Machine learning techniques for analyzing and
interpreting genomics and proteomics data

Pawar Shrikant, Ph.D.



VRN

Bioinformatics/Computational
Biology

~

=

Sequence Analysis

\

5

N

Structural Biology

I N

NGS: Machine Learning
Application [1]

N S

I N

NGS: Supervised Clustering
Application [1]

N S

I N

NGS: Receiver Operating
Characteristic (ROC) [2]

N S

RN

Microarray Analysis
(3,4]

N S

\

X-ray Crystallography on HIV-1
Protease [5]

N

N

Network/Systems Biology

5

N

Development

N

I N

Cancer Drug Targets [6]

N

I N

Indispensable Proteins in P.
mirabilis [7]

N

Databases, Software

& Simulations

i

Y N

RodentSQL [8],
Electronic Lab Notebook [9]

NS

N

Simulation study: DEVS-JAVA
Model [10]

NS

Y N

Computer Vision [11]

NS

©Pawar/Claflin University



Sequence Analysis: NGS

e Utilizing neural networks (Restricted Boltzmann machine’s) and
clustering algorithms to identify certain important, representative
HIV-1 PR sequences from a pool of several hundred sequences.

1. Analysis of drug resistance in HIV protease, Shrikant Pawar, Chris Freas, Robert W. Harrison, and Irene T. Weber, BMC:
Bioinformatics

2. Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, 147V and V82,
Shrikant Pawar, Yuan-FangWang, Andres Wong-Sam, Johnson Agniswamy, Arun K. Ghosh, Robert W. Harrison, and
Irene T. Weber, Elsevier: Biochemical and Biophysical Research Communications



Next Generation Sequencing Technology (NGS): Align
unknown sample contig sequence with known entire
human genome to understand known and unknown
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Drug resistance is a severe problem

Patient 1
Patient 2
Patient 3

Patient 4
PQVTLWQRPI VTKIGGQLK EALLDTG ADN TVLEE MSLPG KWKPKMIGGI GGFIKVRQYD QVSIE ICGHI AIGTVLIGPT PVNIIGRNLL TQLG CTLNF a t I e n t
\ >

Patient 5

Patient 6
Patient 7

Patient n

~100,000 sequences

Major and minor mutations
associated with resistance to all clinical protease inhibitors

Adapted from Weber, Kneller, Wong-Sam. Future Med Chem 2015



r Stanford University
L )T\ HIV DRUG RESISTANCE DATABASE

[~
\'Lr— A curated public database to represent, store and analyze HIV drug resistance dota.
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SeqID FPV IDV NFV sQv ~100,000 sequences can be classified as resistant or non-resistant
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PQVTLWQRPI VTIKIGGQLK EALLDTGADN TVLEEMSLPG KWKPKMIGGI GGFIKVRQYD QVSIEICGHI AIGTVLIGPT PVNIIGRNLL TQLGCTLNF

Can machine learning help in selecting few drug resistant PR sequences for structure guided drug design?



Analysis Pipeline

Encoding Selection
) )
( \ ( \
- A - A\ - N / A -
Encode WT Represent all
Coordinates protein the isolate Apply RBM, Select
for WT HIV-1 sequence sequences K means, sequences
L SVM and RF . )
PR with its and from . Agglomerative using
: for checking . . :
protein structure Stanford : and Divisive intersection
. : encoding )
sequence with database in Sccurac Clustering amongst
information Delaunay form of 210 Y techniques
triangulation vectors
- J \ J - J \_ J -
Hierarchical Clusters
1 2 3 - - 58 59 60
1 2 3 - - 58 59 [e0

Divisive Clusters

©Pawar/Claflin University




Representative plot with separation of sequences
for inhibitor FPV with Support Vector Machine

+ ResistantSequences
® Non-Resistant Sequences

X and Y axis are weight vectors

* Three, five- and ten-fold accuracies for SVM and RF ranged from 0.95-0.99. RBM also selected sequences in range 0.91-0.97.
These accuracies are better than Yu. Et. al. 2014 where she got SVM accuracies ranging from 0.93-0.96.

