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Abstract. Prediction of different lung pathologies using chest X-ray images is a
challenging task requiring robust training and testing accuracies. In this article,
one-class classifier (OCC) and binary classification algorithms have been tested
to classify 14 different diseases (atelectasis, cardiomegaly, consolidation, effu-
sion, edema, emphysema, fibrosis, hernia, infiltration, mass, nodule, pneumonia,
pneumothorax and pleural-thickening). We have utilized 3 different neural net-
work architectures (MobileNetV1,Alexnet, andDenseNet-121)with four different
optimizers (SGD, Adam, and RMSProp) for comparing best possible accuracies.
Cyclical learning rate (CLR), a tuning hyperparameters technique was found to
have a faster convergence of the cost towards the minima of cost function. Here,
we present a unique approach of utilizing previously trained binary classification
models with a learning rate decay technique for re-training models using CLR’s.
Doing so, we found significant improvement in training accuracies for each of the
selected conditions. Thus, utilizingCLR’s in callback functions seems a promising
strategy for image classification problems.

Keywords: One-Class Classifier · Optimizer · Cyclical Learning Rates

1 Introduction

Speech recognition, computer vision and text analysis are major fields in which deep
learning is prominently used for image classification [1–3]. Cyclical learning rates
(CLR’s) allow the learning rates to vary between a range of boundary values. Selecting
learning rate manually is a time consuming and computationally costly task [4]. Optimal
learning rate is important as the model can converge slowly if the learning rate is too
slow or the model can diverge from the minima of the cost function if the learning rate
is too high [5]. Even if an optimal learning rate for the model is achieved, the model can
take many epochs to reach the minima of the loss function. The model doesn’t have a
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regular cost function, moreover, the gradient of the cost function is different in different
parts of the cost function curve [6]. To overcome this issue, instead of using constant
single learning rate, a learning rate decay policy can be used to obtain better results.
However, the learning rate decay also has several drawbacks including getting stuck in
a local minimum or plateau of cost function due to very small learning rates in later
epochs [7]. CLR’s can be an effective technique to make the model converge faster in
minimal number of epochs and to decrease the efforts of finding optimal learning rates.

2 Experimental Results and Analysis

2.1 Data Collection, Preprocessing, Model Architecture, and Learning Rates

2.1.1 Data Collection

The data used for binary and one-class classification has been made available by
National Institutes of Health (NIH), USA [8]. This dataset consists of 112,120 chest
X-ray images, each with a 1024 * 1024-pixel resolution. Images belong to 15 classes,
14 classes of diseased individuals and 1 class of healthy individuals (‘No Find-
ing’). The disease classes contain ‘Atelectasis’, ‘Cardiomegaly’, ‘Consolidation’, ‘Effu-
sion’; ‘Emphysema’, ‘Edema’, ‘Fibrosis’, ‘Infiltration’, ‘Mass’, ‘Nodule’, ‘Pneumonia’,
‘Pneumothorax’, ‘Pleural Thickening’ and ‘Hernia’. A metadata associated with the
image dataset consists of patient’s age, gender, unique patient id, and the view position
(anterior-posterior and posterior-anterior) of the X-ray image.

2.1.2 Exploratory Data Analysis

From the total set, 60,361 images have the label ‘NoFinding’ (healthy), while others have
multiple labels with combinations of 14 classes. Overall, the unique constitutes to around
836 labels. Unique can be any of the 14 primary classes (‘No Finding’ label excluded)
or any combination of these 14 primary classes. Figure 1 depicts the distribution of these
15 unique labels.

A one-hot encoding was applied to convert 836 unique labels to 15 primary class
labels [9]. Comparison of the number of images in 15 primary classes before and after
performing one-hot encoding is shown in Table 1. A plot for the number of images after
performing one-hot encoding is shown in Fig. 2.

Binary classifiers have been developed on each disease and the ‘No Finding’ class.
The ‘No Finding’ class has approximately 3 times more images than the ‘Infiltration’
class, this type of unbalanced dataset can raise a state where the algorithm will overfit
the class having more images. To avoid this, the number of images in the ‘No Finding’
class has been taken approximately the same as the number of images in the class for
which the binary classifier was developed.
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Fig. 1. Number of top 15 unique labels.

Table 1. Counts per class for primary labels before and after one-hot encoding.

