emissions, using alternative specifications of equation (4). Column 1

reports a specification that controls for only plant heat capacity, the relevant measure of plant scale

for emissions, analogous to the horsepower of a car engine. Columns 2 and 3 report specifications

with period fixed effects and plant and period fixed effects, respectively, which absorb all time-

invariant plant characteristics such as heat capacity. Column 4 reports our preferred specification

(4) with plant-by-period fixed effects that non-parametrically control for all plant-period abatement

cost shocks. In column 5, we additionally allow the coefficient β1 to vary with the type of air

pollution control devices (APCDs) the plant has installed at baseline.

Our preferred column 4 estimate reports an elasticity of bid prices (MAC) with respect to

emissions of −0.609 (standard error 0.087). This estimate validates the standard intuition that

marginal costs of abatement fall as emissions rise (e.g., marginal costs are increasing in abatement).

A comparison of the column 4 estimate to those in columns 1 to 3 demonstrates the importance

of using within-period data to estimate this elasticity. Estimates with basic controls or only period

fixed effects are positively biased (columns 1 and 2), towards zero. Even with plant and period

fixed effects (column 3), the elasticity is less than half the magnitude of our preferred estimate.

The upward bias in these estimates suggests that plant emissions are endogenous to cost shocks:

plants choose to emit more when they have a high plant-period shock to marginal abatement costs.

In column 5 we relax the assumption of a common elasticity of abatement across plants. We

find that the MAC curve is slightly more elastic (in absolute terms) for plants which installed the

less expensive APCDs (cyclones and bag filters versus scrubbers and ESPs) installed, but that this

difference is quantitatively small and not statistically significant.

Three additional pieces of evidence support our preference for the Table 4, column 4 spec-

ification. First, the iso-elastic MAC curve fits the bid data well. Figure 6 plots log bid prices,

after residualizing on plant-period fixed effects, against log plant emissions. Bid prices (marginal

costs) rise at lower levels of emissions. The line of best fit corresponds to the constant elasticity
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of marginal abatement costs with respect to emissions β̂1 =−0.609 estimated in Table 4, column

4. The figure shows that there is wide variation in log emissions and that the fit of the iso-elastic

MAC curve is quite good across this wide range.

Second, we test the joint significance of plant-period fixed effects, relative to a model with

plant-period random effects. The data strongly reject the random effects model in favor of the

plant-period fixed effects model (p-value < 0.001, column 4). This clear rejection supports the idea

that heterogeneity across plant-periods is an important determinant of marginal costs, suggesting

the potential for gains from trade in the emissions market (see Section 6).

Third and finally, Appendix Figure F1 supports our sample restriction to bids from the first half

of each period. The grounds for this restriction are that plants can no longer trade-off own abate-

ment against permit purchases once their emissions are sunk. Consistent with this idea, Appendix

Figure F1 shows that permit bids are inelastic with respect to emissions when two weeks or fewer

remain in the compliance period. This inelastic demand makes sense near the end of a period,

because plants should then have a fixed, high willingness-to-pay to avoid the high penalties they

will incur if they do not buy enough permits.

Heterogeneity in marginal abatement cost curves.—The estimates in Table 4 contain dif-

ferent MAC curves for each plant-period. To explore this heterogeneity, we calculate the fitted

value of each plant’s MAC curve over the range of emissions between a value close to zero and the

high level of uncontrolled emissions, which the plant would emit if it did not run any air pollution

control devices (see Appendix E.1 for how uncontrolled emissions are calculated). These fitted

values exponentiate the estimates of equation (4) for each plant to relate the marginal abatement

cost (rupees per kg) to the quantity of plant emissions (kg). Therefore, they depend on both the

plant-period fixed effects, ξ̂it and the elasticity of marginal abatement costs with respect to emis-

sions β̂1. They allow for level differences in costs across plants but assume a common elasticity of

marginal abatement costs with respect to emissions.

Figure 7 plots these curves for the plants in the treatment group in compliance period eight.

The figure shows wide heterogeneity in the level of MACs at any constant emissions level. As
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an illustrative example, the figure includes a vertical line to indicate a policy requiring all plants

to have the average plant emissions load. At this hypothetical standard, plants have a wide range

of marginal abatement costs; for example, the ratio of marginal abatement costs for plants at the

75th percentile of costs to ones at the 25th percentile is 2.1 to 1. In practice, loads are not uni-

form in the control group due, to imperfect compliance and the fact that the actual standard limits

concentration, not load. The triangle markers on the plot mark the level of marginal abatement

costs for each firm at a representative draw of emissions load from the control group distribution

of emissions. As in the case of the strictly uniform standard, there is wide variation in marginal

abatement costs across plants. The implication of this heterogeneity is that compliance costs will

not be minimized at this allocation of emissions. To minimize costs, the regulator would need to

know the MAC curves for all plants. Without such knowledge, command-and-control approaches

to regulation will be relatively costly, since they will not equate marginal costs across plants.

Estimating changes in fixed abatement costs.—The goal of MAC estimation is to be able

to compare abatement costs across regulatory regimes. We have estimated these curves using bid

data only from the treatment plants. To use the treatment MAC curves to compare costs, we then

need to assume that control plants have the same distribution of MACs. Ex ante, this will be

true by design, as treatment plants are randomly assigned from the experimental sample of plants.

However, it is possible that the treatment caused plants to change their MAC curve, for example,

by investing in new pollution abatement capital. Such changes to fixed costs would not be reflected

in bids but may cause treatment and control plants to have different ex post distributions of MAC

curves.

We directly test the assumption that the treatment does not cause plants to change their pollu-

tion abatement capital using data collected via a phone survey in November 2020. In the survey,

plants reported on abatement equipment costs and other costs for operating the boiler and related

equipment (the boiler house includes the equipment that consumes fuel and therefore produces

emissions). Table 5 reports plant-level treatment effect regressions of abatement capital costs on

a treatment status indicator. Treatment has a small, negative and statistically insignificant effect
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on total abatement capital (column 1). This lack of an impact on abatement capital is consistent

with the high rates of APCD installation in sample plants at baseline (Table 1). In the Surat mar-

ket, as is the norm for other emissions markets, the market was imposed on top of a pre-existing

equipment mandate.27 Columns 6 to 10 consider other boiler house input costs including capital,

labor, electricity, and fuel. Again, we find insignificant effects overall and no consistent pattern by

component. We conclude that plant abatement capital did not change in the treatment group and

that it is therefore valid ex post to treat the marginal abatement cost curves in the treatment and the

control groups as being drawn from the same distribution.

6 The Gains from Trade and a Benefit-Cost Analysis

This section compares abatement costs under the market to those under the status quo command-

and-control regime using the estimated MAC curves. Section 6.1 discusses the model’s fit to

realized market outcomes in the treatment group. Section 6.2 calculates the gains from trade in the

market regime. Section 6.3 compares the market’s costs and benefits using our cost and emissions

estimates and external estimates of pollution damages. Appendix D details these steps.

6.1 Model Fit

This subsection calculates the market price that would prevail in a particular period, given the

estimated plant-specific MAC curves (4). The purpose is to compare modeled market prices, which

depend on our MAC estimates and plant conduct assumptions, with observed market prices.

Given the MAC curve estimates for all the plants in the market, we solve for the market-clearing

permit price at any given cap Qt . Define the function Eit(Pt) = M̂AC
−1
it (Pt) as the inverse of the

estimated MAC curve for plant i; that is, the level of emissions plant i would choose at a given

27For example, in the US, the Clean Air Act Amendments (1990) required stationary NOx sources to install abate-
ment equipment by 1995. In 1999, these sources became part of a regional NOx cap-and-trade scheme. Schmalensee
and Stavins (2013) discusses the interaction of the US SO2 trading markets with other concurrent policy instruments
such as equipment mandates. All carbon markets (e.g., the EU ETS, AB32 and RGGI) coexist with other policy
instruments, like renewable purchase obligations, that indirectly regulate carbon.
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market price. The equilibrium permit price is the price at which aggregate emissions equal the cap:

Et(P∗
t ) = ∑

i
Eit(P∗

t ) = Qt . (5)

The equilibrium price is unique because the MAC curves imply that emissions for each plant

monotonically decrease in price. The resulting allocation of emissions Eit across plants is efficient

because all plants set their marginal cost of abatement at Eit equal to the market price.

Figure 8 shows the modeled market prices P∗
t , calculated in this way, alongside the actual

market prices. The dashed (black) line represents mean bids, the dotted (black) line represents

mean clearing prices, and the solid (blue) line indicates market-clearing prices simulated by the

model. The predicted market prices fit mean bid price and their fluctuations across periods well.

Bids and simulated prices are relatively high in period 1, fall to |8 to |10 for periods 2− 6, and

rise in the final four compliance periods to |10 to |12. Predicted prices are likewise similar to the

market-clearing price, but the fit is less good. They are consistently above actual clearing prices

in period 1− 6, with the gap narrowing in periods 7− 10. The initial gap in model fit and later

convergence may reflect plants learning about compliance costs over time. Overall, we conclude

that this simple model describes market prices well.

Model fit with alternative step function marginal cost.—Because the main tools for par-

ticulate abatement are distinct air pollution control devices, we may think that marginal abatement

cost has a step function form, with the cost on each step corresponding to the operation of a dif-

ferent device. In Appendix E, we simulate market outcomes using this alternative, step-function

model of marginal abatement costs. We find this model, fitted to the same bidding data as used

above, fits observed market prices and emissions poorly. Market-clearing prices exceed actual

prices (see Appendix Figure E2). Moreover, the step function technology implies a distribution

of emissions that is lumpy and dispersed, relative to both the data and modeled outcomes with

iso-elastic marginal costs (Appendix Figure E3). One interpretation of this poor fit is that the step

function model takes an inflexible, all-or-nothing view about how plants run their abatement de-
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vices and rules out, in particular, that plants may have ways to adjust emissions even conditional

on their abatement capital and technology mix. The remainder of the paper reports results using

our preferred iso-elastic model of marginal abatement cost functions based on (4).

6.2 Gains from trade in the market regime

We start by illustrating the gains from trade using the estimated MAC curves for two plants.

This illustration could be drawn from a textbook on the benefits of trading, except that it uses data

from real plants participating in a live emissions market. Next, we describe the steps necessary to

calculate the gains from trade in the market as a whole and report estimates of these gains.

Illustration of the potential for gains from trade.—To illustrate the mechanism for gains

from trade in the emissions market, Figure 7 plots the fitted MAC curves for two plants in the mar-

ket, using the Table 4, column (4) estimates. We give the plants the pseudonyms “Surat Polyfilm”

(panel A) and “Mahadev Textiles” (panel B) for confidentiality. Marginal abatement costs (prices)

are on the vertical axis and emissions (quantities) are on the horizontal axis.

In the example, we use MAC curve estimates and market prices drawn from compliance period

8 and we represent the command-and-control regime as a fixed load standard for all plants. The

dashed horizontal line at |10 per kg corresponds to the market clearing price in week 2 of this

period. The dashed vertical line shows the average emissions load of 1,090 kg per plant. Below,

we will broaden our estimates of the gains from trade to cover all plants and periods and to use

more realistic distributions of emissions in the command-and-control regime.

The differing marginal abatement cost functions for the two plants create an opportunity for

profitable trade. At the command-and-control load standard of 1,090 kg, Surat Polyfilm’s marginal

abatement cost is roughly |6 per kg (panel A) and Mahadev Textiles’ about |14 per kg (panel B).

This difference in marginal abatement costs means that the two plants could gain from trade: both

plants would reduce their costs if Surat Polyfilms abates an additional kg of particulate matter and

sells a permit to Mahadev Textiles at a price between |6 per kg and |14 per kg.

The movement from a fixed load standard to a market would cause large, non-marginal changes
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in plant emissions. Under the market, each plant emits until its MAC curve intersects the market-

clearing price (equation 3). The market price here is |10 per kg, at which price Surat Polyfilms

would cut its emissions by more than 50%, to 441 kg, while Mahadev Textiles would double its

emissions, to 2,223 kg. The reallocation of emissions reduces costs for both plants. Each plant’s

total variable abatement cost, depicted in pale red, is the area beneath the MAC curve from the cho-

sen emissions level up to its maximum emissions level. When Surat Polyfilms reduces emissions

from the commmand-and-control limit to 441 kg it incurs additional abatement costs, indicated by

the cross-hatched area, but more than covers these costs with additional permit revenues, because

its marginal abatement costs lie below the market price in this range. The shaded blue area above

the MAC curve and below the price is its gain from trade in the market (|2,409). On the other side

of the market, Mahadev Textiles (panel B) increases its emissions, lowering abatement costs by the

cross-hatched area beneath its MAC and purchasing 1,133 permits (=2,223 kg - 1,090 kg) at |10

per kg. Mahadev’s costs fall because its marginal abatement costs exceed the price of a permit at

all emissions levels between 1,090 kg and 2,223 kg; the shaded blue region depicts its gain from

trade (|1,678). Thus the transition to an emissions market reallocates emissions and reduces plant

costs on both sides of the market.

Estimating total abatement costs in the market regime.—To quantify the market-level

gains from trade, we calculate total abatement costs for all plants at the emissions levels that they

would choose in both the market and command-and-control regime. The discussion of model

fit (6.1) and the example above show how we do this calculation in the market regime. First,

we invert each plant’s MAC function to find its emissions at the market clearing price, as in (9).

Second, we calculate plant variable abatement costs as the area underneath its MAC curve between

its unconstrained emissions level and its chosen emissions, and add these costs across plants. We

repeat this calculation for a full range of potential market caps.

The blue line in Figure 10 depicts total variable abatement costs across all plants in the market

regime. At each market cap, this curve is calculated as the sum of all plants’ total variable abate-

ment costs for compliance period 8, as shown in Figure 7, over market caps ranging from near
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zero to 300 metric tons. The vertical dashed line at left depicts emissions at 170 tons, the cap from

compliance period four onward. An estimated treatment effect of 30% on emissions (Table 3) then

implies control emissions of approximately 240 tons, shown by the vertical dashed line at right.

On each vertical line, we place a filled-in marker at the intersection with the aggregate abatement

cost curve.

The most striking finding about the market-level abatement cost curve is that abatement costs

rise only slowly in response to reductions in pollution. For example, the arc elasticity of total

variable abatement costs with respect to total emissions is −0.23 at the status quo level of pollution

(240 tons) and −0.19 at the treatment level of pollution (170 tons). These elasticities depend

on, but are naturally lower than, the elasticity of marginal abatement costs estimated in Table 4,

because total abatement costs include inframarginal abatement costs and are therefore less elastic

to emissions than marginal costs. The cost estimates indicate that substantial improvements to

Gujarat’s air quality are available for relatively small increases in plant abatement costs.

Estimating total abatement costs in the command-and-control regime.— To compare

costs across regimes, we also need to estimate the total abatement costs that treatment plants would

have incurred under the status quo, command-and-control regime. We estimate these costs using

two observations. First, because the market was introduced in an experiment, the distribution of

MAC curves we have estimated for the treatment plants will be the same as that for the control

plants. Second, we can use the control distribution of emissions levels to represent the stringency

of the command-and-control regime. We therefore evaluate costs in the command-and-control

regime by evaluating treatment cost functions at control emissions levels.

This approach to the command-and-control regime treats the world as it is, rather than apply-

ing a single uniform standard, as in our simple example of the gains from trade. Roughly 30% of

plants in the control group exceed the de jure emissions limits in the command-and-control regime

(Figure B1). We therefore model the command-and-control regime not as a single standard, as

on paper, but with a distribution of possible emissions levels. We simulate many sets of draws

of emissions levels for all plants in the market and evaluate the aggregate costs of abatement for
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each set by calculating the area under each plants’ MAC curve, from the emissions draw up to its

unconstrained emissions level, and summing these costs across plants. We consider several alter-

native ways to draw emissions; our preferred method draws residual emissions levels conditional

on plant heat capacity. Appendix D.2 explains how we conduct these simulations.

Returning to Figure 7, the triangle markers on each marginal abatement cost curve illustrate one

draw from the distribution of control emissions levels for all plants. The figure shows that, at this

draw, plant emissions load is not uniform across plants and that the implied marginal abatement

costs vary widely across plants.