 These accuracies are comparable with Shen. Et. al. 2016 where he got RF accuracies ranging from 0.98-0.99.
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Most of the high resistance fold sequences with class 2 were clustered in first 10 clusters for most of the selected inhibitors
through both hierarchical and divisive clustering delineating a clean separation between non-resistant and resistant

sequences.
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From a pool of 100,000 only 2-35 sequences were
selected common through all the 3 approaches

Category ATV DRV FPV IDV LPV NFV sQv TPV
H,DandK 0 0 20 (66) 0 35(61), 2(12) 5 (58), 0
2 (31) 6 (63),
3 (73),
21 (85)

Numbers in parenthesis are the cluster from which they were selected.

1. The resistance status of the selected sequences should be identified.
2. Minimum number of sequences selected for inhibitors, NFV, SQV or LPV would be some of the ideal candidates
for testing in laboratory.
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Sequence Analysis: Microarray

 KIFCI, a novel putative prognostic biomarker for ovarian
adenocarcinomas.

3. KIFCI, a novel putative prognostic biomarker for ovarian adenocarcinomas: delineating protein interaction networks and
signaling circuitries, Shrikant Pawar, Shashikiran Donthamsetty, Vaishali Pannu, Padmashree Rida, Angela Ogden, Nathan
Bowen, Remus Osan, Guilherme Cantuaria, and Ritu Aneja, BMC: Journal of Ovarian Research

4. A centrosome clustering protein, KIFC1, predicts aggressive disease course in serous ovarian adenocarcinomas, Karuna
Mittal, Da Hoon Choi, Sergey Klimov, Shrikant Pawar, Ramneet Kaur, Anirban K. Mitra, Meenakshi V. Gupta, Ralph Sames,
Guilherme Cantuaria, Padmashree C. G. Rida, Ritu Aneja, BMC: Journal of Ovarian Research



Microarray technology
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Centrosome amplification in ovarian cancer and high
KIFC1 expression in ovarian cancer and normal tissue.
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Percent survival

(@)

Percent survival

Increased KIFC1 expression is associated with poorer overall
survival in age-specific ovarian cancer patients and pathways
associated with first degree neighbors of KIFC1 protein
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KM Survival Analysis

Heat map of genes
correlated with KIFC1

Protein interaction
pattern generated
from String 9.0

Cancer Normal

First degree KIFC1
interactome generated
from Cytospace 3.1
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Computer Vision in Biomedical Imaging

Single shot detector application for image disease localization

. Single shot detector application for image disease localization, Shrikant Pawar, Rushikesh Chopade, Aditya Stanam,
bioRxiv
. Cyclical Learning Rates (CLR’S) for Improving Training Accuracies and Lowering Computational Cost, Shrikant Pawar,
Rushikesh Chopade, Aditya Stanam, Springer Lecture Notes in Computer Science
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Bounding boxes for

. A 100 -
disease localization

« Object localization is a subfield of

computer vision that is used to detect
the location of object in an image.

3001
« Bounding box algorithms are useful in Y
localization of image patterns.
Recently, utilization of convolutional
neural networks on X-ray images has 400
proven a promising disease prediction

technique.

500
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Neural Network architecture

Input Hidden Output
layer layers layer
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The dataset consists of 112,120 chest X-ray images, each image with a 1024°1024-
pixel resolution. The images are divided into 15 classes (‘No Finding’, ‘Atelectasis’,
‘Cardiomegaly’, ‘Consolidation’, ‘Effusion’; ‘Emphysema’, ‘Edema’, ‘Fibrosis’,
‘Infiltration’, ‘Mass’, ‘Nodule’, ‘Pneumonia’, ‘Pneumothorax’, ‘Pleural Thickening’
and ‘Hernia’)
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Image of a patient
suffering from
cardiomegaly showing
intersection of original
condition and
prediction. The
prediction accuracy is
>95%
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Interested in learning and working with above
research projects?

e Students interested in working on biomedical imaging projects will
receive a S6000/AY & summer stipend. Supported by 2023-2028 NSF
SC EPSCoR ADAPT Track 1 Award.

* The research work can be a part of their thesis or project reports.

* Opportunities are also available to collaborate on microarray and
sequencing projects but without stipend.
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