Image Label No. of Images before One Hot
Encoding

No. of Image before One Hot
Encoding

No Finding 60361 60361

Atelectasis 4215 11559

Cardiomegaly 1093 2776

Consolidation 1310 4667

Edema 628 2303

Emphysema 892 2516

Effusion 3955 13317

Fibrosis 727 1686

Infiltration 9547 19894

Mass 2139 5782

(continued)
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Table 1. (continued)

Image Label No. of Images before One Hot
Encoding

No. of Image before One Hot
Encoding

Nodule 2705 6331

Pneumothorax 2194 5302

Pneumonia 322 1431

Pleural Thickening 1126 3385

Hernia 110 227

Fig. 2. Counts per class for primary labels after one-hot encoding.

2.1.3 Pre-processing of Data

Binary Classifier A 1:4-fold split of test to training set was performed for 14 binary
classifiers (Table 2). To save overhead memory and making model more robust, we
passed all the images through a ImageDataGenerator class of Keras [10] (shear range
of 0.05, zoom range of 0.1, rotation range of 7°, width, and height shift range of 0.1,
brightness range of 0.4 to 1.5 with a horizontal flip), while subsequently applying image
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augmentation technique. These techniques helped the model to generalize and reduce
the overfitting state.

Table 2. List of binary classifiers and the number of images in their training and test sets.

Binary Classifier No. of images
containing
respective
disease label

No. of Images
with ‘No
Finding’ Label

Total
Images

No. of
training
images (80%
of total
images)

No. of test
images (20%
of total
images)

Atelectasis 11559 12000 23599 18847 4712

Cardiomegaly 2776 2800 5576 4460 1116

Consolidation 4667 4700 9367 7493 1874

Edema 2303 2300 4603 3682 921

Emphysema 2516 2600 5116 4092 1024

Effusion 13317 13500 26817 21453 5364

Fibrosis 1686 1700 3386 2708 678

Infiltration 19894 20000 39894 31915 7979

Mass 5782 6000 11782 9425 2357

Nodule 6331 6500 12831 10264 2567

Pneumothorax 5302 5500 10802 8641 2161

Pneumonia 1431 1500 2931 2344 587

Pleural
Thickening

3385 3500 6885 5508 1377

Hernia 227 250 447 381 96

A dynamic batch training was utilized to decrease computational time and memory.
Based on optimal performance, an iterative loop of 32 images/batch was used for train-
ing till all the images in batch were exhausted. Apart from utilizing less memory, this
method helps to save fewer errors in the memory for updating hyperparameters through
backpropagation which increases the training speed drastically. The high-resolution X-
ray images for training have higher fractional improvements in area under curve (AUC)
[11], and also can help localize a disease pattern (Table 3).

One Class Classifier. With the idea of choosing a balanced data, the dataset for one-
class classifier contains 2,800 images of “No Finding” class and 200 images from each
disease class. We again choose 1:4-fold split of test to training set to be consistent with
binary classifiers. Further, the preprocessing through ImageDataGenerator class with
same parameters as binary classifiers was performed for this split. Dynamic training
with an optimal batch of 16 images/batch was performed.
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Table 3. Number of training and testing batches with respective batch sizes for all the binary
classifiers.

Binary Classifier Total Images Batch Size No. of training
batches

No. of test batches

Atelectasis 23599 16 1178 295

Cardiomegaly 5576 32 140 35

Consolidation 9367 32 235 59

Edema 4603 32 116 29

Emphysema 5116 32 128 32

Effusion 26817 32 671 168

Fibrosis 3386 32 85 22

Infiltration 39894 16 1995 499

Mass 11782 32 295 74

Nodule 12831 32 321 81

Pneumothorax 10802 32 271 68

Pneumonia 2931 16 147 37

Pleural Thickening 6885 32 173 44

Hernia 447 4 96 24

2.1.4 Model Architectures for Binary & One-Class Classifiers

Binary Classifier. A 2D convolutional neural network is applied using an MobileNetV1
network architecture [12]. The model parameters of MobileNet previously trained on
ImageNet have been utilized using transfer learning (Fig. 3).

Fig. 3. Model architecture used for all the binary classifiers.