To isolate the gains from trade we seek to compare abatement costs at the same aggregate

emissions level, though treatment plants emitted less than control plants on average (Table 3).

For each candidate aggregate emissions cap in the market, therefore, we scale the distribution of

control emissions loads up or down by a common factor to match the cap. For example, consider

a plant that had estimated emissions of 1,090 kg when aggregate emissions across all plants is

240 tons. We assume that if aggregate emissions were cut to 120 tons this plant would emit 545

kg. This approach assumes that changes in stringency in the command-and-control regime change

emissions at all plants proportionally.

Now returning to Figure 10, the black line depicts total variable abatement cost as a function

of aggregate emissions under the command-and-control (higher, black line) regime (again using

compliance period 8 estimates). At each point in the curve, the total variable abatement cost is

the sum across all plants and costs for each plant are estimated with S = 100 simulation draws of

emissions (residualized on plant heat capacity) from the control group. One can visualize the total

cost, in a single simulation draw, as the sum of areas under the MAC curves in Figure 7, down to

the emissions draw for each plant.

The comparison in Figure 10 for period 8 shows that the market regime lowers total variable

abatement costs, relative to the command-and-control regime, at any level of emissions. At the

control emissions of 240 tons, the market reduces total variable abatement costs by 10% (moving

down the vertical dashed line). Because total abatement costs are not very elastic with respect to
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emissions, the emissions market would cut total emissions by 43% (moving left along the horizon-

tal dashed line) at the same variable abatement costs as in the status quo. Alternately, a range of

outcomes with both lower emissions and lower costs are available along the arc of the emissions

trading cost curve between the horizontal and vertical dashed lines.

We estimate, across all plants and compliance periods, that the actual market outcome falls in

this range of reducing both costs and emissions at the same time. Appendix Table D1, panel A

summarizes the results on abatement costs. At the treatment emissions level, 170 tons per month,

total variable abatement costs are 12% higher under the status quo (column 3, row B4) than under

emissions trading (column 2, row A), so that the market cuts costs by 11%. The cost difference

between regimes is great enough that costs are 6% lower under the emissions market—with a 30%

cut in emissions—than in the command-and-control regime at the status quo emissions level. We

report similar results using different methods to draw counterfactual emissions levels from the

control group, with or without conditioning on observables, for example. We find that the cost

differences among the alternative representations of the command and control regime are small

both in absolute terms and relative to the difference in cost between the market and command-and-

control regimes.

6.3 Benefit-cost Analysis of Emissions Market Expansion
The preceding analysis has quantified the benefits of the market in terms of emissions reduc-

tions and abatement costs. Table 6 uses these estimates as inputs for a benefit-cost analysis of

expanding the emission market to all 906 industrial plants that burn solid fuel in Surat. We com-

pare the benefits of lower ambient concentrations of particulate matter increasing life expectancy,

valued in monetary terms, against the emission market’s operational and abatement costs. All com-

parisons take as given the existing stock of abatement capital in Surat (Appendix G discusses the

inputs in depth).

Table 6 reports on the benefit-cost analysis for emissions reductions of 10%, 30% and 50% in

columns 1 to 3, respectively. The first two reductions are within the range of our experimental data,

with the 30% reduction roughly equal to the experimental treatment effect documented above. The

33



third extrapolates outside that range, using the emissions market’s total abatement cost function,

founded on our estimates of individual MAC functions.

Table 6, Panel A shows the costs of expanding the market, which are comprised of the fixed

costs of CEMS monitoring and changes in total variable abatement costs. Improved monitoring

is a necessary condition to start an emissions market. The administrative data record that it costs

roughly $5,000 per plant-year to set up a monitoring system. This cost is fixed with respect to

the targeted emissions reduction. For 10% and 30% emissions reductions, these additional costs

are counterbalanced by estimated savings in abatement costs of $1,209 and $615 per plant-year,

respectively, associated with switching to the market. Even at a 50% emissions reduction, the

savings from moving to the market nearly wipe out the additional abatement costs from cutting

emissions; on average, plant abatement costs increase by just $110 annually. Scaling these costs

to cover all eligible plants in Surat yields aggregate annual costs of $3.4 million, $4.0 million, and

$4.6 million for 10%, 30%, and 50% reductions in emissions, respectively.

On the benefits side, we consider only the mortality benefit of lower pollution extending peo-

ple’s lives, ignoring other possible sources of benefits (better health, productivity improvements,

etc.). We convert emissions reductions into a monetary value using three factors: how emissions

change ambient pollution (panel B), the value of increased lifespans (panel C), and how lower

ambient pollution lengthens lifespans (panel D). The first factor scales the 10%, 30%, and 50%

emissions reductions from industry by the industrial share of ambient PM2.5 concentrations, drawn

from the best available source apportionment study (Guttikunda, Nishadh and Jawahar, 2019). This

scaling yields estimated reductions in ambient PM2.5 of 2.8 µg/m3, 8.5 µg/m3, and 14.2 µg/m3,

respectively (panel B). The next factor is the value of a statistical life (VSL), the willingness-to-pay

for increasing life expectancy by a year, which we set at $665,000 ($9,500 per statistical life-year),

following the value chosen by Nair et al. (2021) (panel C). The third factor is the gain in life years

in Surat for each cut in ambient pollution. We estimate this relationship with the the elasticity of

life expectancy with respect to ambient PM2.5 from Ebenstein et al. (2017) and report robustness

to other estimates (panel D). The estimated benefits of the three emissions reductions scenarios are
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then the monetized values of life-years saved for each year that the ETS is in force, $282 million,

$847 million, and $1,412 million, across the three respective emissions reductions.

Panel E reveals that the estimated benefits of scaling the market to all eligible plants greatly

exceed the estimated costs. Row 1 uses the mortality dose-response estimated in Ebenstein et al.

(2017) and rows 2 through 4 use alternative estimates. For a 30% reduction in industrial emissions

(column 2), the benefit to cost ratio ranges from roughly 25:1 to more than 200:1, depending

on the estimate of the elasticity of life expectancy with respect to ambient PM2.5 (across rows

within panel E). Because a large share of the costs of the market are fixed costs of monitoring, and

abatement costs are only moderately convex, the benefit-cost ratio rises with greater reductions in

emissions over this range.

7 Conclusion

This paper evaluates the world’s first emissions market for particulate matter, which we designed

in collaboration with the Gujarat Pollution Control Board. There are three main findings. First, the

market functioned well: permit trade was active, and plants obtained permits to meet their com-

pliance obligations almost perfectly. Second, the new regulation caused a 20% to 30% reduction

in particulate matter emissions, relative to the status quo command-and-control regulatory regime.

Third, the market reduced abatement costs by 11%, holding emissions constant. More broadly,

we estimate that emissions can be reduced at seemingly small costs in Gujarat. The benefits of

pollution reductions under an emissions market therefore exceed the costs of the market by at least

twenty-five times.

The results suggest that elevated levels of industrial air pollution in India are not due to high

plant abatement costs, which are the primary focus of theory. Rather, the fixed costs of monitoring

and enforcing regulation appear high in India. It is precisely these costs of enforcement that may

admit high non-compliance in the status quo regime (Duflo et al., 2018). The emissions market

has benefits not only, and perhaps not mainly, through the efficiency of trade, but also through

35



endogenously higher compliance that allows the regulator to reach environmental goals.

We believe that this proof-of-concept for an emissions market has broad policy relevance, start-

ing in India. Based on a review of the performance of the treatment market in Surat, GPCB decided

to expand its scope. Surat’s control plants were included in the market in September, 2022. In

September 2023, the GPCB launched a second particulate emissions market for plants in Ahmed-

abad, Gujarat’s largest city and major industrial hub. Currently, the GPCB is exploring expanding

the market to additional industrial clusters and pollutants. The Maharashtra Pollution Control

Board (MPCB) has started the development of a statewide market for sulfur dioxide emissions

from thermal power plants and other industrial sources. The coauthors of this paper are advising

MPCB and are in discussions with several other states on how to use environmental markets.

State capacity may limit the use of sophisticated regulatory instruments, but state capacity is

not a universal constant. While the establishment of the emissions market in Gujarat took years,

the results from investments in new monitoring and forms of regulation are extraordinary in terms

of reducing pollution while lowering abatement costs. Market mechanisms have the potential to

transform environmental quality in India and should be more widely adopted as a policy tool.
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8 Figures

Figure 1: Ambient Pollution Levels and the Location of Plants in Surat

The figure shows ambient PM2.5 µg/m3 concentrations in Surat, Gujarat averaged over the year 2018, overlaid
with the locations of sample plants. The ambient pollution data is from Guttikunda, Nishadh and Jawahar
(2019). As a basis for comparison, India’s National Ambient Air Quality Standard for PM2.5 is 40 µg/m3 and
the WHO standard is 5 µg/m3. The plant locations are geolocations from our plant survey. Treatment plants are
represented by × markers and control plants by ◦ circles.
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Figure 2: Permit Prices and Quantities by Compliance Period
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This figure shows weekly permit prices (panel A) and quantities (panel B) from September 2019 to April 2021. In
panel A, the scattered points are the mean bid prices (both sale and purchase) and the solid line the market-clearing
price. Since permits of different vintages, from two consecutive compliance periods, are traded simultaneously on
some days, the market-clearing price line alternates between black and blue colors to differentiate them. The dashed
red horizontal line shows the price floor at |5 per kg. In panel B, quantities are expressed as a percentage of the
period emissions cap. The large spike near the start of each compliance period is the weekly auction held on the
first Tuesday of the compliance period.
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Figure 3: Distribution of Emissions over Initial Permit Allocation by Compliance Period

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 1

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 2

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 3

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 4

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 5

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 6

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 7

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 8
0

.0
02

.0
04

.0
06

.0
08

.0
1

D
en

si
ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 9

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

0 100 200 300 400 500
Emissions / allocation (%)

Period 10

This figure plots the distributions of (emissions / initial permit allocation × 100%) across treated plants (N = 156)
by compliance period, truncated at the 97.5th percentile. Emissions data and permit holdings are from the admin-
istrative records of the market operator. Emissions are the validated emissions for each plant, which include any
imputed emissions filled-in for periods of missing data. These validated emissions are used to determine compli-
ance.
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Figure 4: Distribution of Emissions over Final Permit Holdings by Compliance Period
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This figure plots the distributions of (emissions / final permit holdings × 100%) across treated plants (N = 156)
by compliance period, truncated at the 99.5th percentile. Final permit holdings are the total number of permits a
plant held at the end of the true-up period after each compliance period. Emissions data and permit holdings are
from the administrative records of the market operator. Emissions are the validated emissions for each plant, which
include any imputed emissions filled-in for periods of missing data. These validated emissions are used to determine
compliance.
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Figure 5: PM Emissions by Treatment Status
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The figure shows the weekly mean plant PM emissions in kilograms (calculated at a monthly rate equivalent) from
April 2019 to March 2021 by treatment status. The treatment group is represented by the solid (blue) line and the
control group by the dashed (grey) line. The grey regions mark the ten compliance periods in the emissions market.
The light blue regions mark interregnum periods when the emissions market was closed. The horizontal (red) lines
denote the market cap for each period expressed per plant-month. The aggregate market caps for each compliance
period were: 280 tons per 30 days (for Mock-I, Mock-II, and Period-I), 200 tons per 30 days (for Period-II), 180 tons
per 30 days (for Period-III), and 170 tons per 30 days thereafter. Pollution reporting over this period was incomplete
and rising from early to late compliance periods (see Appendix Figure C2). Missing pollution readings are imputed
within a stack-week and then within a stack-month (Appendix C.1). The sample consists of 292 plants that had at
least one day of PM data from CEMS devices during the ETS experiment.
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Figure 6: Estimation of Marginal Abatement Cost Elasticity with respect to Emissions
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This figure visualizes the estimation of the marginal abatement cost elasticity with respect to emissions, as specified
in equation 4. The data are restricted to 3,120 bids offered by all plants in the first halves of all compliance periods.
The vertical axis is the log bid price residualized on plant-period fixed effects. The horizontal axis are the log plant
emissions that would result if a bid was executed. The linear fit shows the iso-elastic curve of best fit for the marginal
abatement cost curve.

Figure 7: Marginal Abatement Cost Curves for Treatment Plants
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The figure illustrates estimated marginal abatement cost curves for all plants that bid in period 8. The domain of each
curve extends upward to the uncontrolled emissions level for each plant. The triangles correspond to plant emissions
under one simulation of the counterfactual command-and-control regime in which emissions rate are allowed to vary
with plant capacity along with an idiosyncratic error term. This corresponds to the regulatory regime simulated in
Table D1 Panel A Row B4.
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Figure 8: Model Fit to Market-Clearing Prices
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The figure shows the fit of the model to the time series of market and bid prices by compliance period. The solid (blue)
line is the time series of market-clearing prices in the fitted model. The model is fit based on bids in the first half of
each compliance period. The dashed (black) line is the time series of mean bid prices in the data and the dotted (black)
line is the time series of market-clearing prices.

Figure 9: An Example of the Gains from Trade in the Market
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B. Mahadev Textiles
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The figure visualizes gains from trade on the estimated MAC curves for “Surat Polyfilm” (panel A) and “Mahadev
Textiles” (panel B), both pseudonyms. The MAC curves are fit as seen in Figure 7. The vertical dashed line gives a
hypothetical load standard set at the average emissions per plant-month, and the shading shows how trading permits
allows for price savings for both permit buyers and sellers compared to a command-and-control regime.
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Figure 10: Variable abatement costs by regime
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The figure shows the total (not marginal) variable abatement costs by regulatory regime as estimated for compliance
period 8. The dotted (black) curve shows the total variable abatement cost curve under command-and-control and
the solid (blue) curve under the emissions market. The command-and-control regime uses a capacity-based emissions
rate with error to set emissions targets for each plant, as described in Section 5. The emissions market regime sets
an emissions cap at each level of emissions on the horizontal axis. The dashed vertical lines show the approximate
emissions levels in the treatment and control groups. The control costs are therefore represented by the upper-right
shaded circle and the treatment costs by the lower-left shaded circle.
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9 Tables

Table 1: Balance of plant characteristics by treatment status

Treatment Control Difference
(1) (2) (3)

Panel A: Plant Measures
Total electricity cost (1,000 USD) 467.6 345.8 121.9

[869.0] [327.0] (78.5)
Log(plant total heat output) 15.6 15.6 0.012

[0.62] [0.50] (0.065)
Size as recorded on environment consent (1 to 3) 1.37 1.37 0.0052

[0.64] [0.62] (0.075)
Small-scale (size=1) 0.72 0.71 0.0063

[0.45] [0.46] (0.054)
Large-scale (size=3) 0.086 0.075 0.011

[0.28] [0.26] (0.032)
Number of stacks 1.08 1.04 0.035

[0.41] [0.21] (0.038)
Textiles sector (=1) 0.85 0.87 -0.025

[0.36] [0.33] (0.041)
Boiler house employment 36.9 32.3 4.62

[32.9] [29.4] (3.69)
Gross Sales Revenue in 2017 (1,000 USD) 13010.5 9755.0 3255.5

[43534.7] [39788.2] (5043.2)
Boiler house capital expenditure (1,000 USD) 199.9 171.4 28.5

[405.0] [196.6] (38.3)

Panel B: Plant Abatement and Investment Cost
Boiler house employment 36.9 32.3 4.62

[32.9] [29.4] (3.69)
Boiler house capital expenditure (1,000 USD) 199.9 171.4 28.5

[405.0] [196.6] (38.3)
Boiler house operating cost (1,000 USD) 140.4 112.4 28.0

[206.3] [84.2] (18.3)
APCD: Cyclone present 0.98 0.97 0.0100

[0.14] [0.17] (0.019)
APCD: Bag filter present 0.80 0.88 -0.079∗

[0.40] [0.33] (0.043)
APCD: Scrubber present 0.64 0.61 0.030

[0.48] [0.49] (0.058)
APCD: ESP present 0.12 0.075 0.045

[0.33] [0.26] (0.035)
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Panel C: Plant Pollution Measures
Plant total PM mass rate (kg/hr) 3.62 3.60 0.027

[4.94] [3.82] (0.52)
Plant mean PM concentration (mg/Nm3) 179.0 168.8 10.2

[156.1] [150.2] (18.2)
Plant mean Ringelmann score (1 to 5) 1.37 1.35 0.017

[0.43] [0.37] (0.047)
Above regulatory standard at ETS baseline (=1) 0.34 0.28 0.054

[0.47] [0.45] (0.055)

Number of plants 156 136
This table shows differences in plant scale (panel A), plant abatement and investment costs (panel B), and
plant pollution (panel C) between the treatment and control groups of plants in the baseline survey conducted
from December 2018 to January 2019. This sample consists of 292 plants that had at least one day of PM
data from CEMS devices during the ETS experiment (See Table A4 for the same balance table in the full
survey sample). In panel B, cyclone, bag filter, scrubber, and electrostatic precipitator (ESP) are different
air pollution control devices (APCDs). Some plants did not respond to some questions in the survey and so
certain variable rows have fewer observations than the full sample size. The first and second columns show
means with standard deviations given in brackets. The third column shows the coefficients from regressions
of each variable on treatment, with robust standard errors in parentheses. ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.
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Table 2: Summary of permit bid data

Bid quantities (kg) Bid prices (INR/kg)

Period Count Bids per plant All bids Buy bids Sell bids All bids Buy bids Sell bids
(1) (2) (3) (4) (5) (6) (7) (8)

1 1,525 9.8 557 428 620 12.70 10.03 14.00
(10.4) (1,172) (604) (1,361) (16.65) (14.47) (17.47)

2 600 3.9 474 475 474 7.90 6.39 8.43
(4.1) (747) (535) (810) (10.72) (9.16) (11.18)

3 1,084 7.0 329 344 323 10.89 9.02 11.67
(6.7) (533) (600) (502) (11.36) (12.24) (10.89)

4 806 5.2 323 332 319 10.88 7.90 12.03
(6.1) (551) (483) (575) (9.37) (6.77) (9.96)

5 767 4.9 376 449 350 9.60 6.49 10.72
(7.0) (515) (559) (496) (10.80) (1.74) (12.36)

6 296 1.9 463 533 426 7.50 5.84 8.38
(3.2) (558) (559) (556) (6.33) (3.11) (7.34)

7 646 4.1 400 468 325 12.76 10.29 15.46
(4.5) (533) (580) (466) (6.55) (4.81) (7.11)

8 783 5.0 418 501 249 13.51 12.56 15.47
(6.3) (588) (671) (298) (13.92) (16.53) (4.96)

9 962 6.2 353 397 257 11.41 9.89 14.78
(9.7) (423) (458) (314) (6.65) (7.00) (4.15)

10 964 6.2 383 428 336 11.18 8.40 14.04
(8.8) (533) (532) (531) (9.10) (5.65) (10.92)

Total 8,433 54.1 412 430 399 11.25 9.47 12.52
(51.0) (708) (565) (795) (11.56) (10.50) (12.10)

The table shows summary statistics on plant permits bids across all ten compliance periods. The source of the data is
the market operator NeML. Each row shows statistics for a separate compliance period. Each cell has the mean with the
standard deviation below in parentheses. The columns show, respectively: (1) the total number of bids in each period, (2)
the mean number of bids placed per plant (N = 156), (3) - (5) mean quantities for all bids, buy bids and sell bids, (6) - (8)
mean prices for all bids, buy bids and sell bids.
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Table 3: Treatment effects on PM emissions (log(PM mass/month))

No Imputed Months Imputed Months

(1) (2) (3) (4) (5) (6) (7) (8)

ETS Treatment (=1) -0.178∗∗ -0.193∗∗ -0.177∗∗ -0.194∗∗ -0.282∗∗∗ -0.282∗∗∗ -0.316∗∗∗ -0.316∗∗∗

(0.076) (0.076) (0.075) (0.075) (0.074) (0.075) (0.057) (0.057)
Month FE Yes Yes Yes Yes

Imputation rule Rule A Rule A Rule B Rule B
Reweighted Yes Yes
Mean dep. var (control) 6.67 6.67 6.66 6.66 6.80 6.80 6.88 6.88
R2 0.13 0.17 0.14 0.17 0.18 0.22 0.16 0.25
Plants 292 292 292 292 292 292 292 292
Observations 3235 3235 3235 3235 3796 3796 3796 3796

This table reports the estimated treatment effects on PM emissions. The outcome variable is the log of plant-level PM mass (kg) per month.
A detailed note on the construction of the outcome variable is in Appendix C.1. Columns 5 and 6 impute data with Imputation Rule A:
Stack-Experiment. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the stack’s mean PM mass rate across
the experiment (July 2019 to March 2021, excluding interregnum). Columns 7 and 8 impute data with Imputation Rule B: Treatment-
Month. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the monthly mean PM mass rate of the stack’s
treatment group. All columns control for plant characteristics including capital expenditure, operating cost, log(total heat output), mean boiler
installation year, and their corresponding indicators for missing values. In addition to plant controls, columns 2, 4, 6, and 8 add month-year
fixed effects to control for time variant differences common in each plant. We also apply the inverse probability weighting method in columns
3 and 4. The probability of reporting in a month is predicted using a probit model where the only explanatory variable is an indicator variable
for the treatment status in a prior experiment that randomized CEMS installation timing. Robust standard errors in parentheses are clustered
at the plant level with statistical significance indicated by ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.
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Table 4: Elasticity of marginal cost with respect to emissions

log(Bid price)

(1) (2) (3) (4) (5)

log(Emissions as bid) -0.100 -0.143∗∗ -0.269∗∗∗ -0.609∗∗∗

(0.061) (0.063) (0.084) (0.087)

log(Emissions as bid) × cyclone / bag filter -0.707∗∗∗

(0.169)

log(Emissions as bid) × scrubber / ESP -0.566∗∗∗

(0.095)

log(Plant total heat output) 0.087∗∗ 0.138∗∗∗

(0.041) (0.048)
Period FE Yes Yes
Plant FE Yes
Plant × Period FE Yes Yes

p-val: H0: No unobserved heterogeneity 0.000 0.000
p-val: H0: No observed heterogeneity 0.468
R2 0.01 0.07 0.26 0.46 0.46
Plants 146 146 146 146 142
Observations 3120 3120 3120 3120 3082

This table reports the results of regressing log(bid price) on log(emissions as bid). Emissions as bid is defined as the permit
holdings that will result if the bid is executed. We run regressions using bids placed in the first half of a compliance period.
We include compliance period fixed effects in columns 2 and 3, plant fixed effects in column 3, and plant × period fixed
effects in columns 4 and 5. In column 5, the interacted variables “cyclone/bag filter” and “scrubber/ESP” are indicators of
the “maximal” (most effective) abatement technology. If a plant has only cyclones or bag filters, then cyclone/bag filter =
1 and scrubber/ESP = 0. If a plant has scrubbers or ESPs, then scrubber/ESP = 1 and cyclone/bag filter = 0. The footer of
the table reports p-values for two tests of heterogeneity in marginal abatement costs. The first p-value is for a Hausman test
comparing the plant-by-period fixed effects model against a model with plant-by-period random effects instead. The second
p-value is for a test that the coefficient of log(Emissions as bid) × cyclone / bag filter is equal to that of log(Emissions
as bid) × scrubber / ESP. To avoid biasing SEs singleton FEs are dropped during estimation, and as a result the elasticity
estimates in columns (4) and (5) are based on 2,775 and 2,753 non-singleton bids respectively, though in the table we list
the full set of bids and plants for which we have data. Robust standard errors in parentheses are clustered at the plant level
with statistical significance indicated by ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 5: Treatment effects on abatement costs in survey data

Abatement capital costs ($1000s) Boiler house input costs ($1000s)

All Cyclone Bag Scrubber ESP Total Capital Labor Electricity Fuel Materials
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

ETS Treatment (=1) -3.467 0.602∗∗ 0.530∗ -0.222 -4.281 11.26 -7.178 1.561 25.21∗ 26.87∗ -0.142
(3.089) (0.266) (0.318) (0.407) (3.344) (26.31) (19.05) (3.332) (13.53) (15.35) (0.596)

R2 0.90 0.85 0.83 0.84 0.89 0.93 0.63 0.05 0.65 0.98 0.19
Control mean 44.04 7.80 9.85 9.69 16.70 578.48 190.88 47.86 162.13 299.50 4.33
Plants 276 276 276 276 276 185 218 262 247 225 283

This table reports the effects of treatment assignment on the capital cost of APCDs (columns 1-5) and boiler house input costs (columns 6-11). In columns 1-5,
the abatement capital cost is the product of the number of abatement devices at a plant and the industry-standard cost for that device for the plant’s given boiler
house capacity. In columns 6-11, specifications use our best estimates for boiler house costs from the endline survey (FY 2019-20). All specifications control for a
corresponding baseline value (FY 2017-18) but in some cases the components of the input cost aggregate differ slightly within a category between the baseline and
endline survey. Electricity costs are only reported at the plant level so are not only for the boiler house. Robust standard errors are given in parentheses with statistical
significance indicated by ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.
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Table 6: Benefit-Cost Analysis of Scaled-up ETS in Surat

Emissions reduction

10% 30% 50% Units Source
(1) (2) (3) (4) (5)

Panel A. Annual costs from scale-up of emissions trading

1. Monitoring costs per plant 5,000 5,000 5,000 $/year Author estimates
2. Abatement cost ∆ per plant −1,242 −648 77 $/year Author estimates
3. Total costs 3.4 3.9 4.6 $m/year = (A1 + A2)×906

Panel B. Reduction in pollution

1. Ambient PM2.5 conc. 88.5 88.5 88.5 µg/m3 Guttikunda et al. (2019)
2. Industry share 0.3 0.3 0.3 Guttikunda et al. (2019)
3. Reduction in industry PM2.5 10.0 30 50 %
4. Reduction in ambient PM2.5 2.8 8.5 14.2 µg/m3 = B1×B2×B3

Panel C. Gain in life-years

1. Mortality impact 0.1 0.1 0.1 years/(µg/m3) Ebenstein et al. (2017)
2. Gain in life expectancy 0.3 0.8 1.4 years = C1×B4
3. Life expectancy 70 70 70 years World Bank
4. Per year of ETS 0.004 0.012 0.020 years = C2 / C3
5. Population 7.5 7.5 7.5 m World Pop. Review
6. Total gain in life-years 29,736 89,208 148,680 years = C4×C5

Panel D. Value of gain in life-years

1. Value of statistical life 665,000 665,000 665,000 $ Nair et al. (2021)
2. Value of 1 year of life 9,500 9,500 9,500 $/year = D1 / C3
3. Value of gain in life-years 282 847 1,412 $m = C6×D2

Panel E. Benefit-cost ratio

1. Ebenstein et al. (2017) 83:1 215:1 307:1 = D5 / A3
2. Pope, Ezzati and Dockery (2009) 52:1 134:1 191:1
3. Correia et al. (2013) 30:1 77:1 110:1
4. Apte et al. (2018) 10.0:1 26:1 38:1

The table presents the benefit-cost analysis of extending the ETS to the entirety of Surat. We compare the private costs of
introducing an emissions market (monitoring and changes in abatement cost, in panel A) to the social benefits of cleaner air
(gains in life-years, calculated and monetized across panels B to D). There are 906 plants according to the GPCB consent
records. Abatement cost savings are based on capacity-rate estimate (with error) from Table D1 Panel I. World Population
Review estimates for the Surat population are from 2021. The number of plants is based on 2022 GPCB consent records. The
annualized CEMS costs are based on an assumed system cost of $ 12,000 with a 4-year equipment life and no discounting. This
equipment life describes the realized experience of some plants in our sample but is lower than typical manufacturer claims. On
the benefits side, we assume that the reduction in ambient pollution comes solely from primary particles. Ebenstein et al. (2017)
estimate mortality effects of pollution based on PM10 concentrations. We convert their findings using a 0.65 PM2.5-to-PM10
ratio (Zhou et al., 2016). Columns 1 to 3 show the benefit-cost analysis for reductions in pollution of 10%
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Online Appendix

Can Pollution Markets Work in Developing Countries?
Experimental Evidence from India

Michael Greenstone, Rohini Pande, Nicholas Ryan and Anant Sudarshan

This online appendix contains five different parts. Appendix A gives more information on the

experimental design. Appendix B describes the data sources and cleaning. Appendix C covers the

Continuous Emissions Monitoring System (CEMS) data on pollution, specifically, including im-

putation rules for missing pollution data. Appendix F gives additional empirical results to support

those in the main text. Appendix G provides our benefit-cost analysis.
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A Appendix: Experimental Design

This section gives more information about the experimental design. Table A1 gives the timeline of

the experimental intervention and data collection. Table A2 describes the duration and market cap

for each compliance period of the emissions market. Table A3 describes attrition in the sample by

treatment arm and with respect to each source of data. Table A4 duplicates the balance table in the

main text but without the sample restriction to plants that report CEMS data.
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Table A1: Intervention timeline

Compliance Period
Data Collection

Survey CEMS

Dec-2018

Baseline survey

Apr-2019 CEMS data
begins

Jul-2019 Mock-I
Aug-2019 Mock-II
Sep-2019 Period-I
Oct-2019 Period-II
Nov-2019 Period-III
Jan-2020 Period-IV
Feb-2020 Period-V
Mar-2020 Period-VI
Apr-2020

Interregnum
(COVID-19)

Oct-2020 Mock-III
Nov-2020 Interregnum (Diwali)
Dec-2020 Period-VII
Jan-2021 Period-VIII

Endline survey

Feb-2021 Period-IX
Mar-2021 Period-X

Compliance periods were of heterogeneous length, though most lasted approxi-
mately one month; of particular note, Period-III began in the middle of November
and lasted 45 days until early January. Baseline and endline surveys collected data
on plant and boiler house costs, revenue, and emissions abatement mechanisms.
While CEMS device readings were collected from April 2019 onward, data avail-
ability was low until the emissions trading scheme commenced in July 2019. Dur-
ing mock periods, plants simulated live period transactions with monetary vouch-
ers. We had two interregnum periods where the market was closed: the first wave
of the COVID-19 pandemic and shutdowns, and Diwali in 2020. Plant production
remained sufficiently high during Diwali in 2019 to continue market operations.
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Table A2: Compliance periods and market caps

Period Start Date End Date Days Cap (kg/30 days) Per-plant Cap (kg/30 days) Total Cap (kg)

Mock-I 2019/07/15 2019/08/12 29 280,000 1,728 270,667
Mock-II 2019/08/13 2019/09/15 34 280,000 1,728 317,333
Compliance-I 2019/09/16 2019/10/15 30 280,000 1,728 280,000
Compliance-II 2019/10/16 2019/11/15 31 200,000 1,235 206,667
Compliance-III 2019/11/16 2019/12/31 46 180,000 1,111 276,000
Compliance-IV 2020/01/01 2020/01/31 31 170,000 1,049 175,667
Compliance-V 2020/02/01 2020/02/29 29 170,000 1,049 164,333
Compliance-VI 2020/03/01 2020/03/21 21 170,000 1,049 119,000
Interregnum-I 2020/03/22 2020/10/11 204 - - -
Mock-III 2020/10/12 2020/11/11 31 170,000 1,049 175,667
Interregnum-II 2020/11/12 2020/11/30 19 - - -
Compliance-VII 2020/12/01 2020/12/31 31 170,000 1,049 175,667
Compliance-VIII 2021/01/01 2021/01/31 31 170,000 1,049 175,667
Compliance-IX 2021/02/01 2021/02/28 28 170,000 1,049 158,667
Compliance-X 2021/03/01 2021/03/31 31 170,000 1,049 175,667

This table reports the start and end date of compliance periods and the market cap of each period. The market cap is the total amount of PM
emissions – summed up across all market participants - that is allowed per month (30 days) under the Emissions Trading scheme. The total market
cap varies across compliance periods, due to the duration of the compliance period. Specifically, the total market cap in a compliance period is
the market cap × 30 / (number of days in the compliance period). The per-plant cap is calculated by dividing the market cap by 162, the number
of in-sample plants in the treatment arm. The market was closed during Interregnum-I due to the COVID-19 pandemic and during Interregnum-II
following the Divali festival.