For MobileNetV1 previously trained ImageNet weights are passed through a global
average pooling layer considering averages of each feature map instead of adding fully
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connected layers. This technique helps to easily interpret feature maps as categories
confidence maps, to reduce overfitting, and is more robust to spatial translations of
the input as it sums out the spatial information [13]. To further reduce overfitting, a
dropout regularization layer to drop ~50% of the input units for variance reduction has
been applied after the global average pooling layer. The model is then passed through
4 dense layers of output nodes 250, 50, 10, and 2 with linear activation functions in
them. In each dense layer, L1 and/or L2 regularization is applied to the layer’s kernel,
bias, and activity. Kernel regularizer with both L1 and L2 penalties of 0.001 and 0.01
respectively are applied on the kernel’s layer. A bias regularizer with an L2 penalty of
0.01 is applied on the layer’s bias. Activity regularizer with an L2 penalty of 0.001 is
applied on the layer’s output. After each dense layer, batch normalization is used to
stabilize the learning process and dramatically reduce the number of training epochs
required to train a deep neural network. Finally, the model architecture is complete with
application of a dense layer comprising of sigmoid activation function and 1 output node.
The stochastic gradient descent (SGD) optimizer with learning rate decay has been used
to train the model as it gave a superior performance compared to RMSProp and adam
optimizer for all the classifiers except “Hernia”. Adam optimizer with a learning rate of
0.01 has been found to perform better in case of “Hernia”. A momentum parameter has
been used to help accelerate gradient vectors in right directions (Table 4).

Table 4. Chart showing optimizer, its momentum, learning rates, and the decay constants used
with SGD optimizer for all binary classifiers (Except Hernia which has Adam optimizer).

Binary Classifier Optimizer Used Learning Rate Decay constant Momentum

Atelectasis SGD 0.01 0.001 0.9

Cardiomegaly SGD 0.1 0.0005 0.9

Consolidation SGD 0.05 0.0005 0.9

Edema SGD 0.01 0.0005 0.9

Emphysema SGD 0.01 0.0005 0.9

Effusion SGD 0.01 0.001 0.9

Fibrosis SGD 0.001 0.00005 0.9

Infiltration SGD 0.01 0.001 0.9

Mass SGD 0.01 0.001 0.9

Nodule SGD 0.01 0.001 0.9

Pneumothorax SGD 0.01 0.0005 0.9

Pneumonia SGD 0.01 0.0001 0.9

Pleural Thickening SGD 0.05 0.0005 0.9

Hernia Adam 0.01 0.0001 0.9

One Class Classifier. A false-positive predictions arise when the algorithm is unable
to identify the “No Finding” class, a problem falling under the category of “Anomaly
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Detection”. One-class classifier is an unsupervised learning algorithm focusing on the
problem of anomaly detection [14]. Themodel contains a negative class (inlier or normal
class) and a positive class (outlier or anomaly class). In our case, the normal class or
inlier class is the “No Finding” class. The anomaly class is formed by combining 200
images of each disease class. The benefit of this approach is that if the prediction/test
image fed to the algorithm is not from any of the 14 disease classes, it will still categorize
it as an “Anomaly” simply because the algorithm could not classify it as an image with
“No Finding” class. If the algorithm classifies the image with a disease other than these
14 diseases as a “No Finding” class, it will give rise to a problem of false negative
prediction. One-class classifier serves the purpose of solving the problem of both false
positives and false negative predictions. The model architecture for one-class classifier
is same as the binary classifier.

2.1.5 Cyclical Learning Rates

The first step in applying CLR’s is to define a maximum learning rate and a base learning
rate [4]. The learning rate can then be allowed to vary between maximum learning rate
and base learning rate. We have utilized learning rate finder technique (described in
section A6) to decide maximum learning and the base learning rates. For one condition,
“Pneumothorax” binary classifier, maximum and the base learning rates of 0.03 and
0.0075 respectively were obtained using learning rate finder. A step size is an important
parameter which simply is the number of batches in which the learning rate will become
equal to the maximum learning rate starting from the base learning rate or vice-versa.
It is the number of training batches to reach half cycle. Typically, the step size of 2–
8 times the number of training batches in 1 epoch is ideal [4]. For “Pneumothorax”,
the total number of training batches in 1 epoch is equal to 541. Therefore, a step size
of 1082 was used for learning rate finder. Finally, a mode policy needs to be defined
for calculating learning rates. Mode is the pattern in which the learning rate will vary
within the bounds of maximum and minimum learning rates. The “triangular” policy for
“Pneumothorax” binary classifier is shown in Fig. 4. The learning rate monotonically
increases to maximum learning rate from base learning rate in two epochs and decreases
back to base learning rate in the next two epochs. Since the “Pneumothorax” model with
CLR technique and “triangular” policy is trained for 36 epochs, a total of 9 full cycles
can be observed in Fig. 4.