4
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Table A3: Sample determination and attrition by treatment status

Control Treatment Total

Plants that received treatment assignment 168 174 342
Closed/extinct plants with treatment assignment 10 10 20
Operational-at-baseline plants with treatment assignment 158 164 322

Plants removed from ETS sample by GPCB 2 2 4
In-sample plants 156 162 318

Plants incompetely treated due to closure 7 6 13
Plants completely treated 149 156 305

In-sample plants surveyed at ETS Baseline 147 157 304
In-sample plants manually stack sampled at ETS Baseline 147 157 304
In-sample plants with GPCB administrative data 156 162 318
In-sample plants reporting CEMS data 136 156 292
In-sample plants surveyed at ETS Endline 142 153 295
Treated plants with market trading data - 155 155

This table reports the sample determination and attrition during the ETS experiment. Of the original ETS-CEMS
sample of 373 plants, 342 operational plants received treatment assignment in May 2019 (row 1). Of these 342 plants
included in the ETS treatment randomization, 20 plants were extinct or permanently closed (row 2). The permanent
shutdown status of these 20 plants has been verified with Ringelmann survey panel data covering the sample from
March 2018 to June 2019, as well as regulatory inspection and audit documentation on the GPCB administrative
portal. The 342 plants that received treatment assignment, less the 20 plants that received assignment while extinct or
shutdown, yield 322 operational plants with treatment assignment at baseline (row 3). Four of these 322 operational-
at-baseline plants were officially removed from the ETS sample by GPCB after the treatment assignment (row 4).
Three of the removed plants (2 in control, 1 in treatment) are seasonal sugar cooperatives, operational for only four
months of the year; the fourth treatment plant is a particle-board producing plant which uses bagasse, rather than
coal, as fuel. Of the 318 in-sample plants, 13 are known to have been incompletely treated by the intervention, due
to temporary financial closure before or after the treatment assignment was done (row 6). The 304 plants surveyed at
baseline are distinct from the 304 plants manually sampled, and are therefore reported separately (rows 8, 9). This
paper reports experimental results from the sample of 292 plants reported at least one day of CEMS data from April
16, 2019 to April 3rd, 2021 (row 11). Of the 162 in-sample plants in the treatment group, 153 plants have market
trading data (row 13).

Table A4: Balance of plant characteristics by treatment status, full sample

Treatment Control Difference
(1) (2) (3)

Panel A: Plant Measures
Total electricity cost (1,000 USD) 456.2 389.1 67.1

[853.1] [660.7] (89.6)
Log(plant total heat output) 15.6 15.5 0.085

[0.61] [0.59] (0.067)

5
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Size as recorded on environment consent (1 to 3) 1.36 1.40 -0.038
[0.63] [0.65] (0.073)

Small-scale (size=1) 0.72 0.69 0.033
[0.45] [0.47] (0.053)

Large-scale (size=3) 0.083 0.088 -0.0056
[0.28] [0.28] (0.032)

Number of stacks 1.08 1.05 0.035
[0.41] [0.21] (0.037)

Textiles sector (=1) 0.85 0.85 -0.0032
[0.36] [0.36] (0.041)

Boiler house employment 36.8 31.7 5.13
[32.5] [30.0] (3.59)

Gross Sales Revenue in 2017 (1,000 USD) 12614.5 13628.3 -1013.8
[42698.0] [53258.9] (5680.6)

Boiler house capital expenditure (1,000 USD) 198.3 164.2 34.0
[398.6] [190.9] (36.7)

Panel B: Plant Abatement and Investment Cost
Boiler house employment 36.8 31.7 5.13

[32.5] [30.0] (3.59)
Boiler house capital expenditure (1,000 USD) 198.3 164.2 34.0

[398.6] [190.9] (36.7)
Boiler house operating cost (1,000 USD) 138.1 111.0 27.1

[202.6] [84.9] (17.6)
APCD: Cyclone present 0.98 0.97 0.0081

[0.14] [0.16] (0.017)
APCD: Bag filter present 0.80 0.86 -0.055

[0.40] [0.35] (0.043)
APCD: Scrubber present 0.64 0.61 0.032

[0.48] [0.49] (0.056)
APCD: ESP present 0.11 0.082 0.033

[0.32] [0.27] (0.034)

Panel C: Plant Pollution Measures
Plant total PM mass rate (kg/hr) 3.62 3.51 0.11

[4.86] [3.76] (0.50)
Plant mean PM concentration (mg/Nm3) 177.9 168.5 9.37

[153.6] [151.5] (17.5)
Plant mean Ringelmann score (1 to 5) 1.36 1.35 0.0090

[0.42] [0.37] (0.045)
Above regulatory standard at ETS baseline (=1) 0.33 0.28 0.052

[0.47] [0.45] (0.053)

Number of plants 162 156

6
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This table shows differences in plant measures (panel A), plant abatement and investment cost (panel B),
and plant pollution (panel C) between the treatment and control groups of plants in the baseline survey
conducted from December 2018 to January 2019. This sample consists of 318 plants in the ETS experiment.
In panel B, cyclone, bag filter, scrubber, and electrostatic precipitator (ESP) are different devices used to
reduce emissions. Some plants did not respond to some questions in the survey. For the control group,
the numbers of observations are 137 for boiler house capital expenditure, 141 for gross sales revenue, 148
for the Ringelmann score, 156 for plant total heat output, and 147 for the rest. For the treatment group,
the numbers of observations are 147 for boiler house capital expenditure, 150 for gross sales revenue, 160
for Ringelmann score, 162 for plant total heat output and the number of stacks, and 157 for the rest. The
first and second columns show means with standard deviations given in brackets. The third column shows
the coefficient from regressions of each variable on treatment, with robust standard errors in parentheses.
∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.
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B Appendix: Data

This Appendix B discusses data from our plant survey and from administrative records on permit

trade. The following Appendix C covers data from Continuous Emissions Monitoring Systems

(CEMS).

B.1 Survey data

The ETS baseline survey was conducted from December 2018 to February 2019. The unit of

analysis is a plant. The survey consists of three main sections: a general section, a technical section,

and a pollution sampling section. In the general section, researchers at J-PAL South Asia asked

the plant managers questions about plant operations. Researchers then spoke to boiler engineers to

collect information about the machinery specifications for the technical section.

As part of the technical survey environmental labs collected samples from the stack(s) (i.e.,

chimney) attached to the boiler and/or thermopack to measure the PM concentration and PM mass

rate. Of 304 plants covered in the technical survey 289 have only a single stack. Participation in the

survey is voluntary. Plants were notified by J-PAL South Asia that their name and data would not

be published in any report, and their data would never be shown to the Gujurat Pollution Control

Board (GPCB). J-PAL covered the cost of stack sampling and surveys.

Figure B1 shows the distribution of emissions concentrations in the baseline survey by treat-

ment arm. The red vertical lines at 150 mg/Nm3 indicate the regulatory standard. Many plants

are out of compliance with the standard, sometimes by a factor of two or more. Table 1, panel

C shows the plant’s mean PM concentration from sampling and an indicator for non-compliance.

About 30% of plants are out of compliance at baseline.

In addition to stack sampling, J-PAL South Asia had conducted ten rounds of Ringelmann

surveys from February 2018 to June 2019. The Ringelmann score is a scale for measuring the

density of smoke as it appears to the naked eye. The scale has five levels of density. Score 1 to 5

correspond to an opacity of 20%, 40%, 60%, 80% and 100%. Prior to Ringelmann surveys, GPCB

8
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Figure B1: Distribution of Pollution Before the Experiment
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This figure shows the distributions of the plant PM concentration by treatment status as measured by manual iso-
kinetic stack sampling at the ETS baseline (December 2018 to January 2019). One PM sample was collected from
each industrial stack by a third-party laboratory. The histograms are truncated at the 95th percentile (520 mg/Nm3).
The red, vertical lines indicate the regulatory concentration standard of 150 mg/Nm3. At the ETS baseline, 28%
of sampled plants in the control group and 34% of sampled plants in the treatment group had readings above this
standard.

informed plants that the information collected would not be used for determining compliance with

the GPCB norms or any other regulatory purpose.

In Table 1 variables in panel A are from the general section of the ETS baseline survey, and

those in Panel B are from the technical section. In panel B, cyclones, bag filters, scrubbers, and

electrostatic precipitators (ESPs) are air pollution control devices (APCDs) used to abate PM emis-

sions. In panel C, the plant’s total PM mass rate is the sum of the plant’s stacks’ PM mass rates

measured from stack sampling. The plant’s mean Ringelmann score is the average of scores from

the four pre-treatment rounds of Ringelmann surveys conducted from April 2019 to June 2019.

B.2 Trading data

The paper uses administrative data on permit bids and offers from NeML, the market opera-

tor. Table B1 shows summary statistics on permit bids (panel A) and executed trades (panel B).

Figure B2 shows the distribution of the number of bids placed per plant in each compliance period.

9
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Table B1: Trading data summary statistics

All Purchase Sale

Panel A: Order
Order quantity (kg) 411.61 429.50 398.78

(707.98) (565.09) (794.52)
Order price (Rs/kg) 11.25 9.47 12.52

(11.56) (10.50) (12.10)
Order price (Rs/kg), weighted by quantity 9.23 8.42 9.86

(8.49) (8.71) (8.27)

Observations 8433 3520 4913

Panel B: Trade
Trade quantity (kg) 360.42 389.36 327.18

(564.45) (544.09) (585.37)
Trade price (Rs/kg) 9.29 9.19 9.40

(7.39) (9.31) (4.20)
Trade price (Rs/kg), weighted by quantity 8.40 8.16 8.73

(6.17) (7.26) (4.21)

Observations 3775 2018 1757

This table shows the mean of order quantity and price (panel A) and trade quantity and price (panel B),
with the standard deviation given in the brackets.

10
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Figure B2: Distribution of number of bids placed per plant by compliance period
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This figure presents the distributions of number of bids placed per plant by compliance period, truncated at 40 (about
99th percentile). The bin width is 1. The red line indicates the median number of bids placed.
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C Appendix: Pollution Monitoring

C.1 Measuring plant emissions

We describe how we construct plant-level monthly average PM mass (in kilograms). CEMS

provides stack-level daily reporting hours and uncalibrated daily average PM mass rate (kg/hr) or

PM concentration (mg/Nm3). A plant might have multiple stacks. A month in our analysis is

defined as the 16th of this month to the 15th of next month.28 We follow four steps: calibration,

truncation, imputation and aggregation.

Calibration.—The raw data set consists of 242,303 daily observations of 337 stacks (318

plants) from April 16th, 2019 to April 3rd, 2021. Plants can choose what kind of CEMS device to

install (Type 1 or Type 2), so long as the device meets technical standards and passes the calibration

test. Generally the devices calibrated to mass rates (Type 1) are simpler and less expensive than

having a combination of a concentration device and a flowmeter to measure volume. Most plants

therefore install Type 1 devices, without any mandate to do so from the regulator. The Type-1

devices measure the daily average PM mass rates (kg/hr), and the Type-2 devices measure the

daily average PM concentration (mg/Nm3).

The PM mass rate and concentration are calibrated according to the device type. For a stack i

( j) that uses Type-1 (2) devices, we calibrate its average PM mass rate (concentration) on the day

d using the formula

PM Ratei,d = miPM Rateraw
i,d + ci,

PM Conc j,d = m jPM Concraw
j,d + c j,

where m and c are stack’s calibration factors. Any negative calibrated value is set to missing. We

28This definition was an artifact of the market’s initial timing. The first compliance period began on the 16th of
September, following two mock periods running from the 16th of July. GPCB intended to start on the 1st of July but
pushed the market back by two weeks to allow a grace period and increase CEMS reporting at the start of the market.

12
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convert the mass rate to concentration, or vice versa, using

PM Conccal
i,d =

10002 PM Ratecal
i,d

(3600 max velocityi)× stack areai
,

where max velocity is the maximum flue velocity (m/s) of calibration samples, and stack area is

the stack cross-sectional area (m2).

C.2 Imputation

Before we do any imputation we do a truncation procedure. Within each stack-day we take the

average of the reported PM kg/hr at the minute-level. This gives us a set of stack-days across the

entire sample. We then set to missing all those stack-days which fall above the 99th percentile.

Our final unit of observation is stack-month emissions (which are then summed within plants

to get plant-months). To calculate emissions at the stack-month level we sum the emissions at the

minute-level across all the minutes in the stack-month. Thus, our imputation can be conceptualized

as filling in all missing stack-minutes. We impute in two stages: First within the stack-month

observation unit, and second across stack-month observations.

The first step is within stack-month imputation: imputing emissions for all missing stack-

minutes in those stack-months which have any data reported. To do this, we first fill in all minutes

in each week with the average reported emissions from reported data during that week. Any

remaining missing minutes (i.e. those in months with some data reported but in weeks with no

data-reported) are imputed at the average reported value across the entire month. After this step

we thus have stack-month observations for all those stack-months which have any data reported.

The second step is across stack-month imputation: imputing emissions for all stack-months

which do not have any data reported. How we do this depends on which imputation rule we use.

The three options are as follows

• The “no imputation” rule does not perform any imputation, and leaves those stack-months

with no reported data as missing, and thus they are dropped from later analysis.

13
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• Rule A (“Stack Experiment”) imputes those stack-months which do not report any data at

the average level of the reported values for that stack over the entire ETS experiment.

• Rule B (“Treatment”) imputes those stack-months which do not report any data at the

average level of the reported values for that appropriate Treatment/Control group for that

month (i.e. if that stack is part of the control group we average over just control plants in

that month).

In Figure C1 we show the distribution of reporting frequency among those stack-months which

require some intra-month imputation.

C.3 Treatment effect on pollution under alternate imputation rules

Figure 5 shows the time series of pollution by treatment status. Here we show the same series

under alternate imputation rules for missing data. Figure C2 shows the data availability of CEMS

data on pollution by treatment arm. Figure C3 replicates Figure 5, from the main text, but with

alternate imputation rules for missing data. Table C1 summarizes the level of log PM emissions

by imputation rule and Figure C4 compares the distribution of pollution under different rules.

14
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Figure C1: Share of data available within month for months with partial data

2021 Q2

2020 Q1 2020 Q4 2021 Q1

2019 Q2 2019 Q3 2019 Q4

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Share of the Month the Stack is Reporting

S
ha

re
 o

f Q
ua

rt
er

's
 S

ta
ck

−
M

on
th

s 
in

 R
ep

or
tin

g 
B

in

This figure plots a histogram of data availability at the stack-month level. The only stack-months included are
those which require intra-month imputation, which are those with some, but not complete, minute-level reporting
throughout the month. This represents 73% of the stack-months in the sample. The y-axis represents the portion of
all plant-months in that panel which fall into the corresponding bin. Each panel represents a different quarter-year
of the sample, excluding interregnum periods.
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Figure C2: Data availability from CEMS by treatment status
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The figure shows the percentage of plants reporting, at weekly frequency, from April 2019 to March 2021. The
missing pollution readings are imputed within a stack-week, but not across stacks or weeks. This sample consists
of 292 plants that had at least one day of PM data from CEMS devices during the ETS experiment. The treatment
group is represented by the solid (blue) line, and control group by the dashed (grey) line. The grey regions mark the
ten compliance periods in the emissions market. The light blue regions mark the two interregnum periods when the
emissions market was closed.

16



Appendix C [NOT FOR PUBLICATION]

Figure C3: PM emissions by treatment status
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B. Rule B: Treatment-Month
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The figure shows the weekly mean per-plant PM emissions in kilograms calculated at a monthly rate equivalent, from
April 2019 to March 2021. In the top panel, the missing pollution readings are imputed within stack-week, and then
within stack-experiment. In the bottom panel, they are imputed within stack-week, and then within treatment-month.
Appendix C.1 provides a detailed note on the construction of the PM emission variable. This sample consists of
292 plants that had at least one day of PM data from CEMS devices during the ETS experiment. The treatment
group is represented by the solid (blue) line, control group by the dashed (grey) line. The grey regions mark the ten
compliance periods in the emissions market. The light blue regions mark interregnum periods when the emissions
market was closed. The horizontal (red) lines denote the per-plant month market cap for each period. The aggregate
market caps for each compliance period were: 280 tons per 30 days (for Mock-I, Mock-II, and Period-I), 200 tons
per 30 days (for Period-II), 180 tons per 30 days (for Period-III), and 170 tons per 30 days thereafter.
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Table C1: Mean of the log(PM emissions) by imputation rules

Control Treatment All

No Imputation 6.67 6.52 6.58
[1336] [1899] [3235]

Rule A: Stack-Experiment 6.80 6.54 6.66
[1768] [2028] [3796]

Rule B: Treatment-Month 6.88 6.59 6.72
[1768] [2028] [3796]

The table shows the mean ln[PM emissions (kg/month)] with the number of observa-
tions given in the brackets by different imputation rules in the control group, treatment
group, and the whole sample. Observational unit is stack-month, excluding interreg-
num and mock trading periods, across 292 potential plants in the whole sample.

C.4 Market Replacement Rule for Missing CEMS Data

Subsection C.1 gives the data imputation rule for pollution we use for the purposes of our

analysis. The goal of this rule is to estimate mean emissions as accurately as possible for plants

that are missing some observations on pollution. In this subsection we show the data replacement

rule that was used in real time by the market. This replacement rule has two purposes: filling gaps

in the emissions record, and penalizing plants for non-reporting.

Table C2 shows the data replacement rule used in the market. The rule assumes that emissions

are higher when data is missing for a longer period of time, in order to incentivize plants to report

emissions reliably. By construction, the replacement rule used in the market will be upward biased

relative to mean emissions during the time a plant is reporting.

C.5 Absence of Direct Effects of Monitoring on Emissions

We have interpreted the control group in our evaluation as informative about outcomes under

command-and-control regulation. One difference between the control and the status quo in Gujarat

prior to the introduction of the market was that the control group also reports real-time emissions

data using CEMS technology. This data underpins our experimental evaluation but could not be

used to penalize plants since the legal notifications governing the status quo regime required that
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Figure C4: Kernel density of PM emissions by treatment status

A. PM emissions

B. log(PM emissions)

This figure plots the kernel density of PM emissions (kg/month) in Panel A and log(PM emissions) in Panel B,
both by treatment status, in different stages of imputation described in Section C.2. Stack-Week corresponds to the
emissions variable after step 2. Stack-Month, Stack-Experiment, and Treatment-Month correspond to the variables
constructed based on the No Imputation Rule, the Imputation Rule A, and the Imputation Rule B, respectively.
Imputing the treatment group mean causes values to converge to the group mean, so the distribution of PM emissions
and that of log(PM emissions) should have less dispersion under Rule B. Since the distribution of emissions is highly
positive-skewed, the emissions of most plants are less than the group mean. Rule B, therefore, inflates the emissions
of those plants. As a result, the peak of the kernel density curve under Treatment-Month for the control group shifts
to the right. As the distribution of PM emissions is more clustered near the mean under Rule B, the mean of log(PM
emissions) should be closer to the log of mean PM emissions for Rule B. By the concavity of log function, the log
of mean is no less than the mean of log values. Hence, the mean of log(PM emissions) should be higher for Rule B
than others.

regulatory action be based on pollution samples collected manually.

Here we ask whether CEMS monitoring, even without accompanying regulatory changes,

might itself change plant behavior. We worked with GPCB to rollout CEMS as a randomized
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Table C2: Imputation Rules for Missing CEMS Data

% Data Available
During Week Imputation for Missing Data Values (kg/hr)

> 95% Plant mean operating emissions load during the compliance period
80-95% Plant 75th percentile emissions load during the compliance period
50-80% Plant 90th percentile emissions load during the compliance period
1-50% Plant 90th percentile emissions load during the compliance period and

prior three months of valid CEMS data, up to the start of the compli-
ance period

< 1% Flat rate of population emissions load (8.08 kg/hr)
The table gives the data replacement rule used in the emissions market. The left column shows the raw data availability
during the week. The right column shows the imputation rule for each level of data availability.

experiment in order to test for such monitoring effects. Plants were randomly assigned to one of

three phases. The random assignment means that plants receiving a late CEMS mandate form a

valid control group for those with an early mandate.

We present results from a simple specification regressing measures of plant pollution obtained

from manual measurements on CEMS treatment status. CEMS obviously cannot form the outcome

measure for a treatment mandating CEMS installation. The pollution data comes from the result

of manual emission samples carried out by the environmental regulator as part of their inspection

schedule. We run the following regression:

yit = β0 +β1Treati ×Postt +αi + γt + εit

where αi is a plant fixed effect and γt is a month by year fixed effect. The dummy Treati is

1 for plants in Phase 1 and 0 for plants in Phase 3. The outcome variable y is a measure of plant

pollution from manual readings taken by the GPCB as part of their regular schedule of testing. The

variable Postt is 0 for all control observations. For treatment (phase 1) units, it takes the value 1

once a plant has installed CEMS. β1 is the treatment effect of CEMS on pollution.

Table C3 reports results from this regression. The main conclusion is that there is little evidence

of differences in pollution between plants that had already installed CEMS relative to those that had

not. Sudarshan (2023) provides related results including additional information on the rollout of
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CEMS in Gujarat, a description of different technologies, and practical considerations associated

with using this data for regulation.

Table C3: Effects of CEMS Installation on Plant Emis-
sions

PM, mg/Nm3 Log(PM)
(1) (2)

Treatment Effect 0.432 -0.0601
(23.84) (0.0912)

Observations 796 796
Month FE Yes Yes
Plant fixed effects Yes Yes
Plants 197 197
R2 0.3384 0.4276
Mean dependent variable 142.8 4.757

Dependent variable emission measures are from GPCB’s regularly
scheduled manual samplings. Unit of observation is plant. Sample
is restricted to plants in Phases 1 and 3 of CEMS rollout. The
treatment indicator in the regression is set to the interaction of
the plant being in Phase 1 and not being in the control group.
The treatment indicator is therefore set to 0 for the union of all
experiment control plants and all Phase 3 plants. Standard errors
are clustered at the plant-level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

21



Appendix D [NOT FOR PUBLICATION]

D Appendix: Model specification and abatement costs

D.1 Model specification

Abatement technology.—Plant i chooses the level of variable abatement expenditures Zit in

each compliance period t = 1,2, . . . ,10. Abatement expenditures could include running abatement

equipment more, changing inputs like filters or chemicals more often, or devoting more labor to

the maintenance and operation of a machine. Plants differ in total heat capacity Hi. Heat capacity

is the steam production capacity of a boiler, analogous to the horsepower of a car engine, and is

the relevant scale measure for fuel consumption and therefore air pollution emissions. Plants may

also differ in other characteristics such as their abatement capital stock.

We let Zit(Eit) be the level of expenditures as a function of emissions. Assume that Z′ < 0

and Z′′ > 0; expenditures are decreasing as a function of emissions but at a rate that decreases in

magnitude as emissions grow. Further, there is some high, uncontrolled level of emissions E i such

that Zit(E i) = 0. The plant spends an added fixed cost Zi0 to maintain its abatement capital. We

treat this cost as sunk given the finding that abatement capital did not change in the experiment.

Emissions market regulation.—An emissions market is a regulation that sets a market-level

cap Qt on emissions in period t and allows plants to trade permits so they collectively meet that

limit. The regulator allocates permits Ait to each plant and may retain or sell the balance. In the

Surat market, the allocation rule gave plants permits totaling 80% of the market cap in proportion

to their heat capacity, Ait ∝ Hi. Let Pt be the equilibrium price of permits, known to the plant.

Under the two assumptions of cost minimization and no market power, the plant chooses emis-

sions to minimize the total cost of compliance:

min
Eit

Zi0 +Zit(Eit)+Pt(Eit −Ait). (6)
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The first-order condition for the plant’s problem under these assumptions is

−∂Zit(Eit)

∂Eit
= MAC(Eit) = Pt . (7)

This condition is the familiar one that the marginal abatement costs of the plant at the chosen

emissions level equal the permit price. This equation has a unique solution for E∗
it = MAC−1(Pt)

under our assumptions on the Z(·) function.

To calculate total costs we integrate marginal abatement costs to obtain each plant’s total vari-

able cost function. The marginal abatement cost function (4) we assume is consistent with a simple

representation of total variable abatement costs:

Zit(Eit) = eβ0+ξ̃it Hβ2

(
1

β1 +1

)(
Eβ1+1

i −Eβ1+1
it

)
, β1 ∈ (−1,0), (8)

where the parameters are common with (4). We estimate the parameters {β1, ξ̃it} of the abatement

cost function (8) using the marginal abatement cost specification (4). Moving from marginal to

total variable abatement costs introduces a constant of integration. In (8), the constant E i has a

physical interpretation as the high level of uncontrolled emissions for a plant of size H = 1 when

no variable abatement expenditures are made.

D.2 Calculating abatement costs by regime

We wish to compare abatement costs across regulatory regimes, but permit bids are only avail-

able in the treatment group. In this subsection we describe how we use the marginal abatement

cost functions estimated in the treatment group to calculate abatement costs by regime.

Abatement costs in the emissions market.—In the market all plants choose emissions to

set their marginal abatement cost equal to the permit price, and therefore the marginal costs of

all other plants. When all plants equalize their marginal abatement costs, the market as a whole

reduces emissions at the lowest possible aggregate cost. The level of emissions depends on neither

the plant’s fixed costs of abatement Zi0 nor the initial permit allocation Ait .
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Permit market equilibrium requires that aggregate emissions equal the market cap Qt . Writing

emissions as a function of the price, the equilibrium price is the P∗
t that solves

Et(P∗
t ) = ∑

i
Eit(P∗

t ) = Qt . (9)

The equilibrium price is unique because emissions for each plant monotonically decrease in price.

At the equilibrium allocation, the total variable costs of abatement in the market can be written

ZET S
t = ∑i Zit(E∗

it), with plant emissions given by E∗
it = Eit(P∗

t ).

With our empirical specification of abatement costs we can solve for total variable abatement

costs ZET S
t (Qt) at any proposed cap. The first step for a given cap Qt is to solve (9) to find the

equilibrium price P∗
t . With the estimated marginal abatement cost functions (4), the empirical

inverse MAC function for each plant is:

Eit(Pt) = P1/β̂1
t e−ξ̂it/β̂1. (10)

This function gives a plant’s emissions as a function of the permit price. Substituting into (9), we

can then find aggregate emissions at any price and solve for the equilibrium price P∗
t (Qt) for a

given cap. We then calculate plant emissions with (10), evaluate plants’ variable abatement costs

(8) and sum across plants to find aggregate costs ZET S
t . The result of these steps is that we can

write aggregate costs as a function of the aggregate emissions cap, ZET S
t (Qt).

Abatement costs in the command-and-control regime .—We estimate the stringency of

regulation in the command-and-control regime in the control group. A command-and-control

regime is any rule that dictates emissions {Eit} for each plant, rather than setting a limit across

all plants. The current regime, de jure, sets a maximal concentration limit on pollution emissions.

However, both in the control group and our prior work (Duflo et al., 2018), we observe de facto

non-compliance with the intensity standard and fairly wide dispersion in emissions rates, rather

than a point mass at the standard R (Appendix Figure B1).
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We therefore estimate costs in the command-and-control regime by evaluating MAC functions

at the observed emission rates in the control group. We represent emissions with plant-specific

emissions rates Rit = Eit/Hi per unit of capacity. Since we observe emissions rates in the control

group, it is straightforward to develop expressions for total emissions and total variable abatement

costs. Total status quo emissions ECC
t = ∑i HiRit depend on the stringency of the plant-period spe-

cific intensity standards. Plant abatement costs are then the plant-period abatement cost function

evaluated at this emissions level, Zit(HiRit). Summing across plants, total variable abatement costs

under command-and-control are ZCC
t = ∑i Zit(HiRit).

In contrast to the outcome under an emissions market, there is no reason to expect that costs

must be minimized by the command-and-control allocation of emissions. The de jure standard is

a uniform concentration standard. There is widespread noncompliance even with this standard.

We do not think this non-compliance is likely to equalize marginal abatement costs across plants.

While our past work found that the regulator has some, albeit very noisy, information on pollution

(Duflo et al., 2018), we expect marginal abatement costs are more difficult to estimate, since they

cannot be observed directly on a plant visit. We therefore assume in our baseline case for the

command-and-control regime that plant emissions rates are independent of plant marginal abate-

ment costs.

We use five different representations of the status quo to capture the distribution of emissions

rates in the command-and-control regime. The regimes differ in whether emissions rates are con-

stant or dispersed across plants and whether they are conditioned on plant characteristics. The

first two regimes we consider are: (i) constant emissions rate Rit = R; (ii) constant emissions rate

with error logRit ∼ N (µt ,σt), fit separately in each period. These regimes are too simple to

represent the status quo, because the data make clear that the emissions rate is declining in heat

capacity. This fact is consistent with a regulatory regime that inspects large plants more often and

so imposes greater expected penalties on them for high emissions rates.

We therefore favor regimes where the emissions rate depends on plant heat capacity. We fit the
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following regression in the control group separately for each compliance period:

logRit = β0t +β1t logHi + εit . (11)

The remaining three regimes we consider follow this approach: (iii) capacity-based emissions rate

Rit = exp(l̂ogRit); (iv) capacity-based emissions rate with error Rit = exp(l̂ogRitε
s
it) for draws εs

it ⊥

ξ̂it from the residuals of (11); (v) capacity-based emissions rate with correlated error, similar to

(iv), but with draws εs
it that are slightly negatively correlated (ρ =−0.1) with marginal abatement

cost shocks ξ̂it .29 We draw the emissions rate shocks from a log normal distribution fit to the

variance of ε̂it in each period. We include regime (iii) as a basis of comparison, though it will be

biased due to the exponentiation of a predicted value fitted in logs.

We use these regimes to set counterfactual emissions rates, our proxy for intensity standards,

for the treatment group plants, had they been regulated like control group plants. We then evaluate

treatment plants’ MAC functions at the simulated emissions rates to calculate the treatment plants’

total abatement costs if they had been assigned to the control group.

In counterfactuals we evaluate costs not only at the distribution of emissions in the control

group in the data, but also at higher or lower levels of emissions. We assume that a differently

stringent command-and-control regime would scale up or down all emissions rates by a common

factor δ . In the control group, we estimate fitted emissions rates across plants {R̂it} using one

of the five regimes described above. We then calculate a scaling factor δ (Qt) = Qt/ECC
t to meet

emissions level Qt . We evaluate plant-specific costs at alternate stringencies to calculate aggregate

costs ZCC
t (δ (Qt)) = ∑i Zit(δ (Qt)HiR̂it).

The idea of this approach is to preserve the dispersion in compliance, as observed in the current

regime, while scaling emissions upwards or downwards to meet different possible caps. This

assumes that the range of compliance at any new stringency would be the same, in proportional

terms, as is observed in the control group. Since plant abatement costs are convex, this approach

29This implies that high-cost plants will have somewhat lower emissions rates. We introduce this correlation to
capture, in a simple way, the observation that the regulator does have some information about plant emissions and
targets more polluting plants more aggresively (Duflo et al., 2018).
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of evaluating costs as we shift the distribution of emissions rates will produce higher aggregate

abatement costs than would simply evaluating all plants at the new mean emissions rate.

Comparison of abatement costs across regimes.—Appendix Table D1 Panel A explores

the robustness of the finding that the the market regime reduces total variable abatememt costs

under a variety of approaches to assigning each plant’s command-and-control emissions target

while maintaining the iso-elastic form of the marginal abatement cost curves. We use the same

two reference levels of emissions, 170 tons (columns 1 to 3) and 240 tons (columns 4 to 6). Row

A reports equilibrium market price and total variable abatement costs under the market. Rows B1

to B5 present the total variable abatement costs under the command-and-control regime and its

percentage difference, relative to costs in the emissions market. The rows under the command-

and-control regime differ in how exactly they model the distribution of emissions.