We also have parallelly utilized a more complex policy called a “modified triangu-
lar2” policy. In this policy, the maximum learning rate is not taken to be the average of
previous maximum learning rate unlike “triangular2” policy. After 3 complete cycles of
the “triangular2” policy, the training is continued with “triangular2 policy” with original
maximum learning rate obtained from the learning rate finder technique. This process
is carried out until whole training is exhausted. In the “Pneumothorax” binary classifier,
the maximum learning rate in the first cycle is 0.03 from the first learning rate finder
cycle, followed by second cycle with maximum learning rate of 0.01875, followed by
third cycle with maximum learning rate of 0.013125 (Fig. 5), etc.
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Fig. 4. Plot showing the “Triangular” policy for “Pneumothorax” binary classifier trained for 36
epochs.

Fig. 5. Plot for the “modified triangular2” policy of “Pneumothorax” binary classifier trained for
42 epochs.

2.1.6 Learning Rate Finder

The upper and lower bounds of the CLR have been determined by learning rate finder
technique where the cost function is minimum. Training the model with a learning rate
finder as a callback for 1-5 epochs was enough to get the learning rate with minimum
cost function. In case of the “Pneumonia” binary classifier, the minimum and maximum
values for the learning rates were 1e−7 as minimum and 1 as maximum (Fig. 6). The
training increases exponentially after each batch on minimum learning rate. The “Pneu-
mothorax” model loss vs. learning rate curve trained for 10 epochs is found to have a
learning rate of 3e-2 with minimum loss (Fig. 6). This loss increased as the learning rate
approached to 1. The base learning rate for CLR can be accounted to one-fourth of the
maximum learning rate [4].

2.1.7 With Binary Classifiers CLR’S Out-Perform Normal Training with a Learn-
ing Rate Decay Policy

We have run 3 model architectures (MobileNetV1, AlexNet, and DenseNet121) for
comparing the performance (computational cost & accuracy) of classifiers [15, 16].
MobileNetV1with an SGDoptimizerwas found to bemost efficient, whileDenseNet121
had good accuracy but significantly more computational cost, AlexNet had significantly
lower accuracies when trained for the same number of epochs (Table 5).
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Fig. 6. Loss vs. learning rate plot for “Pneumothorax” binary classifier trained for 10 epochs.

Table 5. Accuracies of all the binary classifiers after training for given number of epochs.

Binary Classifier No. of Epochs Accuracy (in %)

Atelectasis 10 75.10

Cardiomegaly 12 75.78

Consolidation 10 73.32

Edema 12 93.37

Emphysema 10 85.60

Effusion 10 86.53

Fibrosis 10 66.58

Infiltration 10 64.60

Mass 10 70.11

Nodule 10 68.23

Pneumothorax 10 70.12

Pneumonia (with CLR) 30 88.43

Pleural Thickening 10 71.67

Hernia 30 90.81

The problem of false-positive predictions was addressed using one-class classifiers.
For the models of “Infiltration”, “Atelectasis”, “Fibrosis” & “Pneumothorax” the accu-
racies have been consistently low after training for the selected number of epochs. So,
we chose these conditions to test CLR’s on (Table 6).

The problem of false-positive and false-negative predictions was resolved with one
class classifiers. After which, a selected model trained for 32 epochs using CLR’s with
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Table 6. Comparison of the network architectures for “Atelectasis” binary classifier.

Name of Model
Architecture

Approx. training time per
epoch in hours

Training Epochs Accuracy (in %)

MobileNetV1 2.5 10 75.10

DenseNet121 5 10 78.07

AlexNet 1.5 30 75.50

a maximum learning rate of 0.1, a base learning rate of 0.025, a step size of 2, and
with a “triangular” policy provided a final training accuracy of 83.01%. CLR’s showed
improved accuracy and a lower computational cost compared to training a network with
constant learning rates (Tables 7 and 8).

Table 7. Classifier accuracies after application of CLR’s.

Binary Classifier Accuracy
before CLR
application
(in %)

Epochs taken
to achieve the
accuracy
before CLR
application

Accuracy
after CLR
application
(in %)

Epochs taken
to achieve the
accuracy after
CLR
application

Policy Used

Atelectasis 75.10 10 79.59 32 Triangular

Infiltration 64.6 10 76.15 10 Modified
Triangular2

Fibrosis 66.58 10 88.96 32 Modified
Triangular2

Pneumothorax 70.12 10 79.83 36 Triangular

Pneumonia – – 88.43 30 Triangular

Table 8. Parameters and specifications of the CLR’s.