There are two main findings. First, total variable abatement costs are lower under the emissions

market than under the command-and-control regime. At the treatment emissions level, 170 tons per

month, total variable abatement costs are 12% higher under the status quo (column 3, row B4) than

under emissions trading (column 2, row A). The cost difference between regimes is great enough

that costs are 6% lower under the emissions market—with a 30% cut in emissions—than in the

command-and-control regime at the status quo emissions level (column 2, row A versus column 5,

row B4).

Second, the cost differences among the alternative representations of the command and control

regime are small and indeed smaller than the difference in cost between the market and command-

and-control regimes. The differences in costs in the command and control regime are due to

two forces: (i) heterogeneity in emissions rates interacting with convex abatement costs and (ii)

scale effects.30 We find that abatement costs are 8 to 13% higher under command-and-control at

30On heterogeneity, command and control regimes that allow idiosyncratic shocks across plants have higher costs
than regimes that do not because abatement costs are convex. This convexity pushes up marginal abatement costs
for plants that are assigned lower rates of emissions more than it reduces them for plants with higher rates (compare
column 2, rows B1 and B2). On scale, we find that larger plants tend to have higher marginal abatement costs because
the scale efficiencies in marginal abatement costs are outweighed by the higher marginal abatement costs associated
with the more stringent emissions standards that large plants face (compare row B1 with rows B3 to B5).
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the lower level of emissions (column 3) and 10 to 16% higher at the higher level of emissions.

We prefer the simulation draws that condition on plant heat capacity and draw over residualized

emissions levels, since emissions rates do vary systematically with plant size (heat capacity). For

our preferred estimates, in row B4, the level of costs under the command-and-control regime are

12% and 15% higher, at the respective treatment and control levels of emissions, implying that the

market cuts costs by 11% and 14% for these emissions levels.
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Table D1: Variable abatement costs under alternative regulatory regimes

Emissions = 170 tons Emissions = 240 tons

Price Cost ∆Cost Price Cost ∆Cost
(INR/kg) (INR m) (%) (INR/kg) (INR m) (%)

(1) (2) (3) (4) (5) (6)

Panel A: Iso-Elastic MAC Curve
A. Emissions market 12.2 10.1 – 9.9 9.3 –

B. Command and Control
1. Constant emissions rate 10.9 8.0% 10.2 10.0%
2. Constant emissions rate, with error 11.2 11.4% 10.6 14.1%
3. Capacity-based rate 10.9 8.2% 10.3 10.3%
4. Capacity-based rate, with error 11.3 11.8% 10.7 14.6%
5. Capacity-based rate, correlated error 11.4 12.9% 10.8 15.9%

Panel B: Step-Function MAC Curve
A. Emissions market 15.3 6.0 – 11.6 5.0 –

B. Command and Control
1. Constant emissions rate 7.9 32.4% 7.2 44.1%
2. Constant emissions rate, with error 7.9 32.6% 7.2 43.9%
3. Capacity-based rate 7.9 31.9% 7.1 42.9%
4. Capacity-based rate, with error 7.9 32.1% 7.1 42.9%
5. Capacity-based rate, correlated error 8.0 33.8% 7.3 45.5%

The table shows the results of counterfactual simulations under different regulatory regimes. Each row represents a different
regime. Each panel corresponds to a different functional form assumption on the plant level marginal abatement cost curve.
Within each panle the first row is the emissions market. The second through final rows in each panel are different command
and control regimes that vary in how the emissions target is set for each plant. Constant emissions rate sets a single fixed
ratio of emissions to heat output capacity for all plants. Constant emissions rate with error allows for idiosyncratic variation
in the constant rate across plants. Capacity-based rate sets an emissions rate as a function of plant capacity, such that
larger plants can have higher or lower rates of emission per unit capacity. Capacity-based rate with error allows for the
capacity-based rate to idiosyncratically vary across plants. Finally, capacity-based rate with correlated error is the same as
capacity-based rate with error except that the idiosyncratic error is drawn with a negative -0.1 correlation with estimated
plant marginal abatement cost shocks. Columns 1 to 3 show results for emissions of 170 tons per month (the treatment
level) and columns 4 to 6 for emissions of 240 tons per month (the control level). Within each set of three columns the
variables show the market price (if applicable), the total variable abatement costs per month, and the change in abatement
costs relative to the emissions market.
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E Appendix: Marginal Cost Curve Specification

E.1 Uncontrolled Emissions

Without any abatement particulate emissions can be very high. We let E i represent the un-

controlled level of emissions for plant i. To calculate it, we first find the average flow rate across

manual samplings of that plant. These manual samplings include the ETS baseline, the CEMS

baseline, as well as possible calibration measurements in 2020 and 2022. We then assume a max-

imum possible outlet concentration of 2500 mg
Nm3 , which was determined by our field staff to be a

conservative plausible maximum, and we additionally assume operation for 12 hours per day for

the entire period. These together determine a maximum possible emitted mass of PM for the stack

for any period:

E i
kg

period
= Flow-Ratei

Nm3

hr
·12

hr
day

·30
day

period
·2500

mg
Nm3 ·

1
1,000,000

kg
mg

E.2 Step Function

In the body of the paper we assume that plants marginal abatement cost curves (hereafter MAC

curves) follow a convenient iso-elastic form. However, it is worth examining what happens if we

were to assume a different form of marginal abatement cost curve: We here consider a step-function

MAC curve alternative.

Functional Form.—The basic form of the step-function MAC curve, for a specific plant i

in period t, is shown in Figure E1. The intuition for this functional form is that if plant i doesn’t

run their abatement technology they will emit at Emax
i , if they do run their abatement tech they

will decrease their emissions down to Emin
i , and running their abatement tech costs ξit . In order to

implement this MAC curve for each plant, we thus need, for each i, t, values of Emin
i , Emax

i and ξit .

We set Emax
i =

(
1−1{i has cyclone}·0.8

)
·E i. See Appendix E.1 for how we set E i. This setup

allows plants to run their cyclones “for free” when they have one, decreasing their max potential
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Figure E1: Example Step-Function MAC Curve for Plant i in Period t

Emin
i Emax

i

ξit

Emissions

MAC

emissions by 80% (following the engineering estimates of cyclone efficiency reported in Table F1).

Cyclones are mechanical abatement devices that run automatically based on the flow of the stack

gas through the device. Thus, for those plants with a cyclone (which covers 98% of our sample)

their abatement decision comes from whether or not they use further technology, with their cyclone

being used at all times.

To calculate Emin
i we take the minimum of (a) the minimum observed level of emissions for

plant i over any period, and (b) the abatement efficiency of plant i’s most advanced technology

(again following efficiencies in Table F1) times their Emax
i . The intuition for this is that the emis-

sions of a plant over a period provide an upper bound on how far they are able to abate their

emissions, while the engineering estimates of the efficiency of their abatement tech represents a

more direct estimate of how far they can reduce their emissions beyond Emax
i .31

Lastly, to calculate ξit we again assume that plants bid their marginal costs of abatement, and

31For those plants which have a cyclone as their maximum abatement technology we set Emin
i to the minimum of

(a) their minimum observed emissions over periods and (b) Emax
i , as the use of their cyclone has already been factored

in to Emax
i .
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thereby set ξit to the corresponding fixed-effect of a regression of first half of period bid prices on

plant-period fixed effects:

bitk = ξit + εitk.

Market Clearing Prices.— At a given market price Pt in period t, plant i will run their

abatement equipment if and only if Pt is at least as high as their marginal abatement cost:

Runit(Pt) = 1{Pt ≥ ξit}

Therefore, Eit is a weakly decreasing function of Pt :

Eit(Pt) = Emin
i ·Runit(Pt)+Emax

i · (1−Runit(Pt))

We thus define the market clearing price in market period t, when there is market cap Ct as:

P∗
t = min

R+
Pt s.t. ∑

i
Eit(Pt)≤Ct

The step functional form in which plants either don’t abate at all or abate to their minimum means

that it is possible for ∑i Eit(P∗
t ) < Ct . In this case, the discreteness of the abatement equipment

leads to over-compliance.

At a given allocation of emissions across plants we use the model to calculate costs. The

abatement cost function corresponds to the area under the MAC curve from Eit to ∞. However,

the step functional form only allows Eit to be either Emax
i or Emin

i depending on Runit . Abatement

costs will then equal:

Zit(Eit) = ξit · (Emax
i −Eit)

= Runit ·ξit · (Emax
i −Emin

i )

= 1{Eit = Emin
i } ·ξit · (Emax

i −Emin
i )
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Command-and-Control As before we assume the command-and-control regime sets standards

and associated emissions levels Eit for each plant-period. If this assigned Eit < Emin
i then it will be

impossible for plant i to abate to this level, so we re-assign Eit = Emin
i . We then assume that plants

abate to achieve these levels of emissions, costing them:

Zit(Eit) = ξit · (Emax
i −Eit)

Results.—We now duplicate several results from the paper using the alternative, step-function

functional form for marginal abatement costs.

Figure E2 shows market prices calculated with the step-function form in red as a test of in-

sample model fit. The step-function model tends to over-predict market prices, relative to the

iso-elastic cost function model.

Figure E3 shows the distribution of emissions in the treatment market calculated with the step-

function MAC (panels A and B), the iso-elastic MAC (panels C and D) and in the data. The

step-function MAC leads to a multi-modal distribution of emissions. Because plants either run

their equipment (if the cost of the step is low enough) or do not, emissions are dispersed and there

are separate modes for plants based on these operating decisions. By contrast, the distributions of

emissions for the iso-elastic MACs and in the data are smoother.

We carry the step-function results through to counterfactual analysis of market cost savings in

Table D1, panel B. The rows of Panel B correspond to the different regimes discussed in , simply

changing the assumed functional form of the marginal abatement cost curves. The main finding

is that the alternative, step-function MAC model predicts much larger counterfactual cost savings

from the emissions market. The reason for this result is that, in the step function model, if a

plant is estimated to have low marginal abatement costs it will always have low costs, up to the

maximum efficacy of a piece of equipment. The costs of misallocation of abatement are therefore

large because the model extrapolates in-sample differences in cost over a large range of emissions.

In the iso-elastic MAC model, by contrast, a low-cost plant cannot take over such a large share of
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counterfactual abatement in the market, because its own MAC would curve upwards.

Figure E2: Model Fit to Market-Clearing Prices with Step-Function Alternative
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The figure shows the fit of the step-function and iso-elastic MAC models compared to the time series of market
and bid prices by compliance period. The solid red line with square points is the time series of market-clearing
prices in the fitted model with step-function MACs. The solid blue line with circular points is the time series of
market-clearing prices in the fitted model with the original iso-elastic MACs. The models are fit based on bids in
the first half of each compliance period. The dashed (black) line is the time series of mean bid prices in the data and
the dotted (black) line is the time series of market-clearing prices.

E.3 Iso-elastic MAC with heterogeneous elasticities of abatement costs
Our main specification for marginal abatement cost curves (4) allows the mean log marginal

abatement costs for each plant-period to differ but constrains all plants to have the same elasticity

of MAC with respect to emissions. This part considers our counterfactual results if we allow

heterogeneity in the MAC elasticity. In Table 4, column 5 allows the elasticity of MAC to differ by

what abatement equipment a plant has installed. Table E1 replicates the counterfactual results of

Table D1 Panel A, with the specification of column 5. We find that the magnitude and qualitative

pattern of cost savings in the emissions trading regime relative to the control regime are similar to

those reported in Table D1 Panel A.
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Figure E3: Histograms of predicted versus observed emissions
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B. Step-function MAC period 8
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C. Iso-elastic MAC period 4
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D. Iso-elastic MAC period 8
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E. Observed data period 4
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F. Observed data period 8
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The figure shows predicted and observed emissions levels in 2 periods for 2 different MAC curve specifications.
Panels A and B show predicted emissions when running our emissions market model under a step-function MAC
curve in periods 4 and 8 respectively. Panels C and D show the same except using the iso-elastic MAC curve. Panels
E and F show the observed distribution of emissions in those periods.
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Table E1: Variable abatement costs under alternative regulatory regimes (with Heterogeneity by APCD)

Emissions = 170 tons Emissions = 240 tons

Price Cost ∆Cost Price Cost ∆Cost
(INR/kg) (INR m) (%) (INR/kg) (INR m) (%)

(1) (2) (3) (4) (5) (6)

A. Emissions market 12.2 10.1 – 10.0 9.3 –

B. Command and Control
1. Constant emissions rate 11.0 8.6% 10.3 10.7%
2. Constant emissions rate, with error 11.3 11.8% 10.7 14.7%
3. Capacity-based rate 11.0 8.9% 10.4 11.1%
4. Capacity-based rate, with error 11.3 12.3% 10.8 15.2%
5. Capacity-based rate, correlated error 11.4 13.0% 10.8 16.2%

The table shows the results of counterfactual simulations under different regulatory regimes. Each row represents a different
regime. The first row is the emissions market. The second through final rows are different command and control regimes that
vary in how the emissions target is set for each plant. Constant emissions rate sets a single fixed ratio of emissions to heat output
capacity for all plants. Constant emissions rate with error allows for idiosyncratic variation in the constant rate across plants.
Capacity-based rate sets an emissions rate as a function of plant capacity, such that larger plants can have higher or lower rates
of emission per unit capacity. Capacity-based rate with error allows for the capacity-based rate to idiosyncratically vary across
plants. Finally, capacity-based rate with correlated error is the same as capacity-based rate with error except that the idiosyncratic
error is drawn with a negative -0.1 correlation with estimated plant marginal abatement cost shocks. Columns 1 to 3 show results
for emissions of 170 tons per month (the treatment level) and columns 4 to 6 for emissions of 240 tons per month (the control
level). Within each set of three columns the variables show the market price (if applicable), the total variable abatement costs per
month, and the change in abatement costs relative to the emissions market.
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F Appendix: Additional Results

F.1 Engineering Estimates of Abatement Costs

This section compares market prices for pollution permits to engineering estimates of the costs

of running abatement equipment. In theory, the price of permits should reflect the marginal abate-

ment costs to each plant. We check this assumption, in broad terms, by comparing permit prices to

engineering measures of abatement costs.

To probe the validity of the assumption that bids can be used to infer marginal abatement costs,

we compare the bids against engineering estimates of abatement costs from Indian air pollution

control device vendors. As described in Section 3, the market cleared at prices between the floor

of INR 5 per kg and INR 15 per kg, though average bid prices ranged as high as INR 45 per

kg. Appendix Table F1 presents estimates of abatement costs under ideal operating conditions

for four kinds of air pollution control devices under four hypothetical plant configurations. This

table assumes, as is likely the case in our data, that plants are already operating a single cyclone.

Engineering abatement costs vary widely depending mainly on (i) the scale of the plant (ii) the

type of equipment that is on the margin. If a plant is already running a cyclone, then average

(marginal) abatement costs for a mid-size plant (6 ton per hour boiler) to operate an additional

cyclone are 7 (2) INR per kg and an additional bag filter 10 (3) INR per kg. If a plant is small and

already running a cyclone, average (marginal) abatement costs to run a dry scrubber are as high as

71 (21) INR per kg. Variable abatement costs therefore range from INR 2 per kg to INR 20 per

kg, depending on what piece of equipment is used, under the assumed, ideal operating efficiency.

If operating efficiency is actually lower, as seems likely, and the reduction in emissions therefore

smaller, then the abatement cost per kg of emissions reduction would increase inversely with the

decline in efficiency.

Overall, this exercise supports the assumption that the bidding data can be used to infer marginal

abatement costs. We find that the market clearing permit prices overlap with engineering estimates

of the marginal abatement costs associated with operating abatement equipment.
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Table F1: Engineering estimates of abatement costs under ideal operating efficiency,
if a cyclone is already operating

Cyclone Bag Filter Scrubber ESP
(1) (2) (3) (4)

Total Boiler Capacity = 3 TPH

Capital costs (Rs/month, amort.) 6953.33 6518.75 10430.00 78225.00
Variable costs (Rs/month) 3000.00 2812.50 4500.00 33750.00
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 1575.90 1575.90 1575.90 1575.90
Emission abatement (kg/month) 1260.72 1560.14 1481.34 1571.17
Average abatement cost (Rs/kg) 7.89 5.98 10.08 71.27
Variable abatement cost (Rs/kg) 2.38 1.80 3.04 21.48

Total Boiler Capacity = 6 TPH

Capital costs (Rs/month, amort.) 9560.83 15645.00 16514.17 104300.00
Variable costs (Rs/month) 4125.00 6750.00 7125.00 45000.00
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 2323.37 2323.37 2323.37 2323.37
Emission abatement (kg/month) 1858.70 2300.14 2183.97 2316.40
Average abatement cost (Rs/kg) 7.36 9.74 10.82 64.45
Variable abatement cost (Rs/kg) 2.22 2.93 3.26 19.43

Total Boiler Capacity = 8 TPH

Capital costs (Rs/month, amort.) 11299.17 19990.83 26075.00 173833.33
Variable costs (Rs/month) 4875.00 8625.00 11250.00 75000.00
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 3612.38 3612.38 3612.38 3612.38
Emission abatement (kg/month) 2889.91 3576.26 3395.64 3601.55
Average abatement cost (Rs/kg) 5.60 8.00 10.99 69.09
Variable abatement cost (Rs/kg) 1.69 2.41 3.31 20.82

Total Boiler Capacity = 15 TPH

Capital costs (Rs/month, amort.) 13906.67 20860.00 26075.00 234675.00
Variable costs (Rs/month) 6000.00 9000.00 11250.00 101250.01
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 8781.49 8781.49 8781.49 8781.49
Emission abatement (kg/month) 7025.19 8693.67 8254.60 8755.14
Average abatement cost (Rs/kg) 2.83 3.43 4.52 38.37
Variable abatement cost (Rs/kg) 0.85 1.04 1.36 11.56

Note. Table displays engineering estimates of abatement cost for different APCDs and boiler capaci-
ties. We assume one cyclone is already operating when calculating the quantity of abatement, and we
assume each APCD is purchased in isolation. Costs can be compared with those in other tables at a
rate of INR 70 to USD 1. Capital costs are amortized to a monthly flow value. All plants are assumed
to have a raw inlet concentration of 2,000 mg/Nm3; in practice it can vary between 1,000 mg/Nm3

and 10,000 mg/Nm3. This is converted to a monthly mass rate via a volumetric flow rate collected at
baseline, assuming continuous operation for 16 hours/day and 25 days/month. Of plants with boilers
in our analysis sample, the boiler capacity (BC) distribution is: 11% have 2-3 TPH BC, 47% have 4-7
TPH BC, 36% have 8-14 TPH BC, 6% have 15+ TPH BC.
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F.2 Treatment effects on capital installation

Table F2 shows that the ETS treatment is estimated to have no effect on the presence of air

pollution control devices (APCDs), overall, since all plants already have APCDs of some kind

installed. There is suggestive evidence of a small shift toward less expensive APCDs such as

cyclones and bag filters (columns 1 and 2).

Table F2: Treatment effects on the presence of abatement devices

ComponentsAll
APCDs Cyclone Bag Scrubber ESP

(1) (2) (3) (4) (5)

ETS Treatment (=1) 0 0.0233∗ 0.0650∗∗∗ -0.0151 -0.0311
(.) (0.0134) (0.0231) (0.0310) (0.0207)

R2 . 0.66 0.68 0.71 0.75
Control mean 1.00 0.95 0.85 0.67 0.12
Plants 276 276 276 276 276

This table reports the effects of treatment assignment on the presence of APCDs. All spec-
ifications control for the corresponding baseline value. Robust standard errors are given in
parentheses with statistical significance indicated by ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.

F.3 Model robustness checks

Heterogeneity in estimated elasticities by time of bid.—Section 5 estimates the elasticity

of marginal abatement costs with respect to emissions using data from the first half of each compli-

ance period. The argument is that plants only have a choice between abatement and the purchase

of permits during the first half of the period, because by the end of a period, emissions are sunk

and plant willingness-to-pay for permits should not depend on their abatement costs.

Figure F1 tests this idea by estimating the same elasticity separately in each week of the com-

pliance period. We find that the elasticity of marginal abatement costs with respect to emissions is

negative and economically and statistically significant during the first several weeks of the compli-

ance period. When there are two weeks or less remaining in the compliance, by contrast, the same

elasticity is estimated to be close to zero. As expected, plants’ bids are not sensitive to abatement
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costs when there is little time left in a period in which to abate.

Figure F1: Elasticity estimate by weeks remaining in the order period
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The top panel presents the coefficients of log(emissions as bid) from regressing ln(bid price) on log(emissions as
bid) and plant × period fixed effects, estimated with different sample truncations defined by the number of weeks
remaining in the order period. The bottom panel shows the number of bids placed in different sample truncations.
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F.4 Significance of Emissions Non-Reporting

In this section we investigate if differences between plants who report different amounts might

be driving any of our results.

Table F3 shows the same balance table as Table 1 from the main paper, only now comparing

those plants above versus below median levels of daily data reporting. There are some differences

between high- and low-reporting plants, but they are not large. The main difference appears to be

that high-reporting plants are somewhat larger, with higher sales revenue and boiler house capital

expenditure (panel A). There are no differences in abatement equipment installation (panel B). On

emissions, high-reporting plants have similar PM emissions mass rates and baseline PM concen-

trations to low-reporting plants, and high-reporting plants are somewhat more likely (10 pp with a

standard error of 5.5 pp) to be above the emissions concentration standard at baseline.

We next examine whether abatement costs or being in the treatment group are related to plant’s

data reporting. To do this we calculate predicted abatement costs using baseline rates of equipment

installation for different plants and the average costs from Table F1. We then regress reporting rates

on predicted abatement costs and their interaction with treatment status to test whether plants with

higher costs report less. The results of this regression are in Table F4. We do not find any significant

effect of predicted abatement costs on reporting or differential reporting in the treatment.

Table F5 then estimates treatment effects on pollution controlling directly for plant reporting

rates. We estimate a similar magnitude of average treatment effect conditional on reporting rates.

Table F3: Balance of plant characteristics by whether report more than median reporting

Over Median Under Median Difference
(1) (2) (3)

Panel A: Plant Measures
Total electricity cost (1,000 USD) 466.5 344.1 122.4

[833.7] [401.9] (78.1)
Log(plant total heat output) 15.6 15.6 0.042

[0.62] [0.48] (0.065)
Size as recorded on environment consent (1 to 3) 1.41 1.31 0.10

[0.66] [0.59] (0.074)
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Small-scale (size=1) 0.68 0.75 -0.068
[0.47] [0.43] (0.054)

Large-scale (size=3) 0.096 0.062 0.033
[0.29] [0.24] (0.032)

Number of stacks 1.08 1.05 0.030
[0.40] [0.21] (0.037)

Textiles sector (=1) 0.85 0.88 -0.028
[0.36] [0.33] (0.041)

Boiler house employment 36.4 32.7 3.78
[32.4] [30.0] (3.70)

Gross Sales Revenue in 2017 (1,000 USD) 15125.8 6950.0 8175.8∗

[54715.6] [13111.3] (4609.6)
Boiler house capital expenditure (1,000 USD) 215.8 149.6 66.2∗

[403.6] [174.7] (36.8)

Panel B: Plant Abatement and Investment Cost
Boiler house employment 36.4 32.7 3.78

[32.4] [30.0] (3.70)
Boiler house capital expenditure (1,000 USD) 215.8 149.6 66.2∗

[403.6] [174.7] (36.8)
Boiler house operating cost (1,000 USD) 142.8 108.1 34.7∗

[202.5] [83.9] (17.8)
APCD: Cyclone present 0.98 0.97 0.012

[0.14] [0.17] (0.019)
APCD: Bag filter present 0.82 0.86 -0.038

[0.38] [0.35] (0.043)
APCD: Scrubber present 0.64 0.62 0.020

[0.48] [0.49] (0.058)
APCD: ESP present 0.12 0.070 0.051

[0.33] [0.26] (0.035)

Panel C: Plant Pollution Measures
Plant total PM mass rate (kg/hr) 3.70 3.50 0.20

[4.97] [3.73] (0.52)
Plant mean PM concentration (mg/Nm3) 179.5 167.8 11.7

[154.2] [152.3] (18.2)
Plant mean Ringelmann score (1 to 5) 1.32 1.41 -0.086∗

[0.39] [0.41] (0.047)
Above regulatory standard at ETS baseline (=1) 0.36 0.26 0.10∗

[0.48] [0.44] (0.055)

Number of plants 156 136
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This table shows differences in plant scale (panel A), plant abatement and investment costs (panel B), and plant
pollution (panel C) between the plants who report above and below the median level across plants. Each plants level
of reporting is calculated as the average minute-level CEMS data availability across the full sample period and across
all stacks belonging to that plant. The only plants which are included in this table are those in the analysis set. This
sample consists of 292 plants that had at least one day of PM data from CEMS devices during the ETS experiment.
In panel B, cyclone, bag filter, scrubber, and electrostatic precipitator (ESP) are different air pollution control devices
(APCDs). Some plants did not respond to some questions in the survey and so certain variable rows have fewer
observations than the full sample size. The first and second columns show means with standard deviations given in
brackets. The third column shows the coefficients from regressions of each variable on treatment, with robust standard
errors in parentheses. ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.

Table F4: Treatment effect on reporting by predicted plant abate-
ment costs

Dependent Variable:
Share of Day Not-Reporting

Treatment (=1) -0.166***
(0.035)

Predicted Abatement Cost 0.000
(0.002)

Predicted Abatement Cost × Treatment 0.000
(0.002)

R2 0.13
Observations 304

Unit of observation is plant. Predicted Abatement Cost variable for industry set
to the engineering estimate of the average abatement cost per kg from Table F1
assuming Boiler Capacity = 8TPH) for the most advanced abatement technology
of the plant: Cyclone less advanced than bag-filter less advanced than scrubber
less advanced than ESP. Share of day not reporting calculated at industry level as
average over industry’s stacks and over all days (excluding interregnum). Robust
standard errors in parentheses.
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Table F5: Treatment effects on PM emissions (log(PM mass/month)) controlling for data availability

No Imputation With Imputation

(1) (2) (3) (4) (5) (6) (7) (8)

ETS Treatment (=1) -0.179∗∗ -0.203∗∗∗ -0.180∗∗ -0.207∗∗∗ -0.240∗∗∗ -0.247∗∗∗ -0.233∗∗∗ -0.250∗∗∗

(0.077) (0.077) (0.076) (0.076) (0.073) (0.073) (0.061) (0.061)

Share of Day Reporting 0.0000343 0.00127 0.000325 0.00148 -0.00222∗∗∗ -0.00187∗∗ -0.00445∗∗∗ -0.00350∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Month FE Yes Yes Yes Yes

Imputation rule Rule A Rule A Rule B Rule B
Reweighted Yes Yes
Mean dep. var (control) 6.67 6.67 6.66 6.66 6.80 6.80 6.88 6.88
R2 0.13 0.18 0.14 0.17 0.19 0.22 0.19 0.27
Plants 292 292 292 292 292 292 292 292
Observations 3235 3235 3235 3235 3796 3796 3796 3796

This table reports the estimated treatment effects on PM emissions adding average abailability. The outcome variable is the log of plant-level PM mass (kg)
per month. A detailed note on the construction of the outcome variable is in Appendix C.1. Columns 5 and 6 impute data with Imputation Rule A: Stack-
Experiment. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the stack’s mean PM mass rate across the experiment (July
2019 to March 2021, excluding interregnum). Columns 7 and 8 impute data with Imputation Rule B: Treatment-Month. Under this rule, missing values of
a stack’s daily PM mass rate are imputed using the monthly mean PM mass rate of the stack’s treatment group. All columns control for plant characteristics
including capital expenditure, operating cost, log(total heat output), mean boiler installation year, and their corresponding indicators for missing values. In
addition to plant controls, columns 2, 4, 6, and 8 add month-year fixed effects to control for time variant differences common in each plant. We also apply the
inverse probability weighting method in columns 3 and 4. The probability of reporting in a month is predicted using a probit model where the only explanatory
variable is an indicator variable for the treatment status in a prior experiment that randomized CEMS installation timing. Robust standard errors in parentheses
are clustered at the plant level with statistical significance indicated by ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.
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F.5 Impact of COVID-19 Pandemic

In this section we include several analyses trying to determine the impact of COVID-19 on the

experiment.

First, we examine how net-demand (defined as a plant’s total period emissions less their initial

permit allocation) differed before and after the COVID interregnum. Figure F2 shows a scatter

plot of the plant net permit demand before (compliance periods 1 to 6) and after (periods 7 to 10)

the COVID-19 interruption. The scatter plot shows that plant net demands are highly correlated in

the pre- and post-Covid periods. Plants that have higher emissions than permit allocations before

the pandemic tend to also have higher emissions than permit allocations afterwards.

In Table F6 we then estimate the treatment effect on emissions separately for the pre- and post-

COVID subsets of our sample. We cannot reject the null that the treatment effect on log pollution

is the same before and after the Covid-19 lockdown. (The point estimates for the treatment effect

on pollution are smaller post-lockdown, which would be consistent with a less tightly binding cap

in a weaker economy.)

Lastly, in Table F7 we re-estimate the counterfactual market versus command-control results

from Table D1 using both the iso-elastic and step-function MAC, only restricting the sample to the

pre-COVID periods.
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Figure F2: Net demand before and after COVID
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The figure shows net demand (emissions – initial allocation) for each industry averaged across pre vs post COVID
compliance periods. Each point represents a single industry. The solid black line is the OLS fit for the data The
dotted black line is the y = x line. We omit the 9 industries with values of magnitude greater than 2000 for ease of
visualization.
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Table F6: Treatment effects on PM emissions (log(PM mass/month)) before and after COVID

No Imputation With Imputation

(1) (2) (3) (4) (5) (6) (7) (8)

ETS Treatment (=1) -0.211∗∗ -0.219∗∗ -0.211∗∗ -0.224∗∗∗ -0.303∗∗∗ -0.303∗∗∗ -0.286∗∗∗ -0.286∗∗∗

(0.087) (0.088) (0.085) (0.085) (0.077) (0.077) (0.051) (0.051)

Post-Covid (=1) -0.173∗∗ -0.159∗∗ -0.149∗∗∗ -0.456∗∗∗

(0.082) (0.079) (0.047) (0.060)

Treatment × Post-Covid 0.0652 0.0656 0.0668 0.0717 0.0538 0.0538 0.0594 0.0594
(0.093) (0.094) (0.091) (0.092) (0.060) (0.060) (0.072) (0.072)

Month FE Yes Yes Yes Yes

Imputation rule Rule A Rule A Rule B Rule B
Reweighted Yes Yes
Mean dep. var (control) 6.67 6.67 6.66 6.66 6.80 6.80 7.02 7.02
R2 0.14 0.17 0.14 0.17 0.19 0.22 0.17 0.35
Plants 292 292 292 292 292 292 292 292
Observations 3235 3235 3235 3235 3796 3796 4672 4672

This table reports the estimated treatment effects on PM emissions. The outcome variable is the log of plant-level PM mass (kg) per month. A
detailed note on the construction of the outcome variable is in Appendix C.1. Post-Covid is defined as periods 7 to 10. Columns 5 and 6 impute
data with Imputation Rule A: Stack-Experiment. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the stack’s
mean PM mass rate across the experiment (July 2019 to March 2021, excluding interregnum). Columns 7 and 8 impute data with Imputation
Rule B: Treatment-Month. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the monthly mean PM mass rate of
the stack’s treatment group. Post-COVID coded as after March 2020. All columns control for plant characteristics including capital expenditure,
operating cost, log(total heat output), mean boiler installation year, and their corresponding indicators for missing values. In addition to plant
controls, columns 2, 4, 6, and 8 add month-year fixed effects to control for time variant differences common in each plant. We also apply the
inverse probability weighting method in columns 3 and 4. The probability of reporting in a month is predicted using a probit model where
the only explanatory variable is an indicator variable for the treatment status in a prior experiment that randomized CEMS installation timing.
Robust standard errors in parentheses are clustered at the plant level with statistical significance indicated by ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.
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Table F7: Variable abatement costs under alternative regulatory regimes using only pre-COVID data