Binary Classifier Policy Used Step Size Epochs Maximum
Learning Rate

Base Learning
Rate

Atelectasis Triangular 2 32 0.1 0.025

Infiltration Modified
Triangular2

2 10 0.02 0.005

Fibrosis Modified
Triangular2

2 32 0.002 0.0005

Pneumothorax Triangular 2 36 0.03 0.0075

Pneumonia Triangular 2 30 0.01 0.0001
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The “Pneumothorax” model is found to perform best when the CLR’s is used with a
“triangular” policy. As shown in Fig. 7, it took 47 epochs for the model with a constant
learning rate to reach an accuracy of 79.26%. With CLR using “modified triangular2”
policy crossed the accuracy level of 79.26% at 38 epoch and reached the accuracy of
80.92% in 41 epochs. While, the “Pneumothorax” model with CLR using a “triangular”
policy crossed the accuracy level of 79.26% in just 36 epochs to achieve final accuracy
of 79.83%.

Fig. 7. Accuracy plot for “Pneumothorax” binary classifier with constant learning rate, CLRwith
“triangular” and CLR with “modified triangular2” policies.

The loss compared to the number of epochs was seen to be decreased with CLR’s
in both “triangular” and “modified triangular2” policies (Fig. 8). The loss of the “Pneu-
mothorax” model with CLR reduced quicker than the “Pneumothorax” model with a
constant learning rate.

The “Fibrosis”modelwas found to give better results in the case of theCLR technique
with a “modified triangular2” policy. A comparison of “fibrosis” model trained for 32
epochs is shown in Fig. 9. The model reached an accuracy of 85.04% in 32 epochs when
trained with a constant learning rate policy. The model reached an accuracy of 86.96%
in 32 epochs when trained with CLR using a “triangular” policy. It crossed the 85%
accuracy level in 30 epochs. The model reached an accuracy of 88.15% in 32 epochs
when trained with CLR using a “modified triangular2” policy. It crossed the accuracy
level of 85% in just 25 epochs. The loss was observed to be always less in CLR’s with
a “modified triangular2” (Fig. 10).
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Fig. 8. Loss for “Pneumothorax”model with constant learning rate, CLRwith “triangular” policy
and CLR with “modified triangular2” policy.

Fig. 9. Accuracy plot comparing “Fibrosis” binary classifier with constant learning rate, CLR
with “triangular” policy and CLR with “modified triangular2” policy.
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Fig. 10. Loss for “Fibrosis” binary classifierwith constant learning rate andCLRwith a “modified
Triangular2” policy.

3 Discussion and Future Scope

Depthwise separable convolutions like MobileNets have been gradually pruned for
improving the speed of dense network [17]. MobileNetV1 Imagenet weights with SGD
optimizer is found to outperform other optimizers and architectures in terms of training
time taken and accuracy attained. Achieving a high test accuracy is directly depended
on learning rate hyper-parameter for training neural networks [18–21]. Three forms of
triangle CLR’s have been stated to accelerate neural network training [18, 19]. Further,
tuning the batch size hyper-parameter for adjusting learning rates have also been shown
to improve learning accuracy [22]. Some hyperparameter tools like Hyperopt, SMAC,
and Optuna, using grid search, random search and Bayesian optimization have been seen
efficient in tuning batch sizes [23, 24]. To the best of our knowledge, our work is the
first to present a comprehensive characterization of CLR function on training and testing
accuracy of dense network models. In general, training any model with a CLR technique
is found to perform better than training with a constant learning rate. For the “Pneu-
mothorax” binary classifier, the CLR technique with the “triangular” policy is found to
outperform both CLR with the “modified triangular2” policy and constant learning rate
training. For the “Fibrosis” binary classifier, the CLR with the “modified triangular2”
policy was found to give better results than the rest two policies. Primarily, we found
that there are two main advantages of training with CLR’s over constant learning rates,
with decay learning rates the model can get stuck into the saddle points or local minima
due to low learning rates, and secondly CLR’s reduces the effort of choosing an optimal
learning rate by hit and trial method. Poor choice of initial learning rate can make the
model circle infinitely. In setting a learning rate, there is a trade-off between the rate of
convergence and overshooting, a high learning rate will make the learning jump over
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minima but a too low learning rate will either take too long to converge or get stuck
in an undesirable local minimum [25]. The CLR’s cyclically provided higher learning
rates too, which helped the model to jump out of the local minima of the cost function.
With these findings, implementing CLR’s for improving prediction accuracies seems a
promising strategy for object detection and machine translation.
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