Emissions = 170 tons Emissions = 240 tons

Price Cost ∆Cost Price Cost ∆Cost
(INR/kg) (INR m) (%) (INR/kg) (INR m) (%)

(1) (2) (3) (4) (5) (6)

Panel A: Iso-Elastic MAC Curve
A. Emissions market 12.7 8.1 – 9.7 7.3 –

B. Command and Control
1. Constant emissions rate 9.0 11.4% 8.3 13.6%
2. Constant emissions rate, with error 9.4 16.9% 8.8 20.4%
3. Capacity-based rate 8.9 10.9% 8.2 12.9%
4. Capacity-based rate, with error 9.4 16.7% 8.7 19.9%
5. Capacity-based rate, correlated error 9.5 18.2% 8.9 21.8%

Panel B: Step-Function MAC Curve
A. Emissions market 16.3 5.8 – 12.0 4.8 –

B. Command and Control
1. Constant emissions rate 9.0 54.6% 8.2 72.7%
2. Constant emissions rate, with error 9.0 54.7% 8.2 72.3%
3. Capacity-based rate 8.9 52.5% 8.0 68.7%
4. Capacity-based rate, with error 8.9 52.7% 8.0 68.5%
5. Capacity-based rate, correlated error 9.0 54.7% 8.2 71.8%

The table shows the results of counterfactual simulations under different regulatory regimes. Each row represents a different
regime. The first row is the emissions market. The second through final rows are different command and control regimes that
vary in how the emissions target is set for each plant. Constant emissions rate sets a single fixed ratio of emissions to heat output
capacity for all plants. Constant emissions rate with error allows for idiosyncratic variation in the constant rate across plants.
Capacity-based rate sets an emissions rate as a function of plant capacity, such that larger plants can have higher or lower rates
of emission per unit capacity. Capacity-based rate with error allows for the capacity-based rate to idiosyncratically vary across
plants. Finally, capacity-based rate with correlated error is the same as capacity-based rate with error except that the idiosyncratic
error is drawn with a negative -0.1 correlation with estimated plant marginal abatement cost shocks. Columns 1 to 3 show results
for emissions of 170 tons per month (the treatment level) and columns 4 to 6 for emissions of 240 tons per month (the control
level). Within each set of three columns the variables show the market price (if applicable), the total variable abatement costs per
month, and the change in abatement costs relative to the emissions market. Data used for estimation is restricted to pre-COVID
periods (periods 1 to 6) only.
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F.6 Manual Sampling and CEMS Comparison

Figure F3 plots emissions measurements from manual samplings versus CEMS readings of the

emissions from the same window of time during which the manual sampling was taking place. A

regression line and the y = x line are also shown. There is a high correlation between the manual

samples and CEMS readings.

Figure F3: Simulatenous CEMS and sampling comparison
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The figure plots CEMS readings against concurrent manual samplings. Unit of observation is an industry. The solid
black line is the OLS fit for the data The dotted black line is the y = x line. We restrict the graph to only those
CEMS readings with at least 15% data availability during the appropriate window, and to those with concentrations
less than 2000 mg/Nm3.

F.7 Impact of Device Types

In Table F8 we estimate the treatment effect on emissions levels separately for each potential

CEMS device type (type 1, types 2, or both types). We do not find any significant effects of

device type on treatment effect. The coefficient on Type 2 devices is positive, though statistically

insignificant. A positive effect would be consistent with larger, more sophisticated plants selecting

a more expensive piece of equipment.
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Table F8: Treatment effects on PM emissions (log(PM mass/month)) depending on device type

No Imputation With Imputation

(1) (2) (3) (4) (5) (6) (7) (8)

ETS Treatment (=1) -0.130 -0.147∗ -0.135 -0.154∗ -0.247∗∗∗ -0.247∗∗∗ -0.260∗∗∗ -0.260∗∗∗

(0.087) (0.087) (0.085) (0.085) (0.084) (0.084) (0.057) (0.057)

Device FE: Type 2 0.159 0.177 0.141 0.159 0.0955 0.0955 0.0679 0.0679
(0.219) (0.221) (0.221) (0.224) (0.173) (0.173) (0.114) (0.114)

Device FE: Both Types 0.362∗ 0.354∗ 0.362∗ 0.355∗ 0.289 0.289 0.146 0.146
(0.212) (0.209) (0.204) (0.201) (0.210) (0.211) (0.143) (0.143)

Treatment × Device FE: Type 2 -0.0910 -0.0934 -0.0639 -0.0652 -0.00556 -0.00556 -0.0967 -0.0967
(0.264) (0.266) (0.267) (0.271) (0.228) (0.228) (0.163) (0.163)

Treatment × Device FE: Both Types -0.319 -0.302 -0.311 -0.299 -0.229 -0.229 -0.0305 -0.0305
(0.269) (0.268) (0.266) (0.265) (0.261) (0.262) (0.190) (0.190)

Month FE Yes Yes Yes Yes

Imputation rule Rule A Rule A Rule B Rule B
Reweighted Yes Yes
Mean dep. var (control) 6.65 6.65 6.64 6.64 6.76 6.76 7.01 7.01
R2 0.14 0.18 0.14 0.18 0.18 0.22 0.13 0.37
Plants 279 279 279 279 279 279 279 279
Observations 3110 3110 3110 3110 3627 3627 4464 4464

This table reports the estimated treatment effects on PM emissions. The outcome variable is the log of plant-level PM mass (kg) per month. A detailed
note on the construction of the outcome variable is in Appendix C.1. Columns 5 and 6 impute data with Imputation Rule A: Stack-Experiment. Under
this rule, missing values of a stack’s daily PM mass rate are imputed using the stack’s mean PM mass rate across the experiment (July 2019 to March
2021, excluding interregnum). Columns 7 and 8 impute data with Imputation Rule B: Treatment-Month. Under this rule, missing values of a stack’s
daily PM mass rate are imputed using the monthly mean PM mass rate of the stack’s treatment group. We add fixed effects for the different types of
abatement devices which an industry has across all of its stacks (Type 1, Type 2, or both). Type 1 Devices are the omitted level of device type fixed effect.
Approximately 80%, 10%, and 10% of plants are set to Type 1, Type 2, and having both types, respectively. All columns control for plant characteristics
including capital expenditure, operating cost, log(total heat output), mean boiler installation year, and their corresponding indicators for missing values.
In addition to plant controls, columns 2, 4, 6, and 8 add month-year fixed effects to control for time variant differences common in each plant. We also
apply the inverse probability weighting method in columns 3 and 4. The probability of reporting in a month is predicted using a probit model where
the only explanatory variable is an indicator variable for the treatment status in a prior experiment that randomized CEMS installation timing. Robust
standard errors in parentheses are clustered at the plant level with statistical significance indicated by ∗p <0.10; ∗∗p <0.05; ∗∗∗p <0.01.
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F.8 Prior Regulations in Other Markets

The market experiment in this paper is layered on top of existing regulations which mandate in-

vestment in abatement and monitoring technologies such as CEMS devices. This layered mandate

is typical of the way in which markets have been implemented throughout the world and studied

throughout the economics literature. In Table F9 we canvas 6 different emissions markets in the

US and EU, give the prior regulations which plants were facing, whether those regulations were

lifted once the market was put in place, and also give a citation to a paper studying those markets.

The table summarizes command-and-control regulations that were in place before or alongside

major emissions markets. Each row considers one market. The “Program” column gives iden-

tifying informatin of the emissions market. The “Location”, “Year Instituted”, and “Pollutant”

columns give the geographical area, beginning year, and covered pollutant in the market. The

“Prior Regulation” column lists relevant regulation which was introduced before or concurrent

to the emissions market. CAAA refers to the Clean Air Act Amendments; NSPS refers to New

Source Performance Standards (applies to all new sources of NOx and SO2, applying uniform

national standard based on best adequately demonstrated technology); BACT refers to Best Avail-

able Control Technology (applies to all new sources of NOx and SO2 emitting significant amounts

in attainment areas and is at least as strict as NSPS); RACT refers to Best Reasonably Available

Control Technology. The “Prior Regulation Lifted” column indicates whether (or how) the prior

regulations were adjusted at the point of introducing the emissions market. The “Paper on Market”

column indicates a paper(s) studying the market.
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Table F9: Prior regulations across emissions markets

Program (Pol-
lutant)

Location Year In-
stituted

Prior Regulation Prior Regula-
tion Lifted?

Paper on Mar-
ket

Nitrogen
Oxides Bud-
get Program
(NOx)

Eastern US 2003 • 1970 CAAA: NSPS, BACT
• 1990 CAAA: Required subset of boilers in extreme areas to transition to

low-pollution fuel
• 1990 CAAA: Acid Rain program manted installing NOx monitoring and

abatement normally met with control technology
• In 1995 Ozone Transport Commission required existing sources to meet

RACT limits and ran OTC NOx budget program

No Deschênes,
Greenstone
and Shapiro
(2017)

AB-32 cap-
and-trade
system (CO2)

California 2013 • Bill establishing market included complementary programs and modifica-
tions of existing programs, including LCFS, RPS, and efficiency mandates

• LCFS adopted in 2009 and “require[d] the carbon intensity of transportation
fuels to be reduced by at least ten percent in 2020” (ARB, 48). “In April
2011 California adopted a 33 percent RPS” (Appendix, 21). The efficiency
mandates varied by different buildings and appliances (ARB, 37).

No, in-
troduced
concurrently

Borenstein
et al. (2019)

RECLAIM:
Regional
Clean Air
Incentives
Market (NOx)

South Coast
Air Basin
in Southern
California

1994 • 1970 CAAA: NSPS, BACT
• In 1990 South Coast Air Basin was only nonattainment area for NOx emis-

sions. Thus, the NOx emissions standards may have been more stringent
here than other areas.

• Prior to RECLAIM, command-and-control program emphasized advanced
control technologies, which they adopted in late 1989.

Relaxed Fowlie, Hol-
land and
Mansur (2012)

Acid Rain Pro-
gram (SO2)

US 1990 • 1970 CAAA: NSPS, BACT
• 1977 CAAA: New coal plants must operate with scrubbers and achieve a

certain reduction in potential SO2 emissions (70-90%)

No Joskow and
Schmalensee
(1998)

Regional
Greenhouse
Gas Initiative
(CO2)

Northeast
US

2009 • All states except Virginia had implemented an RPS
• Complementary measures as part of RGGI separate from its emissions cap:

RGGI auction revenues used for ”energy efficiency purposes”.
• CAAA in force: favoring substitution to cleaner sources from coal powered

generation

No Murray and
Maniloff
(2015); Kim
and Kim
(2016)

European
Union Emis-
sions Trading
System (CO2)

EU 2005 • Directive 2001/77/EC in 2001 set country specific targets for adoption of
renewable energy production.

• Directive 2003/30/EC in 2003 promoted biofuels for EU transport.

No Deschênes,
Greenstone
and Shapiro
(2017)
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G Appendix: Benefit-Cost Analysis

We conduct a benefit-cost analysis of introducing an expanded ETS in Surat covering all plants

that burn solid fuel. The analysis compares the social benefits of cleaner air, as measured by

the valuation of the additional life-years that would be gained from pollution abatement, against

the costs of emissions abatement and monitoring. For this exercise we assume that the ETS is

expanded with the cap proportionately scaled to maintain the same regulatory stringency per plant

as in the experiment. Table 6 summarises the analysis we describe below.

G.1 Costs of monitoring and abatement

The costs of the ETS include both the monitoring infrastructure necessary for the market and

the abatement costs, or cost savings, induced by the market. In the experiment, both treatment and

control groups purchased CEMS but these devices were not used under the status quo.

We estimate the annual costs of operating a CEMS system at approximately USD 5000 per

plant. We arrive at this number by assuming an annualized capital cost of CEMS of INR 200,000,

annual device calibration costs of INR 30,000, annual fees for software licenses and maintenance

contracts of INR 60,000, and miscellaneous costs (replacement parts, labor etc) at INR 50,000.

The annualized CEMS costs are based on an assumed system cost of INR 800,000 with a 4 year

equipment life and no discounting. This equipment life describes the realized experience of some

plants in our sample but is lower than typical manufacturer claims. License fee and contract costs

are based on conversations with vendors and industry. Calibration costs assume three visits a year.

Partly offsetting this monitoring cost, our estimates imply a reduction in abatement costs of

roughly USD 650 per plant-year, despite that treatment plants are operating at a sharply lower

level of emissions than control plants (row A2). The net per plant costs of monitoring are therefore

reduced to closer to USD 4,000. There were a total of 906 registered solid fuel burning plants

in Surat during the period of the market and thus in a hypothetical scale-up to cover all plants,

we estimate the total private costs, inclusive of both monitoring and abatement, to be USD 3.91
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million per year.

G.2 Benefits of lower pollution

The benefit of the ETS is cleaner air. We monetize the benefit of cleaner air by using estimates

of the damage from particulates, in terms of life-years gained, and valuing these life-years using

estimates of the value of statistical life.

The first step is to estimate how much ETS would reduce ambient pollution (as opposed to

industrial pollution emissions). This step is non-trivial because there are many sources of PM2.5.

A simple estimate of the impact of the ETS is that ambient pollution would fall by an amount equal

to the percentage reduction in emissions due to the regulation, multiplied by the total contribution

of these sources to ambient concentrations.

The first term is simply the assumed reduction in emissions, either 10%, 30% or 50%, across

columns 1 to 3. For the second term we turn to an estimate from the atmospheric science literature

that industrial sources in Surat raise ambient fine particle concentrations by 28.32 µg/m3. Gut-

tikunda, Nishadh and Jawahar (2019) use pollution inventories combined with an atmospheric dis-

persion model to apportion ambient particulate concentrations in Indian cities to different sources.32The

authors estimate annual average ambient PM 2.5 concentrations in the city at 88.5 µg/m3, with

32% (or 28.32 µg/m3) coming from local industry. Then the Surat ETS applied to all plants in the

city would reduce fine particulate pollution by 0.30×28.32 = 8.5µg/m3 (panel B, column 2).

The second step is to estimate the life-years gained from lower pollution. A large literature

has attempted to quantify the impact of air pollution on life expectancy. Ebenstein et al. (2017)

use a spatial regression discontinuity, at high levels of pollution in China, to estimate that a 10

µg/m3 reduction in pollution results in a 0.98 year increase in life expectancy. Other estimates in

the literature include 0.61 years (Pope, Ezzati and Dockery, 2009) and 0.12 years (calculated from

Table S2 in Apte et al. (2018)).

These estimates should be interpreted as the benefits of long-run changes in pollution. If we

32Their updated assessment for Surat is available at: https://urbanemissions.info/india-apna/
surat-india/.
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were to assume that an ETS were implemented in Surat for 70 years (roughly the current life

expectancy in India), reducing pollution each year by 8.5 µg/m3, then the health benefits from

Ebenstein et al. (2017) would suggest life expectancy gains of 0.98× 8.5/10 = 0.83 years per

person. The population of Surat in 2021 as estimated 7.5 million people. Thus the total gain in life

years would be these per-person estimates multiplied by the city population, or 6.24 million years.

Assuming these accrue gradually over the 70 year period of the ETS, the gain from a single year

of the program would be 89,208 years.

The third step is to value the life-years gained. We use a VSL estimate for India of USD

665,000 (Nair et al., 2021) and apply this equally to every year of an assumed 70 year life yielding

a dollar value of USD 9,500 per life-year gained. This number, combined with the life years gained

from a year of the ETS, would imply a single year health benefit of USD 847 million and thus a

benefit to cost ratio as high as 215 to 1 (panel E, row 1, column 2). Using the lower estimates of

health benefits from Apte et al. (2018) yields a benefit to cost ratio of 26 (panel E, row 4, column

2). By either estimate, the benefits of the expanded ETS greatly exceed the total of monitoring and

abatement costs.
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